Caractérisation 3D de la microstructure et des déformations élastiques des polycristaux par microdiffractiodiffraction Laue

par Jean-Baptiste Marijon

Thèse de doctorat en Mécanique-matériaux

Sous la direction de Olivier Castelnau et de Odile Robach.

Soutenue le 11-07-2017

à Paris, ENSAM , dans le cadre de École doctorale Sciences des métiers de l'ingénieur (Paris) , en partenariat avec Procédés et Ingeniérie en Mécanique et Matériaux (Paris) (laboratoire) et de Procédés et Ingénierie en Mécanique et Matériaux [Paris] (laboratoire) .

Le président du jury était Philippe Goudeau.

Le jury était composé de Olivier Castelnau, Odile Robach, Benoît Devincre.

Les rapporteurs étaient Hervé Palancher, Thomas W. Cornélius.


  • Résumé

    La caractérisation des contraintes internes présentes dans les matériaux de structure ou fonctionnels est primordiale pour une optimisation de leurs propriétés et de leur tenue en service. Ce travail de thèse est une contribution au développement d'une technique de microscopie par diffraction des rayons X, appelée "Differential Aperture X-ray Microscopy", (DAXM, permettant la caractérisation 3D et non-destructive de la microstructure de matériaux cristallins et des contraintes internes présentes dans le matériau. Cette technique est basée sur l'utilisation du rayonnement synchrotron; nous avons utilisé la ligne CRG BM32 du synchrotron européen ESRF. Le faisceau de rayons incident est polychromatique (5-25keV) et fortement focalisé (section sub-micrométrique). En raison la pénétration du faisceau dans le matériau, qui est typiquement de quelques dizaines de microns, l'image de diffraction collectée est une superposition des diagrammes de Laue de tous les cristaux situés sur le trajet du faisceau incident. La DAXM utilise, en supplément de la microdiffraction Laue "classique", un masque mobile (ici un fin fil de tungstène) qui absorbe une partie des faisceaux diffractés. L'analyse de l'évolution des niveaux de gris des pixels de l'image en fonction de la position du masque permet non seulement de reconstruire la microstructure du matériau en profondeur mais aussi d'accéder à la distribution 3D des déformations élastiques (et des contraintes associées). L'un des avantages de la DAXM est sa résolution spatiale, de l'ordre du micromètre, qui permet d'envisager l'analyse des concentrations de contraintes dans les matériaux polycristallins, dans le cadre des approches micromécaniques expérimentales.Le travail mené dans cette thèse avait pour but d'améliorer le dispositif expérimental existant,de mettre en place la formulation théorique du problème, et de développer les outils numériques permettant le traitement des données.Du point de vue expérimental, nous avons notamment développé une machine d'essai mécanique in-situ (flexion 4-points) adaptée à la ligne BM32, et nous proposons un masque multi-fil qui devrait permettre de réduire significativement la durée de l'acquisition des données.Nous avons établi les équations de triangulation reliant la position des pixels du détecteur,la position du fil, et la profondeur de la source le long du faisceau incident. On montre ainsi que la reconstruction 3D nécessite une procédure de dérivation des niveaux de gris; nous nous sommes limités dans ce travail à une dérivation par différence finie d'ordre 1, qui reste sensible au bruit d'image. Ces équations font apparaître la nécessité de déterminer la géométrie du montage avec grande précision. On propose pour cela l'utilisation de la fluorescence de l'échantillon. On adjoint aux équations géométriques une description mathématique simplifiée de l'atténuation du faisceau par l'échantillon, prenant en compte un coefficient d'absorption unique. Le modèle de calibration est testé sur plusieurs matériaux, avec de très bons résultats.La capacité de la DAXM à reconstruire une microstructure est testée sur des échantillons modèles pour lesquels la géométrie 3D de la microstructure est parfaitement connue : empilement de fin fils de GaN sur un substrat, et plan de macle dans un polycristal d'acier inoxydable (316L). On montre que la résolution de la DAXM est variable d'un pixel à l'autre du détecteur; la microstructure peut cependant être reconstruite avec une précision de l'ordre du micromètre.La DAXM est ensuite testée sur un échantillon d'UO2 implanté d'ions Kr, créant une couche de surface d'épaisseur micrométrique fortement déformée (collaboration CEA-Cadarache). On observe que la méthode de reconstruction proposée produit d'importants artefacts, qui sont dus à la transmission variable des faisceaux diffractés dans le masque. Nous mettons en place la formulation permettant de prendre en compte cet effet.

  • Titre traduit

    3D Characterisation of microstructure and elastic strain in polycrystals by Laue microdiffraction


  • Résumé

    The characterization of the internal stresses present in structural or functional materials is essential for an optimization of their properties and their durability in service. This thesis work is a contribution to the development of the so-called '' Differential Aperture X-ray Microscopy'' (DAXM) technique, allowing 3D and non-destructive characterization of the microstructure of crystalline materials and internal stresses. This technique makes use of synchrotron radiation; we used the beamline CRG BM32 of the European synchrotron ESRF. The polychromatic and highly focused incident beam penetrates the sample, and the collected diffraction image is a superimposition of the Laue diagrams of all the crystals located along the path of the incident beam. The DAXM uses, in addition to the "conventional" Laue microdiffraction technique, a moving mask that absorbs part of the diffracted beams. The analysis of the evolution of the gray levels of the image pixels as a function of the position of the mask makes it possible not only to reconstruct the microstructure of the material at depth but also to access the 3D distribution of the elastic deformations (and associated stress). One of the advantages of the DAXM is its spatial resolution, of the order of a micrometer, which makes it possible to envisage the analysis of stress concentrations in polycrystalline materials, within the framework of experimental micromechanical approaches.The work carried out in this thesis was aimed at improving the existing experimental system,to put in place the theoretical formulation of the problem, and to develop the numerical tools allowing the processing of the data.From an experimental point of view, we have developed an in-situ mechanical test device (4-point bending) adapted to BM32, and we propose a multi-wire mask to significantly reduce the data acquisition time.We have established the geometric equations of the problem. It is thus shown that the 3D reconstruction requires a gray scale derivation procedure. This work is limited to the use of a finite difference derivation method of order 1, which remains sensitive to image noise. These equations show the need to determine the geometry of the setup with great precision. For this purpose, the use of the fluorescence of the sample is proposed, coupled with a simplified description of the beam attenuation by the sample taking into account only a single absorption coefficient. The calibration model is tested on several materials, with very good results.The capacity of the DAXM to reconstruct a microstructure is tested on model samples for which the 3D geometry of the microstructure is perfectly known: a stack of GaN wires on a substrate, and a twin plane in a stainless steel polycrystal. It is shown that the resolution of the DAXM is variable from one pixel to the other of the detector; the microstructure can however be reconstructed with an accuracy of the order of one micrometer.The DAXM is then tested on a sample of UO2 implanted by Kr ions, creating a highly deformed surface layer with micrometric thickness (collaboration with CEA-Cadarache). It is found that the proposed reconstruction method is affected by the variable transmission of the diffracted beams in the mask. We propose a formulation that takes this effect into account.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Arts et Métiers ParisTech. Centre d'enseignement et de recherche. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.