Symétrie et brisure de symétrie pour certains problèmes non linéaires

par Julien Ricaud

Thèse de doctorat en Mathématiques - EM2C

Sous la direction de Mathieu Lewin.

Le président du jury était Philippe Gravejat.

Le jury était composé de Virginie Ehrlacher, Jean Van schaftingen.

Les rapporteurs étaient Enno Lenzmann, Xavier ‎Blanc‎.


  • Résumé

    Cette thèse est consacrée à l'étude mathématique de deux systèmes quantiques décrits par des modèles non linéaires : le polaron anisotrope et les électrons d'un cristal périodique. Après avoir prouvé l'existence de minimiseurs, nous nous intéressons à la question de l'unicité pour chacun des deux modèles. Dans une première partie, nous montrons l'unicité du minimiseur et sa non-dégénérescence pour le polaron décrit par l'équation de Choquard--Pekar anisotrope, sous la condition que la matrice diélectrique du milieu est presque isotrope. Dans le cas d'une forte anisotropie, nous laissons la question de l'unicité en suspens mais caractérisons précisément les symétries pouvant être dégénérées. Dans une seconde partie, nous étudions les électrons d'un cristal dans le modèle de Thomas--Fermi--Dirac--Von~Weizsäcker périodique, en faisant varier le paramètre devant le terme de Dirac. Nous montrons l'unicité et la non-dégénérescence du minimiseur lorsque ce paramètre est suffisamment petit et mettons en évidence une brisure de symétrie lorsque celui-ci est grand.

  • Titre traduit

    Symmetry and symmetry breaking for some nonlinear problems


  • Résumé

    This thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Cergy-Pontoise. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.