Méthodes par sous-espaces et algorithmes d’optimisation bio-inspirés pour le débruitage de signaux multidimensionnels et applications.

par Abir Zidi

Thèse de doctorat en Optique Photonique et Traitement d'image

Sous la direction de Salah Bourennane et de Julien Marot.

Soutenue le 12-06-2017

à l'Ecole centrale de Marseille , dans le cadre de Ecole Doctorale Physique et Sciences de la Matière (Marseille) , en partenariat avec Institut Fresnel (Marseille, France) (laboratoire) , Fraunhofer- Institute for Integrated Circuits (Fürth, Allemagne) (équipe de recherche) , Institut FRESNEL / FRESNEL (laboratoire) et de Fraunhofer Institute for Integrated Circuits (laboratoire) .

Le jury était composé de Rachid Outbib, Véronique Serfaty.

Les rapporteurs étaient Camel Tanougast, Yide Wang.


  • Résumé

    Cette thèse est consacrée à l’étude des rangs matriciels et tensoriels des données multidimensionnelles, et au développement de méthodes d’estimation de ces rangs dans le cadre de la transformée en ondelettes. Pour cette étude, nous avons eu re-cours à la décomposition en paquets d’ondelettes et à l’algèbre multilinéaire. Une méthode d’optimisation stochastique bio-inspirée a été adaptée, avec pour objectif final de supprimer le bruit dans des images multidimensionnelles. Pour cela nous avons estimé les différentes valeurs des dimensions du sous-espace de tenseur pour tous les modes des coefficients des paquets d’ondelettes. Nous avons appliqué les méthodes de débruitage proposées à diverses images multidimensionnelles : images RGB, images multispectrales extraites d’images hyperspectrales de pièces métalliques, images par fluorescence des plantes, et images RX multispectrales. Finalement, une étude comparative a été réalisée avec trois principaux types d’algorithmes : d’une part, la méthode de Perona-Malik basée sur la diffusion ; deuxièmement, la troncature de HOSVD (Higher-Order Singular Value Decomposition) et MWF (Multiway Wiener Filtering) et troisièmement, un procédé basé sur la dé- composition en paquets d’ondelettes et MWF (Multiway Wiener Filtering), où les dimensions du sous-espace de signal sont estimées par un critère statistique plutôt que par une méthode d’optimisation. Les résultats sont prometteurs en termes de débruitage en réalité terrain. En définitive, nous aboutissons à un gain de temps avantageux durant le traitement des images hyperspectrales.

  • Titre traduit

    Subspace methods and bio-inspired optimization algorithms for denoising of multidimensionals signals and applications


  • Résumé

    This thesis is devoted to study matrix and tensor ranks of multidimensional signalsand to the development of methods for estimating these ranks in the frameworkof the wavelet transform. For this study, we used the wavelet packet decompositionand the multilinear algebra. A bio-inspired stochastic optimization methodhas been adapted, with the ultimate objective of suppressing noise in multidimensionalimages. In order to ensure this, we have estimated the different values ofthe dimensions of the tensor subspace for all the modes of the coefficients of thewavelet packets.We have applied the proposed denoising methods to various multidimensionalimages: RGB images, multispectral images extracted from hyperspectralimages of metal parts, plant fluorescence images, and multispectral RX images.Finally, a comparative study was carried out with three main types of algorithms: onthe one hand, the Perona-Malik method based on diffusion; Second, the truncationof HOSVD and MWF, and thirdly, a method based on wavelet packet decompositionand MWF, where the dimensions of the signal subspace are estimated by a statisticalcriterion rather than by an optimization method. The results are promising in termsof denoising in grund truth. Ultimately, we achieve an advantageous time savingduring the acquisition of hyperspectral images.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Ecole centrale de Marseille.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.