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Abstract

Compact arrays of small wave absorbers constitute an example of the multiple existing
categories of wave energy converters (WECs) and have been identified as being an
advantageous solution for the extraction of wave energy when compared to a big
isolated point absorber.

Among the numerous challenges associated with the numerical modeling of such
devices, one of the most relevant one is the evaluation of the hydrodynamic interac-
tions amid the large number of floats O(100) they are composed of. Direct compu-
tations with standard Boundary Element Method (BEM) solvers, used extensively in
wave/structure interaction problems, become prohibitive when the number of bodies
increases. Thus, there is a need to employ an alternative approach more suitable for
the study of the multiple-scattering in large arrays.

In this work, the Direct Matrix Method interaction theory has been implemented.
Based on characterizing the way a WEC scatters and radiates waves, this methodology
enables one to significantly reduce the number of unknowns of the classical boundary
value problem dealt with by standard BEM solvers and, therefore, the computational
time.

The acceleration provided by the numerical tool developed has allowed examining
the power capture of a generic bottom-reference heave-buoy array WEC and optimiz-
ing its layout. We have shown that there exist an optimum number of floats for a
given device footprint. Exceeding this number results in a “saturation” of the power
increase which is undesirable for the economic viability of the device.
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Chapter 1

Introduction

1.1 Context

The reduction of greenhouse gas emissions, whose influence on global warming and
climate change is clear (IPCC, 2014), has been set as a top priority for all the world
countries. In December 2015, the first international climate agreement to limit tem-
perature rise below 2◦C was signed in the 21st annual session of the Conference of the
Parties (COP) to the UN Framework convention on Climate Change (COP21, 2015).
According to the Intergovernmental Panel on Climate Change (IPCC, 1988), global
warming of more than 2◦C would have important negative consequences for the planet,
such as a global mean sea level rise and the increase in the number of extreme events
like heat waves and strong precipitation (IPCC, 2014).

Although the use of renewable energy is rising, the process of transitioning away
from fossil fuels has still a long way to go. Indeed, the estimated renewable energy
share of global final energy consumption was of 19.2% in 2014, and of 23.7% when
considering only the share of global electricity production (REN21, 2016). Of this
latter total share, the highest contribution was from hydropower (16%) in contrast
with the combination of geothermal, concentrated solar power and ocean energies
which only accounted for 0.4%.

In spite of its small weight from a global scale perspective, ocean energy is expected
to represent a significant part of the European Union’s (EU) power mix. According to
SI Ocean (2014), it is estimated that by 2050 wave and tidal energy alone could gen-
erate 10% of the EU’s power demand through the deployment of 100GW of capacity.
To reach this scenario, the cost of the electricity generated from these technologies
ought to be significantly reduced. According to SI Ocean (2013), the lowest estimated
cost of electricity produced by the first pilot 10MW arrays could orbit around the
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0.35c€/kWh. However, to be competitive, the targeted cost should be 0.10c€/kWh or
lower (TPOcean, 2016). This means that a reduction of the cost by at least a factor
3 is to be achieved.

In order to accomplish this ambitious target, the EU has identified a set of priority
areas for R&I in what is referred to as the first ever European Strategic Research
Agenda for ocean energy (TPOcean, 2016). The objective of the present work, whose
main focus is exclusively on wave energy, is aligned with one of them which seeks the
creation of numerical models that optimise computational power (priority
area 1.2 part C).

To successfully develop wave energy converters (WECs) it is common practice
(Cruz, 2008) to conduct numerical studies, at an early-stage and under simplified and
rather idealized conditions, to assess the performance of the technology and to intro-
duce, if required, modifications to the initial WEC design. Outputs from numerical
models shall then be validated through experimental testing campaigns. The combina-
tion of both approaches enables one to check whether important physical phenomena
have been omitted by the computational package and to feed back real experimental
data to the numerical model to improve it further.

As opposed to other renewable energy technologies, such as wind turbines, con-
vergence to a single or a reduced number of WEC designs has not yet been achieved.
Indeed, Falcão (2010) states that more than a thousand patents had been registered
by 1980 and that this number has significantly grown since then. In an attempt to or-
ganize the ensemble of WEC technologies, several classifications have been proposed.
The subject is vast and the interested reader is encouraged to refer to dedicated re-
views on the topic (Falcão, 2010; Pecher and Kofoed, 2017). Succinctly, based on the
principle of operation one can distinguish amongst oscillating water columns, oscillat-
ing bodies and overtopping devices. With respect to their size, if they are small in
comparison with the incident wave length they are referred to as point absorbers, in
contrast with large absorbers. In addition, if their characteristic dimension is aligned
with the main wave propagation direction they are categorized as attenuators and as
terminators when they are oriented parallel to the wave crests.

As a consequence of the great variety of solutions proposed to extract power from
ocean waves, dedicated numerical modeling tools adapted to each WEC need to be
developed. The study by Babarit et al. (2012a) on the numerical modeling of an
electro-active deformable wave energy converter or the review by Falcao and Henriques
(2016) on oscillating water column technology are recent illustrative examples. For a
more general review the reader should refer to the study by Babarit et al. (2012b) who
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(a) Source: Fred Olsen Ltd (2009) (b) Source: Manchester Bobber (2008) (c) Source: WAVESTAR (2015)

Figure 1.1: Three examples of multi-body WECs. a) FO3 platform, b) Manchester
Bobber, c) Wavestar SC-Concept

presented the numerical modeling of a selection of eight WECs with different working
principles in an attempt to derive general trends of performance amongst the different
converter categories.

The focus of this work is on the hydrodynamic numerical modeling of compact
arrays of small wave absorbers, referred as well to as multi-body WECs, which consti-
tutes one of the examples of the existing categories of WECs and have been identified
as being an advantageous solution when compared to a big isolated point absorber
(Garnaud and Mei, 2009). Examples of this type of converters include the FO3 plat-
form (Taghipour and Moan, 2008), the Manchester Bobber (Weller et al., 2010) and
the Wavestar (Hansen and Kramer, 2011) which are depicted in Figure 1.1. Amid the
numerous challenges associated with the numerical modeling of such devices, the most
relevant one at the time of the present study is the computation of the hydrodynamic
interactions amongst the large number of floats (> 20) they are composed of.

Certainly, numerical models conceived for the preliminary investigation of WEC
power capture need to be accurate and have as low computational cost as possible.
The latter is fundamental given that the predictions of power production on a site are
to be computed over long periods of time, typically a year, and that the optimization
of the device requires multiple evaluations of the annual energy absorption for each
different geometrical parameter set.

Because of that, one of the most common approaches to study the wave-structure
interactions in the context of wave energy conversion consists in linearizing the prob-
lem by assuming both a small wave steepness and small body motions and in adopting
a perfect inviscid fluid model. These hypotheses enable one to use a relatively sim-
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ple formulation, referred to as Boundary Element Method (BEM), associated with a
remarkable calculation speed and with sufficiently accurate results for the targeted
applications. Over the past decades, several BEM solvers have been developed for
seakeeping computations (WAMIT (Lee and Newman, 1999), ANSYS Aqwa (AN-
SYS Aqwa, 2016), AQUAPLUS (Delhommeau, 1987), DIODORE (Principia, 2016),
HYDROSTAR (Bureau Veritas, 2016), etc.) amongst which only one, developed at
Ecole Centrale de Nantes and known as NEMOH (Babarit and Delhommeau, 2015),
is available as open source since 2014.

In spite of its gain in computational speed with respect to other approaches, such
as Computational Fluid Dynamics (CFD), the study of the hydrodynamic interactions
with BEM solvers is hampered by an increase of the number of bodies considered. The
fact that they solve the diffraction problem for all bodies simultaneously and given
that all wetted parts need to be discretized leads to a very large system of equations.
Indeed, for cases involving clusters of say O(100) floats, the increase in computational
time precludes the direct simulation of such systems and their optimization.

Driven by this limitation, a set of alternative numerical modeling strategies have
been proposed and are reviewed in the following section.

1.2 State-of-the-art

The challenges associated with the hydrodynamic modeling of a multi-body WEC
composed of a large number of floats are analogous to those faced in the study of the
park effect in large wave farms. The latter refers to the modification of the total power
that a group of isolated WECs would absorb as a consequence of the wave interactions
that deploying them in relatively close proximity gives rise to.

Numerous investigations on the park effect in WEC arrays have been conducted
over the past years. In the following paragraphs, the numerical modeling techniques
used to compute it will be reviewed. In addition, the approaches adopted to deal with
the hydrodynamic interactions in other contexts, such as in the design of very large
floating structures, will also be addressed.

In spite of the obvious similarities in the study of the multiple-scattering of waves in
large clusters of bodies, such as a large WEC array and a multi-body WEC, there exist
important differences between them as far as the magnitude of the wave interaction
effects is concerned. The latter are clearly more important amongst closely spaced
bodies. In fact, the review by Babarit (2013) on the park effect research conducted over
the past 30 years concluded that, provided the separating distance between the devices
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(typically of 10−20m size) is on the order of ∼ 100−200 meters, the interaction effects
computed based on irregular waves cannot be considered to be significant. While this
is true for small arrays of less than ∼ 10 devices, the author adds that for larger arrays
the number of rows (perpendicular to the main incident wave direction) should be kept
as limited as possible to reduce destructive interaction effects.

The most common and generic approach to deal with WEC array interactions is
to use BEM solvers which can account for the specificities of each WEC geometry and
the bodies interdistances without restrictions. Not surprisingly, the majority of the
studies conducted on multi-body WECs composed of O(20) floats such as the ones
shown in Figures 1.1a and 1.1b (De Backer et al., 2010; Taghipour and Moan, 2008)
and further analyzed in Chapter 5, have used a BEM to compute the hydrodynamic
interactions. As of reminder, BEM solvers are built upon linear potential wave theory
and, therefore, linearity of the governing equations and perfect fluid characteristics
are assumed. The former implies a small wave steepness and a small amplitude of the
body motions with respect to its characteristic dimensions. As stated in Folley et al.
(2012), these hypotheses are usually satisfied in small to moderate sea states where
good agreement between BEM output and results from more accurate models such as
CFD is obtained. Significant discrepancies are obtained for larger sea states though.

Besides the inherent assumptions involved in the use of potential flow theory, the
most limiting factor of BEM codes for the study of WEC interactions is the increase
of the numerical complexity as a function of the square of the number of unknowns.
In BEM solvers based on low-order methods, such as NEMOH , these are equal to the
number of panels used to discretize the wetted surface of the bodies. In other solvers,
such as WAMIT, computations can be performed using a higher-order method where
the number of unknowns depends as well on the order of the basis functions.

In his attempt to derive initial guidelines for the design of wave farms, Babarit
(2013) points out the contrast between the great amount of published works on the
park effect of rather small arrays and the few studies available for larger wave farms.
One of them was carried out recently by Borgarino et al. (2012b) who implemented a
Fast Multipole Method (FMM) (Borgarino et al., 2012a) to accelerate the simu-
lations of large WEC farms with the BEM solver AQUAPLUS (Delhommeau, 1993).
This implied the extension of the infinite-depth free-surface Green’s function multi-
pole expansion to be used in a three-dimensional algorithm. The same development
is expected to be applicable to the finite-depth formulation but was not attempted in
Borgarino (2011). The author reported difficulties in the convergence of the multipole
expansion for relatively small wave periods and therefore implemented a simplified
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version of the FMM suited specifically to the modeling of wave farms. Other tech-
niques, such as pre-corrected Fast Fourier Transforms (FFT), have been used
to accelerate BEM computations (Kring et al., 2000) but have some limitations when
dealing with sparse arrays (Singh and Babarit, 2014).

While the use of BEM solvers provides an exact solution to the multiple-scattering
problem of wave interactions in array, in certain circumstances approximations can
be introduced to obtain significant computational savings through a reduction of the
problem complexity. Analytical developments in the early works on the park effect
in WEC arrays (Budal, 1977; Evans, 1980; Falnes, 1980) were based on such approxi-
mate techniques, in particular the point absorber approximation which assumes
that the characteristic dimensions of the devices in array are much smaller than the
wavelength of the incident waves. This implies that the diffraction by each device can
be neglected. By means of this approximation, the aforementioned studies showed
that significant constructive interactions could occur within an array provided that
the layout of the converters was appropriately chosen.

While the early works on array interactions based on monochromatic unidirectional
waves suggested exploiting the benefits of layout optimization, it was later found that
the benefits of such constructive effects in irregular waves with directional spreading
and with devices suboptimally controlled would be very limited. This conclusion was
reached for instance in the study by Folley and Whittaker (2009) who investigated
the maximum annual energy capture of a WEC array at the European Marine Energy
Centre (EMEC) with a hydrodynamic model based on point absorber theory. Based
on the same approximation, Fitzgerald and Thomas (2007) derived an important con-
sistency condition for the array interaction factor, i.e. the ratio of the power produced
by the WECs in array and the power they would produce in isolation. The relation
obtained by the authors establishes that, provided the converters are optimally con-
trolled, the sum of the array interaction factor for a fixed incident wave frequency
over all the incident wave directions must equal unity. This means that constructive
interactions occurring at specific incident wave propagation directions are balanced by
destructive interactions at other wave directions.

A generalization of the identity derived by Fitzgerald and Thomas (2007) outside
the zone of applicability of point absorber theory was obtained by Wolgamot et al.
(2012) who showed that the sum of the maximum power absorbed by the array over all
incident wave directions is proportional to the total number of degrees of freedom. As
indicated by Babarit (2013), this result suggests that the multi-body WECs composed
of a number of independent floats supported by a common platform, such as the ones
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shown in Figure 1.1, might have a particularly high wave capture efficiency.

The point absorber approximation does not provide an accurate solution for the
multiple-scattering problem of wave interaction in array for the whole frequency range
as, by definition, it neglects the diffracted field by each device. As stated in preceding
paragraphs, the solution to the full multiple-scattering problem computed by means
of a direct diffraction calculation for the whole array becomes prohibitive when the
number of bodies increases. Thus, alternative methods have been proposed which rely
on the solution of the boundary value problem for a single isolated device. This solution
is then combined with an interaction theory to account for the multiple-scattering in
array. The latter involves satisfying the boundary conditions on the wetted surface of
all the devices and for that two different approaches to achieve it can be distinguished.

On the one hand, if the boundary conditions are imposed simultaneously to all
bodies, a system of equations to be solved for the unknowns which characterize the
wave fields scattered by each device is obtained. This method is generally referred to
as Direct Matrix approach and was first used by Spring and Monkmeyer (1974) in
the context of ocean waves to extend the solution for a single bottom mounted sur-
face piercing cylinder given by MacCamy and Fuchs (1954). On the other hand, the
interactions can be taken sequentially as a succession of scattering events by imposing
the boundary conditions at one body at a time in what is referred to as Multiple-
Scattering method. In this case, the solution approaches the output from a Direct
Matrix approach if enough orders of scattering are considered. Intuitively, the ampli-
tude of the successively scattered waves is reduced until convergence is reached. In the
context of ocean waves, the first use of such approach is attributed to Ohkusu (1974)
who adapted the theory by Twersky (1952) in the context of acoustics.

Both the Direct Matrix approach and the Multiple-Scattering method are applica-
ble if certain spacing limitations amongst devices are satisfied, i.e. no overlapping of
vertical projections is allowed and the escribed cylinder to each body cannot overlap
with neighbouring devices. Apart from these restrictions, both approaches are exact
provided they are applied in combination with an exact representation of the array
wave fields. In some cases though, approximations can be introduced to simplify the
analysis. A clear example is the work by Simon (1982) who used the Direct Matrix ap-
proach in combination with a representation of the wave fields known as plane-wave
approximation which relies on two main assumptions. First, the outgoing curved
waves from each device generated by diffraction or radiation processes are modeled
as being plane. Second, devices are assumed to be spaced wide enough so that the
influence of the near wave field on the interactions can be neglected. The latter is
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generally referred to as wide-spacing approximation.
As of reminder, the radiated or scattered wave field by a body can be decomposed

into two separate contributions known generally as the far-field and the near-field.
The former refers to progressive waves which carry energy to infinity as they propagate
radially outward. In contrast, the latter are standing waves in the water column which
have a fast decay away from the body (because of that they are usually referred to
as evanescent waves) and are responsible for the transition between the fluid motion
of propagating waves and that which satisfies the boundary conditions of the body
geometry.

In the original work of Simon (1982) the model was restricted to axisymmetric bod-
ies undergoing heave motions. McIver and Evans (1984) improved it further by adding
a first correction to the plane wave expressions which relaxes the spacing requirements.
More recently, Singh and Babarit (2014) coupled the BEM solver AQUAPLUS with
the plane-wave approximation approach to estimate wave interaction effects in large
sparse arrays of arbitrary shaped bodies.

Following the work of Ohkusu (1974), the Multiple-Scattering method was used
by Mavrakos and Koumoutsakos (1987) and Mavrakos (1991) in combination with a
matched eigenfunction expansion technique to solve for the Boundary Value Problem
of each isolated axisymmetric body in array. In this case, and contrarily to the plane-
wave approximation, evanescent modes were considered.

In spite of removing the need to store and treat simultaneously all the interactions
at the same time, several authors (Kagemoto and Yue, 1986; Linton and McIver,
2001) have stated that, as the number of bodies increases, computations with the
Multiple-Scattering method become impractical even for low orders of approximation
and reduced number of bodies.

A comparison of the previous approximate methodologies, the point absorber and
the plane-wave, and the exact multiple-scattering technique in the context of power
absorption by an array of WECs was provided by Mavrakos and McIver (1997). The
authors concluded that the plane-wave approximation can provide accurate results
when the separating distance between devices is larger than 5 times their characteristic
dimension.

In an attempt to combine the features of the Direct Matrix approach in Spring
and Monkmeyer (1974) and Simon (1982), and the concept of Multiple-Scattering by
Twersky (1952) and Ohkusu (1974), Kagemoto and Yue (1986) proposed an exact
matrix method to solve the multiple-scattering problem. The initially unknown local
wave fields at each body are characterized through a product of partial cylindrical wave
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functions, which can account for both the near and far field contributions, and complex
scattered wave coefficients which represent the amplitudes of the cylindrical wave
functions. These are then transferred to the other devices by means of a transformation
reminiscent of the Multiple-Scattering approach. In this case, however, the transferred
wave fields represent the total converged wave fields around a body and not just one
of the multiple successive scattering events. Finally, by applying this transformation
which allows one to express the scattered wave field from a body as incident on the
others, a system of equations is obtained and solved simultaneously as in a Direct
Matrix approach.

For the use of the interaction theory by Kagemoto and Yue (1986), which solves the
multiple-scattering problem by means of appropriate transformations of the isolated
body solution, the latter needs to be computed in the basis of partial cylindrical
wave functions. Indeed, the method makes use of a hydrodynamic operator known
as diffraction transfer matrix (DTM) which mathematically characterizes the way an
isolated body scatters waves by relating its incident and scattered partial complex
cylindrical wave coefficients. Kagemoto and Yue (1986) only provided the way to
compute it for axisymmetric geometries for which the single-diffraction solution was
available on the basis of partial cylindrical wave functions.

The same approach was used by Yilmaz and Incecik (1998) who coupled the inter-
action theory by Kagemoto and Yue (1986) and the single body diffraction solution
by Garrett (1971) to obtain analytical solutions for the diffraction problem of arrays
of truncated cylinders. An extension to treat the radiation case of bodies moving as
one was added in Yilmaz (1998). Using a similar strategy, Siddorn and Eatock Taylor
(2008) provided extensive results for the hydrodynamic coefficients of a group of four
truncated vertical cylinders set to oscillate independently and prone to near-trapped
modes. Formulae for both the diffraction and radiation calculations were given within
a unified framework.

In the context of the study of wave energy arrays, Child and Venugopal (2010) used
an analogous approach to the one of Yilmaz to study optimal spatial configurations of
heaving cylindrical wave energy converters using both a Parabolic Intersection method
and a Genetic Algorithm as optimization strategies. More recently, and based on the
same hydrodynamic model, Göteman et al. (2015) studied the power fluctuations of
arrays of cylindrical WECs composed of O(100) bodies using a distance cut-off method,
i.e. hydrodynamic interactions between two devices are only accounted for when they
are separated by less than a specified distance. When using this approximation to solve
the multiple-scattering diffraction problem the authors obtained a relative difference
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of ∼ 3% with respect to the exact solution but an increase in computational speed of
∼ 45%.

The generalization of the DTM calculation for arbitrary geometries in finite-depth
was derived by Goo and Yoshida (1990) who used a cylindrical representation of the
Green’s function by Fenton (1978) to compute the elements of the DTM using a BEM.
This approach has been used to study the forces on the fixed (Chakrabarti, 2000)
and floating (Chakrabarti, 2001) modules of an interconnected multi-moduled floating
offshore structure used by the US Navy. The extension to infinite-depth of both the
interaction theory proposed by Kagemoto and Yue (1986) and the methodology of
Goo and Yoshida (1990) was given by Peter and Meylan (2004a) who employed the
former to study the interaction between ocean waves and large fields of ice floes in the
marginal ice zone (MIZ).

As can be derived from the two preceding paragraphs, the application of the Di-
rect Matrix method by Kagemoto and Yue (1986) to the study of the hydrodynamic
interactions amongst bodies of arbitrary geometry is rather limited in contrast with
the number of studies having focused on rather simple geometries such as a truncated
vertical cylinder. This is fundamentally due to the difficulty in obtaining the solution
for an isolated body of complex geometry in the form required by the Direct Matrix
method. Indeed, the methodology by Goo and Yoshida (1990) requires the modifi-
cation of the diffraction problem boundary conditions, as well as access to internal
variables of the BEM code which are not part of its standard outputs.

Driven by this limitation, McNatt et al. (2015) derived an alternative strategy
to compute the DTM for arbitrary geometries using the standard outputs of widely
available standard BEM solvers. The method is based on a decomposition of the total
velocity potential on the body’s circumscribing cylinder into partial cylindrical waves
by means of a Fourier Transform (McNatt et al., 2013) and has been applied to the
study of the park effect in large arrays of wave farms. Recently, the method has been
embedded in the open-source numerical tool produced by the European collaborative
project DTOcean (DTOcean Project, 2017) aimed at the optimization of ocean energy
arrays. In addition, Sharp and DuPont (2016) used it in combination with a real-
coded Genetic Algorithm to study optimal WEC array layouts which maximize power
production and minimize cost. While it eliminates the need to customize the BEM
solver, the method proposed by McNatt et al. (2015) to compute the DTM cannot
account for evanescent modes. Thus, the subsequent multiple-scattering analysis is
restrained to the wide-spacing approximation.

The use of the interaction theory by Kagemoto and Yue (1986) for cases involving
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more than several hundred bodies, such as in Very Large Floating structures (VLFs)
or in large fields of ice floes, becomes impractical due to the size increase of the system
to be solved.

On the one hand, to deal with VLFs, Kagemoto and Yue (1993) proposed a match-
ing technique based on their original theory to circumvent its limitations. Similarly,
Kashiwagi (2000) proposed another extension using a hierarchical scheme by which the
array bodies are grouped and treated as a new fictitious body with its own diffraction
characteristics. Results were presented for a column-supported structure composed
of up to 5120 equally spaced circular cylinders. The author has been very prolific
in this field and the interested reader is encouraged to refer to related publications
(Kashiwagi, 1998, 2002; Kashiwagi and Kohjoh, 1995; Kashiwagi and Yoshida, 2001).

Furthermore, in the context of the study of wave attenuation in the MIZ modelled
as an array of tens of thousands of circular thin-elastic plates of random sizes, Montiel
et al. (2015a) proposed an approach known as slab-clustering method by which the
whole array is decomposed into slabs. The multiple-scattering problem in each slab
is solved using the interaction theory by Kagemoto and Yue (1986) and expressed in
Cartesian coordinates. This allows one to represent the scattered wave fields within
each slab as transmitted and reflected angular spectra. These are then used to define
a scattering matrix for the slab relating incident with transmitted and reflected wave
fields. The procedure is repeated for each slab and the extension of the interaction
amongst all the bands is solved using a one dimension multiple scattering technique.
A generalization of the method including evanescent modes in the interaction amongst
slabs is given in Montiel et al. (2016).

Even if the focus of this review has been on the numerical techniques to evaluate the
hydrodynamic interactions amongst a large number of bodies, and more specifically
the park effect in large WEC arrays, it is as well of significant importance for planning
consent purposes to evaluate the potential impact large clusters of bodies may have on
the distal wave climate. Unfortunately, the tools dedicated to the study of the park
effect are not suitable to model the impact of the array on the coast wave climate
and vice versa (Folley et al., 2012). Because of that, special coupling methodologies
between these tools have been proposed, a point which is further discussed in Chapter
6. For a detailed review of the available numerical approaches and their capabilities
to model the interactions amongst WECs and with the environment the reader should
refer to Folley et al. (2012).

To close this section, a summary of the main numerical modeling approaches re-
viewed based on linear potential wave theory is given as a series of bullet points:
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• The study of hydrodynamic interactions with BEM solvers does not present
limitations neither in terms of relative position between bodies nor with respect
to their shape. However, the computational cost of BEM solvers increases sig-
nificantly with the number of bodies and, therefore, they shall be used for cases
involving<O(10) devices.

• Acceleration techniques, such as the Fast Multipole Method (FMM) or the
pre-corrected Fast Fourier Transform (FFT), enable one to circumvent
the BEM excessive computational time for cases involving >O(10) bodies. How-
ever, they are associated with some limitations which may either restrict their
application or make it sub-optimal with respect to other approaches in certain
cases such as sparse wave farms.

• The plane-wave and the point absorber approximation only provide accu-
rate results as long as their underlying assumptions are satisfied. Simplifying,
this involves widely-spaced bodies and small enough with respect to the inci-
dent wavelength. Clearly, these hypothesis do not hold for multi-body WECs
composed of closely-spaced floats such as the ones shown in Figure 1.1.

• The Multiple-Scattering method can account for the hydrodynamic inter-
actions without approximations provided certain spacing requirements amongst
devices are satisfied, i.e. no overlapping of vertical projections is allowed and the
escribed cylinder to each body cannot overlap with neighbouring devices. The
complexity of the approach makes its application impractical when the number
of bodies increases.

• The Direct Matrix Method interaction theory by Kagemoto and Yue
(1986) is exact and can be applied to the study of multiple-scattering amongst
O(100) bodies provided the same spacing requirements of the Multiple-Scattering
method are satisfied. For its use, the solution of the BVP for an isolated body
needs to be available in the basis of partial cylindrical wave functions. For bodies
of arbitrary shape it can be obtained using:

– The methodology by Goo and Yoshida (1990) which implies introducing
modifications to the source code of standard BEM solvers so that they can
represent cylindrical waves as opposed to exclusively plane waves.

– The alternative approach by McNatt et al. (2015) which makes use of the
standard output from widely available BEM solvers. Contrarily to the
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strategy by Goo and Yoshida (1990) it cannot account for evanescent modes
and, therefore, in the subsequent analysis the hydrodynamic interactions
are modeled using a wide-spacing approximation.

• Beyond O(100) bodies, the size of the system to be solved using the Direct Matrix
Method interaction theory by Kagemoto and Yue (1986) becomes excessive and
extensions of the method for specific applications have been proposed.

1.3 Aims and objectives

In the previous section, a review of the numerical techniques to model the hydro-
dynamic interactions in arrays of bodies and with special focus on wave farms was
presented.

To the author’s knowledge, no study on a multi-body WEC composed of more than
50 floats, such as the Wavestar SC-Concept (Hansen et al., 2013) shown in Figure 1.1c,
has been undertaken and the effect of hydrodynamic interactions on the performance
of this type of device remains not well understood. The majority of studies on similar
devices have been carried out using standard BEM solvers and have dealt only with
O(20) floats.

Amongst the alternatives to standard BEM solvers, the Direct Matrix Method by
Kagemoto and Yue (1986) is identified as suitable for the investigation of compact
clusters of O(100) point absorber wave energy converters which comply with the spac-
ing requirements of the interaction theory. However, the method is not bounded to
the study of this particular case but can be used as well in sparse arrays of WECs.

It is unlikely that a wide-spacing approximation can provide accurate results for
arrays of closely-spaced bodies. Thus, the methodology of Goo and Yoshida (1990) is
selected to compute the isolated body solution required by the interaction theory of
Kagemoto and Yue (1986). This is in spite of the fact that no commercial or open-
source numerical tool incorporates the solution of Goo and Yoshida (1990) as opposed
to the availability of the methodology by McNatt et al. (2015).

The interaction theory has been used in conjunction with other numerical tech-
niques, for instance the transformation of cylindrical harmonics into plane waves, to
study the variation of an angular wave spectrum when it propagates through a vast
array of floating bodies such as ice floes. The similarities between the latter and a large
cluster of WECs could potentially enable one to adapt and apply the aforementioned
technique to improve the state-of-the-art in the numerical modeling of WEC arrays.
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The objectives of the present work, defined based on the previous observations,
are:

• The implementation and verification of the methodology by Goo and Yoshida
(1990) in the open-source BEM solver NEMOH.

• The implementation and verification of the Direct Matrix Method interaction
theory by Kagemoto and Yue (1986).

• The use of the Direct Matrix Method to investigate the power capture of a generic
bottom-referenced heave-buoy array inspired by the Wavestar SC-Concept (Fig-
ure 1.1).

• The identification of synergies between the study of wave propagation through
large clusters of wave energy converters and the marginal ice zone (MIZ).

1.4 Thesis outline

In line with the objectives stated in the previous section, the content of the present
work is organized in the following manner:

• In Chapter 2, the finite-depth Direct Matrix Method interaction theory by
Kagemoto and Yue (1986) is formulated and expressions for the radiation hy-
drodynamic coefficients and the excitation forces for bodies in array are provided.

• In Chapter 3, the methodology by Goo and Yoshida (1990) to compute the
isolated body hydrodynamic operators required by the interaction theory is de-
scribed and compared with the alternative approach proposed by McNatt et al.
(2015). Results of the implementation are shown and verified with output from
McNatt et al. (2015) and from a semi-analytical solution.

• In Chapter 4, the Direct Matrix Method interaction theory implementation is
verified against direct simulations with the standard BEM solver NEMOH and
semi-analytical results from the literature.

• In Chapter 5, the numerical tool developed in previous chapters is applied to the
study of the hydrodynamic interactions’ effect on the performance of a generic
bottom-referenced heave-buoy array inspired by the Wavestar SC-Concept.
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• In Chapter 6, a numerical technique to transform cylindrical harmonics into
plane waves used in Montiel et al. (2015a) is described and the possibility of
coupling it with spectral wave models is briefly discussed.





Chapter 2

Direct Matrix Method Interaction
Theory in Finite-Depth

The methodology developed by Kagemoto and Yue (1986), known as Direct Matrix
Method interaction theory and that we shall refer to herein as IT, enables one to
accelerate the computation of the hydrodynamic coefficients, for multi-body arrays
under certain circumstances, including finite water depth and under a specific spacing
restriction. IT computations can generate the coefficients for large arrays, which could
not be evaluated directly with a standard Boundary Element Method (BEM) code due
to its excessive computational cost.

The IT computation is based on mathematically characterizing how an individual
isolated device scatters and radiates waves. Because of that, this Chapter has been
divided into two parts. In the first one, the solution to the Boundary Value Problem
(BVP) for an isolated body is reviewed. Most commonly, such problem is solved
in Cartesian coordinates. In this case, the focus is on the solution using cylindrical
coordinates as this enables one to obtain a basis of cylindrical wave functions on which
any incident, scattered or radiated wave field can be expressed. In the second one, the
solution to the BVP in cylindrical coordinates for an isolated body is used to tackle
the multiple-scattering in a large array of floating bodies. The formulae of the IT are
derived and the procedure to compute the hydrodynamic coefficients of the array is
shown.

2.1 Airy wave theory

In this section, a brief reminder of the linear wave theory is given. For a more detailed
derivation the reader should see C.Mei et al. (2005) and Newman (1977) which have
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been used as baseline.
Consider the BVP involving a perfect fluid (inviscid and incompressible) in a do-

main limited by the sea-bed and the free surface. The governing equations of the
problem are given by the mass and the momentum conservation laws respectively:

∇ · u = 0 (2.1.1)(
∂

∂t
+ u · ∇

)
u = −∇

(
P

ρ
+ gz

)
(2.1.2)

where u(x, t) is the velocity vector, P (x, t) the pressure, ρ the density, g the gravita-
tional acceleration and x = (x, y, z), with z = 0 at the free surface and z > 0 pointing
upwards.

The irrotationality of the flow enables one to define a scalar field known as velocity
potential such that:

u = ∇Φ (2.1.3)

where Φ is the velocity potential.
By combining (2.1.1) and (2.1.3), Laplace’s equation is obtained:

∇2Φ = 0 (2.1.4)

In addition, by substituting (2.1.3) into (2.1.2) and by using the following vector
identity:

u · ∇u = ∇u2

2 − u × (∇ × u) (2.1.5)

equation (2.1.2) can be written as:

∇
[
∂Φ
∂t

+ 1
2 |∇Φ|2

]
= −∇

(
P

ρ
+ gz

)
(2.1.6)

After integration, (2.1.6) becomes Bernoulli equation which enables one to compute
the pressure once the velocity potential is known:

−P

ρ
= gz + ∂Φ

∂t
+ 1

2 |∇Φ|2 + C(t) (2.1.7)

where P is the total pressure, C(t) an integration constant which can be omitted
by defining the potential appropriately and gz the hydrostatic contribution to the
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pressure.
Apart from Laplace’s equation, certain conditions at the domain boundaries need

as well to be satisfied by the velocity potential. On the seabed, the non-permeability
condition imposes a normal zero flow velocity and thus:

(
∂Φ
∂n

)
z=−d

= 0 (2.1.8)

with d the constant water depth.
On the free-surface, two restrictions need to be adhered to. The equation describing

the air-water interface may be written as:

F (x, t) = z − ζ(x, y, t) = 0 (2.1.9)

where ζ is the height measured from z = 0.
On the one hand, the particles on the surface must remain on the surface. This

statement is known as kinematic boundary condition and can be expressed as:

∂ζ

∂t
+ ∂Φ
∂x

∂ζ

∂x
+ ∂Φ
∂y

∂ζ

∂y
= ∂Φ
∂z

, on z = ζ (2.1.10)

On the other hand, if surface tension is neglected (which is valid for the range of
wavelengths considered herein) a constant pressure equal to the atmospheric must be
imposed on the free-surface. This condition is known as dynamic boundary condition
and can be obtained by applying (2.1.7) on the free surface:

−Pa
ρ

= gζ + ∂Φ
∂t

+ 1
2 |∇Φ|2, on z = ζ (2.1.11)

Both the kinematic (2.1.10) and the dynamic (2.1.11) boundary conditions can be
combined into a single condition expressed in the following manner if the atmospheric
pressure is considered constant:

∂2Φ
∂t2

+ g
∂Φ
∂z

+ ∂

∂t
(u)2 + 1

2u · ∇u2 = 0, z = ζ (2.1.12)

In the previous expression, two different types of non-linearities arise (Ferrant,
2015): structural non-linearities, given by the non-linear differential terms, and posi-
tion non-linearities, as the equation is valid on a boundary which is in turn an unknown
quantity.

If waves of small slope are considered, i.e. ϵ ≪ 1 with ϵ the wave slope defined in
terms of the wave amplitude ζa and the wave length λ as ϵ = 2πζa/λ, the boundary
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condition (2.1.12) can be linearized by expressing it on the known mean free-surface
at plane z = 0. Thus, the linearized equations of the BVP under consideration follow
as:

∇2Φ = 0, −d < z < 0 (2.1.13)
∂Φ
∂n

= 0, z = −d (2.1.14)

∂2Φ
∂t2

+ g
∂Φ
∂z

= 0, z = 0 (2.1.15)

If an harmonic time dependence is assumed, the spatial and time variation of Φ
can be decoupled as:

Φ = ℜ{φ(x, y, z) e−iωt} (2.1.16)

where Φ is the velocity potential in the domain, φ is its complex spatial part, (x, y, z)
the spatial coordinates in a global Cartesian reference system and ω the angular fre-
quency; ωessentially positive.

The simplest solution to the system of equations (2.1.13)-(2.1.15), obtained from
separation of variables in Cartesian coordinates, is a plane wave with sinusoidal profile
propagating along the x-axis given by the potential:

φA(x, z) = −igζa
ω

cosh [k0(z + d)]
cosh (k0d)

eik0x (2.1.17)

where φA is the velocity potential of a plane wave, ζa is the wave amplitude, (x, z) the
coordinates in a global Cartesian system and k0 the wave number obtained from the
dispersion relation:

k0 tanh(k0d) = ω2

g
(2.1.18)

2.2 Solution to the BVP for an isolated device

In the previous section, the BVP of a fluid bounded by the free-surface and the sea-
bed was considered. Herein, additional boundary conditions are added to the system
of equations (2.1.13)-(2.1.15) to account for the presence of a floating body. It will
scatter incoming ambient waves (associated with the potential in (2.1.17)) which will
exert dynamic forces on it and, as a consequence, the body will oscillate and radiate
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waves.
Under the assumption of linearity, the total potential in this new domain (Figure

(2.1)) limited by the sea-bed, the free-surface and the wetted surface of the body can
be expressed as:

φ = φA + φP (2.2.1)

where φ is the total potential, φA the ambient wave potential and φP the perturbation
potential.

SL

F 

	 ∞ 

Sb 

Figure 2.1: Schematic of the domain limited by the free surface (SL), the mean body’s
wetted surface (Sb), the seabed (F ) and a control cylindrical surface at infinity (S∞).

Besides satisfying (2.1.13)-(2.1.15), and since the body solid surface is considered
impermeable to fluid, the perturbation potential is subject to an additional restriction
which imposes no flux through the body surface. Similarly to the hypothesis made
when linearizing the free-surface boundary condition, if small excursions of the floating
body with respect to its characteristic dimensions are assumed, then the impermeable
boundary condition can be applied in its mean position as:

∂φP

∂n
= −∂φA

∂n
+ U · n, on Sb (2.2.2)

where Sb is the mean wetted surface of the body, U is the boundary velocity at the
observed point and n its normal vector.

Moreover, it needs to be ensured that the generated waves, which perturb the
incident wave field, will propagate away from the body and not towards it. This is
represented by the so called Sommerfeld’s radiation boundary condition which reads:

limk0r→∞
√
r

(
∂φP

∂r
− ik0φ

P

)
= 0 (2.2.3)

where r represents the radius of the cylindrical control surface shown in Figure 2.1.
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To summarize, the linearized BVP of the perturbation potential is given by the
following set of equations:

∇2φP = 0, −d < z < 0 (2.2.4)
∂φP

∂n
= 0, z = −d (2.2.5)

∂2φP

∂t2
+ g

∂φP

∂z
= 0, z = 0 (2.2.6)

∂φP

∂n
= −∂φA

∂n
+ U · n, on Sb (2.2.7)

limk0r→∞
√
r

(
∂φP

∂r
− ik0φ

P

)
= 0 (2.2.8)

The linearity of all the operators enables one to further decompose the perturbation
potential in the following manner:

φP = φS +
Df∑
k=1

vkφ
R,k (2.2.9)

where φS is the scattered potential by the body (also referred to as diffraction potential
in the literature), φR,k is the radiated potential in a degree of freedom k, Df are
the total number of degrees of freedom of the body and vk is the amplitude of the
generalized body velocity in its kth degree of freedom.

By means of the decomposition in (2.2.9), two separated and independent BVP
commonly referred to as diffraction and radiation problems are created. The former
is associated with the scattering of the incident wave by the body when held fixed,
whereas the latter with the generation of a wave due to the body motion in an otherwise
still water surface. Both are given by the same set of equations (2.2.4) - (2.2.8) with the
perturbation potential φP accordingly replaced by φS or φR,k and with the boundary
condition (2.2.7) expressed as:

∂φS

∂n
= −∂φA

∂n
, on Sb (diffraction BC) (2.2.10)

∂φR,k

∂n
= nk, on Sb (radiation BC) (2.2.11)

where nk is the kth component of the direction cosine vector explicitly defined in
Chapter 3.
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2.2.1 Outgoing waves

Both the scattered and radiated waves by an isolated body satisfy the radiation con-
dition (2.2.3) and are, therefore, “outgoing” waves. For the solution of the array BVP,
where waves emanating from each body due to scattering and radiation propagate and
interact with its neighbours, it is very useful to be able to express both scattered and
radiated waves by an isolated body as a linear combination of a set of basis functions
that shall be referred to herein as outgoing partial cylindrical waves (Figure 2.2).

The outgoing basis functions, defined on the local cylindrical reference system of
the body Orθz (Figure 2.4), satisfy Laplace’s equation (2.1.4) together with the sea-
bed (2.1.8), free-surface (2.1.15) and radiation (2.2.3) BC and can be obtained using
the technique of separation of variables in cylindrical coordinates (for a full derivation
see Appendix A):

(
ψS
)
nm

=


cosh [k0(z+d)]

cosh k0d
H(1)
m (k0r) eimθ n = 0, m ∈ Z

cos [kn(z + d)]Km(knr) eimθ n ≥ 1 (n ∈ N), m ∈ Z
(2.2.12)

where
(
ψS
)
nm

is the outgoing partial wave function associated with an angular-mode
m and depth-mode n, H(1)

m is the m-th order Hankel function of the first kind, Km is
the m-th order modified Bessel function of the second kind, (z, r, θ) are the cylindrical
coordinates local to the body and kn are the solutions of the following dispersion
equation:

kn tan knd = −ω2

g
(2.2.13)

By making use of (2.2.12), the scattered potential can be represented as:

φS =
∞∑

m=−∞

[
(A)0m

cosh k0(z + d)
cosh k0d

H(1)
m (k0r)

+
∞∑
n=1

(A)nm cos kn(z + d)Km(knr)
]
eimθ (2.2.14)

where
(
A
)
nm

are complex coefficients that shall be referred to as scattered partial
cylindrical wave coefficients.

Similarly, the radiated potential can be expressed as:
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φR,k =
∞∑

m=−∞

[(
Rk
)

0m

cosh k0(z + d)
cosh k0d

H(1)
m (k0r)

+
∞∑
n=1

(
Rk
)
nm

cos kn(z + d)Km(knr)
]
eimθ (2.2.15)

where
(
Rk
)
nm

are the complex radiated coefficients in a kth mode of motion (with
k = 1, . . . , 6 in the general case) and are referred to as Radiation Characteristics.

The first term (n = 0) of the summation in (2.2.14) and (2.2.15) represents partial
progressive waves, i.e., waves that propagate away from the body (Figures 1a, 1b, 1c)
and which bring energy to infinity as they decrease with r−1/2. Contrarily, the second
term (n ≥ 1) produces standing waves known as evanescent modes (Figures 1d, 1e, 1f)
which enable the transition between the near and far wave fields and adapt the velocity
potential to the body geometry so that the boundary conditions (2.2.10) and (2.2.11)
are satisfied.

For convenience, (2.2.14) and (2.2.15) are represented as a scalar product of two
infinite vectors of complex coefficients and partial cylindrical wave components (see
section 2.4.1 for further details on the shape of the vectors):

φS = ATψS; φR,k =
(
Rk
)T
ψS (2.2.16)

where superindex T indicates transpose.
The vectors of coefficients A and Rk need to be computed such that the body

boundary conditions (2.2.10) and (2.2.11) are satisfied respectively and, therefore,
they depend on the body geometry. For simple ones, such as a truncated vertical cir-
cular cylinder, semi-analytical techniques have been used to derive both the scattered
(Garrett, 1971) and the radiated (Yilmaz, 1998) wave coefficients. A formulation by
Sabuncu and Calisal (1981) which follows the procedure derived by (Garrett, 1971)
is shown in Appendix C. In addition, the calculation of A and Rk using the formulae
developed by Yilmaz (1998) and based on the recent work of Zeng and Tang (2013) is
detailed in Appendix D. Beyond vertical truncated circular cylinders, for axysymetric
geometries Kagemoto and Yue (1986) used a hybrid-element method (HEM). Finally,
for bodies of arbitrary geometry, two different methodologies based on the use of a
Boundary Element Method (BEM) code have been proposed (Goo and Yoshida, 1990;
McNatt et al., 2015) and are the focus of Chapter 3.



2.2 Solution to the BVP for an isolated device 25

(a) m = 0, n = 0 (b) |m| = 1, n = 0 (c) |m| = 2, n = 0

(d) m = 0, n = 1 (e) |m| = 1, n = 1 (f) |m| = 2, n = 1

Figure 2.2: Partial waves modes. Progressive term H(1)
m (r) (a,b,c); evanescent term

Km(r) (d,e,f).

2.2.2 Incident waves

In the previous section, a set of basis functions to express any kind of outgoing wave
from a body was presented. In a large array, scattered and radiated waves generated
by a body will propagate and become incident to the neighbouring ones. Intuitively,
there is a need to be able to characterize incident waves by means of another set of
basis functions that shall be referred to as incident partial cylindrical waves.

Take an ambient long-crested plane wave expressed in the form of (2.1.17) in
a global Cartesian reference system OXY Z. To express such incident potential on
an isolated body, its general form shall be adopted by considering the phase shift
proportional to the distance between the origin of the global reference system (set as
phase reference) and a line parallel to the wave crests passing through the center of
the device:

φA(x, y, z) = −igζa
ω

cosh [k0(z + d)]
cosh (k0d)

eik0((x−X0) cosβ+(y−Y0) sinβ) (2.2.17)

where β is the wave propagation direction defined as shown in Figure 2.4 and (X0, Y0)
are the coordinates of the center of the body in the global Cartesian reference system.

Now consider the following fundamental property of the Bessel functions (Watson
(1966), p.14):

e
1
2 z(t− 1

t
) =

∞∑
q=−∞

tqJq(z) (2.2.18)

where Jq is the q-th order Bessel function of the first kind.
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Figure 2.3: Incident plane wave as a summation of partial cylindrical waves plotted as
the surface elevation for increasing truncation values M. Source: McNatt et al. (2015).

By means of (2.2.18), (2.2.17) can be written as:

φA(r, θ, z) = −igζa
ω

cosh [k0(z + d)]
cosh k0d

eik0(X0 cosβ+Y0 sinβ)
∞∑

q=−∞
iqJq(k0r)eiq(θ−β) (2.2.19)

Equation (2.2.19) is a representation of an ambient plane wave by means of a
superposition of cylindrical waves expressed in a local cylindrical reference system
centered at the body. This is depicted in Figure 2.3 which shows, for different levels of
truncation q (indicated as M in the figure), the free surface elevation associated with
the velocity potential φA.

Apart from ambient long-crested plane waves, a body in array will be acted upon
by scattered and radiated waves from other devices. As opposed to the ambient
incident waves, which are purely progressive, outgoing waves are composed of both a
progressive and an evanescent part as represented by equations (2.2.14) and (2.2.15).
However, expression (2.2.19) allows one to express only progressive incident waves as
a superposition of cylindrical harmonics. Thus, there is a need to generalize (2.2.19)
so that it can account for standing waves and therefore can represent any form of
incident wave.

The aforementioned generalization is achieved by applying Graf’s addition theorem
(Abramowitz and Segun A., 1964), which enables one to transform both progressive
and evanescent components in an outgoing wave from a body as incident to a neigh-
bouring one (see Appendix B ), to the outgoing partial cylindrical wave functions
(2.2.12). After this transformation, the generalized form of an incident wave expressed
as a superposition of incident partial cylindrical waves reads:
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φI =
∞∑

q=−∞

[ (
AI
)

0q

cosh [k0(z + d)]
cosh k0d

Jq(k0r)+

∞∑
l=1

(
AI
)
lq

cos[kl(z + d)] Iq(klr)
]
eiqθ (2.2.20)

where φI is the incident potential to the body (superindex A of “ambient” has been
replaced by I “incident” as now any type of incident potential can be represented in this
form), Iq is the q-th order modified Bessel function of the first kind, subindices q and
l are the modes representing the angular and depth variation of the incident potential
respectively and

(
AI
)
lq

are incident complex partial cylindrical wave coefficients.
To distinguish between an ambient long-crested plane wave and other forms of in-

cident wave field, the partial cylindrical wave coefficients of the former are represented
herein using the lower-case character aI defined as:

(
aI
)
lq

=

−igζa

ω
eik0(X0 cosβ+Y0 sinβ)iqe−iqβ, l = 0

0 l ≥ 1
(2.2.21)

As mentioned in section 2.2.1, for convenience it is worth expressing (2.2.20) as
the scalar product of the infinite vectors of complex coefficients and partial incident
cylindrical wave components:

φI =
(
AI
)T
ψI (2.2.22)

where the set of incident partial wave cylindrical basis functions ψI is given by:

(
ψI
)
lq

=


cosh [k0(z+d)]

cosh k0d
Jq(k0r) eiqθ, l = 0, q ∈ Z

cos[kl(z + d)] Iq(klr) eiqθ, l ≥ 1 (l ∈ N), q ∈ Z
(2.2.23)

For clarity of notation, indexes (n,m) are associated with outgoing waves and (l, q)
with incident waves.

2.3 Solution of the array BVP: calculation of the
scattering coefficients

Section 2.2 dealt with the representation of the different forms of the velocity potential
(incident, scattered and radiated) for an isolated body using partial cylindrical waves.
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We now use them to solve the multiple-scattering BVP problem where each body
scatters ambient incident waves as well as scattered and radiated waves by the rest
of devices in array. Intuitively, one can imagine that this succession of scattering
events leads to a steady-state if the incident wave forcing is considered periodic with
an harmonic time dependence. Once the steady-state reached, the solution to the
multiple-scattering BVP is given by the scattered coefficients (Aj)nm for each body j
in a large array.
One of the key aspects of the IT by Kagemoto and Yue (1986) is that the study of the
wave scattering on the whole array is undertaken by focusing on one body at a time.
Hereafter, this body will be referred to as j and its neighbours as i. The following
analysis is based on the work by Kagemoto and Yue (1986) with the diffraction and
radiation problems treated separately as in McNatt et al. (2015).
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Figure 2.4: Schematic of the plane view of two bodies of arbitrary geometry with the
nomenclature and reference systems used herein.

2.3.1 Diffraction Problem

We consider first the case where an incident long-crested plane wave acts upon the
bodies of the array held fixed. The total incident wave to body j, represented by the
potential φIj , is the sum of the ambient incident plane wave and the initially unknown
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waves scattered by all the neighbouring bodies i and incident on body j:

φIj =
(
aIj
)T
ψIj +

N∑
i=1
i ̸=j

ATi ψ
S
i (2.3.1)

where φIj is the total incident potential to body j, aTj ψIj is the ambient incident wave to
body j as defined in (2.2.21) and ATi ψSi is the scattered wave by a body i. To simplify
notation, ambient incident waves to body j are represented by lower-case coefficient
vectors aIj as opposed to incident waves generated by the neighbouring devices i which
are represented by upper-case coefficient vectors Ai.

It is important to note that the terms in the summation on the right hand side
of equation (2.3.1) representing the scattered potentials by bodies i are defined in
their local cylindrical reference system. Now we wish to express them in the reference
system of body j. For that, we make use of the transformation matrix Tij defined as:

ψSi = Tij ψ
I
j (2.3.2)

From (2.3.2) it can be observed that the change of reference system between bodies
i and j imposes additionaly the modification of the basis function, i.e. from scattered
(S) to incident (I). Intuitively, the cylindrical wave scattered by body i is outgoing
when observed from its local reference system but incident when viewed from the local
reference system of body j.

The individual terms of the transformation matrix are given by (see Appendix B
for derivation):

(Tij)mqnn =

Hm−q(k0Lij)eiαij(m−q) n = 0
Km−q(knLij)(−1)qeiαij(m−q) n ≥ 1

(2.3.3)

where Lij is the distance between the centers of bodies i and j and αij is the angle at
body i between the positive x-direction and the line joining the center of i to that of
j in an anti-clockwise direction (Figure 2.4):

Lij =
√

(X0i −X0j)2 + (Y0i − Y0j)2 (2.3.4)

αij = arctan (Y0j − Y0i)
(X0j −X0i)

(2.3.5)

where (X0i, Y0i) and (X0j, Y0j) are the center coordinates of bodies i and j respectively.
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It is important to note that the use of the transformation matrix Tij, based on
Graf’s addition theorem for Bessel functions (Abramowitz and Segun A., 1964), im-
poses a restriction on the minimum separating distance that can exist between bodies
(see Appendix B). Notwithstanding, as detailed in Chapter (3), it must be replaced by
a stricter restriction which stems from the use of a specific form of Green’s function.

By substituting (2.3.2) into (2.3.1):

φIj =
(
aIj
)T
ψIj +

N∑
i=1
i ̸=j

ATi Tijψ
I
j (2.3.6)

Expression (2.3.6) can be rearranged by extracting the common factor ψIj leading
to:

φIj =

(aIj)T +
N∑
i=1
i ̸=j

ATi Tij

ψIj (2.3.7)

We note that (2.3.7) is of the form:

φIj =
(
AIj
)T
ψIj (2.3.8)

where AIj , which represents the complex partial cylindrical wave coefficients vector of
the total incident potential to body j, is given by:

AIj = aIj +
N∑
i=1
i ̸=j

TT
ijAi (2.3.9)

The incident and scattered partial wave coefficients by an isolated body can be
related by means of a linear operator known as Diffraction Transfer Matrix

(
Bj

)
:

Aj = BjA
I
j (2.3.10)

The elements
(
Bj

)mq
nl

are defined as the coefficient of the partial wave of depth mode
n and angular mode m in the scattered potential in response to a unit incident wave
of depth mode l and angular mode q (Kagemoto and Yue, 1986). By substituting
(2.3.9) into (2.3.10), the total incident partial wave coefficients can be related to the
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scattered partial wave coefficients as:

Aj = Bj

aIj +
N∑
i=1
i ̸=j

TT
ijAi

 (2.3.11)

If the same procedure that has been applied so far to body j is repeated for all devices
in the array, (2.3.11) becomes a system of equations to solve for all the unknown
scattered coefficients:

A = (I − BT)−1 B aI (2.3.12)

where I is the identity matrix and B and T are matrices containing respectively the
diffraction transfer matrices and transformation matrices of the bodies in the array
organised in the following manner:


A1

A2
...
AN

 =

Id −


B1 0 . . . 0
0 B2
... . . . 0
0 . . . 0 BN




0 TT

21 . . . TT
N1

TT
12 0 ...
... . . . TT

N(N−1)

TT
1N . . . TT

(N−1)N 0





−1

·


B1 0 . . . 0
0 B2
... . . . 0
0 . . . 0 BN




aI1
aI2
...
aIN

 (2.3.13)

The term (I − BT)−1 is usually referred to as the scattering matrix (Siddorn
and Eatock Taylor, 2008). Prior to solving (2.3.12), the Diffraction Transfer Matrix
(DTM) of the bodies in array needs to be evaluated. In case all the devices in array are
identical, this needs to be performed only once. A detailed description and comparison
of two different methodologies to compute the DTM of arbitrary geometries is given
in Chapter 3.

2.3.2 Radiation Problem

The same methodology as the one described in section 2.3.1 can be applied to solve
the radiation problem given by the motion of a body i of the array in one of its
degrees of freedom k with all the others held fixed. In this case, by analogy with the
diffraction problem, it can be considered that the “ambient waves” are the radiated
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waves generated by the motion of body i in a mode of motion k. They will exist for
all the bodies j besides the one i undergoing motion .

The radiated potential generated by a unitary velocity of body i in a degree of
freedom k is defined as:

φRik = RT
ikψ

S
i (2.3.14)

where φRik is the radiated potential due to a motion of body i in mode k as if it
was isolated (the scattered part of the radiated wave by the neighbouring bodies is
not included), RT

ik is the vector of complex radiated coefficients known as Radiation
Characteristics and ψSi is the vector of scattered partial waves expressed in the local
reference system of body i.

Now, we wish to express the radiated potential by body i as incident potential to
body j in its local cylindrical coordinate system. For that, we use the transformation
matrix in (2.3.14) which reads:

φRik = RT
ikTijψ

I
j (2.3.15)

Equation (2.3.15) is of the form:

φRik = (aR,ikj )TψIj (2.3.16)

where aR,ikj is the vector of coefficients of the incident partial waves to body j repre-
senting the radiated potential by a body i moving in a degree of freedom k.

Thus, we can define the “ambient” incident waves to a body j of the array due to
the motion of body i in a degree of freedom k as:

aR,ikj =

TT
ijRik j ̸= i

0 j = i
(2.3.17)

Then, using the same system of equations as in (2.3.12) with the “ambient” partial
cylindrical wave coefficients defined as in (2.3.17), the initially unknown scattered
coefficients of each body can be obtained.

Before being able to compute the solution of the system (2.3.12), as mentioned
in section (2.3.1), the computation of the DTM of the bodies is needed. For the
radiation problem, the Radiation Characteristics (RC) are required as well and a
detailed description and comparison of two different methodologies to compute them
for arbitrary geometries is given in Chapter 3.
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2.3.3 Calculation of the radiation hydrodynamic coefficients
and the excitation forces

The solution to the multiple scattering problem (2.3.12) enables one to reconstruct
the total potential in the fluid domain and to compute the forces exerted on the
bodies. McNatt et al. (2015) introduced a linear operator called Force Transfer Matrix
(Gj) which relates the forces acting in each degree of freedom of the body to the
partial incident cylindrical wave coefficients. The procedure to compute it for arbitrary
geometries is described in Chapter 3. Here we make use of the Force Transfer Matrix
(FTM) to compute the excitation forces as:

FE
j = Gj A

I
j (2.3.18)

where FE
j is the vector of excitation forces with dimension Dfj and AIj are the cylindri-

cal coefficients of the total wave incident to body j composed of the ambient incident
wave and all the scattered waves by the fixed neighbouring bodies:

AIj = (aIj +
N∑
i=1
i ̸=j

TT
ijAi) (2.3.19)

Similarly, following the procedure by McNatt et al. (2015), the radiation force can be
computed as :

(
FR
j

)ik
=

GjA
I

′

j j ̸= i

−
(
−iω (AMj)k + (Dj)k

)
+ GjA

I
′

j j = i
(2.3.20)

where
(
FR
j

)ik
is the vector of radiation forces on body j due to a motion of unit

amplitude of body i in a degree of freedom k, (AM)kj is the kth column of the added
mass matrix of the isolated body j , (D)kj is the kth column of the radiation damping
matrix of the isolated body j and AI

′

j are the cylindrical coefficients of the total wave
incident to body j expressed as in (2.3.21) composed of the radiated wave cylindrical
coefficients aR,ikj generated by the motion of body i in the degree of freedom k plus all
the scattered waves by the fixed neighbouring bodies:

AI
′

j = (aR,ikj +
N∑
i=1
i ̸=j

TT
ijAi) (2.3.21)
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The added mass and damping hydrodynamic coefficients are defined as terms of the
radiation force proportional to the body acceleration and to its velocity respectively:

(
FR
js

)ik
= −(−iωmik

js + bikjs) Ẋik (2.3.22)

where mik
js represents the added mass coefficient due to the radiation force generated

by the motion of body i in a degree of freedom k acting on the degree of freedom
s of body j and, similarly, bikjs is the damping coefficient due to the radiation force
generated by the motion of body i in a degree of freedom k acting on the degree of
freedom s of body j.

By rearranging (2.3.22), the following formulae for the hydrodynamic coefficients
is obtained:

mik
js = 1

ω
ℑ{
(
FR
js

)ik
} (2.3.23)

bikjs = −ℜ{
(
FR
js

)ik
} (2.3.24)

We note that the matrices of added mass and radiation damping hydrodynamic
coefficients of each body in the array have dimensions Dfj ×Dfa, with Dfa the total
number of degrees of freedom k of the array.

Expression (2.3.20) for the case j = i differs from expression (15) in McNatt et al.
(2015) as the partial cylindrical wave coefficients in the notation of the latter have
amplitude and not velocity units. However, we note a typographical error on equation
(15) in McNatt et al. (2015) where the term between brackets should be preceded by
a minus sign.

2.4 Numerical Implementation

2.4.1 Vectors and Matrices shapes

Even though the vectors in (2.2.16) are theoretically infinitely long, for practical com-
putations they need to be truncated. Their dimension is given as (2M + 1) · (N + 1)
where the summations go from m = −M to M and from n = 0 to N (the same
expression will apply for modes q and l with truncation limits Q and L respectively).

The following mapping is used for the indexation of vectors containing elements
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each corresponding to a pair (n,m) (or lq equivalently):

(n,m) → (M +m)(N + 1) + n+ 1; n = 0, ..., N ; m = −M, . . . , 0, . . . ,M (2.4.1)

For matrices where each entry corresponds to two pairs of modes, such as the
Transformation Matrix Tij, the previous mapping is applied to rows and columns:

Tij =



T−M −Q
0 0 0 · · · 0 T−M 0

0 0 0 0 T−M Q
0 0 0 0

0 . . . ... 0 . . . ... 0 . . . ...
... . . . 0 ... . . . 0 ... . . . 0
0 · · · 0 T−M −Q

N N 0 · · · 0 T−M 0
N N 0 · · · 0 T−M Q

N N

T 0 −Q
0 0 0 · · · 0 T 0 0

0 0 0 0 T 0Q
0 0 0 0

0 . . . ... 0 . . . ... 0 . . . ...
... . . . 0 ... . . . 0 ... . . . 0
0 · · · 0 T 0 −Q

N N 0 · · · 0 T 0 −0
N N 0 · · · 0 T 0Q

N N

TM −Q
0 0 0 · · · 0 TM 0

0 0 0 0 TM Q
0 0 0 0

0 . . . ... 0 . . . ... 0 . . . ...
... . . . 0 ... . . . 0 ... . . . 0
0 · · · 0 TM −Q

N N 0 · · · 0 TM −0
N N 0 · · · 0 TM Q

N N


(2.4.2)

The specific arrangement of the Tij terms, i.e. without coupling components be-
tween different depth modes, is explained as the depth variation is unchanged by the
reference system transformation (Appendix B).

2.4.2 Bessel functions scaling

As mentioned in Kagemoto and Yue (1986), the disparate asymptotic nature of the
Bessel functions makes it of paramount importance to normalize them with respect to
both order and argument for numerical calculations. In the work of Child (2011), and
based on Siddorn and Eatock Taylor (2008), this was done by dividing the radially-
dependent functions by their value at a distance equal to the radius of the axysimmetric
geometry considered, i.e., a truncated vertical cylinder. For arbitrary geometries, the
same principle could be adopted by choosing as normalization distance the radius of
the circumscribing cylinder to the body.
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Following this strategy, expressions (2.2.23) and (2.2.12) for the incident and scat-
tered partial waves respectively are reformulated as:

(
ψIj
)
lq

=


cosh [k0(z+d)]

cosh k0d
Jq(k0rj)
Jq(k0Rj)e

iqθj , l = 0

cos[kl(z + d)] Iq(klrj)
Iq(klRj)e

iqθj , l ≥ 1

(
ψSj
)
nm

=


cosh k0(z+d)

cosh k0d
H

(1)
m (k0rj)

H
(1)
m (k0Rj)

eimθj n = 0

cos kn(z + d) Km(knrj)
Km(knRj)e

imθj n ≥ 1
(2.4.3)

where Rj corresponds to the radius of the circumscribing cylinder of body j.
The changes in (2.4.3) are transfered to the partial wave coefficients of the ambient

wave as:

(aj)lq =

−igζa

ω
Jq(k0Rj)eik0(X0 cosβ+Y0 sinβ)iqe−iqβ, l = 0

0 l ≥ 1
(2.4.4)

Similarly, the elements of the transformation matrix are modified according to its
definition, ψSi = Tijψ

I
j :

(Tij)mqnn =


Jq(k0aj)
H

(1)
m (k0ai)

H
(1)
m−q(k0Lij)eiαij(m−q) n = 0

Iq(knaj)
Km(knai) Km−q(knLij)(−1)qeiαij(m−q) n ≥ 1

(2.4.5)

2.5 Summary

In the first section of this Chapter, the solution to the BVP for an isolated body
in cylindrical coordinates has been presented. A generic form to express both the
scattered and radiated wave fields based on the solution to the BVP has been derived.
In addition, it has been shown that plane incident waves can be represented using
a superposition of partial cylindrical waves by means of a fundamental property of
Bessel functions.

In the second part, the solution to the BVP for a large number of bodies in array
using the Direct Matrix Method interaction theory by Kagemoto and Yue (1986) has
been presented. The generic form to represent incident, radiated and scattered wave
fields derived in the first part of this Chapter has been used to construct a system
of equations to solve for the unknown scattered partial cylindrical wave coefficients.
In this process, a mathematical operator called Transformation Matrix which relies
on Graf’s addition theorem has been used. This imposes a spacing restriction which
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affects the minimum distance allowed between two bodies in array.
Prior to solving the system of equations presented, two hydrodynamic operators

(DTM and RC) which characterize the way an isolated body scatters and radiates
waves respectively need to be evaluated. A third operator (FTM) is required for the
computation of the efforts on the bodies in array and, therefore, for the generation of
hydrodynamic coefficients. Details on the evaluation of these hydrodynamic operators
for arbitrary geometries using a BEM solver will be given in the following Chapter.





Chapter 3

Hydrodynamic Operators of the
Direct Matrix Method

In Chapter 2, the Direct Matrix Method interaction theory (IT) which enables one
to efficiently solve the multiple-scattering problem was presented. It was shown that
one of its fundamental parts is the computation of two hydrodynamic operators, the
Diffraction Transfer Matrix (DTM) and the Radiation Characteristics (RC), which
characterize the way an isolated body scatters and radiates waves respectively. In
addition, an operator called Force Transfer Matrix (FTM) was used to evaluate the
efforts on the bodies.

In this Chapter, two different methodologies derived by Goo and Yoshida (1990)
and McNatt et al. (2015) to compute the DTM, FTM and RC for arbitrary geometries
are presented and compared. We shall refer to the former, which has been implemented
in the BEM code NEMOH as Method I and to the latter as Method II. Comparisons
of both methodologies are undertaken by studying the hydrodynamic operators of two
different geometries, a truncated vertical circular cylinder and a cube. This provides a
valuable insight into the DTM, RC and FTM which have not received much attention
in the literature but are required to implement the IT.

3.1 Method I

3.1.1 Diffraction Transfer Matrix

The methodology developed by Goo and Yoshida (1990) enables one to find each
element (Bj)mqnl of the DTM following two steps. First, the solution to a diffraction
problem where the incident wave is an incident cylindrical partial wave of angular
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mode q and depth mode l is found. This involves solving for the unknown source
strengths σlqj in the following integral equation:

1
2σlqj(rj, θj, zj) +

∫∫
Sj

σlqj(Rj,Θj, ζj)
∂Gj(Rj,Θj, ζj; rj, θj, zj)

∂n
ds = −

∂
(
ψIj
)
lq

(rj, θj, zj)
∂n

(3.1.1)

where G is the Green’s function, (Rj,Θj, ζj) is the influencing or source point and
(rj, θj, zj) the influenced or field point on Sj, (ψIj )lq is the incident partial wave lq as
defined in (2.2.23) and Sj the wetted surface of body j.

The right hand side of equation (3.1.1) expresses the diffraction boundary condition
(2.2.10) on the wetted surface of the body due to an incident partial cylindrical wave
of angular mode q and depth mode l. This boundary condition replaces the standard
diffraction BC in BEM codes where the incident potential is simply the Airy potential
of a planar wave (2.2.17). The derivatives with respect to the outward normal of(
ψIj
)
lq

can be evaluated from:

∂
(
ψIj
)
lq

∂n
=
∂
(
ψIj
)
lq

∂xj
nxj +

∂
(
ψIj
)
lq

∂yj
nyj +

∂
(
ψIj
)
lq

∂zj
nzj (3.1.2)

where nxj, nyj and nzj denote respectively the x, y and z components of the unit
normal vector to the immersed surface of the body j. For the progressive (l = 0)
incident partial waves:

∂
(
ψIj
)

0q

∂xj
= cosh [k0(zj + d)]

cosh (k0d)

[
k0
xj
rj
Jq−1(k0rj) − q

r2
j

(xj + i yj)Jq(k0rj)
]
eiqθj (3.1.3)

∂
(
ψIj
)

0q

∂yj
= cosh [k0(zj + d)]

cosh (k0d)

[
k0
yj
rj
Jq−1(k0rj) − q

r2
j

(yj − i xj)Jq(k0rj)
]
eiqθj (3.1.4)

∂
(
ψIj
)

0q

∂zj
= sinh [k0(zj + d)]

cosh (k0d)
k0Jq(k0rj)eiqθj (3.1.5)

and for the evanescent (l ≥ 1):
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∂
(
ψIj
)
lq

∂xj
= cos[kl(zj + d)]

[
kl
xj
rj
Iq−1(klrj) − q

r2
j

(xj + i yj) Iq(klrj)
]
eiqθj (3.1.6)

∂
(
ψIj
)
lq

∂yj
= cos[kl(zj + d)]

[
kl
yj
rj
Iq−1(klrj) − q

r2
j

(yj − i xj) Iq(klrj)
]
eiqθj (3.1.7)

∂
(
ψIj
)
lq

∂zj
= −kl sin[kl(zj + d)] Iq(klrj)eiqθj (3.1.8)

Once the source strength distribution σlqj is known on the panelized surface of the
body for all the possible combinations between l and q, the following step consists
in expressing the scattered potential in the base of partial cylindrical wave functions
(2.2.12). For that, it is worth recalling that the scattered potential at a field point in
the fluid (rj, θj, zj) due to any source distribution σlq defined over a surface Sj can be
expressed as:

φSj (rj, θj, zj) =
∫∫

Sj

σlqj(Rj,Θj, ζj)Gj(rj, θj, zj;Rj,Θj, ζj) ds (3.1.9)

In standard BEM codes, the Green function is expressed in Cartesian coordinates
based on the form derived by (John, 1950). It can also be expressed in cylindrical
coordinates as a Fourier series as presented by Black (1975) and further investigated
by Fenton (1978):

Gj(rj, θj, zj;Rj,Θj, ζj) =
∞∑

m=−∞

i

2C0 cosh[k0(zj + d)] cosh[k0(ζj + d)]

×

 H(1)
m (k0rj)Jm(k0Rj)

H(1)
m (k0Rj)Jm(k0rj)

 eim(θj−Θj)

− 1
π

∞∑
n=1

Cn cos[kn(zj + h)] cos[kn(ζj + d)]

×
∞∑

m=−∞

 Km(knrj)Im(knRj)
Km(knRj)Im(knrj)

 eim(θj−Θj) (3.1.10)

where the upper terms in the curly brackets are used when rj > Rj, the lower terms
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when rj < Rj and C0 and Cn are defined as:

C0 = K2 − k2
0

(k2
0 −K2)d+K

; Cn = k2
n +K2

(k2
n +K2)d−K

; K = ω2

g
(3.1.11)

By substituting (3.1.10) into (3.1.9), and considering that the condition rj > Rj

is always satisfied (i.e. the field point is always outside the circumscribing cylinder of
the body), equation (3.1.9) can be expressed as:

φSj (rj, θj, zj) = cosh[k0(zj + d)]
cosh k0d

∞∑
m=−∞

(Bj)mq0l H
(1)
m (k0rj)eimθj +

∞∑
n=1

cos[kn(zj + d)]
∞∑

m=−∞
(Bj)mqnl Km(knrj)eimθj (3.1.12)

where coefficients (Bj)mq0l and (Bj)mqnl are given by:

(Bj)mq0l = i

2 C0 cosh k0d
∫∫

Sj

σlqj(Rj,Θj, ζj) Jm(k0Rj) cosh[k0(ζj + d)]e−imΘjds

(3.1.13)

(Bj)mqnl = − 1
π
Cn

∫∫
Sj

σlqj(Rj,Θj, ζj) Im(knRj) cos[kn(ζj + d)]e−imΘjds (3.1.14)

Equation (3.1.12) is exactly of the same form as (2.2.14) and it represents the
scattered potential of the jth body valid outside its circumscribed, bottom-mounted,
imaginary vertical cylinder. Coefficients (Bj)mqnl represent the amplitudes of the partial
scattered cylindrical waves of angular mode m and depth mode n due to a unitary
incident partial wave of angular mode q and depth mode l

(
ψIj
)
lq

. Hence, they are the
elements of the DTM. In short, its lqth column is obtained by solving the diffraction
problem involving the incident cylindrical partial wave

(
ψIj
)
lq

and by embedding the
corresponding source distribution σlqj in equations (3.1.13)-(3.1.14) to compute the
element of the nmth row.

3.1.2 Radiation Characteristics

The same principle applied for the calculation of the DTM can be used now to obtain
the RC vector. First, the radiation problem associated with a degree of freedom k

of the body under consideration is solved. In this case, the boundary-value problem
is the same as the one solved by a standard BEM solver. Thus, the source strength
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distribution can be obtained from the following equation:

1
2σjk(rj, θj, zj) +

∫∫
Sj

σjk(Rj,Θj, ζj)
∂Gj(Rj,Θj, ζj; rj, θj, zj)

∂n
ds = njk (3.1.15)

where the left hand side remains unchanged with respect to equation (3.1.1) and the
right hand side represents the radiation BC (2.2.11) on the wetted surface of the body
given by the direction cosine of a particular degree of freedom k (k = 1, . . . , 6 in the
general case) expressed as:

n1j = nx (3.1.16)
n2j = ny (3.1.17)
n3j = nz (3.1.18)

n4j = (yj − ymj)nzj − (zj − zmj)nyj (3.1.19)
n5j = (zj − zmj)nxj − (xj − xmj)nzj (3.1.20)
n6j = (xj − xmj)nyj − (yj − ymj)nxj (3.1.21)

where (xmj, ymj, zm) are the coordinates of the point about which the moment is taken.
Once known, the source strength distribution σjk is used in conjunction with the

Green’s function in cylindrical coordinates (3.1.10) to represent the radiated poten-
tial in terms of partial cylindrical waves leading to the following expressions for the
Radiation Characteristics:

(Rk
j )0m = i

2 C0 cosh k0d
∫∫

Sj

σjk(Rj,Θj, ζj) Jm(k0Rj) cosh[k0(ζj + d)]e−imΘjds

(3.1.22)

(Rk
j )nm = − 1

π
Cn

∫∫
Sj

σjk(Rj,Θj, ζj) Im(knRj) cos[kn(ζj + d)]e−imΘjds (3.1.23)

3.1.3 Force Transfer Matrix

The solution to the diffraction BVP (equation 3.1.1) given by the source strength
distribution σlqj enables one to reconstruct the scattered potential by means of (3.1.9).
The pressure associated to an incident partial wave

(
ψIj
)
lq

can then be computed
from Bernouilli equation (2.1.7) leading to the following expression for the first order



44 Hydrodynamic Operators of the Direct Matrix Method

excitation force:

(
F ex
jk

)
lq

= −iρω
∫∫

Sj

[(
ψIj
)
lq

+ φSj

]
njk ds (3.1.24)

where
(
F ex
jk

)
lq

is the excitation force acting upon mode k due to an incident cylindrical
partial wave of depth mode l and angular mode q and φSj is the scattered potential as
in (3.1.12).

The lqth terms of the kth row of the FTM (section 2.3.3) relate the forces acting
in the degree of freedom k of the body due to a partial incident cylindrical wave
coefficient

(
ψIj
)
lq

and, therefore, they are given by
(
F ex
jk

)
lq

.
It is worth noting that the FTM, which is a frequency-dependent operator com-

puted using the representation of the diffracted wave field on the basis of partial
cylindrical wave functions, enables the computation of the excitation forces on an iso-
lated body due to an incident long-crested progressive plane wave propagating in any
arbitrary direction β and represented by means of the coefficients in (2.2.21). This is
remarkably different than in a traditional BEM approach, where as many diffraction
problems as incident wave directions need to be solved.

3.2 Method II

3.2.1 Diffraction Transfer Matrix

The Method I described in the previous section involves solving the diffraction BVP
using incident partial cylindrical waves. Standard BEM codes such as the well-known
WAMIT (Lee and Newman, 1999) do not enable, at present, to solve for this cylindrical
representation of incident waves and can only deal with plane incident waves. McNatt
et al. (2015) derived a methodology to circumvent this problem and to compute the
elements of the DTM by solving multiple diffraction problems involving only incident
plane waves. The procedure is detailed in the following paragraphs. An equivalent
method that uses the Fourier transform can be found in McNatt (2015).

From the definition of the DTM (2.3.10), the following relationship applies:

Aj(βn) = Bj aj(βn) (3.2.1)

where Aj(βn) is the vector of progressive scattered cylindrical wave coefficients , Bj

the diffraction transfer matrix and aj(βn) the vector of progressive ambient incident
cylindrical wave coefficients. Subindex j refers to the body and βn represents the
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propagation direction of the plane incident wave.

Both vectors of coefficients are theoretically infinitely long but for practical com-
putations a truncation is required. If we refer to the truncation value as Mj, vectors
Aj(βn) and aj(βn) have dimension (2Mj + 1) whereas the diffraction transfer matrix
Bj has dimensions (2Mj + 1) × (2Mj + 1).

As mentioned in section 2.2.2, incident plane waves travelling with a direction βn

can be represented by means of a superposition of partial progressive cylindrical waves.
Thus, the vector of coefficients aj(βn) is known and given by (2.2.21). Assuming that
the vector of progressive scattered waves Aj(βn) is also a known quantity, it can be
observed that equation (3.2.1) is an under-determined matrix equation to solve for the
elements of the DTM. If instead of having only one set of coefficients Aj(βn) and aj(βn)
associated with a single wave direction βn, a larger set of coefficients is available for
as many wave directions βn as the leading dimension of the diffraction transfer matrix
(2Mj+1), (3.2.1) becomes a full matrix equation from which the elements of the DTM
can be obtained. McNatt et al. (2015) states that, to be more accurate, the number
of coefficient vectors should be larger than the leading dimension of the diffraction
transfer matrix creating as a result an over determined system.

So far it has been assumed that the coefficients Aj(βn) are known. The procedure
to obtain them derived in McNatt et al. (2013) is briefly explained in the following
paragraphs.

As has been shown in section 2.2.1, the solution to the diffraction problem for the
scattered potential is of the form (2.2.14). Using the notation of McNatt et al. (2013):

φS = i
g

ω

∞∑
m=−∞

(χS)meimθ (3.2.2)

where χS is given by:

(χS)m = (aS)m
cosh k0(h+ z)

cosh k0h
H(2)
m (k0r) +

∞∑
n=1

(bS)nm cos kn(h+ z)Km(knr) (3.2.3)

where H(2)
m is the mth order Hankel function of the second kind, m refers to the angular-

mode, index n to the depth mode and h to the depth. aS0m and bSnm are the progressive
and evanescent cylindrical wave coefficients respectively equivalent to AS0m and ASnm
for the notation used in this work.
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The term (χS)m can be found as the Fourier transform of the velocity potential:

(χS)m = − i

2π
ω

g

∫ 2π

0
φSe−imθdθ (3.2.4)

By equating (3.2.3) and (3.2.4) and by using the depth dependence orthogonality
properties of the depth dependence functions:

∫ 0

−h
cosh k0(h+ z) cos kl(h+ z) dz = 0 (3.2.5)∫ 0

−h
cos kl(h+ z) cos kn(h+ z) dz = 0, l ̸= n (3.2.6)

the progressive and evanescent partial waves can be isolated. Then, if the potential
due to a submerged body is known over a circular-cylindrical surface with radius r0

the cylindrical coefficients can be calculated as:

a0m = − i

2π
ω

g

2 cosh k0h

h
(
1 + sinh 2k0h

2k0h

) 1
H

(2)
m (k0r0)

∫ 0

−h

∫ 2π

0
φ(r0, θ, z) e−imθ cosh k0(h+ z)dθdz

(3.2.7)

bnm = − i

2π
ω

g

2
h
(
1 + sin 2knh

2knh

) 1
Km(knr0)

∫ 0

−h

∫ 2π

0
φ(r0, θ, z)e−imθ cos kn(h+ z)dθdz

(3.2.8)

3.2.2 Radiation Characteristics

The computation of the RC follows a similar procedure to the one used for the cal-
culation of the DTM. First, the radiation problem associated with a specific mode
of motion and frequency is solved with a standard BEM code. Then, by means of
expressions (3.2.7) and (3.2.8), the radiated potential is expressed in terms of partial
cylindrical wave functions. In this base, the coefficients are known as Radiation Char-
acteristics and are denoted by aR,k0m and bR,knm which correspond respectively to Rk

0m and
Rk
nm in the notation of Method I.

3.2.3 Force Transfer Matrix

The same methodology applied for the calculation of the DTM can be applied to
compute the FTM. From the definition of the latter, it can be observed that if one
disposes of a sufficient set of excitation forces and incident partial wave coefficients,



3.3 Equivalence between Methods I and II 47

equation (2.3.18) can be transformed into a system of equations which can be solved
for the elements of the FTM. The pairs force/wave coefficients can be obtained by
solving at least as many diffraction problems as the leading dimension of the FTM
(2Mj + 1) for different long-crested plane wave propagating directions.

3.3 Equivalence between Methods I and II

The formulation of Method I is based on the notation of Goo and Yoshida (1990)
which makes use of a negative harmonic time dependence (e−iωt), whereas Method
II by McNatt et al. (2015) adopts a positive sign convention (eiωt). In addition, in
Method I amplitudes of partial wave coefficients have units of velocity potential (m2/s).
In Method II they have units of length (m) and get units of velocity potential by
multiplying by i g

ω
. By taking into account such convention differences, the equivalence

between both partial wave coefficients is given by (see Appendix (E) for full derivation):

(−1)−m g

ω

[
i(aS,I−m)

]∗
= AS,Im (3.3.1)

where super-index ∗ denotes complex conjugate, aS, I−m are the progressive partial waves
coefficients in the notation of McNatt et al. (2015) and AS, Im in the notation of Goo
and Yoshida (1990).

By introducing (3.3.1) into the definition of the DTM in (3.2.1), the following
expression relating their elements in both notations can be obtained:

(−1)−m

(−1)−q (B∗)Method I
−m,−q = (B)Method II

m,q (3.3.2)

The results presented in this work have been computed using the BEM solver
NEMOH, in which Method I has been implemented. The results presented for Method
II were computed using WAMIT. To solve the radiation problem, NEMOH employs
unit-amplitude velocity as the boundary condition, while WAMIT uses unit-amplitude
motions, which results in a difference in scaling of the resultant solutions. The rela-
tionship between the source strengths in the radiation problem is:

σNemoh = 1
iω
σWamit (3.3.3)

As a consequence, by taking into account (3.3.3) and the notation convention
differences in (3.3.1), the relationship between the RC in both notations follows as:
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(−1)−m g

ω2

[
(aR−mk)

]∗
= Rmk

where aR−mk are the RC in the notation of McNatt et al. (2015) and Rmk in the notation
of Goo and Yoshida (1990).

The formulae of the scattered and radiated potentials presented in this section and
expressed on the basis of partial cylindrical waves are only valid outside the body’s
circumscribing cylinder of radius Rj. For Method I, the limitation stems from the use
of the cylindrical Green’s function form by Fenton (1978) valid only when rj > Rj

whereas, for Method II, it is a consequence of performing a Fourier Transform of
the potential on the body’s circumscribing cylinder. Because of that, the use of the
interaction theory requires that the relative distance between two bodies in the array
has to be such that a circumscribing cylinder cannot intersect any other body (Figure
(3.1)). This condition is more restrictive than the one imposed by the use of Graf’s
addition theorem in (2.3.2) which states that the circumscribing cylinder of a body
cannot contain the geometrical center of any other body (Appendix B). In that sense,
we note that the arrangement in Figure 5b by McNatt et al. (2015) falls out of the
range of validity of the interaction theory.

(a) (b)

Figure 3.1: Authorized a) and unauthorized b) relative position between bodies when
using the Direct Matrix Method interaction theory. Source: adapted from Chakrabarti
(2001).

Even if evanescent terms from the scattered potential can be identified using (3.2.8),
the use of only plane progressive incident waves (with no evanescent components)
prevents the calculation of the DTM terms relating incident and scattered evanescent
partial waves using Method II.
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3.4 Rotation of the body

As shown by Peter and Meylan (2004a), for a non-axisymmetric body a rotation about
its mean center position in the (x, y) plane varies the elements of the DTM, as well
as the RC and the FTM.

With respect to the diffraction problem, the rotation of the body modifies the
source distribution on its wetted surface. For this case, the rotation of the body
is equivalent to keeping the body in its original position and rotating the incident
potential. The latter can be expressed as:

∂φIqγj

∂n
=
∂φIq
∂n

eiqγj (3.4.1)

where γj is the rotation of body j and φIq is an incident potential of progressive mode
q.

As the integral equation to determine the source strength is linear (3.1.1), the
distribution of source strengths due to the rotated incident potential (3.4.1) can be
expressed as:

σjqγj
= σjqe

iqγj (3.4.2)

where σjqγj
is the distribution of source strengths due to the rotated incident potential.

If the rotated source strengths are introduced in (3.1.13), which is used to calculate
the elements of the DTM, as well as a change in the angular dependence in the integral
over the wetted surface of the body the following expression is obtained:

(
Bγj

j

)mq
0l

= i

2C0 cosh k0d
∫∫

Sj

σjqγj
(Rj,Θj, ζj) Jm(k0Rj) cosh[k0(ζj + d)]e−im(Θ+γj)ds

(3.4.3)
By substituting identity (3.4.2) into (3.4.3) we have:

(
Bγj

j

)mq
0l

= i

2C0 cosh k0d
∫∫

Sj

σjq(Rj,Θj, ζj) Jm(k0Rj) cosh[k0(ζj + d)]e−im(Θ+γj)eiqγjds

(3.4.4)
The comparison between (3.4.4) and (3.1.13) leads to:

(
Bγj

j

)mq
0l

= eiγj(q−m) (Bj)mq0l (3.4.5)

It is worth noting that expression (3.4.5) is valid for both progressive and evanes-
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cent modes as the rotation only changes angular variation and not depth dependence.
Thus:

(
Bγj

j

)mq
nl

= eiγj(q−m) (Bj)mqnl (3.4.6)

Contrarily to the diffraction case, the body rotation does not change the source
strength distribution associated with the radiation problem given by the motion of
body j in a degree of freedom k:

σjkqγj
= σjkq (3.4.7)

The only effect is the modification of the angular dependence of the integral over
the wetted surface in (3.1.22) which leads to:

(
R
γj

jk

)
0m

= i

2C0 cosh k0d
∫∫

Sj

σjkqγj
(Rj,Θj, ζj) Jm(k0Rj) cosh[k0(ζj + d)]e−im(Θ+γj)ds

(3.4.8)
By comparing (3.4.8) and (3.1.22), the following relationship can be deduced:

(
R
γj

jk

)
0m

= e−imγj (Rjk)0m (3.4.9)

Using a more general notation including the evanescent modes (3.4.8) reads:

(
R
γj

jk

)
nm

= e−imγj (Rjk)nm (3.4.10)

The rotation of the incident potential (3.4.1) can be expressed in terms of the
partial cylindrical wave coefficients as (McNatt et al., 2015):

φIγj
=
(
AIγj

)
lq

(
ψI
)
lq

(3.4.11)

where AIγj
has been defined as:

(
AIγj

)
lq

= eiqγj

(
AI
)
lq

(3.4.12)

By substituting (3.4.12) into the definition of the FTM (2.3.18):

(
F
γj

j

)
lq

= (Gj)lq e
iqγj

(
AI
)
lq

(3.4.13)



3.5 Numerical Implementation 51

The comparison between expressions (3.4.13) and (2.3.18) leads to:

(
Gγj

j

)
lq

= eiqγj (Gj)lq (3.4.14)

3.5 Numerical Implementation

As mentioned in Babarit and Delhommeau (2015), the body boundary conditions in
NEMOH can be defined by the user. Thus, for the diffraction problem, the code can
easily accommodate a user-defined distribution of normal velocities at the centroid
of each mesh panel. They have been implemented in the preprocessor module of the
BEM code as the derivative of the incident partial wave functions (of angular mode q
and depth mode l) presented in equations (3.1.3) - (3.1.8). The finite depth Green’s
function is expressed in Cartesian coordinates rather than the cylindrical coordinates
of (3.1.1) as it is more convenient for the computations (Goo and Yoshida, 1990).

The asymptotic form of the term C0 in (3.1.11) poses convergence problems when
the water depth is increased. As mentioned in Peter and Meylan (2004a), the limi-
tation can be circumvented if it is reformulated by means of the dispersion relation
(C.1.11) leading to (derivation in Appendix F):

C0 = − k0

2k0d+ sinh 2k0d
(3.5.1)

No closed mathematical expression exists for the integrals (3.1.13)-(3.1.14) and
(3.1.22)-(3.1.23), even when σ is constant over each panel. Therefore, they cannot
be solved analytically but by using a quadrature scheme. In this work, results will
be presented for a one-point and four-point Gaussian quadrature rules (Abramowitz
and Segun A., 1964). Details of the numerical integration are shown in Appendix G.
In the NEMOH BEM solver the source strengths are assumed to be constant over
each flat quadrilateral panel. Nevertheless, the degree of variation of the other terms
in the kernel of the integrals (3.1.13)-(D.1.113) and (3.1.22)-(3.1.23) is influenced by
the discretization of the wetted surface of the body, as well as by the partial wave
angular-mode m and by the frequency. The latter will determine the magnitude of
the wave number. This can be qualitatively observed in Figure 3.2, which shows the
variation, along the lateral side and the bottom of a cylinder, of the different functions
the kernel of the DTM and RC integrals is composed of.

The normalization shown in section 2.4.2 propagates into the hydrodynamic oper-
ators in the following manner.
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For the DTM:

(B̃j)mq0l = Hm(k0Rj)
Jq(k0Rj)

(Bj)mq0l (3.5.2)

(B̃j)mqnl = Km(knRj)
Iq(klRj)

(Bj)mqnl (3.5.3)

where˜ indicates a normalized operator.
For the RC, the progressive and evanescent terms should be scaled as:

(R̃k
j )0m = Hm(k0Rj) (Rk

j )0m (3.5.4)
(R̃k

j )nm = Km(knRj) (Rk
j )nm (3.5.5)

Finally, the normalized FTM terms read:

(
F̃ ex
jk

)
0q

= 1
Jq(k0Rj)

(
F ex
jk

)
0q

(3.5.6)
(
F̃ ex
jk

)
lq

= 1
Iq(k0Rj)

(
F ex
jk

)
lq

(3.5.7)

3.6 Results and Discussion

In this section, the main components of the DTM, the RC and the FTM for a truncated
vertical cylinder (3 m radius and 6 m draft) and a cube (6 m side and 6 m draft) in
a 10 m water depth are presented. The choice of two different bodies enables one
to identify geometry specific features of the hydrodynamic operators. Only the most
relevant results are shown herein and the rest has been compiled in Appendix I.

The two different discretizations shown in Figures 3.3 and 3.4 have been used
for the computations. A mesh convergence study has been performed showing no
significant improvement of accuracy by using 3.3b or 3.4b (see Appendix I).
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Figure 3.2: Variation of the hyperbolic cosine depth dependence (a), the Bessel func-
tion of the first kind (b, e) and the modified Bessel function of the first kind (c, f)
along the lateral side and the bottom of a cylinder respectively (3m radius, 6m draft in
a 30m water depth). Results in (e) are calculated for k0a = 2.7523 and in (f) for k5a=
1.7279. Variation of the sinusoindal term e−imθ along the perimeter of the cylinder
(d). Red points represent the nodes of a given mesh
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Figure 3.3: Truncated vertical cylinder mesh. Only half of the geometry is shown due
to symmetry. (a) - coarse mesh, 361 panels; (b) - fine mesh 1521 panels.
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Figure 3.4: Cube mesh. Only half of the geometry is shown due to symmetry. (a) -
coarse mesh, 403 panels; (b) - fine mesh 2059 panels.
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3.6.1 Diffraction Transfer Matrix

3.6.1.1 Cylinder

Figures 3.5a and 3.5b show the real and imaginary parts of the cylinder DTM com-
ponents respectively. For clarity, only progressive terms are shown here. A very
good agreement between results obtained using Method I (with both one-point and
four-point quadrature schemes), Method II and the semi-analytical solution by Zeng
and Tang (2013) (Appendix D) is found. It can be observed that the only non-zero
DTM terms correspond to pairs of equal incident (q) and outgoing (m) angular modes.
This is a particular feature of axisymmetric geometries such as the truncated vertical
cylinder. In addition, it can be appreciated that the number of significant angular
modes is frequency dependent. For instance, a truncation of only two angular modes
is sufficient at ka ∼ 1 but not at ka ∼ 2 where three angular modes are required.

The numerical singularity observed at a ka of approximately 2.3 corresponds to an
irregular frequency, not corrected in the version of NEMOH used.
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Figure 3.5: Real and imaginary parts of the Diffraction Transfer Matrix progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft in a 10m water
depth.
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3.6.1.2 Cube

Figures 3.6a and 3.6b show the real and imaginary parts of the DTM components
respectively. Similar to the truncated vertical cylinder, good agreement between the
results obtained using Method I and II can be observed. For this non-axisymmetric
geometry, terms of the DTM involving distinct incident and outgoing angular modes,
such as the pair (q = 1,m = −3), are non-zero as expected. In addition, it can
be appreciated that for a wide range of ka values the angular mode truncation is
higher than for the truncated vertical cylinder. No improvement of results is obtained
whether using a one-point or four-point quadrature integration scheme.
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Figure 3.6: Real and imaginary parts of the Diffraction Transfer Matrix progressive
terms for a cube of 6m side (2a), 6m draft in a 10m water depth.

3.6.2 Radiation Characteristics

3.6.2.1 Cylinder

The progressive terms of the surge RC of the cylinder are shown in Figure 3.7. Good
agreement between both methods and the semi-analytical solution can be observed,
as well as no significant differences between integration schemes. For this mode of
motion, it can be observed that only modes m = ±1 are non-zero (see D.1.2). This is
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explained as the wave generated by the motion of a cylinder in surge corresponds to
the partial wave shown in Figure 2.2b.
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Figure 3.7: Real and imaginary parts of the Radiation Characteristics progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft moving in surge in
a 10m water depth.

For heave (Figure 3.8), only the mode m = 0, representing an isotropic wave
(Figure 2.2a) is required (Appendix D). As for the DTM, the numerical singularity
observed at a ka of approximately 2.3 corresponds to an irregular frequency.

There is a difference in the magnitude of both the real and the imaginary parts
of the m = 0 wave between the outputs from Method I, Method II, and the semi-
analytical results. There are several possible explanations for this discrepancy. On the
one hand, the inherent differences between BEM and semi-analytical results. In that
sense, deviations between hydrodynamic coefficients computed with a semi-analytical
formulation and with a BEM code were observed by Chakrabarti (2000). On the other
hand, differences between results of the two BEM codes used (NEMOH and WAMIT)
as shown for instance by Crooks et al. (2016).

It is noteworthy to mention that the numerical scheme implemented in NEMOH
to compute the RC is identical for all degrees of freedom. Thus, as a very good
agreement is obtained for all modes but heave, the discrepancies for the latter seem to
stem directly from inaccuracies of the source strengths provided by the BEM solver.
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In that sense, we note that for this mode of motion the radiated wave is significantly
smaller than for other modes (such as surge) as can be directly derived from the
magnitude of the RC (the maximum value of its imaginary part is 2.8 for surge as
opposite to 0.8 for heave).

One could argue that results are presented for the discretization shown in Figure
3.3a which seems rather coarse, specially at the base of the cylinder responsible for
the generation of a velocity potential in heave. However, a mesh sensitivity study
has been performed (as detailed in Appendix I) and a good convergence with results
computed with a finer mesh has been found.

Finally, it is important to highlight that while it is true that the numerical integra-
tion is identical for all modes of motion when using a one-point quadrature scheme,
the use of a four-point scheme requires the use of interpolation functions which de-
pend on the geometry of the panel (quadrilateral or triangles). Hence, it is mandatory
to distinguish between both panel geometries which are found at the cylinder base
and which have an impact mainly on heave. However, as mentioned earlier we found
no differences between the numerical integration approaches based on a single and 4
quadrature points. Additional validations for the heave mode of motion have been
undertaken and are detailed in Chapter 4.
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Figure 3.8: Real and imaginary parts of the Radiation Characteristics progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft moving in heave in
a 10m water depth.
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3.6.2.2 Cube

Compared to the cylinder, additional angular modes of order three appear in the RC
of the cube moving in surge (Figure 3.9). The radiated field for this geometry and for
this mode of motion is more complex than the one generated by the truncated vertical
cylinder and a superposition of partial waves is required to represent it. For heave
(Figure 3.10), only the isotropic partial wave (m = 0) is needed.
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Figure 3.9: Real and imaginary parts of the Radiation Characteristics progressive
terms for a cube of 6m side (2a), 6m draft moving in surge in a 10m water depth.

3.6.3 Force Transfer Matrix

3.6.3.1 Cylinder

Plots of the real and imaginary parts of the FTM progressive terms for surge and
heave are shown respectively in Figures 3.11 - 3.12. Good agreement between both
methods can be observed, as well as no difference between integration schemes. It can
be appreciated that such geometry is only excited by angular modes q = ±1 in surge
and by mode q = 0 in heave. Moreover, it is noteworthy that the pattern of the FTM
components is very similar to the RC behaviour. In Chapter 4, and by means of the
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Figure 3.10: Real and imaginary parts of the Radiation Characteristics progressive
terms for a cube of 6m side (2a), 6m draft moving in heave in a 10m water depth.

Haskind’s relation (Haskind, 1957), we show that the terms of the FTM and the RC
are related by a frequency-dependent constant.

3.6.3.2 Cube

Plots of the real and imaginary parts of the FTM progressive terms for surge, heave
and yaw are shown in Figures 3.13-3.15 respectively. Contrarily to the truncated
vertical cylinder, the cube is excited by modes q = ±3 in addition to q = ±1 for surge.
As in this case the geometry is not axisymmetric, the Mz force component is non-zero
for relatively high ka values and is excited by mode q = 4. As for the cylindrical
geometry, a very similar frequency-dependent pattern can be distinguished in both
the FTM and the RC.
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Figure 3.11: Real and imaginary parts of the Force Transfer Matrix progressive Fx
terms for a truncated vertical cylinder of 3m radius (a), 6m draft in a 10m water
depth.
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Figure 3.12: Real and imaginary parts of the Force Transfer Matrix progressive Fz
terms for a truncated vertical cylinder of 3m radius (a), 6m draft in a 10m water
depth.
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Figure 3.13: Real and imaginary parts of the Force Transfer Matrix progressive Fx
terms for a cube of 6m side (2a), 6m draft in a 10m water depth.
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Figure 3.14: Real and imaginary parts of the Force Transfer Matrix progressive Fz
terms for a cube of 6m side (2a), 6m draft in a 10m water depth.
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Figure 3.15: Real and imaginary parts of the Force Transfer Matrix progressive Mz

terms for a cube of 6m side (2a), 6m draft in a 10m water depth.

3.7 Conclusions

The calculation of the Diffraction Transfer Matrix and the Radiation Characteristics
has been implemented in the open source BEM solver NEMOH using the methodology
of Goo and Yoshida (1990). Results of the hydrodynamic operators for an isolated
truncated vertical cylinder and a cube computed using two different numerical integra-
tion schemes have been contrasted with the methodology developed by McNatt et al.
(2015) and a very good agreement has been found. In addition, the DTM and RC of
the truncated vertical circular cylinder have been checked against the semi-analytical
solution by Zeng and Tang (2013) and a very good match has been obtained.

For a truncated vertical cylinder, only the terms of the DTM corresponding to pairs
of equal incident and outgoing angular modes have been observed to be different than
zero. In contrast, for the cube, coupling terms between different incident and outgoing
angular modes have been found to be significant. In both cases, the truncation of the
angular terms has been shown to be frequency-dependent.

In addition, it has been checked that angular modes m = −1, 0, 1 are sufficient
to represent the radiated waves of a truncated vertical circular cylinder in surge (odd
terms) and heave (even term) for all frequencies. At the same time, it has been
observed as expected that higher modes are required, particularly at the high frequency
zone, to represent the radiated wave in surge by a cube.





Chapter 4

Validation of the Direct Matrix
Method implementation

In Chapter 3, two different methodologies to compute the DTM, FTM and RC were
presented and compared. It was observed that the frequency-dependent patterns of
the RC and the FTM follow the same trends. In the first part of this Chapter, a
novel set of relations between the FTM and the RC components is obtained using the
Kochin functions specific to the cylindrical basis solutions. They extend the classical
Haskind’s relations valid with incident plane waves to the cylindrical components of the
scattered and radiated fields. Moreover, an alternative demonstration of the identities
which does not rely on the far-field asymptotic representation of the potential is given.
Additional expressions relating the hydrodynamic coefficients and the RC for isolated
bodies as well as for arrays are provided.

The relationships derived in the first part of this Chapter are based on the far-field
representation of the potential, i.e. they take into account only the first term of the
summation in expressions (2.2.14) and (2.2.20). Because of that, they are used to
verify that good accuracy of results obtained from the implementation of the IT is
achieved with a finite angular-mode truncation. Details are provided in the first part
of this Chapter results section.

The validation effort would be incomplete if the influence of the evanescent modes
truncation was not addressed as well, i.e. the second term of the summation in ex-
pressions (2.2.14) and (2.2.20). The last part of this Chapter’s results section focuses
on their effect on the hydrodynamic coefficients and the free surface.
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4.1 Isolated body

4.1.1 Haskind’s Relation

Haskind’s Relation (Haskind, 1957) enables the excitation force to be expressed in
terms of radiation parameters. In this section we provide a brief reminder of its
derivation, which can be found for instance in Newman (1962).

The excitation force acting on a body with wetted surface Sb (Figure 4.1) can be
written as:

F k
ex = iωρ

∫
Sb

(φI + φS)nkdS (4.1.1)

where φI is the incident potential, φS the scattered and nk the generalized direction
cosine with respect to Sb.

The boundary condition on the radiation potential φR,k, corresponding to degree
of freedom k, is:

nk = ∂φR,k

∂n
(4.1.2)

where φR,k is the radiated potential in the k degree of freedom.
In addition, the radiation boundary condition at infinity on φR,k reads:

∂φR,k

∂r
= ik0φ

R,k +O(k0r)−3/2 k0r → ∞ (4.1.3)

As both the scattered (φS) and the radiated (φR) potentials satisfy both the free
surface boundary condition and the Sommerfeld condition at infinity, it follows from
Green’s theorem that:

∫
Sb

(
φS
∂φR,k

∂n
− ∂φS

∂n
φR,k

)
dS = 0 (4.1.4)

By substituting (4.1.2) into (4.1.1) and by making use of (4.1.4), we have:

F k
ex = iωρ

∫
Sb

(
φI
∂φR,k

∂n
+ φR,k

∂φS

∂n

)
dS (4.1.5)

Finally, expression (4.1.5) can be rewritten by making use of the diffraction bound-
ary condition on the wetted surface of the body:

∂φS

∂n
= −∂φI

∂n
(4.1.6)
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leading to the Haskind relation::

F k
ex = iωρ

∫
Sb

(
φI
∂φR,k

∂n
− φR,k

∂φI

∂n

)
dS (4.1.7)

even more simply:

F k
ex = iωρ

∫
Sb

(
φInk − φR,k

∂φI

∂n

)
dS (4.1.8)

- a powerful formula that allows evaluation of the excitation force without solving the
diffraction problem explicitly.

4.1.2 Relationship between the Force Transfer Matrix and
the Radiation Characteristics

The Haskind relation (4.1.7) in section 4.1.1 is used as a starting point for the following
derivation. To begin with, the excitation force (F k

ex) is expressed using the definition
of the Force Transfer Matrix (G) given by McNatt et al. (2015):

F k
ex =

∞∑
m=−∞

Gk
0ma

I
0m (4.1.9)

where Gk
m corresponds to the mth element of the kth row of the Force Transfer Matrix

and aIm represents the mth term of the ambient incident wave cylindrical coefficients
vector given by (2.2.21).

Direct substitution of (4.1.9) into (4.1.7) leads to:

∞∑
m=−∞

Gk
0ma

I
0m = iωρ

∫
Sb

(
φI
∂φR,k

∂n
− φR,k

∂φI

∂n

)
dS (4.1.10)

The expressions of the incident, scattered and radiated potentials using the base
of partial cylindrical wave functions are only valid outside the circumscribing cylinder
of the body (Ωout). Thus, by means of Green’s theorem, we seek to express the
surface integral in expression (4.1.10) on a control surface instead of on the body’s
wetted surface (Sb). Generally, a cylinder of infinite radius is used together with the
asymptotic expression of the potential. In this case, we have chosen a cylindrical
surface infinitesimally larger than the body’s circumscribing cylinder (Sϵc) to allow for
the use of Green’s theorem in the fluid domain (Ωint) limited by Sb, Sϵc, the free-surface
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Figure 4.1: Schematic of the domains used for the application of the Green’s theorem.
Free surface (SL); body’s wetted surface (Sb); body’s circumscribing cylinder radius
(Rc); cylindrical surface infinitesimally larger than the body’s circumscribing cylinder
(Sϵc), seabed (F ); limit of the domain at infinity (S∞); domain interior to the circum-
scribing cylinder (Ωint); domain comprised between the circumscribing cylinder and
the cylindrical surface at infinity (Ωout).

and the seabed (Figure 4.1):

∫
Sϵ

c+Sb

(
φI
∂φR,k

∂n
− φR,k

∂φI

∂n

)
dS = 0 (4.1.11)

in which it is implicit that the contribution from the integrals on the free surface and
the seabed are zero.

By using (4.1.11), expression (4.1.10) can be written as:

∞∑
m=−∞

Gk
0ma

I
0m = −iρω

∫
Sϵ

c

(
φI
∂φR,k

∂n
− φR,k

∂φI

∂n

)
dS (4.1.12)

Take now the expression of the incident (2.2.20) and the radiated (2.2.15) poten-
tials, that we shall reformulate for convenience as:

φI(r, θ, z) = φIF (r, θ, z) + φIN(r, θ, z) = f0(z)ΛI(r, θ) + ΓI(r, θ, z) (4.1.13)
φR,k(r, θ, z) = φR,kF (r, θ, z) + φR,kN (r, θ, z) = f0(z)ΛR,k(r, θ) + ΓR,k(r, θ, z) (4.1.14)

where φI and φR,k are respectively the incident and the radiated potential due to
a motion in a degree of freedom k and φF and φN are its far-field and near-field
contributions respectively with:
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f0(z) = cosh k0(z + d)
cosh k0d

(4.1.15)

fn(z) = cos kn(z + d) (4.1.16)

ΛI(r, θ) =
∞∑

m=−∞
(aI)0m Jm(k0r) eimθ (4.1.17)

ΓI(r, θ, z) =
∞∑

m=−∞

∞∑
n=1

fn(z) (aI)nm Im(knr) eimθ (4.1.18)

ΛR,k(r, θ) =
∞∑

m=−∞
(Rk)0mHm(k0r) eimθ (4.1.19)

ΓR,k(r, θ, z) =
∞∑

m=−∞

∞∑
n=1

fn(z) (Rk)nmKm(knr) eimθ (4.1.20)

Substituting (4.1.13) and (4.1.14) into (4.1.12), and taking into account that am-
bient incident waves are composed of only progressive terms (ΓI = 0), we have:

∞∑
m=−∞

Gk
0ma

I
0m = −iρω

∫ 0

−d
f0(z)2dz

∫ 2π

0

(
ΛI ∂ΛR,k

∂n
− ΛR,k ∂ΛI

∂n

)
Rϵ dθ−

iρω
∫ 0

−d

∫ 2π

0

(
f0(z)ΛI ∂ΓR,k

∂n
− ΓR,kf0(z)

∂ΛI

∂n

)
Rϵ dθdz (4.1.21)

where Rϵ is the radius of a cylindrical surface infinitesimally larger than the body’s
circumscribing cylinder.

With respect to the first term on the right hand side of (4.1.21), the depth integral
is evaluated using:

ω
∫ 0

−d
f0(z)2dz = cg

k0

ω2

g
(4.1.22)

where cg is the group velocity given by:

cg = 1
2
ω

k0

(
1 + 2k0h

sinh 2k0h

)
(4.1.23)

For convenience we define the first integral in θ to be I:

I =
∫ 2π

0

(
ΛI ∂ΛR,k

∂n
− ΛR,k ∂ΛI

∂n

)
Rdθ (4.1.24)
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Substituting the definitions of ΛI and ΛR,k into the previous expression:

I =
∫ 2π

0

 ∞∑
m=−∞

aI0mJm(k0r)
∞∑

q=−∞
Rk

0q
∂Hq(k0r)

∂n
|r=Rϵ

 ei(m+q)θRϵdθ−

∫ 2π

0

 ∞∑
m=−∞

aI0m
∂Jm(k0r)

∂n
|r=Rϵ

∞∑
q=−∞

Rk
0qHq(k0r)

 ei(m+q)θRϵdθ (4.1.25)

The only non-zero contributions of the terms ei(m+n)θ to the integral in θ come from
the case where m = −n and they are equal to 2π. Thus, (4.1.25) can be rewritten:

I = 2πRϵ
∞∑

m=−∞
aI0mR

k
0−m

(
Jm(k0r)

∂H−m(k0r)
∂n

− ∂Jm(k0r)
∂n

H−m(k0r)
)

(4.1.26)

The expression in parentheses in (4.1.26) can be rewritten using the following
identities for Bessel and Hankel functions (Abramowitz and Segun A., 1964):

Jm = 1
2(H(1)

m +H(2)
m ) (4.1.27)

H
(1)
−m = (−1)mH(1)

m (4.1.28)

leading to:

I = 2πRϵ
∞∑

m=−∞
aI0mR

k
0−m

1
2(−1)m

H(2)
m (k0r)

∂H(1)
m (k0r)
∂r

|r=Rϵ −

∂H(2)
m (k0r)
∂r

|r=Rϵ H(1)
m (k0r)

 (4.1.29)

The term in brackets can now be related to the Wronskian ofH(1)
m andH(2)

m (Abramowitz
and Segun A., 1964):

−W (H(1)
m , H(2)

m ) = H(2)
m (k0r)

∂H(1)
m (k0r)
∂r

|r=Rϵ −

∂H(2)
m (k0r)
∂r

|r=Rϵ H(1)
m (k0r) = − 4i

πRϵ
(4.1.30)

Substituting (4.1.30) into (4.1.29):

I = 4i
∞∑

m=−∞
(−1)maI0mRk

0−m (4.1.31)
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Let us now evaluate the second term of the summation on the right hand side of
equation (4.1.21). We define the first and second terms of the integral in θz to be:

I2 =
∫ 0

−d

∫ 2π

0
f0(z)ΛI ∂ΓR,k

∂r
Rϵdθdz (4.1.32)

I3 =
∫ 0

−d

∫ 2π

0
f0(z)ΓR,k

∂ΛI

∂r
Rϵdθdz (4.1.33)

Considering I2 first, we substitute the definitions of ΛI and ΓR,k given by (4.1.17)
and (4.1.20) respectively to obtain:

I2 =
∫ 0

−d

∫ 2π

0

( ∞∑
m=−∞

f0(z) aI0m Jm(k0r) |r=Rϵ ×

∞∑
q=−∞

∞∑
n=1

fn(z)(Rk)nq
∂Kq(knr)

∂r
|r=Rϵ

)
ei(m+q)θ Rϵdθdz (4.1.34)

The only non-zero contributions of the terms ei(m+q)θ to the integral in θ arise
where m = −q and they are equal to 2π. Thus, (4.1.34) reads:

I2 = 2πRϵ
∞∑

m=−∞

∞∑
n=1

aI0m (Rk)n,−mJm(k0r)
∂K−m(knr)

∂r
|r=Rϵ

∫ 0

−d
f0(z)σn(z)dz

(4.1.35)

By means of the orthogonality properties of the depth functions:

∫ 0

−d
cosh k0(d+ z) cos kn(d+ z) dz = 0 (4.1.36)

the depth integral in (4.1.35) vanishes. An analogous derivation for I3 finally leads
to:

I2 = I3 = 0 (4.1.37)

This shows that the second term of the summation on the right hand side of
equation (4.1.21), i.e. the near-field contribution of the radiated potential, has no
effect on the excitation force.
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Finally, (4.1.12) becomes:

∞∑
m=−∞

Gk
0ma

I
0m = 4ρcgω

2

gk0

∞∑
m=−∞

(−1)mRk
0−ma

I
0m (4.1.38)

This relation between the FTM and the RC expresses the original Haskind relation
in the framework of cylindrical wave fields theory. Furthermore, as each partial wave
is an eigenfunction of an orthogonal set, the identity (4.1.38) holds element-wise and
reads:

Gk
m = 4ρcgω

2

gk0
(−1)mRk

−m (4.1.39)

In (4.1.39), the subindex n referring to evanescent terms has been omitted to
simplify notation. Hereafter, a single subindex will indicate that only the far-field
contribution to the potential is considered.

In the derivation above, the integration surface was chosen to be the circumscribing
cylinder to the body. However, it was observed that the radius of the cylindrical control
surface ultimately cancels out when the integral is evaluated. Thus, it would have been
equivalent to consider a cylinder at infinity and retain only the leading terms of the
asymptotic expression of the potential.

The expression of the excitation force in terms of the far-field radiation potential
is a classical result of hydrodynamics, which can be found for instance in expression
(8.6.41) in C.Mei et al. (2005) (or 5.147 in Falnes (2002)):

F k
ex = − 4

k0
ρgAAk(θI + π)cg (4.1.40)

where F k
ex is the excitation force and Ak(θ), generally known as the Kochin function,

corresponds to the angular variation of the radially spreading wave in the far-field
representation of the potential. At leading order of the asymptotic expansion for large
r, the potential may be expressed as:

φ ∼ −ig

ω

cosh k0(z + h)
cosh k0h

A(θ)
( 2
πk0r

) 1
2
eik0r−iπ/4 (4.1.41)

Expression (4.1.40) could have been used as well to obtain (4.1.38) taking into ac-
count that the Kochin function can be directly related to the asymptotic form of the
cylindrical solution:

Ak(θ) =
∞∑

m=−∞
(−i)m iω

g
Rk
me

imθ (4.1.42)
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Equation (4.1.42) has been adapted to the notation and the far-field potential repre-
sentation of C.Mei et al. (2005), and differs slightly from that given by McNatt et al.
(2013). Substituting (4.1.42) into (4.1.40) returns the same expression as in (4.1.38).

The author would like to note that the contents of this Chapter have been published
in the journal paper Fàbregas Flavià and Clément (2017).

4.1.3 Radiation Damping Coefficients in terms of the far-field
radiation potential

By applying Green’s theorem to two radiation potentials, the radiation damping coef-
ficients may be expressed in terms of the far-field radiation potential. This is a classic
result of hydrodynamics, whose derivation is briefly reviewed in this section and can
be found for instance in Falnes (2002).

We consider the two radiation potentials φR,p and (φR,k)∗. By application of
Green’s theorem in the domain Ωint U Ωout:

∫
Sb

(
φR,pnk − (φR,k)∗np

)
dS = −

∫
S∞

(
φR,p

∂(φR,k)∗

∂n
− (φR,k)∗∂φ

R,p

∂n

)
dS (4.1.43)

where the super-index ∗ represents the complex conjugate.
Now, if we apply Green’s theorem again to the same domain and to the same

radiation potentials (now without taking the complex conjugate of φR,k) we can deduce
that: ∫

Sb

φR,p nkdS =
∫
Sb

φR,k npdS (4.1.44)

Thus: ∫
Sb

(φR,p)∗ nkdS =
∫
Sb

(φR,k)∗ npdS (4.1.45)

By substituting (4.1.45) into (4.1.43) we obtain:

Dpk = −ρω

2i

∫
S∞

(
φR,p

∂(φR,k)∗

∂n
− (φR,k)∗∂φ

R,p

∂n

)
dS (4.1.46)

where Dpk represents the element p, k in the radiation damping coefficient matrix,
with p the direction of the force and k the degree of freedom.

Expression (4.1.46) can be simplified using (4.1.3):

Dpk = ρωk
∫
S∞

φR,p
(
φR,k

)∗
dS (4.1.47)
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from which the symmetry of Dpk and the positivity of Dpp are easily deduced.

4.1.4 Relationship between the Force Transfer Matrix and
the Damping coefficients

Now(4.1.47) can be used to derive a relationship between the diagonal terms of the
radiation damping coefficients matrix and the FTM.

By using the definition of the radiated potential in cylindrical coordinates, equation
(4.1.47) can be expressed as:

Dpk = ρωk0

∫ 0

−d
f0(z)2dz·∫ 2π

0

( ∞∑
m=−∞

Rp
mH

(1)
m (k0R∞)

∞∑
n=−∞

(
Rk
n

)∗
H(2)
n (k0R∞)

)
ei(m−n)θR∞dθ (4.1.48)

where R∞ represents the radius of a cylindrical control surface at infinity.

The only non-zero contributions of the terms ei(m−n)θ to the integral in θ occur
where m = n and they are equal to 2π. Thus, the previous expression can be written
as:

Dpk = 2πR∞ρcg
ω2

g

∞∑
m=−∞

Rp
m

(
Rk
m

)∗
H(1)
m (k0R∞)H(2)

m (k0R∞) (4.1.49)

where the depth integral has been evaluated using (4.1.22).

The product of Hankel functions of the first and the second kind can be rewritten
using their definition in terms of the Bessel functions of the first and the second kind:

H(1)
m H(2)

m = (Jm + iYm)(Jm − iYm) = J2
m + Y 2

m (4.1.50)

where the argument of the functions has been omitted for simplicity.

The asymptotic forms (z → ∞) of the Bessel functions of the first and the second
kind are (Abramowitz and Segun A., 1964):

Jm(z) =
√

2
πz

cos(z − 1
2mπ − 1

4π) + O(|z|−1) (4.1.51)

Ym(z) =
√

2
πz

sin(z − 1
2mπ − 1

4π) + O(|z|−1) (4.1.52)
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Thus:

J2
m(z) + Y 2

m(z) =
√ 2

πz

2

(cos2(z − 1
2mπ − 1

4π)+

sin2(z − 1
2mπ − 1

4π)) = 2
πz

(4.1.53)

where the higher order terms of the asymptotic form have been neglected.
By using (4.1.53), expression (4.1.49) becomes:

Dpk = 4ρcg
ω2

k0g

∞∑
m=−∞

(Rp
m)
(
Rk
m

)∗
(4.1.54)

For the diagonal terms of the damping matrix, i.e. p = k, using the fact that the
product of a complex number and its conjugate is zz̄ = |z|2 we have:

Dkk = 4ρcg
ω2

k0g

∞∑
m=−∞

|Rk
m|2 (4.1.55)

where we note that the term 4ρcg ω
2

k0g
is exactly the same as in (4.1.39).

An equivalent form for expression (4.1.54) can be derived from equation 8.6.13 in
C.Mei et al. (2005), which relates the damping coefficients with the Kochin function:

Dpk = 2
πk0

ρgcg

∫ 2π

0
Ap(θ)A∗

k(θ)dθ (4.1.56)

where A(θ) is as defined in (4.1.42).
The result in (4.1.55) gives a relationship between the diagonal terms of the radia-

tion damping coefficients matrix and the RC. Commonly this relationship is expressed
in terms of the excitation forces as (Newman, 1977, eq(173) p.304):

Dkk = k

8πρgcg

∫ 2π

0
|F k
ex(θ)|2dθ (4.1.57)

where F k
ex(θ) is the excitation force on the fixed body due to an incident wave propa-

gating at an angle π + θ to the positive x-axis.
A similar expression can be obtained by using (4.1.39), which relates the elements

of the FTM and the RC, and substituting it into (4.1.55), leading to:

Dkk = gk0

4ρcgω2

∞∑
m=−∞

|Gk
m|2 (4.1.58)
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From expression (4.1.55) it can be directly inferred that there exist a finite number
of non-zero partial wave coefficients or, in other words, that their magnitude tends to
zero when the angular-mode truncation is increased.

4.2 Array

4.2.1 Generalisation of Haskind’s relation for an array of bod-
ies

Expression (4.1.7) can be generalized to an array composed of Nb bodies by following
a similar derivation to that shown in section 4.1.1 (see for instance Falnes (1980)). In
this case, the radiation boundary condition (4.1.2) is expressed as:

∂ΦR,ki
i

∂n
=

n
ki on Si

0 on Sj (j ̸= i)
(4.2.1)

where ΦR,ki
i is the potential of a wave radiated by body i in a mode of motion ki and

scattered by all the neighbouring bodies j, and nki the boundary condition on the
radiation potential ΦR,ki

i .

Then, the excitation force acting on a body i of an array composed of Nb bodies
can be written in terms of only the ambient and radiation potentials:

F ki
ex,i = iρω

∫
S

(
φI
∂ΦR,ki

i

∂n
− ΦR,ki

i

∂φI

∂n

)
dS (4.2.2)

where φI represents the ambient incident potential and S = ⋃
Si

By applying Green’s theorem to a domain limited by surface S and a control
surface at infinity (S∞), the excitation force can be evaluated using only the far field
potentials as:

F ki
ex,i = −iρω

∫
S∞

(
φI
∂ΦR,ki

i

∂n
− ΦR,ki

i

∂φI

∂n

)
dS (4.2.3)
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4.2.2 Relationship between the Excitation Force and the Ra-
diation Characteristics

The representation of the incident and radiated potentials in expression (4.2.3) relating
the excitation force with the far-field potentials follows as:

φIi (ri, θi, z) = f0(z) ΛI(r, θ); φR,ki (ri, θi, z) = f0(z) ΛR,k(r, θ) (4.2.4)

However, as the body is no longer in isolation, the radiated potential of a body i

moving in mode of motion ki will be written as a sum of two contributions:

ΦR,ki
i = φR,ki

i +
Nb∑
j=1

φS,ki
j (4.2.5)

where ΦR,ki
i is the total radiated potential, φR,ki

i is the radiated potential by body i in
motion mode ki as if it was isolated and φS,ki

j is the potential scattered by a body j

in the array due to the wave radiated by body i moving in mode of motion ki.
Using (4.2.4), together with the fact that the scattered potential can be expressed

in terms of the same partial cylindrical wave functions as the radiated potential, we
obtain:

φR,ki
i (ri, θi, zi) = f0(z)

∞∑
m=−∞

(Rki
i )mHm(k0ri) eimθi (4.2.6)

φS,ki
j (rj, θj, zj) = f0(z)

∞∑
m=−∞

(Aki
j )mHm(k0rj) eimθj (4.2.7)

where Aki
j represent the cylindrical coefficients of the scattered potential by body j

due to the motion of body i in motion mode ki.
As the potentials are expressed with respect to the local cylindrical reference sys-

tem centered at each body, we must apply a coordinate transformation to express all
potentials with respect to the local reference system of body i. To express the far-field
coefficients from different sources with respect to a common origin, Falnes (2002) uses
the asymptotic approximations for the relationship between local and global coordi-
nates. In this case, we make use of the multipole expansion matrix Mij from Graf’s
addition theorem, which expresses the scattered potential of body i around the origin
of the jth coordinate system (Kashiwagi, 2000):

ΥS
i (ri, θi, zi) = Mij ΥS

j (rj, θj, zj) (4.2.8)
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where ΥS = Hm(k0r) eimθ and the progressive terms of the multipole expansion matrix
are given by:

(Mij)mqnn = Jm−q(k0Lij) ei(m−q)αij ; n = 0 (4.2.9)

where Lij is the separating distance between bodies i and j, αij the angle at body
i between the positive x-direction and the line joining the center of i to that of j in
an anti-clockwise direction (Figure (2.4)), indices m, q the angular-mode, and n the
depth-mode.

By applying (4.2.8) and using (4.2.6) and (4.2.7), equation (4.2.5) can be expressed
as:

ΦR,ki
i (ri, θi, zi) = f0(z)

∞∑
m=−∞

(Rki
i )mHm(k0ri)eimθi (4.2.10)

where Rki
i is the vector of cylindrical coefficients expressing the radiated wave by body

i in a motion mode k and including all the scattered waves by all the bodies in the
array:

(Rki
i )m =

Rki
i +

Nb∑
j=1

[Mji]T Aki
j


m

(4.2.11)

Finally, expression (4.2.3) can be evaluated in the same manner as (4.1.12), leading
to:

F ki
ex,i = 4ρcgω

2

gk0

∞∑
m=−∞

(−1)maI,im (Rki
i )−m (4.2.12)

By separating the contributions from vector (4.2.11), the excitation force acting
on body i in direction ki can also be expressed as:

F ki
ex,i =

∞∑
m=−∞

(
Gki
m + G̃ki

m

)
aI,im (4.2.13)

where G̃ki
m is defined as:

G̃ki
m = 4ρcgω

2

gk0
(−1)m

 Nb∑
j=1

[Mji]T Aki
j


m

(4.2.14)

In (4.2.13) we have separated the contributions to the excitation force from the
body itself, as if it was isolated (first term of the summation), and from the hydrody-
namic interactions with the rest of bodies in the array (second term).

Equation (4.2.12) could also have been derived, for instance, from expression 5.203
in Falnes (2002), which is a generalization of (4.1.40) for an array of bodies and relates
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the excitation force on a body to the radiation far-field expressed at a global origin, by
substituting in it the expression of the Kochin function defined in (4.1.42). In this case,
the RC of the isolated body should be replaced by the vector of cylindrical coefficients
expressing the radiated wave by a body in the array, including all the scattered waves
by the neighbours, as in (4.2.11).

4.2.3 Relationship between the Damping coefficients and the
Radiation Potential

Similarly to the result presented in section 4.1.3, the radiation damping of a body in
the array can be expressed in terms of the far-field radiation potential. Using this
generalization, the damping force on oscillator i in a direction ki due to a unit velocity
motion of body j moving in a mode of motion kj can be expressed as (Falnes, 1980):

Dpi,kj

ij = ρωk0

∫
S∞

ΦR,kj

j

(
ΦR,pi
i

)∗
dS (4.2.15)

where Dpi,kj

ij is the radiation damping force on body i in a degree of freedom pi due
to a unitary velocity of body j in a degree of freedom kj and ΦR,kj

j and ΦR,pi
i are

respectively the radiated potentials from body j in a mode of motion kj and body i

in a mode of motion pi and scattered by the rest of the bodies in the array.

As in section 4.2.2, we express both potentials in the reference system local to body
i of the array, and thus:

ΦR,pi
i (ri, θi, zi) = f0(z)

∞∑
m=−∞

(Rpi
i )mHm(k0ri) eimθi (4.2.16)

ΦR,kj

j (ri, θi, zi) = f0(z)
∞∑

m=−∞

(
Rkj

j

)
m
Hm(k0ri) eimθi (4.2.17)

where Rpi
i and Rkj

j are:

Rpi
i = Rpi

i +
Nb∑
j=1

[Mji]T Api
j (4.2.18)

Rkj

j = [Mji]TRkj

j +
Nb∑
j=1

[Mji]T Akj

j (4.2.19)
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(4.2.15) can then be evaluated in a similar manner to (4.1.47), leading to:

Dpi,kj

ij = 4ρcgω
2

gk0

∞∑
m=−∞

(
Rkj

j

)
m

(Rpi
i )∗

m (4.2.20)

If we set i = j and p = k, by separating the contributions from vectors (4.2.16) and
(4.2.17), expression (4.2.20) can be rewritten as:

Dki,ki
ii = gk0

4ρcgω2

∞∑
m=−∞

|Gki
m|2+

gk0

4ρcgω2

∞∑
m=−∞

Gki
−m(G̃ki

m)∗ + (Gki
−m)∗G̃ki

m + |G̃ki
m|2

 (4.2.21)

where the first term of the summation corresponds to the term of the damping coeffi-
cient matrix Dk,k of the body in isolation (4.1.54), and the remaining terms correspond
to the contribution from the multiple-scattering from the rest of bodies in the array.

Expression (4.2.20) can also be obtained, for instance, from equation 5.182 in
Falnes (2002), using the expression for the Kochin function defined in (4.1.42), in
which the RC of the isolated body is replaced by the vector of cylindrical coefficients
that expresses the radiated wave by a body in the array including all the scattered
waves by the neighbours, as in (4.2.11).

4.3 Results and Discussion

In the first part of this section, entitled Progressive terms, the relationships derived in
sections 4.1.2 and 4.1.4 are verified numerically. Results are presented for a truncated
vertical circular cylinder of radius a, draft 2a in water depth 4a. In addition, the
excitation forces and radiation damping coefficients are computed using the identities
derived in sections 4.2.2 and 4.2.3 for an array composed of four truncated vertical
circular cylinders of the same geometry separated by distance 4a (Figure 4.5). This
particular configuration was studied by Siddorn and Eatock Taylor (2008) using the
IT with semi-analytical expressions for the hydrodynamic operators and showed that,
for certain wave numbers, it is prone to the phenomenon of near-trapped modes. The
mesh used for the calculations is the same as in 3.3a.

In the second part, entitled Evanescent terms, both the hydrodynamic coefficients
and the free surface elevation are computed using different values of the evanescent
modes truncation to study its impact on the results. In this case, both a small array
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of two truncated vertical cylinders and an array of 4 are considered. As in the first
section, the mesh used is the same as in Figure 3.3a. In addition, the cube geometry
characterized in Chapter 3 is utilized to validate the rotation of the hydrodynamic
operators detailed in section 3.4.

Finally, in the third part, special emphasis is put on the importance of normalizing
the Bessel functions as explained in section 2.4.2. A comparison of the system’s
scattering matrix (2.3.13) condition number computed with and without normalization
is shown. In addition, a comparison of the computational cost of both direct BEM
computations using NEMOH and the IT is shown and analyzed.

4.3.1 Progressive terms

4.3.1.1 Isolated body

Figures 4.2 - 4.3 show the progressive terms of the FTM in surge and roll respec-
tively, computed both by means of NEMOH, using its capability to solve the diffrac-
tion problem for partial cylindrical waves, and by means of the RC (also computed
with NEMOH using the methodology of Goo and Yoshida (1990)), using the identity
(4.1.39). Excellent agreement between the two approaches is observed. As mentioned
in 3.6.2.1, only partial waves associated with angular modes m = ±1 are required to
express the wave field radiated by a cylinder moving in surge. The RC are directly
related to the FTM terms by expression (4.1.39) from which it follows that only the
same modes of the incident cylindrical waves will generate a force on the body.

Figure 4.4 shows the diagonal radiation damping coefficients for surge and roll com-
puted in the standard manner using NEMOH and by means of the FTM terms using
the far-field identity in (4.1.58). A very good match between results can be appreci-
ated with a slight numerical inaccuracy of 2% for roll at the region of wavenumbers
(ka > 1.5).

4.3.1.2 Array

Figure 4.6 shows the variation of the excitation force with wave number in surge
and heave for cylinders 1-2 (Figure 4.5) and for an incident wave propagating with
direction β = 0. Results obtained by Siddorn and Eatock Taylor (2008) are shown,
and compared to our computation using the IT, for which hydrodynamic operators
obtained using NEMOH. Very good agreement between them is found. In addition,
the excitation forces computed by means of the relationship (4.2.12) are shown as a
numerical verification of the extended cylindrical Haskind relations. Again, very good
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Figure 4.2: Real (a) and Imaginary (b) parts of the FTM progressive terms in the surge
(k=1) degree of freedom for an isolated cylinder of radius a, draft (d − h = 2a) in a
water depth (d = 4a). The solid line (direct) corresponds to the direct calculation of
the FTM using NEMOH. The dotted line (indirect) is obtained from the RC computed
with NEMOH and by using the right-hand side of equation (4.1.39).
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Figure 4.3: Real (a) and Imaginary (b) parts of the FTM progressive terms in the
Roll (k=4) degree of freedom for an isolated cylinder of radius a, draft (d−h = 2a) in
a water depth (d = 4a). The solid line (direct) corresponds to the direct calculation
of the FTM using NEMOH. The dotted line (indirect) is calculated from the RC
computed with NEMOH and by using the right-hand side of equation (4.1.39).
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Figure 4.4: Diagonal radiation damping coefficients for the degrees of freedom Surge
(a) and Roll (b) of a cylinder of radius a, draft (d−h = 2a) in a water depth (d = 4a).
The solid line (direct) corresponds to the direct calculation of the damping coefficients
using NEMOH. The dotted line (indirect) is calculated from the RC computed with
NEMOH and by using the right-hand side of equation (4.1.58).
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Figure 4.5: Schematic representation of an array composed of four truncated vertical
cylinders of radius a and separated by a distance between centers d. β = 0 corresponds
to the positive x− axis.
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agreement with the previous methodologies is observed, despite a slight overestimation
of the peaks for surge, mainly at low wave numbers (ka < 1). An irregular frequency
at ka = 3.8 (surge) and ka = 2.4 (heave) can also be observed. Also shown are the
contributions to the total excitation force from the isolated body on one hand and from
the hydrodynamic interactions on the other hand, which were computed separately
using expression (4.2.13). Only the modulus is displayed here, so the curves cannot
be directly summed.
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Figure 4.6: Non-dimensional excitation forces in Surge (a) and Heave (b) for the
cylinders 1-2 in the array shown in Figure 4.5 from an incident plane wave with prop-
agation direction (β = 0) and amplitude A . The solid line reproduces the results
by Siddorn and Eatock Taylor (2008); the dotted green line has been computed with
the IT by Kagemoto and Yue (1986) using NEMOH to compute the required hydro-
dynamic operators and the dotted blue line by means of the right-hand side of the
extended cylindrical Haskind relation (4.2.12). The black dotted lines (− · −·) and
(· · ··) correspond respectively to the contribution to the total excitation force from the
isolated body and from the hydrodynamic interactions with the neighbours and have
been computed from the first and second terms of equation (4.2.13) respectively.

One would normally compute the excitation forces using the FTM, which sums
the individual contributions to the total excitation force from each partial incident
wave by solving a diffraction problem. The verification provided by equation (4.2.12)
is powerful from two points of view. First, it does not make use of diffraction, but
rather the cylindrical coefficients of a radiation problem. Second, a summation of all
the cylindrical coefficients is performed prior to multiplication by a scalar quantity,
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which can be, for instance, in the order of 107 times higher in magnitude than each
individual partial wave coefficient, improving the global accuracy of the computation.

The near-trapped modes phenomenon only occurs at specific propagating directions
of the incident waves, in this case for β = π/4, and for specific wavenumbers for the
layout analyzed. As shown in Figure 4.7, the excitation force in surge for cylinders 1-2
has a sharp peak at ka = 1.66. Similarly to Figure 4.6, a very good match is observed
between the results by Siddorn and Eatock Taylor (2008) and those obtained from the
present application of the IT. A slight overestimation of the peaks for surge, mainly
at low wave numbers (ka < 1), is observed for the results computed using expression
(4.2.12). The irregular frequencies in both surge and heave cases can be identified at
the same wave numbers as in the case β = 0.
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Figure 4.7: Non-dimensional excitation forces in Surge (a) and Heave (b) for the cylin-
der 1 in the array shown in Figure 4.5 from an incident plane wave with propagation
direction (β = π/4) and amplitude A . The legend follows as in Figure 4.6.

Figures 4.8 - 4.11 show the variation of the radiation damping coefficients with
wave number. Results are computed with the IT, making use of the hydrodynamic
operators obtained with our BEM code, as well as from expression (4.2.20), and com-
pared to Siddorn and Eatock Taylor (2008). In general, good agreement between the
three methodologies can be observed, apart from slight under and overestimation of
the results computed using the relationship (4.2.20) at several wave numbers. Slight
frequency irregularities can be detected at the same wave numbers detailed for the
excitation forces. Figure 4.11 shows the separate contributions from the isolated body
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and from the hydrodynamic interaction to the diagonal radiation damping coefficients
computed by means of expression (4.2.21). For the surge mode of motion, the effect
of the hydrodynamic interactions is clearly observed at ka = 1.66.

The differences in the results by Siddorn and Eatock Taylor (2008) obtained at
low wavenumbers (ka ≤ 1) are mainly attributable to discrepancies between the semi-
analytical solution and the BEM solver, which has also been shown by Cruz et al.
(2010). For the rest of the wave number range, discrepancies are due to numerical
inaccuracies in the calculations performed with the methodology implemented.
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Figure 4.8: Non-dimensional Surge coupling radiation damping coefficients between
two cylinders (1-3 in a); 1-4 in b)) in the array shown in Figure 4.5. The first index
indicates the cylinder on which the radiation force is evaluated due to the motion of the
body indicated by the second index. The solid line reproduces the results by Siddorn
and Eatock Taylor (2008); the dotted green line has been computed with the IT by
Kagemoto and Yue (1986) using NEMOH to compute the required hydrodynamic
operators and the dotted blue line by means of the right-hand side of equation (4.2.3).

4.3.2 Evanescent terms

Results for the hydrodynamic coefficients obtained using the IT are shown in Figure
4.13 for a small array of two cylinders of 3m radius (a), 6m draft in a 50m water depth
(Figure 4.12). They are compared to direct calculations performed with NEMOH.
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Figure 4.9: Non-dimensional Heave coupling radiation damping coefficients between
two cylinders (1-3 in a); 1-4 in b)) in the array shown in Figure 4.5. The legend follows
as in Figure 4.8.
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Figure 4.10: Non-dimensional Heave-Surge coupling radiation damping coefficients
between two cylinders (1-3 in a); 1-4 in b)) in the array shown in Figure 4.5. The
legend follows as in Figure 4.8.
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Figure 4.11: Non-dimensional diagonal Surge (a) and Heave (b) radiation damping
coefficients of cylinder 1 in the array shown in Figure 4.5. The solid line reproduces
the results by Siddorn and Eatock Taylor (2008); the dotted green line has been
computed with the IT by Kagemoto and Yue (1986) using NEMOH to compute the
required hydrodynamic operators and the dotted blue line by means of the right-
hand side of equation (4.2.3). The black dotted lines (− · −·) and (· · ··) correspond
respectively to the contribution to the total radiation force from the isolated body and
from the hydrodynamic interactions with the neighbours and have been computed from
the first and second terms of equation (4.2.20) respectively.
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Several separating distance cases are considered. When only a single line is visible, it
means that the other lines lie underneath it and there is a perfect match from visual
accuracy.

O X

Y
d

β

Figure 4.12: Schematic of an array composed of two truncated vertical cylinders. β = 0
corresponds to the positive x− axis.

First, both bodies are set far away from each other at a distance d/a = 5000.
As expected, the hydrodynamic coefficients are the same as if the cylinders were in
isolation. Moreover, for such a long separating distance the evanescent modes do not
play an important role. This can be derived from the fact that in their absence (L = 0)
a perfect match of results between the IT and the direct computations (Figure (4.13a))
is obtained, with L being the truncation order of the series related to the near-field
components of the potentials.

When bodies are set closer, in this case at a distance of d/a = 5, hydrodynamic
interactions become important as can be observed in Figures (4.13b) and (4.13c). For
ka > 0.2, the added mass and damping coefficients in isolation are altered. A similar
behaviour was shown by Siddorn and Eatock Taylor (2008) for the heave coupling
radiation hydrodyamic coefficients. At this separating distance (d/a = 5) and for the
surge mode of motion, the influence of the evanescent modes is still negligible.

Finally, for a fixed frequency corresponding to a wave length of (λ/a = 10), the
coupling heave-heave added mass coefficient (3, 9) is shown (Figure 4.14) at several
separating distances which span from d/a = 10 to the limit case where the perimeters
of both cylinders are externally tangent (d/a = 2). The full direct BEM solution is
also plotted for comparison. The influence of the evanescent modes for the heave-
heave coupling can be clearly observed, as well as convergence of the IT results to
direct calculation when the truncation of evanescent modes is increased. It has been
observed that their importance to ensure accuracy of the radiation hydrodynamic
coefficients (both added mass and damping) for close separating distances is mainly
dependent on the motion mode and the frequency. For instance, for the surge-surge
coupling, their influence at λ/a = 10 (Figure 4.15a) is negligible but not at λ/a = 30
(Figure 4.15b).
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Figure 4.13: Added mass and damping coefficients for the first truncated vertical
cylinder (3m radius, 6m draft in a 50m water depth) in the two body array (Figure
4.12) for different separating distances (d/a = 5000 - (a), d/a = 5 - (b), d/a = 5 - (c)).
First index corresponds to the direction of the force and the second to the degree of
freedom.
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Figure 4.15: Surge-surge coupling added mass coefficient as a function of the evanes-
cent modes truncation L for two different wavelengths for a small array of two trun-
cated vertical circular cylinders of radius 3m, draft 6m in water depth of 50m.
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Another way to visualize the effect of the evanescent modes truncation consists
of studying the free surface elevation (η). Figures 4.16a - 4.16b show the total wave
elevation, i.e. the sum of incident, scattered and radiated wave elevations including
the computed body motions (see section 5.1.2 for a more detailed description of the
equation of motion of a floating body), obtained with NEMOH and with the IT re-
spectively for a small array of 4 freely floating truncated vertical cylinders in a regular
wavetrain of propagation direction β = 0 and wavelength λ/a = 10 with a the radius
of the cylinders. The IT free surface elevation has been calculated using its definition
η = −1

g
∂φ
∂t

|z=0, where the velocity potential in the fluid domain has been reconstructed
from the solution of the multiple-scattering problem by means of expressions (2.2.20),
(2.2.14) - (2.2.15).

It can be observed that a very good agreement between results is obtained for the
whole domain (Figure 4.16c) when no evanescent modes are used with the highest
discrepancies being located at the vicinity of the bodies. The use of a higher evanes-
cent modes truncation (Figures 4.16d - 4.16f) reduces the error at these regions and
results computed with the interaction theory converge with those obtained from direct
calculations with the standard BEM code.

Figures 4.17a - 4.17b show the total wave elevation obtained with NEMOH and
with the IT respectively for a small array of 4 freely floating cubes for a regular wave
of propagation direction β = 0 and wavelength λ/a = 10 with a the radius of the
circumscribing cylinder to the cubes. On two of the bodies a rotation of 45 degrees
has been applied. On NEMOH, this has been accounted for by providing the mesh-
files of each individual body separately. The software Meshmagick by Rongère (2016)
has been used to apply the required translations and rotations to the original mesh file
of a cube centered at the origin. In contrast, in the IT computation the relationships
derived in section 3.4 have been applied, i.e. a single mesh of a cube centered at
the origin has been employed to compute all the hydrodynamic operators. As for the
cylinder array, a very good agreement between results is obtained in the whole domain
(Figure 4.17c) when no evanescent modes are used with the highest discrepancies being
located at the vicinity of the bodies. The latter are reduced when a higher number of
evanescent modes is used (Figures 4.17d - 4.17f).
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Figure 4.16: Magnitude of surface elevation for an array of 4 cylinders of 3m radius,
6m draft in a 50m water depth with a separation distance of 12m. Plots c, d, e, f
show the percentage difference between the wave fields computed with the interaction
theory (b) indicated by IT and the direct calculation using NEMOH (a) indicated by
N as a function of the evanescent modes truncation L ((c) - L = 0, (d) - L = 6, (e) -
L = 12, (f) - L = 18). Results are normalized by the amplitude of the incident wave
(A). Propagation direction is defined from left to right.
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Figure 4.17: Magnitude of surface elevation for an array of 4 cube boxes of 6m side,
6m draft in a 50m water depth with a separation distance of 12m. Plots c, d, e, f
show the percentage difference between the wave fields computed with the interaction
theory (b) indicated by IT and the direct calculation using NEMOH (a) indicated by
N as a function of the evanescent modes truncation L ((c) - L = 0, (d) - L = 6, (e) -
L = 12, (f) - L = 18). Results are normalized by the amplitude of the incident wave
(A). Propagation direction is defined from left to right.
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4.3.3 Condition Number

In section 2.4.2, the importance of normalizing Bessel functions with respect to both
order and argument was evoked. Normalized formulae for the incident and outgoing
basis functions were given and the changes propagated to the rest of expressions. In
particular, in section 3.5 normalizing terms for the hydrodynamic operators (DTM, RC
and FTM) were detailed. Herein, a comparison of the system scattering matrix con-
dition number (see section C.4 for a detailed description) computed with and without
normalization of the Bessel functions is shown. Results are presented for a configu-
ration of four truncated vertical cylinders, as in Figure 4.5, for different frequencies,
separating distances and evanescent modes truncation.

In Figure 4.18 the scattering matrix condition number, computed without having
applied the normalization to Bessel functions, is shown to increase with the frequency,
when the separating distance between bodies is reduced and when the evanescent
modes truncation is increased. While the differences in condition number are small
amongst the two different evanescent modes truncation used for all frequencies and
separating distances, they are significant with respect to the case where only pro-
gressive terms are considered. This is remarkable specially at high frequencies where
values of the condition number reach values on the order of 1020 when evanescent
modes are used, leading to a matrix rank of 1140, and of 104 with only progressive
terms, reducing the matrix rank to 60.

A different trend of results is observed in Figure 4.19, which shows the condition
number of the same scattering matrix but now with normalized Bessel functions.
Even if an increasing trend is kept when the gap between bodies is reduced, the
condition number remains lower than 10 in almost all cases which is excellent in terms
of numerical stability. In addition, and contrarily to the previous case, the behaviour
is shown to be quite independent of the evanescent modes truncation.

4.3.4 Wall Clock Execution Time

In this section, the time savings of the Direct Matrix Method interaction theory are
examined by comparison with direct computations using the BEM code NEMOH.
The two case studies chosen consist of an array of truncated vertical circular cylinders
and flap-type converters discretized as shown in Figure 4.21 and deployed in inline
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Figure 4.18: Condition number of the system scattering matrix of a 4 cylinder array
(without Bessel functions normalization).
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Figure 4.19: Condition number of the system scattering matrix of a 4 cylinder array
(with Bessel functions normalization).
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layout as depicted in Figure 4.20. The computations are performed using a total of
30 frequencies in the range 0.2 − 1.5 rad/s (∼ 4 − 30 s of period), 5 wave propagation
directions in the range (−π/2, π/2 rad) and a water depth of 50 m. Both the diffraction
and radiation problems are solved, the latter for the general case with 6 degrees of
freedom per body.

Figures 4.22a and 4.22b show the wall clock time associated with direct NEMOH
and IT simulations as a function of the number of inline cylinders and flap-type con-
verters respectively. The interaction theory requires the evaluation of the isolated
body hydrodynamic characteristics prior to solving the multiple-scattering problem.
Thus, both the time used to solve the multiple-scattering only (indicated as “IT”)
and the time spent to compute the individual body hydrodynamic characteristics and
the multiple-scattering (indicated as “IT + HC”) are shown. In addition, the com-
putations with the IT can be performed including evanescent modes whose number is
indicated as “L”.

For both case studies with an evanescent modes truncation L = 0, it can be
observed that the acceleration provided by the IT is remarkable. Indeed, for the
layout with 10 inline bodies NEMOH computations are on the order of ∼ 10h in
contrast with ∼ 10min for the IT. A significant part of the latter is dedicated to
evaluate the individual body solution, which takes on the order of minutes. This
cost becomes negligible compared to the computational time involved in solving the
multiple-scattering problem when the number of bodies increases. Indeed, for the
60-body configuration the markers of the “IT” and “IT+HC” overlap completely.

When the number of evanescent modes used increases, it can be observed that
the computations with the IT are considerably slowed-down. While for L = 0 and
for both geometries the computational time associated with 60 inline bodies is ∼ 1h,
the transition to L = 2 makes it go beyond 10h. This is caused by the fact that the
number of unknowns in the IT depends on both the angular-mode (M) and the depth-
mode (L) truncations, the latter referred as well to as evanescent modes truncation,
used to represent the isolated body solution in the base of partial cylindrical wave
functions. As mentioned in section 2.4, the size of the vectors of unknowns of each
body is (2M + 1)(L + 1) and, therefore, the size of the total system to be solved by
the IT is (2M + 1)(L+ 1)Nb provided that all the body geometries are the same.

Table 4.1 shows a comparison of the total number of unknowns associated with
direct NEMOH computations and the IT for the 60 inline bodies case. The advantages
of expressing the solution in the basis of partial cylindrical wave functions can be
clearly observed. It is worth noting that, while in direct NEMOH computations the
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number of unknowns is higher for the cylinder whose mesh is slightly finer than the
one used for the flap, in IT computations this trend is inverted and a higher number
of modes is used for the flap. As mentioned in Chapter 3, a higher number of angular-
modes is required to represent the wave field around a non-axisymmetric geometry
contrarily to the case of axisymmetric bodies such as truncated vertical cylinders. This
has an impact on the computational time as can be derived from Figure 4.22 where,
for the 60-body configuration, the wall clock times associated with both the cylinder
and the flap are slightly below and over 1h respectively. In addition to depending
on the type of body geometry, the number of cylindrical harmonics required by the
interaction theory is as well frequency-dependent. The highest and lowest truncations
required in the frequency range of the present case study have been indicated as ITmax
and ITmin respectively.

Finally, direct NEMOH computations for the 60-body case have not been at-
tempted but the wall clock time they would take has been estimated as 124 and
119 days for the truncated vertical cylinder and the flap arrays respectively. For that,
the trend of the computational times taken by the simulations of up to 10 bodies has
been used. Figure 4.23 shows the wall clock time per problem as a function of the
number of panels and, as expected, it can be observed that the numerical complexity
grows proportional to the square of the size of the system.

1 2 3

x

y

d

Figure 4.20: Schematic of an array of inline bodies separated by a distance d.
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(a) 392 Panels (b) 378 Panels

Figure 4.21: Discretization of a) a truncated vertical cylinder of 3m radius and 6m
draft, b) a flap-type converter of 6m width by 2m side.

Nbodies = 60 Nunknowns

Cylinder Flap
NEMOH 23520 22680

ITmin (L = 0) 300 420
ITmax (L = 0) 660 780
ITmin (L = 2) 900 1260
ITmax (L = 2) 1980 2340

Table 4.1: Size of the Boundary Value Problem to be solved using both a direct
NEMOH simulation and the interaction theory (IT) for different values of evanescent
modes truncation (L). The highest and lowest truncation levels required for the IT in
the frequency range of the case study are indicated as ITmax and ITmin respectively.
The problem size is defined based on the discretizations of two different geometries, a
truncated vertical circular cylinder and a flap-type converter shown in Figures 4.21a
and 4.21b respectively.



4.3 Results and Discussion 101

0 2 4 6 8 10 12
10-1

100

101

102

103

104

105

1min

56 58 60 62 64
10-1

100

101

102

103

104

105

1h

10h

IT (L=0)

IT + HC (L=0)

NEMOH

IT (L=1)

IT + HC (L=1)

IT (L=2)

IT + HC (L=2)

N bodies

W
a
ll 
C
lo
ck
 t
im
e
 (
s)

(a)

0 2 4 6 8 10 12
10-1

100

101

102

103

104

105

1min

56 58 60 62 64
10-1

100

101

102

103

104

105

1h

10h

IT (L=0)

IT + HC (L=0)

NEMOH

IT (L=1)

IT + HC (L=1)

IT (L=2)

IT + HC (L=2)

N bodies

W
a
ll 
cl
o
ck
 t
im
e
 (
s)

(b)

Figure 4.22: Comparison of wall clock computational times between the Direct Matrix
Method interaction theory (IT) and direct NEMOH simulations for both a truncated
vertical cylinder a) and a flap-type converter b), shown respectively in Figures 4.21a
and 4.21b, as a function of the number of bodies positioned successively in line and
separated by a distance of 60 meters. Calculations using the interaction theory require,
first, the evaluation of the isolated body hydrodynamic characteristics and, then, the
solution to the multiple scattering problem. The time associated with the former is
indicated as “HC” and with the latter as “IT”. The evanescent modes truncation is
referred to as “L”. Simulations were performed with 6 dofs per body, 30 frequencies
(0.2 - 2.0 rad/s) and 5 propagation directions and both the diffraction and radiated
problems were solved.
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Figure 4.23: Curve fitting of the wall clock computational time of direct NEMOH
simulations for both a truncated vertical cylinder a) and a flap-type converter b)
shown in Figures 4.21a and 4.21b respectively.
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4.4 Conclusions

4.4.1 Relationships for progressive terms

Simple relationships between the Force Transfer Matrix (FTM) and the Radiation
Characteristics (RC), and between the radiation damping coefficients and the FTM
were obtained following two different derivations. They extend the classical Haskind
relations to the cylindrical wave field components. The first identity enables faster
calculation of the RC, as it removes the need to solve any radiation problem or to
numerically integrate the source strengths over the wetted surface of the body, as is
required by the methodology of Goo and Yoshida (1990).

Numerical validations of the relationships for a truncated vertical circular cylinder
were carried out. Very good agreement was observed between the FTM and radiation
damping coefficients computed with NEMOH and the same quantities obtained from
the RC and the FTM respectively by means of the new relationships derived.

The excitation force for a body in the array was expressed as a function of its RC
and the scattering coefficients of a radiation multiple-scattering problem. In addition,
the radiation damping coefficients for the bodies in an array have been related to both
their RC and the scattering coefficients of a radiation problem. Numerical verifications
of these identities were performed using the array of four truncated vertical circular
cylinders studied by Siddorn and Eatock Taylor (2008). Good agreement has been
obtained between their results, the standard calculation of both the excitation forces
and the radiation damping coefficients using the IT with its associated hydrodynamic
operators computed with NEMOH, and the same quantities calculated from both the
RC and the scattering coefficients associated with a radiation problem.

The derived expressions were used to compute the separate contributions to the
excitation force in surge and to the surge coupling radiation damping coefficients on a
body in the array, from the body itself as if it was isolated, and from the hydrodynamic
interactions with its neighbours. The effect of trapped modes at specific wavelengths,
characterized by a large increase in the force on the body caused by hydrodynamic
interactions, has been clearly observed, as expected.

It is beleived that the novel relationships derived herein can be used to speed up
computation of the RC of the body, as well as to test the accuracy of the interaction
theory implemented.
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4.4.2 Influence of the evanescent terms

Radiation hydrodynamic coefficients computed with the IT by Kagemoto and Yue
(1986) have been verified against direct BEM computations for a small array of two
truncated vertical circular cylinders and a very good match of results has been ob-
served. For closely spaced configurations, the effect of the hydrodynamic interactions
on the radiation coefficients has been identified to be significant. In addition, the
impact of the evanescent modes truncation on the added-mass coefficients has been
shown. It has been found that the influence of the evanescent modes on their accuracy
computed using the IT is strongly dependent on the separating distance between the
bodies, on the mode of motion as well as on the frequency.

Finally, the free surface elevation of an array of four freely floating truncated
vertical circular cylinders and cubes computed with the IT has been verified with
direct BEM calculations. The effect of the evanescent modes truncation has been
clearly shown to be significant only at the vicinity of the bodies.

4.4.3 Condition number

High condition numbers are directly related to precision losses and, therefore, spe-
cial measures ought to be put in place to modify the terms responsible for the ill-
conditioning. Bessel functions normalization has been found to be beneficial to reduce
the system’s scattering matrix condition number specially when the evanescent modes
truncation is non-zero and when bodies are placed in close proximity.

4.4.4 Wall clock time

The time savings offered by the Direct Matrix Method interaction theory have been
shown to be remarkable when compared to direct BEM solver simulations on a large
number of bodies. Indeed, for a case study of 60 truncated vertical cylinders and
flap-type converters the computational time of direct NEMOH calculations has been
estimated as 124 and 119 days respectively in contrast with the 49 and 80 minutes of
the IT with a truncation of zero evanescent modes. While BEM solvers are hampered
by an increase of the number of bodies, computations with the IT are slowed down
considerably when the number of evanescent modes used is incremented.



Chapter 5

Numerical modeling and
optimization of a
bottom-referenced heave-buoy
WEC array

A great variety of technologies to extract power from ocean waves have been proposed,
some of which are currently under development. These wave energy converters (WECs)
may be classified by several methods (Falcão, 2010), for example on the basis of
size: devices whose characteristic length is much smaller than the wave length of
the incoming waves are referred to as point absorbers, and have been the object of
numerous studies. Their responses are characterized by a resonant peak over a narrow
band of frequencies of the incident wave spectra, and control strategies can be applied
to increase their energy absorption (Falnes, 2001).

Another category, often referred to as multi-body WECs, consists of a group of
multiple closely-spaced point absorbers attached to a common fixed or floating support
structure. Within this category, several configurations have been proposed, including
the FO3 platform (Taghipour and Moan, 2008), the Manchester Bobber (Weller et al.,
2010) and the Wavestar (Hansen and Kramer, 2011). The former two consist of a
square lattice of floats linked to a common supporting structure through a Power
Take-Off (PTO) system. In contrast, floats in the latter are distributed with a linear
arrangement and connected to both sides of a fixed bridge structure through rigid
arms.

Inspired by the FO3 device, Garnaud and Mei (2009) analyzed the performance of
compact square and circular arrays of cylindrical point absorbers and compared them
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to a bigger float having an equivalent displacement. They found that, unlike the large
buoy, the circular array of multiple point absorbers had good efficiency over a broad
range of frequencies. They made use of the method of homogenization, which offers
great savings in computational time, and is valid when both the device size and the
separating distance between units is small in comparison to the incident wave length.

A different acceleration technique, a mode expansion method (Newman, 1994), was
used by Taghipour and Moan (2008) to study the FO3 device. They evaluated both
the response of the floating rig supporting 21 floats and the wave energy absorption
capabilities of the WEC. For this particular configuration, they found that the power
produced was independent of the mean wave direction for short-crested ocean waves.
In addition, they observed significant differences in power production between floats.

A comparison of two FO3-type WECs, one with 21 aligned buoys and the other
with a staggered grid configuration of twelve buoys, was performed by De Backer
et al. (2010). Calculations were undertaken in the frequency domain and the hydro-
dynamic coefficients were calculated using the Boundary Element Method (BEM) code
WAMIT. They observed that the 21-unit configuration was able to produce only 25%
more power than the 12-unit configuration. A similar result was observed in experi-
ments carried out by Garnaud and Mei (2009) in which an increase in the density of
floats for tight configurations led to a relatively small increase in capture width. The
work of De Backer et al. (2010) addressed the impact of constraints and several PTO
optimization strategies. It was found that the former reduced the power production
of the arrays whereas the application of individual optimization led to a significant
increase in energy capture when compared to other less sophisticated strategies. The
same conclusion was reached by Nambiar et al. (2015) after a study of three buoys of
the Wavestar prototype that compared different types of resistive and reactive PTO
control strategies using a dedicated time domain model including PTO damping force
constraints.

Different versions of the Wavestar multi-body WEC device have been presented in
Hansen et al. (2013). In this Chapter, as we wish to illustrate the interest of the Direct
Matrix Method when dealing with very large groups of floating bodies, we choose the
60-float SC-concept as a working example. The objectives are i) to examine the power
capture of a generic bottom-referenced heave-buoy array (BF-HBA) inspired by this
WEC, and ii) to conduct an optimization of both its layout and the size of the floats.

The study is carried out in the frequency domain using linear potential theory. No
constraints nor sophisticated Power Take-Off tuning strategies have been considered
herein and, as in De Backer et al. (2010), the effect of waves diffracted by the sup-
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porting piles of the structure has not been addressed. Therefore, results should be
regarded as preliminary estimates of the power generation potential of this type of
technology.

In the following sections, a detailed description of the system is provided and the
numerical modeling in the frequency domain is detailed, with particular emphasis on
the procedure used for efficient computation of the hydrodynamic coefficients of the
floats in the array. Some results are then presented, detailing the response of both
an individual and a small cluster of three floats. Following the analysis of individual
units, relevant layout configurations derived from optimization studies on the reference
60-unit configuration are analyzed in detail. Finally, results concerning the impact of
float size on power capture are presented.

5.1 Methodology

5.1.1 Description of the System

The bottom-referenced heave-buoy array WEC studied herein is composed of 60 hemi-
spherical floats regularly distributed along both sides of each of the three arms of a
fixed bridge structure. Each individual float is rigidly connected to an arm mounted
on the supporting frame by means of a hinge joint. In our modeling, the hydraulic
Power Take-Off (PTO), which transforms the rotation into electrical power in the real
device, is modelled by a basic linear damper.

A global Cartesian reference system (X, Y, Z) is used to define the ambient inci-
dent wave propagation angle (β) with respect to the multi-body WEC. In addition, a
local Cartesian reference system (x, y, z) centered at each float is used to redefine the
incident wave angle with respect to each individual unit. Figure 5.1 shows a schematic
of the system, and the main parameters are specified in Table 5.1.

5.1.2 Equation of Motion

Assuming the same harmonic time dependence as in (2.1.16) for the time-varying
variables, the linear first-order equation of motion of a single hemispherical point
absorber float in the frequency domain can be written as:

(J + A)γ̈ + (B +Bpto)γ̇ +Khγ = M ex (5.1.1)
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Figure 5.1: Top (a) and Side (b) schematic views of the bottom-referenced heave-buoy
array Wave Energy Converter.
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Parameter Value
dx 7.2 m
dy 24 m
D 6 m
γmax 0.28 rad
θ1 π rad
θ2 2π/3rad
θ3 −π/3 rad
θ4 π/3 rad
θ5 −2π/3rad

Table 5.1: Main parameters of the bottom-referenced heave-buoy array Wave Energy
Converter.

where γ is the angle of rotation along the bearing axis, J the inertia of the float, A
and B the radiation hydrodynamic coefficients of added-inertia and damping moment
respectively, Bpto the damping moment of the PTO system, Kh the hydrostatic stiffness
and M ex the excitation moment.

The radiation hydrodynamic coefficients of the float can be computed either as a
result of the combination of two translations and one rotation of the body with respect
to its center of rotation, or from single rotation along the bearing axis. In this work,
the latter strategy has been used and the normal velocities of the radiation problem
have been set accordingly.

Assuming that the rigid arm connecting the float to the bearing is weightless, the
hydrostatic stiffness coefficient Kh expressed with respect to the axis of rotation can
be computed as (Babarit et al., 2012b):

Kh = Kh,roll
B + ρgV (zB − zA) −mg(zG − zA) +Kh,heave

B (yB − yA)2 (5.1.2)

where Kh,roll
B and Kh,heave

B are the hydrostatic stiffness related to the roll and heave mo-
tions, respectively, along the axis passing through the center of buoyancy of the float,
ρ the water density, g the gravity acceleration, V the volume of the float, (xB, yB, zB)
the coordinates of the center of buoyancy, (xG, yG, zG) the coordinates of the center
of gravity and (xA, yA, zA) the coordinates of the bearing. Table 5.2 summarizes the
values of the parameters for an hemispheric float of the configuration shown in Figure
5.1.

Equation (5.1.1) can be generalized to include the motion of all the multi-body
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Parameter Expression Value
V 2/3πD3

8 56.55 m3

Kh,heave
B ρgπD

2

4 284305 kg ·m/s2

Kh,roll
B ρgπ6/24R4

16 639687 kg ·m/s2

(xG, yG, zG) (0, 0,−3
8
D
2 ) (0,0,-1.125) m

(xB, yB, zB) (0, 0,−3
8
D
2 ) (0,0,-1.125) m

(xA, yA, zA) (0,−1.5D, 1.5D) (0,-9,9) m
J 83

320ρV
D2

4 + ρV d2 1.08 · 107 kg ·m2

d
√

(1.5D)2 + (1.5D + 3
8
D
2 )2 13.55 m

Table 5.2: Main parameters of an hemispheric float.

WEC floats:
(J + A)Γ̈ + (B + Bpto)Γ̇ + KhΓ = Mex (5.1.3)

where Γ is the vector of rotations, J is the diagonal inertia matrix of the system, A
and B are the matrices of hydrodynamic added-inertia and radiation damping moment
coefficients respectively, Bpto is the diagonal matrix of PTO damping moments, Kh

the matrix of hydrostatic stiffness and Mex the vector of excitation moments. All the
matrices have dimensions (Nb ×Nb), where Nb is the total number of floats.

5.1.3 Computation of the Hydrodynamic Coefficients

The use of standard Boundary Element Method (BEM) solvers to evaluate the hy-
drodynamic coefficient matrices for large arrays of bodies, such as the bottom-fixed
heave-buoy array WEC, is associated with very high computational costs. This ham-
pers analysis of such systems and precludes the use of layout optimization, which
requires constant recomputation of the hydrodynamic coefficients to account for mod-
ifications to the position of the floats.

To avoid the limitations imposed by the use of standard BEM solvers in the cur-
rent study, the hydrodynamic coefficients were evaluated using the implementation
of the Direct Matrix Method Interaction Theory (IT) by Kagemoto and Yue (1986),
described in Chapter 2. As opposed to standard BEM solvers, in which the multiple-
scattering problem is solved by treating all the bodies in the array simultaneously,
in the Direct Matrix Method the diffraction/radiation boundary conditions are first
imposed on an isolated float and then combined with an interaction theory to take
into account the effect of the neighbouring devices. As in the present case, where all
the floats have the same geometry, the boundary value problem (BVP) needs to be
solved only once, thus leading to an additional gain in computational speed.
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The transfer from the diffraction/radiation problem of an isolated geometry to
the BVP of the whole array is achieved by expressing the wave fields in a base of
partial cylindrical wave functions. This enables the waves diffracted and radiated by
a float to be mathematically characterized in terms of two hydrodynamic operators
known as Diffraction Transfer Matrix (DTM) and Radiation Characteristics (RC). The
advantage of this transformation is that the number of cylindrical modes required to
represent the perturbation of the wave field by an arbitrary geometry is significantly
smaller than the number of panels required to discretize its wetted surface. The
reduction in the number of unknowns associated to an individual float enables a drastic
reduction of the computational time for the whole array, as shown in section 5.2.4.

5.1.4 Performance evaluation

The total annual power generated by a float j in the multi-body WEC (P j
y ) can be

computed by summing up the contribution from each of the wave climate sea states
as:

P j
y =

Ns∑
i=1

Oi(Hs, Tp) · P j
i (Hs, Tp) (5.1.4)

where P j
y is the total annual power produced by float j, Ns is the number of sea states

considered, (Hs, Tp) are the significant wave height and the peak period of the sea
state, Oi its probability of occurrence and P j

i the power produced by unit j in the ith
sea state.

Under the assumptions of linear potential flow theory the power generated by a
float in a given sea state can be evaluated using the following expression:

P j
i (Hs, Tp) =

∫ 2π

0

∫ ∞

0
2Si(ω, β)pj(ω, β) dωdβ (5.1.5)

where Si(ω, θ) is the directional wave spectrum and pj(ω, θ) the power function of
body j defined as:

pj(ω, β) = 1
2Bptoω

2Γj(ω, β)2 (5.1.6)

where Bpto is the Power Take-Off (PTO) damping and Γj(ω, β) is the response am-
plitude operator (RAO) of the productive degree of freedom of the hemispheric float
obtained by solving the equation of motion of the system (5.1.3).
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The total annual power (Py) produced by all units is obtained simply as:

Py =
Nb∑
j=1

P j
y (5.1.7)

The effect of the hydrodynamic interactions among floats in the multi-body WEC on
the power generation is quantified using the interaction factor, generally referred to
as q-factor, defined as the ratio between the power produced by the float in the array
and the power it would produce if isolated:

qji = P j
i

P j, isol
i

(5.1.8)

where qji is the interaction factor of float j in the ith sea state and P j,isol
i the power

that an isolated float j would produce in the ith sea state.

The significant amplitude of rotation of float j, γjs , can be computed as (De Backer
et al., 2010):

γs = 2
√∫ ∞

0

∫ 2π

0
Sjγ(f, β)dfdβ (5.1.9)

where Sjγ(f, β) is the rotation spectrum of float j evaluated as:

Sjγ(f, β) = Γj(f, β)2

2∆f∆β (5.1.10)

5.1.5 Wave Climate

A total of eleven sea states (Table 5.3) representing 80% of the wave conditions at
Hanstholm (Hansen and Kramer, 2011) were used for the computations. It was con-
sidered that the other 20% fall outside of the range of operation of the multi-body
WEC, i.e. production is stopped when Hs < 0.75m and protection mode is activated
for cases with Hs > 2.75m.

The wave field was modeled as a two-dimensional frequency-direction Bretschneider
spectrum with a generalized cosine angular spreading function as defined in Holthuijsen
(2010):

S(f, θ) = A

f 5 e
− B

f4C cosm(β − β̄) (5.1.11)
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Seastate Hs(m) Tp(s) Prob(%)
1 0.75 4.10 19.2
2 0.75 5.27 11.4
3 0.75 6.44 2.21
4 1.25 4.10 6.84
5 1.25 5.27 13.0
6 1.25 6.44 2.96
7 1.75 5.27 9.58
8 1.75 6.44 3.05
9 2.25 5.27 3.34
10 2.25 6.44 4.6
11 2.75 6.44 3.89

Table 5.3: Wave climate series used in the simulations.

where ω = 2πf and constants A, B and C are given by:

A = 5
16
H2
s

T 4
p

; B = 5
4

1
T 4
p

; C =
Γ(1

2m+ 1)
Γ(1

2m+ 1
2)

√
π

(5.1.12)

The coefficient of the angular spreading function has been set as m = 20, a value
representative of wind seas. The spectrum was discretized using 30 frequencies and
five directions making a total of 150 wave components per sea state. The water depth
was set to 20m.

5.2 Results and Discussion

5.2.1 Individual float response

The solution to the equation of motion (5.1.1) of an individual articulated hemispheri-
cal float is shown in Figure 5.2 together with the power extracted, the latter computed
using equation (5.1.6). The response of the float shows the typical features of a point
absorber, namely a steady response at low frequencies, an increased motion at the
resonant frequency which is greatly reduced when reaching the higher frequency zone.
A particularity of the arm-float system studied herein is that, in spite of the axisym-
metry of the float, its response is highly dependent on the incident angle of the waves.
This is because the components of the excitation force in both y and z directions con-
tribute to the moment along the axis of rotation (x). An incident wave with β = 90◦

will generate y and z force components which will produce rotation moments acting in
the same direction. Contrarily, at β = 270◦ the rotation moments will act in opposite
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Figure 5.2: Response Amplitude Operator (RAO) and power function of an individual
isolated hemispherical float as a function of the Power Take-Off damping (Bpto) and
for both a range of incoming wave frequencies and directions.

directions. From Figure 5.2 it can be observed that the maximum response is achieved
for an incident wave angle of β = 90◦, which corresponds to the situation where the
moments of rotation generated by the forces in y and z direction are aligned. The
incident angle for which the minimum response occurs also depends on the balance
between the magnitudes of the y and z forces.

Both the power and the response of the float are shown for two different values
of Bpto, indicated as Bptoc and Bpto on the graphs. The former is the value that
maximises the response allowed (γmax) at the resonant frequency and for an incident
wave angle of β = 90◦. The latter has been tuned to reduce the float motion to 20%
of the critical value at the same conditions.
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5.2.2 Three-float cluster

The presence of adjacent units affects the hydrodynamic forces acting on a float and,
as a consequence, its response is different to that where it is in isolation. This is
illustrated in Figure 5.3b which shows a comparison between, on the one hand, the
response of an isolated float under the action of regular waves traveling at β = 90◦

(the same displayed in section 5.2.1 with damping Bpto) and; on the other hand, the
response of the float when located in the middle of a three-unit group (Figure 5.3a)
representing part of the bottom-fixed heave-buoy array WEC. It can be observed that
the peak of the rotation along the bearing axis is reduced and shifted towards lower
frequencies. As mentioned in Nambiar et al. (2015), the close proximity of the floats
means that hydrodynamic interactions are expected to be very important.

The motion of float-2 was obtained by solving equation (5.1.3), for which the
matrices of hydrodynamic coefficients were computed using both the standard BEM
solver NEMOH (Babarit and Delhommeau, 2015) and the IT. Figure 5.3c compares
the percentage difference between the amplitude of the float response obtained from
NEMOH (used as reference) and from the IT using different evanescent mode trunca-
tion L. As shown in section 4.3.2, special attention to this truncation is required for
cases where bodies are placed in close proximity. Despite being separated by a small
distance relative to their radius, the maximum discrepancy of the response amplitude
for float-2 when the evanescent mode truncation is set to zero is only of 2.5% (this
remarkable finding is discussed in detail in Appendix J). A similar result was obtained
by Chakrabarti (2001) who observed no significant influence of the evanescent mode
truncation on the forces acting on two floating modules. Only a small effect on the
motions was reported.

The differences in Figure 5.3c are highly frequency-dependent and, although not
shown here, they also vary as a function of the incident wave propagation angle. It
is not clear how to extrapolate from this analysis of three floats under regular waves
to draw conclusions about the influence of the evanescent mode truncation in a 60-
float case study with irregular sea state; therefore, additional sensitivity studies were
performed (detailed in section 5.2.3).

5.2.3 60-float Configuration

This section presents a series of simulations of the bottom-referenced heave-buoy array
WEC (Figure 5.1) installed in a location with the wave climate detailed in Table 5.3.
Both the annual power production (Py) of the multi-body WEC and the performance
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Figure 5.3: (a) Top view of a section of a three-float WEC; (b) Comparison of the
Response Amplitude Operator (RAO) of float 2 computed using both a direct BEM
calculation (both when isolated and in array) and with the Direct Matrix Method
interaction theory (IT ) using 4 evanescent modes (L) and a β = 90◦ wave incidence;
(c) relative difference between the (RAO) of float 2 computed using both a direct BEM
calculation and with the Direct Matrix Method interaction theory (IT ) for different
values of the evanescent modes truncation (L) and a wave incidence of β = 90◦.
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of each individual float were evaluated, the latter defined based on its interaction
factor as well as on its significant motion amplitude. In addition, the free-surface
disturbance coefficient, defined as the ratio between the actual and the undisturbed
incident significant wave height, was calculated to allow for a visualization of the wave
field.

For the sake of simplicity, the same value of PTO damping moment was used for
all units and all given sea states, and was chosen in such a way as to maximize the
annual power production of the WEC at the reference site. This strategy is referred to
as diagonal optimization De Backer et al. (2010) or scalar optimization (Ricci et al.,
2007). It is worth noting that other more sophisticated optimization strategies out of
scope in this study, as shown for instance by De Backer et al. (2010) and Nambiar
et al. (2015), could improve the energy yield of the multi-body WEC studied here.
For example, for a realistic wave climate, De Backer et al. (2010) observed energy
absorption increases of 16% and 18% for each unit of a 12-buoy and 21-buoy multi-
body WEC respectively when the control parameters were optimized individually and
not diagonally.

Figure 5.4 shows both the interaction factor of each float and the free-surface
disturbance coefficient (Hs/H

I
s ) for the most probable sea state (Hs = 0.75m, Tp = 4s).

Results are presented for 2 main propagation directions (β = 0 and β = π/3) of the
incident wave spectrum. For the former, it can be observed that the interaction factor
of the front floats (f1 and f11) is significantly greater than 1 and gradually decreases as
waves travel along the units in branches b10

1 and b20
11. At floats f10 and f20, behind the

wake produced by the preceding units, most of the available energy has been captured
and the value of the interaction factor is very low. The same occurs at floats f21 and
f51. An increase in interaction factor is only observed when moving away from the
horizontal axis of symmetry of the WEC and towards the end of branches b60

51 and
b30

21. Notwithstanding, the values remain significantly lower than 1. It is in this part
of the domain where the highest disturbance coefficients are observed. In contrast,
the wake behind the floats significantly affects the units at branches b40

31 and b50
41 which

have interaction factors close to zero.

For β = π/3 it can be observed that floats in branches b10
1 and b30

21 benefit from
higher interaction factors than elsewhere, although they do not exceed unity. In addi-
tion, a region with high disturbance coefficients can be clearly distinguished in front
of the device, as opposed to the wake area behind characterized by a reduced wave
elevation. Only floats f11 − f12 and f39 − f40 are not shadowed by the units in the
front branches for this particular alignment of the incident wave field and the WEC.
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Figure 5.4: Float interaction factors (q-factor) of the bottom-fixed heave-buoy array
WEC and disturbance coefficient (Hs/H

I
s ) of the wave field for a sea state with (Hs =

0.75m, Tp = 4s) and two mean propagation directions (0 and π/3 rad) of the incident
wave spectra.
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Truncation (n) 0 1 2
max(abs[(P i

n − P i
2)/P i

2]) (%) 0.55 0.41 Reference

Table 5.4: Influence of the evanescent modes truncation on the power generated.

The pattern of interaction factor among the floats is similar for all sea states, with
the only significant difference being an increase in the power produced by the units in
branches b20

11 and b40
31 for wave conditions with longer peak periods propagating with

a main direction β = π/3. As the Bpto damping moment (identically applied to all
units) was optimized to maximize the annual power extracted, the interaction factors
and the significant motions are closely related. From the left column of Figure 5.7,
which shows the significant motions of each float for the most energetic sea state
(Hs = 2.75m, Tp = 6.44s), it can be noted that floats in branches b20

11 - b40
31 undergo

motions on the same order of magnitude as the ones in branches b10
1 - b30

21. In contrast,
for β = 0 the pattern observed is similar to that for the interaction factors shown in
Figure 5.4. Assuming the motions of the floats are governed by a Rayleigh distribution,
as used in De Backer et al. (2010), and assuming the maximum significant motion to
be 0.17rad, it can be predicted that the design condition γmax prescribed in Table 5.1
will be exceeded ∼ 25% of the time when the WEC operates in the most energetic sea
state. This point is further investigated in section 5.2.6.

The main findings from a sensitivity study of the impact of the evanescent mode
truncation on the annual power production of the bottom-fixed heave-buoy array WEC
are summarized in Table 5.4. The greatest discrepancy in power extracted from a sea
state, when computed using 2 evanescent modes and without accounting for them, is
only 0.55%. As the difference is not significant, and given that the lower the truncation
used the higher the computational speed of the IT method, the evanescent modes were
dispensed with in the calculations presented in the following sections. As shown in
section 4.3.2, calculations of free surface elevation using zero-truncated IT display
inaccuracies only in close proximity to the bodies. However, they are not discernible
to the naked eye, and are included here for qualitative purposes only.

5.2.4 Power versus Number of Floats

The underproduction of the majority of the multi-body WEC floats, described in
the preceding section, suggests that layout modifications may improve the yield of
individual units. The strategy adopted here consists of successively increasing the
number of floats on each branch from two to the initial ten, while keeping them
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equally distributed along both sides of the distinctive fixed three-arm bridge structure.
At each step, the separating distance between floats was optimized. A minimum and
maximum separating distance were also determined: the minimum distance being
7.2m - the separating distance between floats for the original 60-unit WEC - and
the maximum distance being the greatest separation possible without exceeding the
footprint of the original WEC. The value of the PTO damping moment (Bpto) used
in the preceding section was preserved, and was the same for all units. As shown in
section 5.2.6, this parameter does not have a significant effect on the results.

Figure 5.5 shows the results of the optimization process, i.e. the annual power
produced by each configuration and the separating distance between units, for the
two main propagation directions of the incident wave spectra. With the exception of
the 12-float configuration, average annual power is slightly greater when β = π/3; for
the 48-float configuration, the difference is only 2.6%. However, for both values of β
the change in average annual power as a function of number of floats (N) follows a
similar trend: it increases linearly for N ≤ 30; continues to increase nonlinearly until
an inflection point is reached at N = 48; then decreases towards the average anual
power produced by the initial 60-float WEC configuration studied in the preceding
section.

For both main propagation directions of the incident wave spectra (β), the optimal
separating distance for the 12 and 18-float configurations falls within the bounds im-
posed, although it is much closer to the upper limit than to the lower. This is also true
for the 24-float configuration when β = 0. For all other cases, the optimal distance is
the upper limit, which decreases as the number of units increases until merging with
the separating distance (7.2m) of the 60-float WEC.

The above observations of average annual power and separating distance clearly
show that increasing the number (and hence density) of floats in this particular three-
arm structure layout has diminishing return in terms of power production. Indeed, a
remarkable result is that the same annual power can be obtained with a 60-float and
36-float configuration, the latter being studied in more detail in the following section.
Obviously, this has important implications with respect to the cost of the WEC and
the LCOE (levelized cost of energy).

These results are in line with observations by De Backer et al. (2010) who showed
differences of only 25% in annual power production between two multi-body WECs of
21 and 12 floats. However, the size of the floats and their arrangement were not the
same for both devices.

Table 5.5 compares the wall clock execution time required to obtain the results in
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Figure 5.5: Annual power (Py) and separating distance between floats (dx) as a func-
tion of the number of units used in the bottom-referenced heave-buoy array WEC for
two main propagation directions of the incident wave spectra. The annual power has
been computed using the optimized separating distance (dx opt) between floats for
each configuration comprised between the limits (dxmax) and (dxmin).
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N bodies N function evaluations IT (hours) Direct NEMOH (years)
12 10 0.6 0.1
18 10 1.3 0.3
24 11 2.7 0.9
30 10 3.7 1.6
36 10 5.1 2.7
42 9 6.4 3.8
48 7 6.6 4.4
54 6 7.3 5.4
60 1 1.7 1.2

Table 5.5: Comparison of wall clock execution time between the IT and direct NEMOH
calculations for each of the optimized configurations in Figure 5.5. The execution time
of the direct BEM simulations has been estimated following the procedure detailed in
section 4.3.4.

Figure 5.5 between the IT and standard direct NEMOH BEM calculations. Values
are presented based on computations on a Dell1 machine with two Intel(R) Xeon(R)2

64-bit 2.27GHz processors and 8GB random access memory running the Microsoft
Windows 7 Professional 3 operating system. The computational advantage of using
the IT over standard BEM solvers is clear.

5.2.5 36-float Configuration

In this section, details of the 36-float bottom-referenced heave-buoy array WEC sim-
ulations are given. Figure 5.6 shows the interaction factor for each float and the free-
surface disturbance coefficient for the most probable sea state (Hs = 0.75m, Tp = 4s).
Results are presented for the two main propagation directions (β = 0 and π/3) of
the incident wave spectrum considered. For the former, it can be observed that the
interaction factor of floats f1 and f7 is significantly higher than unity and gradually
decreases as waves propagate along branches b6

1 and b12
7 . At floats f6 and f12, shadowed

by the units up front, most of the available energy has been absorbed and the values
of the interaction factor are very low. The decreasing trend is reversed at branches b36

31

and b18
13, where the interaction factor gradually increases from low values at units f13

and f31 until reaching levels as high as at the front of branches b6
1 and b12

7 for floats
f29 and f35. This differs from the 60-unit configuration, whose floats at this part of
the multi-body WEC had interaction factors significantly less than one (Figure 5.4).

1Dell is a registered trademark of Dell, Inc.
2Intel Xeon is a registered trademark of Intel Corp.
3Microsoft Windows 7 Professional is a registered trademark of Microsoft Corp.
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The wake behind branches b6
1 and b12

7 , observed to be a region of low disturbance coef-
ficient, diminishes the power production of floats in b30

25 and b24
19 close to the horizontal

axis of symmetry of the device. However, it is higher than for the 60-unit case. The
interaction factor increases at the ends of branches b30

25 and b24
19 which benefit from a

smaller shadowing effect.
For β = π/3, similar trend is observed as in the 60-float configuration, i.e. floats in

branches b6
1 and b18

13 have interaction factors significantly higher than the rest. However,
in this case they are all greater than unity. In addition, floats in branches b12

7 and b24
19

are less shadowed by units in b6
1 and b18

13. Disturbance coefficients close to unity are
observed in this area due to both the reduced number of units and increased spacing
between them. In contrast, an area of wave concentration can be distinguished in
front of the device as opposed to a region of wave attenuation behind. The range of
disturbance coefficients is significantly lower for the 36-float configuration than for the
60-unit tight cluster as the structure is more "transparent" to the incident waves.

As for the 60-float configuration, the pattern of interaction factors among the floats
is similar for all sea states, with the only significant difference being an increase in
power produced by the units in branches b12

7 and b24
19 for wave conditions with longer

peak periods propagating with main direction β = π/3. As mentioned in section 5.2.3,
the interaction factors and the significant motions are closely related. From the right
column of Figure 5.7, which shows the significant motions of each float for the most
energetic sea state (Hs = 2.75m, Tp = 6.44s), it can be observed that the significant
motions of floats in branches b12

7 and b24
19 are of the same order of magnitude as those

in b6
1 and b18

13. In contrast, for β = 0 the pattern of significant motions is similar to
that of the interaction factors.

For both the 60-float and the 36-float configurations, the highest significant motion
is found to be γs = 0.17 rad (9.74 deg). This indicates that the similar average annual
power generated by both configurations is not due to the fact that the 36-float WEC
undergoes significantly higher motions than the 60-float WEC. In addition, if the float
motions are assumed to be governed by a Rayleigh distribution, as in section 5.2.3,
it can be predicted that the design condition γmax prescribed in Table 5.1 will be
exceeded 25% of the time when the 36-float WEC operates in the most energetic sea
state - similar to the case of the 60-float WEC.

5.2.6 Radius optimization

In section 5.2.4, the effect of the number of floats on the annual power production of
the three-arm bottom-referenced heave-buoy array WEC was inspected. The 36-float
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Figure 5.6: Float interaction factors (q-factor) of the 36-unit bottom-referenced heave-
buoy array WEC and disturbance coefficient (Hs/H

I
s ) of the wave field for a sea state

with (Hs = 0.75m, Tp = 4s) and two mean propagation directions (0 and π/3 rad) of
the incident wave spectra.
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Figure 5.7: Float significant motions (γs) of the 60 and 36-unit bottom-referenced
heave-buoy array WEC for the sea state with (Hs = 2.75m, Tp = 6.44s) and two
mean propagation directions (0 and π/3 rad) of the incident wave spectra.
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configuration analyzed in the preceding section was found to generate as much power
as the initial 60-float WEC with the same float size. In this section, the impact of
float size on the total power output of the 36-unit configuration is investigated. The
procedure adopted consists of gradually increasing the radius of the hemispheres from
2m to 5.5m, the latter being the value that assures that the minimum edge-to-edge
distance between floats is always greater than in the 60-float configuration. For each
radius, the value of the PTO damping moment (Bpto), equally applied to all the floats
and sea states, is optimized to maximize the annual power output.

Figure 5.8 shows the annual power (P 36
y ) and the PTO damping moment optimized

for each hemisphere radius (Br
pto,36). In addition, the annual power computed with the

PTO damping moment used in section 5.2.3, which optimizes the power generated by
the 60-float configuration (Br=3m

pto,60), is provided for comparison. Results are shown for
the two main propagation directions (β) of the incident wave spectrum.

Average annual power is observed to be a concave function of hemisphere radius,
with a global maximum observed at r = 3.5m for both values of β, using the PTO
damping moment (Br

pto,36) optimized for each float size. The value is 4.6% higher for
β = π/3 than for β = 0. A remarkable result is that almost the same amount of power
is produced for configurations with floats of radius 3m or 4.5m, the difference between
them being of only 2.3% and 1.4% for β = 0 and π/3 respectively. Using the PTO
damping moment optimized for the 60-float configuration (Br=3m

pto,60), a similar concave
function is observed; however, the slope of the increasing and decreasing parts of the
curve is significantly higher than for (Br

pto,36).

It is noteworthy that at a radius of 3m, for both main propagation directions
(β), no significant differences were observed between average annual power computed
using the two different values of PTO damping. Using the fact that PTO damping
moment is proportional to r5, it can be inferred that the principal determinant of
its optimization is not the number of floats but their size. When the PTO damping
moment optimized for a radius of 3m is applied (Br=3m

pto,60), the average annual power
produced in cases r < 3m or r > 3m deviates significantly from its maximum. The
value of Bpto is too high and the float motions too small when r < 3m and vice versa
when r > 3m. This can be observed for the case r = 4.5m in Figure 5.9, which
shows the significant motions of each unit of the 36-float configuration for both β

propagation directions. When (Br=3m
pto,60) is used, float motions become significantly

higher than when (Br=4.5m
pto,36 ) is used. In the latter case, assuming the motions of the

floats are governed by a Rayleigh distribution and the maximum significant motion is
0.1rad, it can be predicted that the design condition γmax prescribed in Table 5.1 will



5.2 Results and Discussion 127

Figure 5.8: Annual power (Py) produced by a 36-unit bottom-referenced heave-buoy
array WEC as a function of both the radius of the hemispheric floats and the value of
PTO damping (Bpto) used for two main propagation directions of the incident wave
spectra (β). The values of PTO damping optimized for each float radius of the 36-unit
configuration are indicated as (Br

pto,36) whereas (Br=3m
pto,60) refers to the PTO damping

which optimizes the annual power produced by the 60-unit configuration with 3m
radius floats.
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be exceeded only ∼ 2% of the time (for specific floats) when the WEC operates in the
most energetic sea state. Although not shown here, for the same sea state the design
condition is exceeded ∼ 20% of the time for the configuration with radius 3.5m and
its associated optimized Bpto.

An economic assessment should be performed to identify the most advantageous
design solution. On the one hand, despite satisfying the motion constraints imposed
by the Power Take-Off configuration considered in this study, the use of units of radius
4.5m would increase the total submerged volume by 102% compared to the initial 60-
float WEC with hemispheres of radius 3m. In addition, the cost of the hydraulic rams
for the 4.5m units would be much higher than for 3m units, as can be inferred from
Figure 5.8, which shows that the damping provided for the former is ∼ 7 times higher
than for the latter. On the other hand, the 3.5m radius floats could be selected on the
basis that the overall power is maximized. In that case, the increase in total submerged
volume with respect to the initial 60-float configuration would only be 5%; however,
it would be necessary to limit the motion of the units that exceed the mechanical
bounds imposed by the hydraulic rams using other means, such as increasing the Bpto

damping. This would both reduce the total power produced and significantly increase
the cost of the PTO units, which in order to be economically viable should not be
required to withstand very large control moments.

5.3 Conclusions

The performance of a generic 60-float bottom-fixed heave-buoy array WEC has been
established in irregular waves with directional spreading. No significant difference
in energy capture was found for the two mean propagation directions of the incident
waves considered. This result would have been difficult to anticipate prior to numerical
calculations, as the arrangement of the floats relative to the propagation direction is
not the same.

Similar to other studies on closely spaced point absorbers, important differences in
energy capture between floats were found. This behaviour has important implications
for their structural design as, despite all having the same hemispheric geometry, they
will be acted upon by different loading conditions.

The most remarkable result was found by tuning both the separating distance and
the number of floats of the device. It was observed that if the structure’s footprint is
limited to that of the initial 60-float configuration, the energy capture increase due to
the addition of new floats "saturates" at 36 float. Beyond this number, adding more
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Figure 5.9: Float significant motions (γs) of the 36-unit bottom-referenced heave-buoy
array WEC with float radius 4.5m for the sea state with (Hs = 2.75m, Tp = 6.44s) and
two mean propagation directions (0 and π/3 rad) of the incident wave spectra. Results
are presented for two different values of PTO damping (Br=3m

pto,60) and (Br=4.5m
pto,36 ). The

former is optimized to maximize the energy capture of a 60-unit configuration with
3m radius floats and the latter of a 36-unit with 4.5m radius floats.
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floats does not significantly increase the power production, which in fact decreases
such that the mean annual energy capture of the 36 and the 60-unit configurations
are the same.

Finally, a sensitivity analysis was performed on the radius of the floats, from which
it was found that optimal energy capture is achieved for a float radius of 3.5m.

The author would like to note that the contents of this Chapter have been published
in the journal paper Fàbregas Flavià et al. (2017).



Chapter 6

Impact of a large WEC farm on the
ambient wave spectrum

The focus of Chapter 5 was on the annual energy capture of a multi-body WEC.
Beside power production, it is of paramount importance to assess the potential impact
large clusters of wave energy converters may have on the ambient wave climate, and
particularly in the shore zone where modifications of the coastal processes may have
important consequences.

Folley et al. (2012) compared different tools to model WEC arrays based on a
defined set of characteristics. As opposed to spectral wave models, highly suitable
to study the distal environmental impact, potential flow solvers were found to be
unsuitable for this task. However, they clearly outperformed spectral wave models as
far as the evaluation of localised effects amongst WECs is concerned.

Based on these observations, Babarit et al. (2013) presented a methodology to
couple a BEM solver with either a phase resolved or a spectral wave model by making
use of Kochin functions. The proposed BEM-spectral solver coupling was based on
the implementation of the modified wave average energy flux around the WECs, char-
acterized by the Kochin function and derived from the BEM solver, in the spectral
wave model.

In this Chapter, an alternative procedure is outlined. As in Babarit et al. (2013),
the far-field representation of the perturbed incident waves is used. However, in this
case it is not used to compute the modified wave energy flux around the WECs but
to evaluate, at the outlet of the wave farm domain set as interface, the resultant
transmitted spectrum. The latter can then be used as input BC for the spectral
model to solve the spatial wave propagation to the shoreline.
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coastline

Sin(ω,θ)

Sout(ω,θ)

Potential flow
model

Spectral wave
model

WEC array

Figure 6.1: Schematic of the coupling between the IT and a Spectral wave model.
Filled circles represent the array WECs whereas the empty ones the scattered and radi-
ated wave fields given as a superposition of cylindrical harmonics by the IT (Kagemoto
and Yue, 1986). Sin and Sout represent both the incident and transmitted spectra at
the inlet and outlet of the wave farm respectively indicated as dotted lines.
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Despite not requiring the addition of modifications to a standard spectral wave
model, the proposed coupling methodology is not exempt from limitations. Some of
them are discussed at the end of this Chapter, as the main focus is on the computation
of the transmitted wave spectrum carried out in two steps. First, the linear first-
order wave-structure interaction on a large array of WECs acted upon by an incident
wave spectrum is efficiently solved by using the implementation of the IT described
in Chapters 2 - 4. The use of this method provides both the scattered and radiated
potentials by each body in the array, as a result of the multiple-scattering, on the basis
of partial cylindrical wave functions. Then, by employing the procedure described in
Montiel et al. (2015a), the cylindrical harmonics are transformed into plane waves.
The latter, given that linearity is assumed, are superposed to the undisturbed incident
plane waves to derive the perturbed transmitted spectrum at the outlet of the wave
farm. A schematic of the procedure is depicted in Figure 6.1.

In the first part of this Chapter, the transformation of outgoing progressive partial
cylindrical waves into a superposition of plane waves is presented. This expansion is
then used to characterize the solution of the IT (both the scattered and the radiated
cylindrical wave fields) in the form of transmitted and reflected spectra. Details on the
numerical implementation of the expressions derived are given with special emphasis
on the angular variables sampling. Finally, in the results section both the transmission
and reflection coefficients of an array of truncated vertical cylinders are shown as a
function of different parameters. A comparison of the free surface elevation evaluated
with the IT (as described in Chapter 4) and by means of the transformation of cylin-
drical harmonics into plane waves is shown for a small array of two truncated vertical
cylinders. At the end, the perspectives offered by this methodology and its limitations
are discussed.

6.1 Plane wave expansion of cylindrical harmonics

We shall recall that solutions to the multiple-scattering problem obtained by means
of the IT (Kagemoto and Yue, 1986) detailed in Chapter 2, i.e. radiated and scat-
tered waves by each body in the array, are expressed in the base of outgoing partial
cylindrical wave functions as:

φSj =
(
Aj
)T
ψSj ; φR,kj =

(
Rk
j

)T
ψSj (6.1.1)
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where Aj are the complex scattered partial wave coefficients, Rk
j the radiated partial

cylindrical wave coefficients in a kth mode of motion (with k = 1, . . . , 6 in the gen-
eral case) referred to as radiation characteristics (RC) and ψSj the outgoing partial
cylindrical wave functions given by:

(
ψSj
)
nm

=


cosh [k0(zj+d)]

cosh k0d
H(1)
m (k0rj) eimθj n = 0, m ∈ Z

cos [kn(zj + d)]Km(knrj) eimθj n ≥ 1 (n ∈ N), m ∈ Z
(6.1.2)

where subindex j refers to a body j in the array with local cylindrical reference system
defining a point p in the fluid domain with the coordinates (rj, θj, zj). The relationship
of the latter with the Cartesian coordinates in a global Cartesian reference system
OXY Z is given by (x, y, z) = (X0j + rj cos θj, Y0j + rj sin θj, zj) with Oj(X0j, Y0j, 0)
the Cartesian coordinates of the jth body center in the horizontal plane (Figure 2.4).

Hereafter in this section, without loss of generality, it is considered that only a
single body centered at the origin is present and, therefore, subindex j is not used to
simplify notation. The analysis follows the work by Montiel et al. (2015a).

While evanescent modes are required to accurately represent the velocity potential
in the vicinity of the array bodies (as shown in Figures 4.16 - 4.17), given their fast
decay far from the farm domain their influence is negligible. Thus, as the objective is
to enable one to study the impact of the wave farm located far offshore from the coast
on its wave climate, in this Chapter the focus is only on the progressive part of the
velocity potential given by cylindrical harmonics H(1)

m (k0r) eimθ (Figures 2.2a - 2.2c).
We seek to express them as a superposition of plane waves. This transformation was
introduced by Cincotti et al. (1993) based on the Sommerfeld’s integral representation
of the Hankel function of the first kind:

H(1)
m (k0r) = (−i)m

π

∫
c
eik0r cosw+imwdw (6.1.3)

where H(1)
m is the Hankel function of the first kind and C is the integration path in

the plane of the complex variable w = u + iv. The integration path needs to (i) pass
through the origin; (ii) have an upper part (v > 0) in the strip −π < u ≤ 0; (iii) have
a lower part (v < 0) in the strip 0 ≤ u < π. The path chosen is shown in Figure 6.2
and has γl + i∞ and γu − i∞ as lower and upper limits respectively.

By multiplying eimθ on both right and left hand sides of expression (6.1.3) and by
applying the change of variable w = χ− θ to the integral, the following expression is
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Figure 6.2: Schematic of the integration contours in the complex χ plane. The arrows
indicate direction.

obtained:

H(1)
m (k0r)eimθ = (−i)m

π

∫ γu−i∞+θ

γl+i∞+θ
eimχeik0(x cosχ+y sinχ)dχ (6.1.4)

Limits γl and γu are chosen as −π/2−θ and π/2−θ respectively for the case where
x ≥ 0. By following the same procedure for the case x ≤ 0, this time by applying the
change of variable w = −(χ + θ) + π and by selecting the limits as γl = π/2 − θ and
γu = 3π/2 − θ, the following expression can be derived:

H(1)
m (k0r)eimθ =


(−i)m

π

∫ π/2−i∞

−π/2+i∞
eimχeik0(x cosχ+y sinχ)dχ (x ≥ 0)

im

π

∫ π/2−i∞

−π/2+i∞
e−imχeik0(−x cosχ+y sinχ)dχ (x ≤ 0)

(6.1.5)

Equation (6.1.5) enables one to represent outgoing partial cylindrical waves as
a continuous superposition of plane waves traveling in the positive and negative x
directions, as indicated by the first and second expressions respectively. Figure 6.4
schematically depicts this representation. We note that, as mentioned earlier, we are
considering a single body with O = Oj, and thus (x, y) = (xj, yj).

At this point, it may be of interest to clarify the effect of the complex branches on
the integrals in (6.1.5). For that, we evaluate their separate contribution by decom-
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posing the integration domain in the following manner:
∫ −π/2

−π/2+i∞
dχ+

∫ π/2

−π/2
dχ+

∫ π/2−i∞

π/2
dχ (6.1.6)

Let us define the following complex variable change:

χ =


−π

2 − i(1 + t); t < −1
π
2 t; −1 ≤ t ≤ 1
π
2 + i(1 − t); t > 1

(6.1.7)

where t is an integration contour parametrization variable with t ∈ R.
The integral in (6.1.5) for the case x ≥ 0 can be expressed using (6.1.7) as:

H(1)
m (k0r)eimθ = (−i)m

π

[
−i
∫ −1

−γ−1
(−i)mem(1+t)ek0x sinh(1+t)e−ik0y cosh(1+t)dt+

π

2

∫ 1

−1
eim

π
2 teik0(x cos π

2 t+y sin π
2 t)dt− i

∫ 1+γ

1
(i)me−m(1−t)ek0x sinh(1−t)eik0y cosh(1−t)dt

]
(6.1.8)

where γ represents the truncation of the complex integration contour.
By direct inspection of the integrands in (6.1.8), it can be observed that the plane

wave terms associated with the complex branches, i.e. first and third terms of the
summation in (6.1.8), decay exponentially with x, the larger the value of t the faster
the decay. These components correspond to evanescent plane waves and it is important
to differentiate them from the evanescent waves in (6.1.2). The former are a result of
the plane wave expansion of cylindrical harmonics representing the progressive part of
the scattered/radiated potential by the body.

This is illustrated in Figure 6.3, which shows the influence of the truncation pa-
rameter γ on the evaluation of (6.1.8). It can be observed that an increase of γ enables
one to accurately represent the imaginary part of the Hankel function for relatively
small values of k0r. As k0r increases, the influence of γ, and thus of the evanescent
plane waves, becomes less important until they are no longer required.

As opposed to the variation with respect to x, the behaviour of the integrands in the
complex integrals of (6.1.8) with respect to y is not straightforward to interpret. From
direct inspection, it could seem that there is no decay in y direction which contradicts
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Figure 6.3: Influence of the truncation parameter γ on the evaluation of the Hankel
function of the first kind for the case x ≥ 0 and with r = x (θ = 0). When only a
single line is visible it means that a perfect match of results is obtained.
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the asymptotic behaviour
√

1
r

of the Hankel function when r → ∞ (Abramowitz and
Segun A., 1964). The method of stationary phase can be used to put light on this.
It relies on the cancellation of sinusoids with rapidly varying phase, such that the
integrals of the following type:

I =
∫ ∞

−∞
F (x)e−iφ(x)dx (6.1.9)

where φ(x) is a rapidly varying function of x over most of the range of integration
and F (x) is a slowly varying function in comparison with φ(x), can be evaluated as
(Ursell, 1960):

I ≈
√

2π
iφ′′(xs)

F (xs)e−iφ(xs) (6.1.10)

where xs is a point of stationary phase, i.e., a point where dφ/dx = 0.
By taking the first integral in (6.1.8) with the change of variable t = −α − 1 and

by setting the truncation limit as ∞ with x = 0, it can be rewritten as:

I = −
∫ ∞

0
(−i)me−mαe−ik0y coshαdα (6.1.11)

The term k0y coshα varies much faster than e−mα and, therefore, they can be
identified as φ(α) and F (α) respectively. Then, as φ′ = k0y sinhα , it follows that
αs = 0. The second derivative φ′′ = k0y coshα evaluated at the point of stationary
phase is equal to k0r where it has been used that y = r sin θ and that θ = π/2 for the
positive branch of y. By subsituting the values in expression (6.1.10), the value of the
integral (6.1.11) reads:

I ≈
√

2π
i(k0r)

e−ik0r (6.1.12)

As expected, the expression obtained follows the same trend
√

1
r

as the asymptotic
behaviour of the Hankel function of the first kind. The same reasoning can be applied
to the last integral of the summation in (6.1.8) leading to the same result.

6.2 Transmitted and reflected spectra

In section 6.1, the representation of progressive cylindrical harmonics as a continuous
superposition of plane waves with amplitudes that depend continuously on the direc-
tion was presented. In this section, the transformation is utilized to define the sum of
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incident, radiated and scattered wave fields as transmitted and reflected angular spec-
tra on both sides of the wave farm domain limited by two arbitrary infinite vertical
planes parallel to the y axis (x = ξ0 and x = ξ1) inside which all the WEC centers Oj

are contained (Figure 6.4):

φRef (x) = cosh k0(z + d)
cosh k0d

∫ π/2−i∞

−π/2+i∞
ARef (χ) eik0(−(x−ξ0) cosχ+y sinχ)dχ (x ≤ ξ0) (6.2.1)

φTrans(x) = cosh k0(z + d)
cosh k0d

∫ π/2−i∞

−π/2+i∞
ATrans(χ) eik0((x−ξ1) cosχ+y sinχ)dχ (x ≥ ξ1)

(6.2.2)

where x = (x, y, z), φRef and φTrans are the reflected and transmitted velocity poten-
tial respectively and ARef (χ) and ATrans(χ) are the reflected and transmitted spectra
respectively. The former represents the angular distribution at x = ξ0 of plane waves
propagating along the negative x direction. The latter describes the angular distribu-
tion at x = ξ1 of plane waves traveling in the positive x direction.
The ambient incident wave forcing reads:

φIn(x) = cosh k0(z + d)
cosh k0d

∫ π/2

−π/2
AIn(τ) eik0(x cos τ+y sin τ)dτ (6.2.3)

where AIn(τ) is the incident spectra and characterizes the angular distribution of
incoming energy at the origin. The representation of a plane wave propagating in a
single direction τ0 is expressed as AIn(τ) = δ(τ − τ0), with δ the Dirac delta function.
It is useful to separate the contribution of the incident transmitted spectra in the
following manner:

AT (χ) = ÃT (χ) + eikξ1 cosχAIn(χ) (6.2.4)

where ÃT (χ) is the transmitted spectrum due to radiation and scattering only.
It can be observed that the integration limits of (6.2.3) differ from those in (6.2.1)
and (6.2.2). The former are real as no decaying waves are present in the propagating
ambient incident wave. In contrast, decaying plane waves are present in the reflected
and transmitted potentials as a result of the decomposition of the diffracted and
radiated progressive cylindrical harmonics into plane waves.

For completeness, the reader should refer to Montiel et al. (2016), who assessed the
influence of evanescent modes on the wave propagation through the MIZ by means of
the slab-clustering method (Montiel et al., 2015a). In the former, a detailed analysis
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Figure 6.4: Schematic representation of the cylindrical harmonics transformation into
plane waves in the horizontal plane. (xj, yj) represent the Cartesian reference system
local to body j and OXY the global Cartesian reference system in which the jth body
center Oj is expressed Oj = (X0j, Y0j). ξ0 and ξ1 are vertical planes parallel to the y
axis and containing the centers of all the bodies in the array.
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of the transformation of both the progressive and evanescent parts of the velocity
potential as a superposition of plane waves is given.

Apart from characterizing the angular distribution of the transmitted and reflected
plane waves, ARef (χ) and ATrans(χ) define the reflected and transmitted energies
respectively relative to the normalized incident energy:

ERef =
∫ π/2

−π/2
|ARef (χ)|2dχ; ETrans =

∫ π/2

−π/2
|ATrans(χ)|2dχ (6.2.5)

where ERef and ETrans are the normalized reflected and transmitted energies respec-
tively.

For the diffraction problem, given here by an array of fixed bodies acted upon by an
incident wave spectrum, the following relationship which expresses energy conservation
in the system needs to hold:

∫ π/2

−π/2
|ARef (χ)|2dχ+

∫ π/2

−π/2
|ATrans(χ)|2dχ =

∫ π/2

−π/2
|AIn(χ)|2dχ (6.2.6)

Based on reflected and transmitted energies, transmission (T ) and reflection (R) co-
efficients can be defined as:

R =

√√√√(∫ π/2

−π/2
|ARef (χ)|2dχ

)
/

(∫ π/2

−π/2
|AIn(χ)|2dχ

)
(6.2.7)

T =

√√√√(∫ π/2

−π/2
|ATrans(χ)|2dχ

)
/

(∫ π/2

−π/2
|AIn(χ)|2dχ

)
(6.2.8)

For the general case, i.e. WECs in energy production regime with diffracted and
radiated wave fields being generated, (6.2.6) would read:

EAbs =
∫ π/2

−π/2
|AIn(χ)|2dχ−

∫ π/2

−π/2
|ARef (χ)|2dχ−

∫ π/2

−π/2
|ATrans(χ)|2dχ (6.2.9)

where EAbs is the normalized energy absorbed by the WECs.

We note that an expression analogous to (6.2.9) was used by Garnaud and Mei
(2009) to compute the power-extraction efficiency of a long array of energy-absorbing
buoys.
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6.2.1 Diffraction

In (6.2.1) and (6.2.2), the general representation of the reflected and transmitted
potentials was given. In this section, the procedure to compute the reflected ARef (χ)
and transmitted ATrans(χ) angular spectra, which characterize the scattered waves by
the bodies in the array held fixed, is detailed

As opposed to section 6.1, where only a single isolated body was considered, here-
after subindex j is used to refer to a body j in a large array of WECs.
Take the ambient incident potential in cylindrical coordinates local to body j defined
as:

φIn(rj, θj, zj) ≈ cosh k0(zj + d)
cosh k0d

M∑
m=−M

f jm Jm(k0rj) eimθj (6.2.10)

where f jm is given by:

f jm = im
∫ π/2

−π/2
AIn(τ) e−imτeik0(X0j cos τ+Y0j sin τ)dτ (6.2.11)

We note that (6.2.11) is of the same form as (2.2.21). The solution (considering
only progressive modes) to the diffraction multiple scattering problem given by the
scattered potentials by each body can be written as:

φSj (rj, θj, zj) ≈ cosh k0(zj + d)
cosh k0d

M∑
m=−M

cjmH
(1)
m (k0rj) eimθj (6.2.12)

where cjm are complex coefficients.
Now, we wish to substitute the expansion of cylindrical harmonics into plane waves
(6.1.5) for (x ≥ 0) into (6.2.12). Given the fact that (6.1.5) was presented for an
isolated body located at the origin of the global Cartesian reference system, it is
required to adapt the expression taking into account the phase difference with respect
to the origin of the jth body Oj. In addition, as the objective is to express the
resultant transmitted potential with respect to a common phase reference point for all
the bodies given by (x, y) = (ξ1, 0), a phase change is applied to (6.1.5) for (x ≥ 0)
which now reads:

Hm(krj) eimθj = (−i)m
π

∫ π/2−i∞

−π/2+i∞
eimχeik0([(x−ξ1)+(ξ1−X0j)] cosχ+(y−Y0j) sinχ)dχ (6.2.13)

By substituting (6.2.13) into (6.2.12), and by adding up the contributions from all
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bodies which have now a common phase reference, the transmitted potential due to
scattering in the array can be expressed as :

φTrans(x) = cosh k0(zj + d)
cosh k0d

∫ π/2−i∞

−π/2+i∞

M∑
m=−M

(−i)m
π

eimχeik0((x−ξ1) cosχ+y sinχ)×

Nb∑
j=1

cjme
ik0((ξ1−X0j) cosχ−Y0j sinχ)dχ+ cosh k0(zj + d)

cosh k0d

∫ π/2

−π/2
AIn(τ)eik0(x cos τ+y sin τ)dτ

(6.2.14)

where Nb represents the total number of bodies.
Then, by means of the DTM of the array defined as:

D = (I − BT)−1 B (6.2.15)

with dimensions Nb(2M+1)×Nb(2M+1) and where B and T are defined as in section
2.3.1, the complex scattered coefficients cjm can be related to the incident coefficients
f jm as:

cjm = Dj
m f

j
m (6.2.16)

Hence, by substituting expression (6.2.16) into (6.2.14) we have:

φTrans(x) = cosh k0(zj + d)
cosh k0d

∫ π/2−i∞

−π/2+i∞

M∑
m=−M

(−i)m
π

eimχeik0((x−ξ1) cosχ+y sinχ)×

Nb∑
j=1

Dmj i
m

[∫ π/2

−π/2
AIn(τ) e−imτeik0(X0j cos τ+Y0j sin τ)dτ

]
×

eik0((ξ1−X0j) cosχ−Y0j sinχ)dχ+ cosh k0(zj + d)
cosh k0d

∫ π/2

−π/2
AIn(τ)eik0(x cos τ+y sin τ)dτ (6.2.17)

With some algebraic manipulations, the transmitted potential due to scattering in the
array can be expressed as in (6.2.2) with the transmitted spectra given by :

ATrans(χ) =
∫ π/2

−π/2
T (χ : τ)AIn(τ) dτ (6.2.18)

where T (χ : τ) is the transmission kernel defined as:

T (χ : τ) = (VTrans(χ))TDVIn(τ) + eik0ξ1 cosχδ(χ− τ) (6.2.19)
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where the elements of VTrans and VInare:

[VTrans(χ)](j−1)(2M+1)+M+m+1 = (−i)m
π

e−ik0((X0j−ξ1) cosχ+Y0j sinχ)eimχ (6.2.20)

with 1 ≤ j ≤ Nb, −M ≤ m ≤ M , and:

[VIn(τ)](j−1)(2M+1)+M+m+1 = imeik0(X0j cos τ+Y0j sin τ)e−imτ (6.2.21)

with 1 ≤ j ≤ Nb, −M ≤ m ≤ M .
Following the same procedure, the reflected spectra can be computed as:

ARef (χ) =
∫ π/2

−π/2
R(χ : τ)Ain(τ) dτ (6.2.22)

where R(χ : τ) is the reflection kernel given by:

R(χ : τ) = (VRef (χ))TDVIn(τ) (6.2.23)

where the elements of VRef read:

[VRef (χ)](j−1)(2M+1)+M+m+1 = im

π
eik0((X0j−ξ0) cosχ−Y0j sinχ)e−imχ (6.2.24)

It is noteworthy that the integration limits of (6.2.18) and (6.2.22) are real as no
decaying plane waves are present in the ambient incident spectrum.

6.2.2 Radiation

A similar procedure as the one described in section 6.2.1 for the diffraction problem
can be applied to compute the radiated transmitted and reflected spectra which char-
acterize the wave field created by the motion of the bodies in array. In this case,
instead of being given by the terms f jm which describe ambient incident plane waves
as a superposition of cylindrical waves, the incident potential acting upon each body
j of the array reads:

φIn(rj, θj, zj) ≈ cosh k0(zj + d)
cosh k0d

M∑
m=−M

gjm Jm(k0rj) eimθj (6.2.25)



6.3 Numerical Implementation 145

with gjm expressed as:

gjm =
∫ π

2

− π
2

AIn(τ, ω0)

Nb∑
i=1
i ̸=j

∑
k

−iω0Γik(τ, ω0)TT
ij(ω0)Rik(ω0)


m

dτ (6.2.26)

where gjm represents the partial cylindrical waves incident to body j due to the ra-
diated fields by the rest of bodies in array in their respective degrees of freedom k.
Only the radiated fields, given by the Radiation Characteristics (RC) of each body
i in motion mode k (Rik) as if it was isolated and without including the resulting
scattered waves in the array are considered. As mentioned in section 3.3, the RC are
computed for a unitary velocity and therefore they are scaled here with the velocity
term −iω0Γik(τ, ω0) with Γik(τ, ω0) the Response Amplitude Operator of body i in the
array in its kth mode of motion for an excitation at angle τ and an angular frequency
ω0. Tij is the Transformation Matrix as defined in (2.3.3).

Expressions (6.2.18), (6.2.20) and (6.2.22) - (6.2.24) are identical for the radiation
problem, whereas the second term of the summation in (6.2.19) should be removed
for the transmission kernel to represent the transmitted radiated wave field. Finally,
VIn(τ) can be identified directly from (6.2.26) as:

[VIn(τ)](j−1)(2M+1)+M+m+1 =

Nb∑
i=1
i ̸=j

∑
k

−iω0Γik(τ, ω0)TT
ij(ω0)Rik(ω0)


m

(6.2.27)

6.3 Numerical Implementation

In sections (6.2.1) and (6.2.2), the expressions to evaluate ARef (χ) and ATrans(χ) were
shown as integral mappings of the incident spectrum. For practical computations, they
need to be approximated by means of a discretization of the transmitted T (χ : τ) and
reflected R(χ : τ) kernels. This is achieved by sampling the angular variables χ and
τ . The former take values in the complex angular domain shown in Figure 6.2, such
that −π

2 + i∞ ≤ χ ≤ π
2 − i∞, whereas the latter are real and defined as −π

2 ≤ τ ≤ π
2 .

The complex variable χ is parameterized as in (6.1.7) and the improper integrals
truncated as −π

2 + iγ ≤ χ ≤ π
2 − iγ with γ ≥ 0. A number of Nt samples are used for

the real part of the domain, −π
2 ≤ χ ≤ π

2 , and Nv samples for the imaginary branches
−π

2 + iγ ≤ χ < −π
2 and π

2 < χ ≤ π
2 − iγ.
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By using this discretization, transmitted and reflected kernels become matrices of
dimensions (2Nv + Nt) × Nt. Consequently, vectors ARef and ATrans have lengths
2Nv +Nt, while AIn is composed of Nt terms:

ARef = RAIn ; ATrans = T AIn (6.3.1)

The numerical integration is performed using a trapezoidal scheme with a nonuniform
grid which is the most suited to the present problem (Montiel et al., 2015a).

6.4 Results

In this section, reflection and transmission coefficients of an array of truncated vertical
cylinders are shown. In addition, the free surface elevation computed by means of the
transformation of cylindrical harmonics into plane waves, and thus using transmitted
and reflected spectra, is shown for a small array of two truncated vertical cylinders.

Results are presented for a water depth of 50m and for the same geometry de-
scretization as shown in Figure 3.3a.

6.4.1 Reflection and transmission coefficients

In this section, we analyze the influence of the angular variable sampling on the trans-
mission and reflection coefficients. For that, two arrays of 3 and 51 truncated vertical
cylinders disposed parallel to the Y axis as shown in Figure 6.5a, i.e. symmetrically
arranged with respect to the x axis, are considered. The bodies are acted upon by a
normalized incident directional spectrum given by:

S(τ) = 2
π

cos2(τ);
∫ π/2

−π/2
S(τ) dτ = 1 (6.4.1)

where the angular variable τ is comprised in the interval −π/2 ≤ τ ≤ π/2 and the
incident wave amplitudes are given by AIn(τ) =

√
S(τ).

Figure 6.6 shows the reflection and transmission coefficients at different incident
wave lengths for the small array of 3 truncated vertical cylinders shown in Figure 6.5a
with d/a = 4. It can be observed that a converged value is reached for all wave lengths
if a sufficient number of samples is used. In particular, the higher the frequency, the
higher the number of discretization samples required. It is found that, as expected,
more energy is transmitted for long incident waves. As the wave length decreases, the
majority of the incident energy is reflected.
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Figure 6.5: Schematic of three and two truncated vertical cylinder array configurations.

Results in Figure 6.6 are presented for a fixed separating distance between bodies.
In Figure 6.7, the angular variable sampling required to achieve a precision of 10−4 in
energy balance (6.2.6) for the transmission and reflected coefficients as a function of
the separation distance between body centers d is shown. It can be observed that the
longer the separating distance, the higher the number of samples required in particular
for short wave lengths. The number of samples seems to increase linearly with the
separating distance.

In Figure 6.8 the reflection and transmission coefficients are plotted as a function
of the wave number and for two arrays composed of 3 and 51 cylinders disposed as in
Figure 6.5a with d = 3a. No significant differences between both cases can be observed.
This is in agreement with the results obtained by Montiel et al. (2015b) who showed
that, for a similar layout, the response of a long array of circular ice floes could be well
approximated using just a small number of them. As observed previously in Figure 6.6,
the transmission coefficient is higher for long waves and decreases with wave length.
The angular variable sampling employed to obtain these results is detailed in Figure
6.9. It can be observed that, in agreement with the trend displayed in Figure 6.6,
the higher the distance from the phase reference the higher the number of samples
required. In spite of the oscillatory behaviour shown in Figure 6.9, the trend of both
the transmission and reflection coeffcients is continuous and relatively smooth.
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Figure 6.6: Transmission a) and reflection b) coefficient as a function of the angular
variable sampling Nt for an array of 3 truncated vertical cylinders disposed parallel to
the Y axis as in Figure 6.5a and with d/a = 4
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Figure 6.7: Number of angular discretization samples Nt as a function of the separating
distance between bodies d for both the transmission a) and reflection b) coefficients of
an array of 3 truncated vertical cylinders as shown in Figure 6.5a.
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Figure 6.8: Transmitted a) and reflected b) coefficients for an array of both 3 and 51
cylinders displayed parallel to axis Y as shown in Figure 6.5a.

6.4.2 Free surface elevation

In 6.4.1, the sensitivity of the angular discretization on the transmission and reflec-
tion coefficients was investigated. In this section, we seek to verify the implementation
of the integral mappings of the incident spectrum (6.2.18) and (6.2.22) to compute
respectively the transmitted ATrans(χ) and reflected ARef (χ) spectra. Using expres-
sions (6.2.1) and (6.2.2), the free surface elevation (η = −1

g
∂φ
∂t

|z=0) for a small array
composed of two truncated vertical cylinders (Figure 6.5b with d = 6a) with a wave
forcing of the form (6.4.1) is evaluated and compared to calculations performed using
the IT as described in Chapter 4.

Two different cases are considered: the scattered potential of the two cylinders as
a result of the incident spectrum as in (6.4.1) and the radiated potential by the freely
floating bodies under the same incident waves. With respect to the former, Figure
6.10 shows the reflected ARef (χ) and transmitted ATrans(χ) energy spectra derived
from expressions (6.2.18) and (6.2.22). For the latter, they have been computed using
the procedure described in section 6.2.2 and are shown in Figure 6.11.

As mentioned in section 6.1, the improper integrals in expressions (6.2.1) and
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Figure 6.9: Sensitivity of the angular variable discretization on the transmission a)
and reflection b) coefficients as a function of the wave length to satisfy (6.2.6) with a
precision of 10−5 .

(6.2.2) need to be truncated. The influence of the truncation parameter, referred
to as γ, on the free surface elevation has been investigated for both the diffraction
and radiation cases and results are displayed in Figures 6.12 and 6.13 respectively.
On the left column, the free surface elevation’s absolute value is depicted. On the
right column the relative difference in percentage between the free surface elevation
computed using equations (6.2.1) and (6.2.2) (referred to as ηPC) and by means of the
IT (indicated by ηIT ) is shown.
From the left column in Figures 6.12 and 6.13 it can be observed that continuity in
free surface elevation η between the transmitted and reflected domains (separated by
a vertical white line) is always achieved for a truncation value γ > 2. From the right
column, it can be observed that the free surface elevation discrepancy between the two
methodologies employed is reduced when the truncation parameter γ is increased. In
addition, it is noteworthy that the differences are concentrated at the transition region
between the transmitted and reflected domains. Indeed, it is in this region where plane
decaying waves are significant. We note that few terms γ are required to accurately
describe the free surface elevation in the domain. This result is in agreement with the
observations by Montiel et al. (2015a).
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Figure 6.10: Reflected a) and transmitted b) energy spectra of the scattered wave field
for a two cylinder array with separating distance d = 6a between bodies with a the
cylinder radius. The wave forcing is as in (6.4.1) with a wave length λ/a = 10.
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Figure 6.11: Reflected a) and transmitted b) energy spectra of the radiated wave field
for a two cylinder array with separating distance d between bodies with a the cylinder
radius. The wave forcing is as in (6.4.1) with a wave length λ/a = 10.
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6.5 Discussion and conclusions

In this Chapter, a methodology to transform cylindrical harmonics into plane waves
has been presented based on the work by Montiel et al. (2015a). It enables one to
characterize the modified wave field at the outlet of a large wave farm as a result
of the interaction between ambient incident waves and the WECs. Thus, one can
compute the resultant transmitted spectrum to be given as input boundary condition
to a spectral wave model to study its propagation to the shoreline.

It has been observed that with a fine enough angular variable sampling, converged
transmission and reflection coefficients which satisfy the diffraction energy conserva-
tion equation with a precision of 10−4/10−5 are obtained. The number of samples
has been found to be dependent on both the frequency and the distance of the bod-
ies from the common phase reference. In particular, the higher the latter two the
finer the discretization required. In addition, the computation of the reflected and
transmitted spectra has been verified by means of a comparison of the free surface
elevation evaluated with both the IT only and using the transformation of cylindrical
harmonics to plane waves. The dependance of the transmitted and reflected potential
on the complex branches truncation parameter has been analyzed showing that few
terms are required to achieve a converged result.

Due to time limitations, the scope of work of this Chapter has been bounded
to the verification of the cylindrical-plane wave transformation implemented and the
coupling with a spectral wave model has not been addressed in detail. However, some
considerations with respect to the latter are given in the following paragraphs.

One of the assumptions inherent to the use of a BEM solver is that the water
depth is constant. This enables one to define an impermeable boundary condition on
the perfectly flat seabed. While for a single WEC, with a characteristic length say
on the order of ∼ 10 m, this hypothesis can be considered valid; for large wave farms
composed of O(100) devices separated by distances say on the order of ∼ 100 m and
hence occupying an area of several km2, significant bathymetry variations are to be
expected.

In addition to the constant water depth hypothesis, the fact of characterizing the
angular distribution of transmitted plane waves at a single point of the wave farm
outlet (x, y) = (ξ1, 0) is implicitly linked to two assumptions. First, an homogeneous
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Figure 6.12: Sensitivity study of the improper integral truncation parameter γ on
the scattered free surface elevation (η). Plots on the left column (a, c, e) represent
the absolute value of the scattered free surface elevation; right column (b, d, f) show
the difference in percentage between the free surface elevation computed with the
interaction theory (ηIT ) and with the transformation of cylindrical harmonics to plane
waves (ηPC). The incident wave forcing is as in (6.4.1) and the wave length λ/a = 10.
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Figure 6.13: Sensitivity study of the improper integral truncation parameter γ on
the radiated free surface elevation (η). Plots on the left column (a, c, e) represent
the absolute value of the scattered free surface elevation; right column (b, d, f) show
the difference in percentage between the free surface elevation computed with the
interaction theory (ηIT ) and with the transformation of cylindrical harmonics to plane
waves (ηPC). The incident wave forcing is as in (6.4.1) and the wave length λ/a = 10.
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distribution of the WECs on the wave farm region and, second, a domain whose
length along the y direction can be considered as “infinitely” large. Intuitively, with
respect to the former, one can imagine that if the WECs arrangement is not regular,
as can happen in case several clusters of multiple bodies are formed, the spectrum at
the outlet of the wave farm will vary significantly whether it is measured behind a
cluster or in the spacing between two of them. With regard to the extension along
the y-direction, if the domain is finite the angular distribution of plane waves at the
transition area between the array and the open sea will be governed by the incident
spectrum, as opposed to the transmitted spectrum at the wave farm area which is
highly influenced by the presence of the WECs.

In order to avoid this limitation, the angular distribution of the transmitted wave
field should be characterized at different points of the wave farm domain outlet as if
being perceived by different “observers”. With the procedure shown in this Chapter,
which offers great computation savings as a consequence of utilizing an integral map-
ping of the incident spectrum to express the reflected and transmitted wave fields, the
characterization of the transmitted spectrum at different points cannot be achieved.
This is because the superposition of the wave fields generated by each of the units in
the array is done on a plane wave basis by imposing a common phase reference, in
this case at (x, y) = (ξ1, 0). However, an alternative procedure could be envisaged. It
would consist in transferring the scattered and radiated cylindrical wave fields gener-
ated by each unit to a common origin, i.e. the points at which the spectrum is to be
characterized. This transformation was shown in section 4.2.2 by means of the multi-
pole expansion matrix M from Graf’s addition theorem. Once this step accomplished,
the transformation of the cylindrical harmonics at each point into plane waves could
take place using equation (6.1.5).

While the use of this alternative procedure could enable one to circumvent the
limitation of characterizing the wave field at the outlet of the wave farm with a unique
spectrum, tests on the sensitivity of the number of points considered and their location
at the interface between the BEM solver and the spectral wave model should be carried
out. In addition, the use of the multipole expansion from Graf’s addition theorem is
associated with an increase in the number of angular modes required to achieve a
converged solution. Thus, depending on both the number of points required at the
farm domain outlet and the increase in angular mode truncation, for wave farms
composed of a large number of units O(100) the applicability of the proposed BEM-
spectral wave model coupling methodolgy could be hampered.





Chapter 7

Conclusions

In the present work we have implemented and verified a numerical tool based on the
Direct Matrix Method interaction theory. It enables one to compute the hydrodynamic
interactions amongst a large number of bodies O(100) of arbitrary shape, such as
Wave Energy Converters (WECs), provided they satisfy a special spacing requirement.
Such configurations cannot be evaluated with standard Boundary Element Method
(BEM) solvers, which are the state-of-the-art in wave-structure interaction, due to
their excessive computational complexity.

The savings in computational time provided by the interaction theory have allowed
us to study the impact of hydrodynamic interactions on the energy capture of a generic
bottom-referenced heave-buoy array composed of 60 hemispheric floats.

In addition, we have implemented a numerical technique which transforms the
interaction theory output such that it could be input to a spectral wave model to
study the impact large clusters of bodies may have on the local coast wave climate.

Based on a thorough literature review and in line with the objectives defined in
Chapter 1, the main contributions of this work are:

• The implementation in the open-source BEM solver NEMOH of a methodology
to compute the isolated body hydrodynamic characteristics, including both the
far-field and the near-field contributions, in the form required by the Direct
Matrix Method interaction theory and which allows individuals to use it in a
straightforward manner.

• The verification of the modifications introduced to the standard NEMOH BEM
solver with comparisons to, on the one hand, the output from an alternative
methodology to compute the isolated body hydrodynamic operators accounting
only for the far-field contribution and, on the other hand, a semi-analytical



158 Conclusions

solution for truncated vertical circular cylinders.

• To display the frequency-dependent patterns of the isolated body hydrodynamic
operators which, despite the fundamental role they play in the interaction theory,
had not been plotted before.

• The derivation and numerical verification of novel expressions relating the com-
ponents of two hydrodynamic operators of the isolated body, the Force Transfer
Matrix and the Radiation Characteristics, as well as relations between the Radi-
ation Characteristics with the radiation damping coefficients and the excitation
forces for a single body and a body in array. While based on the Haskind’s
relation, they had not been given before in the context of the interaction theory
and they can be useful to test its accuracy.

• The verification of the interaction theory implementation with a comparison of
its output against results from both direct NEMOH calculations and a semi-
analytical solution. The comparisons have clearly shown the effect of the near-
field on the accuracy of the added-mass hydrodynamic coefficients when the
bodies are set in close proximity.

• To address the inaccuracies introduced by the wide-spacing approximation, i.e.
no near-field contribution accounted for, in the estimation of the energy capture
of a multi-body wave energy converter composed of 60 closely-spaced floats.
It has been shown that the incorrect added-mass coefficients, as a result of
dispensing with evanescent modes, are compensated by the magnitude of the
Power Take-Off damping and that their impact on the total energy capture of
the device is not significant.

• The implementation of a methodology to transform cylindrical harmonics into
plane waves and a critical evaluation of the possibilities it offers to address the
impact large clusters of WECs may have on the distal coast wave climate.

Amongst all the results produced in this body of work, we shall highlight as key
finding:

• The “saturation” of the power production increase of a generic bottom-referenced
heave-buoy array WEC when a certain threshold in terms of the number of floats
installed in a given device footprint is exceeded. It has been found that forming
a tight cluster of too many units for the multi-body WEC layout analysed has
a negative impact on the power production. Indeed, the same annual energy
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capture can be obtained with a 60-float and a 36-float configuration. This has
very important implications for cost reduction.

The numerical tool developed and the subsequent analysis carried out in this body of
work are entirely based on linear potential wave theory and have been bounded to the
frequency domain. However, further studies in time domain are required to accurately
address the impact of motion limitations and sophisticated control strategies on the
performance of the generic multi-body WEC floats. In that case, the transformation of
the base of hydrodynamic coefficients in the frequency domain into impulse response
functions in time domain must be achieved. For that, the interaction theory used
herein may present some limitations:

• The use of evanescent modes has been found to be essential for an accurate
evaluation of the added-mass coefficient matrices for closely-spaced bodies, in
particular their off-diagonal terms. However, an increase of the evanescent modes
truncation has been observed to slow down computations quite significantly.
Thus, for cases involving a large number O(100) of closely-spaced floats such as
in multi-body WECs, the computation of accurate added-mass hydrodynamic
coefficients may be associated with excessive computational times, let apart the
tedious task of checking numerical convergence for each individual term of the
hydrodynamic coefficient matrix. A detailed analysis of the effect of spurious
added-mass coefficients on the float’s response in the time domain should be
performed.

Finally, if the development of multi-body WECs is pursued it might be required to
perform simulations on arrays composed of several clusters of closely-spaced floats, i.e.
≫ O(100) bodies, and to address their potential impact on the distal wave climate.
Further research is needed in these areas, in particular the present body of work
has opened the possibility:

• To apply the transformation of cylindrical harmonics into plane waves to couple
a potential flow solver and a spectral wave model.

• To couple, on the one hand, the methodology implemented in this work to com-
pute the solution to the boundary value problem of an isolated body of arbitrary
geometry and, on the other hand, alternative methodologies to the interaction
theory used herein which are more suitable to deal with the hydrodynamic in-
teractions amongst several clusters of bodies.
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Appendix A

Derivation of outgoing partial wave
functions

The following analysis has been extracted and adapted from section 3.4.1 in Child
(2011).

Take Laplace’s equation (2.1.4) in cylindrical polar coordinates:

∂2φ

∂r2 + 1
r

∂φ

∂r
+ 1
r2
∂2φ

∂θ2 + ∂2φ

∂z2 = 0 (A.0.1)

Assume a separable solution for the potential of the form:

φ = σr(r)σθ(θ)σz(z) (A.0.2)

Substitution of (A.0.2) into (A.0.1), with the introduction of a separation constant
−µ2 leads to:

σ
′′
r

σr
+ σ

′
r

σrr
+ σ

′′
θ

r2σθ
= −σ

′′
z

σz
= −µ2, µ ∈ C (A.0.3)

where the prime ′ denotes differentiation with respect to the functional variable.

A.1 Separation of the z-coordinate

Take the middle and right-hand side of expression (A.0.3):

σ
′′

z − µ2σz = 0 (A.1.1)
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The general solution for σz(z) of (A.1.1) is:

c1 coshµz + c2 sinhµz, c1, c2 ∈ C (A.1.2)

Application of the boundary condition on the seabed (2.1.8) implies c2 = 0, and
the free surface BC (2.2.6) leads to:

ω2

g
= µ tanhµd (A.1.3)

for non-trivial solutions. Equation (A.1.3) defines the eigenvalues µ in the vertical
direction and is known as dispersion relation. Solutions of the equation are either
purely real or imaginary (Mei, 1989, 4.2,4). Those with negative real or imaginary
parts will be abandoned, since the corresponding velocity potentials do not satisfy the
radiation condition (2.2.3). If µ is real, a unique solution µ = k0 is obtained, known
as the progressive wave number which corresponds to travelling wave solutions and
satisfies:

ω2

g
= k0 tanh k0d, k0 ≥ 0 (k0 ∈ R) (A.1.4)

If, on the other hand, µ is purely imaginary then there exists a countably infinite
set of solutions µ = ikq (q = 1, 2, . . . ) to (A.1.3). The values kq are known as the
evanescent wave numbers and are given by:

ω2

g
= −kq tan kqd, kq ≥ 0 (kq ∈ R), q ≥ 1 (q ∈ N) (A.1.5)

The spatial functions associated with the eigenvalues take the form:

σqz(z) =

cosh k0z, q = 0
cos kqz, q ≥ 1 (q ∈ N)

(A.1.6)

A.2 Separation of the θ-coordinate

From the outermost expressions in (A.0.3), a further separation constant −v2 may be
introduced to give:

−µ2r2 − σ
′′
r r

2

σr
− σ

′
r

σr
= σ

′′
θ

σθ
= −v2, v ∈ C (A.2.1)
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The middle and right-hand expressions of this yield:

σ
′′

θ + v2σθ = 0 (A.2.2)

If v ̸= 0, equation (A.2.2) has the following solution for σθ:

c1e
ivθ + c2e

−ivθ, c1, c2 ∈ C (A.2.3)

However, continuity of the potential as θ increases from 2π to 0 requries that v = n

be an integer. Hence the values that v may take form a further set of eigenvalues. In
the degenerate case where v = 0, equation (A.2.2) may be integrated directly to give
the solution:

c1θ + c2, c1, c2 ∈ C (A.2.4)

Applying continuity of the potential again means that c1 = 0, with the (constant)
remainder of this solution capable of being incorporated into (A.2.3) as the v = 0 case.
The eigenfunctions in the angular coordinate are therefore given by:

σn±
θ (θ) = e±inθ, n ∈ Z (A.2.5)

A.3 Separation of the r-coordinate

The outermost expressions of (A.2.1) lead to:

−µ2r2 − σ
′′
r r

2

σr
− σ

′
rr

σr
= −v2 (A.3.1)

Inserting the eigenvalues µ and v gives an equation for every pair of values. In the
progressive case, the transformation r̂(r) = k0r with σ̂r(r̂(r)) = σr(r) then leads to:

σ̂
′′

r r̂
2 + σ̂r

′
r̂ + (r̂2 − n2)σ̂r = 0 (A.3.2)

This is Bessel’s equation in the variable r̂, which has linearly independent solutions
Jn(r̂)and Yn(r̂) (Bessel functions of the first and second kind of order n). It will in
fact be convenient to express the solution using the Hankel function of the first kind
of order n:

Hn = H(1)
n = Jn + iYn (A.3.3)
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The required space is still spanned if the function Hn is used instead of Yn. Fur-
thermore this choice of function allows the radiation condition (2.2.3) to be satisfied.
Hence the solution for σr in the original variable is:

c1Jn(k0r) + c2Hn(k0r), c1, c2 ∈ C (A.3.4)

which exists for each n. The evanescent case involves substitution of the imaginary
eigenvalues into (A.3.1). Using the transformation r̂(r) = kqr with σ̂r(r̂(r)) = σr(r),
this gives:

σ̂
′′

r r̂
2 + σ̂

′

rr̂ + (−r̂2 − n2)σ̂r = 0 (A.3.5)

This is the modified Bessel equation in kqr, so we have the following solution for
σr:

c1In(kqr) + c2Kn(kqr), c1, c2 ∈ C, q ≥ 1 (A.3.6)

for each pair q, n. In and Kn are the modified Bessel functions of the first and
second kind of order n. Application of the radiation condition (2.2.3) to solutions
(A.3.4) and (A.3.6) for large argument prohibits inclusion of the functions Jn and In.
The permitted solution in the r-coordinate are:

σq,nr (r) =

Hn(k0r), q = 0, n ∈ Z

Kn(kqr), q ≥ 1 (q ∈ N), n ∈ Z
(A.3.7)

A.4 General solution

For each pair of eigenvalues (µ, v), the separable solution for φ may be reconstructed
as the product of spatial functions (A.1.6), (A.2.5) and (A.3.7) in each coordinate.
After some manipulation, the solutions containing σn−

θ may be seen to differ from
those containing σn+

θ by only a scalar factor and so are subsequently omitted. The
general soltuion for φ may then be written as a linear combination of outgoing partial
wave functions:

(
ψS
)
nm

=


cosh k0z
cosh k0d

Hn(k0r) einθ, q = 0, n ∈ Z

cos kqz Kn(kqr) einθ, q ≥ 1 (q ∈ N), n ∈ Z
(A.4.1)

where it has been taken into account that any solution can be written as a linear
combination of eigenfunctions of the form (A.1.6) regardless of the pre-factor used. In
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this case, 1
cosh k0d

has been chosen.





Appendix B

Transformation Matrix

The method of solution of the Direct Matrix Method interaction theory involves treat-
ing the outgoing waves from body i, i.e. diffracted and radiated waves, as incident
waves to the other bodies of the array. It is important to note that the diffracted and
radiated wavefields from body i are expressed in its local reference system. Hence,
there is a need to transform them into incident waves to another body j in its local
reference system. The transformation is based on the Graf’s addition theorem for
Bessel functions (Abramowitz and Segun A., 1964) which states that:

Hm(k0ri)eim(θi−αij) =
∞∑

q=−∞
Hm+q(k0Lij)Jq(k0rj)eiq(π−θj+αij) (B.0.1)

Km(knri)eim(θi−αij) =
∞∑

q=−∞
Km+q(knLij)Iq(knrj)eiq(π−θj+αij) (B.0.2)

where Lij is the distance between the centers of bodies i and j and αij is the angle
at body i between the positive x-direction and the line joining the center of i to that
of j in an anti-clockwise direction (Figure 2.4). They are expressed respectively as in
(2.3.4) and (2.3.5).

Expressions (B.0.1) and (B.0.2) are valid only if ri < Lij which is ensured by
satisfying that the circumscribing cylinder of body i does not contain the center of
the circumscribing cylinder of body j (Figure B.1). By replacing index q by −q, and
by noting that:
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(a) (b)

Figure B.1: Authorized a) and unauthorized b) relative position between bodies to
comply with Graff’s addition theorem restriction.

J−q = (−1)qJq (B.0.3)
I−q = Iq (B.0.4)

expressions (B.0.1)-(B.0.2) can be rewritten as:

Hm(k0ri)eim(θi) =
∞∑

q=−∞
Hm−q(k0Lij)eiαij(m−q)Jq(k0rj)eiqθ (B.0.5)

Km(knri)eim(θi) =
∞∑

q=−∞
Km−q(knLij)(−1)qeiαij(m−q)Iq(knrj)eiqθj (B.0.6)

The terms on the left hand side are the functions representing the scattered partial
waves of angular mode m and depth mode n in the local cylindrical reference system
of body i (2.2.12), whereas the last two terms on the right hand side are the functions
representing the incident partial wave of angular mode q and depth mode n in the
local reference system of body j (2.2.23). Thus, the following applies:

ψSi = Tijψ
I
j (B.0.7)

where ψSi is the vector of scattered partial wave functions in the local reference
system of body i, ψIj is the vector of incident partial wave functions in the local
reference system of body j and Tij is referred to as “transformation matrix” whose
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elements are:

(Tij)mqnn =

Hm−q(k0Lij)eiαij(m−q) n = 0
Km−q(knLij)(−1)qeiαij(m−q) n ≥ 1

(B.0.8)

As the transformation in (B.0.1)-(B.0.2) does not affect the depth variation of the
partial cylindrical waves, a single index n is used in (B.0.8).





Appendix C

Single truncated vertical cylinder
at finite depth

The work by Sabuncu and Calisal (1981) presents an analytical formulation of the
hydrodynamic coefficients for vertical circular cylinders at finite depth. The analysis
follows Garrett’s method (Garrett, 1971) and divides the fluid into an inner and an
outer region as shown in Figure (C.1). A potential formulation is used based on the
hypothesis of irrotationality and incompressibility of the flow. The solution of the
potential is found separately for each region and, by means of imposing its continuity
at the boundary as well as continuity of the velocity, the solution for the whole domain
is found.

C.1 System of equations

The following formulation has been extracted from the work by Sabuncu and Calisal
(1981) but has been slightly modified in order to correct several typographical errors
encoutered in the original work1. The changes have been highlighted with red colour.
The added mass and damping coefficients for heave mode are calculated using:

a22

ρD
+ i

b22

ωρD
= d

h− d

1
2 − 1

8

(
a

d

)2
+ 1

2 A0 + 2
π

(
d

a

) ∞∑
n=1

An(−1)n
n

I1
(
nπa
d

)
I0
(
nπa
d

)
 (C.1.1)

where a22 and b22 are the added mass and damping coefficients for heave, D is the
1The author would like to thank Sander Calisal for having provided an original copy of the

equations through direct communication which has been very useful to identify the typographical
errors.
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Figure C.1: Coordinate system. Source: Sabuncu and Calisal (1981)

volume of the cylinder in water and An are the complex coefficients which are solution
of the following linear set of equations:

γnj Aj = hn (C.1.2)

Expressions for γnj and hn are:

γnj =
(
δnj + 16Uj(LP0(n, j) +

∞∑
q=1

K0(mqa)
K1(mqa)Pq(n, j)

)
+ i

32UjTP0(n, j)
πm0a

(C.1.3)

hn = 4a
d

(
LP0(n, 0) +

∞∑
q=1

K0(mqa)
K1(mqa) Pq(n, 0)

)
− 2(−1)n

(nπ)2 + i
8

πm0d
TP0(n, 0)

h0 = 4a
d

(
LP0(0, 0) +

∞∑
q=1

K0(mqa)
K1(mqa) Pq(0, 0)

)
−
(

1
3 − 1

2

(
a

d

)2
)

+ i
8

πm0d
TP0(n, 0)

(C.1.4)

where:

δnj =
 1 if n = j

0 if n ̸= j
(C.1.5)
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Uj = jπ

2
I1
(
j πa
d

)
I0
(
j πa
d

) j = 1, 2, 3, .... U0 = 0 (C.1.6)

P0(n, j) = (−1)n+j(m0d sh(m0d))2

[(2m0h) + sh(2m0h)] [(m0d)2 + (nπ)2] [(m0d)2 + (jπ)2] (C.1.7)

Pq(n, j) = (−1)n+j(mqd sin(mqd))2

[(2mqh) + sin(2mqh)] [(mqd)2 − (nπ)2] [(mqd)2 − (jπ)2] (C.1.8)

L = J0(m0a) J1(m0a) + Y0(m0a)Y1(m0a)
[J1(m0a)]2 + [Y1(m0a)]2 (C.1.9)

T = 1
[J1(m0a)]2 + [Y1(m0a)]2 (C.1.10)

The values m0 and mq are the solution of the following dispersion equations:

m0 tanh (m0h) = ω2

g
(C.1.11)

mq tanh (mqh) = −ω2

g
(C.1.12)

C.2 Numerical implementation

The equations presented in Section C.1 have been implemented in the programming
language Fortran. It is obvious that the infinite series cannot be handled numerically
and that a finite truncation is required. In the work of Sabuncu and Calisal (1981) a
total of 20 terms were used for the computations. In Section C.4 the impact of the
truncation order will be analysed by performing a convergence analysis.
In order to solve the dispersion equations (C.1.11 and C.1.12), which do not have an
explicit analytical solution, numerical methods have been used. With respect to the
former, it has been solved using the Newton-Raphson iterative algorithm. Briefly, this
method enables to successively find better approximations to the roots of the function
to be solved. In this case:

f(m0) = m0 tanh(m0h) − ω2

g
(C.2.1)
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To do so, the initial guess is replaced by:

m1
0 = m0

0 − f(m0
0)

f ′(m0
0)

(C.2.2)

where the supperindexs represent the iteration.
In order to start the iterations as close as possible to the solution, the approxi-

mate analytical solution to Equation(C.2.1) provided by Guo (2002) has been used to
generate m0

0:

y = x2(1 − e−xβ )− 1
β (C.2.3)

where x = hω/
√
gh, y = m0h and β = 2.4908.

With respect to (C.1.12), it has been solved using the bisection algorithm. Briefly,
this method enables to find the root of a continuous function defined in an interval
[a, b] where f(a) and f(b) have opposite signs. For the particular case of the function:

f(mq) = mq tan(mqh) + ω2

g
(C.2.4)

the interval is [π/2h+ (j − 1)π/h+ ϵ, π/h+ jπ/h− ϵ], with j the truncation and ϵ a
small value defined to to ensure that all the solutions are found (Section C.5).

For both Newton and bisection iterative algorithms, some parameters to control
the precision of the solution as well as the maximum number of iterations allowed have
been incorporated in the numerical routine.

Most of the functions used in the formulae are included in the Intel® Math Kernel
Library, such as Bessel functions Jν(x) and Yν(x). Others, such as the modified Bessel
functions Kν(x) and Iν(x) have been obtained from the library SPECFUN (Cody and
Stoltz, 2013).

To solve the linear complex system of equations (C.1.2), the LAPACK routine
ZGESV based on a LU decomposition has been used. Other LAPACK routines that
have been utilized include DGELS (to solve an overdetermined real linear system) and
ZGESVD (to obtain the singular value decomposition of a complex matrix). Details
of these numerical procedures can be found in Quarteroni et al. (2007).

C.3 Results

The graphs in Figures (C.2)-(C.7) show a comparison between the results obtained
from the implementation of equations listed in (C.1) and the values provided by
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Sabuncu and Calisal (1981). It is important to remind that, in both computations,
the number of truncation terms used is 20. It can be observed that the agreement
between the resutls is in general very good. It has to be precised that the data by
Sabuncu and Calisal (1981) has been digitalized and this may have introduced some
error with respect to the original values. This is particularly important for the added
mass rather than for the damping coefficients.
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Figure C.2

In addition, by taking advantage of the analytical expressions for the limiting case
ω → 0 (C.3.1), a comparison showing analytical and numerical results for ω = 10−3

has been undertaken (Table C.1). Similarly to the previous case, the agreement is
very good.

ImA0 = πa2

2dh ; b22

ωρD
= πa2

4h(h− d) (C.3.1)
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C.4 Accuracy

The solution of the system of equations (C.1.2) is not exempt from numerical errors.
The objective of this section is to identify their source and try to quantify them so as
to have a precision-controlled final result.

As stated in Quarteroni et al. (2007, pg.44), numerical errors arise from two sources:
the rounding errors introduced by the computer while solving the problem and the
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truncation of infinite operations that have to be completed in a finite number of
steps. With respect to the former, the computations have been performed using double
precision which enables to dispose of up to 15 significant digits.

As has already been mentioned in Section C.4, the solution of the dispersions
equations (C.1.11) and (C.1.12) involves a numerical error which can be controlled in
the routine by establishing the desired difference between their left and right sides by
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means of a parameter.

Another source of rounding error may come from the resolution of the linear system
of equations. An important quantity to take into account when solving such systems,
i.e. Ax = b , is the condition number. It gives an indication of how sensitive is the
result of the system (x) to errors of the data (b). As a general rule of thumb, as stated
by Cheney and Kincaid (2008, pg.321), it can be considered that the number of digits
of precision lost in the resolution of the system is equal to log10(k(A)) where k(A)
represents the condition number of the matrix A. Ideally, we are interested in having
a small condition number to lose as less precision digits as possible. The graphs
in Figures (C.8) to (C.13) provide the value of the condition number for different



C.4 Accuracy 191

h/a t/a πa2/2dh Im(A0) πa2/4h(h− d) b22/ωρD
0.5 0.1 7.85398163 7.85398149 15.70796326 15.70796299
0.5 0.3 15.70796326 15.70796298 5.23598775 5.23598766

1 0.1 1.74532925 1.74532926 7.85398163 7.85398167
1 0.3 2.24399475 2.24399471 2.61799387 2.61799383
1 0.5 3.14159265 3.14159250 1.57079632 1.57079625
2 0.1 0.41336745 0.41336745 3.92699081 3.92699077
2 0.3 0.46199891 0.46199890 1.30899693 1.30899691
2 0.5 0.52359877 0.52359879 0.78539816 0.78539818
2 1 0.78539816 0.78539818 0.39269908 0.39269909
3 0.3 0.19392547 0.19392547 0.87266462 0.87266461
3 0.5 0.20943951 0.20943951 0.52359877 0.52359879
3 1 0.26179938 0.26179939 0.26179938 0.26179939
3 2 0.52359877 0.52359879 0.13089969 0.13089969
5 0.1 0.06411413 0.06411413 1.57079632 1.57079639
5 0.3 0.06684239 0.06684239 0.52359877 0.52359879
5 0.5 0.06981317 0.06981316 0.31415926 0.31415926
5 1 0.07853981 0.07853981 0.15707963 0.15707963
5 2 0.10471975 0.10471975 0.07853981 0.07853981

10 0.1 0.01586662 0.01586662 0.78539816 0.78539817
10 0.3 0.01619377 0.01619377 0.26179938 0.26179940
10 0.5 0.01653469 0.01653469 0.15707963 0.15707962
10 1 0.01745329 0.01745329 0.07853981 0.07853981
10 3 0.02243994 0.02243994 0.02617993 0.02617993

Table C.1: Comparison between analytical and numerically calculated values (ω =
10−3)

levels of truncation. It can be observed that the matrix of the system (C.1.2) is well
conditioned meaning that the lost of precision related to its resolution is insignificant.
The condition number can be computed using the following expression (Quarteroni
et al., 2007, pg.63):

k(A) = σmax
σmin

(C.4.1)

where σmax and σmin represent the highest and lowest singular values of the matrix A.

With respect to the infinite series truncation, a convergence analysis has been
performed and some of its results are presented in Figures (C.8) to (C.13). It can
be observed that the convergence curves follow different trends depending on the
combination of input parameters. In all the cases analysed the level of convergence
is very satisfactory as at the beginning of the iterations the difference with respect to
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Heave w=1rad/s, h/a=1, t/a=0.1

1/nt
A

d
d

ed
 M

as
s 

C
o

ef
fi

ci
en

t

0.02 0.04 0.06 0.08 0.1
9.565

9.570

9.575

9.580

9.585

9.590

9.595
Convergence Curve
Envelope (Peaks, R2=0.999)
Envelope (Troughs, R2=0.999)
Envelope (Troughs, first dismissed, R2=0.999)
Envelope (Peaks, R2=0.9999)
Envelope (Troughs, first dism., R2=0.9999)
Envelope (Peaks, R2=0.99999)
Envelope (Troughs, first dism., R2=0.99999)
Envelope (Peaks, R2=0.999999)
Envelope (Troughs, first dism., R2=0.999999)

nt

A
d

d
ed

 M
as

s 
C

o
ef

fi
ci

en
t

M
at

ri
x 

C
o

n
d

it
io

n
 N

u
m

b
er

0 50 100 150 200 250
9.570

9.571

9.572

9.573

9.574

9.575

9.576

9.577

9.578

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

Added Mass Coefficient
Matrix Condition Number

nt

A
d

d
ed

 M
as

s 
E

xt
ra

p
o

la
ti

o
n

0 50 100 150 200 250 300
9.5772

9.5773

9.5774

9.5775

9.5776
Peak (R2=0.999)
Trough (R2=0.999)
Trough (R2=0.999, first dism.)
Peak (R2=0.9999)
Trough (R2=0.9999, first dism.)
Peak (R2=0.99999)
Trough (R2=0.99999, first dism.)
Peak (R2=0.999999)
Trough (R2=0.999999, first dism.)

nt

lo
g

 (
re

la
ti

ve
 e

rr
o

r)

0 50 100 150 200 250
-5.4

-5.2

-5.0

-4.8

-4.6

-4.4

-4.2

-4.0

-3.8

Peak (R2=0.999)
Trough (R2=0.999)
Trough (R2=0.999, first dism.)
Peak (R2=0.9999)
Trough (R2=0.9999, first dism.)
Peak (R2=0.99999)
Trough (R2=0.99999, first dism.)
Peak (R2=0.999999)
Trough (R2=0.999999, first dism.)

Figure C.8

the converged value is already less than 0.2%.
For an accurate estimation of the error, the envelopes of the convergence curve (for

the oscillating trends) and the curve itself (for the non-oscillating) have been expressed
in terms of the inverse of the truncation (1/nt) and fitted by means of a polynome
P (1/nt):

P (1/nt) = a0 + a1(1/nt) + a2(1/nt)2 + a3(1/nt)3 + ... (C.4.2)

That way, the term a0 provides an extrapolation of the hydrodynamic coefficients
values which would correspond to having infinite nt (bottom left graph of Figures
(C.8) to (C.13)).

The coefficients of the polynome have been obtained solving the following overde-
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termined system using a least-squares method:


c1

c2
...
cn

 =



1 1
nt1

(
1
nt1

)2
· · ·

(
1
nt1

)k
1 1

nt2

(
1
nt2

)2
· · ·

(
1
nt2

)k
... ... ... . . . ...
1 1

ntn

(
1
ntn

)2
· · ·

(
1
ntn

)k




a0

a1
...
ak

 (C.4.3)

where c1,c2,..., cn represent the hydrodynamic coefficients for different truncation values
1, 2, .., n, and a0, a1, ..., ak represent the unknown coefficients of the polynome of order
k.
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Figure C.10

The accuracy of the fitting has been controlled by means of the R2 coefficient of
the regression defined as:

R2 = 1 − SSres
SStot

(C.4.4)

where SSres represents the total sum of squares of residuals and SStot the total sum
of squares.

In Figures (C.10, C.11) convergence of the extrapolated hydrodynamic coefficients
when increasing R2 can be observed. Another important aspect is that the trend of
the extrapolated values does not change considerably when the truncation is increased
(for high enough R2). This is valuable for the cases where the values of parameters d
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Figure C.11

and h restrict the truncation index j as will be seen in Section C.4.
A similar trend can be observed in Figures (C.8-C.9, C.12-C.13). The values of

the extrapolation converge for high values of R2 and they do not change significantly
when the truncation is increased. However, it is observed that for certain cases there
is no smooth transition but an abrupt change of the extrapolated value. This is due
to a change in the order of the polynome to adapt to the R2 coefficient imposed.

It is worth mentioning that a moving-average filter has been used to smooth the
small disturbances in the non-oscillating curves which difficult the fitting process.
This is shown in Figures (C.10) and (C.11) where a clear deviation from the trend
for values of nt close to zero is observed for the non-filtered fitted curve. This filter
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Figure C.12

involves loosing some of the data at the extremes, but this is not a problem provided
sufficient data points are available.

C.5 Parameters sensitivity analysis

The objective of this section is to identify potential numerical singularities that could
arise if some restrictions with respect to the input parameters’ value (w, h, d, a) were
not respected.

By inspecting the formulae, it can be observed that the value m0 appears in the
denominator of the imaginary term of γnj and hn, as well as in the first term of the
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Figure C.13

denominator of P0(n, j). This directly suggests that the value of the angular frequency
cannot be input as zero as in such case, the solution of the dispersion equation (C.1.11)
would be m0 = 0.

A source of numerical singularity could arise from the second term in the numerator
(m0d sh(m0d))2 or the first term of the denominator (sh(2m0h)) of P0(n, j). In case
the hyperbolic sinus argument was too big, the previous expressions would have a value
out of the range r that can be represented with an architecture of 64bits (Fouilloux
and Corde, 2014):

2.2 × 10−308 6 |r| 6 1.8 × 10308 (C.5.1)
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Therefore the following restrictions have been imposed:

(
x
ex − e−x

2

)2

< c (C.5.2)

ey − e−y

2 < c (C.5.3)

where x = m0d, y = 2m0h and c = 1.8 10308. If expression (C.5.2) is developed, we
have:

x
ex − e−x

2 < c
1
2 ; ln(x)+ln

(
ex − e−x

2

)
< ln(c) 1

2 ; ln(x)+ln
(
ex − e−x

)
−ln(2) < ln(c) 1

2

if x → ∞ ⇒ e−x ∼ 0 then:

ln(x) + x < ln(c) 1
2 + ln(2); x < ln(c) 1

2 + ln(2) − ln(x); x < b− ln(x)

where b = ln(c) 1
2 + ln(2).

As x has to be at least < b, from that follows that ln(x) will always be < ln(b).
Therefore we can write in a conservative way:

x < b− ln(b); m0d < b∗ (C.5.4)

where x has been substituted by its value and b∗ = b − ln(b). A similar development
is applicable to expression (C.5.3) and it leads to :

m0h < β∗ (C.5.5)

where β∗ = 0.5 [ln(c) + ln(2)]
For very large values of the term m0h , equation (C.1.11) admits as solution:

m0 = w2

g
(C.5.6)

If (C.5.6) is substituted into (C.5.4) and (C.5.5) then:

w2

g
d < b∗; w

2

g
h < β∗ (C.5.7)
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Rearranging (C.5.7):

d < b∗ g

ω2 ; h < β∗ g

ω2 (C.5.8)

At this point it is worth using the condition defined in Section C.2 which establishes
that a solution to the dispersion equation can be found provided that :

π

2h > 2ϵ (C.5.9)

Taking into account that ϵ = 10−9 , the depth is limited to an approximate maximum
value of 7x104 km. This result has to be combined with the restriction for h in (C.5.8)

Another possible source of numerical difficulties can arise from the use of the Bessel
functions. Intuitively, it can be deduced from the observation of figure (C.14) that if
the argument of the functions becomes too big or too small their value may fall out of
the range (C.5.1). For Y (x) and J(x), with x = m0a, if x → ∞ and a ≃ d, the problem
arises from the term sinh(m0d) which grows much faster than Y (x) and J(x) and that
has already been dealt with. Contrarily, in case a >> d, the numerical singularity will
come from function K(mqa). Therefore, it can be concluded that functions J(x) and
Y (x) will not generate numerical problems before K(x) when x → ∞.

(a) J0, J1, Y0, Y1 (b) I0, I1, K0, K1

Figure C.14: Bessel functions of the first kind and second kind (a); Modified Bessel
functions of the first and second kind (b). Source: Abramowitz and Segun A. (1964)
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The function Kν(z) can be expressed using the following development for values
of z → ∞ (Abramowitz and Segun A., 1964, 9.7.2):

Kν(z) ∼
√
π

2z e
−z
{

1 + 4ν2 − 1
8z + (4ν2 − 1)(4ν2 − 9)

2!(8z)2 + (4ν2 − 1)(4ν2 − 9)(4ν2 − 25)
3!(8z)3 + ...

}
(C.5.10)

The first term previous to the brackets reaches the lowest limit of the range (C.5.1)
when z takes a value of 705.342. Therefore it is imposed that:

mq a < 705.342 (C.5.11)

The term mq is the solution of the dispersion equation (C.1.12) and approaches
the value j π

h
for mq → ∞. Therefore:

j
π

h
a < g∗ (C.5.12)

where g∗ = 705.342 and j corresponds to the number of truncation terms.

A development of the bessel function Iν(z) similar to (C.5.10) exists for values of
z → ∞ (Abramowitz and Segun A., 1964, 9.7.1):

Iν(z) ∼ ez√
2πz

{
1 + 4ν2 − 1

8z + (4ν2 − 1)(4ν2 − 9)
2!(8z)2 + (4ν2 − 1)(4ν2 − 9)(4ν2 − 25)

3!(8z)3 + ...

}
(C.5.13)

The first term before the brackets approaches the highest limit of the range (C.5.1)
for values of z = 713.987. The following condition is then defined:

j
π

d
a < γ∗ (C.5.14)

where γ∗ = 713.987.

It is worth noting that Kν(x) decreases much faster than Iν(x) increases when
x → ∞ and, therefore, (C.5.12) has been used in the routine to limit the truncation
j. By comparing Figures (C.8)-(C.9) (h = 1) and (C.12)-(C.13) (h = 5) a difference
in the number of truncation terms used can be observed. From equation (C.5.12) it
can be deduced that the higher the value of the depth (h) the higher the truncation
limit will be.
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Rearanging (C.5.12) and (C.5.14) we have:

h >
jπ

g∗ a; d > jπ

γ∗ a (C.5.15)

By combining (C.5.15) and (C.5.8):

jπ

γ∗ a <d <
1
w2 b

∗ g

jπ

g∗ a <h <
1
w2 β

∗ g

h > d

(C.5.16)

The constants b∗ and β∗ can be calculated as follows:

b∗ = ln(c) 1
2 + ln(2) − ln

(
ln(c) 1

2 + ln(2)
)

=

= ln
(
1.8 1

2 10154
)

+ ln(2) − ln
(
ln
(
1.8 1

2 10154
)

+ ln(2)
)

=

= 0.5 ln(1.8) + 154 ln(10) + ln(2) − ln (0.5 ln(1.8) + 154 ln(10) + ln(2)) =
= 349.71138

β∗ = 0.5
[
ln(1.8 10308 + ln(2)

]
=

= 0.5 [ln(1.8) + 308 ln(10) + ln(2)] =
= 355.2386

Expression (C.5.16) is valid for large values of a and w and limits their maximum
value with respect to d and h. Moreover, it relates the truncation and the value of
h. Notwithstanding, (C.5.16) does not provide any limits to a and w concerning the
smallest values they can take. This is because so far the analysis has been focused on
the acceptable largest arguments of the bessel functions. However, potential numerical
problems may also arise if the arguments become too small, as represented in figure
(C.14).

Functions Kν(x) and Yν(x) have similar trends when x → 0 as can be deduced
from the following expressions (Abramowitz and Segun A., 1964, 9.6.8 and 9.1.8):

K0(z) ∼ −ln(z); Kν(z) ∼ 1
2 Γ(ν)

(1
2 z
)−ν

ν ̸= 0 (C.5.17)
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Y0(z) ∼
( 2
π

)
ln(z); Yν(z) ∼ − 1

π
Γ(ν)

(1
2 z
)−ν

ν ̸= 0 (C.5.18)

Similarly, for Iν(z) and Jν(z) for z → 0 (Abramowitz and Segun A., 1964, 9.1.7 and
9.6.7):

Jν(z) ∼
(1

2z
)ν
/Γ(ν + 1) ν = 0, 1, 2, ... (C.5.19)

Iν(z) ∼
(1

2z
)ν
/Γ(ν + 1) ν = 0, 1, 2... (C.5.20)

From expression (C.5.17):

|ln(z)| < 1.8 10308; z > e−1.8 10308
for ν = 0 (C.5.21)

1
z
< 1.8 10308; z >

1
1.8 10308 = 0.5̇ 10−308 for ν = 1 (C.5.22)

It is clear that (C.5.22) is more restrictive than (C.5.21). At the same time, (C.5.22)
falls out of range (C.5.1) and therefore it is substituted by:

mqa > 2.2 10−308; for ν = 1

where z has been substituted by the argument of the bessel function Kν(z).
The solution of the dispersion equation (C.1.12) will be comprised between jπ/2h

and π/h. Therefore it is imposed that:

jπ

2h a > 2.2 10−308 (C.5.23)

The case of Yν(z) is analysed as it appears in the expression (C.1.10). Thus:

1
[Y1(m0a)]2 > 2.2 10−308;

( 2
π

|ln(m0a)|
)2

<
1

2.2 10308; m0a > e(−π/2)(1/
√

2.2) 10154

(C.5.24)
It is only interesting to check expression (C.5.24) for small values of m0 as if a

is very small, it will be the bessel function Kν(mqa) which will lead to a numerical
problem as it tends to grow faster than Y for small values of its argument.

The solution of the dispersion equation (C.1.11) when m0h is small can be assumed
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to be w/
√
gh. Therefore, substituting this result in (C.5.24):

w√
gh

a > e(−π/2)(1/
√

2.2) 10154 (C.5.25)

Expression (C.5.25) is always valid independently of the value of w, h, a provided they
satisfy expression (C.5.1).
Eventually, from expressions (C.5.20) and (C.5.19):

jπa

d
> 2

(
2.2 10−308

)
(C.5.26)

wa√
gh

> 2
(
2.2 10−308

)
(C.5.27)

The expression (C.5.25) should be replaced by (C.5.27) as the latter is more restric-
tive. Both (C.5.26) and (C.5.27) provide limits to the lowest values the parameters a
and w can take with respect to d and h.





Appendix D

Hydrodynamic interactions in an
array of truncated circular
cylinders

D.1 Formulation

The following formulation, adapted from (Child, 2011; Zeng and Tang, 2013) and com-
pleted, is based on the Direct Matrix Method interaction theory (IT) by Kagemoto
and Yue (1986) detailed in Chapter 2. As mentioned in the latter, several hydrody-
namic operators are required to perform computations with the IT. In this Appendix,
the focus is on the generation of the Diffraction Transfer Matrix (DTM) and Radiation
Characteristics (RC) for a truncated vertical cylinder. For such a simple geometry,
they can be expressed using a semi-analytical solution. For more complex shapes,
methodologies which rely on the use of Boundary Element Method (BEM) solvers
must be used and are detailed in Chapter 3. The contents of this Appendix are
organized in the following manner:

• In section D.1.1 the notation convention used in this body of work is specified.

• In section D.1.2 the formulae to compute the RC of a truncated vertical cylinder
are provided.

• In section D.1.3 the components of the DTM of a truncated vertical cylinder are
derived.

• In section D.1.4 expressions for the hydrodynamic forces, which were not speci-
fied in Zeng and Tang (2013), are fully detailed.
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• Finally, section D.2 shows numerical verifications of the formulae presented in
the preceding sections.

D.1.1 Notation

The notation and the reference system adopted, shown in Figure (D.1), follow Zeng
and Tang (2013):

• The cylinder mode of motion is indicated by index s, with surge (s = 1); sway
(2); heave (3); roll (4) and pitch (5). Yaw mode (6) will not be considered as it
has no effect on the radiated field around the cylinder.

• Subindexs R and D refer to radiated and diffracted wave fields respectively, and
E and C to the exterior and core regions.

• Index m represents the angular-mode of cylindrical partial waves, whereas n as
well as q and p represent depth-modes. For the RC (section D.1.2), index n
represents the depth-modes of the core region and q the ones of the exterior
region. For the DTM (section D.1.3), index n is associated with the depth-mode
of an incident wave, whereas q and p represent the depth-modes of outgoing
waves in the exterior and core regions respectively.

• Variables with a tilde, such as R̃, refer to the core region.

• One of the key aspects of the IT is that the study of the wave scattering on
the whole array is undertaken by focusing on one body at a time. This body is
referred to as j and its neighbours as i.

• Variable ζ is represents the oscillation ampitude of mode s for cylinder i. Similarly,
vis is the velocity of cylinder i in mode s (vis = −iω0ζ

i
s).

• Wave numbers k0 and kq are the solutions of the dispersion equations A.1.4 and
A.1.5 respectively.

• The spatial part of the total velocity potential Φ is represented by φ.

• Hm is the Hankel function of the first kind of order m, Km is the modified Bessel
function of the second kind of order m and Iq is the modified Bessel function of
the first kind of order q.

• Superindex ′ represents derivative.
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Figure D.1: Source: adapted from Zeng and Tang (2013)

D.1.2 Radiation Characteristics

The radiated potential in the exterior region of the cylinder due to a motion in mode
s and amplitude ζs can be defined as:

φRs−E = −iω0ζs
∞∑

m=−∞
REeimθ (D.1.1)

with:

RE = DRs
0m

Hm(k0r)
H ′
m(k0a)

cosh k0(z + d)
N

1/2
0

+
∞∑
q=1

DRs
qm

Km(kqr)
K ′
m(kqa)

cos kq(z + d)
N

1/2
q

(D.1.2)

N0 = 1
2

(
1 + sinh 2k0d

2k0d

)
(D.1.3)

Nq = 1
2

(
1 + sin 2kqd

2kqd

)
; q ≥ 1 (D.1.4)

where RE represents a linear combination of basis functions which enable one to rep-
resent any outgoing wave potential in the exterior region. For a complete derivation
see Child (2011, 3.4.1.1).

In compact form, (D.1.1) can be expressed as:

φRs−E = −iω0ζ
i
sR

T
isψ

D−E
i (D.1.5)
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with:

Ris(0,m) = Ds
0m cosh k0d

H ′
m(k0ai)N1/2

0
, m = ±1, n = 0 (D.1.6)

Ris(n,m) = Ds
nm

K ′
m(knai)N1/2

n

, m = ±1, n > 0 (D.1.7)

(
ψD−E
i

)m
n

=


cosh k0(z+d)

cosh k0d
Hm(k0ri)eimθi , n = 0, n ∈ Z

cos kn(z + d)Km(knri)eimθi , n ≥ 1, n ∈ Z
(D.1.8)

The terms of vector ψD−E
i are referred to as partial cylindrical wave functions (see

section (2.2.1)) and are depicted in Figure 2.2 for specific values of the angular-modes
m and depth-modes n. The terms of vector Ris enable one to express the radiated
potential in the base of outgoing cylindrical harmonics and are defined as Radiation
Characteristics (RC).

An equivalent formulation exists for the core region. In this case, as in (D.1.1),
the radiated potential can be expressed as:

φRs−C = −iω0ζs
∞∑

m=−∞
R̃eimθ (D.1.9)

with:

R̃ = R̃h + R̃p (D.1.10)
R̃p = Λsλms (D.1.11)

R̃h = Cs
0m
2

(
r

a

)|m|
+

∞∑
n=1

Cs
nm

Im
(
nπr
d−h

)
Im
(
nπa
d−h

) cos
(
nπ(z + d)
d− h

)
(D.1.12)

where R̃ is a linear combination of cylindrical basis functions which, in this case,
enables one to express the scattered potential in the core region. For a complete
derivation see Child (2011, 3.4.1.2).

Expression (D.1.9) can be represented in compact form as:

φRs−C = −iω0ζ
i
s

[
R̃js(n,m)(ψD−C

j )mn + Λs

∞∑
m=−∞

λmse
imθ

]
(D.1.13)

with:
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R̃js(0,m) = Cs
0m
2

1
a|m| ; n = 0 (D.1.14)

R̃js(n,m) = Cs
nm

Im
(
nπa
d−h

) cos
(
nπ(z + d)
d− h

)
; n ≥ 1 (D.1.15)

(
ψD−C
j

)m
n

=

r
|m|eimθi , n = 0, n ∈ Z

Im
(
nπrj

d−h

)
eimθi , n ≥ 1, n ∈ Z

(D.1.16)

Λs = 0, s = 1, 2 (D.1.17)

Λs = 1
2(d− h)

[
(z + d)2 −

r2
j

2

]
, s = 3 (D.1.18)

Λs = rj
2(d− h)

[
(z + d)2 −

r2
j

4

]
, s = 4 (D.1.19)

Λs = − 1
2(d− h)

[
(z + d)2 −

r2
j

4

]
, s = 5 (D.1.20)

Both (D.1.1) and (D.1.9) need to satisfy the impenetrable body surface conditions:

∂ϕiRs−E
∂r

= vis fs(z)
∞∑

m=−∞
λmse

imθ on r = a; −h ≤ z ≤ 0 (D.1.21)

∂ϕiRs−C
∂z

= vis gs(ri)
∞∑

m=−∞
λmse

imθ on z = −h, r ≤ a (D.1.22)

where vis = −iω0ζ
i
s is the velocity of the cylinder i in mode s. Expressions fs(z),

gs(ri) and λms are:

fs(z) = 1, gs(ri) = 0, s = 1, 2 (D.1.23)
fs(z) = 0, gs(ri) = 1, s = 3 (D.1.24)

fs(z) = −(z − z̄), gs(ri) = ri, s = 4 (D.1.25)
fs(z) = (z − z̄), gs(ri) = −ri, s = 5 (D.1.26)
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λ11 = λ15 = 1
2 , λ13 = 0, λ12 = λ14 = 1

2i (D.1.27)

λ01 = λ05 = 0, λ03 = 1, λ02 = λ04 = 0 (D.1.28)

λ−11 = λ−15 = 1
2 , λ−13 = 0, λ−12 = λ−14 = − 1

2i (D.1.29)

λms = 0, m ̸= 0,±1 (D.1.30)

By imposing (D.1.21) and (D.1.22), the following expressions for the unknown
coefficients of the RC vector are obtained:

C
Rs

nm = 2
d− h

∫ −h

−d
R̃h(a, z) cos

(
nπ(z + d)
d− h

)
dz (D.1.31)

D
Rs

0m = 1
k0d

∫ 0

−d

∂R

∂r
(a, z)N− 1

2
0 cosh (k0(z + d)) dz ; q = 0 (D.1.32)

D
Rs

qm = 1
kqd

∫ 0

−d

∂R

∂r
(a, z)N− 1

2
q cos (kq(z + d)) dz ; q ≥ 1 (D.1.33)

They are derived using the orthogonality properties of the depth functions. For
the exterior region:

1
d

∫ 0

−d
σqz(z)σmz (z) dz =

1, q = m

0, q ̸= m
(D.1.34)

where:

σqz(z) =

N
− 1

2
0 cosh k0(z + d), q = 0

N
− 1

2
q cos kq(z + d), q ≥ 1 (q∈ N)

(D.1.35)

Similarly, for the core region:

2
d− h

∫ −h

−d
σtz(z) cos

(
mπ(z + d)
d− h

)
dz =

1, t = m (s,m ∈ N)
0, t ̸= m (s,m ∈ N)

(D.1.36)
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where:

σtz(z) =


1
2 , t = 0
cos

(
tπ(z+d)
d−h

)
, t ̸= 0 (t ∈ N)

(D.1.37)

To check the derivation of (D.1.31), we take R̃h(a, z) and express it using (D.1.37):

R̃h(a, z) = CRs
0mσ

0
z(z) +

∞∑
s=1

CRs
nmσ

t
z(z) (D.1.38)

If (D.1.38) is multiplied by the term cos(sπz/h), i.e. σsz(z), then we have:

R̃h(a, z)σtz(z) = CRs
0mσ

0
zσ

t
z(z) +

∞∑
s=1

CRs
nmσ

t
z(z)σtz(z) (D.1.39)

Now, (D.1.39) is substituted into (D.1.31) and the role of the orthogonality func-
tions becomes explicit:

CRs
nm = 2

d− h

∫ −h

−d
R̃h(a, z) cos

(
nπ(z + d)
d− h

)
dz =

= 2
d− h

[∫ −h

−d
CRs

0mσ
0
zσ

t
z(z) +

∞∑
s=1

∫ −h

−d
CRs
nmσ

t
z(z)σtz(z)

]
(D.1.40)

where the integral and the summation have been exchanged.
A similar result would be obtained by developping ∂R

∂r
(a, z) in expressions (D.1.32)

and (D.1.33) using orthogonal functions.
By applying the following matching conditions at the interface r = a, the interior

and exterior potentials can be related to each other (Child, 2011, pg.54):

R = R̃ r = a; −d ≤ z ≤ −h (D.1.41)
∂R

∂r
= ∂R̃

∂r
r = a; −d ≤ z ≤ −h (D.1.42)

∂R

∂r
= f(s)λms r = a; −h ≤ z ≤ 0 (D.1.43)

Condition (D.1.43) differs from (Child, 2011, 3.104) as the latter was only valid for
heave mode. Using (D.1.43) ensures that the boundary conditions for the radiation
potential in both the exterior and core regions (D.1.21, D.1.22) are satisfied. Using
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(D.1.1):

∂φiRs−E
∂r

∣∣∣∣∣
ri=ai

= −iw0ζ
i
s

∞∑
m=−∞

∂RE

∂r

∣∣∣∣∣
ri=ai

eimθ = vis fs(z)
∞∑

m=−∞
λmse

imθ (D.1.44)

Similarly, using (D.1.22) and (D.1.10):

∂φiRs−C
∂z

∣∣∣∣∣
z=−h

= −iw0ζ
i
s

∞∑
m=−∞

∂R̃

∂z

∣∣∣∣∣
z=−h

eimθ = −iw0ζ
i
s

∞∑
m=−∞

∂

∂z

∣∣∣∣∣
z=−h

(R̃h+Λsλms)eimθ =

= −iw0ζ
i
s

∞∑
m=−∞

∂

∂z

∣∣∣∣∣
z=−h

(Λsλms) eimθ = vis gs(ri)
∞∑

m=−∞
λmse

imθ (D.1.45)

where ∂R̃h

∂z

∣∣∣
z=−h

= 0 and ∂Λs

∂z

∣∣∣
z=−h

= gs(ri) have been used.

It is worth mentioning that Zeng and Tang (2013, 25e) does not satisfy ∂Λs

∂z

∣∣∣
z=−h

=
gs(ri) which is due to a typographical error. Instead, Λ5 (D.1.20) should be:

Λ5 = − ri
2(d− h)

[
(z + d)2 −

r2
j

4

]
(D.1.46)

To further verify expression (D.1.46), it is checked that the potential representing the
particular solution (D.1.46) satisfies Laplace equation. Such potential is expressed as:

φp =
∞∑

m=−∞
Λsλmse

imθ (D.1.47)

If (D.1.47) is introduced into Laplace’s equation in cylindrical coordinates we have:

1
r

∂

∂r

(
r
∂φ

∂r

)
+ 1
r2
∂2φ

∂θ2 + ∂2φ

∂z2 = 0 (D.1.48)

with:

1
r

∂

∂r

(
r
∂φ

∂r

)
=
[
− (z + d)2

2r(d− h) + 9r
8(d− h)

]
cos θ (D.1.49)

1
r2
∂2φ

∂θ2 = 1
2r(d− h)

[
(z + d)2 − r2

4

]
cos θ (D.1.50)

∂2φ

∂z2 = − r

d− h
cos θ (D.1.51)
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Substituting (D.1.49 - D.1.51) into (D.1.48):

∇2φp =
[
− (z + d)2

2r(d− h) + 9r
8(d− h)

]
cos θ+ 1

2r(d− h)

[
(z + d)2 − r2

4

]
cos θ− r

d− h
cos θ = 0

By using the decomposition of the core potential (D.1.10) and the matching con-
ditions (D.1.41 - D.1.43), equations ( D.1.31-D.1.33) can be rewritten as:

C
R

nm = 2
d− h

∫ −h

−d
(R − Λsλms)(a, z) cos

(
nπ(z + d)
d− h

)
dz (D.1.52)

D
R

0m = 1
k0d

∫ 0

−d

[
∂R̃h(a, z)

∂r
+ λms

∂Λs(a, z)
∂r

]
N

− 1
2

0 cosh (k0(z + d)) dz+

+ 1
k0d

∫ 0

−h
fs(z)λmsN

− 1
2

0 cosh(k0(z + d))dz (D.1.53)

D
R

qm = 1
kqd

∫ 0

−d

[
∂R̃h(a, z)

∂r
+ λms

∂Λs(a, z)
∂r

]
N

− 1
2

q cos (kq(z + d)) dz+

+ 1
kqd

∫ 0

−h
fs(z)λmsN

− 1
2

q cos(kq(z + d))dz (D.1.54)

Then, by substituting (D.1.52 - D.1.54) in the expressions of R (D.1.6 - D.1.7), R̃h

(D.1.12) and Λs (D.1.17 - D.1.20):

CR
nm = 2

d− h

∫ −h

−d
R(a, z) cos

(
nπ(z + d)
d− h

)
dz− 2

d− h

∫ −h

−d
Λs(a, z)λms cos

(
nπ(z + d)
d− h

)
dz =

2
d− h

∫ −h

−d

[
DR

0m
Hm(k0a)
H ′
m(k0a)

cosh k0(z + d)
N

1/2
0

cos
(
nπ(z + d)
d− h

)
+

+
∞∑
q=1

DR
qm

Km(kqa)
K ′
m(kqa)

cos kq(z + d)
N

1/2
q

cos
(
nπ(z + d)
d− h

) dz−
− 2
d− h

∫ −h

−d
Λs(a, z)λms cos

(
nπ(z + d)
d− h

)
dz (D.1.55)
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DR
0m = 1

k0d

∫ −h

−d

∂R̃h(a, z)
∂r

N
−1/2
0 cosh(k0(z + d))dz+

+ 1
k0d

∫ −h

−d
λms

∂Λs(a, z)
∂r

N
−1/2
0 cosh(k0(z + d))dz+

+ 1
k0d

∫ 0

−h
fs(z)λmsN−1/2

0 cosh(k0(z + d))dz =

= 1
k0d

∫ −h

−d

[
CR

0m
2

1
a|m| |m|a|m|−1N

−1/2
0 cosh(k0(z + d))+

+
∞∑
n=1

CR
nm

nπ

d− h

I
′
m

(
nπa
d−h

)
I ′
m

(
nπa
d−h

) cos
(
nπ(z + d)
d− h

)
N

−1/2
0 cosh(k0(z + d))

 dz+
1
k0d

∫ −h

−d

∂Λs(a, z)λms
∂r

N
−1/2
0 cosh(k0(z + d))dz+

+ 1
k0d

∫ 0

−h
fs(z)λmsN−1/2

0 cosh(k0(z + d))dz (D.1.56)

DR
qm = 1

kqd

∫ −h

−d

∂R̃h(a, z)
∂r

N−1/2
q cos(kq(z + d))dz+

+ 1
kqd

∫ −h

−d
λms

∂Λs(a, z)
∂r

N−1/2
q cos(kq(z + d))dz+

+ 1
kqd

∫ 0

−h
fs(z)λmsN−1/2

q cos(kq(z + d))dz =

= 1
k0d

∫ −h

−d

[
CR

0m
2

1
a|m| |m|a|m|−1N−1/2

q cos(kq(z + d))+

+
∞∑
n=1

CR
nm

nπ

d− h

I
′
m

(
nπa
d−h

)
I ′
m

(
nπa
d−h

) cos
(
nπ(z + d)
d− h

)
N−1/2
q cosh(kq(z + d))

 dz+
1
kqd

∫ −h

−d

∂Λs(a, z)λms
∂r

N−1/2
q cos(kq(z + d))dz+

+ 1
kqd

∫ 0

−h
fs(z)λmsN−1/2

q cos(kq(z + d))dz (D.1.57)

Expressions (D.1.55 - D.1.57) form a system of equations of the form:
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
Cs
nm +

∞∑
q=0

Fm
nqD

s
qm =Rnm

s

Ds
qm −

∞∑
n=0

Gm
qnC

s
nm =Sqms

(D.1.58)

where:

Fm
n0 = − 2

d− h

∫ −h

−d

Hm(k0a)
H ′
m(k0a)

cosh k0(z + d)
N

1/2
0

cos
(
nπ(z + d)
d− h

)
dz (D.1.59)

Fm
nq = − 2

d− h

∫ −h

−d

Km(kqa)
K ′
m(kqa)

cos kq(z + d)
N

1/2
q

cos
(
nπ(z + d)
d− h

)
dz (D.1.60)

Gm
00 = 1

k0d

∫ −h

−d

|m|
2a N

−1/2
0 cosh k0(z + d)dz (D.1.61)

Gm
q0 = 1

kqd

∫ −h

−d

|m|
2a N

−1/2
q cos kq(z + d)dz (D.1.62)

Gm
0n = 1

k0d

∫ −h

−d

nπ

d− h

I
′
m

(
nπa
d−h

)
Im
(
nπa
d−h

) cos
(
nπ(z + d)
d− h

)
N

−1/2
0 cosh k0(z + d)dz (D.1.63)

Gm
qn = 1

kqd

∫ −h

−d

nπ

d− h

I
′
m

(
nπa
d−h

)
Im
(
nπa
d−h

) cos
(
nπ(z + d)
d− h

)
N−1/2
q cosh kq(z + d)dz (D.1.64)

Rnm
s = − 2

d− h

∫ −h

−d
λmsΛs(a, z) cos

(
nπ(z + d)
d− h

)
dz (D.1.65)

S0m
s = λms

k0d

∫ −h

−d

∂Λs(a, z)
∂r

N
−1/2
0 cosh k0(z + d)dz+

+ 1
k0d

∫ 0

−h
fs(z)λmsN−1/2

0 cosh k0(z + d)dz (D.1.66)

Sqms = λms
kqd

∫ −h

−d

∂Λs(a, z)
∂r

N−1/2
q cos kq(z + d)dz+

+ 1
kqd

∫ 0

−h
fs(z)λmsN−1/2

q cos kq(z + d)dz (D.1.67)

Expressions (D.1.59) - (D.1.67) are idential to Zeng and Tang (2013, A1a-A4b) if
the terms Z0(z) and Zq(z) are defined as:
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Z0(z) = N
−1/2
0 cosh k0(z + d) (D.1.68)

Zq(z) = N−1/2
q cos kq(z + d) (D.1.69)

The previous expressions differ from Zeng and Tang (2013, 11a,11b) and this is
most probably due to a difference in the notation for the main body of their work and
the appendices. Thus:

Fm
n0 = −2Hm(k0a) k0(d− h)(−1)n sinh k0(d− h)

H ′
m(k0a)N1/2

0 [k2
0(d− h)2 + (nπ)2]

, q = 0, n ≥ 0 (D.1.70)

Fm
nq = −2Km(kqa) kq(d− h)(−1)n sin kq(d− h)

K ′
m(kqa)N1/2

q

[
k2
q(d− h)2 − (nπ)2

] , q ̸= 0, n ≥ 0 (D.1.71)

Gm
00 = |m| sinh k0(d− h)

2ak2
0dN

1/2
0

, q = 0, n = 0 (D.1.72)

Gm
q0 = |m| sin kq(d− h)

2ak2
qdN

1/2
q

, q ≥ 1, n = 0 (D.1.73)

Gm
0n =

I
′
m

(
nπa
d−h

)
Im
(
nπa
d−h

) nπ(d− h)(−1)n sinh k0(d− h)
(n2π2 + k2

0(d− h)2)dN1/2
0

, q = 0, n ≥ 1 (D.1.74)

Gm
qn =

I
′
m

(
nπa
d−h

)
Im
(
nπa
d−h

) nπ(d− h)(−1)n sin kq(d− h)
(−n2π2 + k2

q(d− h)2)dN1/2
q

, q ≥ 1, n ≥ 1 (D.1.75)

Expressions (D.1.59) - (D.1.64) are explicitly defined in Zeng and Tang (2013, A1a-
A3d) but not (D.1.65) - (D.1.67). The solution of the integrals is detailed below. It is
worth mentioning that h (draft of the cylinder) should be interpreted as hj.

• Case s = 1

As Λ1 = 0, then Rnm
1 = 0. For Sqm1 :

Sq01 = 0 (λ01 = 0) (D.1.76)

S01
1 =

1
2
k0d

∫ 0

−h

cosh k0(z + d)
N

1/2
0

dz = 1
2k2

0dN
1/2
0

[sinh(k0d) − sinh k0(d− h)] m = 1, q = 0

(D.1.77)
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where it has been used:

∫
cosh x dx = sinh x k0z + k0d = p

k0dz = dp

 (D.1.78)

∫ 0

−h
cosh k0(z + d)dz =

∫ k0d

−k0h+k0d

cosh p

k0
dp

As λ11 = λ−11then S01
1 = S

0(−1)
1 . For Sq11 :

Sq11 =
1
2
kqd

∫ 0

−h

cos kq(z + d)
N

1/2
q

dz = 1
2k2

qdN
1/2
q

[sin(kqd) − sin kq(d− h)] q ≥ 1,m = 1

(D.1.79)
As previously, Sq11 = S

q(−1)
1 .

• Case s = 2

As Λ2 = 0, then Rnm
2 = 0. For Sqm2 :

Sq02 = 0 (λ02 = 0) (D.1.80)

S01
2 =

1
2i
k0d

∫ 0

−h

cosh k0(z + d)
N

1/2
0

dz = 1
2ik2

0dN
1/2
0

[sinh(k0d) − sinh k0(d− h)] m = 1, q = 0

(D.1.81)

where (D.1.78) has been used. As λ12 = −λ−12then S01
2 = −S0(−1)

2 . For Sq12 :

Sq12 =
1
2i
kqd

∫ 0

−h

cos kq(z + d)
N

1/2
q

dz = 1
2ik2

qdN
1/2
q

[sin(kqd) − sin kq(d− h)] q ≥ 1,m = 1

(D.1.82)
As previously, Sq12 = −Sq(−1)

2 .

• Case s = 3

Using Λ3 = 1
2(d−h)

[
(z + d)2 − r2

j

2

]
we have:
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Rn0
3 = − 2

d− h

∫ −h

−d

1
2(d− hj)

[
(z + d)2 −

a2
j

2

]
cos

[
nπ(z + d)
d− h

]
dz =

= − 1
(d− h)

[∫ −h

−d
(z + d)2 cos

[
nπ(z + d)
d− h

]
dz −

∫ −h

−d

r2
j

2 cos
[
nπ(z + d)
d− h

]
dz

]
=

= −2(d− h)(−1)n
(nπ)2 n ≥ 1 (D.1.83)

where (D.1.84) and (D.1.85) have been used:

∫ −h

−d
(z + d)2 cos

[
nπ(z + d)
d− h

]
dz p = z + d; d− h = h∗

dp = dz

 (D.1.84)

∫ h∗

0
p2 cos

[
nπp

h∗

]
dp = 2(h∗)3(−1)n

(nπ)2

r2
j

2

∫ −h

−d
cos

[
nπ(z + d)
d− h

]
dz =

r2
j

2
d− h

nπ
sin

[
nπ(z + d)
d− h

]−h

−d
= 0 (D.1.85)

Substituting n = 0 in (D.1.83):

R00
3 = − 2

d− h

∫ −h

−d

1
2(d− h)

[
(z + d)2 −

r2
j

2

]
dz =

− 1
(d− h)2

[∫ −h

−d
(z + d)2dz −

∫ −h

−d

r2
j

2 dz
]

= − 1
(d− h)2

[
(d− h)3

3 −
a2
j

2 (d− h)
]

n = 0

(D.1.86)

where the same variable change as in (D.1.84) has been used.

With respect to Sqm3 , for m = ±1 (q ≥ 0):

Sq13 = S
q(−1)
3 = 0; (λ13 = λ−13 = 0) (D.1.87)
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For q = m = 0 then:

S00
3 = 1

k0d

∫ −h

−d

−a
2(d− h)

cosh k0(z + d)
N

1/2
0

dz = −a
2(d− h)k2

0dN
1/2
0

[sinh k0(d− h)]

(D.1.88)
where the following has been used:

∂Λ3(r, z)
∂r

∣∣∣∣∣
r=a

= −a
2(d− h)∫

cosh x dx = sinh x k0z + k0d = p

k0dz = dp

 (D.1.89)

∫ −h

−d
cosh k0(z + d)dz =

∫ k0(k−h)

0
cosh(p)dp

k0
= 1
k0

[sinh k0(d− h)]

For q ̸= 0:

Sq03 = 1
kqd

∫ −h

−d

−a
2(d− h)

cosh kq(z + d)
N

1/2
q

dz = −a
2(d− h)k2

qdN
1/2
q

[sin kq(d− h)] q ≥ 1,m = 0

(D.1.90)
where a similar change of variable and integral as in (D.1.89) has been used.

• Case s = 4

As λ04 = 0 then Rn0
4 = 0. Using Λ4 = rj

2(d−h)

[
(z + d)2 − r2

j

4

]
we have for n = 0,m = 1:

R01
4 = − 2

d− h

∫ −h

−d
λ14Λ4(a, z)dz = − 2

d− h

∫ −h

−d

1
2i

aj
2(d− h)

[
(z + d)2 −

a2
j

4

]
dz =

− aj
2i(d− h)2

[∫ −h

−d
(z + d)2dz −

∫ −h

−d

a2
j

4 dz
]

=

− aj
2i(d− h)2

[
(d− h)3

3 −
a2
j

4 (d− h)
]

n = 0,m = 1 (D.1.91)

As λ14 = −λ−14 then R
0(−1)
4 = −R01

4 . For n ≥ 1,m = 1:
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Rn1
4 = − 2

d− h

∫ −h

−d

1
2i

aj
2(d− h)

[
(z + d)2 −

a2
j

4

]
cos

[
nπ(z + d)
d− h

]
dz =

= − aj
2i(d− h)2

∫ −h

−d

[
(z + d)2 −

a2
j

4

]
cos

[
nπ(z + d)
d− h

]
dz =

= − aj
2i(d− h)2

(
2(d− h)3(−1)n

(nπ)2

)
= −aj(d− h)(−1)n

i(nπ)2 n ≥ 1,m = 1 (D.1.92)

where (D.1.84) and (D.1.85) have been used. Similarly as before, Rn1
4 = −Rn(−1)

4 .

For Sqm4 , S00
4 = 0 as λ04 = 0. For S01

4 , using ∂Λ4(a,z)
∂r

∣∣∣
r=a

= (z+d)2

2(d−h) − 3a2

8(d−h) :

S01
4 = λ14

k0d

∫ −h

−d

[
(z + d)2

2(d− h) − 3a2

8(d− h)

]
cosh k0(z + d)

N
1/2
0

dz−λ14

k0d

∫ 0

−h
z

cosh k0(z + d)
N

1/2
0

dz =

= λ14

k0dN
1/2
0

[∫ −h

−d

(z + d)2

2(d− h) cosh k0(z + d)dz −
∫ −h

−d

3a2

8(d− h) cosh k0(z + d)dz
]

−

− λ14

k0dN
1/2
0

∫ 0

−h
z cosh k0(z + d)dz (D.1.93)

Using:

∫
x2 cosh ax dx = −2x cosh ax

a2 +
(
x2

a
+ 2
a3

)
sinh ax∫ −h

−d
(z + d)2 cosh k0(z + d)dz =

∫ d−h

0
p2 cosh(k0p)dp =

= −2p cosh k0p

k2
0

+
(
p2

k0
+ 2
k3

0

)
sinh k0p

]d−h

0
=

−2(d− h) cosh k0(d− h)
k2

0
+
(

(d− h)2

k0
+ 2
k3

0

)
sinh k0(d− h)

∫ −h

−d
cosh k0(z + d)dz =

∫ d−h

0
cosh(p)dp

k0
= 1
k0

sinh(p)
]k0(d−h)

0
= 1
k0

sinh k0(d− h)∫ 0

−h
z cosh k0(z + d)dz = − 1

k2
0

cosh(k0d) + h

k0
sinh k0(d− h) + 1

k2
0

cosh k0(d− h)

Equation (D.1.93) can be expressed:
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S01
4 = λ14

k0dN
1/2
0

1
2(d− h)

[
−2(d− h) cosh k0(d− h)

k2
0

+
(

(d− h)2

k0
+ 2
k3

0

)
sinh k0(d− h)

]
−

λ14

k0dN
1/2
0

3a2

8(d− h)
1
k0

sinh k0(d− h)−

λ14

k0dN
1/2
0

[
− 1
k2

0
cosh(k0d) + h

k0
sinh k0(d− h) + 1

k2
0

cosh k0(d− h)
]

m = 1, q = 0

(D.1.94)

As λ14 = −λ−14 then S01
4 = −S0(−1)

4 . For q ̸= 0,m = 0 , Sq04 = 0. For q ̸= 0,m = 1:

Sq14 = λ14

kqd

∫ −h

−d

[
(z + d)2

2(d− h) − 3a2

8(d− h)

]
cos kq(z + d)

N
1/2
q

dz+λ14

kqd

∫ 0

−h
−z cos kq(z + d)

N
1/2
q

dz

(D.1.95)

Using:

∫
x2 cos ax dx = x2 sin ax

a
− 2
a

[sin ax

a2 − x cos ax
a

]
∫ −h

−d
(z + d)2 cos kq(z + d)dz =

∫ d−h

0
p2 cos(kqp)dp =

=
[
p2 sin kqp

kq
− 2
kq

[
sin kqp

k2
q

− p cos kqp
kq

]]d−h

0
=

= (d− h)2 sin kq(d− h)
kq

− 2
kq

[
sin kq(d− h)

k2
q

− (d− h) cos kq(d− h)
kq

]

we have:
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Sq14 = λ14

kqd

[
1

2N1/2
q (d− h)

∫ −h

−d
(z + d)2 cos kq(z + d)dz − 3a2

8(d− h)N1/2
q

∫ −h

−d
cos kq(z + d)dz

]
−

λ14

kqdN
1/2
q

∫ 0

−h
z cos kq(z + d)dz =

λ14

2kqdN1/2
q (d− h)

[
(d− h)2 sin kq(d− h)

kq
− 2
kq

[
sin kq(d− h)

k2
q

− (d− h) cos kq(d− h)
kq

]]
−

3a2

8(d− h)N1/2
q

λ14

k2
qd

sin kq(d−h)− λ14

kqdN
1/2
q

[
1
k2
q

cos kqd− 1
k2
q

cos kq(d− h) + h

kq
sin kq(d− h)

]
(D.1.96)

Again, Sq14 = −Sq(−1)
4 .

• Case s = 5

For m = 0, Rn0
5 = 0 as λ05 = 0 . Using Λ5 = − r

2(d−h)

[
(z + d)2 − r2

j

4

]
:

R01
5 = − 2

d− h

∫ −h

−d

1
2

(
− aj

2(d− h)

)[
(z + d)2 −

a2
j

4

]
dz =

r

2(d− h)2

∫ −h

−d

[
(z + d)2 −

a2
j

4

]
dz = aj

2(d− h)2

[
(d− h)3

3 −
a2
j

4 (d− h)
]

n = 0,m = 1

(D.1.97)

For n ≥ 1and m = 1, Rn1
5 :

Rn1
5 = − 2

d− h

∫ −h

−d

1
2

(
−aj

2(d− h)

)[
(z + d)2 −

a2
j

4

]
cos

[
nπ(z + d)
d− h

]
dz =

= aj
2(d− h)2

∫ −h

−d

[
(z + d)2 −

a2
j

4

]
cos

[
nπ(z + d)
d− h

]
dz = aj(d− h)(−1)n

(nπ)2 (D.1.98)

As λ15 = λ−15, then we have that Rn(−1)
5 = Rn1

5 .

For Sqm5 , when q = 0,m = 0 then S00
5 = 0 as λ05 = 0. Similarly, Sq05 = 0. For S01

5 :
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S01
5 = λ15

k0d

∫ −h

−d

[
−(z + d)2

2(d− h) +
3a2

j

8(d− h)

]
cosh k0(z + d)

N
1/2
0

dz+λ15

k0d

∫ 0

−h
z

cosh k0(z + d)
N

1/2
0

dz =

= −λ15

2k0N
1/2
0 (d− h)

∫ −h

−d
(z+d)2 cosh k0(z+d)dz+

3λ15a
2
j

8(d− h)k0dN
1/2
0

∫ −h

−d
cosh k0(z+d)dz+

λ15

k0dN
1/2
0

∫ 0

−h
z cosh k0(z + d)dz =

−λ15

2k0dN
1/2
0 (d− h)

[
−2(d− h) cosh k0(d− h)

k2
0

+
(

(d− h)2

k0
+ 2
k3

0

)
sinh k0(d− h)

]
+

λ15

8(d− h)
3a2

j

k2
0dN

1/2
0

sinh k0(d− h)+

λ15

k0dN
1/2
0

[
− 1
k2

0
cosh k0d+ h

k0
sinh k0(d− h) + 1

k2
0

cosh k0(d− h)
]

(D.1.99)

as λ15 = λ−15, S01
5 = S

0(−1)
5 . For Sq15 :

Sq15 = λ15

kqd

∫ −h

−d

[
−(z + d)2

2(d− h) +
3a2

j

8(d− h)

]
cos kq(z + d)

N
1/2
q

dz+λ15

kqd

∫ 0

h
z

cos kq(z + d)
N

1/2
q

dz =

= −λ15

2kqd(d− h)N1/2
q

∫ −h

−h
(z+d)2 cos kq(z+d)dz+

λ153a2
j

8kqd(d− h)N1/2
q

∫ −h

−d
cos kq(z+d)dz+

λ15

kqdN
1/2
q

∫ 0

−h
z cos kq(z + d)dz =

= −λ15

2kqd(d− h)N1/2
q

[
(d− h)2 sin kq(d− h)

kq
− 2
kq

(
sin kq(d− h)

k2
q

− (d− h) cos kq(d− h)
kq

)]
+

λ153a2

8kqd(d− h)N1/2
q

[
1
kq

sin kq(d− h)
]

+

λ15

kqdN
1/2
q

[
1
k2
q

cos kqd− 1
k2
q

cos kq(d− h) + h

kq
sin kq(d− h)

]
(D.1.100)

D.1.3 Diffraction Transfer Matrix

Any incident wave potential, whether representing an ambient plane wave or scat-
tered/radiated waves generated by cylinders in array, can be expressed as a linear
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combination of the following basis functions (see section 2.2.2):

(
ψI
)m
n

=


cosh k0(z+d)

cosh k0d
Jm(k0r)eimθ, n = 0, n ∈ Z

cos kn(z + d) Im(knr)eimθ, n ≥ 1, n ∈ Z
(D.1.101)

Using as definition of the incident potential (Child, 2011, pg.48):

(
φI
)m
n

=

i
m
(
ψIj
)m

0
, n = 0(

ψIj
)m
n
, n ≥ 1

(D.1.102)

the resulting diffracted wave field in the exterior region of the cylinder can be
expressed in a general form as:

(
φD
)m
qn

= χmqn(r, z)eimθ, r ≥ a (D.1.103)

with:

χmq0 = im
cosh k0(z + d)

cosh k0d

{
Jm(k0r) − J

′
m(k0a)

H ′
m(k0a)Hm(k0r)

}

+Dm
00
Hm(k0r)
H ′
m(k0a)

cosh k0(z + d)
N

1/2
0

+
∞∑
q=1

Dm
q0
Km(kqr)
K ′
m(kqa)

cos kq(z + d)
N

1/2
q

(D.1.104)

χmqn = cos kn(z + d)
{
Im(knr) − I

′
m(kna)
K ′
m(kna)Km(knr)

}

+Dm
0n
Hm(k0r)
H ′
m(k0a)

cosh k0(z + d)
N

1/2
0

+
∞∑
q=1

Dm
qn

Km(kqr)
K ′
m(kqa)

cos kq(z + d)
N

1/2
q

(D.1.105)

Expression (D.1.104) represents the vertical and radial variation of the exterior
potential due to an incident progressive wave (z-mode n = 0), whereas (D.1.105) is
caused by an evanescent incident wave of z-mode n ≥ 1. Because of the symmetry
of the body, the scattered wave will have the same angular variation of the incident
wave.

Using the basis functions (D.1.8), which can be linearly combined to express any
general solution for the scattered potential in the exterior region of the cylinder, the
diffracted potential in (D.1.103) can be expressed as:
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(
φD−E

)m
q0

= im
(
ψIj
)m

0
− im

J
′
m(k0a)

H ′
m(k0a)

(
ψD−E
j

)m
0

+Dm
00

cosh k0d

H ′
m(k0a)N1/2

0

(
ψD−E
j

)m
0

+
∞∑
q=1

Dm
q0

1
K ′
m(kqa)N1/2

q

(
ψD−E
j

)m
q

(D.1.106)

(
φD−E

)m
qn

=
(
ψIj
)m
n

− I
′
m(kna)
K ′
m(kna)

(
ψD−E
j

)m
n

+Dm
0n

cosh k0d

H ′
m(k0a)N1/2

0

(
ψD−E
j

)m
0

+
∞∑
q=1

Dm
qn

1
K ′
m(kqa)N1/2

q

(
ψD−E
j

)m
q

(D.1.107)

Similarly to the exterior region, the diffracted wave field in the core region can be
expressed as:

(
φ̃D
)m
pn

= χ̃mpn(r, z)eimθ, r ≤ a (D.1.108)

with:

χ̃mpn = Cm
0n
2

(
r

a

)|m|
+

∞∑
p=1

Cm
pn

Im
(
pπrj

d−h

)
Im
(
pπa
d−h

) cos
(
pπ(z + d)
d− h

)
(D.1.109)

By means of the following basis functions (Zeng and Tang, 2013, 26a-26b):

(
ψD−C
j

)m
p

=

r
|m|
j eimθj , p = 0
Im
(
pπrj

d−h

)
eimθj , p ≥ 1

(D.1.110)

potential (D.1.108) can be expressed as:

(
φD−C

)m
p

= Cm
0n
2

1
a|m|

(
ψD−C
j

)m
0

+
∞∑
p=1

Cm
pn

Im
(
pπa
d−h

) cos
(
pπ(z + d)
d− h

)(
ψD−C
j

)m
p

(D.1.111)

Using the definition of the Diffraction Transfer Matrix (DTM) from Kagemoto and
Yue (1986), which states that the entry (B)mm

q n corresponds to “the coefficient of the
partial wave of z-mode q and θ-mode m in the scattered velocity potential exterior
to the cylinder in response to a unit incident wave of z-mode n and θ-mode m”, the
elements of matrix B can be obtained by dividing the coefficients of

(
ψS
)m
q

by those
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of
(
ψI
)m
n

. Thus:

Bmm
0 0 = − J

′
m(k0a)

H ′
m(k0a) +Dm

00
cosh k0d

imH ′
m(k0a)N1/2

0
, n = 0; q = 0 (D.1.112)

Bmm
q 0 =

Dm
q0

imK ′
m(kqa)N1/2

q

, n = 0; q ≥ 1 (D.1.113)

Bmm
0n = Dm

0n
cosh k0d

H ′
m(k0a)N1/2

0
, n ≥ 1; q = 0 (D.1.114)

Bmm
q n = Dm

qn

1
K ′
m(kqa)N1/2

q

, n ≥ 1; q ≥ 1; q ̸= n (D.1.115)

Bmm
q n = − I

′
m(kna)
K ′
m(kna) +Dm

qn

1
K ′
m(kqa)N1/2

q

, n ≥ 1; q ≥ 1; q = n (D.1.116)

A similar definition for
(
B̃
)nn
pm

stands, whose elements represent “the coefficient in
the interior diffracted potential in z-mode p due to the same incident disturbance”
(Child, 2011, pg.61). Therefore,

(
B̃
)nn
pm

is obtained by dividing coefficients of
(
ψ̃D
)m
p

by those of
(
ψI
)m
n

.

B̃mm
0 0 = Cm

00
2ima|m| , n = 0; p = 0 (D.1.117)

B̃mm
p 0 =

Cm
p0

imIm
(
pπa
d−h

) cos
(
pπ(z + d)
d− h

)
, n = 0; p ̸= 0 (D.1.118)

B̃mm
0n = Cm

0n
2a|m| , n ̸= 0; p = 0 (D.1.119)

B̃mm
pn =

Cm
pn cos

(
pπ(z+d)
d−h

)
Im
(
pπa
d−h

) , n ̸= 0; p ̸= 0 (D.1.120)

As stated by Child (2011, p.62) “all coefficients for which the angular mode of the
scattered potential is not equal to that of the incident potentail are zero due to the
radial symmetry of the device”.

Expressions (D.1.114) - (D.1.120) are identical to Zeng and Tang (2013, A5a-A6d)
except from (D.1.112) and (D.1.113) which have an additional term in the denominator
related to the incident plane wave’s propagation angle. This may correspond to a
typographical error.

In order to find the unknown coefficients of potentials (D.1.103) and (D.1.108), a
similar procedure to the one explained in Section D.1.2 is followed. Orthogonality of
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depth functions is used together with the mathing conditions at the interface between
the core and the external region to obtain the following system of equations (see (Child,
2011, pg.51) or (Yilmaz et al., 2001, pg.487)):


Cm
pn +

∞∑
q=0

Em
pqD

m
qn = Um

pn

Dm
qn =

∞∑
p=0

Gm
qpC

m
pn

(D.1.121)

where:

Em
pq = − 2

d− h

Hm(k0a)
H ′
m(k0a)

(d− h)2k0(−1)p sinh k0(d− h)
N

1/2
0 (p2π2 + k2

0(d− h)2)
, p ≥ 0, q = 0 (D.1.122)

Em
pq = − 2

d− h

Km(kqa)
K ′
m(kqa)

(d− h)2kq(−1)p sin kq(d− h)
N

1/2
q (−p2π2 + k2

q(d− h)2)
, p ≥ 0, q ≥ 1 (D.1.123)

Gm
qp = |m| sinh k0(d− h)

2ak2
0dN

1/2
0

, q = 0, p = 0 (D.1.124)

Gm
qp = |m| sin kq(d− h)

2ak2
qdN

1/2
q

, q ≥ 1, p = 0 (D.1.125)

Gm
qp =

I
′
m

(
pπa
d−h

)
Im
(
pπa
d−h

) pπ(d− h)(−1)p sinh k0(d− h)
(p2π2 + k2

0(d− h)2)dN1/2
0

, q = 0, p ≥ 1 (D.1.126)

Gm
qp =

I
′
m

(
pπa
d−h

)
Im
(
pπa
d−h

) pπ(d− h)(−1)p sin kq(d− h)
(−p2π2 + k2

q(d− h)2)dN1/2
q

, q ≥ 1, p ≥ 1 (D.1.127)

Um
pn = 4im+1(−1)p(d− h) sinh k0(d− h)

πa(p2π2 + k2
0(d− h)2)H ′

m(k0a)cosh k0d
, p ≥ 0, n = 0 (D.1.128)

Um
pn = 2(d− h)(−1)p+1 sin kn(d− h)

a(−p2π2 + k2
n(d− h)2)K ′

m(kna) , p ≥ 0, n ≥ 1 (D.1.129)

D.1.4 Hydrodynamic forces

Sections D.1.2 and D.1.3 provided the formulae to compute the RC and the DTM
respectively of a truncated vertical circular cylinder. These hydrodynamic operators
are required to solve the multiple-scattering problem using the Direct Matrix Method
interaction theory by Kagemoto and Yue (1986) detailed in Chapter 2. Here, the focus
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is only on the radiation problem and its associated scattered partial cylindrical wave
coefficients AR for each body j in the array can be obtained by solving the following
system of equations:

ARj = BE
j

N∑
i=1,i ̸=j

TT
ij

[ 5∑
s=1

(−iω0ζ
i
s Ris) + ARi

]
(D.1.130)

where Ris is the RC vector of body i moving in a mode of motion s and ARi are the
scattered partial cylindrical wave coefficients describing the scattered wave field by
each body i generated as a consequence of the radiated field by bodies i.

The total velocity potential in both exterior and core regions of each cylinder j
in array can be reconstructed from the scattering coefficients (AR) obtained from
(D.1.130) as:

φjRD−E =
[ 5∑
s=1

(−iω0ζ
j
s R

T
js) + ATRj

]
ψD−E
j +

N∑
i=1,i ̸=j

[ 5∑
s=1

(−iω0ζ
j
s R

T
is) + ATRi

]
Tijψ

I
j (D.1.131)

φjRD−C =
5∑
s=1

[
−iω0ζ

j
s φRs−C

]
+

N∑
i=1,i ̸=j

[ 5∑
s=1

(−iω0ζ
i
s R

T
is) + ATRi

]
Tij

(BC
j

)T
ψD−C
j (D.1.132)

where φjRD−E and φjRD−C represent the total velocity potential in the exterior and core
regions of cylinder j respectively.

It is noteworthy to mention that the multiple-scattering problem is solved in the
exterior region only as can be derived from the use of BE in (D.1.130). The scattered
coefficients on the exterior region are transferred to the core one by means of the BC

as can be observed in (D.1.132).

After having obtained φjRD−E and φjRD−C , the first-order hydrodynamic forces and
moments can be obtained by integrating the pressure overt the wetted surface of the
cylinder j. Thus:
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F = −
∫
pH n dS; M = −

∫
pH (L × n) dS (D.1.133)

where F and M are the hydrodynamic force and moment, n the normal to the
surface, L the lever arm and pH the hydrodynamic pressure calculated as:

pH = Re

{
−ρ∂φRD

∂t

}
(D.1.134)

The complete expressions for the forces are not defined in Zeng and Tang (2013)
and have been developed in the following sections.

D.1.4.1 Force direction z

F j
z = −iρω

∫∫
φjRDn dS = iρω

∫ ai

0

∫ 2π

0
φjRDrjdθjdrj = iρω

∫ aj

0

∫ 2π

0
φjRD−C

∣∣∣
z=−h

rjdθjdrj =

= iρω
∫ aj

0

∫ 2π

0

5∑
s=1

−iω0ζ
i
S(RT

js−Cψ
D−C
j + Λs

∞∑
m=−∞

λmse
imθj )rjdθjdrj+

iρω
∫ aj

0

∫ 2π

0


n∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
Tij

 (BC
j )T (ψD−C

j )rjdθjdrj =

iρω0

5∑
s=1

−iω0ζ
j
sY

R
js−C + iρω0


n∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
Tij

 (BC
j )TY D−C

j (D.1.135)

where:

Y R
js−C =

∫ aj

0

∫ 2π

0
(RT

js−Cψ
D−C
j + Λs

∞∑
m=−∞

λmse
imθj )rjdθjdrj (D.1.136)

Y D−C
j =

∫ aj

0

∫ 2π

0
ψD−C
j rjdθjdrj (D.1.137)

Developing (D.1.137):
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Y D−C
j =

∫ aj

0

∫ 2π

0
rjdθjdrj = 2π r2

2

∣∣∣∣∣
aj

0
= πa2

j p = 0, m = 0 (D.1.138)

Y D−C
j =

∫ aj

0

∫ 2π

0
r

|m|
j eimθjrjdθjdrj =

∫ aj

0
r

|m|+1
j drj

∫ 2π

0
eimθjdθ = (D.1.139)

=
r

|m|+2
j

|m| + 2

∣∣∣∣∣∣
aj

0

eimθj

im

∣∣∣∣∣
2π

0
=

a
|m|+2
j

|m| + 2 · 0 = 0 p = 0, m ̸= 0 (D.1.140)

Y D−C
j =

∫ aj

0

∫ 2π

0
Im

(
pπrj
d− h

)
eimθjrjdθjdrj = 0 p ≥ 1,m ̸= 0 (D.1.141)

Y D−C
j =

∫ aj

0

∫ 2π

0
I0

(
pπrj
d− h

)
rjdθjdrj = 2π

∫ aj

0
I0

(
pπrj
d− h

)
rjdrj = (D.1.142)

= 2aj
d− h

p
I1

(
pπaj
d− h

)
= 2aj

d− h

p
I1

(
pπaj
d− h

)
p ≥ 1, m = 0 (D.1.143)

expression (D.1.143) has been derived using Abramowitz and Segun A. (1964,
9.6.28):

(
1
x

d

dx

)
{xI1(x)} = I0(x) →

∫
I0

(
pπrj
d− h

)
rjdr = d− h

pπ
ajI1

(
pπaj
d− h

)

Results (D.1.140) and (D.1.141) show that there is no contribution from non-
symmetrical angular modes (m ̸= 0).

Developing (D.1.136):
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Y R
js−C = RT

js−CY
D−C
j +

∫ aj

0
Λsrjdrj

∫ 2π

0

∞∑
m=−∞

λmse
imθjdθj (D.1.144)

s = 1, 2 → Λs = 0 (D.1.145)

s = 3 →
∫ 2π

0
dθ
∫ aj

0
rj

1
2(d− h)

[
(z + d)2 −

r2
j

2

]
drj =

2π
[∫ aj

0

(z + d)2

2(d− h)rjdr −
∫ aj

0

r3
j

4(d− h)dr
]

= (D.1.146)

= π
(z + d)2

d− h

a2
j

2 − π

2
1

d− h

a4
j

4 = π

2(d− h)

[
(z + d)2a2

j −
a4
j

4

]
(D.1.147)

s = 4 →
∫ 2π

0

∞∑
m=−∞

λmse
imθjdθ =

∫ 2π

0

( 1
2ie

iθj − 1
2ie

i(−θj)
)
dθ =

∫ 2π

0
sin θ dθ = 0

(D.1.148)

s = 5 →
∫ 2π

0

∞∑
m=−∞

λmse
imθjdθ =

∫ 2π

0

(1
2e

iθ + 1
2e

−iθ
)
dθ =

∫ 2π

0
cos θ dθ = 0

(D.1.149)

Therefore:

Y R
j1−C = RT

j1−CY
D−C
j (D.1.150)

Y R
j2−C = RT

j2−CY
D−C
j (D.1.151)

Y R
j3−C = RT

j3−CY
D−C
j + π

2(d− h)

[
(d− h)2a2

j −
a4
j

4

]
(D.1.152)

Yj4−C = RT
j4−CY

D−C
j (D.1.153)

Yj5−C = RT
j5−CY

D−C
j (D.1.154)

Only the particular solution of heave mode contributes to the heave force as can
be derived from (D.1.145) - (D.1.149).
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D.1.4.2 Force direction x

F j
x = −iρω0

∫∫
φRDnxdS = −iρω0

∫∫
φRD−EnxdS =

= −iρω0

∫ 0

−h

∫ 2π

0
φRD−E|r=aj

ajdθjdz cos θj =

= −iρω0

∫ 0

−h

∫ 2π

0

[ 5∑
s=1

(−iω0ζ
j
sR

T
js) + ATRj

]
ψD−E
j aj cos θjdθjdz−

iρω0

∫ 0

−h

∫ 2π

0

N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
j
sR

T
is) + ATRi

]
Tijψ

I
jaj cos θjdθjdz =

= −iρω0

[ 5∑
s=1

(−iω0ζ
j
sR

T
js) + ATRj

]
Y D−E
j − iρω0

N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
TijY

I
j

(D.1.155)

where:

Y D−E
jFx

=
∫ 0

−h

∫ 2π

0
ψD−E
j aj cos θjdθjdz (D.1.156)

Y I
jFx

=
∫ 0

−h

∫ 2π

0
ψIjaj cos θjdθjdz (D.1.157)

Then, expanding (D.1.156):

Y D−E
jFx

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

H0(k0rj)aj cos θjdθjdz =

= H0(k0aj)
cosh k0d

∫ 0

−h
cosh k0(z + d)dz

∫ 2π

0
cos θjdθj = 0; n = 0, m = 0 (D.1.158)

Y D−E
jFx

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh(k0d)

Hm(k0rj)eimθjaj cos θjdθjdz =

= Hm(k0aj)aj
cosh(k0d)

∫ 0

−h
cosh k0(z + d)dz

∫ 2π

0
eimθj cos θjdθj =

= Hm(k0aj)aj
cosh(k0d)k0

π(sinh(k0d) − sinh(k0(d− h))); n = 0m ̸= 0 (D.1.159)
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Y D−E
jFx

=
∫ 0

−h

∫ 2π

0
cosh kn(z + d)K0(knaj)aj cos θjdθjdz =

= K0(knaj)aj
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
cos θjdθj = 0; n ̸= 0,m = 0 (D.1.160)

Y D−E
jFx

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)Km(knrj)eimθjaj cos θjdθjdz =

= ajKm(knaj)
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
eimθj cos θjdθj =

= ajKm(knaj)π
kn

[sin(knd) − sin(kn(d− h))] ; n ̸= 0, m ̸= 0 (D.1.161)

To derive (D.1.159) the following has been used:

∫ 0

−h
cosh k0(z + d)dz p=k0(z+d)=

∫ k0d

−k0h+k0d
cosh(p) 1

k0
dp =

= 1
k0

sinh(p)
∣∣∣∣k0d

−k0h+k0d

= 1
k0

[sinh k0d− sinh k0(d− h)]∫ 2π

0
eimθj cos θjdθj =

∫ 2π

0
(cos(mθ) cos θ + j sin(mθ) cos θ)dθ =

=
∫ 2π

0
(cos2 θ + j m sin θ cos θ)dθ = π

Similarly for (D.1.157):

Y I
jFx

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

J0(k0aj)aj cos θjdθjdz =

= J0(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d)dz

∫ 2π

0
cos θjdθj = 0; n = 0, m = 0 (D.1.162)



234 Hydrodynamic interactions in an array of truncated circular cylinders

Y I
jFx

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

Jm(k0aj)eimθjaj cos θjdθjdz =

= Jm(k0aj)
cosh k0d

aj

∫ 0

−h
cosh k0(z + d)dz

∫ 2π

0
eimθj cos θjdθj =

= Jm(k0aj)aj
cosh(k0d)k0

π [sinh(k0d) − sinh k0(d− h)] ; n = 0, m ̸= 0 (D.1.163)

Y I
jFx

=
∫ 0

−h

∫ π

0
cos kn(z + d)I0(knaj)aj cos θjdθjdz =

= I0(knaj)aj
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
cos θjdθj = 0; n ̸= 0, m = 0 (D.1.164)

Y I
jFx

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)Im(knrj)eimθjaj cos θjdθdz =

= ajIm(knaj)
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
eimθj cos θjdθ =

= ajIm(knaj)π
kn

[sin(knd) − sin kn(d− h)] ; n ̸= 0, m ̸= 0 (D.1.165)

D.1.4.3 Force direction y

F j
y = −iρω0

[ 5∑
s=1

(−iω0ζ
j
sR

T
js) + ATRj

]
Y D−E
j − iρω0

N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
TijY

I
j

(D.1.166)

where:

Y D−E
jFy

=
∫ 0

−h

∫ 2π

0
ψD−E
j aj sin θjdθjdz (D.1.167)

Y I
jFy

=
∫ 0

−h

∫ 2π

0
ψIjaj sin θjdθjdz (D.1.168)

Developping (D.1.167):
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Y D−E
jFy

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

H0(k0aj)aj sin θdθjdz =

= ajH0(k0aj)
cosh k0d

∫ 0

−h
cosh k0(z + d)dz

∫ 2π

0
sin θdθ = 0; n = 0 ,m = 0 (D.1.169)

Y D−E
jFy

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

Hm(k0rj)eimθjaj sin θdθjdz =

= Hm(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d)dz

∫ 2π

0
eimθj sin θjdθj =

= Hm(k0aj)aj
cosh k0d

mπi

k0
[sinh k0d− sinh k0(d− h)] ; n = 0, m ̸= 0 (D.1.170)

Y D−E
jFy

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)K0(knaj)aj sin θjdθjdz =

= K0(knaj)aj
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
sin θjdθj = 0; n ̸= 0, m = 0 (D.1.171)

Y D−E
jFy

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)Km(knaj)eimθjaj sin θjdθjdz =

= ajKm(knaj)
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
eimθj sin θjdθj =

= ajKm(knaj)
kn

mπi [sin knd− sin kn(d− h)] ; n ̸= 0, m ̸= 0 (D.1.172)

To derive (D.1.170) the following has been used:

∫
eimθj sin θjdθj =

∫
(cos(mθ) + j sin(mθ)) sin θ = mπ

Similarly for (D.1.168):

Y I
jFy

=
∫ 0

−h

∫ 2π

0
ψIjaj sin θjdθjdz =

∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

J0(k0aj)aj sin θjdθjdz =

= ajJ0(k0aj)
cosh (k0d)

∫ 0

−h
cosh k0(z + d)dz

∫ 2π

0
sin θjdθ = 0; n = 0, m = 0 (D.1.173)
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Y I
jFy

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

Jm(k0aj)eimθjaj sin θjdθjdz =

= Jm(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d)dz

∫ 2π

0
eimθj sin θjdθ =

= Jm(k0aj)aj
cosh k0d

mπi

k0
[sinh k0d− sinh k0(d− h)] ; n = 0, m ̸= 0 (D.1.174)

Y I
jFy

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)I0(knaj)aj sin θdθjdz =

= I0(knaj)aj
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
sin θdθj = 0, n ̸= 0, m = 0 (D.1.175)

Y I
jFy

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)Im(knaj)eimθjaj sin θjdθjdz =

= Im(knaj)aj
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
eimθj sin θjdθj =

= ajIm(knaj)
kn

mπi [sin knd− sin kn(d− h)] ; n ̸= 0, m ̸= 0 (D.1.176)

The strategy to calculate the moments has been extracted from the work by Yilmaz
(1998, pg.274). Although the sign of the lever to calculate the contribution from the
z Force has been kept the same, the signs corresponding to the levers to calculate the
contributions from Fy and Fx have been modified.

D.1.4.4 Moment direction y

My = −iρω0

∫ 0

−h

∫ 2π

0
φjRD−E

∣∣∣
r=aj

ajdθjdz cos θj
lever︷︸︸︷
(z)︸ ︷︷ ︸

Fxcontribution

+

iρω0

∫ aj

0

∫ 2π

0
φjRD−C

∣∣∣
z=−h

rjdθjdrj

lever︷ ︸︸ ︷
(−r cos θ)︸ ︷︷ ︸

Fzcontribution

(D.1.177)

With respect to the Fz contribution to My(MyFz):
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MyFz = iρω0

5∑
s=1

−iω0ζ
j
sY

MyR
js−C +iρω0


N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
Tij

 (BC
j )TY D−C

jMy

(D.1.178)

where:

Y
MyR
js−C =

∫ aj

0

∫ 2π

0
−(RT

js−Cψ
D−C
j + Λs

∞∑
m=−∞

λmse
imθj )r2 cos θdθdr (D.1.179)

Y D−C
jMy

=
∫ aj

0

∫ 2π

0
−(ψD−C

j )r2 cos θdθdr (D.1.180)

By developping (D.1.179):

Y D−C
jMy

=
∫ aj

0

∫ 2π

0
−r2 cos θdθdr = 0; p = 0, m = 0

Y D−C
jMy

=
∫ aj

0

∫ 2π

0
−r|m|

j eimθjr2dθdr cos θ = −
∫ aj

0
r

|m|+2
j dr

∫ 2π

0
eimθj cos θdθ =

= −
r

|m|+3
j

|m| + 3

∣∣∣∣∣∣
aj

0

π = −π
a

|m|+3
j

|m| + 3; p = 0, m ̸= 0

Y D−C
jMy

= −
∫ aj

0

∫ 2π

0
Im

(
pπrj
d− h

)
eimθjr2 cos θdθdr =

= −
∫ aj

0
Im

(
pπrj
d− h

)
r2dr

∫ 2π

0
eimθj cos θdθ =

= −πd− h

pπ

[
r2I2

(
pπr

d− h

)]aj

0
= −d− h

p
a2I2

(
pπa

d− h

)
; p ≥ 1, m ̸= 0

Y D−C
jMy

=
∫ aj

0

∫ 2π

0
−I0

(
pπr

d− h

)
r2 cos θdθdr =

=
∫ aj

0
−I0

(
pπr

d− h

)
r2dr

∫ 2π

0
cos θdθ = 0; p ≥ 1, m = 0

Similarly for (D.1.180):
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Y
MyR
js−C =

∫ aj

0

∫ 2π

0
−(RT

js−Cψ
D−C
j + Λs(z, r)

∞∑
m=−∞

λmse
imθ)r2 cos θdθdr =

= RT
js−CY

D−C
jMy

−
∫ aj

0
Λs(z, r)r2dr

∫ 2π

0

∞∑
m=−∞

λmse
imθ cos θdθ

s = 1, 2 → Λs(z, r) = 0

s = 3 →
∫ aj

0
ΛS(z, r)r2dr

∫ 2π

0
cos θdθ = 0

s = 4 →
∫ aj

0
Λ4(z, r)r2dr

∫ 2π

0

( 1
2ie

iθ − 1
2ie

i(−θ)
)

cos θdθ = 0

s = 5 →
∫ aj

0
Λ5(z, r)r2dr

∫ 2π

0

(1
2e

iθ + 1
2e

−iθ
)

cos θdθ = π

[
−
a4
j(d− h)

8 +
a6
j

48(d− h)

]

Therefore:

Y
MyR
j1−C = RT

j1−CY
D−C
jMy

Y
MyR
j2−C = RT

j2−CY
D−C
jMy

Y
MyR
j3−C = RT

j3−CY
D−C
jMy

Y
MyR
j4−C = RT

j4−CY
D−C
jMy

Y
MyR
j5−C = RT

j5−CY
D−C
jMy

− π

[
−
a4
j(d− h)

8 +
a6
j

48(d− h)

]

With respect to the Fx contribution to My(MyFx):

MyFx = −iρω0

[ 5∑
s=1

(−iω0ζ
j
sR

T
js) + ATRj

]
Y D−E
jMy

−iρω0

N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
TijY

I
jMy

where:

Y D−E
jMy

=
∫ 0

−h

∫ 2π

0
ψD−E
j aj z cos θjdθjdz (D.1.181)

Y I
jMy

=
∫ 0

−h

∫ 2π

0
ψIjaj z cos θjdθjdz (D.1.182)
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Developping (D.1.181):

Y D−E
jMy

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

H0(k0rj)ajz cos θjdθjdz =

= H0(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d) z dz

∫ 2π

0
cos θjdθh = 0; n = 0, m = 0 (D.1.183)

Y D−E
jMy

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

Hm(k0rj)eimθjaj z cos θjdθjdz =

= Hm(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d) z dz

∫ 2π

0
eimθj cos θjdθj =

= Hm(k0aj)aj
cosh k0d

π

[
1
k2

0
cosh k0(d− h) + h

k0
sinh k0(d− h) − 1

k2
0

cosh(k0d)
]

; n = 0, m ̸= 0

(D.1.184)

Y D−E
jMy

=
∫ 0

−h

∫ 2π

0
cos kn(z + d) k0(knaj)aj cos θj z dθdz =

= K0(knaj)aj
∫ 0

−h
cos kn(z + d)dz

∫ 2π

0
cos θjdθ = 0; n ̸= 0, m = 0 (D.1.185)

Y D−E
jMy

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)Km(knrj)eimθjaj z cos θjdθjdz =

= Km(knaj)aj
∫ 0

−h
cos kn(z + d) z dz

∫ 2π

0
eimθj cos θjdθ =

= Km(knaj)ajπ
[

1
k2
n

cos knd− 1
k2
n

cos kn(d− h) + h

kn
sin kn(d− h)

]
; n ̸= 0, m ̸= 0

(D.1.186)

For (D.1.184) it has been used:
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∫ 0

−h
cosh k0(z + d) z dz p=k0(z+d)=

∫ k0d

k0(d−h)
cosh(p)

(
p

k0
− d

)
dp

k0
=

= 1
k2

0

∫ k0d

k0(d−h)
cosh(p) p dp− d

k0

∫ k0d

k0(d−h)
cosh(p)dp =

= 1
k2

0
[p sinh(p) − cosh(p)]k0d

k0(d−h) − d

k0
sinh(p)

∣∣∣∣∣
k0d

k0(d−h)
=

= 1
k2

0
[k0d sinh(k0d) − cosh(k0d) − k0(d− h) sinh k0(d− h) + cosh k0(d− h)] =

= − 1
k2

0
cosh(k0d) + h

k0
sinh k0(d− h) + 1

k2
0

cosh k0(d− h)

Similarly for (D.1.182):

∫ 0

−h
cos kn(z + d) z dz p=kn(z+d)=

∫ knd

kn(d−h)
cos(p)

(
p

kn
− d

)
dp

kn
=

= 1
k2
n

∫ knd

kn(d−h)
cos(p) p dp− d

kn

∫ knd

kn(d−h)
cos(p)dp =

= 1
k2
n

[cos p+ p sin p]knd
kn(d−h) − d

kn
sin(p)

∣∣∣∣∣
knd

kn(d−h)
=

= 1
k2
n

[cos knd+ knd sin knd− cos kn(d− h) − kn(d− h) sin kn(d− h)]

− d

kn
[sin(knd) − sin kn(d− h)] = 1

k2
n

cos knd− 1
k2
n

cos kn(d− h) + h

kn
sin kn(d− h)

Developping (D.1.182):

Y I
jMy

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

J0(k0aj)aj z cos θjdθjdz =

= J0(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d) z

∫ 2π

0
cos θjdθ = 0; n = 0, m = 0



D.1 Formulation 241

Y I
jMy

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

Jm(k0aj)eimθjaj z cos θjdθjdz =

= Jm(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d) z dz

∫ 2π

0
eimθj cos θjdθj =

= Jm(k0aj)aj
cosh k0d

π

[
1
k2

0
cosh k0(d− h) + h

k0
sinh k0(d− h) − 1

k2
0

cosh k0d

]
; n = 0, m ̸= 0

Y I
jMy

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)I0(knaj)aj z cos θdθdz =

= I0(knaj)aj
∫ 0

−h
cos kn(z + d) z dz

∫ 2π

0
cos θdθ = 0; n ̸= 0, m = 0

Y I
jMy

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)Im(knrj)eimθj aj z cos θdθdz =

= Im(knaj)aj
∫ 0

−h
cos kn(z + d) z dz

∫ 2π

0
eimθj cos θdθ =

= Im(knaj)ajπ
[

1
k2
n

cos knd− 1
k2
n

cos kn(d− h) + h

kn
sin kn(d− h)

]
; n ̸= 0, m ̸= 0

D.1.4.5 Moment direction x

Mx = −iρω0

∫ 0

−h

∫ 2π

0
φjRD−E

∣∣∣
r=aj

ajdθj sin θj
lever︷ ︸︸ ︷
(−z) dz︸ ︷︷ ︸

Fycontribution

+

iρω0

∫ aj

0

∫ 2π

0
φjRD−C

∣∣∣
z=−h

rjdθjdrj

lever︷ ︸︸ ︷
(r sin θ)︸ ︷︷ ︸

Fzcontribution

(D.1.187)

With respect to the Fz contribution:

MxFz = iρω0

5∑
s=1

−iω0ζ
j
sY

MxR
js−C +iρω0


N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
Tij

 (BC
j )TY D−C

jMx
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where:

Y MxR
js−c =

∫ aj

0

∫ 2π

0
(RT

js−Cψ
D−C
j + Λs

∞∑
m=−∞

λmse
imθ)r2 sin θdθdr (D.1.188)

Y D−C
jMx

=
∫ aj

0

∫ 2π

0
ψD−C
j r2 sin θdθdr (D.1.189)

Developping (D.1.188):

Y D−C
jMx

=
∫ aj

0

∫ 2π

0
r2 sin θdθdr = 0; p = 0, m = 0 (D.1.190)

Y D−C
jMx

=
∫ aj

0

∫ 2π

0
r

|m|
j eimθjr2 sin θdθdr =

=
∫ aj

0
r|m|+2dr

∫ 2π

0
eimθj sin θdθ =

a
|m|+3
j

|m| + 3mπi; p = 0, m ̸= 0 (D.1.191)

Y D−C
jMx

=
∫ aj

0

∫ 2π

0
I0

(
pπrj
d− h

)
r2 sin θdθdr =

=
∫ aj

0
I0

(
pπr

d− h

)
r2dr

∫ 2π

0
sin θdθ = 0; p ≥ 1, m = 0

Y D−C
jMx

=
∫ aj

0

∫ 2π

0
Im

(
pπrj
d− h

)
eimθjr2 sin θdθdr =

∫ aj

0
Im

(
pπrj
d− h

)
r2dr

∫ 2π

0
eimθj sin θjdθ =

= mπ
d− h

pπ
a2I2

(
pπa

d− h

)
= mi

p
(d− h)a2I2

(
pπa

d− h

)
; p ≥ 1, m ̸= 0 (D.1.192)

Similarly, for (D.1.189):
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s = 1, 2 → Λs(z, r) = 0 (D.1.193)

s = 3 →
∫ aj

0
Λ3(z, r)r2dr

∫ 2π

0
sin θdθ = 0 (D.1.194)

s = 4 →
∫ 2π

0
Λ4(z, r)r2dr

∫ 2π

0

( 1
2ie

iθ − 1
2ie

i(−θ)
)

sin θdθ =

= π

[
d− h

8 a4
j − 1

48
1

d− h
a6
j

]
(D.1.195)

s = 5 →
∫ aj

0
Λ5(z, r)r2dr

∫ 2π

0

(1
2e

iθ + 1
2e

−iθ
)

sin θdθ = 0 (D.1.196)

Therefore:

Y MxR
j1−C = RT

j1−CY
D−C
jMx

(D.1.197)
Y MxR
j2−C = RT

j2−CY
D−C
jMx

(D.1.198)
Y MxR
j3−C = RT

j3−CY
D−C
jMx

(D.1.199)

Y MxR
j4−C = RT

j4−CY
D−C
jMx

+ π

[
d− h

8 a4
j − 1

48
1

d− h
a6
j

]
(D.1.200)

Y MxR
j5−C = RT

j5−CY
D−C
jMx

(D.1.201)

With regard to the Fy contribution:

MxFy = −iρω0

[ 5∑
s=1

(−iω0ζ
j
sR

T
js) + ATRj

]
Y D−E
jMx

−iρω0

N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
j
sR

T
is) + ATRi

]
TijY

I
jMx

(D.1.202)

where:

Y D−E
jMx

=
∫ 0

−h

∫ 2π

0
ψD−E
j aj sin θjdθjdz(−z) (D.1.203)

Y
IFy

jMx
=
∫ 0

−h

∫ 2π

0
ψIjaj sin θjdθdz(−z) (D.1.204)

Developping (D.1.203):
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Y D−E
jMx

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

H0(k0aj)aj sin θdθj(−z)dz =

= H0(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d)(−z)dz

∫ 2π

0
sin θdθ = 0; n = 0, m = 0

Y D−E
jMx

=
∫ 0

−h

∫ 2π

0

cosh k0(z + d)
cosh k0d

Hm(k0rj)eimθjaj sin θdθdz(−z) =

= Hm(k0aj)aj
cosh k0d

∫ 0

−h
cosh k0(z + d)(−z)dz

∫ 2π

0
eimθj sin θdθ =

= Hm(k0aj)aj
cosh k0d

mπi

[
1
k2

0
cosh(k0d) − h

k0
sinh k0(d− h) − 1

k2
0

cosh k0(d− h)
]

; n = 0, m ̸= 0

Y D−E
jMx

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)K0(knaj)aj sin θjdθjdz(−z) =

= K0(knaj)aj
∫ 0

−h
cos kn(z + d)(−z)dz

∫ 2π

0
sin θdθ = 0; n ̸= 0, m = 0

Y D−E
jMx

=
∫ 0

−h

∫ 2π

0
cos kn(z + d)Km(knaj)eimθjaj sin θdθjdz(−z) =

= Km(knaj)aj
∫ 0

−h
cos kn(z + d)(−z)dz

∫ 2π

0
eimθj sin θjdθ =

= Km(knaj)ajmπi
[

−1
k2
n

cos knd+ 1
k2
n

cos kn(d− h) − h

kn
sin kn(d− h)

]
; n ̸= 0, m ̸= 0

Developping D.1.204:

Y
IFy

jMx
=
∫ 0

−h

∫ 2π

0
−cosh k0(z + d)

cosh k0d
J0(k0aj) aj sin θjdθjdz(z) =

− J0(k0aj)
cosh k0d

aj

∫ 0

−h
cosh k0(z + d) z dz

∫ 2π

0
sin θjdθj = 0; n = 0, m = 0
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Y
IFy

jMx
=
∫ 0

−h

∫ 2π

0
−cosh k0(z + d)

cosh k0d
Jm(k0aj)eimθjaj sin θjdθjdz(z) =

− Jm(k0aj)
cosh k0d

aj

∫ 0

−h
cosh k0(z + d) z dz

∫ 2π

0
eimθj sin θjdθj =

Jm(k0aj)
cosh k0d

ajmπi

[
1
k2

0
cosh k0d− h

k0
sinh k0(d− h) − 1

k2
0

cosh k0(d− h)
]

; n = 0, m ̸= 0

Y
IFy

jMx
=
∫ 0

−h

∫ 2π

0
cos kn(z + d)I0(knrj) aj sin θjdθjdz(−z) =

I0(knaj)aj
∫ 0

−h
cos kn(z + d)(−z)dz

∫ 2π

0
sin θjdθj = 0; n ̸= 0, m = 0

Y
IFy

jMx
=
∫ 0

−h

∫ 2π

0
cos kn(z + d)Im(knaj)eimθjaj sin θjdθdz(−z) =

Im(knaj)aj
∫ 0

−h
cos kn(z + d)(−z)dz

∫ 2π

0
eimθj sin θjdθj =

Im(knaj)ajmπi
[

−1
k2
n

cos knd+ 1
k2
n

cos kn(d− h) − h

kn
sin kn(d− h)

]
; n ̸= 0, m ̸= 0

D.1.4.6 Hydrodynamic coefficients

The hydrodynamic coefficients can be computed using::

mds = 1
ω2ζs

ℜ {Fds} (D.1.205)

bds = 1
ωζs

ℑ {Fds} (D.1.206)

where subindex d represents direction of the force and s the motion mode. In adi-
mensionalized form, (D.1.205) for modes s = 1, 2, 3 is multiplied by (ρa2πh)−1whereas
modes s = 4, 5 are multiplied by (ρa2πha2)−1. With respect to (D.1.206), modes
s = 1, 2, 3 are multiplied by (ρa2πhω)−1 and s = 4, 5 by (ρa2πha2ω)−1.

D.1.4.7 Summary of Force Formulae

The forces and moments are calculated as follows:
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F j
x = −iρω0

[ 5∑
s=1

(−iω0ζ
j
sR

T
js) + ATRj

]
Y D−E
jFx

− iρω0

N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
TijY

I
jFx


Y D−E
jFx

= 0 n ≥ 0, m = 0
Y D−E
jFx

= Hm(k0aj)aj

cosh(k0d)k0
π(sinh(k0d) − sinh(k0(d− h))) n = 0m ̸= 0

Y D−E
jFx

= ajKm(knaj)π
kn

[sin(knd) − sin(kn(d− h))] n ̸= 0, m ̸= 0


Y I
jFx

= 0 n ≥ 0, m = 0
Y I
jFx

= Jm(k0aj)aj

cosh(k0d)k0
π [sinh(k0d) − sinh k0(d− h)] n = 0, m ̸= 0

Y I
jFx

= ajIm(knaj)π
kn

[sin(knd) − sin(kn(d− h))] n ̸= 0, m ̸= 0

F j
y = −iρω0

[ 5∑
s=1

(−iω0ζ
j
sR

T
js) + ATRj

]
Y D−E
jFy

− iρω0

N∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
TijY

I
jFy


Y D−E
jFy

= 0 n ≥ 0, m = 0
Y D−E
jFy

= Hm(k0aj)aj

cosh k0d
mπi
k0

[sinh k0d− sinh k0(d− h)] n = 0, m ̸= 0
Y D−E
jFy

= ajKm(knaj)
kn

mπi [sin knd− sin kn(d− h)] n ̸= 0, m ̸= 0


Y I
jFy

= 0 n ≥ 0, m = 0
Y I
jFy

= Jm(k0aj)aj

cosh k0d
mπi
k0

[sinh k0d− sinh k0(d− h)] n = 0, m ̸= 0
Y I
jFy

= ajIm(knaj)
kn

mπi [sin knd− sin kn(d− h)] n ̸= 0, m ̸= 0

F j
z = iρω0

5∑
s=1

−iω0ζ
j
sY

RFz
js−C + iρω0


n∑
i=1
i ̸=j

[ 5∑
s=1

(−iω0ζ
i
sR

T
is) + ATRi

]
Tij

 (BC
j )TY D−C

jFz


Y D−C
jFz

= πa2
j p = 0, m = 0

Y D−C
jFz

= 2aj d−h
p
I1
(
pπaj

d−h

)
p ≥ 1, m = 0

Y D−C
jFz

= 0 p ≥ 0, m ̸= 0
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
Y RFz
js−C = R̃T

jsY
D−C
jFz

s = 1, 2, 4, 5

Y RFz
j3−C = R̃T

j3Y
D−C
jFz

+ π
2(d−h)

[
(d− h)2a2

j − a4
j

4

]
s = 3

My = iρω0

5∑
s=1

−iω0ζ
j
sY

MyR
js−C + iρω0


N∑
i=1
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D.2 Numerical results

In this section, a verification of the formulae derived in the preceding sections is
presented. For their implementation, both Fortran and Python languages have been
used and interfaced by means of F2PY (Peterson, 2007). The computation of all
the operators required by the IT has been implemented in Fortran. This includes
the Radiation Characteristics (RC), the Diffraction Transfer Matrix (DTM) and the
Transformation Matrix. Vectors containing the terms resulting from the integration
of the partial wave functions on the cylindrical surface (referred to as Y in section
D.1.4.7) have been also implemented in Fortran. Details on the resolution of the
dispersion equations and on the evaluation of Bessel functions are given in (C.2). The
IT system of equations (2.3.13) has been assembled and solved using Python as well
as the computation of the forces and the hydrodynamic coefficients.

D.2.1 Isolated Cylinder

A first verification is carried out by considering a single isolated cylinder. This is done
by setting to zero both the interaction coefficients (ARj) as well as the RC vectors
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(Ris) in the expressions of the forces shown in section D.1.4.7. This simplification
enables one to “switch off” the effect of hydrodynamic interactions and to calculate
the radiation hydrodynamic coefficients of an isolated cylinder due only to its own
motion. Results obtained using this procedure have been compared against the semi-
analytical solution of Sabuncu and Calisal (1981) presented in (C) and are displayed
in Figures D.2 - D.5. A truncation of 20 evanescent terms has been used as indicated
in Sabuncu and Calisal (1981). A very good match between results is found for all
modes of motion and geometric parameters of the system. We note a slight offset for
both the added mass and damping coefficients in sway for thin plate geometries, i.e.
t/a = 0.1 − 0.5. Additional verifications for this mode of motion are presented in the
following sections.
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D.2.2 Four cylinder array

The results shown in the previous section validate the derivation and implementation
of the partial wave functions integrals on the surface of the cylinder as well as the RC
evaluation. Herein, the results of the work by Zeng and Tang (2013) for a small array
of four cylinders (Figure D.6a) with a radius a, draft 5a in a water depth of 20a and
separated by a distance d = 5a have been replicated to verify the implementation of
the full multiple-scattering problem. Cylinders 1 and 2 are forced to oscillate in phase
in roll mode, and at the same time an oscillation out of phase for cylinders 3 and 4 is
imposed in pitch mode. The amplitudes of oscillation are kept the same.

Contrarily to the case of Sabuncu and Calisal (1981), in Zeng and Tang (2013)
the truncation is not specified. Results presented in Figures D.7 - D.11 have been
generated using 10 evanescent modes as for this number the values provided by Zeng
and Tang (2013) are replicated with good accuracy. Notwithstanding, a sensitivity
analysis of the evanescent modes truncation is performed in section D.2.3.

In spite of the good accuracy observed for all modes, a difference of a factor 10 is
observed in Fz (Figures D.9). It is hypothesized it may stem from the use of a different
motion amplitude in the adimensionalization factor. To confirm it is not due to an
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error of the formulation/implementation, the radiation hydrodynamic coefficients in
heave have been compared in section (D.2.3) to calculations performed using NEMOH
and the IT with the hydrodynamic operators generated as described in Chapter I.
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(a) Schematic of a four cylinder array.
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O

(b) Schematic of a two cylinder array.

Figure D.6

D.2.3 Sensitivity to evanescent modes truncation

A case consisting of two in-line cylinders (Figure D.6b) of radius a = 3m, draft 6m in a
water depth of 10m is chosen to study the sensitivity of the hydrodynamic coefficients
with respect to the number of evanescent modes used. Results for the diagonal added
mass and damping coefficients are shown as a function of the separating distance
between cylinders and for two different wave lengths (λ/a = 10, Figure D.12; λ/a = 30,
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Figure D.13). In all cases, it can be observed that a truncation of 30 terms ensures a
good level of precision. A lower sensitivity of results has been found for the off-diagonal
terms (not shown herein).

Results given in the work by Zeng and Tang (2013) and presented as reference in
section D.2.2 are not exempt from uncertainties as the truncation used to generate
them is not specified in the original work. In the previous section it has been found
that they can be replicated with good agreement using 10 modes. However, results in
Figures D.12 and D.13 indicate that they may not be converged. Because of that, an
additional set of verifications has been undertaken.

They consist of comparing the results obtained from the implementation of the
formulae in section D.1.4.7 against direct calculations with the BEM code NEMOH
and the IT. For the latter, the required hydrodynamic operators have been generated
as described in Chapter I. Results are presented as a function of the separating distance
for two different wave lengths (λ/a = 10, Figure D.14; λ/a = 30, Figure D.15), and
as a function of the wave frequency for a fixed separating distance (Figure D.16).

With respect to Figures D.14 and D.15, it can be observed that a finer discretization
of the wetted surface of the cylinder reduces the differences between the semi-analytical
solution and the BEM as expected. A perfect match between the direct NEMOH cal-
culations and the IT is found. A very good agreement is as well observed between the
BEM and the semi-analytical solution, with the highest discrepancy (∼ 6%) observed
for the damping coefficients in the longest wave length and for the highest separat-
ing distance between bodies. With respect to the Fz force, a maximum difference of
∼ 3% is found between the semi-analytical solution and the BEM with the highest
refinement.

In Figure D.16, a very good match between the diagonal and coupled radiation
hydrodynamic coefficients in heave computed with the implementation of the semi-
analytical solution by Zeng and Tang (2013) and with the IT can be observed. We
note a discrepancy of ∼ 6% of results for the damping coefficient at the interval of
wave frequencies 0.6−0.8 rad/s and the presence of an irregural frequency at 2.2rad/s.
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Figure D.12: Comparison between diagonal added mass and damping coefficients for
two cylinders (Figure D.6b) of radius 3m, draft 6m in a 10m water depth at several
separation distances and for several truncation values (represented as L). First index
corresponds to the direction of the force and the second to the degree of freedom.



260 Hydrodynamic interactions in an array of truncated circular cylinders

2 3 4 5 6 7 8 9 10
d/a

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

Ad
de

d 
M
as
s 
1,
1 
(K
g)

1e5 λ/a=30
L=10
L=30
L=50
L=70

(a)

2 3 4 5 6 7 8 9 10
d/a

2.5

3.0

3.5

4.0

4.5

5.0

Da
m
pi
ng

 1
,1
 (N

/m
·s)

1e3 λ/a=30
L=10
L=30
L=50
L=70

(b)

2 3 4 5 6 7 8 9 10
d/a

5.4

5.5

5.6

5.7

5.8

5.9

6.0

Ad
de

d 
M
as
s 
3,
3 
(K
g)

1e4 λ/a=30

L=10
L=30
L=50
L=70

(c)

2 3 4 5 6 7 8 9 10
d/a

6.7
6.8
6.9
7.0
7.1
7.2
7.3
7.4
7.5
7.6

Da
m
pi
ng

 3
,3
 (N

/m
·s)

1e3 λ/a=30

L=10
L=30
L=50
L=70

(d)

2 3 4 5 6 7 8 9 10
d/a

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

Ad
de

d 
M
as
s 
7,
7 
(K
g)

1e5 λ/a=30
L=10
L=30
L=50
L=70

(e)

2 3 4 5 6 7 8 9 10
d/a

2.5

3.0

3.5

4.0

4.5

5.0

Da
m
pi
ng

 7
,7
 (N

/m
·s)

1e3 λ/a=30
L=10
L=30
L=50
L=70

(f)

Figure D.13: Comparison between diagonal added mass and damping coefficients for
two cylinders (Figure D.6b) of radius 3m, draft 6m in a 10m water depth at several
separation distances and for several truncation values (represented as L). First index
corresponds to the direction of the force and the second to the degree of freedom.
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Figure D.14: Comparison between diagonal added mass coefficients computed with
NEMOH, with the IT and a semi-analytical solution for two truncated vertical cylin-
ders (Figure D.6b) of radius 3m, draft 6m in a 10m water depth at several separation
distances. First index corresponds to the direction of the force and the second to the
degree of freedom.
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Figure D.15: Comparison between diagonal added mass coefficients computed with
NEMOH, with the IT and a semi-analytical solution for two truncated vertical cylin-
ders (Figure D.6b) at several separation distances. First index corresponds to the
direction of the force and the second to the degree of freedom.
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Figure D.16: Diagonal and coupled added-mass and damping radiation coefficients in
heave for two truncated vertical cylinders (Figure D.6b) as a function of the frequency.
Two sets of results computed with a semi-analytical solution and with the IT are
presented. The bodies have a radius of 5m, a 10m draft in 50m water depth and
are separated by 200m. First index corresponds to the direction of the force and the
second to the degree of freedom.





Appendix E

Equivalence between Method I and
II

E.1 Diffraction Transfer Matrix

On the one hand, the representation of the progressive part of the scattered potential
using the notation of McNatt et al. (2015) follows as:

ΦS =
∞∑

m=−∞
i
g

ω
aSm

cosh k0(h+ z)
cosh k0h

H(2)
m (k0r) eimθeiωt (E.1.1)

where h is the water depth, H(2)
m the Hankel function of the second kind and aSm

the progressive complex scattered partial wave coefficients.

On the other hand, the convention used by Goo and Yoshida (1990) reads:

ΦS =
∞∑

m=−∞
ASm

cosh k0(z + d)
cosh k0d

H(1)
m (k0r) eimθe−iωt (E.1.2)

where d stands for the water depth, H(1)
m is the Hankel function of the first kind

and ASm the progressive complex scattered partial wave coefficients.

In (E.1.1), a positive sign convention (eiωt) is adopted and amplitudes of partial
wave coefficients have units of length. Contrarily, (E.1.2) makes use of a negative
harmonic time dependence (e−iωt) and amplitudes of partial wave coefficients have
units of velocity potential (m2/s). The use of Hankel functions of the first and the
second kind is a consequence of the time dependence conventions chosen.
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If indexs m and −m are exchanged in (E.1.2) we have:

ΦS =
∞∑

m=−∞
AS−m

cosh k0(z + d)
cosh k0d

H
(1)
−m(k0r) e−imθe−iωt (E.1.3)

By using the identity (Abramowitz and Segun A., 1964, 9.1.6):

H
(1)
−m(z) = eimπH(1)

m (z) (E.1.4)

Expression (E.1.3) can be simplified as:

ΦS =
∞∑

m=−∞
(−1)mAS−m

cosh k0(z + d)
cosh k0d

H(1)
m (k0r) e−imθe−iωt (E.1.5)

Both (E.1.5) and (E.1.1) are complex conjugates and the following relationship
between the coefficients applies:

(−1)m g
ω

[
i(aSm)

]∗
= AS−m (E.1.6)

With respect to the incident potential, it is expressed using the notation of McNatt
et al. (2015) as:

ΦI =
∞∑

q=−∞
i
g

ω
aIq

cosh k0(h+ z)
cosh k0h

Jq(k0r) eiqθeiωt (E.1.7)

whereas in the convention of Goo and Yoshida (1990) it follows as:

ΦI =
∞∑

q=−∞
AIq

cosh k0(z + d)
cosh k0d

Jq(k0r) eiqθe−iωt (E.1.8)

As has been done previously, by exchanging indexs q and −q equation (E.1.8) can
be expressed as:

ΦI =
∞∑

q=−∞
AI−q

cosh k0(z + d)
cosh k0d

J−q(k0r) e−iqθe−iωt (E.1.9)

Using the identity (Abramowitz and Segun A., 1964, 9.1.5):

J−q(z) = (−1)qJq(z) (E.1.10)

Expression (E.1.8) becomes:

ΦI =
∞∑

q=−∞
(−1)qAI−q

cosh k0(z + d)
cosh k0d

Jq(k0r) e−iqθe−iωt (E.1.11)
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Thus, it can be observed that (E.1.11) and (E.1.7) are complex conjugates and
that the incident partial waves coefficients of both conventions can be related by:

(−1)q g
ω

[
i(aIq)

]∗
= AI−q (E.1.12)

From the definition of the Diffraction Transfer Matrix given by (2.3.10):

aSm = BMethod II
m,q aIq (E.1.13)

ASm = BMethod I
m,q AIq (E.1.14)

By substituting (E.1.12) and (E.1.6) into (E.1.14):

(−1)−m g

ω

[
i(aS−m)

]∗
= BMethod I

m,q (−1)−q g

ω

[
i(aI−q)

]∗
(E.1.15)

Rearranging terms, (E.1.15) gives:

(aS−m)∗ = (−1)−q

(−1)−mBMethod I
m,q (aI−q)∗ (E.1.16)

From comparison of (E.1.13) and (E.1.16), it can be deduced that:

(
BMethod II

−m,−q

)∗
= (−1)−q

(−1)−mBMethod I
m,q (E.1.17)

Finally, rearranging (E.1.17):

(−1)−m

(−1)−q

(
BMethod II

−m,−q

)∗
= BMethod I

m,q (E.1.18)

E.2 Radiation Characteristics

In an analogous manner as in section E.1, the notation of the progressive part of the
radiation potential given by McNatt et al. (2015) and Goo and Yoshida (1990) is com-
pared to obtain a relationship between the RC expressed in both notation conventions.
As mentioned in section 2.2.1, the scattered and radiated potentials can be expressed
using the same partial cylindrical wave functions:
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φR = i
g

ω
(aRmk)TψSMethod II (E.2.1)

φR = (Rmk)TψSMethod I (E.2.2)

where Rmk and aRmk are the RC in a mode of motion k in the notation of Methods I
and II respectively, ψ the scattered partial wave functions and T indicates transpose.

As the scattered and radiated potentials have analogous expressions, the relation-
ship (E.1.6) applies as well to the radiation characteristics:

(−1)m g
ω

[
i(aRmk)

]∗
= R−mk (E.2.3)

It is noteworthy to mention that depending on whether the radiation characteristics
are calculated using the BEM solver NEMOH or WAMIT, (E.2.3) should be slightly
modified. This is due to the different radiation boundary conditions applied by both
BEM codes when solving the radiation problem. In NEMOH, the normal velocities
on the wetted body surface are defined as unitary vectors:

∂φ

∂n
= 1 (E.2.4)

whereas in WAMIT the definition is as follows:

∂φ

∂n
= iω (E.2.5)

Thus, as coefficients aRmk are calculated with WAMIT and R−mk in NEMOH, aRmk
in (E.2.3) should be divided by iω leading to:

(−1)m g

ω2

[
(aRmk)

]∗
= R−mk (E.2.6)

E.3 Force Transfer Matrix

From the definition of the Force Transfer Matrix given by (2.3.18):

FMethod II = GMethod II
q aIq (E.3.1)

FMethod I = GMethod I
q AIq (E.3.2)
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By substituting (E.1.12) into (E.3.2):

FMethod I = GMethod I
q (−1)−q g

ω

[
i(aI−q)

]∗
(E.3.3)

Both FMcNatt and FGoo would be the same if calculated with the same BEM
code. In case both NEMOH and WAMIT are used for the calculations, it is worth
highlighting the following difference with respect to the excitation force:

(
FWAMIT

)∗
= FNemoh (E.3.4)

Taking into account that WAMIT has been used to derive the excitation force on
the methodology of McNatt et al. (2015) and NEMOH for the convention of Goo and
Yoshida (1990), then the following applies:

(
FMethod II

)∗
= FMethod I (E.3.5)

If (E.3.5) is substituted into (E.3.3):

(
FMethod II

)∗
= GMethod I

q (−1)−q g

ω

[
i(aI−q)

]∗
(E.3.6)

By comparing (E.3.6) and (E.3.1), it can be deduced that:

(
GMethod II

−q

)∗
= GMethod I

q (−1)−q g

ω
(−i) (E.3.7)

Therefore, by rearranging (E.3.7):

GMethod I
q = (−1)q iω

g

(
GMethod II

−q

)∗
(E.3.8)





Appendix F

Reformulation of Green’s function
constant

As mentioned in Peter and Meylan (2004a), the termK2−k2
0 of the constant C0 (3.1.11)

associated with the propagating modes of the Green’s function poses convergence
problems when the depth is increased. To avoid this hurdle, it is advised to rewrite
C0 making use of the dispersion equation:

k0 tanh k0d = ω2
0
g

; K = ω2
0
g

(F.0.1)

From (3.1.13), the focus is on the outer part of the integral over the wetted surface
of the body which is defined here as Q for convenience:

Q = i

2C0 cosh k0d = i

2
K2 − k2

0
(k2

0 −K2)d+K
cosh k0d (F.0.2)

By substituting (F.0.1) into (F.0.2) and by multiplying numerator and denominator
by cosh (k0d) the following is obtained:

Q = i

2
k2

0(sin 2(k0d) − cosh 2(k0d)
[(k2

0 −K2)d+K] cosh k0d
(F.0.3)

By making use of the trigonometric relationship:

cosh 2(z) − sinh 2(z) = 1 (F.0.4)

Expression (F.0.3) can be simplified:

Q = − i

2
k2

0
[(k2

0 −K2)d+K] cosh k0d
(F.0.5)
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Now, by substituting (F.0.1) into (F.0.5) and by multiplying numerator and de-
nominator by cosh (k0d) the following expression is obtained:

Q = − i

2
k2

0
[(k2

0 − k2
0 tanh 2(k0d)) d+K]

cosh k0d

cosh 2 k0d
= − i

2
k2

0 cosh k0d

k2
0d+K cosh 2k0d

=

− i

2
k0 cosh k0d

k0d+ sinh k0d cosh k0d
= −i k0 cosh k0d

2k0d+ sinh 2k0d
(F.0.6)

By using (F.0.6) the divergence problems due to the depth increase can be cir-
cumvented. The effect of constant C0 reformulation is shown in Figures (F.1) and
(F.2).
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Figure F.1: Real and imaginary parts of the Diffraction Transfer Matrix progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft in three different
water depths. For 30m the Green’s function constant used is in its original form.

In Figure F.1, the progressive terms of the DTM for the truncated vertical cylinder
described in Chapter 3 are shown for water depths spanning from 30m to 500m. The
correction to the Green’s function constant has only been applied to the 200 and 500m
results. Contrarily, to exemplify the effect of the correction, the original term (F.0.2)
has been kept for the 30m depth and a divergence trend at the high wave number
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Figure F.2: Real and imaginary parts of the Diffraction Transfer Matrix progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft in three different
water depths. For all water depths the Green’s function constant has been reformu-
lated.

region can be clearly distinguished. In Figure F.2, the correction has been applied to
all depths and very good agreement amongst the curves is observed. However, we note
a sudden collapse of the results for 500m to zero value for a wave number of k0a ∼ 2.22.
In this case, the behaviour is caused by the denominator in (F.0.6) reaching values
which fall out of the range r that can be represented with an architecture of 64bits
(Fouilloux and Corde, 2014):

2.2 · 10−308 ≤ |r| ≤ 1.8 · 10308 (F.0.7)

By substituting the denominator of (F.0.6) into (F.0.7) we have:

ex − e−x

2 ≤ 1.8 · 10308 − x (F.0.8)

where the definition of the hyperbolic sinus has been used and x = 2k0d.

By applying the natural logarithm to each side of (F.0.8):

x / ln (2 · 1.8 · 10308) (F.0.9)

where terms e−x on the left hand side of (F.0.8) and x on the right hand side are
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considered negligible. Then,

x / 710 or equivalently k0a / 2.13 (F.0.10)



Appendix G

Numerical Integration

Integrals in (3.1.13)-(3.1.14) and (3.1.22)-(3.1.23) cannot be solved analytically, as
there exists no closed mathematical expression for the source strengths. Indeed, the
latter are only known at the centroids of each facet of the discretization. Thus, they
need to be evaluated numerically. To do so, there exist several methods some of which
are explained in this section.

The simplest approach consists of evaluating the kernel of the integral only at
the panel’s centroid and multiplying it by the panel’s surface. This is equivalent to
assuming that the kernel of the integral is constant over the panel. For instance,
(3.1.13) would be computed as:

(Bj)mq0l = i

2C0 cosh (k0d)
Np∑
i=1

σlqj(RCi
j ,ΘCi

j , ζ
Ci
j ) Jm(k0R

Ci
j ) cosh[k0(ζCij + d)]e−imΘjSCi

(G.0.1)

where (RCi
j , ΘCi

j , ζ
Ci
j ) are the centroid coordinates of the ith panel, SCi represents

its surface and Np is the total number of panels of the discretization.

An alternative procedure consists of using a quadrature scheme which is defined as
any formula which enables one to calculate an approximation of an integral (Quarteroni
et al., 2007). The idea is to evaluate the function at specific points and to multiply
them by an appropriate weighting factor. Finally, results are added up.

There exist many different quadrature rules (D.Cook et al., 2002). A commonly
used quadrature scheme is known as Gauss quadrature and has the following form to
perform multidimensional integration over a 2D surface (Abramowitz and Segun A.,



276 Numerical Integration

1964):

1
C

∫∫
S
f(x, y) dxdy =

Nq∑
i=1

ωi f(xi, yi) +R (G.0.2)

where C is a constant that depends on the geometry of the 2D domain, Nq is
the number of quadrature points, f(x, y) is the function to integrate, f(xi, yi) is the
function value on the quadrature point of coordinates (xi, yi), ωi are the weights given
at each quadrature point and R the residual.

Abramowitz and Segun A. (1964) compiled several gaussian quadrature schemes
and its weights for several canonical domain geometries such as a square and a triangle,
some of which are reproduced in Figure G.1.

(a) (b) (c) (d)

Figure G.1: Points of quadrature for a multidimensional integration. The square has
limits |x| ≤ h, |y| ≤ h whereas the triangle is inscribed in a circle of radius h. Source:
Abramowitz and Segun A. (1964)

The discretization of the wetted surface of a body using the BEM code NEMOH
is performed using flat quadrilateral panels that can degenerate into triangles (Del-
hommeau, 1987, Annex 5). If a Gaussian quadrature scheme is to be applied to each
of the body facets, they need to have a canonical form (Figure G.4) and, therefore, a
parametrisation is required. The latter enables one to transform a three-dimensional
flat quadrilateral or triangle into a standard two-dimensional square or triangle with
specified limits as shown in Figure G.2.

The transformation from the physical space of cartesian coordinates (x, y, z) into
parametric space (s, t) is performed as:

(x, y, z) =
Np∑
i=1

ψixi,
Np∑
i=1

ψiyi,
Np∑
i=1

ψizi

 (G.0.3)

where Np is the total number of nodes of the panel and ψi are the interpolation
functions defined on each node i.
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Figure G.2: Four node bilinear quadrilateral and its image in parametric space. Source:
adapted from Topper (2010).

The interpolation functions are defined so that their value is one only at their
associated node, i.e., the value of ψ1 will be one at node 1 and zero elsewhere. As
each quadrilateral panel is flat and composed of four nodes (3 in case of a triangle),
a linear parametrisation is used. If instead of being flat the panels were curved and
described by means of 9 nodes for instance, a biquadratic parametrisation should be
used. Figure G.3 shows a comparison of both types of interpolation functions.

(a) 4-node bilinear element (b) 9-node biquadratic element

Figure G.3: Interpolation functions for node 1 of a quadrilateral element. Source:
adapted from Felippa (2014)

With respect to the case of a quadrilateral element, the canonical domain is de-
scribed as in Figure G.4 (a) and its associated interpolation functions for a linear
parametrisation are defined as:
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Figure G.4: Red numbers indicate node number and the limits of the domain are
indicated in italic. Adapted from: Topper (2010)

ψ1(s, t) = 1
4(1 − s)(1 − t); ∂ψ1

∂s
= −1

4(1 − t); ∂ψ1

∂t
= −1

4(1 − s) (G.0.4)

ψ2(s, t) = 1
4(1 + s)(1 − t); ∂ψ2

∂s
= 1

4(1 − t); ∂ψ2

∂t
= −1

4(1 + s) (G.0.5)

ψ3(s, t) = 1
4(1 + s)(1 + t); ∂ψ3

∂s
= 1

4(1 + t); ∂ψ3

∂t
= 1

4(1 + s) (G.0.6)

ψ4(s, t) = 1
4(1 − s)(1 + t); ∂ψ4

∂s
= −1

4(1 + t); ∂ψ4

∂t
= 1

4(1 − s) (G.0.7)

Similarly for the triangular elements (Figure G.4 b), and following the notation of
Topper (2010) the interpolation functions are defined as:

ψ̃1(s, t) =
√

3(1 − s) − t

2
√

3
; ∂ψ̃1

∂s
= −1

2; ∂ψ̃1

∂t
= −

√
3

6 (G.0.8)

ψ̃2(s, t) =
√

3(1 + s) − t

2
√

3
; ∂ψ̃2

∂s
= 1

2; ∂ψ̃2

∂t
= −

√
3

6 (G.0.9)

ψ̃3(s, t) = t√
3

; ∂ψ̃3

∂s
= 0; ∂ψ̃3

∂t
=

√
3

3 (G.0.10)

The relationship between the area of the element in physical space and in the
parameterised space is given by the Jacobian as:

dA = J(s, t) dsdt (G.0.11)
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where J(s, t) is the Jacobian evaluated at the point of the parametric space (s, t)
and dA is the differential of area of the quadrilateral physical space.

The Jacobian can be computed as (Topper, 2010):

J(s, t) = |Qs ×Qt| (G.0.12)

where expressions Qs and Qt are:

Qs =
( 4∑
i=1

∂ψi(s, t)
∂s

xi,
4∑
i=1

∂ψi(s, t)
∂s

yi,
4∑
i=1

∂ψi(s, t)
∂s

zi

)
(G.0.13)

Qt =
( 4∑
i=1

∂ψi(s, t)
∂t

xi,
4∑
i=1

∂ψi(s, t)
∂t

yi,
4∑
i=1

∂ψi(s, t)
∂t

zi

)
(G.0.14)

By introducing (G.0.11) into (G.0.2), the following expression for the integral over
the physical quadrilateral is obtained:

∫∫
S
f(x, y) dxdy = C

Nq∑
i=1

J(s, t)ωi f(si, ti) (G.0.15)





Appendix H

Formulation of the Direct Matrix
Method interaction theory for
infinite depth

The content of the following sections has been extracted and adapted from the work
by Peter and Meylan (2004a). It extends the Direct Matrix Method interaction theory
formulae derived by Kagemoto and Yue (1986) to infinite-depth. Although not used
in this body of work, it is provided for comparison with the Finite-Depth methodology
detailed in Chapter 2 and as a formulae summary which might be useful for future
implementations. The notation conventions follow as in Chapter 2.

H.1 Array wave fields

In water of infinite depth, the generic scattered and incident potentials outside the
circumscribing cylinders of bodies i and j can be expressed in cylindrical coordinates
referred to its local reference system as:

φSi (ri, θi, z) = eαz
∞∑

m=−∞
(Ai)0

mH
(1)
m (αri) eimθi +

∫ ∞

0
Ψ(z, η)

∞∑
m=−∞

(Ai)ηmKm(ηri) eimθidη

(H.1.1)

φIj (rj, θj, z) = eαz
∞∑

q=−∞
(Dj)0

qJq(αrj) eiqθj +
∫ ∞

0
Ψ(z, ξ)

∞∑
q=−∞

(Dj)ξq Iq(ξrj) eiqθjdξ

(H.1.2)
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where coefficients (Ai)0
m and (Dj)0

q for the propagating modes are discrete and
(Ai)ηm and (Dj)ξq for the decaying modes are functions. H(1)

m is the Hankel function
of the first kind of order m, Km is the modified Bessel function of the second kind of
order m, Jq is the Bessel function of the first kind of order q and Iq is the modified
Bessel function of the first kind of order q. Contrarily to the finite-depth interaction
theory, the sum over the discrete roots of the dispersion equation is replaced by an
integral in the infinite-depth theory. The vertical eigenfunctions corresponding to the
decaying modes are given by:

Ψ(z, η) = cos ηz + α

η
sin ηz; α = ω2

g
(H.1.3)

where ω is the angular frequency.
It is noteworthy that the radiated potential by a body j moving in a mode of

motion k can be formulated using the same expression (H.1.1) with coefficients (Ai)0
m

and (Ai)ηm replaced by Rjk
0m and Rjk

m (η), the latter two referred to as Radiation Char-
acteristics (RC).

By means of the Graf’s addition theorem for Bessel functions (Abramowitz and
Segun A., 1964) which reads:

H(1)
m (αri)eim(θi) =

∞∑
q=−∞

Hm−q(αLij)eiθij(m−q)Jq(αrj)eiqθ (H.1.4)

Km(ηri)eim(θi) =
∞∑

q=−∞
Km−q(ηLij)(−1)qeiθij(m−q)Iq(ηrj)eiqθj (H.1.5)

the scattered potential by a body i can be expressed as incident to body j in its
local reference system. This is done by substituting (H.1.4) and (H.1.5) into (H.1.1):

φSi (rj, θj, z) = eαz
∞∑

q=−∞

[ ∞∑
m=−∞

(Ai)0
mH

(1)
m−q(αLij) ei(m−q)θij

]
Jq(αrj) eiqθj +

∫ ∞

0
Ψ(z, η)

∞∑
q=−∞

[ ∞∑
m=−∞

(Ai)ηmKm−q(ηLij) ei(m−q)θij (−1)q
]
Iq(ηrj) eiqθjdη (H.1.6)

Following the same procedure described in section 2.3, for an array of N bodies
the total incident potential to a body j will be composed of the incident wave acting
on the array, given by either an ambient incident wave or by the radiated wave by a
body j moving in a degree of freedom k whether a diffraction or a radiation problem
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is considered respectively, and the resulting scattered potentials by the i(i ̸= j) neigh-
bouring bodies, written as ∑N

i=1
i ̸=j

φSi (rj, θj, z). Thus, the total incident potential to j is
expressed as:

φIj (rj, θj, z) = eαz
∞∑

q=−∞

(Dj)0
q +

N∑
i=1
i ̸=j

∞∑
m=−∞

(Ai)0
mH

(1)
m−q(αLij) ei(m−q)θij

 Jq(αrj) eiqθj +

∫ ∞

0
Ψ(z, η)

∞∑
q=−∞

(Dj)ηq +
N∑
i=1
i ̸=j

∞∑
m=−∞

(Ai)ηmKm−q(ηLij) ei(m−q)θij (−1)q

 Iq(ηrj) eiqθjdη

(H.1.7)

By comparison of expressions (H.1.2) and (H.1.7), it can be derived that the total
incident potential coefficients DT

j are given by:

(DT
j )0

q = (Dj)0
q +

N∑
i=1
i ̸=j

∞∑
m=−∞

(Ai)0
mH

(1)
m−q(αLij) ei(m−q)θij (H.1.8)

(DT
j )ξq = (Dj)ξq +

N∑
i=1
i ̸=j

∞∑
m=−∞

(Ai)ξmKm−q(ξLij) ei(m−q)θij (−1)q (H.1.9)

where variable ξ is used intead of η to represent incident potential and (DT
j )0

q and
(DT

j )ξq are incident discrete coefficients and functions respectively.
By means of the Diffraction Transfer Matrix Bj, which relates the total incident

and scattered partial waves from an isolated body, the scattered potential from body
j due to the incident potential (H.1.7) can be obtained. As mentioned in Peter and
Meylan (2004a), when the depth is finite and a countable number of modes exist
Bj is an infinite dimensional matrix. Contrarily, when the modes are functions of a
continuous variable as in infinite depth, Bj is the kernel of an integral operator. The
definition of the Diffraction Transfer Matrix elements in infinite depth follows as:

(Aj)0
m =

∞∑
q=−∞

(Bj)00
mq(Dj)0

q +
∫ ∞

0

∞∑
q=−∞

(Bj)0ξ
mq(Dj)ξqdξ (H.1.10)

(Aj)ηm =
∞∑

q=−∞
(Bj)η0

mq(Dj)0
q +

∫ ∞

0

∞∑
q=−∞

(Bj)ηξmq(Dj)ξqdξ (H.1.11)
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By substituting (H.1.8) and (H.1.9) into (H.1.10) and (H.1.11), the system of
equations to solve for the partial wave coefficients of the scattered wave fields by
all bodies can be obtained:

(Aj)0
m =

∞∑
q=−∞

(Bj)00
mq

(Dj)0
q +

N∑
i=1
i ̸=j

∞∑
m=−∞

(Ai)0
mH

(1)
m−q(αLij) ei(m−q)θij

+

∫ ∞

0

∞∑
q=−∞

(Bj)0ξ
mq

(Dj)ξq +
N∑
i=1
i ̸=j

∞∑
m=−∞

(Ai)ξmKm−q(ξLij) ei(m−q)θij (−1)q

 dξ (H.1.12)

(Aj)ηm =
∞∑

q=−∞
(Bj)η0

mq

(Dj)0
q +

N∑
i=1
i ̸=j

∞∑
m=−∞

(Ai)0
mH

(1)
m−q(αLij) ei(m−q)θij

+

∫ ∞

0

∞∑
q=−∞

(Bj)ηξmq

(Dj)ξq +
N∑
i=1
i ̸=j

∞∑
m=−∞

(Ai)ξmKm−q(ξLij) ei(m−q)θij (−1)q

 dξ (H.1.13)

H.2 Diffraction Transfer Matrix and Radiation Char-
acteristics

The derivation of the DTM in infinite-depth given by Peter and Meylan (2004a) follows
the methodology of Goo and Yoshida (1990). The difference with the latter is that
instead of using the free-surface Green’s function in cylindrical coordinates presented
by Black (1975) and further investigated by Fenton (1978) it makes use of the infinite-
depth version of the same Green’s function representation derived by Peter and Meylan
(2004b) which reads:

Gj(rj, θj, zj;Rj,Θj, ζj) = 1
2iαe

α(z+ζj)
∞∑

m=−∞
H(1)
m (αrj)Jm(αRj) eim(θj−Θj)+

1
π2

∫ ∞

0
Ψ(z, η) η2

η2 + α2 Ψ(ζj, η)
∞∑

m=−∞
Km(ηrj) Im(ηRj) eim(θj−Θj)dη (H.2.1)

where G is the Green’s function infinite-depth form valid for r > Rj with Rj being
the circumscribing cylinder of body j, (Rj,Θj, ζj) is the influencing or source point
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and (rj, θj, zj) is the influenced or field point.
Take the representation of the scattered potential in terms of a source strength

distribution given by:

φSj (rj, θj, zj) =
∫∫

Sj

σj(Rj,Θj, ζj)Gj(rj, θj, zj; Rj,Θj, ζj)ds (H.2.2)

where Sj is the wetted surface of body j and σj the source strength distribution
on the wetted surface of body j.

If (H.2.1) is substituted into (H.2.2):

φSj (rj, θj, z) = eαz
∞∑

m=−∞

[
1
2iα

∫
Sj

eαζjJm(αRj) e−imΘjσj(Rj,Θj, ζj)ds
]
H(1)
m (αrj) eimθj +

∫ ∞

0
Ψ(z, η)

∞∑
m=−∞

[
1
π2

η2

η2 + α2

∫
Sj

Ψ(ζj, η) Im(ηRj) e−imΘJσj(Rj,Θj, zj) ds
]
Km(ηrj) eimθjdη

(H.2.3)

Expression (H.2.3) is of the form (H.1.1). The procedure described enables one to
express the scattered potential represented by a source distribution σ in the cylindrical
eigenfunction expansion basis. If the source distribution is due to a unit amplitude
incident potential of the form:

φIj (rj, θj, z) =

e
αz Jq(αrj) eiqθj progressive

Ψ(z, ξ) Iq(ξrj) eiqθj evanescent
(H.2.4)

then the coefficients in (H.2.3) are the elements of the Diffraction Transfer Matrix
which read:

(Bj)0ξ
mq = 1

2iα
∫
Sj

eαζjJm(αRj) e−imΘj (σj)ξq(Rj,Θj, ζj) ds (H.2.5)

(Bj)ηξmq = 1
π2

η2

η2 + α2

∫
Sj

Ψ(ζj, η) Im(ηRj) e−imΘj (σj)ξq(Rj,Θj, ζj) ds (H.2.6)

If instead, the source distribution is given by a unit amplitude motion of the body
j in calm water with a motion mode k, then coefficients (H.2.5) and (H.2.6) represent
the radiation characteristics and can be written as:
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(Rk
j )0
m = 1

2iα
∫
Sj

eαζjJm(αRj) e−imΘjσkj (Rj,Θj, ζj) ds (H.2.7)

(Rk
j )ηm = 1

π2
η2

η2 + α2

∫
Sj

Ψ(ζj, η) Im(ηRj) e−imΘjσkj (Rj,Θj, ζj) ds (H.2.8)

H.3 Numerical implementation

For numerical calculations, the infinite sums need to be truncated and the integrals
must be discretized to be solved using an appropriate numerical scheme. As men-
tioned in Peter and Meylan (2004a), the number of decaying roots of the dispersion
relation must be chosen in finite depth, whereas in infinite depth the discretization of
a continuous variable must be selected. Thus, in the infinite-depth case one is free to
choose the number of points as well as the points themselves. From the work of Peter
and Meylan (2004a), the discretization of the scattered potential follows as:

φSj (rj, θj, z) = eαz
M∑

m=−M
(A)0

mH
(1)
m (αrj) eimθj +

N∑
n=1

hnΨ(z, ηn)
M∑

m=−M
(A)ηn

mKm(ηnrj) eimθj

(H.3.1)
The discretization of the infinite integral is done by defining a set of nodes 0 ≤

η1 < · · · < ηn < · · · < ηN with weights hn given by the mid-point quadrature rule:

hn = 1
2(ηn+1 − ηn−1); n = 2, . . . , N − 1 (H.3.2)

h1 = η2 − η1 (H.3.3)
hN = ηN − ηN−1 (H.3.4)

As stated by Peter and Meylan (2004a), the mid-point rule allows a clever choice
of the discretization points so that the convergence with Gaussian quadrature is no
better. The choice of the integration limit is driven, as mentioned in Peter and Meylan
(2004b), by the fast decay of the modified Bessel function of the second kind which
causes the integrand to decay quickly for a large argument. This enables one to
calculate the integral for a small interval. The latter is chosen from zero until the
point at which the integrand is strictly less than 10−6. Because of the quick decay of
the integrand, more nodes are placed near the zero limit and the number is gradually
reduced while reaching the upper limit of the integral. This seems to be achieved
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by means of a cosine spacing of the nodes in the work of Peter and Meylan (2004a)
although it is not explicitly mentioned.

From the discretized form of the potential in (H.3.1), we can conceive an analogous
formulation to the finite-depth one making use of infinite-depth basis functions to
represent the incident, scattered and radiated potentials. These are detailed in the
following subsections.

H.3.1 Array wave fields

Expressions (H.1.2) and (H.1.1) for the generic representation of the incident and scat-
tered (radiated) potentials can be formulated as a scalar product after discretization
of the infinite integral and the truncation of the infinite series:

φSj = (ASj )TψS∞
j ; φRj = (Rk

j )TψS∞
j ; φIj = (DI

j )TψI∞
j (H.3.5)

(
ψS∞
j

)n
m

=

e
αzHm(αrj) eimθj n = 0
hnΨ(z, ηn)Km(ηnrj) eimθj n ≥ 1

(H.3.6)

(
ψI∞
j

)l
q

=

e
αz Jm(αrj) eimθj l = 0
hlΨ(z, ηl) Im(ηlrj) eimθj l ≥ 1

(H.3.7)

where ψS∞
j and ψI∞

j are the outgoing and incident partial wave functions in infinite-
depth, ASj are scattered partial wave coefficients, Rk

j is the vector of radiated partial
wave coefficients referred to as Radiation Characteristics (RC) and DI

j the vector of
incident partial wave coefficients.

For the particular case of the ambient incident wave field, the elements of the
coefficient vector D∞

j are given by:

(
D∞
j

)l
q

=

−igζa

ω
eiα(X0jcosβ+Y0jsinβ)iqe−iqβ l = 0

0 l ≥ 1
(H.3.8)

By means of (H.1.4) and (H.1.5), the scattered potential by a body i can be
expressed as incident to body j in its local reference system:

ψS∞
i = T∞

ij ψ
I∞
j (H.3.9)
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(
T∞
ij

)nn
mq

=

H
(1)
m−q(αLij) ei(m−q)θij n = 0

(−1)qKm−q(ηnLij) ei(m−q)θij n ≥ 1
(H.3.10)

The system of equations given by (H.1.12) - (H.1.13) can be expressed in its dis-
cretized form as:

Aj = B∞
j (Dj +

N∑
i=1
i ̸=j

T∞T

ij Ai) (H.3.11)

The vector of incident partial waves coefficients Dj can be set as:

Dj,ik =

(T∞
ij )TRik j ̸= i

0 j = i
(H.3.12)

for the radiation problem where a body i of the array undergoes a motion in a
motion mode k or as D∞

j for a diffraction problem with a plane incident wave of
propagation direction β, pulsation ω and amplitude ζa.

H.3.2 Diffraction Transfer Matrix and Radiation Character-
istics

The expressions of the DTM elements after discretization are as follows:

(Bj)0l
mq = 1

2iα
∫
Sj

eαζjJm(αRj) e−imΘj (σj)l0(Rj,Θj, ζj) ds

(Bj)nlmq = 1
π2

η2
n

η2
n + α2

∫
Sj

Ψ(ζj, ηn) Im(ηnRj) e−imΘj (σj)lq(Rj,Θj, ζj) ds

The numerical evaluation of the integrals over the wetted surface of the body by
means of a quadrature scheme has been detailed in Appendix G. The same procedure
can be applied to the infinite-depth. The source-strength distribution (σj)lq can be
obtained by solving the following integral equation:

1
2σj(rj, θj, zj) +

∫∫
Sj

σj(Rj,Θj, ζj)
∂Gj(Rj,Θj, ζj; rj, θj, zj)

∂n
dsj = −

∂
(
ψI∞
j

)
lq

(rj, θj, zj)
∂n

(H.3.13)
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where ∂(ψI∞
j )(rj ,θj ,zj)

∂n
are the derivatives of the unit amplitude partial cylindrical

wave in infinite-depth given by:

∂
(
ψI∞
j

)
lq

∂n
=
∂
(
ψI∞
j

)
lq

∂xj
nxj +

∂
(
ψI∞
j

)
lq

∂yj
nyj +

∂
(
ψI∞
j

)
lq

∂zj
nzj (H.3.14)

For progressive modes:

∂
(
ψI∞
j

)
0q

∂xj
= eαzj

[
α
xj
rj
Jq−1(αrj) − q

r2
j

(xj + i yj) Jq(αrj)
]
eiqθ (H.3.15)

∂
(
ψI∞
j

)
0q

∂yj
= eαzj

[
α
yj
rj
Jq−1(αrj) − q

r2
j

(yj − i xj) Jq(αrj)
]
eiqθj (H.3.16)

∂
(
ψI∞
j

)
0q

∂zj
= eαzjαJq(αrj) eiqθj (H.3.17)

Similarly, for evanescent modes:

∂
(
ψI∞
j

)
lq

∂xj
= hlΨ(z, ηl)

[
ηl
xj
rj
Iq−1(ηlrj) − q

r2
j

(xj + i yj) Iq(ηlrj)
]
eiqθj (H.3.18)

∂
(
ψI∞
j

)
lq

∂yj
= hlΨ(z, ηl)

[
ηl
yj
rj
Iq−1(ηlrj) − q

r2
j

(yj − i xj) Iq(ηlrj)
]
eiqθ (H.3.19)

∂
(
ψI∞
j

)
lq

∂zj
= hl [α cos(ηlz) − ηl sin(ηlz)] Iq(ηlrj) eiqθ (H.3.20)

With respect to the expressions of the RC elements after discretization:

(Rk
j )0
m = 1

2iα
∫
Sj

eαζjJm(αRj) e−imΘjσkj (Rj,Θj, ζj) ds (H.3.21)

(Rk
j )nm = 1

π2
η2
n

η2
n + α2

∫
Sj

Ψ(ζj, ηn) Im(ηnRj) e−imΘjσkj (Rj,Θj, ζj) ds (H.3.22)

where the source strength distribution σkj is obtained by solving the same integral
equation in (3.1.15).





Appendix I

Hydrodynamic operators of a
truncated vertical circular cylinder
and a cube
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Figure I.1: Real and imaginary parts of the Diffraction Transfer Matrix progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft in a 10m water
depth.
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Figure I.2: Real and imaginary parts of the Radiation Characteristics progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft moving in surge in
a 10m water depth.
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Figure I.3: Real and imaginary parts of the Radiation Characteristics progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft moving in heave in
a 10m water depth.
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Figure I.4: Real and imaginary parts of the Radiation Characteristics progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft moving in pitch in
a 10m water depth.
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Figure I.5: Real and imaginary parts of the Diffraction Transfer Matrix progressive
terms for a square box of 6m side (2a), 6m draft in a 10m water depth.



294 Hydrodynamic operators of a truncated vertical circular cylinder and a cube

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

ka

R
e 

{R
m 0

}

Surge

m=−3 ,n=0

m=−1 ,n=0

m=1 ,n=0
m=3 ,n=0

 

 
Coarse Mesh (Npanels=403)
Fine Mesh (Npanels=2059)

(a)

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

ka
Im

 {
R

m 0
}

Surge

m=−3 ,n=0

m=−1 ,n=0

m=1 ,n=0

m=3 ,n=0

 

 
Coarse Mesh (Npanels=403)
Fine Mesh (Npanels=2059)

(b)

Figure I.6: Real and imaginary parts of the Radiation Characteristics progressive
terms for a square box of 6m side (2a), 6m draft moving in surge in a 10m water
depth.
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Figure I.7: Real and imaginary parts of the Radiation Characteristics progressive
terms for a square box of 6m side (2a), 6m draft moving in heave in a 10m water
depth.
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Figure I.8: Real and imaginary parts of the Radiation Characteristics progressive
terms for a square box of 6m side (2a), 6m draft moving in pitch in a 10m water
depth.
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Figure I.9: Real and imaginary parts of the Radiation Characteristics progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft moving in sway in
a 10m water depth.
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Figure I.10: Real and imaginary parts of the Radiation Characteristics progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft moving in roll in a
10m water depth.
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Figure I.11: Real and imaginary parts of the Radiation Characteristics progressive
terms for a truncated vertical cylinder of 3m radius (a), 6m draft moving in pitch in
a 10m water depth.
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Figure I.12: Real and imaginary parts of the Radiation Characteristics progressive
terms for a square box of 6m side (2a), 6m draft moving in sway in a 10m water
depth.
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Figure I.13: Real and imaginary parts of the Radiation Characteristics progressive
terms for a square box of 6m side (2a), 6m draft moving in roll in a 10m water depth.
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Figure I.14: Real and imaginary parts of the Radiation Characteristics progressive
terms for a square box of 6m side (2a), 6m draft moving in pitch in a 10m water
depth.
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(b)

Figure I.15: Real and imaginary parts of the Force Transfer Matrix progressive Fy
terms for a truncated vertical cylinder of 3m radius (a), 6m draft in a 10m water
depth.
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(b)

Figure I.16: Real and imaginary parts of the Force Transfer Matrix progressive Mx

terms for a truncated vertical cylinder of 3m radius (a), 6m draft in a 10m water
depth.
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(b)

Figure I.17: Real and imaginary parts of the Force Transfer Matrix progressive My

terms for a truncated vertical cylinder of 3m radius (a), 6m draft in a 10m water
depth.
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(b)

Figure I.18: Real and imaginary parts of the Force Transfer Matrix progressive Fy
terms for a square box of 6m side (2a), 6m draft in a 10m water depth.
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(b)

Figure I.19: Real and imaginary parts of the Force Transfer Matrix progressive Mx

terms for a square box of 6m side (2a), 6m draft in a 10m water depth.
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(b)

Figure I.20: Real and imaginary parts of the Force Transfer Matrix progressive My

terms for a square box of 6m side (2a), 6m draft in a 10m water depth.
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(b)

Figure I.21: Real and imaginary parts of the Force Transfer Matrix progressive Mz

terms for a square box of 6m side (2a), 6m draft in a 10m water depth.



Appendix J

Hydrodynamic coefficients of a
small group of closely-spaced
hemispheric floats

In Chapter 5, the response of an hemispheric float placed in the middle of a three unit
cluster was computed with NEMOH (set as reference) and with the IT for different
values of evanescent modes truncation. A comparison of the differences in percentage
between both approaches was shown in Figure 5.3. Small discrepancies between results
were reported even in case no evanescent modes were included in the representation
of the wave fields.

At first glance, this behaviour seems rather unexpected. Indeed, in section 4.3.2
the influence of evanescent modes on the hydrodynamic coefficients, such as the added-
mass, for cases where bodies are placed at close proximity (Figure 4.14) was clearly
shown. As the float’s response is governed by the equation of motion 5.1.3, composed
of several parameters amongst which the hydrodynamic coefficients, one would predict
significant errors in the evaluation of the latter to propagate through the evaluation
of the float’s response.

At this point, it is important to recall an important outcome of the first part of
Chapter 4. The formulae (4.2.13) and (4.2.21) derived for both the excitation forces
and radiation damping hydrodynamic coefficients of bodies in array relate those quan-
tities with progressive terms only. From that it follows that both the excitation forces
and the radiation damping coefficients can be evaluated dispensing with the evanes-
cent modes or, in other words, using a wide-spacing approximation. This is shown in
Figures J.2 and J.3, which depict a comparison of the output from a direct NEMOH
evaluation and from the use of the IT with the evanescent modes truncation set to
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zero. A perfect match of results can be observed. Contrarily, the same comparison for
the added-mass coefficients is shown in Figure J.1 and significant discrepancies (on the
order of 50% at some frequencies) between the output of both approaches are identi-
fied, in particular for the coupling (off-diagonal) terms. We note that deviations from
the reference are more significant at the “low-frequency” range (< 1.5rad/s) rather
than at higher frequencies where convergence of both outputs is obtained. Lower fre-
quencies are associated with longer wavelengths and, intuitively, it is at this region
of frequencies where the wide-spacing approximation will be more difficult to comply
with.

While only one of the three main hydrodynamic parameters is affected by the
modeling of the near-field, the impact of spurious added-mass coefficients on motion
output will strongly depend on their magnitude relative to the rest of parameters in
the equation of motion.

Contrarily to other floating offshore structures, the dynamics of WECs are strongly
influenced by the damping forces introduced by the Power Take-Off (PTO) system.
This can be clearly deduced from a comparison of Figures 5.3 and J.4 which display
the differences in percentage between the float-2 response computed using NEMOH
and the IT for different evanescent modes truncation with and without including
the effect of the PTO damping respectively. Contrarily to Figure 5.3, in J.4 the
differences between the NEMOH output (set as reference) and the IT when a wide-
spacing approximation is used are very significant in a wide-range of frequencies.
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Figure J.1: Diagonal and off-diagonal terms of the added-mass coefficient matrix
A(equation 5.1.3) of the three-float system representing part of the generic bottom-
fixed heave-buoy array WEC studied in Chapter 5.
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Figure J.2: Diagonal and off-diagonal terms of the hydrodynamic damping coefficient
matrix B (equation 5.1.3) of the three-float system representing part of the generic
bottom-fixed heave-buoy array WEC studied in Chapter 5.
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Figure J.3: Terms of the excitation moment vector Mex (equation 5.1.3) of the three-
float system representing part of the generic bottom-fixed heave-buoy array WEC
studied in Chapter 5 for a wave incidence of β = 90◦.
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Figure J.4: (a) Top view of a section of a three-float WEC with no Power Take-
Off (PTO); (b) Comparison of the Response Amplitude Operator (RAO) of float 2
computed using both a direct BEM calculation (both when isolated and in array) and
with the Direct Matrix Method interaction theory (IT ) using 4 evanescent modes (L)
and a β = 90◦ wave incidence; (c) relative difference between the (RAO) of float 2
computed using both a direct BEM calculation and with the Direct Matrix Method
interaction theory (IT ) for different values of the evanescent modes truncation (L)
and a wave incidence of β = 90◦.
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Résumé 

 
Plusieurs convertisseurs d’énergie houlomotrice composés 
d’un grand réseau compact O(100) de petits flotteurs ont 
été proposés comme étant des systèmes avantageux pour 
l’extraction de l’énergie des vagues et représentent une 
alternative aux technologies basées sur un seul flotteur de 
plus grande taille. Leur capacité d’extraction d’énergie 
ayant été prouvé, l’accent est désormais mis sur 
l’optimisation pour adapter le coût de l’électricité produite 
aux tarifs du marché.  
 
L’un des défis les plus importants auxquels la modélisation 
numérique de ces systèmes houlomoteurs fait face est le 
calcul des interactions hydrodynamiques entre le grand 
nombre de sous-unités de production d’énergie qu’ils 
contiennent.  En effet, les capacités des logiciels standards 
basés sur l’approche Boundary Element Method pour le 
calcul de l’interaction houle/structure sont largement 
dépassées quand un nombre de flotteurs O(100) est 
atteint. L’implémentation d’une méthode basée sur une 
théorie d’interaction plus adapté au problème de diffraction 
multiple s’avère donc indispensable. Cette nouvelle 
approche, connue sous le nom de Direct Matrix Method, 
permet de réduire le nombre d’inconnues du problème 
d’interaction traditionnel en se basant sur la connaissance 
de la manière dont un convertisseur d’énergie houlomotrice 
diffracte et génère des vagues.  
 
L’accélération apportée par l’outil mis en place a permis de 
modéliser et optimiser un houlomoteur composé d’une 
soixantaine d’unités de type flotteur pilonnant. On a montré 
qu’il existe un nombre optimal de flotteurs pour une 
empreinte du dispositif donnée. Dépasser l’optimum 
entraîne une perte de performance nuisible à sa viabilité 
économique. 
 
Mots clés 
Interaction multiple, Méthode des éléments frontière, Direct 
Matrix Method, Optimisation, Houlomoteur, énergie des 
vagues, NEMOH, Relations d’Haskind. 
 

Abstract 
 

Compact arrays of small wave absorbers constitute an 
example of the multiple existing categories of wave energy 
converters (WECs) and have been identified as being an 
advantageous solution for the extraction of wave energy 
when compared to a big isolated point absorber. 
 
Among the numerous challenges associated with the 
numerical modeling of such devices, one of the most 
relevant one is the evaluation of the hydrodynamic 
interactions amid the large number of floats O(100) they 
are composed of. Direct computations with standard 
Boundary Element Method (BEM) solvers, used extensively 
in wave/structure interaction problems, become prohibitive 
when the number of bodies increases. Thus, there is a 
need to employ an alternative approach more suitable for 
the study of the multiple-scattering in large arrays. 
 
In this work, the Direct Matrix Method interaction theory has 
been implemented. Based on characterizing the way a 
WEC scatters and radiates waves, this methodology 
enables one to significantly reduce the number of 
unknowns of the classical boundary value problem dealt 
with by standard BEM solvers and, therefore, the 
computational time.  
 
The acceleration provided by the numerical tool developed 
has allowed examining the power capture of a generic 
bottom-reference heave-buoy array WEC and optimizing its 
layout. We have shown that there exist an optimum number 
of floats for a given device footprint. Exceeding this number 
results in a “saturation” of the power increase which is 
undesirable for the economic viability of the device. 
 
Key Words 

Multiple-scattering, Boundary Element Method, Direct 
Matrix Method, Optimization, Wave Energy converter, 

Wave Energy, NEMOH, Haskind Relations. 
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