Placement autonomique de machines virtuelles sur un système de stockage hybride dans un cloud IaaS

par Hamza Ouarnoughi

Thèse de doctorat en Science et technologie de l'information et de la communication

Sous la direction de Frank Singhoff.

Le président du jury était Smail Niar.

Le jury était composé de Frank Singhoff, Smail Niar, Olivier Barais, Daniel Hagimont, Jalil Boukhobza, Kaoutar El Maghraoui, Stéphane Rubini.

Les rapporteurs étaient Olivier Barais, Daniel Hagimont.


  • Résumé

    Les opérateurs de cloud IaaS (Infrastructure as a Service) proposent à leurs clients des ressources virtualisées (CPU, stockage et réseau) sous forme de machines virtuelles (VM). L’explosion du marché du cloud les a contraints à optimiser très finement l’utilisation de leurs centres de données afin de proposer des services attractifs à moindre coût. En plus des investissements liés à l’achat des infrastructures et de leur coût d’utilisation, la consommation énergétique apparaît comme un point de dépense important (2% de la consommation mondiale) et en constante augmentation. Sa maîtrise représente pour ces opérateurs un levier très intéressant à exploiter. D’un point de vue technique, le contrôle de la consommation énergétique s’appuie essentiellement sur les méthodes de consolidation. Or la plupart d'entre elles ne prennent en compte que l’utilisation CPU des machines physiques (PM) pour le placement de VM. En effet, des études récentes ont montré que les systèmes de stockage et les E/S disque constituent une part considérable de la consommation énergétique d’un centre de données (entre 14% et 40%). Dans cette thèse nous introduisons un nouveau modèle autonomique d’optimisation de placement de VM inspiré de MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge), et prenant en compte en plus du CPU, les E/S des VM ainsi que les systèmes de stockage associés. Ainsi, notre première contribution est relative au développement d’un outil de trace des E/S de VM multi-niveaux. Les traces collectées alimentent, dans l’étape Analyze, un modèle de coût étendu dont l’originalité consiste à prendre en compte le profil d’accès des VM, les caractéristiques du système de stockage, ainsi que les contraintes économiques de l’environnement cloud. Nous analysons par ailleurs les caractéristiques des deux principales classes de stockage, pour aboutir à un modèle hybride exploitant au mieux les avantages de chacune. En effet, les disques durs magnétiques (HDD) sont des supports de stockage à la fois énergivores et peu performants comparés aux unités de calcul. Néanmoins, leur prix par gigaoctet et leur longévité peuvent jouer en leur faveur. Contrairement aux HDD, les disques SSD à base de mémoire flash sont plus performants et consomment peu d’énergie. Leur prix élevé par gigaoctet et leur courte durée de vie (comparés aux HDD) représentent leurs contraintes majeures. L’étape Plan a donné lieu, d’une part, à une extension de l'outil de simulation CloudSim pour la prise en compte des E/S des VM, du caractère hybride du système de stockage, ainsi que la mise en oeuvre du modèle de coût proposé dans l'étape Analyze. Nous avons proposé d’autre part, plusieurs heuristiques se basant sur notre modèle de coût et que nous avons intégrées dans CloudSim. Nous montrons finalement que notre approche permet d’améliorer d’un facteur trois le coût de placement de VM obtenu par les approches existantes.

  • Titre traduit

    Autonomic virtual machines placement on hybrid storage system in IaaS cloud


  • Résumé

    IaaS cloud providers offer virtualized resources (CPU, storage, and network) as Virtual Machines(VM). The growth and highly competitive nature of this economy has compelled them to optimize the use of their data centers, in order to offer attractive services at a lower cost. In addition to investments related to infrastructure purchase and cost of use, energy efficiency is a major point of expenditure (2% of world consumption) and is constantly increasing. Its control represents a vital opportunity. From a technical point of view, the control of energy consumption is mainly based on consolidation approaches. These approaches, which exclusively take into account the CPU use of physical machines (PM) for the VM placement, present however many drawbacks. Indeed, recent studies have shown that storage systems and disk I/O represent a significant part of the data center energy consumption (between 14% and 40%).In this thesis we propose a new autonomic model for VM placement optimization based on MAPEK (Monitor, Analyze, Plan, Execute, Knowledge) whereby in addition to CPU, VM I/O and related storage systems are considered. Our first contribution proposes a multilevel VM I/O tracer which overcomes the limitations of existing I/O monitoring tools. In the Analyze step, the collected I/O traces are introduced in a cost model which takes into account the VM I/O profile, the storage system characteristics, and the cloud environment constraints. We also analyze the complementarity between the two main storage classes, resulting in a hybrid storage model exploiting the advantages of each. Indeed, Hard Disk Drives (HDD) represent energy-intensive and inefficient devices compared to compute units. However, their low cost per gigabyte and their long lifetime may constitute positive arguments. Unlike HDD, flash-based Solid-State Disks (SSD) are more efficient and consume less power, but their high cost per gigabyte and their short lifetime (compared to HDD) represent major constraints. The Plan phase has initially resulted in an extension of CloudSim to take into account VM I/O, the hybrid nature of the storage system, as well as the implementation of the previously proposed cost model. Secondly, we proposed several heuristics based on our cost model, integrated and evaluated using CloudSim. Finally, we showed that our contribution improves existing approaches of VM placement optimization by a factor of three.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bretagne occidentale (Brest). Service commun de documentation Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.