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Résumé : L’objet de cette thèse est l’étude spectrale et dynamique de systèmes de la mécanique

quantique en utilisant des techniques de commutateurs. Deux parmi les trois articles présentés trait-

ent l’opérateur de Schrödinger discret sur un réseau.

Dans le premier article, un principe d’absorption limite est établi pour le Laplacien discret multi-

dimensionnel perturbé par la somme d’un potentiel de type Wigner-von Neumann et d’un potentiel

de type longue portée. Ce résultat implique notamment l’absolue continuité du spectre de cet Hamil-

tonien à certaines énergies.

Dans le second article, nous considérons à nouveau l’opérateur de Schrödinger discret multi-

dimensionnel dont le potential est de type longue portée. Il est démontré que les fonctions propres

correspondant à des valeurs propres de l’Hamiltonien décroissent sous-exponentiellement lorsque ces

dernières ne sont pas un seuil. En dimension un, il est démontré de surcrôıt que ces fonctions propres

décroissent exponentiellement. Une conséquence de ceci est l’absence de valeurs propres dans la partie

centrale du spectre délimité aux extrémités par des seuils.

Le troisième article étudie des propriétés dynamiques d’Hamiltoniens vérifiants des hypothèses min-

imales dans la théorie des commutateurs. En se basant sur une estimation des vitesses minimales d’une

part et une version améliorée du théorème du RAGE d’autre part, nous dérivons deux estimations de

propagation pour cette famille d’Hamiltoniens. Ces estimations indiquent que les états du système se

comportent dynamiquement de façon très similaire aux états de diffusion. Toutefois, ceci n’écarte pas

la possibilité de spectre singulier continu.

Mots-clés : Théorie spectrale, estimation de propagation, commutateurs, théorie de Mourre, opérateurs

de Schrödinger discrets

Abstract : This thesis deals with the analysis of spectral and dynamical properties of quantum me-

chanical systems using techniques of operator commutators. Two of the three research papers that are

presented deal exclusively with the discrete Schrödinger operators on the lattice.

The first article proves a limiting absorption principle for the multi-dimensional discrete Laplacian

perturbed by the sum of a Wigner-von Neumann potential and long-range potential. This result no-

tably implies the absolute continuity of the spectrum of this Hamiltonian at certain energies.

The second article proves that eigenfunctions corresponding to non-threshold eigenvalues of multi-

dimensional discrete Schrödinger operators decay sub-exponentially. In one dimension, it is further

proven that these eigenfunctions decay exponentially. A consequence of this is the absence of eigen-

values when the middle portion of the spectrum does not contain any thresholds.

The third article investigates dynamical properties of Hamiltonians under very minimal assump-

tions in the theory of commutators. Based on minimal escape velocities and an improved version of the

RAGE Theorem, we derive propagation estimates for these types of Hamiltonians. These estimates

indicate that the states of the system behave dynamically very much like scattering states. Nonethe-

less, the existence of singularly continuous states cannot be disproved.

Key words : Spectral theory, propagation estimates, commutators, Mourre theory, discrete Schrödinger

operators
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INTRODUCTION

Notation: For Hilbert spaces F and G, let B(F ,G) and K(F ,G) respectively be the set
of bounded linear operators and compact linear operators from F into G. If F = G, then
we set B(F) = B(F ,G) and K(F) = K(F ,G). The Hilbert space by default will be denoted
H and it will be assumed to be separable and over the complex numbers. For an arbitrary
self-adjoint operator T on H we denote by D(T ) its domain and σ(T ) its spectrum. The
two specific Hilbert spaces we will be working with are L2(Rν) and ℓ2(Zν), where ν is the
dimension. More notation will be added as we go along.

1 Generalities about Schrödinger operators

1.1 The continuous and discrete Schrödinger operators

Quantum mechanics is an important branch of physics concerned with the theoretical and
experimental study of atoms and subatomic particles. A quantum mechanical system consists
of one or several subatomic particles interacting between themselves and with the surrounding
environment. Because of the interactions, the configuration of the system changes. We say
that system evolves through various states. The states of the system are represented by unit
vectors belonging to a Hilbert space. The observable physical quantities of the system, such
as position of the particles, their momentum, spin or energy, are represented by self-adjoint
linear operators acting on the Hilbert space.

Unlike the everyday world, where the macroscopic systems that surround us appear to
have a definite position, a definite momentum and a definite energy, all at a definite time of
occurrence, quantum systems are probabilistic in nature. This means that when making an
experiment, there are several possible outcomes for a given measurement. In theory, all of
these outcomes are associated a probability – or likeliness – of occurrence.

In mathematical physics, one of the simplest systems is that of a single particle that is free
to travel in ν dimensions. The particle could be an electron for example. At any given time t,
the position of the particle is given by coordinates in Rν . The Hilbert space for the associated
position states is L2(Rν). This is the collection of functions ψ : Rν 7→ C such that

‖ψ‖2 :=
∫

Rν

|ψ(x)|2dνx < +∞, x = (x1, ..., xν) ∈ R
ν .

A state describing the system at time t is a function ψ ∈ L2(Rν) with ‖ψ‖ = 1. This function
is just a probability distribution for position. This means that the probability of finding the
particle at time t in a region Ω of space is given by

∫

Ω
|ψ(x, t)|2dνx.

If at time t the system is in a state ψ(x, t), then we expect the particle to be in a neighborhood
of the point with coordinates

∫

Rν

x|ψ(x, t)|2dνx.
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This quantity is called the expectation value of the position of the particle in the state ψ(x)
at time t. If the state of the particle is known in position space, we can infer the state of the
particle in momentum space, thanks to the Fourier transform. It is given by

ψ̂(p, t) =
1

(2π)ν/2

∫

Rν

ψ(x, t)e−ix·pdνx, p = (p1, ..., pν) ∈ R
ν .

The expectation value of the momentum of the particle in this state is then
∫

Rν

p|ψ̂(p, t)|2dνp.

Another observable of central importance is energy. The kinetic energy is given by |p|2/2m,
where m is the mass of the particle. In the mathematical physics literature, it is standard to
set the non-relativistic kinetic energy operator to be H0 := |p|2 = |p1|2+ ...+ |pν |2. This is an
operator of multiplication in momentum space. In other words, it is diagonalized in momentum
space. By applying the inverse Fourier transform, we see that H0 = −∆ := −

∑ν
i=1 ∂

2/∂x2i .
As many problems are initially formulated in position space, this is the form that is often
used. In addition to kinetic energy, the particle may have potential energy V (x) depending
on its position. Here V is a function from Rν to R. For this reason, we denote the full energy
operator for the particle H := H0+V in position space. It is typically called the Hamiltonian
for the system. Under suitable conditions on the potential V , H is a self-adjoint operator on
H2(Rν), the Sobolev space corresponding to the operator domain of H0. By the Kato-Rellich
Theorem for instance, this is the case if V is real-valued and H0-bounded with relative bound
strictly less than 1. For more details about self-adjointness, we refer to [Si3] and references
therein for a concise review. The set of all possible energies the system can take is called the
spectrum of H and it is denoted by σ(H). If the particle is free, that is, in the absence of any
potential energy, it is well-known that σ(H) = σ(H0) = [0,+∞). In particular, the kinetic
energy may be arbitrarily large. This follows easily from the Spectral Theorem.

The thesis is more geared towards a discretized version of the latter example. It consists
in discretizing position. We can imagine the electron is now hopping from one lattice site to
another, instead of moving in a continuous space. The lattice is composed of regularly spaced
out sites. The Hilbert space for the position states is then ℓ2(Zν). This is the collection of
functions ψ : Zν 7→ C such that

‖ψ‖2 :=
∑

n∈Zν

|ψ(n)|2 < +∞, n = (n1, ..., nν) ∈ Z
ν .

If the particle is in the quantum state ψ at time t, then the probability of finding it at site
n is simply |ψ(n, t)|2. By the Fourier transform, the state of the particle in momentum space
L2 ([−π, π]ν , dνp) is given by

ψ̂(p, t) :=
∑

n∈Zν

ψ(n, t)ein·p, p = (p1, ..., pν) ∈ [−π, π]ν .

The kinetic energy operator is diagonalized in momentum space. It is given by

H0 :=

ν
∑

i=1

2− 2 cos(pi). (1)
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In position space, it acts on a state ψ ∈ ℓ2(Zν) in this way:

(H0ψ)(n) = (∆ψ)(n) =
∑

|n−m|=1

ψ(n)− ψ(m). (2)

Here |n − m| :=
∑ν

i=1 |ni − mi| for all n = (n1, ..., nν) and m = (m1, ...,mν) belonging to
Zν . The spectrum of the kinetic energy operator is σ(H0) = [0, 4ν], since it corresponds to
the range of the function given in (1). If the particle has potential energy V (n) depending on
position, then the Hamiltonian is H = H0 + V . If V is real-valued and bounded for example,
then H is a bounded self-adjoint operator on ℓ2(Zν). This model has important applications
in Solid State Physics, notably for the so-called tight-binding approximation. The lattice Zν

represents regularly spaced out atoms composing a crystal and the electron is hopping from
one atom to another. In this model, the interatomic motion of the free electron is slowed down
by the atoms, so that the kinetic energy has an a priori upper bound which does not exist in
the continuous case.

1.2 The spectral decomposition of the Hamiltonian

As mentioned previously, the spectrum of H = H0 + V is the set of energies the system can
have. Mathematically, the spectrum of H is defined as the collection of z ∈ C such that either
(H − z) is not invertible or (H − z)−1 is not bounded. When the potential energy is non-zero,
the spectrum of H is typically different than that of H0. One of the main goals of Spectral
Theory is to characterize the differences between the spectra of H0 and H0 + V . To recall a
first well-known result, we need a definition.

Definition 1.1. Let T be a self-adjoint operator on a Hilbert space H. The discrete spectrum
of T is defined to be

σd(T ) := {λ ∈ σ(T ) : 0 < dimker(T − λ) < +∞ and λ is isolated in σ(T )}.

The essential spectrum of T is defined to be σess(T ) := σ(T ) \ σd(T ).

We now recall Weyl’s Theorem on relative compactness, applied to continuous Schrödinger
operators:

Theorem 1.2 (Weyl’s Theorem). Let H0 be the self-adjoint realization of the Laplace operator
−∆ in L2(Rν). Let V : Rν 7→ R be a bounded function that goes to zero at infinity, and consider
H = H0 + V . Then V is H0-form relatively compact, and so σess(H) = σess(H0).

The corresponding result holds in the discrete case as well. The only major difference is
that in the discrete case, V is H0-relatively compact if and only if it is compact. This powerful
result says that a relatively compact perturbation of H0 may produce only eigenvalues of finite
multiplicity located in (−∞, 0) in the continuous case and (−∞, 0)∪ (4ν,+∞) in the discrete
case. In the first (resp. second) case, these eigenvalues may accumulate only at energy 0 (resp.
0 and 4ν).

Not all energies are of the same nature. The above discussion shows that σ(H) is a disjoint
union of σd(H) and σess(H). But there is also another significant way of differentiating the
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energies, which we now describe. Let f belong to a Hilbert space H. By the Spectral Theorem,
to f is associated a unique Borel measure on the real line, µf , such that

〈f, e−itHf〉 =
∫

R

e−itxdµf (x), for all t ∈ R.

This is equivalent to saying that µf (Σ) = 〈f,EΣ(H)f〉 for all Borel sets Σ ⊂ R. Here EΣ(H)
is the spectral projection of H onto Σ. By the Lebesgue Decompostion Theorem,

µf = (µf )ac + (µf )sc + (µf )pp,

where (µf )ac and (µf )sc are measures respectively absolutely continuous and singularly con-
tinuous with respect to the Lebesgue measure, and (µf )pp is a pure point measure. We can
now refine the spectrum of H in terms of the support of measures:

Definition 1.3. Let σ♯(H) :=
⋃

f∈H supp (µf )♯, where ♯ stands for ac, sc, or pp. This defines
the absolutely continuous, singularly continuous and point spectrum of H.

It can be shown that σpp(H) is the closure of the collection of eigenvalues of H. Further-
more, we have that σ(H) is a union of σac(H), σsc(H) and σpp(H), however this union is not
necessarily disjoint. For instance, there are many examples of H where singularly continuous
or point spectrum is embedded in the absolutely continuous spectrum. If we further let Hac

(resp. Hsc and Hpp) be the closure of the linear span of vectors of the form (H−z)−1f , where
z ∈ C \ R and f ∈ H is such that its spectral measure is purely absolutely continuous (resp.
purely singularly continuous and pure point), then we have the following decomposition:

H = Hac ⊕Hsc ⊕Hpp, and Hc = Hac ⊕Hsc.

We denote by Pac(H), Pc(H) and Ppp(H) the orthogonal projections onto Hac, Hc and Hpp

respectively. An important task of Spectral Theory is to characterize the three components
of the spectrum according to the potential. In the absence of a potential, the spectrum of H0

is purely absolutely continuous for both the continuous and discrete Schrödinger operator. In
the next section, we give a meaningful physical interpretation of this spectral decomposition.

1.3 Dynamical properties of the spectrum

The time-dependent Schrödinger equation describes the evolution of a non-relativistic system
with time. For a single particle in Rν , it reads

i
∂

∂t
ψ(x, t) = Hψ(x, t) =

[

−∆+ V (x)
]

ψ(x, t), ψ(x, 0) := f ∈ L2(Rν).

AssumingH to be self-adjoint, this equation has a unique solution for the given initial condition
ψ. The solution is the wave function ψ(x, t) = e−itHf .

Theorem 1.4 (Dynamics of continuous Schrödinger operators). Assume H = −∆ + V is
self-adjoint on L2(Rν).

1. If f ∈ Hpp, then

lim
R→+∞

sup
t>0

∫

Rν\[−R,R]ν
|e−itHf(x)|2dνx = 0. (3)
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2. If f ∈ Hc, then for all R > 0,

lim
T→+∞

1

T

∫ T

0

(

∫

[−R,R]ν
|e−itHf(x)|2dνx

)

dt = 0. (4)

3. If f ∈ Hac, then for all R > 0,

lim
t→+∞

∫

[−R,R]ν
|e−itHf(x)|2dνx = 0. (5)

Estimate (3) says that states f ∈ Hpp do not escape at infinity with time. For this
reason these are called bound states. On the other hand, estimate (4) says that states f ∈ Hc

propagate to infinity averagely in time. If further f ∈ Hac then estimate (5) improves (4). We
should mention that (4) is a consequence of the RAGE Theorem, while estimate (5) follows
from the Riemann-Lebesgue Lemma, which we quote for convenience:

Theorem 1.5 (RAGE). If H is a self-adjoint operator on a Hilbert space H, then for any
f ∈ H and any W ∈ B(H) that is H-relatively compact,

lim
T→±∞

1

T

∫ T

0
‖We−itHPc(H)f‖2dt = 0. (6)

The RAGE Theorem is attributed to Ruelle [Ru], Amrein and Georgescu [AG] and Enss
[E]. The version cited here can be found in [CFKS, Theorem 5.8] for example. In [GM], we
remark that this result can be improved, namely, under the same assumptions we have

lim
T→±∞

sup
f∈H
‖f‖61

1

T

∫ T

0
‖We−itHPc(H)f‖2dt = 0. (7)

Here we have included the supremum, which we have not found in the literature, see [CFKS,
Theoerm 5.8] and [GM, Appendix B] for more details.

Theorem 1.6 (Riemann-Lebesgue Lemma). If H is a self-adjoint operator on a Hilbert space
H, then for any f ∈ H and any W ∈ B(H) that is H-relatively compact,

lim
t→±∞

‖We−itHPac(H)f‖ = 0. (8)

Although estimate (6) characterizes states f ∈ Hsc, it is not specific to these states. Let
us provide another dynamical property of these states. Let H be a self-adjoint operator on
a Hilbert space H. Let Ω ⊂ Rν be a set of finite Lebesgue measure. We define the indicator
function of the set Ω to be

(1Ωψ)(x) =

{

ψ(x), if x ∈ Ω

0, if x 6∈ Ω.

The probability that the particle with initial state f be found in a region of space Ω after time
t is ‖1Ωe−itHf‖2. Then the total time the particle with initial state f spends in the region of
space Ω is given by

J(Ω, f) :=

∫ +∞

0
‖1Ωe−itHf‖2dt.

We call J(Ω, f) the total time of sojourn of the initial state f in the region Ω.
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Theorem 1.7. If there exists a sequence of regions {Ωn}, with |Ωn| < +∞, such that
s-lim
n→+∞

1Ωn
= 1 and J(Ωn, f) < +∞ for all n, then f ∈ Hac. If f ∈ Hsc, then there ex-

ists at least one finite region of space Ω such that J(Ω, f) = +∞.

This means that if f ∈ Hsc, then the probability ‖1Ωe−itHf‖2 decays sufficiently slowly
that it is not integrable for large times. This is a result due to Sinha [Sin].

1.4 Analytical properties of the spectrum

If the Hamiltonian is diagonalizable, then we may infer information about its spectrum. In
many situations however, we do not know how to do this and so we rely on practical analytical
tools to infer information about the quality of the spectrum. Perhaps the simplest and best
known result in this regard is the Theorem of de la Vallée Poussin:

Theorem 1.8. Let H be a self-adjoint operator on a Hilbert space H. For f ∈ H, let µf be
the associated spectral measure. For Lebesgue almost every λ ∈ R, the following limit exists in
C, is finite and non-zero:

lim
ǫ↓0

〈f, (H − λ− iǫ)−1f〉 = lim
ǫ↓0

∫

R

(x− λ− iǫ)−1dµf (x).

The absolutely continuous part of the measure µf is given by

d(µf )ac(x) = π−1 lim
ǫ↓0

Im〈f, (H − λ− iǫ)−1f〉dx = lim
ǫ↓0

ǫ

π

∫

R

1

(x− λ)2 + ǫ2
dµf (x).

As for the singular part of the measure, (µf )sc + (µf )pp, it is concentrated on the set

{

λ ∈ R : lim
ǫ↓0

Im〈f, (H − λ− iǫ)−1f〉 = +∞
}

.

This is yet another powerful way of characterizing the absolutely continuous and singular
parts of the spectrum. One of the aims of this thesis is to prove the absence of singularly con-
tinuous spectrum for some discrete Schrödinger operators. The estimate that really underlies
our approach is the following. It is a direct consequence of the above Theorem:

Corollary 1.9. Let (λ1, λ2) ⊂ R be an open interval, and let f ∈ H. If

sup
ǫ>0

sup
λ∈(λ1,λ2)

∣

∣Im〈f, (H − λ− iǫ)−1f〉
∣

∣ 6 c(f) < +∞, (9)

then the spectral measure Σ 7→ 〈f,EΣ(H)f〉 is purely absolutely continuous with respect to the
Lebesgue measure on (λ1, λ2).

A resolvent estimate like (9) is often called a limiting absorption principle (LAP) for H.
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2 Positive Commutator Techniques

Given two observables A and B on a Hilbert space H, their commutator is defined to be
the operator [A,B] := AB − BA. Rigorous domain considerations will be specified later.
Commutators arise naturally in quantum mechanics and play a central role. As a matter of
fact, the Heisenberg picture is formulated in terms of a commutator:

d

dt
A(t) = i[H,A(t)] +

(

∂A

∂t

)

H

.

Here H is the Hamiltonian of the system and A(t) is an observable. Commutators also appear
in the formulation of the uncertainty principle:

σAσB >
1

2

∣

∣〈[A,B]〉
∣

∣.

Here σA and σB are the standard deviations for observables A and B. This inequality gives
a fundamental limit to the precision with which the expectation values of A and B can be
known simultaneously for a given state.

It turns out that commutator techniques give insight into the spectral decomposition of a
system. In the mathematical physics community, a first result in this direction was obtained
by Putnam in [P].

Proposition 2.1. Let H ∈ B(H) be a self-adjoint operator. If there are A,C ∈ B(H), with A
self-adjoint and C injective such that [H, iA] = C∗C, then for all f ∈ D((C∗)−1),

sup
ǫ>0

sup
λ∈R

∣

∣Im〈f, (H − λ− iǫ)−1f〉
∣

∣ 6 4‖A‖ · ‖(C∗)−1f‖2 = c(f) < +∞.

In particular the spectrum of H is purely absolutely continuous.

This Proposition establishes a clear link between the commutator and the LAP (boundary
values of the resolvent), which is so valuable to characterize the spectral decomposition, as seen
in the previous section. The problem with this result however is that practical applications are
limited, partly because the result does not allow H to have eigenvalues, partly because many
important Hamiltonians H are unbounded, and partly because A is typically unbounded, see
e.g. [Go, Proposition 3.2.1].

2.1 Commutators as derivatives: regularity

We work in an abstract and more general setting. Consider two self-adjoint (possibly un-
bounded) operators T and A acting in some complex separable Hilbert space H. The goal is
to study the spectral properties of T with A as auxiliary. We define the commutator of T and
A in the form version:

〈f, [T,A]g〉 := 〈Tf,Ag〉 − 〈Af, Tg〉.
This definition makes sense provided f, g ∈ D(T )∩D(A). Typically we wish the r.h.s. extends
to a closed operator. For instance, if D(T ) ∩D(A) is dense in D(T ) and if there is c > 0 such
that for all f, g ∈ D(T ) ∩ D(A),

〈f, [T,A]g〉 6 c‖(T + i)f‖ · ‖(T + i)g‖,
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then by the Riesz lemma the closure of [T,A] belongs to B(D(T ),D(T )∗). In any case, the
closure is denoted [T,A]◦. In principle, two levels of assumptions are expected:

1. the first commutator of T with A, [T,A]◦, belongs to B(D(T ),D(T )∗).

2. the second commutator of T with A, [[T,A]◦, A]◦, belongs to B(D(T ),D(T )∗).

Looking back with more than thirty years of Mourre theory, one can say that assumption
(1) is minimal, whereas (2) is plentiful. A lot of the work in abstract Mourre theory has
been to formulate refined assumptions that fit somewhere in between these two. This will be
explained in greater detail in Section 2.3.

Let us get into the rigorous details of regularity. Consider the map

R ∋ t 7→ eitA(T + i)−1e−itA ∈ B(H). (10)

If this map is of class Ck(R) for some k ∈ N, with B(H) endowed with the strong operator
topology, then we say that T ∈ Ck(A). If T ∈ C1(A), then the derivative of the map (10)
at t = 0 is denoted by [T, iA]◦ and belongs to B(H). If however we endow B(H) with the
operator norm topology, then we say that T ∈ Ck,u(A). Finally, we say that T ∈ C1,1(A) if

∫ 1

0

∥

∥

∥

[

[(T + i)−1, eitA]◦, e
itA
]

◦

∥

∥

∥
t−2dt < +∞.

It turns out that
... ⊂ C3(A) ⊂ C2(A) ⊂ C1,1(A) ⊂ C1,u(A) ⊂ C1(A). (11)

We note that if T ∈ C1(A) then (1) holds; whereas if T ∈ C2(A) then (2) holds. A good part
of this thesis deals with bounded T ; in this case we may simply take T instead of (T + i)−1

in the above definitions. Importantly, for T ∈ B(H), there is a simpler criterion to verify the
C1(A) regularity, see [ABG, Lemma 6.2.9] and [ABG, Theorem 6.2.10].

Let us take a moment to explain how these abstract definitions relate to the concrete
problems of Schrödinger operators.

Example 2.2 (Continuous Schrödinger operators). Let H0 be the self-adjoint realization of the
Laplace operator −∆ in L2(Rν). Let Q be the operator of multiplication by x = (x1, ..., xν) ∈
Rν , and let P := −i∇. Set

H := H0 + Vsr(Q) + Vlr(Q),

where Vsr(x) and Vlr(x) are real-valued functions that belong to L∞(Rν). Thus Vsr(Q) and
Vlr(Q) are bounded self-adjoint operators on L2(Rν) and they are respectively the short- and
long-range perturbations. Thus H is a self-adjoint operator. For the long-range perturbation,
further assume that x·∇Vlr(x) is a well-defined function. Suppose that limVsr(x) = limVlr(x) =
0 as ‖x‖ → +∞. Thus Vsr(Q)+Vlr(Q) is a H0-form relatively compact operator. In particular,
σess(H) = σess(H0) = [0,+∞).

Let
A := (Q · P + P ·Q)/2. (12)

It is self-adjoint and essentially self-adjoint on the Schwartz space S(Rν). It is called the
generator of dilations and is the standard conjugate operator to H. Table 1 displays continuous
Schrödinger operators belonging to each of the classes introduced in (11). The idea is clear:
stronger decaying bounds on the potential imply stronger regularity.
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In addition, if 〈x〉Vsr(x) and x · ∇Vlr(x) are Then H belongs to

L∞(Rν) C1(A)
L∞(Rν) and o(1) C1,u(A)

L∞(Rν) and o(〈x〉−ǫ), for some ǫ > 0 C1,1(A)
L∞(Rν) and O(〈x〉−1) C2(A)

Table 1: Regularity of Hamiltonian H w.r.t. a bound on the decay of the potential at infinity

The corresponding example for the discrete Schrödinger operators is the following. Note
that in this case, short-range potentials are long-range.

Example 2.3 (Discrete Schrödinger operators). Let H = ℓ2(Zν). Let H0 = ∆ be the discrete
Schrödinger operator on Zd given by (2). Set

H = H0 + V,

where V : Zd → R is a bounded function. Thus V and H are bounded self-adjoint operators
on H. Suppose that limV (n) = 0 as |n| → +∞. Then V is compact and in particular,
σess(H) = σess(H0) = [0, 4ν]. To define the conjugate operator A, we need some notation. Let
S = (S1, ..., Sν), where, for 1 6 i 6 ν, Si is the shift operator given by

(Siψ)(n) := ψ(n1, ..., ni − 1, ..., nν), for all n ∈ Z
ν and ψ ∈ H.

Let N = (N1, ..., Nν), where, for 1 6 i 6 ν, Ni is the position operator given by

(Niψ)(n) := niψ(n), with domain D(Ni) :=

{

ψ ∈ H :
∑

n∈Zν

|niψ(n)|2 < +∞
}

.

The conjugate operator, denoted by A, is the closure of the following operator

A0 :=
i

2

ν
∑

i=1

(Si − S∗
i )Ni +Ni(Si − S∗

i ), with domain D(A0) := ℓ0(Z
ν), (13)

the sequences with compact support. The operator A is self-adjoint, see [BS] and [GGo]. Let
τiV be the shifted potential acting as follows:

[(τiV )ψ](n) := V (n1, ..., ni − 1, ..., nν)ψ(n), for all ψ ∈ H.

Table 3 displays discrete Schrödinger operators belonging to the classes introduced in (11).

We refine the above definitions. Let G and H be Hilbert spaces verifying the following
continuous and dense embeddings G ⊂ H = H∗ ⊂ G∗, where we have identified H with its
antidual H∗ by the Riesz isomorphism Theorem. Let A be a self-adjoint operator on H, and
suppose that the semi-group {eitA}t∈R stabilizes G. Then by duality it stabilizes G∗. Let
T ∈ B(G,G∗) be a self-adjoint operator on H and consider the map

R ∋ t 7→ e−itATeitA ∈ B(G,G∗). (14)
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In addition, if for all 1 6 i 6 ν, ni(V − τiV )(n) is Then H belongs to

O(1) C1(A)
o(1) C1,u(A)

o(〈n〉−ǫ) for some ǫ > 0 C1,1(A)
o(〈n〉−1) C2(A)

Table 2: Regularity of Hamiltonian H w.r.t. a bound on the decay of the potential at infinity

If this map is of class Ck(R;B(G,G∗)), with B(G,G∗) endowed with the strong operator topol-
ogy, we say that T ∈ Ck(A;G,G∗); whereas if the map is of class Ck(R;B(G,G∗)), with B(G,G∗)
endowed with the norm operator topology, we say that T ∈ Ck,u(A;G,G∗). If T ∈ C1(A;G,G∗),
then the derivative of map (14) at t = 0 is denoted by [T, iA]◦ and belongs to B(G,G∗).
Moreover, by [ABG, Proposition 5.1.6], for all ♯ ∈ {k; k,u}, T ∈ C♯(A;G,G∗) if and only if
(T + i)−1 ∈ C♯(A;G∗,G). This notably implies that C♯(A;G,G∗) ⊂ C♯(A).

To finish this Section, we recall one very useful result for unbounded T :

Proposition 2.4. [ABG, p. 258] Let T and A be self-adjoint operators in a Hilbert space
H and denote H1 := D(〈T 〉1/2), the form domain of T , and H−1 := (H1)∗. Suppose that
eitAH1 ⊂ H1. Then the following are equivalent:

1. T ∈ C1(A;H1,H−1)

2. The form [T, iA] defined on D(T ) ∩ D(A) extends to an operator in B(H1,H−1).

Remark 2.1. The form [T, iA] is defined for ψ, φ ∈ D(T ) ∩ D(A) as follows :

〈ψ, [T, iA]φ〉 := 〈T ∗ψ, iAφ〉 − 〈A∗ψ, iTφ〉 = 〈Tψ, iAφ〉 − 〈Aψ, iTφ〉.

The last equality holds because T and A are assumed to be self-adjoint.

2.2 Localizing commutators in energy: Mourre’s estimate

In the beginning of the eighties, E. Mourre realized that localizing [H, iA] in energy would
generalize the idea of Putnam to unbounded operators, see Proposition 2.1. In the seminal
paper [M], the absence of singularly continuous spectrum was proved for 3-body Schrödinger
operators with the help of positive commutators methods and their scattering properties were
studied. The results were generalized to the N -body case in [PSS]. Today, Mourre’s com-
mutator theory is a fundamental tool to study the stationary scattering theory of general
self-adjoint operators. An excellent and thorough work in this field is [ABG].

Let H and A be self-adjoint operators in a Hilbert space H. Suppose that H ∈ C1(A). We
say that the Mourre estimate holds for H with respect to A on a bounded interval I ⊂ R if
there is c > 0 and a compact operator K such that

EI(H)[H, iA]◦EI(H) > cEI(H) +K, (15)

in the form sense on H×H. Since EI(H) belongs to B(H,D(H)), it also belongs to B(D(H)∗,H)
by duality, and so we see that the C1(A) hypothesis ensures that the l.h.s. of (15) is a bounded
operator.
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If the Mourre estimate holds over some interval I withK = 0, then we say that the estimate
is strict, in which case it can be shown that H has no eigenvalues in the interval I. This is
a consequence of the Virial Theorem, see [ABG, Proposition 7.2.10]. If the Mourre estimate
holds on I, but is not strict, then the best we can say is that the number of eigenvalues of H
in I is finite, including multiplicities, see [ABG, Corollary 7.2.11]. This is still good enough to
conclude that for every λ ∈ I that is not an eigenvalue of H, there is an interval Iλ containing
λ (perhaps much smaller than I) such that the strict Mourre estimate holds for H on Iλ.
This is because ‖EI′(H)KEI′(H)‖ → 0 as |I ′| → 0 for all I ′ void of eigenvalues. So when
we localize in energy away from eigenvalues, we may assume without loss of generality that a
strict Mourre estimate holds.

To distinguish between the strict and non strict Mourre estimates, we introduce notation.

Definition 2.5 (The sets µA(T ) and µ̃A(T )). For a self-adjoint operator T acting on H, let
µA(T ) be the set of reals for which there is neighborhood where the strict Mourre estimate holds
for T with respect to A. Let µ̃A(T ) be the set of reals for which there is neighborhood where
the Mourre estimate holds for T with respect to A.

Let us examine the Mourre estimate for our two ongoing examples.

Example 2.6 (Continuous Schrödinger operators). Let H2(Rν) be the Sobolev space corre-
sponding to the domain of the self-adjoint realization H0 of the Laplacian −∆, and H1 =
H1(Rν) its form domain. Let A := (Q ·P +P ·Q)/2 be the generator of dilations. The relation

(eitAψ)(x) = etν/2ψ(etx), for all ψ ∈ L2(Rν), x ∈ R
ν , t ∈ R,

implies that {eitA}t∈R stabilizes H2(Rν), and thus Hθ(Rν) for all θ ∈ [−2, 2] by duality and
interpolation. A straightforward computation gives

[H0, iA]◦ = 2H0

in the sense of operators in B(H1,H−1), thereby implying that H0 ∈ C1(A;H1,H−1) by Propo-
sition 2.4. An easy induction yields H0 ∈ Ck(A;H1,H−1) for all k ∈ N. The strict Mourre
estimate therefore holds for H0 with respect to A on all intervals I verifying I ⊂ (0,+∞). In
particular, µA(H0) = (0,+∞).

Example 2.7 (Discrete Schrödinger operators). Let H = ℓ2(Zν), and H0 = ∆, the discrete
Schrödinger operator. A calculation shows that

[H0, iA]◦ =
ν
∑

i=1

∆i(4−∆i) (16)

as operators in B(H). Here ∆i := 2− Si − S∗
i . In particular, H0 ∈ C1(A). An easy induction

shows that H0 ∈ Ck(A) for all k ∈ N. In dimension one, we see that µA(H0) = (0, 4) because
the function x 7→ x(4 − x) is strictly positive above (0, 4). In higher dimensions, we have, by
(16) and [ABG, Theorem 8.3.6] that

µA(H0) = [0, 4ν] \ {4k : k = 0, ..., ν}. (17)
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In the previous examples, we explained the Mourre estimate for the free operator H0. If
we want to consider a potential in addition, then we have a general result, the proof of which
follows from the definitions. For a self-adjoint operator H, let H1 denote its form domain.

Proposition 2.8. Let V ∈ K(H1,H−1) ∩ C1,u(A;H1,H−1). Then [V, iA]◦ ∈ K(H1,H−1).

We can immediately apply this result.

Example 2.9 (Continuous Schrödinger operators). Let H = −∆+Vsr(Q)+Vlr(Q), with both
components of the potential being bounded real-valued functions. Suppose that |Vsr(x)| → 0
and |Vlr(x)| → 0 as ‖x‖ → +∞, so that the potential is H0-form relatively compact. If also
x · ∇Vlr(x) ∈ L∞(Rν), 〈x〉Vsr(x) → 0 and x · ∇Vlr(x) → 0 as ‖x‖ → +∞, then the Mourre
estimate holds for H on every bounded interval I with I ⊂ (0,+∞).

Example 2.10 (Discrete Schrödinger operators). Let H = ∆ + V , where V is a bounded
real-valued potential. If V (n) → 0 as ‖n‖ → +∞, then V ∈ K(H). If for all 1 6 i 6 ν,
ni(V − τiV )(n) → 0 as ‖n‖ → +∞, then the Mourre estimate holds for H on every bounded
interval I with I ⊂ [0, 4ν] \ {4k : k = 0, ..., ν}.

If the potential does not belong the C1,u(A) class, then the Mourre estimate may still hold,
but it becomes a case by case analysis. We have examples of this for the discrete Schrödinger
operators:

Example 2.11 (Discrete Wigner-von Neumann operator 1). Let H = ℓ2(Zν). Let q ∈ R and
k ∈ (0, π) ∪ (π, 2π). Let W be a Wigner-von Neumann potential defined by

(Wu)(n) :=
q sin(k(n1 + ...+ nd))

|n| u(n), for all n ∈ Z
ν and u ∈ H. (18)

Note that W ∈ K(H)∩C1(A). Consider also a V ∈ K(H)∩C1,u(A), and let H := ∆+W +V .
We define the sets

m(H) :=

{

(0, 4) \ {E±(k)} for ν = 1,

(0, E(k)) ∪ (4ν − E(k), 4ν) for ν > 2,
(19)

where

E±(k) := 2± 2 cos (k/2) and E(k) :=

{

4− 4 cos(k/2) for k ∈ (0, π)

4 + 4 cos(k/2) for k ∈ (π, 2π).

Then it is proved in [Ma1, Propositions 3.5 and 4.5] that m(H) ⊂ µ̃A(H).

Example 2.12 (Discrete Wigner-von Neumann operator 2). Let H = ℓ2(Zν). Let q =
(qi)

ν
i=1 ∈ Rν and k = (ki)

ν
i=1 ∈ ((0, π) ∪ (π, 2π))ν . Consider this variant of the Wigner-von

Neumann potential:

(W ′u)(n) :=

(

ν
∏

i=1

qi sin(kini)

ni

)

u(n), for all n ∈ Z
ν and u ∈ H. (20)
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Note that W ′ ∈ K(H)∩C1(A). Consider also a V ∈ K(H)∩C1,u(A), and let H ′ := ∆+W ′+V .
We define the sets

m(H ′) :=

{

(0, 4) \ {E±(k)} for ν = 1,

(0, E′(k)) ∪ (4ν − E′(k), 4ν) for ν > 2,
(21)

where E±(k) are as in the previous example, and E′(k) := min{ℓ(ki) : 1 6 i 6 ν}, with

ℓ(ki) :=











2− 2 cos(ki/2), ki ∈ (0, 2π/3]

2 + 2 cos(ki), ki ∈ (2π/3, π) ∪ (π, 4π/3]

2 + 2 cos(ki/2), ki ∈ (4π/3, 2π).

Then it is proved in [Ma1, Propositions 3.5 and 4.6] that m(H ′) ⊂ µ̃A(H ′).

Remark 2.2. It is proved in [Ma1, Propositions 3.3 and 4.2] that W and W ′ of the previous
two examples do not belong to C1,u(A).

At this point, one may wonder what the Mourre estimate is good for. In the next section,
we shall see that it plays a key role in proving the absence of singularly continuous spectrum
with the method of commutators.

2.3 Mourre theory: absence of singularly continuous spectrum

There is a simple argument using only the C1(A) hypothesis and the Mourre estimate that
shows that the time expectation value of A basically grows linearly with time. Precisely, let us
suppose that the strict Mourre estimate holds for H on the bounded interval I. If f = ϕ(H)g
is a unit vector with g ∈ D(A) and ϕ ∈ C∞

c
(I), then there are c, C > 0 such that

ct 6 〈e−itHf,Ae−itHf〉 − 〈f,Af〉 6 Ct, for all t > 0.

This argument is detailed for instance in [GM, Appendix A]. This means that the transport
of the particle is ballistic with respect to A. From a dynamical point of view, this behav-
ior suggests purely absolutely continuous spectrum. In [M], using a method of differential
inequalities and assuming the strict Mourre estimate for H on the interval I together with
a second-commutator hypothesis, H ∈ C2(A) in the setting of [ABG], the author proves a
limiting absorption principle (LAP) on any compact sub-interval I ′ of I:

sup
λ∈I′,ǫ>0

‖〈A〉−s(H − λ− iǫ)−1〈A〉−s‖ < +∞, (22)

for all s > 1/2. Here 〈A〉 :=
√
1 +A2. This yields the following Kato-type propagation

estimate:

sup
ψ∈H
‖ψ‖61

∫ +∞

−∞
‖〈A〉−se−itHEI′(H)ψ‖2dt < +∞, (23)

which in turn implies the absence of singularly continuous spectrum on I ′, e.g. [RS4, Section
XIII.7]. The main improvement of this result is done in [ABG]. The same LAP is derived
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assuming only H ∈ C1,1(A) and the Mourre estimate. It is further shown that this class
is optimal in the general abstract framework. Indeed, in [ABG, Appendix 7.B], there is an
example of H ∈ C1,u(A) for which no LAP holds.

The aim of Mourre theory can therefore be summarized as follows: Prove a resolvent
estimate (LAP) forH over some interval I, which in turn yields robust dynamical properties for
H at these energies (propagation estimates), as well as the the absence of singularly continuous
spectrum for H on I.

Moving forward, it is relevant to restrict our attention to H belonging to a class somewhere
between C1,1(A) and C1(A). Natural questions that arise are the following:

1. Are there propagation estimates, like (23) for instance, that hold?

2. Is the absence of singularly continuous spectrum of H still valid?

3. What more about the point spectrum of H can be said?

These questions are all the more justified given the following known results concerning
continuous Schrödinger operators. When ν = 1, Kiselev proved in [Ki] that the continuous
Schrödinger operator H = −∆ + V on R has no singularly continuous spectrum whenever
V = O(|x|−1). The decay assumption is optimal, since it is further proved that for any positive
function h which grows to infinity, there is a potential V such that V = O(h(|x|)|x|−1) and
H = −∆ + V has some singularly continuous spectrum. Naboko [Nab] and Simon [Si] have
also shown, that for this same function h, one can also construct a potential V such that
V = O(h(|x|)|x|−1) as well and H = −∆+ V has dense point spectrum. In ν dimensions, if
V (x) = V1(x)+V2(x) where |x||V1(x)| → 0 and |(x ·∇)V2(x)| → 0 as |x| → +∞, then −∆+V
has no eigenvalues in [0,+∞). This was proved by Kato [Ka] when V2 = 0, and the full result
is attributed to Agmon [A] and Simon [Si2], but we refer also to [FH] and [CFKS, Section 4.4].

Finally, we underline that the LAP has been derived for several specific systems where
the Hamiltonian H belongs to a regularity class as low as C1(A), and sometimes even lower
(see for example [DMR], [GJ2], [JM] and [Ma1] to name a few). In all these cases, a strong
propagation estimate of type (23) and absence of singularly continuous spectrum hold.

3 LAP for the discrete Wigner-von Neumann operator

We present the results of [Ma1]. A LAP for the discrete Wigner-von Neumann operators
presented in Examples 2.11 and 2.12 is proved. We recall that H = ∆ +W + V and H =
∆ +W + V , where W and W ′ are some Wigner-von Neumann type potentials and V is a
long-range perturbation. However, slightly stronger conditions on the additional perturbation
V ∈ K(H) ∩ C1,u(A) are required here. Specifically, we suppose that there is ρ > 0 such that

〈n〉ρ|V (n)| = O(1), (24)

〈n〉ρ|ni||(V − τiV )(n)| = O(1), for all 1 6 i 6 ν. (25)

Recall that m(H) and m(H ′) are given by (19) and (21) respectively. Let Ppp(H) and Pc(H)
respectively denote the spectral projectors onto the pure point subspace of H and its comple-
ment. We prove:
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Theorem 3.1. We have that m(H) ⊂ µ̃A(H). For all E ∈ m(H) there is an open interval I
containing E such that for all s > 1/2 and all compact intervals I ′ ⊂ I, the reduced LAP for
H holds with respect to (I ′, s, A), that is,

sup
x∈I′,y 6=0

‖〈A〉−s(H − x− iy)−1Pc(H)〈A〉−s‖ < +∞. (26)

Notably, the spectrum of H is purely absolutely continuous on Σ′ when Ppp(H) = 0 on I ′.

This is actually a slightly improved version of the original result of [Ma1]. The improvement
relies on [Ma2, Theorem 1.5], which allows to remove the abstract assumption ker(H − E) ⊂
D(A) that appears in [Ma1, Theorem 1.1]. The corresponding result also holds for H ′.

The proof follows the approach of [GJ2], where the corresponding LAP is proved in the
continuous operator case. The LAP for the continuous Wigner-von Neumann operator had
been proved previously in [DMR], but using different techniques and did not include the
long-range perturbation V .

The Wigner-von Neumann operator has two interesting aspects. First, when the long-range
perturbation V is chosen suitably, the Schrödinger operator H has an eigenvalue embedded in
its absolutely continuous spectrum, see [RS4, Section XIII.13, Example 1] and [Ma2, Propo-
sition 1.6]. Second, the regularity of the Wigner-von Neumann potential is only C1(A), and
yet we are able to get a Mourre estimate and a LAP using commutator methods. Without a
doubt, the oscillations of the potential play a key role in this. With regard to second point,
we mention that at the heart of the proof of the LAP (26) is a weighted Mourre estimate. This
idea originates from Gérard’s proof of the abstract LAP using energy estimates [G]. In [GJ2]
and our proof, this weighted Mourre estimate is the starting point of the proof, rather than
an intermediary estimate. This allows to overcome the low regularity of H. However, and
unfortunately, the LAP (26) does not come with any information about the continuity of the
boundary values, as it is the case when the operator is of class C1,1(A). This is because we
use an approach to Mourre theory that proves the LAP by contradiction, see [GJ1].

4 The Mourre estimate and decay of eigenfunctions

This topic deals with the link between the point spectrum of the discrete Schrödinger operator
H = ∆ + V and the Mourre estimate. The method we use is entirely based on ideas of
Froese and Herbst in [FH]. They essentially show that under a first commutator hypothesis,
V ∈ C1(A) in the setting of [ABG], if ψ is an eigenfunction of the continuous Schrödinger
operator H = −∆+ V with eigenvalue E, then exp(α‖x‖)ψ ∈ L2(Rν) for all α ∈ [0,

√
τ − E),

where τ is the nearest threshold above E. By a threshold, we mean a real for which the
Mourre estimate does not hold over any interval containing this value. A consequence is that
if V has slightly better decay, for instance |(x·∇)V (x)| → 0, then H does not have any positive
eigenvalues, see e.g. [CFKS, Theorem 4.19].

We now present the results of [Ma2]. Let H = ℓ2(Zν). Let V : Zν 7→ R be a bounded
function. Let us identify two hypotheses that will be needed:
Hypothesis 1: The potential V satisfies

|ni(V − τiV )(n)| = O(1), for all 1 6 i 6 ν. (27)
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Hypothesis 2: V is compact, i.e.

V (n) → 0, as |n| → +∞. (28)

Note that the first hypothesis sets us right in the C1(A) class. The best result we have is in
one dimension:

Theorem 4.1. Assume Hypotheses 1 and 2, and ν = 1. If Hψ = Eψ with ψ ∈ H, then if

θE :=

{

sup {2 + (E − 2)/ coshα : α > 0 and exp(α|n|)ψ ∈ H} , for E < 2

inf {2 + (E − 2)/ coshα : α > 0 and exp(α|n|)ψ ∈ H} , for E > 2,

one has that either θE ∈ R \ µ̃A(H) or θE = 2. If E = 2, the statement is that either
exp(α|n|)ψ ∈ H for all α > 0 or 2 ∈ R \ µ̃A(H). Moreover, if exp(α|n|)ψ ∈ H for all α > 0,
then ψ = 0.

So if E is both an eigenvalue and a threshold, this result does not provide any information.
However, if E is an eigenvalue but not a threshold, the corresponding eigenfunction decays at
a rate at least of cosh−1 ((E − 2)/(θE − 2)). As in the continuous operator setting, we deduce
the absence of eigenvalues:

Theorem 4.2. Let ν = 1. Suppose that V satisfies lim|n|→+∞ |n||V (n) − V (n − 1)| = 0 and
lim|n|→+∞ |V (n)| = 0. Then H := ∆ + V has no eigenvalues in (0, 4).

At this point, we recall Remling’s optimal result [R], that if lim|n|→+∞ |n||V (n)| = 0, then
the spectrum of the one-dimensional discrete operator ∆+V is purely absolutely continuous on
(0, 4). Of course, Remling’s result is stronger than that of Theorem 4.2, but the assumptions
are also stronger.

In the multi-dimensional discrete operator case, we prove:

Theorem 4.3. Let ν > 1. Suppose that Hypothesis 1 holds for the potential V . If Hψ = Eψ
with ψ ∈ H and E ∈ µ̃A(H), then exp(α(1 + |n|2)γ/2)ψ ∈ H for all (α, γ) ∈ [0,∞)× [0, 2/3).

Although Theorem 4.3 does not yield exponential decay of eigenfunctions at non-threshold
energies as in the continuous operator case, the result is still useful for applications in Mourre
theory. Let us note that in a general abstract framework, it is proved in [FMS] that if the
second commutator of H and A exists and other domain conditions hold, then ψ ∈ D(A).
This general result is optimal and improves that of [Ca] and [CGH]. Here, we see that for the
discrete Schrödinger operators, minimal hypotheses yield much stronger results.

It appears that the method of Froese and Herbst adapts quite well for the one-dimensional
discrete operator; however, there seems to be a non-trivial difference between the dimensions
ν > 2 and ν = 1 in the discrete setting as far as the method is concerned. The exponential
decay of eigenfunctions at non-threshold energies in higher dimensions therefore remains an
open question because our proof does not attain it. Yet an indication it may occur comes
from the Combes-Thomas method, see [Ma2, Theorem 1.1] and references therein. The latter
method proves the exponential decay of eigenfunctions corresponding to eigenvalues outside
the essential spectrum of H.
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On the one hand, if E belongs to the discrete spectrum of H, then for any interval Σ
containing E and located outside the essential spectrum of H, EΣ(H) is simply a finite rank
eigenprojection and so the Mourre estimate holds by default, both sides of (15) being com-
pact operators. So under Hypothesis 1 only, the corresponding eigenfunction decays sub-
exponentially according to Theorem 4.3. In this case, the Combes-Thomas method is clearly
superior. On the other hand, the Mourre estimate typically holds above the essential spectrum
of H. So Theorem 4.3 is able to characterize the decay of eigenfunctions for non-threshold
eigenvalues embedded in the essential spectrum, if any exist. We emphasize the last point,
because to our knowledge there is no example of a Schrödinger operator with a non-threshold
embedded eigenvalue. What is certainly known however is the existence of operators with a
threshold embedded eigenvalue, the Wigner-von Neumann operator being the classical illus-
tration of it, as discussed in the previous Section.

We give two applications of Theorem 4.3. First, it can be used to show that an eigenvalue
embedded in the essential spectrum of H is a threshold. An example of this is depicted in
[Ma2, Proposition 1.6]. It is interesting to note that in this example the eigenfunction does
not belong to the domain of A. The second application consists in improving [Ma1, Theorem
1.1] and [GM, Theorem 4.4] by suppressing the abstract condition ker(H − E) ⊂ D(A).

5 Propagation estimates for the C1,u(A) class

We present the results of [GM]. The goal is to obtain propagation estimates for Hamiltonians
belonging to the C1,u(A) class and infer information about the nature of the spectrum. The
first result shows that when the Mourre estimate holds over an interval I, the Fourier transform
of the spectral measures of H go to zero at infinity whenever I is void of eigenvalues.

Theorem 5.1. Let H and A be self-adjoint operators in a separable Hilbert space H with
H ∈ C1,u(A). Assume that I ⊂ R is a compact interval for which λ ∈ µ̃A(H) for all λ ∈ I.
Suppose moreover that ker(H − λ) ⊂ D(A) for all λ ∈ I. Then for all ψ ∈ H and all s > 0,

lim
t→+∞

‖〈A〉−se−itHPc(H)EI(H)ψ‖ = 0. (29)

Moreover, if W is H-relatively compact, then

lim
t→+∞

‖We−itHPc(H)EI(H)ψ‖ = 0. (30)

In particular, if H has no eigenvalues in I, then the Fourier transform of the spectral measure
Σ 7→ 〈ψ,EI∩Σ(H)ψ〉 tends to zero at infinity.

The proof of this result is an application of the minimal escape velocities obtained in [Ri],
itself a continuation of [HSS]. Note that (23) implies (29). Indeed, the integrand of (23) is a
real-valued L1(R) function with bounded derivative (hence uniformly continuous on R). Such
a function must go to zero at infinity. We should mention also that it is an open question
to know if (23) is true when H ∈ C1,u(A). While (30) is a consequence of the Riemann-
Lebesgue Lemma (8) when ψ = Pac(H)ψ, our result is new. However, it is not strong enough
to imply the absence of singularly continuous spectrum for H. Indeed, there exist measures
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whose Fourier transform goes to zero at infinity, and yet their support is a set of Hausdorff
dimension zero, see [B].

Note that the estimates (29) and (30) cannot hold uniformly on the unit sphere of states
in H. We now present a second propagation estimate, and this one however will be uniform.
It is based on an improved version of the RAGE Theorem, see (7). Let us go deeper in the
hypotheses. Let H0 be a self-adjoint operator on H, with domain D(H0). We use standard
notation and set H2 := D(H0) and H1 := D(〈H0〉1/2), the form domain of H0. Also, H−2 :=
D(H0)

∗, and H−1 := D(〈H0〉1/2)∗. The following continuous and dense embeddings hold:

H2 ⊂ H1 ⊂ H = H∗ ⊂ H−1 ⊂ H−2. (31)

These are Hilbert spaces with the appropriate graph norms. We split the assumptions into
two groups: spectral and regularity assumptions. We start with the former.
Spectral Assumptions:

• A1 : H0 is a semi-bounded operator.

• A2 : V defines a symmetric quadratic form on H1.

• A3 : V ∈ K(H1,H−1).

Importantly, these assumptions allow us to define the perturbed Hamiltonian H. Indeed, A1
- A3 imply, by the KLMN Theorem, e.g. [RS2, Theorem X.17], that H := H0 +V in the form
sense is a semi-bounded self-adjoint operator with domain D(〈H〉1/2) = H1. Furthermore, we
have by Weyl’s Theorem that σess(H) = σess(H0).

Under these few assumptions, both the (improved) RAGE Theorem (7) and the Riemann-
Lebesgue Lemma (8) hold. We continue with the assumptions concerning this operator.
Regularity Assumptions: There is a self-adjoint operator A on H such that

• A4 : eitAH1 ⊂ H1 for all t ∈ R.

• A5 : H0 ∈ C2(A;H1,H−1).

• A6 : V ∈ C1,u(A;H1,H−1).

We refer to Section 2.1 for a description of the regularity classes. While A4 and A5 are
standard assumptions to apply Mourre theory, A6 is significantly weaker. It causes H to
have no more than the C1,u(A;H1,H−1) regularity, in which case the LAP may fail to hold.
Assumption A3 together with the C1,u(A) regularity implies that µ̃A(H) = µ̃A(H0), by [GM,
Lemma 3.3] or [ABG, Theorem 7.2.9]. The uniform estimate derived in [GM] is:

Theorem 5.2. Suppose A1 through A6. Let λ ∈ µ̃A(H) be such that ker(H − λ) ⊂ D(A).
Then there exists a bounded open interval I containing λ such that for all s > 1/2,

lim
T→±∞

sup
ψ∈H
‖ψ‖61

1

T

∫ T

0
‖〈A〉−sPc(H)EI(H)e−itHψ‖2 dt = 0. (32)
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This formula is to be compared with (7), (23) and (29). The parallel between (32) and
the RAGE formula (7) raises an important concern however. The novelty of the propagation
estimate (32) depends critically on the non-compactness of the operator 〈A〉−sEI(H). This
issue is discussed in [GM, Section 7], where we study several examples including continuous
and discrete Schrödinger operators. In all of these examples, it appears that 〈A〉−sEI(H) is
compact in dimension one, but not in higher dimensions. Theorem 5.2 therefore appears to be
a new result for multi-dimensional Hamiltonians. Interestingly, our proof of this Theorem is
very similar to the derivation of the weighted Mourre estimate which is used in the proof of a
LAP for Hamiltonians with oscillating potentials belonging to the C1(A) class, see [G], [GJ2]
and [Ma1].

The various propagation estimates discussed in the Introduction are listed in Table 3
according to the regularity of the potential V . Sufficient regularity for the free operator H0 is
implicit. In this table, question marks indicate open problems.

V is of RAGE R.-L. Prop. estimates Prop. Kato - type LAP
class formula formula (29) and (30) estimate (32) Prop. estimate

C1(A) X X ? ? ? ?
C1,u(A) X X X X ? ?
C1,1(A) X X X X X X

C2(A) X X X X X X

Table 3: The estimates for H depending on the regularity of the potential V

In this article we also provide a criterion to check the C1,u(A;H1,H−1) condition, see [GM,
Proposition 2.1]. A very similar result appears in [ABG, Theorem 9.4.10].

Proposition 5.3. Suppose that T ∈ B(H1,H−1) ∩ C1(A;H1,H−1). If [T, iA]◦ ∈ K(H1,H−1),
then T ∈ C1,u(A;H1,H−1).

We apply the results of this Section to the continuous Schrödinger operators.

Theorem 5.4. Let H = L2(Rν). Let H := H0 + Vsr(Q) + Vlr(Q) and A be as follows:

1. H0 = −∆ and A = (Q · P + P ·Q)/2,

2. Vsr(x) and Vlr(x) are real-valued functions in L∞(Rν),

3. limVsr(x) = limVlr(x) = 0 as ‖x‖ → +∞,

4. lim〈x〉Vsr(x) = 0 as ‖x‖ → +∞, and

5. x·∇Vlr(x) exists as a function, belongs to L∞(Rν), and limx·∇Vlr(x) = 0 as ‖x‖ → +∞.

Then Vsr(Q) and Vlr(Q) belong to C1,u(A;H1,H−1). In particular H ∈ C1,u(A). Moreover,
µ̃A(H) = µ̃A(H0) = (0,+∞). Finally, for all λ ∈ (0,+∞) there is a bounded open interval I
containing λ such that for all s > 1/2 and ψ ∈ H, the propagation estimates (29), (30) and
(32) hold.
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Remark 5.1. Notice that the condition ker(H − λ) ⊂ D(A) that appears in the formulation
of Theorems 5.1 and 5.2 is totally absent here. As mentioned previously in the Introduction,
this is because under the assumptions lim〈x〉Vsr(x) = limx · ∇Vlr(x) = 0 as ‖x‖ → +∞, it
is well-known that the continuous Schrödinger operator H does not have any eigenvalues in
[0,+∞), see articles by Kato [Ka], Simon [Si2] and Agmon [A].

Finally, we apply the results of this Section to the discrete Schrödinger operators.

Theorem 5.5. Let H = ℓ2(Zν). Let H := H0 + V and A be as follows:

1. H0 = ∆ is the Laplacian (2) and A is the standard conjugate operator (13),

2. V (n) is a bounded real-valued function defined on Zν ,

3. limV (n) = 0 as |n| → +∞, and

4. lim |ni(V − τiV )(n)| = 0 as |n| → +∞ for all 1 6 i 6 ν.

Then V and H belong to C1,u(A). Moreover, µ̃A(H) = µ̃A(H0) = [0, 4ν] \ {4k : k = 0, ..., ν},
by (17). Finally, for all λ ∈ µ̃A(H) there is a bounded open interval I containing λ such that
for all s > 1/2 and ψ ∈ H, the propagation estimates (29), (30) and (32) hold.
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THE LIMITING ABSORPTION PRINCIPLE

FOR THE DISCRETE WIGNER-VON NEUMANN OPERATOR

MANDICH, MARC-ADRIEN

Abstract. We apply weighted Mourre commutator theory to prove the limiting absorption
principle for the discrete Schrödinger operator perturbed by the sum of a Wigner-von Neu-
mann and long-range type potential. In particular, this implies a new result concerning the
absolutely continuous spectrum for these operators even for the one-dimensional operator.
We show that methods of classical Mourre theory based on differential inequalities and on
the generator of dilation cannot apply to the aforementioned Schrödinger operators.

1. Introduction

The spectral theory of discrete Schrödinger operators has received much attention in the past
few decades. The absolutely continuous spectrum is important because it allows to describe
the quantum dynamics of a system. The limiting absorption principle (LAP) plays a profound
role in spectral and scattering theory, in particular, it implies the existence of purely absolutely
continuous spectrum. The LAP has been derived for a wide class of potentials, including the
Wigner-von Neumann potential (cf. [NW], [DMR], [RT1], [RT2], [MS] and [EKT] to name a
few), but only recently has the sum of a Wigner-von Neumann and long-range potential been
studied in the continuous setting (cf. [GJ2]). The LAP has not been studied for the discrete
Wigner-von Neumann operator. On the other hand, the absolutely continuous spectrum of
the one-dimensional Wigner-von Neumann operator plus a potential V P ℓppZq has already
been studied, both in the discrete and continuous setting in [L1], [L2] and [L3], but also in
[Si], [JS], [KN], [NS] and [KS] for the case V P ℓ1pZq more specifically. In this paper we study
the sum of a Wigner-von Neumann and long-range potential in the discrete setting which we
now describe.

The configuration space is the multi-dimensional lattice Zd for some integer d ě 1. For
a multi-index n “ pn1, ..., ndq P Zd we set |n|2 :“ n21 ` ... ` n2d. Consider the Hilbert space

H :“ ℓ2pZdq of square summable sequences u “ pupnqqnPZd . The discrete Schrödinger operator

(1.1) H :“ ∆ `W ` V

acts on H, where ∆ is the discrete Laplacian operator defined by

p∆uqpnq :“
ÿ

mPZd

|n´m|“1

pupnq ´ upmqq, for all n P Z
d and u P H,

W is the Wigner-von Neumann potential defined by

(1.2) pWuqpnq :“
q sinpkpn1 ` ...` ndqq

|n|
upnq, for all n P Z

d and u P H,

2010 Mathematics Subject Classification. 39A70, 81Q10, 47B25, 47A10.
Key words and phrases. Wigner-von Neumann potential, limiting absorption principle, discrete Schrödinger

operator, Mourre theory, weighted Mourre theory.
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with q P R and k P T :“ r0, 2πsztπu, and V is a multiplication operator by a real-valued
sequence pV pnqqnPZd :

pV uqpnq :“ V pnqupnq, for all n P Z
d and u P H.

The potential V will be of long-range type, hence a compact operator, but we postpone the
characterization of its exact decay properties. We will also investigate the following variation
on the Wigner-von Neumann potential:

(1.3) pW 1uqpnq :“

˜
dź

i“1

qi sinpkiniq

ni

¸
upnq, for all n P Z

d and u P H,

with q “ pqiq
d
i“1 P Rd and k “ pkiq

d
i“1 P T d. In this case, we shall denote H 1 :“ ∆ ` W 1 ` V .

In the definitions of W and W 1, it is understood that sinp0q{0 :“ 1. Using the discrete Fourier
transform F : H Ñ L2pr´π, πsd, dξq, ξ “ pξ1, ..., ξdq, we get

(1.4) pF∆F´1fqpξq “ fpξq
dÿ

i“1

p2 ´ 2 cospξiqq, where pFuqpξq :“
ÿ

nPZd

upnqein¨ξp2πq´d{2.

This shows that ∆ is a bounded self-adjoint operator on H, and that σp∆q “ σacp∆q “ r0, 4ds.
The operators H and H 1 are compact perturbations of ∆ and so σesspHq “ σesspH

1q “ r0, 4ds.
The Wigner-von Neumann potential is famous for producing an eigenvalue embedded in the

absolutely continuous spectrum when coupled with an appropriate perturbation V (cf. [NW],
[RS4]). In the continuous setting it has been shown that the 1d Schrödinger operator

´
d2

dx2
`
q sinpkxq

x
`Opx´2q

covers the interval r0,8q with absolutely continuous spectrum and may produce exactly one
eigenvalue with positive energy. In the discrete setting the 1d Schrödinger operator ∆ ` W

covers the interval p0, 4q with absolutely continuous spectrum due to the fact that W P ℓ2pZq
(cf. [DK]), and it has been shown (cf. [JS], [Si]) that there are two points located at

(1.5) E˘pkq :“ 2 ˘ 2 cos pk{2q

which may be half-bound states or eigenvalues. If V P ℓ1pZq, the spectrum of H :“ ∆`W `V

is purely absolutely continuous on p0, 4qztE˘pkqu (cf. [JS]). The works [Si], [JS], [KN], [NS],
and [KS] are concerned with the asymptotics of the generalized eigenvectors of H :“ ∆`VP `
W ` V , where VP is periodic, W is the Wigner-von Neumann potential and V P ℓ1pZq.

We fix some notation. Let S :“ pS1, ..., Sdq where, for 1 ď i ď d, Si is the shift operator

(1.6) pSiuqpnq :“ upn1, ..., ni ´ 1, ..., ndq, for all n P Z
d and u P H.

We denote by τiV (resp. τ˚
i V ) the operator of multiplication acting by

rpτiV quspnq :“ V pn1, ..., ni ´ 1, ...ndqupnq presp. rpτ˚
i V quspnq :“ V pn1, ..., ni ` 1, ...ndqupnqq .

We will also be using the bracket notation xαy :“
a
1 ` |α|2. Let us now get into the details

of the potential V . All in all, we will require two conditions on V : we suppose that there exist
ρ, C ą 0 such that

xnyρ|V pnq| ď C, for all n P Z
d, and(1.7)

xnyρ|ni||pV ´ τiV qpnq| ď C, for all n P Z
d and 1 ď i ď d.(1.8)
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These conditions can be interpreted as a discrete version of the standard long-range type
potential |BαV pxq| ď Cxxy´|α|´ρ in the continuous case. Examples of potentials V satisfying
these two conditions include |V pnq| ď Cxny´1´ρ, the so-called short-range potential, and
V pnq “ Cxny´ρ.

The goal of this paper is to establish the LAP for H as defined in (1.1). The formulation
of the LAP requires a conjugate operator which we now introduce. But first, we need the
position operator N :“ pN1, ..., Ndq, where the Ni are defined by

pNiuqpnq :“ niupnq, DpNiq “
!
u P H :

ÿ

nPZd

|niupnq|2 ă 8
)
.

The conjugate operator to H will be the generator of dilations denoted A and is the closure of

(1.9) A0 :“ i

dÿ

i“1

`
2´1pS˚

i ` Siq ´ pS˚
i ´ SiqNi

˘
“ i

dÿ

i“1

2´1
`
pSi ´ S˚

i qNi `NipSi ´ S˚
i q

˘

defined on DpA0q “ ℓ0pZdq, the collection of sequences with compact support. The operator
A is self-adjoint. We will also make use of the projectors onto the pure point spectral subspace
of H and its complement, denoted P and PK :“ 1 ´ P respectively. We define the following
sets:

µpHq “ µpH 1q :“ p0, 4qztE˘pkqu for d “ 1,(1.10)

µpHq :“ p0, Epkqq Y p4d´ Epkq, 4dq for d ě 2,(1.11)

µpH 1q :“ p0, E1pkqq Y p4d´ E1pkq, 4dq for d ě 2.(1.12)

Recall E˘pkq defined by (1.5). The definitions of Epkq and E1pkq are respectively given in
Propositions 4.5 and 4.6. We may as well already mention that the sets µ consist of points
where the classical Mourre estimate holds for H and H 1. The main result of the paper is the
following:

Theorem 1.1. Let E P µpHq. Then there is an open interval I containing E such that
H has finitely many eigenvalues in I and these are of finite multiplicity. Furthermore, if
kerpH ´ Eq Ă DpAq, then I can be chosen so that for any s ą 1{2 and any compact interval
I 1 Ă I, the reduced LAP for H holds with respect to pI 1, s, Aq, that is to say,

(1.13) sup
xPI1,y‰0

}xAy´spH ´ x´ iyq´1PKxAy´s} ă 8.

In particular, the following local decay estimate holds:

(1.14)

ż

R

}xNy´se´itHPKθpHqu}2dt ď C}u}2, for any u P H, θ P C8
c pRq, and s ą 1{2,

and the spectrum of H is purely absolutely continuous on I 1 whenever P “ 0 on I 1.

The corresponding result also holds for H 1. The last part of Theorem 1.1 are two well-known
consequences of the LAP. The local decay estimate gives a better insight into how the initial
state θpHqu diverges to infinity.

Our result is a discrete version of the LAP for the corresponding continuous Schrödinger
operator obtained by Golénia and Jecko in [GJ2], and our proof is very much inspired from
theirs. The proof is based on variations of classical Mourre theory. Classical Mourre theory
was proven very successful to study the point and continuous spectra of a wide class of self-
adjoint operators. Standard references are the original paper by Mourre [M] and the book
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[ABG] in which optimal results are obtained for a wide class of potentials. We also refer to
[Sa].

In [GJ1] and [GJ2], a new approach to Mourre’s theory is developed. Their approach proves
the LAP without the use of differential inequalities, as it is done in Mourre’s original work
[M]. In the separate work of Gérard [G], he proves the LAP using traditional energy estimates
and introduces weighted Mourre estimates. In [GJ2], Golénia and Jecko are able to prove the
LAP under weaker conditions on the potential than what is usually assumed in [ABG] or [Sa]
for example, because their starting point is not the classical Mourre estimate but rather the
weighted Mourre estimate. Roughly speaking, the original Mourre theory required rrV,As, As
to be bounded in a weak sense, whereas the more recent and different approaches require V to
belong to a class where solely rV,As is bounded. This allows for new classes of potentials to
be studied, such as the Wigner-von Neumann potential. In Propositions 3.3 and 4.2, we show
that the standard Mourre commutator techniques exposed in [ABG] or [Sa] cannot be used
to treat the discrete Wigner-von Neumann potential. Finally, the LAP derived in this paper
is interesting because we include a long-range type potential V in addition to the Wigner-von
Neumann potential and therefore provide new results including the question of the absolutely
continuous spectrum.

The paper is organized as follows: In Section 2, we recall the basic notions of classical and
weighted Mourre theory that we will be using. In Section 3, we study the classical Mourre
theory for the one-dimensional Schrödinger operators H and H 1, and show that the discrete
Wigner-von Neumann potential cannot be treated with the classical methods. In Section 4,
we repeat our analysis for the multi-dimensional Schrödinger operators H and H 1, and recycle
results from the one-dimensional case. In Section 5, we prove the weighted Mourre estimate
that leads to the LAP. This section is done independently of the dimension. Finally in the
Appendix 6, we recall essential facts about almost analytic extensions of C8pRq functions that
we need to establish the weighted Mourre estimate.

Acknowledgments: It is a pleasure to thank my thesis supervisor Sylvain Golénia for offering
me this topic and his generous support and guidance throughout my research. I would also
like to thank Thierry Jecko, Milivoje Lukic and the anonymous referees for useful comments,
as well as the University of Bordeaux for funding my studies.

2. Preliminaries

2.1. Regularity. We consider two self-adjoint operators T and A acting in some complex
Hilbert space H, and for the purpose of the overview T will be bounded. Given k P N, we say
that T is of class CkpAq, and write H P CkpAq if the map

(2.1) R Q t ÞÑ eitATe´itAu P H

has the usual CkpRq regularity for every u P H. Let I be an open interval of R. We say that
T is locally of class CkpAq on I, and write T P Ck

I
pAq, if for all ϕ P C8

c pRq with support in I,

ϕpT q P CkpAq. The form rT,As is defined on DpAq ˆ DpAq by

xu, rT,Asvy :“ xTu,Avy ´ xAu, Tvy.

We recall the following result of [ABG, p. 250]:

Proposition 2.1. Let T P BpHq, the bounded operators on H. The following are equivalent:

(1) T P C1pAq.
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(2) The form rT,As extends to a bounded form on H ˆ H defining a bounded operator
denoted by ad1ApT q :“ rT,As˝.

(3) T preserves DpAq and the operator TA ´ AT , defined on DpAq, extends to a bounded
operator.

Consequently, T P CkpAq if and only if the iterated commutators adp
ApT q :“ radp´1

A pT q, As˝

are bounded for 1 ď p ď k. We recall a general Lemma which can found in [GGM, section 2]:

Lemma 2.2. The class C1pAq is a ˚-algebra, that is, for T1, T2 P C1pAq we have:

(1) T1 ` T2 P C1pAq and rT1 ` T2, As˝ “ rT1, As˝ ` rT2, As˝.
(2) T1T2 P C1pAq and rT1T2, As˝ “ T1rT2, As˝ ` rT1, As˝T2.
(3) T ˚

1 P C1pAq and rT ˚
1 , As˝ “ rT1, As˚

˝ .

Finally we will also need the following result from [GJ1]:

Proposition 2.3. For u, v P DpAq, the rank one operator |uyxv| : w Ñ xv, wyu is of class
C1pAq.

2.2. The scale of the different classes. Let us introduce other classes inside C1pAq. We
say that T P C1,upAq if the map

(2.2) R Q t ÞÑ eitATe´itA P BpHq

has the C1pRq regularity. Note the difference with definition (2.1). We say that T P C1,1pAq if
ż 1

0

}rT, eitAs˝, e
itAs˝}t´2dt ă 8.

Finally we say that T P C1`0pAq if T P C1pAq and
ż 1

´1

}eitArT,As˝e
´itA}|t|´1dt ă 8.

It turns out that

(2.3) C2pAq Ă C1`0pAq Ă C1,1pAq Ă C1,upAq Ă C1pAq.

The local classes are defined in the obvious way: T P C
r¨s
I

pAq if, for all ϕ P C8
c pIq, ϕpT q P

Cr¨spAq.
In [Sa], the LAP is obtained on compact sub-intervals of I when the Schrödinger operator

belongs to C1`0
I

pAq, while in [ABG, section 7.B], it is obtained for Schrödinger operators
belonging to C1,1pAq and this class is shown to be optimal among the global classes in the
framework.

2.3. The Mourre estimate and the LAP. Let I,J be open intervals with I Ă J , and
assume T P C1

J
pAq. We say that the Mourre estimate holds for T on I if there exist a finite

c ą 0 and a compact operator K such that

(2.4) EIpT qrT, iAs˝EIpT q ě c ¨ EIpT q `K

in the form sense on DpAq ˆDpAq. We say that the strict Mourre estimate holds for T on I if
(2.4) holds with K “ 0. Assuming I Ă J and T P C1

J
pAq, there are finitely many eigenvalues

of T in I and they are of finite multiplicity when K ‰ 0; whereas T has no eigenvalues in I

when K “ 0. This is a direct consequence of the Virial Theorem ([Sa], [ABG, Proposition
7.2.10]).
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Let IpE; εq be the open interval of radius ε ą 0 centered at E P R. When the strict Mourre
estimate holds for T on some interval containing E, it is natural to consider the following
function ̺AT : R Ñ p´8,`8s:

̺AT pEq :“ sup
#
a P R : Dε ą 0 such that EIpE;εqpT qrT, iAs˝EIpE;εqpT q ě a ¨ EIpE;εqpT q

(
.

It is known for example that ̺AT is lower semicontinuous and ̺AT pEq ă 8 if and only if E P σpT q.
For more properties of this function, see [ABG, chapter 7].

Variations of classical Mourre theory make use of a weighted Mourre estimate (cf. [G],
[GJ2]):

(2.5) EIpT qrT, iϕpAqs˝EIpT q ě EIpT qxAy´spc`KqxAy´sEIpT q

where 0 ă c ă 8, s ą 1{2 and ϕ is some function in BbpRq, the bounded Borel functions.
Recall that P is the orthogonal projection onto the pure point spectral subspace of H, and
PK :“ 1 ´ P . We now quote the essential criterion established in [GJ2] that we will need to
prove the LAP for H as defined in (1.1).

Theorem 2.4. [GJ2] Let I be an open interval, and assume that PKθpT q P C1pAq for all
θ P C8

c pIq. Assume the existence of an s0 P p1{2, 1s with the following property : for any
s P p1{2, s0s, there exist a finite c ą 0 and a compact operator K such that for all R ě 1, there
exists ψR P BbpRq so that the following projected weighted Mourre estimate

(2.6) PKEIpT qrT, iϕRpA{Rqs˝EIpT qPK ě PKEIpT qxA{Ry´spc`KqxA{Ry´sEIpT qPK

holds. Then for all s ą 1{2 and compact I 1 with I 1 Ă I, the reduced LAP (1.13) for T holds
with respect to pI 1, s, Aq.

3. The One-Dimensional Case

We begin with the study of the one-dimensional operator. We write the Laplacian in terms
of the shift operators defined in (1.6) : ∆ “ 2 ´ pS˚ ` Sq. Note that rS,∆s˝ “ rS˚,∆s˝ “ 0.
Recall that A is the conjugate operator to H introduced in (1.9). It is the closure of the
operator

(3.1) A0 :“ ´i
`
2´1pS˚ ` Sq `NpS˚ ´ Sq

˘
“ i

`
2´1pS˚ ` Sq ´ pS˚ ´ SqN

˘

on the domain DpA0q :“ ℓ0pZq. The domain of A has been shown explicitly to be DpAq “
DpNpS˚ ´Sqq and this operator has been shown to be self-adjoint (cf. [GGo]). Moreover A is
unitarily equivalent to the self-adjoint realization of the operator

AF :“ i sinpξq
d

dξ
` i

d

dξ
sinpξq, DpAF q :“ tf P L2pr´π, πs, dξq : AFf P L2pr´π, πs, dξqu.

3.1. C1pAq Regularity. We now show that H and H 1 are of class C1pAq.

Proposition 3.1. The form r∆, iAs extends to a bounded form denoted r∆, iAs˝ and

(3.2) r∆, iAs˝ “ ∆p4 ´ ∆q.

Furthermore ∆ is of class C8pAq.

Proof. A straightforward and well-known computation shows that xu, r∆, iAsvy “ xu,∆p4 ´
∆qvy for all u, v P ℓ0pZq. Thus r∆, iAs extends to a bounded form and we have (3.2). Using
induction and applying Lemma 2.2 shows that adk

Ap∆q is a polynomial of degree k ` 1 in
∆. �
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Define the bounded operators

(3.3) KW :“ 2´1W pS˚ ` Sq ` 2´1pS˚ ` SqW, and BW :“ UW̃ pS˚ ´ Sq ´ pS˚ ´ SqW̃U,

where W̃ and U are respectively the operators

pW̃uqpnq :“ q sinpknqupnq, and pUuqpnq :“ signpnqupnq.

We use the convention signp0q “ 0. A simple calculation shows that for all u, v P ℓ0pZq,

xu, rW, iAsvy “ xu,KW vy ` xu,BW vy.

We also investigate the form rW 1, iAs. Define the bounded operators

(3.4) KW 1 :“ 2´1W 1pS˚ ` Sq ` 2´1pS˚ ` SqW 1, and BW 1 :“ W̃ pS˚ ´ Sq ´ pS˚ ´ SqW̃ .

A straightforward computation shows that for all u, v P ℓ0pZq,

xu, rW 1, iAsvy “ xu,KW 1vy ` xu,BW 1vy.

Hence both rW, iAs and rW 1, iAs extend to bounded forms and we have

(3.5) rW, iAs˝ “ KW `BW , and rW 1, iAs˝ “ KW 1 `BW 1 .

Note that KW and KW 1 are compact, while BW and BW 1 are bounded (but not compact by
Proposition 3.3). Finally, we turn to the form rV, iAs. For u P ℓ0pZq we have

ppV A´AV quqpnq “ ipn´2´1qpV pnq´V pn´1qqupn´1q` ipn´2´1qpV pnq´V pn`1qqupn`1q.

Therefore in the form sense, we have for u, v P ℓ0pZq,

(3.6) xu, rV, iAsvy “ ´xu,
“
pN ´ 2´1qpV ´ τV qS ` pN ´ 2´1qpV ´ τ˚V qS˚

‰
vy.

By hypothesis (1.8), we see that rV, iAs can be extended to a bounded form, and that rV, iAs˝

is a compact operator. The above discussion leads to:

Proposition 3.2. H “ ∆ `W ` V and H 1 “ ∆ `W 1 ` V are of class C1pAq.

We now explain why the usual Mourre theory with conjugate operator A cannot be applied.
We have proved that H P C1pAq, however in order to apply the standard Mourre theory,
one typically has to prove that H is in a better class of regularity w.r.t. A. As mentionned
previously, the existing standard theory in [ABG] is optimal for the class C1,1pAq. However,
we are not dealing with potentials in this class as shown in the following Proposition. The
same phenomenon occurs in the case of the continuous Schrödinger operator (cf. [GJ2]).

Proposition 3.3. H and H 1 are not of class C1,upAq.

Proof. We stick withH as the same proof works forH 1. Since ∆ P C8pAq, we have ∆ P C1,upAq.
Let us assume by contradiction that H P C1,upAq. Then H ´ ∆ P C1,upAq. In particular

lim
tÑ0

“
e´itApH ´ ∆qeitA ´ pH ´ ∆q

‰
t´1 “ rpH ´ ∆q, iAs˝ “ rpW ` V q, iAs˝

is a compact operator as the norm limit of compact operators. As explained before, rV, iAs˝ is
compact, and rW, iAs˝ is the sum of the compact operator KW and the bounded operator BW .
We show that BW is not compact, and this will be our contradiction. Consider the sequence
pδjqjě2 of unit vectors in ℓ2pZq satisfying pδjqpnq “ δj;n. Then

BW δj “ q psinpkpj ´ 1qq ´ sinpkjqq δj´1 ´ q psinpkpj ` 1qq ´ sinpkjqq δj`1.
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For this operator to be compact, we require

0 “ lim
jÑ8

|q|| sinpkpj ´ 1qq ´ sinpkjq| ` |q|| sinpkpj ` 1qq ´ sinpkjq|

“ lim
jÑ8

2|q|| cospkj ´ k{2q|| sinpk{2q| ` 2|q|| cospkj ` k{2q|| sinpk{2q|.

As j Ñ 8, we would need kj ´ k{2 Ñ π{2 (mod π) and kj ` k{2 Ñ π{2 (mod π), but this is
not possible precisely because k ‰ π. �

3.2. Classical Mourre Theory. In this section we derive the classical Mourre estimate
(2.4) for the one-dimensional Schrödinger operator H. From the previous section, we know
that rV, iAs˝ is compact and that rW, iAs˝ “ KW ` BW , with KW compact but BW just
bounded. Therefore, in order to derive the Mourre estimate, what really remains to show is
that EIp∆qBWEIp∆q is compact for some well-chosen I Ă r0, 4s. We show precisely:

Lemma 3.4. Recall that E˘pkq :“ 2 ˘ 2 cospk{2q. Let E P r0, 4sztE˘pkqu. Then there exists

ε “ εpEq ą 0 such that for all θ P C8
c pRq supported on I :“ pE ´ ε, E ` εq, θp∆qW̃θp∆q “ 0.

Thus θp∆qBW 1θp∆q “ 0 and θp∆qBW θp∆q is compact.

The proof of this Lemma is deferred to the end of this section, but note that the last part
of the Lemma is easy, since if θp∆qW̃θp∆q “ 0, then

θp∆qBW 1θp∆q “ θp∆qW̃θp∆qpS˚ ´ Sq ´ pS˚ ´ Sqθp∆qW̃θp∆q “ 0.

Commuting U with ∆ produces a finite rank, hence compact operator by (3.7), so θp∆qBW θp∆q
is compact. The classical Mourre estimate for H and H 1 is easily deduced:

Proposition 3.5. For every E P p0, 4qztE˘pkqu, there is an open interval I containing E such
that the Mourre estimate (2.4) holds for H and H 1. In particular, the number of eigenvalues
of H and H 1 in I are finite and they are of finite multiplicity.

Proof. For E P p0, 4qztE˘pkqu, let θ P C8
c pRq be as in Lemma 3.4, with supppθq “ I. By the

resolvent identity, Ω :“ θpHq ´ θp∆q is compact. Indeed, by the Helffer-Sjöstrand formula,

Ω “
i

2π

ż

C

Bθ̃

Bz
pz ´Hq´1pW ` V qpz ´ ∆q´1dz ^ dz

is a norm converging integral of compact operators. We have for some compact operator K:

θpHqrH, iAs˝θpHq “ θp∆qrH, iAs˝θp∆q ` ΩrH, iAs˝θpHq ` θp∆qrH, iAs˝Ω

“ θp∆q∆p4 ´ ∆qθp∆q `K.

By functional calculus, θp∆q∆p4 ´ ∆qθp∆q ě cθ2p∆q, c :“ minxPI xp4 ´ xq. Thus

θpHqrH, iAs˝θpHq ě cθ2pHq `K ` cpθ2p∆q ´ θ2pHqq.

For all open intervals I 1 with I 1 Ă I, we obtain the Mourre estimate when applying EI1pHq
to either sides of the last inequality. �

We now show that compactness of EIpHqBWEIpHq is not possible for any interval I

centered about E˘pkq. Let B Ă Z and let δBpnq “ 1 if n P B and δBpnq “ 0 if n R B. Thanks
to

(3.7) S˚U “ US˚ ` δt0uS
˚ ` δt´1uS

˚, and SU “ US ´ δt0uS ´ δt1uS,

one shows that

(3.8) θp∆qBW θp∆q “ Uθp∆q
´
W̃ pS˚ ´ Sq ´ pS˚ ´ SqW̃

¯
θp∆q ` compact.
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Proposition 3.6. Fix E P tE˘pkqu, and suppose that q ‰ 0, k P p0, 2πqztπu. Then for all
θ P C8

c pRq with supppθq Q E, θp∆qBW θp∆q and θp∆qBW 1θp∆q are not compact.

Proof. We show that Q :“ θp∆qrW̃ pS˚ ´ Sq ´ pS˚ ´ SqW̃ sθp∆q “ θp∆qBW 1θp∆q is not
compact for any θ supported about E˘pkq. Applying U to this operator does not make the
product any more compact, and so the result will follow by (3.8). In Fourier space, Q becomes

qθ p2 ´ 2 cosp¨qq ˝
“
sinp¨q ˝ pTk ´ T´kq ´ pTk ´ T´kq ˝ sinp¨q

‰
˝ θ p2 ´ 2 cosp¨qq .

Here T˘k is the operator of translation by ˘k. It is not hard to see that if φ solves

2 ´ 2 cospφq “ 2 ´ 2 cospφ` kq, or 2 ´ 2 cospφq “ 2 ´ 2 cospφ´ kq

then it is possible to construct a sequence of «delta» functions fn supported in a neighborhood
of φ converging weakly to zero, but }fn}2 “ 1. The solutions to the previous equations are
φ “ k{2, π ´ k{2 for the first, and φ “ ´k{2, π ` k{2 for the second. Either way, we retrieve
the threshold energies E˘pkq “ 2 ˘ 2 cospk{2q. �

The rest of the section is devoted to proving Lemma 3.4. Recall that F is the discrete
Fourier transform defined in (1.4). Let Tk denote the multiplication operator on ℓ2pZq given
by pTkuqpnq :“ eiknupnq. Then Tk corresponds to a translation by k in the Fourier space

of 2π-periodic functions, that is, pFTkF
´1fqpξq “ fpξ ` kq. Also denote q1r0,πs the operator

on ℓ2pZq satisfying pFq1r0,πsF
´1fqpξq “ 1r0,πspξqfpξq. This operator is bounded, self-adjoint,

commutes with ∆, and its spectrum is σpq1r0,πsq “ ess ranp1r0,πspξqq “ t0, 1u. We need a
formula describing how Tk and ∆ commute.

Lemma 3.7. Let k P r0, 2πsztπu. Then for all θ P C8
c pRq,

(3.9) Tkθp∆q “ θpgkp∆, q1r0,πsqqTk,

where gkpx, yq : r0, 4s ˆ t0, 1u ÞÑ R is the function

(3.10) gkpx, yq :“ 2 ` px´ 2q cospkq ´ sinpkq
a
xp4 ´ xqp2y ´ 1q.

Proof. First

pFTk∆F´1fqpξq “ p2 ´ 2 cospξ ` kqqfpξ ` kq

“
“
2 ´ 2 cospkq cospξq ´ 2 sinpkq

a
1 ´ cos2pξqp21r0,πspξq ´ 1q

‰
fpξ ` kq.(3.11)

Now,

gkp∆, q1r0,πsq :“ 2 ` p∆ ´ 2q cospkq ´ sinpkq
a
∆p4 ´ ∆qp2q1r0,πs ´ 1q.

Then (3.11) provides us with the following key relation:

Tk∆ “ gkp∆, q1r0,πsqTk.

In particular, for all z P CzR,

Tkpz ´ ∆q´1 “
´
z ´ gkp∆, q1r0,πsq

¯´1

Tk.

The result follows by applying the Helffer-Sjöstrand formula. �

We are now ready to prove Lemma 3.4.
Proof of Lemma 3.4. We apply (3.9) and get

θp∆qW̃θp∆q “ θp∆qθpgkp∆, q1r0,πsqqqTk{p2iq ´ θp∆qθpg2π´kp∆, q1r0,πsqqqT2π´k{p2iq.

33



1 2 3 4

´3

´2

´1

1

2

3

4

E´ λ´ E`λ`

0
0 x

y

1 2 3 4

´3

´2

´1

1

2

3

4

E´ “ λ` E` “ λ´

0
0 x

y

Figure 1. gk;´, gk;`, hk;´ and hk;` for k “ π{3 (left) and k “ 2π{3 (right)

We show that for all k P r0, 2πsztπu, one may choose θ appropriately so that

θp∆qθpgkp∆, q1r0,πsqq “ 0.

Also, as will be seen shortly, θp∆qθpgkp∆, q1r0,πsqq “ 0 iff θp∆qθpg2π´kp∆, q1r0,πsqq “ 0. We
appeal to the functional calculus for two self-adjoint commuting operators. Consider the
function gkpx, yq of (3.10) defined for px, yq P σp∆qˆσpq1r0,πsq “ r0, 4sˆt0, 1u. We show that for
all E P r0, 4sztE˘pkqu, there exists ε “ εpEq ą 0 such that for the interval I :“ pE´ε, E`εq,

(3.12) I X tgkpx, yq : x P I, y P t0, 1uu “ H.

In this way if supppθq “ I, then we will have θpxqθpgkpx, yqq “ 0 as required. Set

(3.13) Epkq :“ tE P r0, 4s : there exists y P t0, 1u such that E “ gkpE, yqu.

Clearly if E P Epkq, then (3.12) does not hold at E. To simplify the analysis, we let

(3.14) gk;˘pxq :“ 2 ` px´ 2q cospkq ˘ sinpkq
a
xp4 ´ xq and hk;˘pxq :“ gk;˘pxq ´ x.

Notice that hk;˘pE˘pkqq “ 0, and so E˘pkq P Epkq. To show that Epkq “ tE´pkq, E`pkqu, it
is equivalent to show that these are the only roots of hk;˘. Because of the symmetry relations

(3.15) gk;`pxq “ 4 ´ gk;´p4 ´ xq and hk;`pxq “ ´hk;´p4 ´ xq,

we may focus our analysis on gk;´ and hk;´. Define αpkq :“ pcospkq ´ 1qpsinpkqq´1. The
equation

h1
k;´pxq “ pcospkq ´ 1q ´ sinpkqp´x` 2qpxp4 ´ xqq´1{2 “ 0

can be solved via the quadratic formula and yields a single solution given by
#
2 ` 2

a
1 ´ p1 ` α2pkqq´1 if k P p0, πq

2 ´ 2
a
1 ´ p1 ` α2pkqq´1 if k P pπ, 2πq.
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Consequently hk;´ has exactly one local extremum. Combining this with the fact that hk;´
is continuous, hk;´p0q “ 2 ´ 2 cospkq ą 0 and hk;´p4q “ ´2 ` 2 cospkq ă 0, we conclude that
E´pkq is the only root of hk;´. By (3.15) we immediately get that E`pkq is the only root of
hk;`. We move on to the analysis of gk;´. The equation

g1
k;´pxq “ cospkq ´ sinpkqp´x` 2qpxp4 ´ xqq´1{2 “ 0

has a single solution given by

λ´pkq :“

#
2 ´ 2

a
1 ´ p1 ` β2pkqq´1 “ 2 ´ 2| cospkq| if k P p0, π{2s Y pπ, 3π{2s

2 ` 2
a
1 ´ p1 ` β2pkqq´1 “ 2 ` 2| cospkq| if k P rπ{2, πq Y r3π{2, 2πq.

Here βpkq :“ cotpkq. We conclude that gk;´ has exactly one local extremum. We note that
gk;´pλ´pkqq “ 0 when k P p0, πq and gk;´pλ´pkqq “ 4 when k P pπ, 2πq. Finally, we have

h2
k;´pxq “ g2

k;´pxq “ 4 sinpkqpxp4 ´ xqq´3{2.

The relevant details are summarized in Tables 1, 2, 3 and 4. We are ready to complete the
proof.

k λ´pkq E´pkq g2
k;´pxq “ h2

k;´pxq

P p0, πq “ 2 ´ 2 cospkq “ 2 ´ 2 cospk{2q E´pkq ă λ´pkq ą 0 @x P r0, 4s

P pπ, 2πq “ 2 ` 2 cospkq = 2 ´ 2 cospk{2q λ´pkq ă E´pkq ă 0 @x P r0, 4s

Table 1. Analysis of gk;´ and hk;´ for different values of k

x 0 E´pkq λ´pkq 4

gk;´pxq Œ Œ 0 Õ
hk;´pxq ` 0 ´ ´

x 0 λ´pkq E´pkq 4

gk;´pxq Õ 4 Œ Œ
hk;´pxq ` ` 0 ´

Table 2. Variations of gk;´ and sign of hk;´ for k P p0, πq (left) and k P pπ, 2πq (right)

k λ`pkq E`pkq g2
k;`pxq “ h2

k;`pxq

P p0, πq “ 2 ` 2 cospkq “ 2 ` 2 cospk{2q λ`pkq ă E`pkq ă 0 @x P r0, 4s

P pπ, 2πq “ 2 ´ 2 cospkq = 2 ` 2 cospk{2q E`pkq ă λ`pkq ą 0 @x P r0, 4s

Table 3. Analysis of gk;` and hk;` for different values of k

x 0 λ`pkq E`pkq 4

gk;`pxq Õ 4 Œ Œ
hk;`pxq ` ` 0 ´

x 0 E`pkq λ`pkq 4

gk;`pxq Œ Œ 0 Õ
hk;`pxq ` 0 ´ ´

Table 4. Variations of gk;` and sign of hk;` for k P p0, πq (left) and k P pπ, 2πq (right)
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Case k P p0, πq, y “ 0: Depending on E P r0, 4sztE´pkqu, we show that there exists an interval
I Q E such that one of the two following hold:

I ă gk;´pIq,(3.16)

I ą gk;´pIq.(3.17)

(A) For E P r0, E´pkqq, there is ε ą 0 such that E ` ε ă gk;´pE ` εq. Thus (3.16) holds for
I “ pE´ ε, E` εq. (B) For E P pE´pkq, λ´pkqq, there is ε ą 0 such that gk;´pE´ εq ă E´ ε.
Thus (3.17) holds for I “ pE ´ ε, E ` εq. (C) For E “ λ´pkq, there is ε1 ą 0 such that
gk;´pλ´pkq ´ ε1q ă λ´pkq ´ ε1. Thus r0, gk;´pλ´pkq ´ ε1qs “ gk;´prλ´pkq ´ ε1, λ´pkqsq ă
rλ´pkq´ε1, λ´pkqs. By continuity of gk;´ there is ε2 ą 0 such that gk;´ prλ´pkq, λ´pkq ` ε2sq “
r0, gk;´pλ´pkq`ε2qs Ă r0, gk;´pλ´pkq´ε1qs. Thus (3.17) holds for I “ pλ´pkq´ε1, λ´pkq`ε2q.
(D) Finally for E P pλ´pkq, 4s, there is ε ą 0 such that hk;´ptq ă ´2ε for all t P rE´ε, E`εs,
and so gk;´pE ` εq ă E ´ ε. Thus (3.17) holds for I “ pE ´ ε, E ` εq.
Case k P p0, πq, y “ 1: We denote λ`pkq “ 4 ´ λ´pkq the location of the extremum of gk;`.

Depending on E P r0, 4sztE`pkqu, one procedes in the same fashion as before to show that
there exists an interval I Q E such that one of the two following hold:

I ă gk;`pIq,(3.18)

I ą gk;`pIq.(3.19)

The case of k P pπ, 2πq is also covered because gp2π´kq;`pxq “ gk;´pxq for all k P p0, πqztπu. �

4. The Multi-dimensional Case

We introduce the tensor product notation. The position space is the Hilbert space H “
ℓ2pZdq « bd

i“1ℓ
2pZq. The d-dimensional Laplacian is equivalent to

∆ « ∆1 b 1 b ...b 1 ` 1 b ∆2 b ...b 1 ` ... ` 1 b ...b 1 b ∆d

where the ∆i are copies of the one-dimensional Laplacian. The potentials W and V cannot
be written explicitely in tensor product notation, whereas W 1 can. The generator of dilations
is

A « A1 b 1 b ...b 1 ` 1 bA2 b ...b 1 ` ... ` 1 b ...b 1 bAd, DpAq :“ bd
i“1DpAiq

where the Ai are copies of the 1d generator of dilations defined as the closure of (3.1). Since
the copies Ai are all self-adjoint, A is self-adjoint.

4.1. C1pAq Regularity. It is immediate that r∆, iAs extends to a bounded form and

r∆, iAs˝ « ∆1p4´∆1q b 1...b 1 ` 1 b∆2p4´∆2q b ...b 1 ` ... ` 1 b ... b 1 b∆dp4´∆dq.

By induction, we have that ∆ P C8pAq. We turn to the potential W . Define

KW :“ 2´1W

dÿ

i“1

pS˚
i ` Siq ` 2´1

dÿ

i“1

pS˚
i ` SiqW,(4.1)

BW :“
dÿ

i“1

UiW̃ pS˚
i ´ Siq ´

dÿ

i“1

pS˚
i ´ SiqW̃Ui,(4.2)

where the Ui are the operators pUiuqpnq :“ ni|n|´1upnq and W̃ is the operator pW̃uqpnq :“
q sinpkpn1 ` ...` ndqqupnq. We have that for all u, v P ℓ0pZdq,

xu, rW, iAsvy “ xu,KW vy ` xu,BW vy.
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Thus rW, iAs extends to a bounded operator and rW, iAs˝ “ KW `BW . For the potential W 1,

rW 1, iAs˝ « rW 1
1, iA1s˝ bW 1

2 b ...bW 1
d ` W 1

1 b rW 1
2, iA2s˝ b ...bW 1

d

` ... ` W 1
1 b ...bW 1

d´1 b rW 1
d, iAds˝

:“ KW 1 `BW 1

where

(4.3) KW 1 :“ KW 1
1

bW 1
2 b ...bW 1

d ` W 1
1 bKW 1

2
b ...bW 1

d ` ... ` W 1
1 b ...bW 1

d´1 bKW 1
d
,

(4.4) BW 1 :“ BW 1
1

bW 1
2 b ...bW 1

d ` W 1
1 bBW 1

2
b ...bW 1

d ` ... ` W 1
1 b ...bW 1

d´1 bBW 1
d
,

(4.5) KW 1
i

“ 2´1W 1
i pS

˚
i `Siq ` 2´1pS˚

i `SiqW
1
i , and BW 1

i
“ W̃ 1

i pS
˚
i ´Siq ´ pS˚

i ´SiqW̃ 1
i .

Here W 1
i and W̃ 1

i are one-dimensional operators defined by pW 1
iuqpnq “ qi sinpkinqn´1upnq,

and pW̃ 1
iuqpnq :“ qi sinpkinqupnq. Note that KW and KW 1 are compact, while BW and BW 1

are bounded but not compact by Proposition 4.2. As for the form rV, iAs, we have as in (3.6)
that for all u, v P ℓ0pZdq,

(4.6) xu, rV, iAsvy “ ´
dÿ

i“1

xu,
“
pNi ´ 2´1qpV ´ τiV qSi ` pNi ´ 2´1qpV ´ τ˚

i V qS˚
i

‰
vy.

Hypothesis (1.8) allows us to extend rV, iAs into a compact operator. This leads to the
following

Proposition 4.1. H and H 1 are of class C1pAq.

As in the one-dimensional case, we have

Proposition 4.2. H and H 1 are not of class C1,upAq.

Proof. As in the proof of Proposition 3.3, one shows that BW and BW 1 are not compact.
This can be done by considering the sequence pδjqjľ2 of unit vectors in ℓ2pZdq satisfying
pδjqpnq “ δj;n1

δ0;n2
¨¨¨δ0;nd

. This sequence is converging weakly to zero. If BW 1 was compact, we
would require BW 1δj to converge strongly to zero, but this would lead to the same contradiction
as in Proposition 3.3. As for BW , we commute Ui with pS˚

i ´ Siq to produce a compact and
get

BW “
dÿ

i“1

UirW̃ pS˚
i ´ Siq ´ pS˚

i ´ SiqW̃ s ` compact.

Again, applying this operator to δj and requiring the limit to converge strongly to zero would
generate the same contradiction. �

4.2. Classical Mourre Theory. Recall that σp∆q “ σp∆1q ` ...` σp∆dq “ r0, 4ds. We
would like to identify the sub-intervals of σp∆q for which a strict Mourre estimate for ∆ holds.
Recall the function ρAT pEq introduced in paragraph 2.3. In the setting of the tensor product
of two operators we have the standard result [ABG, Theorem 8.3.6]:

(4.7) ̺AT pEq “ inf
E“x1`x2

r̺A1

T1
px1q ` ̺A2

T2
px2qs,
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Figure 2. Support of χIpx1 ` x2q for I “ p0.5, 3.5q.

where T :“ T1 b 1 ` 1 b T2 and A :“ A1 b 1 ` 1 b A2 are an arbitrary pair of conjugate
self-adjoint operators. Now, an easy consequence of the one-dimensional result (3.2) is that
for all xi P r0, 4s

̺A∆i
pxiq “ xip4 ´ xiq.

Therefore we infer that in the case of d “ 2, 0 ă ̺A∆pEq ă 8 if and only if E P p0, 8qzt4u, so
that the strict Mourre estimate for ∆ holds at every point of the spectrum of ∆, except at the
critical points t0, 4, 8u. If d ą 2, then a similar formula to (4.7) holds with nested terms. One

easily sees that 0 ă ̺A∆pEq ă 8 if and only if E P p0, 4dqzt4jud´1
j“1 , so that the strict Mourre

estimate holds at every point of the spectrum of ∆, except at the critical points t4judj“0. For
the special case of the discrete Laplacian, the classic strict Mourre estimate can be derived
without resorting to formula (4.7) whose proof is somewhat elaborate. We show how this can
be done.

We work in two dimensions, but remark that the same setup can be generalized for d ą 2.
Let ε P p0, 2q be given and let I “ pε, 4 ´ εq. By (3.2), we have

(4.8) EIp∆iqr∆i, iAis˝EIp∆iq ě εp4 ´ εqEIp∆iq, for all i “ 1, 2.

The following Proposition converts the one-dimensional (optimal) strict Mourre estimate for
∆ into a two-dimensional strict Mourre estimate.

Proposition 4.3. For every ε P p0, 2q, let I :“ pε, 4 ´ εq, or I :“ p4 ` ε, 8 ´ εq. Then the
strict Mourre estimate holds for the two-dimensional Laplacian ∆ on I, namely:

(4.9) EIp∆qr∆, iAs˝EIp∆q ě εp4 ´ εqEIp∆q.

Proof. We consider the case I “ pε, 4´ εq, as the other case is similar. Note that χIpx1 ` x2q
is supported on the open set U :“ tpx1, x2q P r0, 4s ˆ r0, 4s : x1 ` x2 P Iu which has the
form of a trapezoid. We decompose U in four regions, namely Up1,1q :“ U X r0, εq ˆ r0, εq,
Up1,2q :“ UXr0, εqˆrε, 4´εq, Up2,1q :“ UXrε, 4´εqˆr0, εq, and Up2,2q :“ UXrε, 4´εqˆrε, 4´εq.

For n P N and pi, jq P t1, ..., 2nu ˆ t1, ..., 2nu, consider the disjoint intervals of the form

I1;i;n :“
“
pi´ 1q2´nε, i2´nε

˘
and I2;j;n :“

“
ε` pj ´ 1q2´np4 ´ 2εq, ε` j2´np4 ´ 2εq

˘

which satisfy Y2n

i“1I1;i;n “ r0, εq and Y2n

j“1I2;j;n “ rε, 4 ´ εq. For α, β P t1, 2u, let

Fα,β,n :“ tpi, jq P t1, ..., 2nu ˆ t1, ..., 2nu : Iα;i;n ˆ Iβ;j;n Ă Upα,βqu.
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Then

lim
nÑ8

ď

pi,jqPFα,β,n

Iα;i;n ˆ Iβ;j;n “ Upα,βq.

In terms of operators, we have

s-lim
nÑ8

ÿ

α,β“1,2

ÿ

pi,jqPFα,β,n

EIα;i;n
p∆1q b EIβ;j;np∆2q “ EIp∆q.

Now, r∆, iAs˝ “ r∆1, iA1s˝ b 1 ` 1 b r∆2, iA2s˝, so for fixed n we calculate:
¨
˝ÿ

α,β

ÿ

pi,jq

EIα;i;n
p∆1q b EIβ;j;np∆2q

˛
‚r∆, iAs˝

¨
˝ ÿ

α1,β1

ÿ

pi1,j1q

EIα1;i1;n
p∆1q b EIβ1;j1;n

p∆2q

˛
‚

“
ÿ

α,β

ÿ

pi,jq

ÿ

α1

ÿ

pi1,jq

EIα;i;n
p∆1qr∆1, iA1s˝EIα1;i1;n

p∆1q b EIβ;j;np∆2q

`
ÿ

α,β

ÿ

pi,jq

ÿ

β1

ÿ

pi,j1q

EIα;i;n
p∆1q b EIβ;j;np∆2qr∆2, iA2s˝EIβ1;j1;n

p∆2q

ě
ÿ

α,β

ÿ

pi,jq

EIα;i;n
p∆1qr∆1, iA1s˝EIα;i;n

p∆1q b EIβ;j;np∆2q

`
ÿ

α,β

ÿ

pi,jq

EIα;i;n
p∆1q b EIβ;j;np∆2qr∆2, iA2s˝EIβ;j;np∆2q

ě
ÿ

α,β

ÿ

pi,jq

pcα;i;n ` cβ;j;nqEIα;i;n
p∆1q b EIβ;j;np∆2q

for some positive constants cα;i;n and cβ;j;n which can possibly be 0 if α “ 1 and i “ 1

or if β “ 1 and j “ 1. However cα;i;n and cβ;j;n are not independent since pi, jq P Fα,β,n;
in fact cα;i;n ` cβ;j;n ě εp4 ´ εq ą 0 for all α, β P t1, 2u and pi, jq P Fα,β,n. The case
α “ β “ 1 is the least obvious. Consider Γpx1, x2q “ x1p4 ´ x1q ` x2p4 ´ x2q defined for
px1, x2q P r0, εq ˆ r0, εq which represents how cα;i;n ` cβ;j;n varies. Then c1;i;n ` c1;j;n ě
Γpx1, ε ´ x1q “ ´2x21 ` 2x1ε ´ ε2 ` 4ε ě ´ε2 ` 4ε. The proof is now complete by taking the
limit n Ñ 8. �

We are now working our way towards a classic Mourre estimate (2.4) for the full Schrödinger
operator H. As in the one-dimensional case, rV, iAs˝ is compact, and rW, iAs˝ is the sum of a
compact operator KW and a bounded operator BW defined by (4.2), so we really only have
to show that EIpHqBWEIpHq is compact.

Let k P r0, 2πsztπu, and let Tk be the multiplication operator on ℓ2pZdq given by pTkuqpnq :“
eikpn1`...`ndqupnq. Then Tk corresponds to a translation in the Fourier space of 2π-periodic
functions by k in each direction, that is, pFTkF

´1fqpξq “ fpξ ` kq (see (1.4) for the defini-

tion of the discrete Fourier transform). Denote by q1r0,πs,i the operator on ℓ2pZdq satisfying

pFq1r0,πs,iF
´1fqpξq “ 1r0,πspξiqfpξq. Note that q1r0,πs,i is a bounded self-adjoint operator with

spectrum σpq1r0,πs,iq “ ess ran p1r0,πspξiqq “ t0, 1u. Moreover q1r0,πs,i commutes with q1r0,πs,j

and ∆j for all 1 ď i, j ď d. Here ∆j is the Laplacian restricted to the jth dimension :
pF∆jF

´1fqpξq “ fpξqp2 ´ 2 cospξjqq and σp∆jq “ r0, 4s. We need a formula describing how
∆ and Tk commute.
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Lemma 4.4. Let k P r0, 2πsztπu. Then for all θ P C8
c pRq,

(4.10) Tkθp∆q “ θ

˜
dÿ

i“1

gkp∆i, q1r0,πs,iq

¸
Tk,

where gkpx, yq : r0, 4s ˆ t0, 1u ÞÑ R is the function defined in (3.10).

Proof. First

pFTk∆F´1fqpξq “ fpξ ` kq
dÿ

i“1

p2 ´ 2 cospξi ` kqq

“ fpξ ` kq
dÿ

i“1

“
2 ´ 2 cospkq cospξiq ´ 2 sinpkq

a
1 ´ cos2pξiqp21r0,πspξiq ´ 1q

‰
.(4.11)

Letting gkp∆i, q1r0,πs,iq :“ 2` p∆i ´2q cospkq ´ sinpkq
a
∆ip4 ´ ∆iqp2q1r0,πs,i ´1q and continuing

as in Lemma 3.7 leads to the required formula. �

Since t∆i, q1r0,πs,iu
d
i“1 forms a family of 2d self-adjoint commuting operators, we may apply

the functional calculus for such operators. We are now ready to prove that θ can be chosen
so that θpHqBW θpHq is compact.

Proposition 4.5. Let

(4.12) Epkq :“

#
4 ´ 4 cospk{2q for k P p0, πq

4 ` 4 cospk{2q for k P pπ, 2πq
and µpHq :“ p0, EpkqqYp4d´Epkq, 4dq.

For each E P µpHq there exists ε “ εpEq ą 0 such that for all θ P C8
c pRq supported on

I :“ pE ´ ε, E ` εq, θp∆qW̃θp∆q “ 0. In particular, θp∆qBW θp∆q is compact. Consequently,
for every E P µpHq, the classical Mourre estimate (2.4) holds for H on I 1, where I 1 Ă I.

Remark 4.1. The unitary transformation upnq ÞÑ p´1qn1`...`ndupnq for all u P H :“ ℓ2pZdq
shows that ∆ and 4d ´ ∆ are unitarily equivalent, (and likewise for H :“ ∆ ` W ` V and
4d ´ ∆ ` W ` V ). Because of this symmetry, showing that θp∆qBW θp∆q is compact for θ
supported on I “ pE´ ε, E` εq and E P p0, Epkqq implies it for E P p4d´Epkq, 4dq (and vice
versa). This symmetry is due to the bipartite structure of Zd.

Remark 4.2. That θp∆qBW θp∆q is compact and not zero is because commuting Ui with ∆

produces a compact operator. Then using the strict Mourre estimate for ∆ from Proposition
4.3 or (4.7), one derives the Mourre estimate for H in the same way as in Proposition 3.5.

Proof. The strategy is the same as in 1d (cf. Lemma 3.4 for the notation). Thanks to (4.10),

θp∆qW̃θp∆q

“ θp∆qθ

˜
dÿ

i“1

gkp∆i, q1r0,πs,iq

¸
qTk{p2iq ´ θp∆qθ

˜
dÿ

i“1

g2π´kp∆i, q1r0,πs,iq

¸
qT2π´k{p2iq,

and so it is enough to show that θp∆qθ
´ř

i gkp∆i, q1r0,πs,iq
¯

“ 0 for k P p0, 2πqztπu and θ

appropriately chosen. Consider the function gkpx, yq of (3.10) defined for px, yq P σp∆iq ˆ
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σpq1r0,πs,iq “ r0, 4s ˆ t0, 1u. We want to find ε “ εpEq ą 0 such that for the interval I :“
pE ´ ε, E ` εq.

(4.13) I X
# ÿ

1ďiďd

gkpxi, yiq : px1, ..., xdq P R and py1, ..., ydq P t0, 1ud
(

“ H.

Here R is the region defined by R :“ tpx1, ..., xdq P r0, 4sd : x1 ` ... ` xd P Iu. In this way if
supppθq “ I, then we will have θpx1 ` ...` xdqθp

ř
i gkpxi, yiqq “ 0 as required. Set

(4.14) Edpkq :“ tE P r0, 4ds : there exist px1, ..., xdq P r0, 4sd and py1, ..., ydq P t0, 1ud

such that E “ x1 ` ...` xd “ gkpx1, y1q ` ...` gkpxd, ydqu.

If E P Edpkq, then (4.13) does not hold at E. Note also that Edpkq “ Edp2π ´ kq. First we
work in d “ 2, and extend the result for d ě 3 at the very end. To identify the set E2pkq, we
solve

(4.15) Ek;˚;˛ : hk;˚px1q ` hk;˛px2q “ 0, for ˚, ˛ P t´,`u.

We denote by Sk;˚;˛ the solutions to Ek;˚;˛ and let Ek;˚;˛ :“ tx1 ` x2 : px1, x2q P Sk;˚;˛u.
By (3.15), px1, x2q P Sk;´;´ iff p4 ´ x1, 4 ´ x2q P Sk;`;`. By symmetry, px1, x2q P Sk;´;` iff
px2, x1q P Sk;`;´. We focus first on Ek;´;´. In this case, note that px1, x2q is a solution iff
px2, x1q is a solution. With the change of variables px1, x2q “ p2 ´ 2 cospφq, 2 ´ 2 cospϕqq,
pφ, ϕq P r0, πs2, Ek;´;´ becomes

´2 cospφqpcospkq ´ 1q ´ 2 sinpkq sinpφq ´ 2 cospϕqpcospkq ´ 1q ´ 2 sinpkq sinpϕq “ 0

which reduces to

(4.16) ´ 8 sinpk{2q sinppφ` ϕ´ kq{2q cosppφ´ ϕq{2q “ 0.

Thus pφ ` ϕ ´ kq{2 “ 0 rmod πs or pφ ´ ϕq{2 “ π{2 rmod πs. Considering pφ, ϕq P r0, πs2

and the cases k P p0, πq and k P pπ, 2πq separately, one can rule out several possibilities. Let
Jk :“ r0, ks if k P p0, πq, and Jk :“ rk´π, πs if k P pπ, 2πq. The valid solutions of the previous
equation are pφ, ϕq P tp0, πq, pπ, 0q, pφ, k ´ φq,with φ P Jku. The solutions to Ek;´;´ are

Sk;´;´ “ tp0, 4q, p4, 0q, p2 ´ 2 cospφq, 2 ´ 2 cospk ´ φqq, φ P Jku,

Let fk;´;´pφq :“ 2 ´ 2 cospφq ` 2 ´ 2 cospk ´ φq “ 4 ´ 4 cospk{2q cospφ´ k{2q. Thus

E2pkq Ą Ek;´;´ “ t4u Y fk;´;´pJkq “

#
t4u Y r4 ´ 4 cospk{2q, 2 ´ 2 cospkqs for k P p0, πq

t4u Y r6 ` 2 cospkq, 4 ´ 4 cospk{2qs for k P pπ, 2πq.

The solutions of Ek;`;` are

Sk;`;` “ tp0, 4q, p4, 0q, p2 ` 2 cospφq, 2 ` 2 cospk ´ φqq, φ P Jku.

Let fk;`;`pφq :“ 2 ` 2 cospφq ` 2 ` 2 cospk ´ φq “ 4 ` 4 cospk{2q cospφ´ k{2q. Then

E2pkq Ą Ek;`;` “ t4u Y fk;`;`pJkq “

#
t4u Y r6 ` 2 cospkq, 4 ` 4 cospk{2qs for k P p0, πq

t4u Y r4 ` 4 cospk{2q, 2 ´ 2 cospkqs for k P pπ, 2πq.

We now solve Ek;´;`. With the same change of variables as before, this equation becomes

(4.17) 8 sinpk{2q sinppϕ´ φ` kq{2q cosppφ` ϕq{2q “ 0.
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Figure 3. Solutions S´;´, S`;`, S´;` and S`;´ to Ek;˚;˛ for k “ π{3 and
˚, ˛ P t´,`u, d “ 2

Let J 1
k :“ rk, πs for k P p0, πq and J 1

k :“ r0, k ´ πs for k P pπ, 2πq. The solutions to this
equation are pφ, ϕq P tpφ, π ´ φq, with φ P r0, πs, pφ, φ´ kq, with φ P J 1

ku. Thus

Sk;´;` “ tpt, 4 ´ tq, t P r0, 4s, p2 ´ 2 cospφq, 2 ´ 2 cospk ´ φqq, φ P J 1
ku.

Note that fk;´;´ is strictly increasing on J 1
k. Thus

E2pkq Ą Ek;´;` “ t4u Y fk;´;´pJ 1
kq “

#
t4u Y r2 ´ 2 cospkq, 6 ` 2 cospkqs for k P p0, πq

t4u Y r2 ´ 2 cospkq, 6 ` 2 cospkqs for k P pπ, 2πq.

Finally, by symmetry, Ek;`;´ “ Ek;´;`. Putting together our previous results, we have

(4.18) E2pkq “ rλℓpkq, λrpkqs “ Ek;´;´ Y Ek;`;` Y Ek;´;` Y Ek;`;´.

We now aim to derive (4.13) on Lk :“ r0, Epkqq. Fix k P T :“ p0, 2πqztπu. For λ P Lk

define the function Fλ;k on r0, λs by

Fλ;kpxq :“

#
hk;´pxq ` hk;´pλ´ xq for pλ, kq P Mk :“ Lk ˆ p0, πq

hk;`pxq ` hk;`pλ´ xq for pλ, kq P Nk :“ Lk ˆ pπ, 2πq

“

#
pλ´ 4qpcospkq ´ 1q ´ sinpkq

a
xp4 ´ xq ´ sinpkq

a
p´x` λqp4 ` x´ λq for pλ, kq P Mk

pλ´ 4qpcospkq ´ 1q ` sinpkq
a
xp4 ´ xq ` sinpkq

a
p´x` λqp4 ` x´ λq for pλ, kq P Nk.

A surprising calculation yields the single solution x “ λ{2 to the equation F 1
λ;kpxq “ 0 for all

k P T and λ P Lk. Also, when pλ, kq P Lk ˆ T , Fλ;kp0q “ Fλ;kpλq ą Fλ;kpλ{2q. Hence

@λ P Lk, @k P T , min
xPr0,λs

Fλ;kpxq “ Fλ;kpλ{2q.

Define for λ P Lk ˆ T the function

fkpλq :“ Fλ;kpλ{2q “

#
pλ´ 4qpcospkq ´ 1q ´ sinpkq

a
λp8 ´ λq for pλ, kq P Mk

pλ´ 4qpcospkq ´ 1q ` sinpkq
a
λp8 ´ λq for pλ, kq P Nk.

Then for all k P T , fkp0q “ 4p1 ´ cospkqq ą 0 and fkpEpkqq “ 0. We claim that for all k P T ,
fk is strictly decreasing and positive on Lk. To prove this, consider the functions

mk;¯pλq :“ pλ´ 4qpcospkq ´ 1q ¯ sinpkq
a
λp8 ´ λq
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defined on r0, 8s ˆ T . The equation m1
k;˚pλq “ 0 has a single solution

λ “ 4 ` 4
a
1 ´ p1 ` αpkq2q´1 ą Epkq when pk, ˚q P p0, πq ˆ t´u Y pπ, 2πq ˆ t`u.

Recall αpkq :“ pcospkq ´ 1qpsinpkqq´1. The claim is therefore verified. Now let E P Lk, and
choose ε1 ą 0 such that I :“ pE ´ ε1, E ` ε1q Ă Lk. Recall that R is the region defined after
(4.13). Let pk, ˚q P p0, πq ˆ t´u Y pπ, 2πq ˆ t`u. We have:

inf tgk;˚px1q ` gk;˚px2q : px1, x2q P Ru “ inf tgk;˚pxq ` gk;˚pλ´ xq : λ P I, x P r0, λsu

ě inf tfkpλq ` λ : λ P Iu

ě ε` E ´ ε1.

Here ε is any real in p0, fkpE`ε1qq. Taking ε1 even smaller, the above inequalities remain valid
with the same ε since fk is decreasing. Thus we may take ε1 “ ε{2 for example. Moreover, since
gk;` ě gk;´pxq for all px, kq P r0, 4s ˆ p0, πq and gk;´ ě gk;`pxq for all px, kq P r0, 4s ˆ pπ, 2πq,
we have proven that for all pk, ˚, ˛q P T ˆ t´,`u ˆ t´,`u,

(4.19) inf tgk;˚px1q ` gk;˛px2q : px1, x2q P Ru ě E ` ε{2.

This proves (4.13) for E P Lk, with I “ pE ´ ε{2, E ` ε{2q and k P T .
Now we proceed to extend the results for d ě 3. Recall the properties of the function

gk;˘ listed in Tables 2 and 4. In particular, gk;´pxq ě 0 for all px, kq P r0, λ´pkqs ˆ p0, πq
where λ´pkq “ 2 ´ 2 cospkq, and gk;`pxq ě 0 for all px, kq P r0, λ`pkqs ˆ pπ, 2πq where
λ`pkq “ 2 ´ 2 cospkq. We take advantage of the fact that Epkq ă λ´pkq for all k P p0, πq
and Epkq ă λ`pkq for all k P pπ, 2πq. Again, let E P Lk, and choose ε ą 0 such that
I :“ pE ´ ε{2, E ` ε{2q Ă Lk. Let pk, ˚q P p0, πq ˆ t´u Y pπ, 2πq ˆ t`u. Applying the
two-dimensional result we obtain

inf
! dÿ

i“1

gkpxi, yiq : pxiq
d
i“1 P R, pyiq

d
i“1 P t0, 1ud

)

ě inf
! dÿ

i“1

gk;˚pxiq : pxiq
d
i“1 P R

)

ě inf tgk;˚pxq ` gk;˚pλ´ xq : λ P I, x P r0, λsu

ě E ` ε{2.

As this implies (4.13) for E P Lk, the proof is now complete. �

The method employed is optimal in the following sense: let d “ 2, q ‰ 0 and k P p0, 2πqztπu.
Then for all E P p0, 8qzµpHq “ rEpkq, 8 ´ Epkqs and for all θ P C8

c pRq with supppθq Q E,
θp∆qBW θp∆q is not compact. Indeed, it is not hard to see that if ξ “ pξ1, ..., ξdq P r´π, πsd

solves

(4.20)
dÿ

i“1

p2´2 cospξiqq “
dÿ

i“1

p2´2 cospξi`kqq or
dÿ

i“1

p2´2 cospξiqq “
dÿ

i“1

p2´2 cospξi´kqq,

then θp∆qBW θp∆q is not compact for all θ with supppθq Q E “
ř

ip2 ´ 2 cospξiqq. We note
that (4.20) is precisely the same as (4.16) and (4.17) when d “ 2. By using the method of
Lagrange multipliers for example, a slightly better value for Epkq can be found when d ě 3 (a
value increasing with d). The method consists in extremizing E “

ř
ip2 ´ 2 cospξiqq with the

constraints given in (4.20). We move on to derive the classic Mourre estimate (2.4) for the full
Schrödinger operator H 1. We really only have to show that EIpH 1qBW 1EIpH 1q is compact.

43



Proposition 4.6. Let k “ pk1, ..., kdq P pr0, 2πsztπuqd be given parameters, and let
(4.21)

E1pkq :“ mintℓpkiq : 1 ď i ď du, where ℓpkiq :“

$
’&
’%

2 ´ 2 cospki{2q, ki P p0, 2π{3s

2 ` 2 cospkiq, ki P p2π{3, πq Y pπ, 4π{3s

2 ` 2 cospki{2q, ki P p4π{3, 2πq.

Denote µpH 1q :“ p0, E1pkqq Y p4d ´ E1pkq, 4dq. Then for every E P µpH 1q there exists ε “
εpEq ą 0 such that for all θ P C8

c pRq supported on I :“ pE ´ ε, E ` εq, θp∆qBW 1θp∆q “ 0. In
particular, for every E P µpH 1q, the classical Mourre estimate (2.4) holds for H 1 on I 1, where
I 1 Ă I.

Proof. As mentioned in Remark 4.1, we show the result for E P p0, E1pkqq and apply symmetry
to get the result at the other end of the spectrum. We use the results from the one-dimensional
case and follow the notation of Lemma 3.4. For now we denote by ∆ the 1d Laplacian. The
idea is the following : given λ P σp∆q “ r0, 4s, we want to find an interval I satisfying:

(4.22)

#
I is of the form I “ r0, λq or I “ pλ, 4s, and

I X gkpI, yq “ H for y P t0, 1u.

Here gkpx, yq is the function defined in (3.10). The motivation for wanting I of this form
will be clear later in the proof. We examine the inequalities (3.16), (3.17), (3.18) and (3.19).
Fix k P p0, πq. (3.16) gives us (4.22) for λ P r0, E´pkqq and y “ 0, whereas (3.18) gives us
(4.22) for λ P r0, λ`pkqq and y “ 1, however with the condition that λ ă gk;`p0q. We there-
fore let ℓ1pkq :“ minpE´pkq, λ`pkq, gk;`p0qq “ minp2 ´ 2 cos pk{2q , 2 ` 2 cospkq, 2 ´ 2 cospkqq,
and it is readily checked that ℓpkq “ ℓ1pkq. Similarly, for k P pπ, 2πq, we find ℓpkq “
minpλ´pkq, E`pkq, gk;´p0qq “ minp2`2 cospkq, 2`2 cospk{2q, 2´2 cospkqq. All intervals of the
form I “ r0, λq with λ ă ℓpkq will satisfy (4.22).

Now we show how this can be of use for the two-dimensional case, although one can
generalize for d ą 2. Let k “ pk1, k2q be the Wigner-von Neumann paramters and let
E1pkq :“ minpℓpk1q, ℓpk2qq. Let E P Lk :“ r0, E1pkqq be given. Choose ε ą 0 such that
I :“ pE ´ ε, E ` εq Ă Lk. If E “ 0 was chosen, take I :“ r0, εq Ă Lk. Now let
I1 “ I2 :“ r0, E ` εq. Notice that

(4.23) tpx1, x2q : x1 ` x2 P Iu X pσp∆1q ˆ σp∆2qq Ă I1 ˆ I2,

so that as functions on px1, x2q P σp∆1q ˆ σp∆2q, χIpx1 ` x2q “ χIpx1 ` x2qχI1px1qχI2px2q.
Thus as operators on ℓ2pZq b ℓ2pZq, EIp∆q “ EIp∆q ¨ EI1p∆1q b EI2p∆2q. By (4.22),

EIip∆iqW̃ 1
iEIip∆iq “ 0 for i “ 1, 2.

Recall that BW 1
i

is given by (4.5). For i “ 1, 2,

EIip∆iqBW 1
i
EIip∆iq “ EIip∆iqW̃ 1

iEIip∆iqpS˚
i ´ Siq ´ pS˚

i ´ SiqEIip∆iqW̃ 1
iEIip∆iq “ 0.

Therefore

EIp∆q ¨BW 1
1

bW 1
2 ¨ EIp∆q

“ EIp∆q ¨ EI1p∆1q b EI2p∆2q ¨BW 1
1

bW 1
2 ¨ EI1p∆1q b EI2p∆2q ¨ EIp∆q

“ EIp∆q ¨ EI1p∆1qBW 1
1
EI1p∆1q b EI2p∆2qW 1

2EI2p∆2q ¨ EIp∆q

“ 0.

44



Similarly, EIp∆q ¨ W 1
1 b BW 1

2
¨ EIp∆q “ 0. Thus EIp∆qBW 1EIp∆q “ 0, and the proof is

complete. �

5. Weighted Mourre Theory : Proof of Theorem 1.1

In this section we prove the main result Theorem 1.1. For s P R, let xNys be the operator
on ℓ0pZdq defined by pxNysuqpnq “ xnysupnq. The following Lemma says that the conjugate
operator A is comparable to the position operator N :

Lemma 5.1. For all ε P r0, 1s, both xAyεxNy´ε and xNy´εxAyε are bounded operators.

Proof. We use the notation }f} À }g} if there is c ą 0 such that }f} ď c}g}. Let u P bd
i“1ℓ0pZq,

which is dense in bd
i“1ℓ

2pZq. We have:

}xAyu}2 “ }u}2`}Au}2 À }u}2`p
ř

i }u} ` }Niu}q2 À }u}2`
ř

i

`
}u}2`}Niu}2

˘
À }xNyu}2.

The first inequality follows from (1.9), and the second inequality holds by equivalence of the
norms on ℓ1pGq and ℓ2pGq for finite dimensional Hilbert spaces G. By complex interpolation,
}xAyεu} À }xNyεu}. Hence, for a dense set of u1 P bd

i“1ℓ
2pZq, we have }xAyεxNy´εu1} À }u1}.

This shows that xAyεxNy´ε extends to a bounded operator, and taking adjoints yields the
result. �

In our proof of the projected weighted Mourre estimate (2.6), the following Lemma is crucial.
At this point we will be using the full strength of hypothesis (1.7) on V , namely xNyρ|V | ď C.

Lemma 5.2. Let θ P C8
c pRq, and ρ be as in (1.7). Then for all ε P r0,minpρ, 1qq, the following

operators are compact :

(5.1) pθpHq ´ θp∆qqxAyε and pθpH 1q ´ θp∆qqxAyε.

Proof. First, by Proposition 6.6, ∆ P C1pxAyεq since fpxq “ xxyε P Sε, thus r∆, xAyεs˝ exists
as a bounded operator. By the Helffer-Sjöstrand formula and the resolvent identity,

pθpHq ´ θp∆qqxAyε “
i

2π

ż

C

Bθ̃

Bz
pz ´Hq´1pW ` V qpz ´ ∆q´1xAyεdz ^ dz

“
i

2π

ż

C

Bθ̃

Bz
pz ´Hq´1pW ` V qxAyεpz ´ ∆q´1dz ^ dz

`
i

2π

ż

C

Bθ̃

Bz
pz ´Hq´1pW ` V qrpz ´ ∆q´1, xAyεs˝dz ^ dz

“
i

2π

ż

C

Bθ̃

Bz
pz ´Hq´1pW ` V qxNyεxNy´εxAyεpz ´ ∆q´1dz ^ dz

`
i

2π

ż

C

Bθ̃

Bz
pz ´Hq´1pW ` V qpz ´ ∆q´1r∆, xAyεs˝pz ´ ∆q´1dz ^ dz.

By (1.2), W and W xNyε are compact, and so are V and V xNyε by assumption (1.7). By
Lemma 5.1, xNy´εxAyε is bounded, and so the integrands of the last two integrals are compact
operators. With the support of θ compact, the integrals are converging in norm, and so the
compactness of pθpHq ´ θp∆qqxAyε is preserved in the limit. As for the Schrödinger operator
H 1 the same proof works, but the additional point that has to be verified is that W 1xNyε is
compact. Indeed, since
˜

dź

i“1

qi sinpkiniqn
´1
i

¸2

xny2ε ď

˜
dź

i“1

q2i sin
2pkiniqn

´2
i

¸˜
1 `

dÿ

i“1

n2i

¸
xny2pε´1q ď cxny2pε´1q,
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it follows that W 1pnqxnyε Ñ 0 as |n| Ñ 8. �

Because we are aiming at a projected Mourre estimate, we need some information on possible
eigenvalues embedded in the interval on which the LAP takes place. Recall that P denotes
the orthogonal projection onto the pure point spectral subspace of H (resp. H 1), and µpHq
and µpH 1q are points where the classical Mourre estimate hold for H and H 1 respectively.

Lemma 5.3. Let E P µpHq and suppose that kerpH ´ Eq P DpAq. Then there is an interval
I Ă µpHq containing E such that PEIpHq and PKηpHq are of class C1pAq for all η P C8

c pRq
with supppηq “ I. The corresponding statement also holds for H 1.

Proof. Since the Mourre estimate holds at E, the point spectrum is finite in a neighborhood I

of E. Therefore PEIpHq is a finite rank operator. Further shrinking I around E if necessary,
we have that kerpH ´ λq P DpAq for all λ P I. We may therefore apply Lemma 2.3 to get
PEIpHq P C1pAq. In addition, PKηpHq “ ηpHq ´ PEIpHqηpHq P C1pAq. �

We are now ready to prove the projected weighted Mourre estimate (2.6). The proof makes
use of almost analytic extensions of C8pRq bounded functions. The reader is invited to consult
the appendix for some notation and useful results about these functions. We also mention that
the proof is essentially the same as that of [GJ2][Theorem 4.15], but we display it in detail for
the reader’s convenience.

Theorem 5.4. Let E P µpHq be such that kerpH ´ Eq Ă DpAq. Then there exists an open
interval I Q E such that the projected weighted Mourre estimate (2.6) holds on I for all
s ą 1{2. Thus, for all compact I 1 with I 1 Ă I, the LAP for H holds with respect to pI 1, s, Aq.
The corresponding result holds for H 1.

Proof. First choose I Q E so that for all λ P I, kerpH ´ λq P DpAq. This is of course possible
as explained in Lemma 5.3. Let θ, η, χ P C8

c pµpHqq be bump functions such that ηθ “ θ,
χη “ η and supppχq Ă I. Later we will shrink I appropriately. Let s P p1{2, 2{3q be given.
Define

(5.2) ϕ : R Ñ R, ϕptq :“

ż t

´8
xxy´2sdx.

Note that ϕ P S0 (see (6.1) for the definition of S0). For R ě 1, consider the bounded operator

F :“ PKθpHqrH, iϕpA{Rqs˝θpHqPK

“
i

2π

ż

C

Bϕ̃

Bz
pzqPKθpHqpz ´A{Rq´1rH, iA{Rs˝pz ´A{Rq´1θpHqPKdz ^ dz.

By Lemma 5.3, PKηpHq P C1pAq, so

(5.3) rPKηpHq, pz ´A{Rq´1s˝ “ pz ´A{Rq´1rPKηpHq, A{Rs˝pz ´A{Rq´1.

Next to PKθpHq we introduce PKηpHq and commute it with pz ´A{Rq´1:

F “
i

2π

ż

C

Bϕ̃

Bz
pzqPKθpHq

`
pz ´A{Rq´1PKηpHq ` rPKηpHq, pz ´A{Rq´1s˝

˘
rH, iA{Rs˝

`
ηpHqPKpz ´A{Rq´1 ` rpz ´A{Rq´1, PKηpHqs˝

˘
θpHqPKdz ^ dz

“
i

2π

ż

C

Bϕ̃

Bz
pzqPKθpHqpz ´A{Rq´1PKηpHqrH, iA{Rs˝

ηpHqPKpz ´A{Rq´1θpHqPKdz ^ dz ` I1 ` I2 ` I3
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where I1, I2, I3 are the 3 other integrals one obtains when expanding. For example

I1 “
i

2π

ż

C

Bϕ̃

Bz
pzqPKθpHqpz ´A{Rq´1rPKηpHq, A{Rs˝pz ´A{Rq´1rH, iA{Rs˝

ηpHqPKpz ´A{Rq´1θpHqPKdz ^ dz

“ PKθpHq
AA
R

E´sB1

R2

AA
R

E´s

θpHqPK

for some bounded operator B1 whose norm is uniformly bounded with respect to R, as shown
in Lemma 6.5 with ρ “ 0 and n “ 3. The same holds for I2 and I3, so for i “ 1, 2, 3,

Ii “ PKθpHq
AA
R

E´sBi

R2

AA
R

E´s

θpHqPK.

Next to either ηpHq we insert χpHq, and we let G :“ ηpHqrH, iA{Rs˝ηpHq. We have:

F “
i

2π

ż

C

Bϕ̃

Bz
pzqPKθpHqpz ´A{Rq´1PKχpHqGχpHqPKpz ´A{Rq´1θpHqPKdz ^ dz

` PKθpHq
AA
R

E´s
ˆ
B1 `B2 `B3

R2

˙AA
R

E´s

θpHqPK.

We decompose G as follows

G “ R´1

ˆ
ηp∆qr∆, iAs˝ηp∆q ` ηp∆qrW, iAs˝ηp∆q ` ηp∆qrV, iAs˝ηp∆q

` pηpHq ´ ηp∆qqrH, iAs˝ηp∆q ` ηpHqrH, iAs˝pηpHq ´ ηp∆qq

˙
.

We put into action our previous results. Shrink the support of η if necessary to ensure that
ηp∆qBW ηp∆q is compact (or zero) according to Lemma 3.4 and Propositions 4.5 and 4.6. Thus
G “ R´1pηp∆qr∆, iAs˝ηp∆q `K0q where K0 :“ ηp∆qKW ηp∆q ` ηp∆qBW ηp∆q `

` ηp∆qrV, iAs˝ηp∆q ` pηpHq ´ ηp∆qqrH, iAs˝ηp∆q ` ηpHqrH, iAs˝pηpHq ´ ηp∆qq.

We claim that

(5.4) K1 :“
i

2π

ż

C

Bϕ̃

Bz
pzq

AA
R

Es

pz ´A{Rq´1PKχpHqK0χpHqPK
AA
R

Es

pz ´A{Rq´1dz ^ dz,

converges in norm to a compact operator for s sufficiently close to 1{2. Although K0 is clearly
compact, convergence in norm requires careful justification. Define

K11 :“ xAyεPKχpHqηp∆qKW ηp∆q,

K12 :“ xAyεPKχpHqηp∆qBW ηp∆q,

K13 :“ xAyεPKχpHqηp∆qrV, iAs˝ηp∆q,

K14 :“ xAyεPKχpHqpηpHq ´ ηp∆qqrH, iAs˝ηp∆q,

K15 :“ ηpHqrH, iAs˝pηpHq ´ ηp∆qqχpHqPKxAyε.

Let ε P r0,minpρ, 1qq. Since PKχpHqηp∆q P C1pAq and fpxq “ xxyε P Sε, rxAyε, PKχpHqηp∆qs˝

exists by Proposition 6.6. Moreover, xNyεKW is compact and xAyεxNy´ε is bounded. Thus

K11 “ PKχpHqηp∆qxAyεxNy´εxNyεKW ηp∆q ` rxAyε, PKχpHqηp∆qs˝KW ηp∆q

is compact. We turn to K12. Commuting xAyε with PKχpHq gives

K12 “ PKχpHqxAyεxNy´εxNyεηp∆qBW ηp∆q ` rxAyε, PKχpHqs˝ηp∆qBW ηp∆q.
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Applying the mean value theorem shows that xNyεrSj , Uis˝ and xNyεrS˚
j , Uis˝ are compact

@ i, j “ 1, ..., d. Since

ηp∆qBW ηp∆q “
ÿ

i

rηp∆q, Uis˝W̃ pS˚
i ´ Siqηp∆q ´ ηp∆qpS˚

i ´ SiqW̃ rUi, ηp∆qs˝,

we see that xNyεηp∆qBW ηp∆q, and hence K12 is compact. As for K13, we use the full strength
of hypothesis (1.8) on V to guarantee compactness of xNyεrV, iAs˝. Commuting xAyε with
PKχpHqηp∆q as before shows that K13 is compact. By Lemma 5.2, pηpHq´ηp∆qqxAyε and its
adjoint xAyεpηpHq ´ ηp∆qq are compact. Recall that this Lemma uses the full strength of hy-
pothesis (1.7) on V . Commuting xAyε with PKχpHq and using the fact that rPKχpHq, xAyεs˝

exists shows that K14 and K15 are compact. Finally, xA{RyεxAy´ε and xAy´εxA{Ryε are
uniformly bounded operators w.r.t. R. Thus invoking (6.5) for ℓ “ 2 and (6.11) we see
that K1 is a norm converging integral of compact operators provided s additionally satisfies
s ă 1{2 ` ε{2. This proves the claim. Another important point to take into consideration is
that }K1} is bounded above by
(5.5)

C1

`
}K11χpHqPK} ` }K12χpHqPK} ` }K13χpHqPK} ` }K14χpHqPK} ` }PKχpHqK15}

˘

for some finite C1 ą 0 independent of R. Hence }K1} vanishes as the support of χ gets tighter
around E. Let

M :“ PKχpHqηp∆qr∆, iAs˝ηp∆qχpHqPK.

So far we have

F “
i

2π

1

R

ż

C

Bϕ̃

Bz
pzqPKθpHqpz ´A{Rq´1Mpz ´A{Rq´1θpHqPKdz ^ dz

` PKθpHq
AA
R

E´s
ˆ
B1 `B2 `B3

R2
`
K1

R

˙AA
R

E´s

θpHqPK.

Next we commute pz ´A{Rq´1 with M :

F “
i

2π

1

R

ż

C

Bϕ̃

Bz
pzqPKθpHqpz ´A{Rq´2MθpHqPKdz ^ dz

`
i

2π

1

R

ż

C

Bϕ̃

Bz
pzqPKθpHqpz ´A{Rq´1rM, pz ´A{Rq´1s˝θpHqPKdz ^ dz

` PKθpHq
AA
R

E´s
ˆ
B1 `B2 `B3

R2
`
K1

R

˙AA
R

E´s

θpHqPK.

We apply (6.9) to the first integral (which converges in norm), while for the second integral
we use the fact that M P C1pAq to conclude that there exists a uniformly bounded operator
B4 such that

F “ R´1PKθpHqϕ1pA{RqMθpHqPK

` PKθpHq
AA
R

E´s
ˆ
B1 `B2 `B3 `B4

R2
`
K1

R

˙AA
R

E´s

θpHqPK.

Now ϕ1pA{Rq “ xA{Ry´2s. As a result of the Helffer-Sjöstrand formula, (6.5) and (6.11),

rxA{Ry´s,M s˝xA{Rys “ R´1B5
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for some uniformly bounded operator B5. Thus commuting xA{Ry´s and M gives

F “ R´1PKθpHq
AA
R

E´s

M
AA
R

E´s

θpHqPK

` PKθpHq
AA
R

E´s
ˆ
B1 `B2 `B3 `B4 `B5

R2
`
K1

R

˙AA
R

E´s

θpHqPK

ě CR´1PKθpHq
AA
R

E´s

PKχpHqη2p∆qχpHqPK
AA
R

E´s

θpHqPK

` PKθpHq
AA
R

E´s
ˆ
B1 `B2 `B3 `B4 `B5

R2
`
K1

R

˙AA
R

E´s

θpHqPK

where C ą 0 comes from applying the Mourre estimate. Let

(5.6) K2 :“ PKχpHqpη2p∆q ´ η2pHqqχpHqPK.

Note that K2 is compact with }K2} vanishing as the support of χ gets tighter around E. Thus

F ě CR´1PKθpHq
AA
R

E´s

PKχpHqη2pHqχpHqPK
AA
R

E´s

θpHqPK

` PKθpHq
AA
R

E´s
ˆ
B1 `B2 `B3 `B4 `B5

R2
`
K1 `K2

R

˙AA
R

E´s

θpHqPK.

Finally, we commute PKχpHqη2pHqχpHqPK “ PKη2pHqPK with xA{Ry´s, and see that

rPKη2pHqPK, xA{Ry´ss˝xA{Rys “ R´1B6

for some uniformly bounded operator B6. Thus we have

F ě CR´1PKθpHq
AA
R

E´2s

θpHqPK

` PKθpHq
AA
R

E´s
ˆ
B1 `B2 `B3 `B4 `B5 `B6

R2
`
K1 `K2

R

˙AA
R

E´s

θpHqPK.

To conclude, we shrink the support of χ to ensure that }K1 ` K2} ă C{3 and choose R ě 1

so that }
ř6

i“1Bi}{R ă C{3. Then K1 `K2 ě ´C{3 and
ř6

i“1Bi{R ě ´C{3, so

(5.7) F ě
C

3R
PKθpHq

AA
R

E´2s

θpHqPK.

Let I 1 be any open interval with I 1 Ă I. Applying EI1pHq on both sides of this inequality
yields the projected weighted Mourre estimate (2.6), with c “ C{p3Rq, K “ 0, and s P
p1{2,minp2{3, 1{2 ` ρ{2qq. As a result of Theorem 2.4, the proof is complete. �

6. Appendix : Review of Almost Analytic Extenstions

We refer to [D], [DG], [GJ1], [GJ2], [HS] and [Mo] for more details. We collect basic and
essential results that are spread out in the mentioned literature. Let ρ P R and denote by
SρpRq the class of functions ϕ in C8pRq such that

(6.1) |ϕpkqpxq| ď Ckxxyρ´k, for all k ě 0.

For ρ ă 0, Sρ consists of the slowly decreasing functions at infinity, and contains every rational
function whose denominator doesn’t vanish on R and is of degree higher than its numerator.
On the other hand, for ρ ą 0, Sρ also allows for slowly increasing functions at infinity.
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Lemma 6.1. [D] and [DG] Let ϕ P Sρ, ρ P R. Then for every N P Z` there exists a smooth
function ϕ̃N : C Ñ C, called an almost analytic extension of ϕ, satisfying:

(6.2) ϕ̃N px` i0q “ ϕpxq @x P R;

(6.3) supp pϕ̃N q Ă tx` iy : |y| ď xxyu;

(6.4) ϕ̃N px` iyq “ 0 @y P R whenever ϕpxq “ 0;

(6.5) @ℓ P N X r0, N s,

ˇ̌
ˇ̌
ˇ
Bϕ̃N

Bz
px` iyq

ˇ̌
ˇ̌
ˇ ď cℓxxyρ´1´ℓ|y|ℓ for some constants cℓ ą 0.

Proof. Let θ P C8
c pRq be a bump function such that θpxq “ 1 for x P r´1{2, 1{2s and θpxq “ 0

for x P Rzr´1, 1s, and consider

(6.6) ϕ̃N px` iyq :“
Nÿ

n“0

ϕpnqpxq
piyqn

n!
θ

ˆ
y

xxy

˙
.

The Wirtinger derivative is easily calculated:

Bϕ̃N

Bz
pzq “

1

2

Nÿ

n“0

ϕpnqpxq

xxy

piyqn

n!
θ1

ˆ
y

xxy

˙ˆ
i ´

yx

xxy2

˙
`

1

2
ϕpN`1qpxq

piyqN

N !
θ

ˆ
y

xxy

˙
.

Therefore,
ˇ̌
ˇ̌
ˇ
Bϕ̃N

Bz
pzq

ˇ̌
ˇ̌
ˇ ď

Nÿ

n“0

|ϕpnqpxq|

xxy

|y|n

n!
χ# xxy

2
ďyďxxy

(px, yq `
1

2
|ϕpN`1qpxq|

|y|N

N !
χ#

|y|ďxxy
(px, yq.

It follows that:
ˇ̌
ˇ̌
ˇxxyℓ`1´ρ|y|´ℓ Bϕ̃N

Bz
px` iyq

ˇ̌
ˇ̌
ˇ ď

ℓÿ

n“0

Cn
xxyℓ´n

n!

ˆ
xxy

2

˙n´ℓ

`
Nÿ

n“ℓ`1

Cn
xxyℓ´n

n!
xxyn´ℓ `

1

2

CN`1

N !

“
ℓÿ

n“0

Cn

n!

1

2n´ℓ
`

Nÿ

n“ℓ`1

Cn

n!
`

1

2

CN`1

N !
:“ cℓ.

�

Moreover, for ϕ P C8
c pRq, we have the following key formula (cf. [DG]):

ϕptq “
i

2π

ż

C

Bϕ̃N

Bz
pzqpz ´ tq´1dz ^ dz, @N P Z

`.

By a limiting argument, this formula holds pointwise when ϕ P Sρ, ρ ă 0. Now let A be a
self-adjoint operator acting on a Hilbert space H. In terms of operators, we have

(6.7) ϕpAq “
i

2π

ż

C

Bϕ̃N

Bz
pzqpz ´Aq´1dz ^ dz.

Thus, in the case where ϕ P Sρ, ρ ă 0, the point of the analytic extension is that it allows
for an explicit expression of the operator ϕpAq whose existence is known from the spectral
theorem. This formula can be extended for ρ ě 0 as follows:
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Lemma 6.2. [GJ1] Let ρ ě 0 and ϕ P Sρ. Let ϕpAq with domain DpϕpAqq Ą DpxAyρq be the
operator whose existence is assured by the spectral theorem. Then for f P DpxAyρq,

(6.8) ϕpAqf “ lim
RÑ8

i

2π

ż

C

Bp ˜ϕθRqN
Bz

pzqpz ´Aq´1fdz ^ dz,

where θRpxq :“ θpx{Rq and θ is like in Lemma 6.1.

Proof.

i

2π

ż

C

Bp ˜ϕθRqN
Bz

pzqpz ´Aq´1fdz ^ dz “ pϕθRqpAqf “ pϕρθRqpAqxAyρf,

where ϕρptq :“ ϕptqxty´ρ is a bounded function. Thus pϕρθRqpAq is converging strongly to
ϕpAqxAy´ρ, and this shows (6.8). �

Notice that when ρ ă 0, the r.h.s. of (6.8) is equal to the r.h.s of (6.7) applied to f by the
dominated convergence theorem.

Lemma 6.3. Let ρ ă 0 and ϕ P Sρ. Then for all k P N and N P N:

(6.9) ϕpkqpAq “
ipk!q

2π

ż

C

Bϕ̃N

Bz
pzqpz ´Aq´1´kdz ^ dz

where the integral exists in the norm topology. For ρ ě 0, the following limit exists:

(6.10) ϕpkqpAqf “ lim
RÑ8

ipk!q

2π

ż

C

Bp ˜ϕθRqN
Bz

pzqpz ´Aq´1´kfdz ^ dz, for all f P DpxAyρq.

In particular, if ϕ P Sρ with 0 ď ρ ă k and ϕpkq is a bounded function, then ϕpkqpAq is a
bounded operator and (6.9) holds (with the integral converging in norm).

Proof. First we show (6.9). Assume for now that ϕ P C8
c pRq. By definition,

ϕpkqpAq “
i

2π

ż

C

B ˜ϕpkq
N

Bz
pzqpz ´Aq´1dz ^ dz.

Now consider ˜ϕpkq
N and the kth partial derivative of ϕ̃N in x respectively given by

˜ϕpkq
N px` iyq “

Nÿ

n“0

ϕpk`nqpxq
piyqn

n!
θ

ˆ
y

xxy

˙
, and

Bk
xϕ̃N px` iyq “

Nÿ

n“0

ϕpk`nqpxq
piyqn

n!
θ

ˆ
y

xxy

˙
`

Nÿ

n“0

piyqn

n!

kÿ

j“1

k!

j!pk ´ jq!
ϕpn`k´jqpxqBj

xθ

ˆ
y

xxy

˙
.

Notice that | ˜ϕpkq
N px` iyq´Bk

xϕ̃N px` iyq| is identically zero in a small strip around the x-axis,
and so by [D, Lemma 2.2.3], we have that

ϕpkqpAq “
i

2π

ż

C

B ˜ϕpkq
N

Bz
pzqpz ´Aq´1dz ^ dz “

i

2π

ż

C

BBk
xϕ̃N

Bz
pzqpz ´Aq´1dz ^ dz.

The result follows by performing k partial integrations w.r.t. x. The formula extends to ϕ P Sρ

by density of C8
c pRq in Sρ for ρ ă 0. As for (6.10), let φρptq :“ xty´ρ. We have, using (6.9),

ipk!q

2π

ż

C

Bp ˜ϕθRqN
Bz

pzqpz´Aq´1´kfdz^dz “ pϕθRqpkqpAqf “

˜
kÿ

j“0

cjϕ
pk´jqφρpθRqpjq

¸
pAqxAyρf.
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Here cj :“ k!pj!pk ´ jq!q´1. First note that pθRqpjqpxq “ R´jθpjqpx{Rq. Moreover, ϕpk´jqφρ
are bounded functions for 0 ď j ď k, so pϕpk´jqφρqpAq are bounded operators and

pϕpk´jqφρqpAq “ s-lim
RÑ8

pϕpk´jqφρqpAqθpjqpA{Rq.

Thus

s-lim
RÑ8

˜
kÿ

j“1

cjϕ
pk´jqφρpθRqpjq

¸
pAq “ 0

and this implies (6.10). Finally, if 0 ď ρ ă k and ϕpkq is a bounded function, then we use
(6.5) with ℓ “ k ` 1 and apply the dominated convergence theorem to pass the limit inside
the integral. �

Lemma 6.4. [GJ2] Let s P r0, 1s and D :“ tpx, yq P R2 : 0 ă |y| ď xxyu. Then there exists
c ą 0 independent of A such that for all z “ x` iy P D :

(6.11) }xAyspA´ zq´1} ď c ¨ xxys ¨ |y|´1.

Lemma 6.5. Let ϕ P Sρ, and let B1, ..., Bn be bounded operators. Then for s P r0, 1s satisfying
s ă 1 ´ p1 ` ρq{n, and any N ě n, the following integral

(6.12)
i

2π

ż

C

Bϕ̃N

Bz

nź

i“1

xAyspz ´Aq´1Bi dz ^ dz

converges in norm to a bounded operator. In particular, for ρ “ 0 and n ě 3, (6.12) converges
to a bounded operator for s P r0, 2{3q.

Proof. Combine (6.11) and (6.5) for ℓ “ n. �

We end this section with two very useful formulas.

Proposition 6.6. [GJ1] Let T be a bounded self-adjoint operator satisfying T P C1pAq. Then:

(6.13) rT, pz ´Aq´1s˝ “ pz ´Aq´1rT,As˝pz ´Aq´1,

and for any ϕ P Sρ with ρ ă 1, T P C1pϕpAqq and

(6.14) rT, ϕpAqs˝ “
i

2π

ż

C

Bϕ̃N

Bz
pz ´Aq´1rT,As˝pz ´Aq´1dz ^ dz.
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SUB-EXPONENTIAL DECAY OF EIGENFUNCTIONS FOR SOME
DISCRETE SCHRÖDINGER OPERATORS

MANDICH, MARC-ADRIEN

Abstract. Following the method of Froese and Herbst, we show for a class of potentials
V that an eigenfunction ψ with eigenvalue E of the multi-dimensional discrete Schrödinger
operator H = ∆+V on Z

d decays sub-exponentially whenever the Mourre estimate holds at
E. In the one-dimensional case we further show that this eigenfunction decays exponentially
with a rate at least of cosh−1((E−2)/(θE−2)), where θE is the nearest threshold of H located
between E and 2. A consequence of the latter result is the absence of eigenvalues between 2
and the nearest thresholds above and below this value. The method of Combes-Thomas is
also reviewed for the discrete Schrödinger operators.

1. Introduction

The analysis of the decay rate of eigenfunctions of Schrödinger operators goes back to
the famous works of Slaggie and Wichmann [SW], Agmon [A1], and Combes and Thomas
[CT]. Their results showed that eigenfunctions corresponding to eigenvalues located outside
the essential spectrum decay exponentially. Subsequently, Froese and Herbst [FH], but also
[FHHO1] and [FHHO2], investigated the decay of eigenfunctions corresponding to eigenvalues
located in the essential spectrum of Schrödinger operators. They showed that eigenfunctions
of the continuous Schrödinger operator on Rn decay exponentially at non-threshold energies
for a large class of potentials. Since their pioneering work a solid literature has grown using
these ideas. For example, these ideas have been applied to Schrödinger operators on manifolds
[V], Schrödinger operators in PDE’s [HS], and self-adjoint operators in Mourre theory [FMS].
This short list is by no means complete. The question however does not seem to have been
investigated for the discrete Schrödinger operator on the lattice and constitutes the subject of
this paper. For completeness and convenience, this paper will also review the Combes-Thomas
method for the discrete Schrödinger operators. A nice historical review on the exponential
decay of eigenfunctions is done by Hislop in [Hi].

We now describe the mathematical setup of the article. The configuration space is the multi-
dimensional lattice Zd for some integer d > 1. For a multi-index n = (n1, ..., nd) ∈ Zd, we set
|n|2 := n21 + ... + n2d. Consider the complex Hilbert space H := ℓ2(Zd) of square summable
sequences (u(n))n∈Zd . The discrete Schrödinger operator acting on H is

(1.1) H := ∆ + V,

2010 Mathematics Subject Classification. 39A70, 81Q10, 47B25, 47A10, 35P99.
Key words and phrases. discrete Schrödinger operator, decay eigenfunction, embedded eigenvalue, absence

eigenvalue, Mourre theory, Mourre estimate.
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where ∆ is the non-negative discrete Laplacian defined by

(∆u)(n) :=
∑

m∈Z
d,

|n−m|=1

(u(n)− u(m)), for all n ∈ Z
d, u ∈ H,

and V is a multiplication operator by a bounded real-valued sequence (V (n))n∈Zd . It is
common knowledge that the spectrum of ∆, denoted σ(∆), is purely absolutely continuous
and equals [0, 4d]. Define for (α, γ) ∈ [0,∞)× [0, 1] the operator of multiplication on H by

(1.2) ϑα,γ := exp
(

α
(

1 + |n|2
)γ/2

)

, with domain

D(ϑα,γ) :=







u ∈ H :
∑

n∈Zd

exp
(

2α
(

1 + |n|2
)γ/2

)

|u(n)|2 < +∞







.

In this manuscript, we will say that ψ ∈ H decays sub-exponentially (resp. exponentially) if
ψ ∈ D(ϑα,γ) for some γ < 1 (resp. for γ = 1) and some α > 0. Write ϑα := ϑα,1. We begin
with a well-known fact and formulate a version of the main result of Combes and Thomas in
the context of multi-dimensional discrete Schrödinger operators:

Theorem 1.1. Let (V (n))n∈Zd be a bounded sequence. Suppose that Hψ = Eψ, with ψ ∈ H
and E ∈ R \ σ(∆) = (−∞, 0)∪ (4d,+∞). If lim sup|n|→+∞ |V (n)| < dist(σ(∆), E), then there

exists ν > 0 depending on dist(σ(∆), E) such that for all α ∈ [0, ν), ψ ∈ D(ϑα).

Remark 1.1. We recall that in the discrete setting, a multiplication operator V is compact

if and only if lim|n|→+∞ V (n) = 0. If V is compact, then 0 = lim sup|n|→+∞ |V (n)| <
dist(σ(∆), E) is automatically verified and also σess(H) = σess(∆) = σ(∆) by Weyl’s Theorem.

So in this case, Theorem 1.1 is indeed proving the exponential decay of the eigenfunction ψ
when the eigenvalue E is located outside the essential spectrum of H.

The advantage of the perturbative method of Combes-Thomas is that it yields exponential
decay of eigenfunctions with a convenient and explicit geometric bound under rather general
assumptions for the potential. Another big plus is that it is easy to implement in many
different scenarios. The drawback however is that it does not work if the eigenvalue E belongs
to the spectrum of the free operator ∆. In addition to the aforementioned references, we refer
to [BCH] for an improved Combes-Thomas method with optimal exponential bounds.

The method of Froese and Herbst does not exploit a condition like dist(σ(∆), E) > 0, but
rather a Mourre estimate, which is a local positivity condition on the commutator between
H and some appropriate conjugate operator. The article is largely devoted to the study of
this method. Before presenting the results, we elaborate on the Mourre estimate, the key
relation in the theory developed by Mourre [Mo]. We refer to [ABG] and references therein
for a thorough overview of the improved theory. The position operator N = (N1, ..., Nd) is
defined by

(1.3) (Niu)(n) := niu(n), D(Ni) :=







u ∈ ℓ2(Zd) :
∑

n∈Zd

|niu(n)|2 < +∞







,

and the shift operators Si and S∗
i to the right and to left respectively act on H by

(1.4) (Siu)(n) := u(n1, ..., ni − 1, ..., nd), for all n ∈ Z
d and u ∈ H,
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and correspondingly for S∗
i . We note that the Laplacian may alternatively be written as

∆ =
∑d

i=1(2 − S∗
i − Si). The conjugate operator to H that is used in this manuscript is the

discrete version of the so-called generator of dilations. We denote it by A and it is the closure
of the operator A0 given by

(1.5) A0 := i

d
∑

i=1

2−1(S∗
i + Si)− (S∗

i − Si)Ni = −i

d
∑

i=1

2−1(S∗
i + Si) +Ni(S

∗
i − Si)

with domain D(A0) = ℓ0(Z
d), the collection of sequences with compact support. It is well-

known that A is a self-adjoint operator, see e.g. [GGo]. Let T be an arbitrary bounded
self-adjoint operator on H. If the form

(u, v) 7→ 〈u, [T,A]v〉 := 〈Tu,Av〉 − 〈Au, Tv〉
defined on D(A) × D(A) extends to a bounded form on H × H, we denote by [T,A]◦ the
bounded operator extending the form, and say that T is of class C1(A), cf. [ABG][Lemma
6.2.9]. We refer the reader to [ABG][Theorem 6.2.10] for equivalent definitions of this class.
We have that

(1.6) [∆, iA]◦ =

d
∑

i=1

∆i(4−∆i) =

d
∑

i=1

(2− (S∗
i )

2 − (Si)
2)

and this is a non-negative operator. We must also discuss the commutator between the po-
tential V and A. To this end, denote by τiV and τ∗i V the operators of multiplication by the
shifted sequence (V (n))n∈Zd to the right and left respectively on the ith coordinate, namely

[(τiV )u](n) := V (n1, ..., ni − 1, ..., nd)u(n), ∀n ∈ Z
d, u ∈ H, and i = 1, ..., d,

and correspondingly for τ∗i V . The commutator between V and A is given by
(1.7)

〈u, [V, iA]v〉 =
d

∑

i=1

〈u, [(2−1 −Ni)(V − τiV )Si + (2−1 +Ni)(V − τ∗i V )S∗
i ]v〉, ∀u, v ∈ ℓ0(Z

d).

Assuming V to be bounded, note that [V, iA]◦ exists if and only if Hypothesis 1 stated below
holds. Assuming [H, iA]◦ to exist, we say that the Mourre estimate holds at λ ∈ R if there
exists an open interval Σ containing λ, a constant c > 0 and a compact operator K such that

(1.8) EΣ(H)[H, iA]◦EΣ(H) > cEΣ(H) +K,

in the form sense on H × H. Here EΣ(H) is the spectral projector of H onto the interval
Σ. Denote Θ(H) the set of points where a Mourre estimate (1.8) holds for H with respect to
A. In other words, R \ Θ(H) is the set of thresholds of H. In addition to V bounded, two
hypotheses on the potential appear in this manuscript:
Hypothesis 1: The potential V satisfies

(1.9) max
16i6d

sup
n∈Zd

|ni(V − τiV )(n)| < +∞.

Hypothesis 2: V is compact, i.e.

(1.10) V (n) → 0, as |n| → +∞.

The main result of the paper concerning the one-dimensional operator H is:
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Theorem 1.2. Assume Hypotheses 1 and 2, and d = 1. If Hψ = Eψ with ψ ∈ ℓ2(Z), then if

(1.11) θE :=

{

sup {2 + (E − 2)/ coshα : α > 0 and ψ ∈ D(ϑα)} , for E < 2

inf {2 + (E − 2)/ coshα : α > 0 and ψ ∈ D(ϑα)} , for E > 2,

one has that either θE ∈ R\Θ(H) or θE = 2. If E = 2, the statement is that either ψ ∈ D(ϑα)
for all α > 0 or 2 ∈ R \Θ(H). Moreover, if ψ ∈ D(ϑα) for all α > 0, then ψ = 0.

Remark 1.2. The function R+ ∋ α 7→ θE(α) := 2+ (E− 2)/ cosh(α) ∈ [E, 2) is increasing to

two when E < 2 so that E 6 θE 6 2, whereas the function is decreasing to two when E > 2 in

which case E > θE > 2. This function is graphed in Figure 1 for four different values of E.

1 2 3 4 5 6

−1

1

2

3

4

5

0
0 α

θE(α)

Figure 1. Graph of θE(α) = 2 + (E − 2)/ cosh(α) for four different values of E.

If E is both an eigenvalue and a threshold, Theorem 1.2 does not give any information
about the rate of decay of the corresponding eigenfunction, whereas if E is not a threshold,
the corresponding eigenfunction decays at a rate at least of cosh−1((E − 2)/(θE − 2)). As in
the continuous operator setting, the possibility of ψ ∈ D(ϑα) for all α > 0 can be eliminated.
The last part of Theorem 1.2 implies the absence of eigenvalues in the middle of the band
[0, 4], more precisely between 2 and the nearest thresholds above and below this value.

The study of the absence of positive eigenvalues for Schrödinger operators has a long his-
tory. For continuous Schrödinger operators, it was shown in the sixties in articles by Kato
[K2], Simon [Si1] and Agmon [A2] that the multi-dimensional operator −∆+ V1 + V2 has no
eigenvalues in [0,+∞) whenever lim|x|→+∞ |x||V1(x)| = 0 and lim|x|→+∞ |(x ·∇)V2(x)| = 0. In
fact, the method of Froese and Herbst allows to extend this result to N -body Hamiltonians,
see [CFKS, Theorem 4.19]. So, if the discrete case were to resemble the continuous case, it is
not unreasonable to expect the multi-dimensional operator ∆ + V to have no eigenvalues in
(0, 4d) whenever |ni(V − τiV )(n)| → 0 as |n| → +∞. A one-dimensional result pointing in
this direction is the following. It actually comes as a corollary of Theorem 1.2.

Theorem 1.3. Let d = 1. Suppose that V satisfies lim|n|→+∞ |n||V (n) − V (n − 1)| = 0 and

lim|n|→+∞ |V (n)| = 0. Then H := ∆ + V has no eigenvalues in (0, 4).
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Proof. First, if |n(V (n)−V (n−1))| → 0, we see from (1.7) that [V, iA]◦ is not only a bounded
operator but also compact. It follows by [GMa, Proposition 2.1] that V ∈ C1

u(A). Let B(H)
denote the bounded operators on H. We recall that a bounded operator T belongs to the
C1

u(A) class if the map R 7→ e−itATeitA is of class C1(R;B(H)), with B(H) endowed with the
norm operator topology. It is well-known that ∆ is of class C1

u(A), see e.g. [Man]. We then
apply [ABG, Theorem 7.2.9] to conclude that Θ(H) = Θ(∆) = (0, 4). Here Θ(∆) denotes the
set of points where a Mourre estimate holds for ∆ with respect to A, and Θ(∆) = (0, 4) is a
direct consequence of(1.6). Since H does not have any thresholds in (0, 4), it must be that H
has no eigenvalues in this interval, by Theorem 1.2. �

This is very much related to Remling’s optimal result [R], that if lim|n|→+∞ |n||V (n)| =
0, then the spectrum of the one-dimensional discrete operator ∆ + V is purely absolutely
continuous on (0, 4). Of course, Remling’s result is stronger than that of Theorem 1.3, but the
assumptions are also stronger. Also related is a one-dimensional discrete version of Weidmann’s
Theorem proven in [Si2], namely if V is compact and of bounded variation, then the spectrum
of ∆+ V is purely absolutely continuous on (0, 4). Finally, another interesting result is that
of [JS] where it is shown that the spectrum of the half-line discrete Schrödinger operator ∆+
W +V is purely absolutely continuous on (0, 4)\{2±2 cos(k/2)}, where W (n) = q sin(kn)/nβ

with q, k ∈ R, β ∈ (1/2, 1] and (V (n)) ∈ ℓ1(Z+). Note that Theorem 1.2 is in conformity with
their example when β = 1 and V ≡ 0. In the same spirit, we provide a simple application of
Theorem 1.3:

Proposition 1.4. Let d = 1 and W (n) := q sin(k|n|α)/|n|β be a Wigner-von Neumann poten-

tial, with q, k ∈ R. Then for β > α > 0, σess(∆+W ) = [0, 4] and (0, 4) is void of eigenvalues.

An analogous result for continuous Schrödinger operators is obtained and thoroughly dis-
cussed in [JM], and is also inspired from [FH]. We now turn to the multi-dimensional discrete
Schrödinger operators. The main result concerning these is:

Theorem 1.5. Let d > 1. Suppose that Hypothesis 1 holds for the potential V . If Hψ = Eψ
with ψ ∈ ℓ2(Zd) and E ∈ Θ(H), then ψ ∈ D(ϑα,γ) for all (α, γ) ∈ [0,∞)× [0, 2/3).

Although Theorem 1.5 does not yield exponential decay of eigenfunctions at non-threshold
energies as in the continuous operator case, the result is still useful for applications in Mourre
theory. It appears that the method of Froese and Herbst adapts quite well for the one-
dimensional discrete operator; however, there seems to be a non-trivial difference between the
dimensions d > 2 and d = 1 in the discrete setting as far as the method is concerned. The
exponential decay of eigenfunctions at non-threshold energies in higher dimensions therefore
remains an open question because our proof does not attain it. Yet an indication it may occur
comes from the Combes-Thomas method presented above.

On the one hand, if E belongs to the discrete spectrum of H, then for any interval Σ
containing E and located outside the essential spectrum of H, EΣ(H) is simply a finite
rank eigenprojection and so the Mourre estimate holds by default, both sides of (1.8) be-
ing compact operators. So under Hypothesis 1 only, the corresponding eigenfunction decays
sub-exponentially according to Theorem 1.5. In this case, the Combes-Thomas method is
clearly superior. On the other hand, the Mourre estimate typically holds above the essen-
tial spectrum of H. So Theorem 1.5 is able to characterize the decay of eigenfunctions for
non-threshold eigenvalues embedded in the essential spectrum, if any exist. We emphasize
the last point, because to our knowledge there is no example of a Schrödinger operator with
a non-threshold embedded eigenvalue. What is certainly known however is the existence of
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operators with a threshold embedded eigenvalue, the Wigner-von Neumann operator being
the classical illustration of it, see e.g. [RS4].

Let us provide an example of a discrete Wigner-von Neumann type operator H that has
an eigenvalue embedded in its essential spectrum. An eigenvector for this eigenvalue will be
given explicitly. Here’s how Theorem 1.5 turns out to be useful: as the eigenvector will have
slow decay at infinity, we infer that the eigenvalue is a threshold, in the sense that no Mourre
estimate holds for the pair of self-adjoint operators (H,A) above any interval containing this
value. Our example and approach is inspired from the one that appears in [RS4, Section
XIII.13, Example 1].

Proposition 1.6. For given k1, ..., kd ∈ (0, π), let (tki)
d
i=1 be real numbers such that

tki + sin(2ki)ni − sin(2kini) 6= 0, for all ni ∈ Z.

Then there exists an oscillating potential V on Zd that has the asymptotic behavior

V (n1, ..., nd) =
d

∑

i=1

−4 sin(ki) sin(2kini)

ni
+Oki,tki (n

−2
i )

and such that E := 2d−
∑d

i=1 2 cos(ki) is both a threshold and an eigenvalue for H := ∆+V ,

with eigenvector ψ(n1, ..., nd) =
∏d
i=1 sin(kini)[tki + sin(2ki)ni − sin(2kini)]

−1 belonging to

ℓ2(Zd). Moreover, E ∈ [0, 4d] ⊂ σess(H).

The exact expression of the potential V is given in the proof. By the notation Oki,tki (n
−2
i ),

we mean that this decaying term depends on the choice of ki and tki . It is interesting to further
note that the eigenvector ψ does not belong to the domain of A, for (Ni(S

∗
i − Si)ψ) (n1, ..., nd)

does not go to zero as |ni| → +∞. To further motivate Theorem 1.5, let us give another
application to discrete Wigner-von Neumann operators.

Example 1.7 (from [Man]). Let W be the discrete Wigner-von Neumann potential given by

(Wu)(n) =W (n)u(n) :=
q sin(k(n1 + ...+ nd))

|n| u(n), ∀n ∈ Z
d, u ∈ H,

for some (q, k) ∈ R× (−π, π), and let V be a multiplication operator satisfying for some ρ > 0,

sup
n∈Zd

〈n〉ρ|V (n)| <∞, and max
16i6d

sup
n∈Zd

〈n〉ρ|ni||(V − τiV )(n)| < +∞.

Here 〈n〉 :=
√

1 + |n|2. Let H := ∆ +W + V be the Schrödinger operator on H, and let P

and P⊥ respectively denote the spectral projectors onto the pure point subspace of H and its

complement. Let E(k) := 4− 4 · sign(k) cos(k/2), and consider the sets

µ(H) := (0, 4) \ {2± 2 cos(k/2)}, for d = 1,

µ(H) := (0, E(k)) ∪ (4d− E(k), 4d), for d > 2.

By combining Theorem 1.5 with [Man, Theorem 1.1], one can remove the abstract assumption

ker(H − E) ⊂ D(A) that appears in the latter Theorem; and for the one-dimensional result,

we can use the stronger result of Theorem 1.2. We get the following improved result:

Theorem 1.8. We have that µ(H) ⊂ Θ(H). For all E ∈ µ(H) there is an open interval Σ
containing E such that for all s > 1/2 and all compact intervals Σ′ ⊂ Σ, the reduced limiting
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absorption principle for H holds for with respect to (Σ′, s, A), that is,

sup
x∈Σ′,y 6=0

‖〈A〉−s(H − x− iy)−1P⊥〈A〉−s‖ <∞.

In particular, the spectrum of H is purely absolutely continuous on Σ′ whenever P = 0 on Σ′,

and for d = 1, H does not have any eigenvalues in the interval (2−2 cos(k/2), 2+2 cos(k/2)).

From a perspective of Mourre theory and in an abstract setting, an area of research is
to show that the eigenfunction ψ ∈ D(An) for some n > 1. The first results of this kind
were obtained in [Ca] and [CGH], where it was shown that if Hψ = Eψ with E embedded
in the continuous spectrum of H, and the iterated commutators adkA(H) are bounded for
k = 1, ..., ν together with appropriate domain conditions being satisfied by H and A, then
ψ ∈ D(An) for all n > 0 satisfying n + 2 6 ν, whenever the Mourre estimate holds at E.
Here A is the conjugate operator to the Hamiltonian H in the abstract framework, and the
iterated commutators are defined by ad1

A(H) := [H, iA]◦ and adkA(H) := [adk−1
A (H), iA]◦. So

in the simplest case, one would obtain ψ ∈ D(A) provided ad3
A(H) exists. Then in [FMS],

the authors reduce by one, from n + 2 to n + 1 the number of commutators that need to be
bounded in order to obtain ψ ∈ D(An), and show that the result is optimal. In counterpart
of these abstract results, we should point out that in the framework of Schrödinger operators,
minimal hypotheses yield much stronger results. Indeed, a direct consequence of Theorem 1.5
is that ψ ∈ D(An) for all n > 0 assuming only [H, iA]◦ bounded.

Finally, we point out that the notion of the C1(A) class of operators also exists for un-
bounded operators. It appears to us that the results of this paper could also apply to
Schrödinger operators with unbounded potentials satisfying the C1(A) condition. A sim-
ple criterion to check if the potential belongs to this class is given in [GMo][Lemma A.2]. This
criterion is straightforward to verify in the setting of this paper. It is however doubtful to us
if the generalization of the result to unbounded potentials is significant.

The plan of the paper is as follows: in Section 2, we provide a proof of Theorem 1.1 for
the reader’s convenience. Section 3 is devoted to the proof of the main result for the multi-
dimensional Schrödinger operator, namely Theorem 1.5. In Section 4, we prove Proposition
1.6. In Section 5, we further develop the method of Section 3 in the case of the one-dimensional
operator, and prove Theorem 1.2. Finally Section 6 is the Appendix and contains a long tech-
nical calculation proving a key relation required for both Sections 3 and 5.

Acknowledgments: It is a pleasure to thank my thesis director Sylvain Golénia for his
numerous useful comments and advice, and also Thierry Jecko and Milivoje Lukic for enlight-
ening conversations. I thank the anonymous referee for a very helpful and constructive report.
I am grateful to the University of Bordeaux for funding my studies.

2. The method of Combes-Thomas: Proof of Theorem 1.1

We follow the approach given in [Hi] and to a lesser extent [BCH]. We point out that the
Combes-Thomas method typically involves techniques of analytic continuation which require
some care if the operators are unbounded, see e.g. [RS4, Section XII.2]. However, since all
operators are bounded in this setting, things are simpler. Let B(H) be the bounded operators

on H, and let ρ = ρ(n) :=
√

1 + |n|2, n ∈ Zd. First we need an estimate:

60



Proposition 2.1. Let V be any bounded real-valued potential, and denote T := ∆+ V . Then

C ∋ λ 7→ T (λ) := eiλρTe−iλρ ∈ B(H) is an analytic map. If E ∈ R\σ(T ), then for λ satisfying

(2.1)
2d · e|λ||λ|

dist(σ(T ), E)
<

1

2
,

(2.2) ‖(T (λ)− E)−1‖ 6 2/dist(σ(T ), E).

Proof. A first calculation gives that

T (λ) := eiλρTe−iλρ = T +D(λ),

where

D(λ) :=
d

∑

i=1

(

1− eiλ(ρ−τiρ)
)

Si +
(

1− e−iλ(ρ−τ∗i ρ)
)

S∗
i .

By the Mean Value Theorem, |ρ− τiρ| and |ρ− τ∗i ρ| are bounded above by one. Also, ‖Si‖ =
‖S∗

i ‖ = 1. Thus D(λ) : C 7→ B(H) is a differentiable function, and so λ 7→ T (λ) is an analytic
family of bounded operators on C. Suppose that E ∈ R \ σ(T ). Then

(T (λ)− E) =
(

1 +D(λ)(T − E)−1
)

(T − E).

Thanks to the inequality |1− ez| 6 |z|e|z|, for all z ∈ C, we get

‖D(λ)‖ 6 2d · e|λ||λ|.
Also note that ‖(T − E)−1‖ 6 1/dist(σ(T ), E) since T is self-adjoint. Therefore if we require
that |λ| satisfies (2.1), it follows that ‖D(λ)(T −E)−1‖ < 1/2 and we may invert (T (λ)−E).
Consequently, bounding above by a geometric series gives

‖(T (λ)− E)−1‖ 6 ‖(T − E)−1‖‖(1 +D(λ)(T − E)−1)−1‖ 6 2/dist(σ(T ), E).

�

Proof of Theorem 1.1: Suppose first that V has compact support in Zd. Then the condition
dist(σ(∆), E) > lim sup|n|→+∞ |V (n)| is automatically true since the right side equals zero.

Since Hψ = (∆+ V )ψ = Eψ, we write, for λ ∈ R,

eiλρψ = −
(

eiλρ(∆− E)−1e−iλρ
)

(eiλρV ψ) = − (∆(λ)− E)−1 (eiλρV ψ).

Because of the analyticity of ∆(λ) and the compactness of the support of V , both terms on
the right of the previous equation admit an analytic continuation to all of C. Let ν be the
unique positive solution to the equation

(2.3) R
+ ∋ µ 7→ 2d · eµµ

dist(σ(∆), E)
=

1

2
.

Set λ = −iα, with α ∈ (0, ν). Taking norms and applying Proposition 2.1 with T ≡ ∆, we see
that there exists a constant CE,V,ψ depending on E, V and ψ, so that

‖eαρψ‖ 6 2‖ψ‖ · sup
n∈Zd

|eαρV (n)|/dist(σ(∆), E) := CE,V,ψ.

We now assume that the support of V is not compact, but lim sup|n|→+∞ |V (n)| < dist(σ(∆), E)

holds. We may write V = Vc+Vl, where Vc is compactly supported and ‖Vl‖ = supn∈Zd |Vl(n)| 6
l for some l < dist(σ(∆), E). Consider the operator Hl := ∆ + Vl. Since Vl is a bounded op-
erator, Hl(λ) is an analytic family. If ǫ > 0 is any number verifying ǫ < dist(σ(∆), E) − l,
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then Hl has a spectral gap around E of size at least ǫ. This is due to the following spectral
inclusion formula, see e.g. [K1, Theorem 3.1]:

σ(Hl) ⊂ {µ ∈ R : dist (σ(∆), µ) 6 ‖Vl‖}.
In particular, (Hl − E) is invertible. Since

(Hl − E) =
(

1 + Vl(∆− E)−1
)

(∆− E)

and ‖Vl(∆− E)−1‖ < l/dist(σ(∆), E) < 1, we get

(Hl − E)−1 = (∆− E)−1
(

1 + Vl(∆− E)−1
)−1

.

From the eigenvalue equation Hψ = (Hl + Vc)ψ = Eψ, we may write

eiλρψ = −(Hl(λ)− E)−1(eiλρVcψ).

Let ν be the unique positive solution to the equation

(2.4) R
+ ∋ µ 7→ 2d · eµµ

dist(σ(Hl), E)
=

1

2
.

Set λ = −iα, with α ∈ (0, ν). Taking norms and applying Proposition 2.1 with T ≡ Hl, we
see that there exists a constant CE,V,ψ so that

‖eαρψ‖ 6 2‖ψ‖ · sup
n∈Zd

|eαρVc(n)|/dist(σ(Hl), E) := CE,V,ψ.

�

3. The multidimensional case : sub-exponential decay of eigenfunctions

We begin this section by fixing more notation, and build on the one introduced above. Let

∆i := 2− S∗
i − Si and

A0,i := −i
(

2−1(S∗
i + Si) +Ni(S

∗
i − Si)

)

= i
(

2−1(S∗
i + Si)− (S∗

i − Si)Ni

)

.

Let

(3.1) A′
i := iA0,i, and A′ :=

d
∑

i=1

A′
i = iA0, with D(A′) = D(A0).

Then the following is a non-negative operator on H:

[∆i, A
′
i]◦ = ∆i(4−∆i) = 2− (S∗

i )
2 − (Si)

2.

A useful identity relating the shift operators and the potential is:

(3.2) SiV = (τiV )Si and S∗
i V = (τ∗i V )S∗

i .

Consider an increasing function F ∈ C3([0,∞)) with bounded derivative away from the origin.
Ideally we would like to take F (x) = αx later on, with α > 0 as in [FH], but it will turn out that
slightly better decay conditions on the derivative are required. So examples to keep in mind
for a later application are Fs,α,γ : [0,∞) 7→ [0,∞), where (s, α, γ) ∈ [0,∞)× [0,∞)× [0, 2/3)
and

(3.3) Fs,α,γ(x) := Υs(αx
γ).

Here Υs is an interpolating function defined for s > 0 by

(3.4) Υs(x) :=

∫ x

0
〈st〉−2dt.
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Then Υs(x) ↑ x as s ↓ 0, and

(3.5) Υs(x) 6 cs for s > 0, and |Υ(n)
s (x)| 6 cx−n+1,

where the first constant in (3.5) depends on s whereas the second one does not. It is readily
seen that there are constants C > 0 not depending on s and γ such that

(3.6) |F ′
s,α,γ(x)| 6 Cxγ−1 and |F ′′

s,α,γ(x)| 6 Cxγ−2.

We also have that for all x > 0,

(3.7) F ′
s,α,γ(x) > 0 and F ′′

s,α,γ(x) 6 0.

So Fs,α,γ is increasing and concave.

For n = (n1, ..., nd) ∈ Zd, let 〈n〉 :=
√

1 + |n|2. The function F induces a radial operator
of multiplication on H, also denoted by F and acting as follows: (Fu)(n) := F (〈n〉)u(n),
∀u ∈ H. For i = 1, ..., d, we introduce the multiplication operators on H:

(3.8) ϕℓi := (τie
F − eF )/eF = eτiF−F − 1 and ϕri := (τ∗i e

F − eF )/eF = eτ
∗

i F−F − 1,

(3.9) gℓi := ϕℓi/Ni and gri := ϕri/Ni.

In other words, if Ui : Zd 7→ Zd denotes the flow (n1, ..., nd) 7→ (n1, ..., ni − 1, ..., nd) and U−1
i

its inverse, then ϕℓi and ϕri are multiplication at n respectively by ϕℓi(n) = eF (〈Uin〉)−F (〈n〉)−1

and ϕri(n) = eF (〈U−1

i n〉−F (〈n〉) − 1, while gℓi and gri are multiplication at n respectively by
gℓi(n) = ϕℓi(n)/ni and gri(n) = ϕri(n)/ni. Since gℓi(n) and gri(n) are not well-defined when
ni = 0, set gℓi(n) = gri(n) := 0 in that case. We will need the operator g on H given by

(3.10) (gu)(n) = g(n)u(n) :=
F ′(〈n〉)
〈n〉 u(n).

Three remarks are in order. First, by the Mean Value Theorem, F ′ bounded away from the
origin ensures that ϕℓi , ϕri , gℓi and gri are bounded operators on H; secondly, F increasing
implies sign(ni)ϕri(n) > 0, sign(ni)ϕℓi(n) 6 0, gri(n) > 0, gℓi(n) 6 0 and g(n) > 0; and
thirdly, we remark that F,ϕℓi , ϕri and g are radial potentials on H.

Proposition 3.1. Suppose that Hypothesis 1 holds for the potential V . Let F be a general

function as described above and suppose that for all i, j = 1, ..., d,

· †1 |gri | ∈ O(1) and |gℓi | ∈ O(1),

· †2 |τig − g|Nj ∈ O(1),

· †3 |τiϕri − ϕri |Nj , |τiϕℓi − ϕℓi |Nj , |τiϕrj − ϕrj |Ni and |τiϕℓj − ϕℓj |Ni ∈ O(1),

· †4 |(gri − g)− (gℓi + g)|NiNj ∈ O(1).

Suppose that Hψ = Eψ, with ψ ∈ H. Let ψF := eFψ, and assume ψF ∈ H. Then ψF ∈
D(

√
gA′) and there exist bounded operators (Wi)

d
i=1, L, M and G on H depending on F such

that

(3.11)

〈

ψF , [H,A
′]◦ψF

〉

= −2
∥

∥

√
gA′ψF

∥

∥

2 −
d

∑

i=1

∥

∥

√

∆i(4−∆i)WiψF
∥

∥

2

+ 2−1
〈

ψF , (L+M+ G)ψF
〉

.
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The Wi are multiplication operators given by Wi =WF ;i :=
√

cosh(τiF − F )− 1. The expres-

sions of L, M and G are involved; they are given by (6.9), (6.10) and (6.11) respectively. The

relevant point is that these three operators are a finite sum of terms, each one of the form

(3.12) P1(S1, ..., Sd, S
∗
1 , ..., S

∗
d)TP2(S1, ..., Sd, S

∗
1 , ..., S

∗
d),

where P1 and P2 are multivariable polynomials in S1, ..., Sd, S
∗
1 , ..., S

∗
d and T are multiplication

operators of the kind listed in †1 − †4.
Remark 3.1. Formula (3.11) has an additional negative term compared to the corresponding

formula for the continuous Schrödinger operator, cf. [FH, Lemma 2.2]:

〈ψF , [H,A′]◦ψF 〉 = −4‖√gA′ψF ‖2 + 〈ψF ,QψF 〉, with Q = (x · ∇)2g − x · ∇(∇F )2.
Remark 3.2. As mentioned in [FH], if we consider the Virial Theorem disregarding operator

domains, it is reasonable to expect 〈ψ, [H, eFA′eF ]ψ〉 = 0. This idea underlies (3.11).

Proof. Let φ ∈ ℓ0(Z
d), the sequences with compact support, and φF := eFφ. The first step

of the proof consists in establishing the following identity :

(3.13)

〈

φ, [eFA′eF ,∆]φ
〉

=
〈

φF , [A
′,∆]φF

〉

− 2
∥

∥

√
gA′φF

∥

∥

2

−
∑

16i6d

∥

∥

√

∆i(4−∆i)WiφF
∥

∥

2
+ 2−1

〈

φF , (L+M+ G)φF
〉

.

The proof of (3.13) is technical and long, so it is done in the Appendix. The assumptions of
this Proposition together with F ′ bounded away from the origin imply that the Wi, L, M and
G stemming from this calculation are bounded operators. Exactly where these assumptions
are applied are indicated in the Appendix by (‡). The second step consists in using (3.13)
to prove (3.11). For m > 1, define the cut-off potentials χm(n) := χ(〈n〉/m) on Zd, where
χ ∈ C∞

c (R) and χ equals one in a neighborhood of the origin. Then (3.13) holds with φ = χmψ
and φF = eFχmψ. Adding

〈

χmψ, [e
FA′eF , V ]χmψ

〉

=
〈

eFχmψ, [A
′, V ]eFχmψ

〉

to each side
of (3.13), and introducing the constant E in the commutator on the left gives

(3.14)

〈

χmψ, [e
FA′eF , H − E]χmψ

〉

=
〈

eFχmψ, [A
′, H]eFχmψ

〉

− 2
∥

∥

√
gA′eFχmψ

∥

∥

2

−
∑

16i6d

∥

∥

√

∆i(4−∆i)Wie
Fχmψ

∥

∥

2

+ 2−1
〈

eFχmψ, (L+M+ G)eFχmψ
〉

.

Since eFχmψ → ψF in H as m → ∞, the first, third and fourth terms on the right side of
(3.14) converge. The left side of (3.14) is handled in the same way as in [CFKS, Proposition
4.16]:

〈

χmψ, [e
FA′eF , H − E]χmψ

〉

= −2ℜ
(〈

eFA′eFχmψ, (H − E)χmψ
〉)

= −2ℜ
(〈

〈N〉−1A′eFχmψ, 〈N〉eF (H − E)χmψ
〉)

.

Since supp(χm) ⊂ [−2m, 2m]d, supp((H − E)χmψ) ⊂ K := [−2m − 1, 2m + 1]d and so
commuting χm with (H − E) gives

〈N〉eF (H − E)χmψ = 〈N〉eF1K(H − E)χmψ

=
∑

16i6d

〈N〉(χm − τiχm)e
FSiψ + 〈N〉(χm − τ∗i χm)e

FS∗
i ψ.(3.15)
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An application of the Mean Value Theorem shows that |〈N〉(χm−τiχm)| and |〈N〉(χm−τ∗i χm)|
are bounded by a constant independent of m. Moreover, ψF ∈ H and F ′ bounded imply that
eFSiψ = Sie

τ∗i F−FψF and eFS∗
i ψ = S∗

i e
τiF−FψF ∈ H. Thus the sequence (3.15) is uniformly

bounded in absolute value in H. Furthermore, it converges pointwise to zero. By Lebesgue’s
Dominated Convergence Theorem,

(3.16)
∥

∥〈N〉eF (H − E)χmψ
∥

∥ → 0 as m→ ∞.

Since 〈N〉−1A′ is a bounded operator on H, the left side of (3.14) converges to zero as m→ ∞.
The only remaining term in (3.14) is 2‖√gA′eFχmψ‖2, hence it must also converge as m→ ∞.
To finish the proof, it remains to show that ψF ∈ D(

√
gA′). Let φ ∈ ℓ0(Z). Then

∣

∣

〈

ψF , A
′√gφ

〉∣

∣ = lim
m→∞

∣

∣

〈

eFχmψ,A
′√gφ

〉∣

∣ 6

(

lim
m→∞

‖√gA′eFχmψ‖
)

‖φ‖.

This shows that ψF ∈ D
(

(−A′√g)∗
)

= D(
√
gA′). Then it must be that ‖√gA′eFχmψ‖2 →

‖√gA′ψF ‖2 and the proof is complete after rearranging the terms accordingly in (3.14). �

As mentionned in the last Proposition, L,M and G are a finite sum of terms of the form

P1(S1, ..., Sd, S
∗
1 , ..., S

∗
d)TP2(S1, ..., Sd, S

∗
1 , ..., S

∗
d)

for some polynomials P1 and P2. Going forward, it is essential that the multiplication operators
T = T (n) decay radially at infinity. In other words, for the minimal assumptions †1 − †4, we
will need o(1) instead of O(1). The following Lemma shows that this is the case for F = Fs,α,γ .

Lemma 3.2. Let F = Fs,α,γ be the function defined in (3.3). Consider its corresponding

functions ϕri , ϕℓi , gri , gℓi and g. The following estimates hold uniformly with respect to s and

γ:

· ‡1 |gri | and |gℓi | ∈ Oα(〈n〉γ−2),

· ‡2 |τig − g| ∈ Oα(〈n〉γ−3),

· ‡3 |τ∗i ϕrj − ϕrj | and |τ∗i ϕℓj − ϕℓj | ∈ Oα(〈n〉γ−2),

· ‡4 |(gri − g)− (gℓi + g)| ∈ Oα(〈n〉3γ−4),

· ‡5 |(τiF − F )− τi(τiF − F )| ∈ Oα(〈n〉γ−2).

Therefore ‡i improve †i for i = 1, 2, 3, 4 respectively.

Proof. These estimates are simple applications of the Mean Value Theorem (MVT). Let
n = (n1, ..., nd) ∈ Zd and fix i ∈ {1, ..., d}. There is n′ = (n′1, ..., n

′
d) with n′i ∈ (ni, ni + 1) and

n′j = nj for j 6= i such that

gri(n) =
n′i
〈n′〉

F ′(〈n′〉)eF (〈n′〉)

nieF (〈n〉)
.

This, together with (3.6), and an analogous calculation for gℓi(n) shows ‡1. Define g : Rd → R,
g(x) := F ′(〈x〉)〈x〉−1. Then ‡2 follows from

∂g

∂xi
(x) =

xi
〈x〉

F ′′(〈x〉)〈x〉 − F ′(〈x〉)
〈x〉2 .

Now fix i, j ∈ {1, ..., d}. First there is n′ = (n′1, ..., n
′
d) with n′j ∈ (nj , nj + 1) and n′k = nk for

k 6= j such that

(τ∗j F − F )(n) =
∂F̃

∂xj
(n′) =

n′j
〈n′〉F

′(〈n′〉), with F̃ (x) = F (〈x〉).
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Then there is n′′ = (n′′1, ..., n
′′
d) with n′′i ∈ (n′i, n

′
i + 1) and n′′k = n′k for k 6= i such that

(τ∗i ϕrj − ϕrj )(n) =
∂2F̃

∂xi∂xj
(n′′)e

∂F̃
∂xj

(n′′)
.

This proves ‡3 since
∣

∣

∣

∣

∣

∂2F̃

∂xi∂xj
(x)

∣

∣

∣

∣

∣

6
|F ′(〈x〉)|

〈x〉 + |F ′′(〈x〉)|.

The latter estimate on ∂2F̃ /(∂xi∂xj) also implies ‡5. Finally, for ‡4, we start with

gri(n)− g(n) =
1

nieF (〈n〉)

[

n′i
〈n′〉F

′(〈n′〉)eF (〈n′〉) − ni
〈n〉F

′(〈n〉)eF (〈n〉)

]

=
1

nieF (〈n〉)

∂k

∂xi
(n′′)

where

k : R
d → R, k(x) :=

xi
〈x〉F

′(〈x〉)eF (〈x〉),

and n′′ = (n′′1, ..., n
′′
d) with n′′i ∈ (ni, n

′
i) and n′′j = nj for j 6= i. We compute

∂k

∂xi
(x) =

(

F ′(〈x〉)
〈x〉 − x2iF

′(〈x〉)
〈x〉3 +

x2iF
′′(〈x〉)
〈x〉2 +

x2i (F
′(〈x〉))2
〈x〉2

)

eF (〈x〉).

Thus for some n′′′ = (n′′′1 , ..., n
′′′
d ) with n′′′i ∈ (ni − 1, ni + 1) and n′′′j = nj for j 6= i, we have

(gri(n)− g(n))− (gℓi(n) + g(n)) =
1

nieF (〈n〉

∂2k

∂x2i
(n′′′).

A calculation of ∂2k/∂x2i yields the required estimate. �

We are now ready to prove the main result concerning the multi-dimensional operator H:

Proof of Theorem 1.5. Let ψFs,α,γ := eFs,α,γψ, and let Ψs := ψFs,α,γ/‖ψFs,α,γ‖. We suppose
that for some (α, γ) ∈ [0,∞) × [0, 2/3), ψ 6∈ D(ϑα,γ) and derive a contradiction. Of course,
ψFs,α,γ ∈ H for all s > 0, but by the Monotone Convergence Theorem, ‖ψFs,α,γ‖ → +∞ as

s ↓ 0. Thus, for any bounded set B ⊂ Zd,

(3.17) lim
s↓0

∑

n∈B

|Ψs(n)|2 = 0.

In particular, Ψs converges weakly to zero. As α and γ are fixed, we shall write Fs instead
of Fs,α,γ for simplicity. Introduce the operator HFs := eFsHe−Fs . Then HFs is a bounded
operator and HFsΨs = EΨs. We claim that

(3.18) lim
s↓0

‖(H − E)Ψs‖ = 0.

To see this, write HFs as follows:

HFs = H +
∑

16i6d

Si(1− eτ
∗

i Fs−Fs) + S∗
i (1− eτiFs−Fs).

To show (3.18), it is therefore enough to show that

(3.19) lim
s↓0

‖(1− eτ
∗

i Fs−Fs)Ψs‖ = lim
s↓0

‖(1− eτiFs−Fs)Ψs‖ = 0.
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Let B(N) = {n ∈ Zd : 〈n〉 6 N}, and B(N)c the complement set. For all ǫ > 0, there is
N > 0 such that

sup
n∈B(N)c

s>0

∣

∣

∣
1− e(τ

∗

i Fs−Fs)(n)
∣

∣

∣
= sup

n∈B(N)c

s>0

∣

∣

∣
1− eαγ〈n

′〉γ−1Υ′

s(α〈n
′〉γ)

∣

∣

∣
6 ǫ

(here n′ = (n′1, ..., n
′
d) with n′i ∈ (ni, ni + 1) and n′j = nj for j 6= i). Combining this with

(3.17) proves the first limit in (3.19), and the second one is shown in the same way. Thus the
claim is proven. Because E ∈ Θ(H), there exists an interval Σ := (E − δ, E + δ) with δ > 0,
η > 0 and a compact K such that

(3.20) EΣ(H)[H,A′]◦EΣ(H) > ηEΣ(H) +K.

By functional calculus,

(3.21) lim
s↓0

‖ER\Σ(H)Ψs‖ 6 lim
s↓0

δ−1‖ER\Σ(H)(H − E)Ψs‖ = 0.

It follows by the Mourre estimate (3.20) and (3.21) that

(3.22) lim inf
s↓0

〈Ψs, EΣ(H)[H,A′]◦EΣ(H)Ψs〉 > η lim inf
s↓0

‖EΣ(H)Ψs‖2 = η > 0.

We now look to contradict this equation. We start with

(3.23) 〈Ψs, EΣ(H)[H,A′]◦EΣ(H)Ψs〉 = 〈Ψs, [H,A
′]◦Ψs〉 − f1(s)− f2(s), where

f1(s) = 〈Ψs, ER\Σ(H)[H,A′]◦EΣ(H)Ψs〉 and f2(s) = 〈Ψs, [H,A
′]◦ER\Σ(H)Ψs〉.

Applying (3.21) gives

lim
s↓0

|f1(s)| = lim
s↓0

|f2(s)| = 0.

Now apply (3.11) with F = Fs,α,γ , and after dividing this equation by ‖Ψs‖2, we have

lim sup
s↓0

〈Ψs, [H,A
′]◦Ψs〉 6 0.

Here we took advantage of the negativity of the first two terms on the right side of (3.11),
and used the uniform decay of L + M + G together with the weak convergence of Ψs to
get 〈Ψs, (L + M + G)Ψs〉 → 0 as s ↓ 0. To check this thoroughly, one needs to apply the
estimates of Lemma 3.2 to where indicated in the Appendix by a (‡). Note that L given by
(6.9) is the most constraining term; it has the necessary decay provided 3γ − 4 < −2, i.e.

γ < 2/3. Note also that ‡5 allows to conclude, by continuity of the map x 7→
√

cosh(x)− 1,
that 〈Ψs, (WFs;i − τiWFs;i)Ψs〉 and like terms converge to zero. Thus by (3.23),

lim sup
s↓0

〈Ψs, EΣ(H)[H,A′]◦EΣ(H)Ψs〉 6 0.

This is in contradiction with (3.22), so the proof is complete. �

4. Proof of Proposition 1.6

As an application of Theorem 1.5, we display a Wigner-von Neumann type operator that has
an eigenvalue embedded in the essential spectrum. The eigenvalue is proven to be a threshold.
Proof of Proposition 1.6. First, we construct the potential in dimension one. Second, we
generalize this potential to higher dimensions. Third, we show that the eigenvalue is also a
threshold and belongs to the essential spectrum.
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Part 1. We follow [RS4, Section XIII.13, Example 1]. Starting with the eigenvalue equation

2ψ(n)− ψ(n+ 1)− ψ(n− 1) + V (n)ψ(n) = Eψ(n),

we shift terms to write

V (n) = (E − 2) +
ψ(n+ 1)

ψ(n)
+
ψ(n− 1)

ψ(n)
.

We try the Ansatz ψ(n) := sin(kn)wk(n), k ∈ (0, π). For simplicity, write w(n) instead of
wk(n). We get

V (n) = (E − 2)

+
sin(kn) cos(k) + cos(kn) sin(k)

sin(kn)

w(n+ 1)

w(n)
+

sin(kn) cos(k)− cos(kn) sin(k)

sin(kn)

w(n− 1)

w(n)

= (E − 2) + cos(k)

(

w(n+ 1)

w(n)
+
w(n− 1)

w(n)

)

+ sin(k)
cos(kn)

sin(kn)

(

w(n+ 1)

w(n)
− w(n− 1)

w(n)

)

.

For the moment, let us assume that

(4.1)
w(n+ 1)

w(n)
→ 1, as |n| → +∞

and

(4.2) sin(k)
cos(kn)

sin(kn)

(

w(n+ 1)

w(n)
− w(n− 1)

w(n)

)

→ 0, as |n| → +∞.

Thus if we want V (n) → 0, we must have (E − 2) + 2 cos(k) = 0, i.e. E = 2 − 2 cos(k). We
now seek a suitable wk. Let

gk(n) = g(n) := sin(2k)n− sin(2kn).

For simplicity, we would like to define wk(n) := 1/gk(n). But then wk(−1), wk(0) and wk(1)
are not well-defined, nor is wk for that matter if k = π/2. To circumvent this problem, we
could define wk(n) := (1+(gk(n))

2)−1 instead, as it is done in [RS4, Section XIII.13, Example
1], but alternatively we note that there is t = tk ∈ (0,+∞) such that tk + gk(n) = 0 has no
solutions for n ∈ Z. So we let

wk(n) :=
1

tk + gk(n)
.

In any case, with either choice we certainly have ψ ∈ ℓ2(Z) and (4.1) is clearly satisfied. As
for (4.2), we calculate

sin(k)
cos(kn)

sin(kn)

(

w(n+ 1)

w(n)
− w(n− 1)

w(n)

)

= sin(k)
cos(kn)

sin(kn)

g(n− 1)− g(n+ 1)

[t+ g(n− 1)][t+ g(n+ 1)]
[t+ g(n)]

=
−2 sin(k) sin(2k) sin(2kn)

[t+ g(n− 1)][t+ g(n+ 1)]
[t+ g(n)]

=
−2 sin(k) sin(2kn)

n
+O(n−2).

So (4.2) also holds. Note that this calculation follows from these useful relations:

g(n+ 1)− g(n) = sin(2k)− 2 sin(k) cos(2kn+ k),

1

[t+ g(n+ 1)]
=

1

sin(2k)n
+O(n−2), and

1

[t+ g(n− 1)]
=

1

sin(2k)n
+O(n−2).
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Letting E = 2− 2 cos(k), we then find that V is given by

V (n) = cos(k)

(

2t+ g(n− 1) + g(n+ 1)

[t+ g(n− 1)][t+ g(n+ 1)]
[t+ g(n)]− 2

)

− 2 sin(k) sin(2k) sin(2kn)[t+ g(n)]

[t+ g(n− 1)][t+ g(n+ 1)]

= cos(k)

(

g(n)− g(n− 1)

[t+ g(n− 1)]
− g(n+ 1)− g(n)

[t+ g(n+ 1)]

)

− 2 sin(k) sin(2k) sin(2kn)[t+ g(n)]

[t+ g(n− 1)][t+ g(n+ 1)]
.

By a calculation done above, we know the asymptotic behavior of the second term of this
expression. Another calculation shows that the first term of this expression has the exact
same asymptotic behavior as the second. Thus, we have found a potential having the property
that 2 − 2 cos(k) is an eigenvalue of ∆ + V with eigenvector given by ψ(n) = sin(kn)[tk +
sin(2k)n− sin(2kn)]−1. Moreover the potential has the asymptotic behavior

V (n) = −4 sin(k) sin(2kn)

n
+Ok,tk(n

−2).

Part 2. We simply extend to two dimensions. The Schrödinger equation is rewritten as
follows:

V (n,m) = (E − 4) +
ψ(n+ 1,m)

ψ(n,m)
+
ψ(n− 1,m)

ψ(n,m)
+
ψ(n,m+ 1)

ψ(n,m)
+
ψ(n,m− 1)

ψ(n,m)
.

Try the Ansatz ψ(n,m) = sin(k1n)wk1(n) sin(k2m)wk2(m), for some k1, k2 ∈ (0, π). For
simplicity, write w1(n) instead of wk1(n), and w2(m) instead of wk2(m). We get

V (n,m) = (E − 4)

+ cos(k1)

(

w1(n+ 1) + w1(n− 1)

w1(n)

)

+ sin(k1)
cos(k1n)

sin(k1n)

(

w1(n+ 1)− w1(n− 1)

w1(n)

)

+ cos(k2)

(

w2(m+ 1) + w2(m− 1)

w2(m)

)

+ sin(k2)
cos(k2m)

sin(k2m)

(

w2(m+ 1)− w2(m− 1)

w2(m)

)

.

Let E := 4− 2 cos(k1)− 2 cos(k2), and

w1(n) := (t1 + g1(n))
−1, where g1(n) := sin(2k1)n− sin(2k1n),

w2(m) := (t2 + g2(m))−1, where g2(m) := sin(2k2)m− sin(2k2m).

Here t1 = tk1 and t2 = tk2 are real numbers chosen so that t1 + g1(n) 6= 0 and t2 + g2(m) 6= 0
for all n,m ∈ Z. The calculations of the first part show that V is given by

V (n,m) =

cos(k1)

[

g1(n)− g1(n− 1)

t1 + g1(n− 1)
− g1(n+ 1)− g1(n)

t1 + g1(n+ 1)

]

− 2 sin(k1) sin(2k1) sin(2k1n)[t1 + g1(n)]

[t1 + g1(n− 1)][t1 + g1(n+ 1)]

+ cos(k2)

[

g2(m)− g2(m− 1)

t2 + g2(m− 1)
− g2(m+ 1)− g2(m)

t2 + g2(m+ 1)

]

− 2 sin(k2) sin(2k2) sin(2k2m)[t2 + g2(m)]

[t2 + g2(m− 1)][t2 + g2(m+ 1)]
.

This potential has the property that 4− 2 cos(k1)− 2 cos(k2) is an eigenvalue of ∆+ V with
eigenvector

ψ(n,m) = sin(k1n) sin(k2m)[tk1 + sin(2k1)n− sin(2k1n)]
−1[tk2 + sin(2k2)m− sin(2k2m)]−1.

Moreover V has the asymptotic behavior

V (n,m) = −4 sin(k1) sin(2k1n)

n
− 4 sin(k2) sin(2k2m)

m
+Ok1,tk1 (n

−2) +Ok2,tk2 (m
−2).
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Part 3. We still have to prove that the eigenvalue E := 4−2 cos(k1)−2 cos(k2) is a threshold
of H = ∆ + V . But V satisfies Hypothesis 1, and the eigenvector ψ has slow decay at
infinity. So we conclude by Theorem 1.5 that this eigenvalue is unmistakably a threshold. If
H1(k) denotes the one-dimensional Schrödinger operator of Part 1 and H denotes the two-
dimensional operator of Part 2, then we have H = H1(k1) ⊗ 1 + 1 ⊗H1(k2). A basic result
on the spectra of tensor products gives

σ(H) = σ(H1(k1)) + σ(H1(k2)) ⊃ [0, 8].

Thus E ∈ [0, 8] ⊂ σess(H). �

5. The one-dimensional case: exponential decay of eigenfunctions

In this section we deal with the one-dimensional Schrödinger operator H on H = ℓ2(Z). We
follow the same definitions as in the Introduction and Section 3, but since i = 1, we will drop
this subscript. We shall write S and S∗ instead of Si and S∗

i , N instead of Ni, etc...Consider
an increasing function F ∈ C2([0,∞)) with bounded derivative away from the origin. This
function induces a radial operator on H as in Section 3: (Fu)(n) := F (〈n〉)u(n) for all u ∈ H.

Proposition 5.1. Suppose that Hypothesis 1 holds for the potential V . Let F be as above,

and suppose additionally that

(5.1) |xF ′′(x)| 6 C, for x away from the origin.

Suppose that Hψ = Eψ, with ψ ∈ H. Let ψF := eFψ, and assume that ψF ∈ H. Then

ψF ∈ D(
√
gr − gℓA

′) and there exist bounded operators W , M and G depending on F such

that

(5.2)
〈

ψF , [H,A
′]ψF

〉

= −
∥

∥

√
gr − gℓA

′ψF
∥

∥

2−
∥

∥

√

∆(4−∆)WψF
∥

∥

2
+2−1

〈

ψF , (M +G)ψF
〉

.

The exact expressions of W,M and G are given by (6.13), (6.14) and (6.15) respectively.

Proof. The proof is done in two steps. The first step consists in proving that

(5.3)
〈φ, [eFA′eF ,∆]φ〉 = 〈φF , [A′,∆]φF 〉 − ‖√gr − gℓA

′φF ‖2

− ‖
√

∆(4−∆)WφF ‖2 + 2−1〈φF , (M +G)φF 〉.
The proof of this is in the Appendix starting from (6.12). That F ′ is bounded away from the
origin ensures that W and (gr−gℓ) are bounded. The additional assumption (5.1) ensures that
(τ∗ϕr−ϕr)N and like terms are bounded. The second step is the same as that of Proposition
3.1, and the proof is identical. �

Lemma 5.2. Suppose that Hψ = Eψ with ψ ∈ ℓ2(Z). Let F be a general function as above,

and assume that ψF := eFψ ∈ ℓ2(Z). Define the operator

(5.4) HF := eFHe−F .

Then HF is bounded, HFψF = EψF and there exist bounded operators CF and RF such that

(5.5) HF = CFH + (2− 2CF ) + 2−1RF , where

(5.6) CF := 2−1
(

eF−τF + eF−τ∗F
)

and

(5.7)
RF := V (2− 2CF ) + (τϕr − ϕr)(S

∗ − S) + (ϕℓ − τ∗ϕℓ)(S
∗ − S)

+ (gr − gℓ)A
′ − 2−1(gr − gℓ)(S

∗ + S).
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Proof. Because F ′ is bounded away from the origin, both eFSe−Fφ = Seτ
∗F−Fφ and

eFS∗e−Fφ = S∗eτF−Fφ belong to ℓ2(Z) whenever φ ∈ ℓ2(Z). Thus HF is bounded, and
HFψF = EψF follows immediately. Now

HF = 2 + V − eF−τFS − eF−τ∗FS∗.

Rewriting this relation in two different ways, we have

HF = eF−τFH + (2 + V )(1− eF−τF ) + (eF−τF − eF−τ∗F )S∗,

HF = eF−τ∗FH + (2 + V )(1− eF−τ∗F ) + (eF−τ∗F − eF−τF )S.

Adding these two relations gives

(5.8) 2HF = 2CFH + (2 + V )(2− 2CF ) + (eF−τF − eF−τ∗F )(S∗ − S).

We further develop the third term on the right side:

(eF−τF − eF−τ∗F )(S∗ − S) = (τϕr − τ∗ϕℓ)(S
∗ − S)

= (τϕr − ϕr)(S
∗ − S) + (ϕℓ − τ∗ϕℓ)(S

∗ − S) + (ϕr − ϕℓ)(S
∗ − S)

= (τϕr − ϕr)(S
∗ − S) + (ϕℓ − τ∗ϕℓ)(S

∗ − S)

+ (gr − gℓ)A
′ − 2−1(gr − gℓ)(S

∗ + S) + (ϕr − ϕℓ)1{n=0}(S
∗ − S).

Here, 1B is the projector onto B ⊂ Z. Note that (ϕr − ϕℓ)1{n=0} = 0, and thus (5.5) is
shown. �

We are now ready to prove the main result concerning the one-dimensional operator H:

Proof of Theorem 1.2, the first part. We first handle the case E 6= 2. Suppose that the
statement of the theorem is false. Then θE = θE(α0) = (E − 2)/ cosh(α0) + 2 ∈ Θ(H) \ {+2}
for some α0 ∈ [0,∞), and there is an interval

(5.9) Σ0 := (θE(α0)− 2δ, θE(α0) + 2δ)

such that the Mourre estimate holds there, i.e.

(5.10) EΣ0
(H)[H,A′]◦EΣ0

(H) > ηEΣ0
(H) +K

for some η > 0 and some compact operator K. For the remainder of the proof, δ, η and K
are fixed. If α0 > 0, choose α1 > 0 and γ > 0 such that

(5.11) α1 < α0 < α1 + γ.

If however α0 = 0, let α1 = 0 and γ > 0. By continuity of the map θE(α) = (E−2)/ cosh(α)+2,
θE(α1) → θE(α0) as α1 → α0, so taking α1 close enough to α0 we obtain intervals

Σ1 := (θE(α1)− δ, θE(α1) + δ) ⊂ Σ0

with the inclusion remaining valid as α1 → α0. Multiplying to the right and left of (5.10) by
EΣ1

(H), we obtain

(5.12) EΣ1
(H)[H,A′]◦EΣ1

(H) > ηEΣ1
(H) + EΣ1

(H)KEΣ1
(H).

Later in the proof α1 will be taken even closer to α0 allowing γ to be as small as necessary in
order to lead to a contradiction (in this limiting process, δ, η and K are fixed). Before delving
into the details of the proof, we expose the strategy. For a suitable sequence of functions
{Fs(x)}s>0, let

(5.13) Ψs := eFsψ/‖eFsψ‖.
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With Fs and Ψs instead of F and ψF respectively, we apply Proposition 5.1 to conclude that

(5.14) lim sup
s↓0

〈Ψs, [H,A
′]◦Ψs〉 6 lim sup

s↓0
|〈Ψs, 2

−1
(

MFs +GFs

)

Ψs〉|.

Notice how the the negativity of the first two terms on the right side of (5.2) was crucial. We
have also written MFs and GFs instead of M and G to show the dependence on Fs. The first
part of the proof consists in showing that

(5.15) lim sup
s↓0

〈Ψs, [H,A
′]◦Ψs〉 6 lim sup

s↓0
|〈Ψs, 2

−1
(

MFs +GFs

)

Ψs〉| 6 cǫγ

for some ǫγ > 0 satisfying ǫγ → 0 when γ → 0. Here and thereafter, c > 0 denotes a constant
independent of s, α1 and γ. The second part of the proof consists in showing that

(5.16) lim sup
s↓0

‖(H − θE(α1))Ψs‖ 6 cǫγ .

Roughly speaking (5.16) says that Ψs has energy concentrated about θE(α1) and so localizing
(5.15) about this energy will lead to

(5.17) lim sup
s↓0

〈Ψs, EΣ1
(H)[H,A′]◦EΣ1

(H)Ψs〉 6 cǫγ .

However, the Mourre estimate (5.12) holds on Σ1. In the end, the contradiction will come
from the fact that the Mourre estimate asserts that the left side of (5.17) is not that small.

We now begin in earnest the proof. Notice that ψ ∈ D(ϑα1
) but ψ 6∈ D(ϑα1+γ). Let Υs be

the interpolating function defined in (3.4), and for s > 0 let

(5.18) Fs(x) := α1x+ γΥs(x).

As explained in the multi-dimensional case, Fs induces a radial potential as follows : (Fsu)(n) :=
Fs(〈n〉)u(n), for all u ∈ ℓ2(Z). By (3.5), eFsψ ∈ ℓ2(Z) for all s > 0, but ‖eFsψ‖ → ∞ as s ↓ 0.
To ease the notation, we will be bounding various quantities by the same constant c > 0, a
constant that is independent of α1, γ, s and of position x (or n).
Part 1. We use Proposition 5.1 with Fs replacing F , and so we verify that Fs satisfies the
hypotheses of that proposition. Since

F ′
s(x) = α1 + γΥ′

s(x) and F ′′
s (x) = γΥ′′

s(x),

indeed |F ′
s(x)| 6 c, |xF ′′

s (x)| 6 c. Dividing (5.2) by ‖eFsψ‖2 throughout we obtain (5.14) as
claimed. To prove (5.15), we need two ingredients. First, for any bounded set B ⊂ Z,

(5.19) lim
s↓0

∑

n∈B

|Ψs(n)|2 = 0.

In particular, Ψs converges weakly to zero. What’s more, we also have for any k ∈ N

(5.20) lim
s↓0

∑

n∈B

|(SkΨs)(n)|2 = 0, and lim
s↓0

∑

n∈B

|((S∗)kΨs)(n)|2 = 0.

Now MFs and GFs are a finite sum of terms of the form P1(S, S
∗)TP2(S, S

∗), where P1 and
P2 are polynomials and the T = T (n) are sequences. The second item to show is that,

(5.21) |T (n)| 6 c(〈n〉−1 + ǫγ).

In other words we want smallness coming from decay in position n or from γ. Outside a
sufficiently large bounded set, decay in position can be converted into smallness in γ by using
(5.19) while P1(S, S

∗) and P2(S, S
∗) get absorbed in the process thanks to (5.20). Consider
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first M =MFs given by (6.14). Applying the Mean Value Theorem (MVT) gives the uniform
estimates in s

(5.22) |τFs − Fs| and |τ∗Fs − Fs| ∈ O(1).

It follows that
|ϕℓ| and |ϕr| ∈ O(1), and |gr − gℓ| ∈ O(〈n〉−1).

To handle the term (τ∗ϕℓ − ϕℓ), define the function f(x) := eFs(〈x−1〉)−Fs(〈x〉). Then (τ∗ϕℓ −
ϕℓ)(n) = f(n+ 1)− f(n). Applying twice the MVT gives

|(τ∗ϕℓ − ϕℓ)(n)| 6 c(〈n〉−3 + γ〈n〉−1).

The same estimate holds for the similar terms like (ϕr−τϕr), (τ∗ϕr−ϕr) and so forth. We turn
our attention toG = GFs given by (6.15). By (5.22), |WFs | ∈ O(1). To estimate (WFs−Wτ∗Fs),

let g(x) :=
√

cosh(Fs(〈x− 1〉)− Fs(〈x〉))− 1, so that (WFs −Wτ∗Fs)(n) = g(n) − g(n + 1).
Moreover,

g′(x) =
(F ′

s(〈x− 1〉)− F ′
s(〈x〉)) sinh(Fs(〈x− 1〉)− Fs(〈x〉))

2
√

cosh(Fs(〈x− 1〉)− Fs(〈x〉))− 1
.

If α1 > 0, then |Fs(〈x−1〉)−Fs(〈x〉)| > c′α1 for some constant c′ > 0 independent of x and s,
and so cosh(Fs(〈x−1〉)−Fs(〈x〉))−1 is uniformly bounded from below by a positive number.
Applying the MVT to (F ′

s(〈x− 1〉)− F ′
x(〈x〉)) yields the estimate

|(WFs −Wτ∗Fs)(n)| 6 c(〈n〉−3 + γ〈n〉−1).

If however α1 = 0, then

(5.23) |(τFs − Fs)(n)− (Fs − τ∗Fs)(n)| 6 cγ〈n〉−1.

By continuity of the function x 7→
√

cosh(x)− 1 we have that for any ǫγ > 0,

|WFs −Wτ∗Fs | = |
√

cosh(τFs − Fs)− 1−
√

cosh(Fs − τ∗Fs)− 1| 6 ǫγ

whenever (5.23) holds. A similar argument works for (WFs −WτFs). Thus (5.21) is proven,
and this shows (5.15) when combined with the fact that Ψs converges weakly to zero.
Part 2. We now prove (5.16). Consider Lemma 5.2 with Fs instead of F . We claim that

(5.24) lim
s↓0

∥

∥

∥
(CFsH + 2− E − 2CFs)Ψs

∥

∥

∥
= 0.

By (5.5) of Lemma 5.2, this is equivalent to showing that

lim
s↓0

∥

∥RFsΨs

∥

∥ = 0.

Dividing each term in (5.2) by ‖eFsψ‖2, we see that ‖√gr − gℓA
′Ψs‖ 6 c. Let χN denote the

characteristic function of the set {n ∈ Z : (gr − gℓ) < N−1}. Then

lim sup
s↓0

‖(gr−gℓ)A′Ψs‖ 6 lim sup
s↓0

N− 1

2 ‖χN
√
gr − gℓA

′Ψs‖+‖(1−χN )(gr−gℓ)A′Ψs‖ 6 cN− 1

2 .

Here we used the fact that 1 − χN has support in a fixed, bounded set as s ↓ 0. Since N is
arbitrary, this shows that ‖(gr − gℓ)A

′Ψs‖ → 0 as s ↓ 0. The other terms of RFs are handled
similarly. Note that for the term containing V we use the fact it goes to zero at infinity, and
from Part 1, (τϕr − ϕr), (ϕℓ − τ∗ϕℓ) and (gr − gℓ) also go to zero at infinity. Hence (5.24) is
proved. Let κ := κ(n) = sign(n). From the expression of F ′

s, we have the estimates :

|(Fs−τFs)(n)−κ(n)α1| 6 c(α1〈n〉−1+γ) and |(Fs−τ∗Fs)(n)−(−κ(n)α1)| 6 c(α1〈n〉−1+γ).
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Therefore, outside a fixed bounded set we have

(5.25) |(Fs − τFs)− κα1| 6 cγ and |(Fs − τ∗Fs)− (−κα1)| 6 cγ.

By continuity of the exponential function, we have for any ǫγ > 0 that

|eFs−τFs − eκα1 | 6 ǫγ and |eFs−τ∗Fs − e−κα1 | 6 ǫγ

whenever the respective terms of (5.25) hold. It follows from (5.24) that

lim sup
s↓0

∥

∥

[

2−1
(

eα1 + e−α1

)

H + 2− E −
(

eα1 + e−α1

) ]

Ψs

∥

∥ 6 cǫγ .

Dividing this expression by cosh(α1) proves (5.16).
Part 3. By functional calculus and (5.16), we have

(5.26) lim sup
s↓0

‖ER\Σ1
(H)Ψs‖ 6 lim sup

s↓0
δ−1

∥

∥ER\Σ1
(H)

(

H − θE(α1)
)

Ψs

∥

∥ 6 cǫγ .

We have

(5.27) 〈Ψs, EΣ1
(H)[H,A′]◦EΣ1

(H)Ψs〉 = 〈Ψs, [H,A
′]◦Ψs〉 − f1(s)− f2(s), where

f1(s) = 〈Ψs, ER\Σ1
(H)[H,A′]◦EΣ1

(H)Ψs〉, and f2(s) = 〈Ψs, [H,A
′]◦ER\Σ1

(H)Ψs〉.
By (5.26),

max
i=1,2

lim sup
s↓0

|fi(s)| 6 cǫγ .

This together with (5.15) and (5.27) implies

(5.28) lim sup
s↓0

〈Ψs, EΣ1
(H)[H,A′]◦EΣ1

(H)Ψs〉 6 cǫγ .

On the other hand, by the Mourre estimate (5.12), we have that

(5.29) 〈Ψs, EΣ1
(H)[H,A′]◦EΣ1

(H)Ψs〉 > η‖EΣ1
(H)Ψs‖2 + 〈Ψs, EΣ1

(H)KEΣ1
(H)Ψs〉.

Thus, since Ψs converges weakly to zero and EΣ1
(H)KEΣ1

(H) is compact, we have, using
(5.26)

(5.30) lim inf
s↓0

〈Ψs, EΣ1
(H)[H,A′]◦EΣ1

(H)Ψs〉 > η(1− cǫ2γ).

Recall that ǫγ → 0 as γ → 0. Taking first α1 sufficiently close to α0, we can then take γ small
enough to see that (5.30) contradicts (5.28). The proof is complete for the case E 6= 2.
Part 4. Case E = 2: the proof is almost the same as before but a bit simpler. We briefly go
over the proof to point out the small adjustments. Assuming the statement of the theorem to
be false, we have that 2 ∈ Θ(H), and also that ψ 6∈ D(ϑα) for some α ∈ (0,∞). Since Θ(H)
is open, there is an interval

Σ := (2− δ, 2 + δ)

such that the Mourre estimate holds there, i.e.

(5.31) EΣ(H)[H,A′]◦EΣ(H) > ηEΣ(H) +K

for some η > 0 and some compact operator K. Let α0 := inf{α > 0 : ψ 6∈ D(ϑα)}. As before,
let α1 and γ be such that α1 < α0 < α1 + γ if α0 > 0; if α0 = 0, let α1 = 0. Let Fs and Ψs

be defined as before (see (5.18) and (5.13)), so that Ψs has norm one but converges weakly to
zero. The calculation of Part 1 shows that

lim sup
s↓0

〈Ψs, [H,A
′]◦Ψs〉 6 cǫγ ,
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whereas the calculation of Part 2 shows that

lim
s↓0

‖(H − 2)Ψs‖ 6 cǫγ .

The functional calculus then gives

lim sup
s↓0

‖ER\Σ(H)Ψs‖ 6 lim sup
s↓0

δ−1‖ER\Σ(H)(H − 2)Ψs‖ 6 cǫγ .

As in Part 3, we get inequalities (5.28) and (5.30) with Σ instead of Σ1. Taking α1 very
close to α0 in order to take γ sufficiently small, these two inequalities disagree. The proof is
complete. �

It remains to show however that

(5.32) Hψ = Eψ, and ψ ∈ D(ϑα) for all α > 0 implies ψ = 0.

We slightly modify the notation we have been using so far. Let

(5.33) Fα(n) := α|n| and ψα(n) := eFα(n)ψ(n) = eα|n|ψ(n), for all n ∈ Z.

Proof of Theorem 1.2, the second part. The proof is by contradiction, and the strategy is
as follows: we assume that ψ 6= 0 and define Ψα := ψα/‖ψα‖. It is not hard to see that Ψα

converges weakly to zero as α → +∞ (use the fact that the difference equation Hψ = Eψ
implies ψ(n) 6= 0 infinitely often). In the first part we apply Proposition 5.1 with Fα replacing
F . In this case we can exactly compute terms to show that

(5.34) 0 = cosh(α)−1〈Ψα, [V,A
′]◦Ψα〉+ 2 tanh(α)‖

√

|N |(S∗ − S)Ψα‖2

+ ‖
√

∆(4−∆)Ψα‖2 − tanh(α)
(

2Ψ2
α(0) + (Ψα(−1)−Ψα(1))

2
)

.

In the second part, we apply Lemma 5.2 again with Fα replacing F . We show that

(5.35) lim
α→+∞

‖
√

∆(4−∆)Ψα‖2 = lim
α→+∞

ℜ 〈Ψα,∆(4−∆)Ψα〉 = 2.

The conclusion is then imminent: taking the limit α→ +∞ in (5.34), and recalling that [V,A′]◦
exists as a bounded operator and Ψα converges weakly to zero leads to a contradiction.
Part 1. It follows from (6.2) and the limiting argument of Proposition 3.1 that

〈ψα, [H,A′]◦ψα〉 = 〈ψα, A′[eF ,∆]e−Fψα〉+ 〈ψα, e−F [eF ,∆]A′ψα〉.
All terms are computed exactly:

(5.36) e(τFα−Fα)(n) =

{

e−α if n > 1

eα if n 6 0
and e(τ

∗Fα−Fα)(n) =

{

eα if n > 0

e−α if n 6 −1,

(5.37) e(Fα−τFα)(n) =

{

eα if n > 1

e−α if n 6 0
and e(Fα−τ∗Fα)(n) =

{

e−α if n > 0

eα if n 6 −1.

Let 1B be the projector onto B ⊂ Z. Therefore

ϕr − ϕℓ = 2 sinh(α)sign(N)1{n 6=0}, ϕr + ϕℓ = 2
(

cosh(α)− 1 + sinh(α)1{n=0}

)

,

τ∗ϕℓ − ϕℓ = −2 sinh(α)1{n=0}, ϕℓ − τϕℓ = −2 sinh(α)1{n=+1},

τϕr − ϕr = −2 sinh(α)1{n=0}, ϕr − τ∗ϕr = −2 sinh(α)1{n=−1},

τ∗ϕℓ − τ∗2ϕℓ = 2 sinh(α)1{n=−1}, τϕr − τ2ϕr = 2 sinh(α)1{n=+1}.
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Let T := A′[eF ,∆]e−F + e−F [eF ,∆]A′. By (6.3) and (6.4), we have:

T = A′(−SeFϕr − S∗eFϕℓ)e
−F + e−F (ϕre

FS∗ + ϕℓe
FS)A′

= −A′(Sϕr + S∗ϕℓ) + (ϕrS
∗ + ϕℓS)A

′.

Plug in A′ = 2−1(S∗ + S) +N(S∗ − S) and simplify to get T = T1 + T2, where

T1 := 2−1
(

−S2ϕr + 3ϕr(S
∗)2 − (S∗)2ϕℓ + 3ϕℓS

2
)

− (ϕr + ϕℓ), and

T2 := N
(

S2ϕr + ϕr(S
∗)2 − (S∗)2ϕℓ − ϕℓS

2
)

− 2N(ϕr − ϕℓ).

We calculate T1:
T1 = −2−1 (ϕr + ϕℓ)

(

2− S2 − (S∗)2
)

− 2−1
(

S2ϕr + ϕrS
2 + (S∗)2ϕℓ + ϕℓ(S

∗)2
)

+ ϕr(S
∗)2 + ϕℓS

2

= −(cosh(α)− 1 + sinh(α)1{n=0})∆(4−∆) + (ϕr − ϕℓ)
(

(S∗)2 − S2
)

+ 2−1
(

(ϕℓ − τ∗ϕℓ)(S
∗)2 + (τ∗ϕℓ − τ∗2ϕℓ)(S

∗)2 + (ϕr − τϕr)S
2 + (τϕr − τ2ϕr)S

2
)

= T1;1 + T1;2
where

(5.38) T1;1 := −(cosh(α)− 1)∆(4−∆), and

T1;2 := − sinh(α)1{n=0}∆(4−∆) + 2 sinh(α)sign(N)1{n 6=0}((S
∗)2 − S2)

+ sinh(α)
(

1{n=0}(S
∗)2 + 1{n=−1}(S

∗)2 + 1{n=0}S
2 + 1{n=1}S

2
)

.

We calculate T2:
T2 = −N(ϕr − ϕℓ)

(

2− S2 − (S∗)2
)

+N(S2ϕr − ϕrS
2) +N(ϕℓ(S

∗)2 − (S∗)2ϕℓ)

= −N(ϕr − ϕℓ)∆(4−∆) +N
(

τ2ϕr − τϕr + τϕr − ϕr
)

S2

+N
(

ϕℓ − τ∗ϕℓ + τ∗ϕℓ − τ∗2ϕℓ
)

(S∗)2

= −2 sinh(α)|N |∆(4−∆)

+ 2 sinh(α)N
(

−(1{n=1} + 1{n=0})S
2 + (1{n=0} + 1{n=−1})(S

∗)2
)

= −2 sinh(α)|N |∆(4−∆)− 2 sinh(α)
(

1{n=1}S
2 + 1{n=−1}(S

∗)2
)

.

The following commutation formulae hold

(5.39) S∗(1{n 6=0}sign(N)) = [1{n 6=0}sign(N) + 1{n=0} + 1{n=−1}]S
∗,

(5.40) S(1{n 6=0}sign(N)) = [1{n 6=0}sign(N)− 1{n=0} − 1{n=+1}]S.

Using

S|N | = |N |S +
(

1{n=0} − 1{n 6=0}sign(N)
)

S,

S∗|N | = |N |S∗ +
(

1{n=0} + 1{n 6=0}sign(N)
)

S∗,

one checks that

(5.41) |N |∆(4−∆) = (S − S∗)|N |(S∗ − S)− 1{n=0}∆(4−∆)− 1{n 6=0}sign(N)(S2 − (S∗)2).

Therefore T2 = T2;1 + T2;2, where

(5.42) T2;1 = −2 sinh(α)(S − S∗)|N |(S∗ − S), and
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T2;2 = −2 sinh(α)
(

1{n=1}S
2 + 1{n=−1}(S

∗)2
)

+ 2 sinh(α)
(

1{n=0}∆(4−∆) + 1{n 6=0}sign(N)(S2 − (S∗)2)
)

.

Finally, a calculation shows that

(5.43) T1;2 + T2;2 = sinh(α)
(

21{n=0} − 1{n=−1}(S
∗)2 − 1{n=1}S

2
)

.

Note that

〈ψα, [H,A′]◦ψα〉 = 〈ψα, T ψα〉 = 〈ψα, (T1;1 + T2;1 + T1;2 + T2;2)ψα〉.
Plugging in for T1;1, T2;1 and T1;2 + T2;2 given by (5.38), (5.42) and (5.43) yields

〈ψα, [H,A′]◦ψα〉 = −2 sinh(α)‖
√

|N |(S∗ − S)ψα‖2 − (cosh(α)− 1)〈ψα,∆(4−∆)ψα〉

+ sinh(α)
(

2ψ2
α(0) + (ψα(−1)− ψα(1))

2
)

.

Cancelling 〈ψα, [∆, A′]ψα〉 = 〈ψα,∆(4 − ∆)ψα〉 on both sides and dividing throughout by
cosh(α)‖ψα‖2 yields (5.34) as required.
Part 2. From (5.37),

2−1(eFα−τFα + eFα−τ∗Fα) =

{

cosh(α) if |n| > 1

e−α if n = 0,

2−1(eFα−τFα − eFα−τ∗Fα) = sinh(α)1{n 6=0}sign(N).

We apply (5.8) of Lemma 5.2:

HFα = cosh(α)∆ + 1{n=0}(e
−α − cosh(α))∆ + V + 2(1− cosh(α))

+ 21{n=0}(cosh(α)− e−α) + sinh(α)1{n 6=0}sign(N)(S∗ − S).

The goal is to square HFα . Divide throughout by cosh(α) and let cα := (e−α cosh(α)−1 − 1):

cosh(α)−1HFα = ∆+ cα1{n=0}∆+ cosh(α)−1V + 2(cosh(α)−1 − 1)− 2cα1{n=0}(5.44)

+ tanh(α)1{n 6=0}sign(N)(S∗ − S).(5.45)

Note that supα>0 |cα| 6 2. Since (S∗ − S) is antisymmetric, by (5.39) and (5.40), we see that
1{n 6=0}sign(N)(S∗−S) is antisymmetric up to a couple of rank one projectors. The same goes
for ∆1{n 6=0}sign(N)(S∗ − S) and 1{n 6=0}sign(N)(S∗ − S)∆. Therefore

lim
α→+∞

ℜ 〈Ψα, [1{n 6=0}sign(N)(S∗ − S)]Ψα〉 = 0,

lim
α→+∞

ℜ 〈Ψα,∆[1{n 6=0}sign(N)(S∗ − S)]Ψα〉 = 0,

lim
α→+∞

ℜ 〈Ψα, [1{n 6=0}sign(N)(S∗ − S)]∆Ψα〉 = 0.

We compute
[

tanh(α)1{n 6=0}sign(N)(S∗ − S)
]2

using (5.39) and (5.40):

(5.45)2 = tanh2(α)
[

1{n 6=0}(S
2 + (S∗)2 − 2) + 1{n=−1}(1− (S∗)2) + 1{n=+1}(S

2 − 1)
]

.

Thus squaring cosh(α)−1HFα given by (5.44)-(5.45) and recalling that ∆(4−∆) = 2−S2−(S∗)2

we get
cosh(α)−2H2

Fα
= ∆(∆− 4) + 4− tanh2(α)∆(4−∆) + Pα,

where Pα is a bounded operator satisfying

lim
α→∞

ℜ 〈Ψα, PαΨα〉 = 0.
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Rearranging and recalling that HFαΨα = EΨα yields (5.35) as required. �

6. Appendix : Technical calculations

The Appendix is devoted to proving the key relations (3.13) and (5.3) that appear in
Propositions 3.1 and 5.1 respectively. Recall that for B ⊂ Zd, 1B denotes the projector onto
B. We start with the proof of the multi-dimensional formula

(6.1)

〈

φ, [eFA′eF ,∆]φ
〉

=
〈

φF , [A
′,∆]φF

〉

− 2
∥

∥

√
gA′φF

∥

∥

2

−
d

∑

i=1

∥

∥

√

∆i(4−∆i)WiφF
∥

∥

2
+ 2−1

〈

φF , (L+M+ G)φF
〉

,

where φ ∈ ℓ0(Z
d) and φF := eFφ. To jump to the proof of the 1d relation, go to (6.12).

Proof. It is understood that the operators are calculated and the commutators developed
against φ ∈ ℓ0(Z

d), so we omit the φ for ease of notation. Usual commutation relations give

(6.2) [eFA′eF ,∆] = eF [A′,∆]eF + eFA′[eF ,∆] + [eF ,∆]A′eF .

We now concentrate on the second and third terms on the right side of the latter relation. The
goal is to pop out eFA′gA′eF and control the remainder. As pointed out in [FH] and [CFKS],
this is the key quantity to single out. The following commutators will be used repeatedly:

(6.3) [eF , Si] = −(τie
F − eF )Si = Si(τ

∗
i e
F − eF ) = −eFϕℓiSi = Siϕrie

F ,

(6.4) [eF , S∗
i ] = −(τ∗i e

F − eF )S∗
i = S∗

i (τie
F − eF ) = −eFϕriS∗

i = S∗
i ϕℓie

F .

Part 1 : Creating eFA′gA′eF in a first way. We have

[eF ,∆i] = ϕrie
FS∗

i + ϕℓie
FSi

= griNie
FS∗

i + ϕri1{ni=0}e
FS∗

i + ϕℓie
FSi

= griNie
F (S∗

i − Si) + ϕri1{ni=0}e
F (S∗

i − Si) +
(

ϕri + ϕℓi
)

eFSi

= griNi(S
∗
i − Si)e

F + griNi[e
F , (S∗

i − Si)] + ϕri1{ni=0}e
F (S∗

i − Si) +
(

ϕri + ϕℓi
)

eFSi

= gNi(S
∗
i − Si)e

F + (gri − g)Ni(S
∗
i − Si)e

F + ϕri1{ni=0}(S
∗
i − Si)e

F

+ ϕri [e
F , (S∗

i − Si)] +
(

ϕri + ϕℓi
)

eFSi

= gA′
ie
F − 2−1g(S∗

i + Si)e
F + (gri − g)Ni(S

∗
i − Si)e

F + ϕri1{ni=0}(S
∗
i − Si)e

F

+ ϕri [e
F , (S∗

i − Si)] +
(

ϕri + ϕℓi
)

eFSi.

[eF ,∆i] = −SieFϕri − S∗
i e
Fϕℓi

= −SieFNigri − Sie
Fϕri1{ni=0} − S∗

i e
Fϕℓi

= (S∗
i − Si)e

FNigri + (S∗
i − Si)e

Fϕri1{ni=0} − S∗
i e
F
(

ϕri + ϕℓi
)

= eF (S∗
i − Si)Nigri + [(S∗

i − Si), e
F ]Nigri + (S∗

i − Si)e
Fϕri1{ni=0} − S∗

i e
F
(

ϕri + ϕℓi
)

= eF (S∗
i − Si)Nig + eF (S∗

i − Si)Ni(gri − g) + eF (S∗
i − Si)ϕri1{ni=0}

− [eF , (S∗
i − Si)]ϕri − S∗

i e
F
(

ϕri + ϕℓi
)

= eFA′
ig + 2−1eF (S∗

i + Si)g + eF (S∗
i − Si)Ni(gri − g) + eF (S∗

i − Si)ϕri1{ni=0}

− [eF , (S∗
i − Si)]ϕri − S∗

i e
F
(

ϕri + ϕℓi
)

.
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Therefore we have obtained

(6.5) eFA′[eF ,∆] + [eF ,∆]A′eF = 2eFA′gA′eF + eF (Lr +Mr +Gr +Hr)e
F , where

Lr :=
∑

i,j

A′
i(grj − g)Nj(S

∗
j − Sj) + (S∗

i − Si)Ni(gri − g)A′
j ,

Mr := 2−1
∑

i,j

−A′
ig(S

∗
j + Sj) + (S∗

i + Si)gA
′
j ,

Gr :=
∑

i,j

A′
i

(

ϕrj [e
F , (S∗

j − Sj)]e
−F +

(

ϕrj + ϕℓj
)

eFSje
−F

)

−
∑

i,j

(

e−F [eF , (S∗
i − Si)]ϕri + e−FS∗

i e
F
(

ϕri + ϕℓi
))

A′
j , and

Hr :=
∑

i,j

A′
iϕrj1{nj=0}(S

∗
j − Sj) + (S∗

i − Si)ϕri1{ni=0}Aj .

We split Mr as follows: Mr =Mr;1 +Mr;2, where

Mr;1 := 2−1
∑

i 6=j

−A′
ig(S

∗
j + Sj) + (S∗

i + Si)gA
′
j ,

Mr;2 := 2−1
∑

i

−A′
ig(S

∗
i + Si) + (S∗

i + Si)gA
′
i =Mr;2;1 +Mr;2;2, with

Mr;2;1 := 2−1
∑

i

−A′
igri(S

∗
i + Si) + (S∗

i + Si)griA
′
i,

Mr;2;2 := 2−1
∑

i

−A′
i(g − gri)(S

∗
i + Si) + (S∗

i + Si)(g − gri)A
′
i.

We calculate Mr;1 by expanding A′
i and A′

j :

Mr;1 := 2−1
∑

i 6=j

−Ni(S
∗
i − Si)g(S

∗
j + Sj) + (S∗

i + Si)gNj(S
∗
j − Sj)

= 2−1
∑

i 6=j

−Ni

[

(τ∗i g)S
∗
i − (τig)Si

]

(S∗
j + Sj) +

[

(τ∗i (gNj))S
∗
i + (τi(gNj))Si

]

(S∗
j − Sj)

=
1

2

∑

i 6=j

Ni

[

τig − τjg
]

SiSj +Ni

[

τ∗j g − τ∗i g
]

S∗
i S

∗
j

+
[

Ni(τjg − τ∗i g) +Nj(τjg − τ∗i g)
]

S∗
i Sj .

(‡2)

79



Again expanding A′
i:

Mr;2;1 = 2−1
∑

i

(S∗
i + Si)gri(S

∗
i + Si)− (S∗

i − Si)ϕri1{ni 6=0}(S
∗
i + Si)

+ 2−1
∑

i

(S∗
i + Si)ϕri1{ni 6=0}(S

∗
i − Si)

=
∑

i

2−1(S∗
i + Si)gri(S

∗
i + Si) + SiϕriS

∗
i − S∗

i ϕriSi

+
(

S∗
i ϕri1{ni=0}Si − Siϕri1{ni=0}S

∗
i

)

=Mr;2;1;1 +Mr;2;1;2, where

Mr;2;1;1 :=
∑

i

2−1(S∗
i + Si)gri(S

∗
i + Si) + (τiϕri − τ∗i ϕri),

(‡1,‡3)

Mr;2;1;2 :=
∑

i

(τ∗i ϕri)1{ni=−1} − (τiϕri)1{ni=+1}.

We calulate Gr. We note that
(6.6)
(τiϕri)ϕℓi = ϕℓi(τiϕri) = −(τiϕri + ϕℓi), and (τ∗i ϕℓi)ϕri = ϕri(τ

∗
i ϕℓi) = −(τ∗i ϕℓi + ϕri).

Gr :=
∑

i,j

A′
i

(

ϕrj
(

S∗
jϕℓj − Sjϕrj

)

+
(

ϕrj + ϕℓj
)

Sj
(

ϕrj + 1
))

−
∑

i,j

((

− ϕriS
∗
i + ϕℓiSi

)

ϕri +
(

ϕri + 1
)

S∗
i

(

ϕri + ϕℓi
))

A′
j

=
∑

i,j

A′
i

(

S∗
j (τjϕrj )ϕℓj − Sj(τ

∗
j ϕrj )ϕrj + Sj(τ

∗
j ϕrj )(ϕrj + 1) + Sj(τ

∗
j ϕℓj )(ϕrj + 1)

)

+
∑

i,j

(ϕri(τ
∗
i ϕri)S

∗
i − ϕℓi(τiϕri)Si − (ϕri + 1)(τ∗i ϕri)S

∗
i − (ϕri + 1)(τ∗i ϕℓi)S

∗
i )A

′
j

=
∑

i,j

A′
i

(

−S∗
j (ϕℓj + τjϕrj ) + Sj(τ

∗
j ϕrj − ϕrj )

)

+
∑

i,j

((ϕri − τ∗i ϕri)S
∗
i + (ϕℓi + τiϕri)Si)A

′
j

= Gr;1 +Gr;2, where

Gr;1 :=
∑

i,j

A′
iSj(τ

∗
j ϕrj − ϕrj ) + (ϕri − τ∗i ϕri)S

∗
i A

′
j ,
(‡3)

Gr;2 :=
∑

i,j

−A′
iS

∗
j (ϕℓj + τjϕrj ) + (ϕℓi + τiϕri)SiA

′
j .
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To end this section we note that we are left to deal with Lr +Mr;2;1;2 +Mr;2;2 +Gr;2 +Hr.
Part 2 : Creating eFA′gA′eF a second way. We repeat the calculation with a variation.

[eF ,∆i] = ϕℓie
FSi + ϕrie

FS∗
i

= gℓiNie
FSi + ϕℓi1{ni=0}e

FSi + ϕrie
FS∗

i

= −gℓiNie
F (S∗

i − Si) + ϕℓi1{ni=0}e
F (Si − S∗

i ) +
(

ϕri + ϕℓi
)

eFS∗
i

= −gℓiNi(S
∗
i − Si)e

F − gℓiNi[e
F , (S∗

i − Si)] + ϕℓi1{ni=0}e
F (Si − S∗

i ) +
(

ϕri + ϕℓi
)

eFS∗
i

= gNi(S
∗
i − Si)e

F − (gℓi + g)Ni(S
∗
i − Si)e

F + ϕℓi1{ni=0}(Si − S∗
i )e

F

− ϕℓi [e
F , (S∗

i − Si)] +
(

ϕri + ϕℓi
)

eFS∗
i

= gA′
ie
F − 2−1g(S∗

i + Si)e
F − (gℓi + g)Ni(S

∗
i − Si)e

F + ϕℓi1{ni=0}(Si − S∗
i )e

F

− ϕℓi [e
F , (S∗

i − Si)] +
(

ϕri + ϕℓi
)

eFS∗
i .

[eF ,∆i] = −S∗
i e
Fϕℓi − Sie

Fϕri

= −S∗
i e
FNigℓi − S∗

i e
Fϕℓi1{ni=0} − Sie

Fϕri

= −(S∗
i − Si)e

FNigℓi + (Si − S∗
i )e

Fϕℓi1{ni=0} − Sie
F
(

ϕri + ϕℓi
)

= −eF (S∗
i − Si)Nigℓi − [(S∗

i − Si), e
F ]Nigℓi + (Si − S∗

i )e
Fϕℓi1{ni=0} − Sie

F
(

ϕri + ϕℓi
)

= eF (S∗
i − Si)Nig − eF (S∗

i − Si)Ni(gℓi + g) + eF (Si − S∗
i )ϕℓi1{ni=0}

+ [eF , (S∗
i − Si)]ϕℓi − Sie

F
(

ϕri + ϕℓi
)

= eFA′
ig + 2−1eF (S∗

i + Si)g − eF (S∗
i − Si)Ni(gℓi + g) + eF (Si − S∗

i )ϕℓi1{ni=0}

+ [eF , (S∗
i − Si)]ϕℓi − Sie

F
(

ϕri + ϕℓi
)

Therefore we have obtained

(6.7) eFA′[eF ,∆] + [eF ,∆]A′eF = 2eFA′gA′eF + eF (Lℓ +Mℓ +Gℓ +Hℓ)e
F , where

Lℓ := −
∑

i,j

A′
i(gℓj + g)Nj(S

∗
j − Sj) + (S∗

i − Si)Ni(gℓi + g)A′
j ,

Mℓ := 2−1
∑

i,j

−A′
ig(S

∗
j + Sj) + (S∗

i + Si)gA
′
j ,

Gℓ :=
∑

i,j

A′
i

(

−ϕℓj [eF , (S∗
j − Sj)]e

−F +
(

ϕrj + ϕℓj
)

eFS∗
j e

−F
)

+
∑

i,j

(

e−F [eF , (S∗
i − Si)]ϕℓi − e−FSie

F
(

ϕri + ϕℓi
))

A′
j , and

Hℓ :=
∑

i,j

A′
iϕℓj1{nj=0}(Sj − S∗

j ) + (Si − S∗
i )ϕℓi1{ni=0}A

′
j .

We split Mℓ as follows: Mℓ :=Mℓ;1 +Mℓ;2, where

Mℓ;1 := 2−1
∑

i 6=j

−A′
ig(S

∗
j + Sj) + (S∗

i + Si)gA
′
j ,

Mℓ;2 := 2−1
∑

i

−A′
ig(S

∗
i + Si) + (S∗

i + Si)gA
′
i =Mℓ;2;1 +Mℓ;2;2, with
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Mℓ;2;1 := 2−1
∑

i

A′
igℓi(S

∗
i + Si)− (S∗

i + Si)gℓiA
′
i,

Mℓ;2;2 := 2−1
∑

i

−A′
i(g + gℓi)(S

∗
i + Si) + (S∗

i + Si)(g + gℓi)A
′
i.

We calculate Mℓ;1 by expanding A′
i and A′

j :

Mℓ;1 = 2−1
∑

i 6=j

−Ni(S
∗
i − Si)g(S

∗
j + Sj) + (S∗

i + Si)gNj(S
∗
j − Sj)

= 2−1
∑

i 6=j

−Ni

[

(τ∗i g)S
∗
i − (τig)Si

]

(S∗
j + Sj) +

[

(τ∗i (gNj))S
∗
i + (τi(gNj))Si

]

(S∗
j − Sj)

=
1

2

∑

i 6=j

Ni

[

τig − τjg
]

SiSj +Ni

[

τ∗j g − τ∗i g
]

S∗
i S

∗
j

+
[

Ni(τjg − τ∗i g) +Nj(τjg − τ∗i g)
]

S∗
i Sj .

(‡2)

Again expanding A′
i:

Mℓ;2;1 = 2−1
∑

i

−(S∗
i + Si)gℓi(S

∗
i + Si) + (S∗

i − Si)ϕℓi1{ni 6=0}(S
∗
i + Si)

− 2−1
∑

i

(S∗
i + Si)ϕℓi1{ni 6=0}(S

∗
i − Si)

=
∑

i

−2−1(S∗
i + Si)gℓi(S

∗
i + Si) + S∗

i ϕℓiSi − SiϕℓiS
∗
i

+
(

Siϕℓi1{ni=0}S
∗
i − S∗

i ϕℓi1{ni=0}Si
)

=Mℓ;2;1;1 +Mℓ;2;1;2, where

Mℓ;2;1;1 :=
∑

i

−2−1(S∗
i + Si)gℓi(S

∗
i + Si) + (τ∗i ϕℓi − τiϕℓi),

(‡1,‡3)

Mℓ;2;1;2 :=
∑

i

(τiϕℓi)1{ni=+1} − (τ∗i ϕℓi)1{ni=−1}.

We calculate Gℓ:

Gℓ :=
∑

i,j

A′
i

(

−ϕℓj
(

S∗
jϕℓj − Sjϕrj

)

+
(

ϕrj + ϕℓj
)

S∗
j

(

ϕℓj + 1
))

+
∑

i,j

((

− ϕriS
∗
i + ϕℓiSi

)

ϕℓi −
(

ϕℓi + 1
)

Si
(

ϕri + ϕℓi
))

A′
j

=
∑

i,j

A′
i

(

−S∗
j (τjϕℓj )ϕℓj + Sj(τ

∗
j ϕℓj )ϕrj + S∗

j (τjϕrj )(ϕℓj + 1) + S∗
j (τjϕℓj )(ϕℓj + 1)

)

+
∑

i,j

(−ϕri(τ∗i ϕℓi)S∗
i + ϕℓi(τiϕℓi)Si − (ϕℓi + 1)(τiϕri)Si − (ϕℓi + 1)(τiϕℓi)Si)A

′
j

=
∑

i,j

A′
i

(

S∗
j (τjϕℓj − ϕℓj )− Sj(τ

∗
j ϕℓj + ϕrj )

)

+
∑

i,j

((ϕℓi − τiϕℓi)Si + (τ∗i ϕℓi + ϕri)S
∗
i )A

′
j

= Gℓ;1 +Gℓ;2, where
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Gℓ;1 :=
∑

i,j

A′
iS

∗
j (τjϕℓj − ϕℓj ) + (ϕℓi − τiϕℓi)SiA

′
j ,
(‡3)

Gℓ;2 :=
∑

i,j

−A′
iSj(τ

∗
j ϕℓj + ϕrj ) + (τ∗i ϕℓi + ϕri)S

∗
i A

′
j .

Note that we are left to deal with Lℓ +Mℓ;2;1;2 +Mℓ;2;2 +Gℓ;2 +Hℓ.
Part 3 : Adding the terms of Parts 1 and 2. Take the average of (6.5) and (6.7):

(6.8)
[eFA′eF ,∆] = eF [A′,∆]eF + 2eFA′gA′eF

+ 2−1eF (Lr + Lℓ +Mr +Mℓ +Gr +Gℓ +Hr +Hℓ) e
F .

Applying φ ∈ ℓ0(Z
d) to this equation and taking inner products leads to (6.1). We go into

details. The terms that still have to be dealt with are Lr +Mr;2;1;2 +Mr;2;2 +Gr;2 +Hr from
the first part and Lℓ +Mℓ;2;1;2 +Mℓ;2;2 +Gℓ;2 +Hℓ from the second part. Since

(τ∗i ϕri − τ∗i ϕℓi)1{ni=−1}φ = (τiϕℓi − τiϕri)1{ni=+1}φ = 0, and (ϕri − ϕℓi)1{ni=0}φ = 0,

it follows that
(Mr;2;1;2 +Mℓ;2;1;2)φ = 0, and (Hr +Hℓ)φ = 0.

We add Lr and Lℓ and define this to be L:

(6.9)

L := Lr + Lℓ =
∑

i,j

A′
i[(grj − g)− (gℓj + g)]Nj(S

∗
j − Sj)

+
∑

i,j

(S∗
i − Si)Ni[(gri − g)− (gℓi + g)]A′

j .
(‡4)

We add Mr;2;2 and Mℓ;2;2:

Mr;2;2+Mℓ;2;2 = 2−1
∑

i

A′
i[(gri −g)− (gℓi +g)](S

∗
i +Si)− (S∗

i +Si)[(gri −g)− (gℓi +g)]A
′
i.
(‡4)

We can now define M:

(6.10) M :=Mr +Mℓ =Mr;1 +Mr;2;1;1 +Mℓ;1 +Mℓ;2;1;1 + (Mr;2;2 +Mℓ;2;2).

The final step is to add Gr;2 and Gℓ;2:

Gr;2 +Gℓ;2 =
∑

i,j

−AiS∗
j (ϕℓj + τjϕrj ) + (ϕℓi + τiϕri)SiAj

+
∑

i,j

−AiSj(τ∗j ϕℓj + ϕrj ) + (τ∗i ϕℓi + ϕri)S
∗
i Aj

= −
∑

i,j

[2−1(S∗
i + Si) +Ni(S

∗
i − Si)]S

∗
j (ϕℓj + τjϕrj )

+
∑

i,j

(ϕℓi + τiϕri)Si[−2−1(S∗
j + Sj) + (S∗

j − Sj)Nj ]

−
∑

i,j

[2−1(S∗
i + Si) +Ni(S

∗
i − Si)]Sj(τ

∗
j ϕℓj + ϕrj )

+
∑

i,j

(τ∗i ϕℓi + ϕri)S
∗
i [−2−1(S∗

j + Sj) + (S∗
j − Sj)Nj ]

= G1 +G2 +G3 +G4 +G5 +G6, where
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G1 :=
∑

i,j

−NiS
∗
i S

∗
j (ϕℓj + τjϕrj ) + (τ∗i ϕℓi + ϕri)S

∗
i S

∗
jNj ,

G2 :=
∑

i,j

NiSiSj(τ
∗
j ϕℓj + ϕrj )− (ϕℓi + τiϕri)SiSjNj ,

G3 :=
∑

i,j

NiSiS
∗
j (ϕℓj+τjϕrj )−NiS

∗
i Sj(τ

∗
j ϕℓj+ϕrj )−(τ∗i ϕℓi+ϕri)S

∗
i SjNj+(ϕℓi+τiϕri)SiS

∗
jNj ,

G4 := −2−1
∑

i,j

S∗
i S

∗
j (ϕℓj + τjϕrj ) + (τ∗i ϕℓi + ϕri)S

∗
i S

∗
j ,

G5 := −2−1
∑

i,j

(ϕℓi + τiϕri)SiSj + SiSj(τ
∗
j ϕℓj + ϕrj ),

G6 := −2−1
∑

i,j

SiS
∗
j (ϕℓj + τjϕrj )+ (ϕℓi + τiϕri)SiS

∗
j +S

∗
i Sj(τ

∗
j ϕℓj +ϕrj )+ (τ∗i ϕℓi +ϕri)S

∗
i Sj .

We calculate Gi for i = 1...6. G1 = G1;1 +G1;2 +G1;3, with

G1;1 :=
∑

i,j

[(τ∗j ϕℓj − τ∗i τ
∗
j ϕℓj ) + (ϕrj − τ∗i ϕrj )]NiS

∗
i S

∗
j ,

(‡3)

G1;2 :=
∑

i 6=j

(τ∗i ϕℓi + ϕri)S
∗
i S

∗
j and G1;3 := 2

∑

i

(τ∗i ϕℓi + ϕri)(S
∗
i )

2.

G2 = G2;1 +G2;2 +G2;3, where

G2;1 :=
∑

i,j

[(τiϕℓj − ϕℓj ) + (τiτjϕrj − τjϕrj )]NiSiSj ,
(‡3)

G2;2 :=
∑

i 6=j

(ϕℓi + τiϕri)SiSj and G2;3 := 2
∑

i

(ϕℓi + τiϕri)(Si)
2.

G3 =
∑

i 6=j

NiSiS
∗
j (ϕℓj + τjϕrj )−NiS

∗
i Sj(τ

∗
j ϕℓj + ϕrj )

− (τ∗i ϕℓi + ϕri)S
∗
i SjNj + (ϕℓi + τiϕri)SiS

∗
jNj

+
∑

i

Ni(ϕℓi + τiϕri)−Ni(τ
∗
i ϕℓi + ϕri)− (τ∗i ϕℓi + ϕri)Ni + (ϕℓi + τiϕri)Ni

=
∑

i 6=j

(τiτ
∗
j ϕℓj + τiϕrj )NiSiS

∗
j − (τ∗i ϕℓj + τ∗i τjϕrj )NiS

∗
i Sj

+
∑

i 6=j

−(τ∗i ϕℓi + ϕri)NjS
∗
i Sj + (ϕℓi + τiϕri)NjSiS

∗
j

+
∑

i 6=j

(τ∗i ϕℓi + ϕri)S
∗
i Sj + (ϕℓi + τiϕri)SiS

∗
j + 2

∑

i

[(ϕℓi − τ∗i ϕℓi) + (τiϕri − ϕri)]Ni

= G3;1 +G3;2 +G3;3, where

G3;1 :=
∑

i 6=j

[(τiτ
∗
j ϕℓj−τ∗j ϕℓj )+(τiϕrj−ϕrj )]NiSiS

∗
j+[(ϕℓj−τ∗i ϕℓj )+(τjϕrj−τ∗i τjϕrj )]NiS

∗
i Sj ,

(‡3)

G3;2 :=
∑

i 6=j

(τ∗i ϕℓi + ϕri)S
∗
i Sj + (ϕℓi + τiϕri)SiS

∗
j ,
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G3;3 := 2
∑

i

[(ϕℓi − τ∗i ϕℓi) + (τiϕri − ϕri)]Ni.
(‡3)

G4 = −2−1
∑

i,j

[(τ∗i τ
∗
j ϕℓj + τ∗i ϕrj ) + (τ∗i ϕℓi + ϕri)]S

∗
i S

∗
j = G4;1 +G4;2, with

G4;1 := −2−1
∑

i 6=j

[(τ∗i τ
∗
j ϕℓj + τ∗i ϕrj ) + (τ∗i ϕℓi + ϕri)]S

∗
i S

∗
j ,

G4;2 := −2−1
∑

i

[(τ∗i τ
∗
i ϕℓi + τ∗i ϕri) + (τ∗i ϕℓi + ϕri)](S

∗
i )

2.

G5 = −2−1
∑

i,j

[(ϕℓi + τiϕri) + (τiϕℓj + τiτjϕrj )]SiSj = G5;1 +G5;2, with

G5;1 = −2−1
∑

i 6=j

[(ϕℓi + τiϕri) + (τiϕℓj + τiτjϕrj )]SiSj ,

G5;2 = −2−1
∑

i

[(ϕℓi + τiϕri) + (τiϕℓi + τiτiϕri)](Si)
2.

G6 = −2−1
∑

i,j

[(τiτ
∗
j ϕℓj + τiϕrj ) + (ϕℓi + τiϕri)]SiS

∗
j + [(τ∗i ϕℓj + τ∗i τjϕrj ) + (τ∗i ϕℓi + ϕri)]S

∗
i Sj

= G6;1 +G6;2, with

G6;1 := −2−1
∑

i 6=j

[(τiτ
∗
j ϕℓj +τiϕrj )+(ϕℓi+τiϕri)]SiS

∗
j +[(τ∗i ϕℓj +τ

∗
i τjϕrj )+(τ∗i ϕℓi+ϕri)]S

∗
i Sj ,

G6;2 := −
∑

i

(ϕℓi + τiϕri) + (τ∗i ϕℓi + ϕri).

We add G1;2 and G4;1:

G1;2 +G4;1 =
∑

i 6=j

(τ∗i ϕℓi + ϕri)S
∗
i S

∗
j − 2−1

∑

i 6=j

[(τ∗i τ
∗
j ϕℓj + τ∗i ϕrj ) + (τ∗i ϕℓi + ϕri)]S

∗
i S

∗
j

= 2−1
∑

i 6=j

[(τ∗j ϕℓj − τ∗i τ
∗
j ϕℓj ) + (ϕrj − τ∗i ϕrj )]S

∗
i S

∗
j .

(‡3)

We add G1;3 and G4;2:

G1;3 +G4;2 = 2
∑

i

(τ∗i ϕℓi + ϕri)(S
∗
i )

2 − 2−1
∑

i

[(τ∗i τ
∗
i ϕℓi + τ∗i ϕri) + (τ∗i ϕℓi + ϕri)](S

∗
i )

2

= G7 +G8, where

G7 := 2−1
∑

i

[(τ∗i ϕℓi − τ∗i τ∗i ϕℓi)+ (ϕri − τ∗i ϕri)](S∗
i )

2 (‡3) and G8 :=
∑

i

(τ∗i ϕℓi +ϕri)(S
∗
i )

2.

We add G2;2 and G5;1:

G2;2 +G5;1 =
∑

i 6=j

(ϕℓi + τiϕri)SiSj − 2−1
∑

i 6=j

[(ϕℓi + τiϕri) + (τiϕℓj + τiτjϕrj )]SiSj

= 2−1
∑

i 6=j

[(ϕℓj − τiϕℓj ) + (τjϕrj − τiτjϕrj )]SiSj .
(‡3)
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We add G2;3 and G5;2:

G2;3 +G5;2 = 2
∑

i

(ϕℓi + τiϕri)(Si)
2 − 2−1

∑

i

[(ϕℓi + τiϕri) + (τiϕℓi + τiτiϕri)](Si)
2

= G9 +G10, where

G9 := 2−1
∑

i

[(ϕℓi − τiϕℓi) + (τiϕri − τiτiϕri)](Si)
2 (‡3) and G10 :=

∑

i

(ϕℓi + τiϕri)(Si)
2.

We add G3;2 and G6;1:

G3;2+G6;1 = −2−1
∑

i 6=j

[(τiτ
∗
j ϕℓj−τ∗j ϕℓj )+(τiϕrj−ϕrj )+(τ∗j ϕℓi−ϕℓi)+(τ∗j τiϕri−τiϕri)]SiS∗

j .
(‡3)

We are left to deal with G6;2, G8 and G10:

G8 +G10 +G6;2 =
∑

i

(τ∗i ϕℓi + ϕri)S
∗
i S

∗
i + (ϕℓi + τiϕri)SiSi − (ϕℓi + τiϕri)− (τ∗i ϕℓi + ϕri)

=
∑

i

(τ∗i ϕℓi + ϕri)((S
∗
i )

2 − 1) + (ϕℓi + τiϕri)((Si)
2 − 1)

=
∑

i

[(τ∗i ϕℓi − ϕℓi) + (ϕri − τiϕri)]((S
∗
i )

2 − 1)

+ (ϕℓi + τiϕri)((S
∗
i )

2 + S2
i − 2)

= G11 +G12, where

G11 :=
∑

i

[(τ∗i ϕℓi − ϕℓi) + (ϕri − τiϕri)]((S
∗
i )

2 − 1)(‡3)

and

G12 := −2
∑

i

(cosh(τiF − F )− 1)∆i(4−∆i).

Let WF ;i :=
√

cosh(τiF − F )− 1. Commuting WF ;i with ∆i gives

WF ;i∆i = ∆iWF ;i + Si
(

WF ;i − τ∗iWF ;i

)

+ S∗
i

(

WF ;i − τiWF ;i

)

.

Thus

W 2
F ;i∆i(4−∆i) =WF ;i∆i(4−∆i)WF ;i +RF ;i, where

RF ;i := −WF ;i∆iSi
(

WF ;i − τ∗i WF ;i

)

−WF ;i∆iS
∗
i

(

WF ;i − τiWF ;i

)

+WF ;iSi
(

WF ;i − τ∗i WF ;i

)

(4−∆i) +WF ;iS
∗
i

(

WF ;i − τiWF ;i

)

(4−∆i)
‡5 .

A final accounting job gives the expression of G:

(6.11)

G := Gr;1 +Gℓ;1 +G1;1 +G2;1 +G3;1 +G3;3 + (G1;2 +G4;1)

+G7 + (G2;2 +G5;1) +G9 + (G3;2 +G6;1) +G11 − 2
∑

i

RF ;i,

or equivalently, G = Gr +Gℓ + 2
∑

iWF ;i∆i(4−∆i)WF ;i. �

∗ ∗ ∗
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We now turn to the proof of relation (5.3) that is key in Proposition 5.1. Here d = 1. For
convenience we rewrite the relation we want to show. For φ ∈ ℓ0(Z), φF := eFφ :

(6.12)

〈

φ, [eFA′eF ,∆]φ
〉

=
〈

φF , [A
′,∆]φF

〉

−
∥

∥

√
gr − gℓA

′φF
∥

∥

2

−
∥

∥

√

∆(4−∆)WφF
∥

∥

2
+ 2−1

〈

φF , (M +G)φF
〉

, where

(6.13) W =WF :=
√

cosh(τF − F )− 1,

(6.14)
M =MF := 2−1(S∗ + S)(gr − gℓ)(S

∗ + S)

+
[

(τ∗ϕℓ − ϕℓ) + (ϕℓ − τϕℓ) + (τϕr − ϕr) + (ϕr − τ∗ϕr)
]

, and

G = GF := A′S(τ∗ϕr − ϕr) + (ϕr − τ∗ϕr)S
∗A′ +A′S∗(τϕℓ − ϕℓ) + (ϕℓ − τϕℓ)SA

′

+
[

(τ∗ϕℓ − τ∗2ϕℓ) + (ϕr − τ∗ϕr)
]

NS∗2 +
[

(τ2ϕr − τϕr) + (τϕℓ − ϕℓ)
]

NS2

+
1

2

[

(τ∗ϕℓ − τ∗2ϕℓ) + (ϕr − τ∗ϕr)
]

(S∗)2 +
1

2

[

(τϕr − τ2ϕr) + (ϕℓ − τϕℓ)
]

S2

+ 2
[

(ϕℓ − τ∗ϕℓ) + (τϕr − ϕr)
]

N +
[

(τ∗ϕℓ − ϕℓ) + (ϕr − τϕr)
]

((S∗)2 − 1)

+ 2WF∆S
(

WF −Wτ∗F

)

+ 2WF∆S
∗
(

WF −WτF

)

− 2WFS
(

WF −Wτ∗F

)

(4−∆)− 2WFS
∗
(

WF −WτF

)

(4−∆).

(6.15)

Proof of (6.12). For the most part, the proof of this relation is the same as that of (6.1)
when d > 1. However, the main difference is that here we do not introduce the function
g(n) := F ′(〈n〉)/〈n〉. We go over the proof done just above and point out the differences. As
before we start with

[eFA′eF ,∆] = eF [A′,∆]eF + eFA′[eF ,∆] + [eF ,∆]A′eF

and develop the last two terms of this relation.
Part 1 : Creating eFA′grA

′eF .

[eF ,∆] = grA
′eF − 1

2
gr(S

∗ + S)eF + ϕr1{n=0}(S
∗ − S)eF + ϕr[e

F , (S∗ − S)] +
(

ϕr + ϕℓ
)

eFS.

[eF ,∆] = eFA′gr +
1

2
eF (S∗ +S)gr + eF (S∗ −S)ϕr1{n=0} − [eF , (S∗ −S)]ϕr −S∗eF

(

ϕr +ϕℓ
)

.

Therefore we have obtained

(6.16) eFA′[eF ,∆] + [eF ,∆]A′eF = 2eFA′grA
′eF + eF (Mr +Gr +Hr)e

F , where

Mr := −2−1A′gr(S
∗ + S) + 2−1(S∗ + S)grA

′,

Gr := A′ϕr[e
F , (S∗ − S)]e−F +A′

(

ϕr + ϕℓ
)

eFSe−F

− e−F [eF , (S∗ − S)]ϕrA
′ − e−FS∗eF

(

ϕr + ϕℓ
)

A′, and

Hr := A′ϕr1{n=0}(S
∗ − S) + (S∗ − S)ϕr1{n=0}A

′.
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We calculate Mr:

Mr = −1

2

(

−1

2
(S∗ + S) + (S∗ − S)N

)

gr(S
∗ + S) +

1

2
(S∗ + S) gr

(

1

2
(S∗ + S) +N(S∗ − S)

)

= 2−1(S∗ + S)gr(S
∗ + S)− 2−1 (S∗ − S)ϕr1{n 6=0} (S

∗ + S)

+ 2−1 (S∗ + S)ϕr1{n 6=0} (S
∗ − S)

= 2−1(S∗ + S)gr(S
∗ + S) + (SϕrS

∗ − S∗ϕrS) +
(

S∗ϕr1{n=0}S − Sϕr1{n=0}S
∗
)

=Mr;1 +Mr;2, where

Mr;1 := 2−1(S∗+S)gr(S
∗+S)+

[

(τϕr−ϕr)+(ϕr−τ∗ϕr)
]

and Mr;2 := ϕr(0)
(

1{n=−1} − 1{n=1}

)

.

Part 2 : Creating eFA′gℓA
′eF .

[eF ,∆] = −gℓA′eF +
1

2
gℓ(S

∗+S)eF −ϕℓ1{n=0}(S
∗−S)eF −ϕℓ[eF , (S∗−S)]+

(

ϕr+ϕℓ
)

eFS∗.

[eF ,∆] = −eFA′gℓ−
1

2
eF (S∗ +S)gℓ− eF (S∗ −S)ϕℓ1{n=0} − [(S∗ −S), eF ]ϕℓ−SeF

(

ϕr +ϕℓ
)

.

Therefore we have obtained

(6.17) eFA′[eF ,∆] + [eF ,∆]A′eF = −2eFA′gℓA
′eF + eF (Mℓ +Gℓ +Hℓ)e

F , where

Mℓ := 2−1A′gℓ(S
∗ + S)− 2−1(S∗ + S)gℓA

′,

Gℓ := −A′ϕℓ[e
F , (S∗ − S)]e−F +A′

(

ϕr + ϕℓ
)

eFS∗e−F

+ e−F [eF , (S∗ − S)]ϕℓA
′ − e−FSeF

(

ϕr + ϕℓ
)

A′, and

Hℓ := −A′ϕℓ1{n=0}(S
∗ − S)− (S∗ − S)ϕℓ1{n=0}A

′.

We calculate Mℓ:

Mℓ =Mℓ;1 +Mℓ;2, where

Mℓ;1 := −2−1(S∗+S)gℓ(S
∗+S)+

[

(τ∗ϕℓ−ϕℓ)+(ϕℓ−τϕℓ)
]

and Mℓ;2 := ϕℓ(0)
(

1{n=1} − 1{n=−1}

)

.

Part 3 : Adding the terms of Parts 1 and 2. Take the average of (6.16) and (6.17) to
get :

[eFA′eF ,∆] = eF [A′,∆]eF + eFA′(gr − gℓ)A
′eF + 2−1eF (Mr +Mℓ +Gr +Gℓ +Hr +Hℓ) e

F .

Applying φ ∈ ℓ0(Z) to this equation and taking inner products will yield (6.12). Let us
elaborate exactly how this is achieved. First, let

M :=Mr +Mℓ =Mr;1 +Mℓ;1.

The latter equality holds because (Mr;2 +Mℓ;2)φ = 0. Second, note that Gr, Gℓ, Hr and
Hℓ are exactly the same as in the preceding proof when i = j = 1, which corresponds to
d = 1. These terms are handled in the same way. In particular (Hr +Hℓ)φ = 0. Finally, we
investigate G. Referring to the preceding proof with i = j = 1, let

G := Gr;1 +Gℓ;1 +G1;1 +G2;1 +G3;3 +G7 +G9 +G11 − 2RF ;1.

Terms that do not contribute here are: G3;1, G1;2+G4;1, G2;2+G5;1, G3;2+G6;1. We warn the
careful reader that G is not simply Gr +Gℓ, because somewhere hidden in Gr;2 +Gℓ;2 is the
term −2W∆(4 − ∆)W which needs to be extracted. After taking inner products, this term
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ultimately produces −‖
√

∆(4−∆)WφF ‖2. Alternatively, G = Gr+Gℓ+2W∆(4−∆)W . �

We also note that
(6.18)

Gr +Gℓ = Gr;1 +Gℓ;1 +G1;1 +G2;1 +G3;3 +G7 +G9 +G11 +G12

= 2
[

(τ∗ϕℓ − τ∗2ϕℓ) + (ϕr − τ∗ϕr)
]

NS∗2 − 2
[

(τϕr − τ2ϕr) + (ϕℓ − τϕℓ)
]

NS2

+ 2
[

(ϕℓ − τϕℓ) + (τ∗ϕr − ϕr) + (ϕℓ − τ∗ϕℓ) + (τϕr − ϕr)
]

N

+
[

(τ∗ϕℓ − τ∗2ϕℓ) + 2(ϕr − τ∗ϕr)
]

S∗2 +
[

(τϕr − τ2ϕr) + 2(ϕℓ − τϕℓ)
]

S2

+
[

(τϕℓ − ϕℓ) + (τ∗ϕr − ϕr)
]

+
[

(τ∗ϕℓ − ϕℓ) + (ϕr − τϕr)
]

(S∗2 − 1)

− 2(cosh(τF − F )− 1)∆(4−∆).
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PROPAGATION ESTIMATES FOR ONE COMMUTATOR REGULARITY

GOLÉNIA, SYLVAIN AND MANDICH, MARC-ADRIEN

Abstract. In the abstract framework of Mourre theory, the propagation of states is un-
derstood in terms of a conjugate operator A. A powerful estimate has long been known for
Hamiltonians having a good regularity with respect to A thanks to the limiting absorption
principle (LAP). We study the case where H has less regularity with respect to A, specifically
in a situation where the LAP and the absence of singularly continuous spectrum have not
yet been established. We show that in this case the spectral measure of H is a Rajchman
measure and we derive some propagation estimates. One estimate is an application of min-
imal escape velocities, while the other estimate relies on an improved version of the RAGE
formula. Based on several examples, including continuous and discrete Schrödinger opera-
tors, it appears that the latter propagation estimate is a new result for multi-dimensional
Hamiltonians.

1. Introduction

In quantum mechanics one is often interested in knowing the long-time behavior of a given
state of a system. It is well-known that there exist states that to tend to remain localized in
a region of space, called bound states, while there are states that tend to drift away from all
bounded regions of space, called scattering states. The present article is concerned with the
study of the latter. In particular, a propagation estimate is derived and serves to rigorously
describe the long-time propagation, or behavior of these states. A classical way of obtaining
a propagation estimate is by means of some resolvent estimates, or a Limiting Absorption
Principle (LAP). The LAP is a powerful weighted estimate of the resolvent of an operator
which implies a propagation estimate for scattering states as well as the absence of singular
continuous spectrum for the system.

The theory of Mourre was introduced by E. Mourre in [M] and aims at showing a LAP.
Among others, we refer to [CGH, FH, GGM, HS1, JMP, S, G, GJ1] and to the book [ABG]
for the development of the theory. In a nutshell, Mourre theory studies the properties of a
self-adjoint operator H, the Hamiltonian of the system, with the help of another self-adjoint
operator A, referred to as a conjugate operator to H. The standard Mourre theory relies on
three hypotheses on the commutator of H and A which are, loosely speaking, that

(M1) [H, iA] be positive,
(M2) [H, iA] be H-bounded,
(M3) [[H, iA], iA] be H-bounded.

2010 Mathematics Subject Classification. 81Q10, 47B25, 47A10, 35Q40, 39A70.
Key words and phrases. Propagation estimate, Mourre theory, Mourre estimate, Commutator, RAGE

Theorem, Schrödinger operators, Rajchman measure.
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The main theory goes as follows:

(M1) + (M2)
︸ ︷︷ ︸

+ (M3) =⇒ Resolvent estimates (LAP) =⇒ Propagation estimates

w
� =⇒ No singular continuous spectrum.

Absence of eigenvalues.

The purpose of the paper is to show that (M1) + (M2’) =⇒ Weaker propagation estimates,
where (M2’) is slightly stronger than (M2).

We set up notation and basic notions. For arbitrary Hilbert spaces F and G, denote the
bounded operators from F to G by B(F ,G) and the compact operators from F to G by
K(F ,G). When F = G, we shall abbreviate B(G) := B(G,G) and K(G) := K(G,G). When
G ⊂ H, denote G∗ the antidual of G, when we identify H to its antidual H∗ by the Riesz
isomorphism Theorem. Fix self-adjoint operators H and A on a separable complex Hilbert
space H, with domains D(H) and D(A) respectively. In Mourre theory, regularity classes are
defined and serve to describe the level of regularity that A has with respect to H. The most
important of these classes are defined in Section 2, but we mention that they are typically
distinct in applications and always satisfy the following inclusions

(1.1) C2(A) ⊂ C1,1(A) ⊂ C1,u(A) ⊂ C1(A).

Of these, C1(A) is the class with the least regularity, whereas C2(A) is the class with the
strongest regularity. Indeed if H ∈ C1(A), then the commutator [H, iA] extends to an operator
in B(D(H),D(H)∗) and is denoted [H, iA]◦; whereas if H ∈ C2(A), then in addition the
iterated commutator [[H, iA], iA] extends to an operator in B(D(H),D(H)∗) and is denoted
by [[H, iA]◦, iA]◦ (see Section 2). As the C1,u(A) class plays a key role in this article we recall
here its definition. We say thatH belongs to the C1,u(A) class if the map t 7→ e−itA(H+i)−1eitA

is of class C1(R;B(H)), with B(H) endowed with the norm operator topology. The standard
example of operators belonging to the aforementioned classes is the following.

Example 1.1 (Continuous Schrödinger operators). Let H0 be the self-adjoint realization of the
Laplace operator −∆ in L2(Rd). Let Q be the operator of multiplication by x = (x1, ..., xd) ∈
Rd, and let P := −i∇. Set

H := H0 + Vsr(Q) + Vlr(Q),

where Vsr(x) and Vlr(x) are real-valued functions that belong to L∞(Rd). Thus Vsr(Q) and
Vlr(Q) are bounded self-adjoint operators on L2(Rd) and they are respectively the short- and
long-range perturbations. Suppose that limVsr(x) = limVlr(x) = 0 as ‖x‖ → +∞. Then Vsr(Q)
and Vlr(Q) are H0-form relatively compact operators. This notably implies that σess(H) =
[0,+∞) by the Theorem of Weyl on relative compactness. Let A := (Q · P + P · Q)/2 be the
so-called generator of dilations. It is the standard conjugate operator to H. For the long-
range perturbation, further assume that x · ∇Vlr(x) is a well-defined function. Table 1 displays
Hamiltonians belonging to each of the classes introduced in (1.1). The idea is clear: stronger
decaying bounds on the potential imply stronger regularity. We study this example in Section
4 and prove the information reported in Table 1.

Let EI(H) be the spectral projector of H on a bounded interval I ⊂ R. Assuming H ∈
C1(A), we say that the Mourre estimate holds for H on I if there is c > 0 and K ∈ K(H) such
that

(1.2) EI(H)[H, iA]◦EI(H) > cEI(H) +K,
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In addition, if 〈x〉Vsr(x) and x · ∇Vlr(x) are Then H belongs to

L∞(Rd) C1(A)
L∞(Rd) and o(1) C1,u(A)

L∞(Rd) and o(〈x〉−ε), for some ε > 0 C1,1(A)
L∞(Rd) and O(〈x〉−1) C2(A)

Table 1. Regularity of Hamiltonian H w.r.t. a bound on the decay of the
potential at infinity

in the form sense on H × H. The Mourre estimate (1.2) is the precise formulation of the
positivity assumption (M1) alluded to at the very beginning. The Mourre estimate is localized
in energy, hence it allows to infer information about the system at specific energies. Let µA(H)
be the set of points where a Mourre estimate holds for H, i.e.

µA(H) := {λ ∈ R : ∃c > 0,K ∈ K(H) and I open for which (1.2) holds for H on I and λ ∈ I},
In [M], Mourre assumes roughly H ∈ C2(A) and the estimate (1.2) with K = 0 to prove the

following LAP on any compact sub-interval J ⊂ I:

(1.3) sup
x∈J , y>0

‖〈A〉−s(H − x− iy)−1〈A〉−s‖ < +∞,

for all s > 1/2. Here 〈A〉 :=
√
1 +A2. We remark that if the Mourre estimate holds on I with

K = 0, then I is void of eigenvalues, as a result of the Virial Theorem [ABG, Proposition
7.2.10]. Estimate (1.3) can be shown to yield the following Kato-type propagation estimate:

(1.4) sup
ψ∈H
‖ψ‖61

∫ ∞

−∞
‖〈A〉−se−itHEJ (H)ψ‖2dt < +∞,

which in turn implies the absence of singular continuous spectrum on J , e.g. [RS4, Section
XIII.7]. The main improvement of this result is done in [ABG]. The same LAP is derived
assuming only H ∈ C1,1(A) and the estimate (1.2). It is further shown that this class is optimal
in the general abstract framework. Precisely in [ABG, Appendix 7.B], there is an example
of H ∈ C1,u(A) for which no LAP holds. However, other types of propagation estimates
were subsequently derived for H ∈ C1,u(A), see [HSS, Ri] for instance. One major motivation
for wanting to obtain dynamical estimates for this class was (and still is) to have a better
understanding of the nature of the continuous spectrum of H. The aim of this article is
to provide new propagation estimates for this class of operators. We also provide a simple
criterion to check if an operator belongs to the C1,u(A) class.

Let Pc(H) and Pac(H) respectively denote the spectral projectors onto the continuous and
absolutely continuous subspaces of H. Our first result is the following:

Theorem 1.2. Let H and A be self-adjoint operators in a separable Hilbert space H with
H ∈ C1,u(A). Assume that I ⊂ R is a compact interval for which λ ∈ µA(H) for all λ ∈ I.
Suppose moreover that ker(H − λ) ⊂ D(A) for all λ ∈ I. Then for all ψ ∈ H and all s > 0,

(1.5) lim
t→+∞

‖〈A〉−se−itHPc(H)EI(H)ψ‖ = 0.

Moreover, if W is H-relatively compact, then

(1.6) lim
t→+∞

‖We−itHPc(H)EI(H)ψ‖ = 0.
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In particular, if H has no eigenvalues in I and ψ ∈ H, then the spectral measure
Ω 7→ 〈ψ,EΩ∩I(H)ψ〉 is a Rajchman measure, i.e., its Fourier transform tends to zero at
infinity.

Remark 1.1. The last part of the Theorem follows by taking W = 〈ψ, ·〉ψ. If H has no
eigenvalues in I, then Pc(H)EI(H) = EI(H) and so by the Spectral Theorem,

We−itHPc(H)EI(H)ψ = ψ × 〈ψ, e−itHEI(H)ψ〉 = ψ ×
∫

R

e−itxdµ(ψ,EI(H)ψ)(x).

The spectral measure µ satisfies Ω 7→ µ(ψ,EI(H)ψ)(Ω) = 〈ψ,EΩ(H)EI(H)ψ〉 = 〈ψ,EΩ∩I(H)ψ〉.
Remark 1.2. The separability condition on the Hilbert space is used for the proof of (1.6),
because the compact operator W is approximated in norm by finite rank operators.

Remark 1.3. Perhaps a few words about the condition ker(H − λ) ⊂ D(A). In general, it is
satisfied if H has a high regularity with respect to A. Although in the present framework it is
not granted, it can be valid even if H ∈ C1(A) only, as seen in [JM].

This result is new to us. However, it is not strong enough to imply the absence of singular
continuous spectrum for H. Indeed, there exist Rajchman measures whose support is a set of
Hausdorff dimension zero, see [B]. We refer to [L] for a review of Rajchman measures. The
proof of this result is an application of the minimal escape velocities obtained in [Ri]. The
latter is a continuation of [HSS]. We refer to those articles for historical references.

We have several comments to do concerning the various propagation estimates listed above.
First, it appears in practice that 〈A〉−sEI(H) is not always a compact operator, and so (1.5)
is not a particular case of (1.6). The compactness issue of 〈A〉−sEI(H) is discussed in Section
7, where we study several examples including continuous and discrete Schrödinger operators.
In all of these examples, it appears that 〈A〉−sEI(H) is compact in dimension one, but not
in higher dimensions. Second, note that (1.4) implies (1.5). Indeed, the integrand of (1.4)
is a L1(R) function with bounded derivative (and hence uniformly continuous on R). Such
functions must go to zero at infinity. On the other hand, it is an open question to know if
(1.4) is true whenH ∈ C1,u(A). Third, we point out that (1.6) is a consequence of the Riemann-
Lebesgue Lemma (see (1.10) below) when ψ = Pac(H)ψ. This can be seen by writing the state
in (1.6) as W (H + i)−1e−itHPc(H)EI(H)(H + i)ψ and noting that W (H + i)−1 ∈ K(H) and
EI(H)(H + i) ∈ B(H).

Propagation estimates (1.5) and (1.6) cannot hold uniformly on the unit sphere of states in
H, for if they did, they would imply that the norm of a time-constant operator goes to zero
as t goes to infinity. Moving forward, we seek a propagation estimate uniform on the unit
sphere and go deeper into the hypotheses. Let H be a Hilbert space. Let H0 be a self-adjoint
operator on H, with domain D(H0). We use standard notation and set H2 := D(H0) and

H1 := D(〈H0〉1/2), the form domain of H0. Also, H−2 := D(H0)
∗, and H−1 := D(〈H0〉1/2)∗.

The following continuous and dense embeddings hold:

(1.7) H2 ⊂ H1 ⊂ H = H∗ ⊂ H−1 ⊂ H−2.

These are Hilbert spaces with the appropriate graph norms. We split the assumptions into
two categories: the spectral and the regularity assumptions. We start with the former.
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Spectral Assumptions:

• A1 : H0 is a semi-bounded operator with form domain H1.
• A2 : V defines a symmetric quadratic form on H1.
• A3 : V ∈ K(H1,H−1).

Importantly, these assumptions allow us to define the perturbed Hamiltonian H. Indeed, A1
- A3 imply, by the KLMN Theorem ([RS2, Theorem X.17]), that H := H0 + V in the form

sense is a semi-bounded self-adjoint operator with domain D(〈H〉1/2) = H1. Furthermore, we
have by Weyl’s Theorem that σess(H) = σess(H0).

Before proceeding with the other assumptions, let us take a moment to recall two well-known
propagation estimates that typically hold under these few assumptions. The first estimate is
the RAGE Theorem due to Ruelle [Ru], Amrein and Georgescu [AG] and Enss [E]. It states
that for any self-adjoint operator H and any W ∈ B(H) that is H-relatively compact, and any
ψ ∈ H,

(1.8) lim
T→±∞

1

T

∫ T

0
‖WPc(H)e−itHψ‖2dt = 0.

We refer to the appendix B for an observation on this Theorem. Let us go back to Example 1.1,
the case of the Schrödinger operators. Assuming only that the short- and long-range potentials
be bounded and go to zero at infinity, we see that A1 - A3 hold. ThusH := H0+Vsr(Q)+Vlr(Q)
is self-adjoint. Moreover 1Σ(Q) is a bounded operator that is H-relatively compact whenever
Σ ⊂ Rd is a compact set. Hence, in this example, the above spectral assumptions and the
RAGE Theorem combine to yield the following very meaningful propagation estimate:

(1.9) lim
T→±∞

1

T

∫ T

0
‖1Σ(Q)Pc(H)e−itHψ‖2dt = 0.

In words, the scattering state Pc(H)ψ escapes all compact sets averagely in time. The second
standard estimate we wish to recall is the Riemann-Lebesgue Lemma, see e.g. [RS3, Lemma
2]. It states that for any self-adjoint operator H and any W ∈ B(H) that is H-relatively
compact, and any ψ ∈ H,

(1.10) lim
t→±∞

‖WPac(H)e−itHψ‖ = 0.

In particular, this estimate implies that the Fourier transform of the spectral measure

Ω 7→ 〈ψ,EΩ(H)Pac(H)ψ〉 = µ(ψ,Pac(H)ψ)(Ω)

goes to zero at infinity, i.e.
∫

R

e−itxdµ(ψ,Pac(H)ψ)(x) → 0 as t→ ±∞.

Applying the Riemann-Lebesgue Lemma to Example 1.1 gives for all compact sets Σ ⊂ Rd,

(1.11) lim
t→±∞

‖1Σ(Q)Pac(H)e−itHψ‖ = 0.

Thus, the scattering state Pac(H)ψ escapes all compact sets in the long run. In contrast, a
basic argument such as the one given in the Appendix A as well as estimates like (1.4) or (1.5)
indicate that the scattering states tend to concentrate in regions where the conjugate operator
A is prevalent. We continue with the assumptions concerning the operator H.
Regularity Assumptions: There is a self-adjoint operator A on H such that

• A4 : eitAH1 ⊂ H1 for all t ∈ R.
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• A5 : H0 ∈ C2(A;H1,H−1).
• A6 : V ∈ C1,u(A;H1,H−1).
• A6′ : V ∈ C1(A;H1,H−1) and [V, iA]◦ ∈ K(H1,H−1).

First we note that C♯(A;H1,H−1) ⊂ C♯(A) for ♯ ∈ {1; 1,u; 2}. We refer to Section 2
for a complete description of these classes. While A4 and A5 are standard assumptions to
apply Mourre theory, A6 is significantly weaker. It causes H to have no more than the
C1,u(A;H1,H−1) regularity, in which case the LAP is not always true, as mentioned previously.
Proposition 2.1 proves the equivalence between A6 and A6′. In many applications, A6′ is more
convenient to check than A6.

Let µA(H0) be the set of points where a Mourre estimate holds for H0. The assumptions
mentioned above imply that µA(H) = µA(H0), by Lemma 3.3. The uniform propagation
estimate derived in this paper is the following:

Theorem 1.3. Suppose A1 through A6. Let λ ∈ µA(H) be such that ker(H − λ) ⊂ D(A).
Then there exists a bounded open interval I containing λ such that for all s > 1/2,

(1.12) lim
T→±∞

sup
ψ∈H
‖ψ‖61

1

T

∫ T

0
‖〈A〉−sPc(H)EI(H)e−itHψ‖2 dt = 0.

This formula is to be compared with (1.4), (1.5) and (1.8). First note that (1.4) implies
(1.12). Also, on the one hand, (1.12) without the supremum is a trivial consequence of (1.5).
On the other hand, if (1.5) held uniformly on the unit sphere, then it would imply (1.12).
But we saw that this is not the case. So the main gain in Theorem 1.3 over Theorem 1.2 is
the supremum. Let us further comment the supremum in (1.12). This is because one can in
fact take the supremum in the RAGE formula, as explained in the Appendix B. The parallel
with the RAGE formula (see Theorem B.1) raises an important concern however. The novelty
of the propagation estimate (1.12) depends critically on the non-compactness of the operator
〈A〉−sEI(H). As mentioned previously, it appears that 〈A〉−sEI(H) is not always compact.
Theorem 1.3 therefore appears to be a new result for multi-dimensional Hamiltonians.

To summarize, the various propagation estimates discussed in the Introduction are listed
in Table 2 according to the regularity of the potential V . Sufficient regularity for the free
operator H0 is implicit. In this table, question marks indicate open problems and R.-L. stands
for Riemann-Lebesgue.

V is of RAGE R.-L. Prop. estimates Prop. Kato - type LAP
class formula formula (1.5) and (1.6) estimate (1.12) Prop. estimate

C1(A) X X ? ? ? ?
C1,u(A) X X X X ? ?
C1,1(A) X X X X X X

C2(A) X X X X X X

Table 2. Regularity of Hamiltonian H w.r.t. a bound on the decay of the
potential at infinity

We underline that the LAP has been derived for several specific systems where the Hamil-
tonian H belongs to a regularity class as low as C1(A), and sometimes even lower (see for
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example [DMR], [GJ2], [JM] and [Ma1] to name a few). In all these cases, a strong propaga-
tion estimate of type (1.4) and absence of singular continuous spectrum follow. We also note
that the derivation of the propagation estimate (1.12) is in fact very similar to the derivation
of a weighted Mourre estimate which is used in the proof of a LAP for Hamiltonians with
oscillating potentials belonging to the C1(A) class, see [G] and [GJ2].

The article is organized as follows: in Section 2, we review the classes of regularity in Mourre
theory and in particular prove the equivalence between A6 and A6′. In Section 3, we discuss
the Mourre estimate and justify that under the assumptions of Theorem 1.3, H and H0 share
the same set of points where a Mourre estimate holds. In Section 4, we give examples of
continuous and discrete Schrödinger operators that fit the assumptions of Theorems 1.2 and
1.3. In Section 5, we prove Theorem 1.2 and in Section 6, we prove Theorem 1.3. In Section
7, we discuss the compactness of the operator 〈A〉−sEI(H). In Appendix A, we provide a
simple argument as to why we expect scattering states to evolve in the direction where the
conjugate operator prevails. In Appendix B we make the observation that one may in fact take
a supremum in the RAGE Theorem. Finally, in Appendix C we review facts about almost
analytic extensions of smooth functions that are used in the proof of the uniform propagation
estimate.
Acknowledgments: We are very thankful to Jean-François Bony, Vladimir Georgescu,
Philippe Jaming and Thierry Jecko for precious discussions. We are very grateful to Serge
Richard for explaining to us how [Ri] could be used to improve our previous results. Finally, we
warmly thank the anonymous referee for a meticulous reading of the manuscript and offering
valuable improvements. The authors were partially supported by the ANR project GeRaSic
(ANR-13-BS01-0007-01).

2. The classes of regularity in Mourre theory

We define the classes of regularity that were introduced in (1.1). Let T ∈ B(H) and A be
a self-adjoint operator on the Hilbert space H. Consider the map

R ∋ t 7→ e−itATeitA ∈ B(H).(2.1)

Let k ∈ N. If the map is of class Ck(R;B(H)), with B(H) endowed with the strong operator
topology, we say that T ∈ Ck(A); whereas if the map is of class Ck(R;B(H)), with B(H)
endowed with the operator norm topology, we say that T ∈ Ck,u(A). Note that Ck,u(A) ⊂
Ck(A) is immediate from the definitions. If T ∈ C1(A), then the derivative of the map (2.1)
at t = 0 is denoted [T, iA]◦ and belongs to B(H). Also, if T1, T2 ∈ B(H) belong to the C1(A)
class, then so do T1 + T2 and T1T2. We say that T ∈ C1,1(A) if

∫ 1

0

∥
∥
∥[[T, eitA]◦, e

itA]◦

∥
∥
∥t−2dt <∞.

The proof that C2(A) ⊂ C1,1(A) ⊂ C1,u(A) is given in [ABG, Section 5]. This yields (1.1).
Now let T be a self-adjoint operator (possibly unbounded), with spectrum σ(T ). Let z ∈

C\σ(T ). We say that T ∈ C♯(A) if (z−T )−1 ∈ C♯(A), for ♯ ∈ {k; k,u; 1,1}. This definition does
not depend on the choice of z ∈ C \ σ(T ), and furthermore if T is bounded and self-adjoint
then the two definitions coincide, see [ABG, Lemma 6.2.1]. If T ∈ C1(A), one shows that
[T, iA]◦ ∈ B(D(T ),D(T )∗) and that the following formula holds:

(2.2) [(z − T )−1, iA]◦ = (z − T )−1[T, iA]◦(z − T )−1.
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These definitions can be refined. Let G and H be Hilbert spaces verifying the following
continuous and dense embeddings G ⊂ H = H∗ ⊂ G∗, where we have identified H with its
antidual H∗ by the Riesz isomorphism Theorem. Let A be a self-adjoint operator on H, and
suppose that the semi-group {eitA}t∈R stabilizes G. Then by duality it stabilizes G∗. Let T be
a self-adjoint operator on H belonging to B(G,G∗) and consider the map

(2.3) R ∋ t 7→ e−itATeitA ∈ B(G,G∗).

If this map is of class Ck(R;B(G,G∗)), with B(G,G∗) endowed with the strong operator topol-
ogy, we say that T ∈ Ck(A;G,G∗); whereas if the map is of class Ck(R;B(G,G∗)), with B(G,G∗)
endowed with the norm operator topology, we say that T ∈ Ck,u(A;G,G∗). If T ∈ C1(A;G,G∗),
then the derivative of map (2.3) at t = 0 is denoted by [T, iA]◦ and belongs to B(G,G∗). More-
over, by [ABG, Proposition 5.1.6], T ∈ C♯(A;G,G∗) if and only if (z − T )−1 ∈ C♯(A;G∗,G) for
all z ∈ C \ σ(T ) and ♯ ∈ {k; k,u}. This notably implies that C♯(A;G,G∗) ⊂ C♯(A).

In the setting of Theorem 1.3, G = H1 := D(〈H0〉1/2), and T stands for H0, V or H. In
all cases T ∈ B(H1,H−1). We also assume that {eitA}t∈R stabilizes H1, see A4. Consider the
map

(2.4) R ∋ t 7→ 〈H0〉−1/2e−itATeitA〈H0〉−1/2 ∈ B(H).

The latter operator belongs indeed to B(H) since the domains concatenate as follows:

〈H0〉−1/2

︸ ︷︷ ︸

∈B(H−1,H)

e−itA
︸ ︷︷ ︸

∈B(H−1,H−1)

T
︸︷︷︸

∈B(H1,H−1)

eitA
︸︷︷︸

∈B(H1,H1)

〈H0〉−1/2

︸ ︷︷ ︸

∈B(H,H1)

.

We remark that T ∈ Ck(A;H1,H−1) is equivalent to the map (2.4) being of class Ck(R;B(H)),
with B(H) endowed with the strong operator topology; whereas T ∈ Ck,u(A;H1,H−1) is
equivalent to the map being of class Ck(R;B(H)), with B(H) endowed with the norm operator
topology.

In many applications, the free operatorH0 has a nice regularity with respect to the conjugate
operator A, i.e. H0 ∈ Ck(A;G,G∗) for some k > 2 and for some G ⊂ H. However, the
perturbation V typically doesn’t have very much regularity w.r.t. A and showing that V is
of class C1,u(A;G,G∗) directly from the definition is usually not very practical. To ease the
difficulty we provide the following criterion. Its proof is inspired by [Ge, Lemma 8.5].

Proposition 2.1. Suppose that T ∈ K(H1,H−1)∩C1(A;H1,H−1). Then T ∈ C1,u(A;H1,H−1)
if and only if [T, iA]◦ ∈ K(H1,H−1).

Remark 2.1. The proof actually shows that if T ∈ B(H1,H−1)∩C1(A;H1,H−1) and [T, iA]◦ ∈
K(H1,H−1), then T ∈ C1,u(A;H1,H−1). Thus the compactness of T is needed only for the
reverse implication in Proposition 2.1.

Remark 2.2. Adapting the proof of Proposition 2.1, one can see that the results of Proposition
2.1 and Remark 2.1 are still valid if K(H1,H−1) (resp. C1(A;H1,H−1), resp. C1,u(A;H1,H−1),
resp. B(H1,H−1)) is replaced by K(H) (resp. C1(A), resp. C1,u(A), resp. B(H)).

Proof. We start with the easier of the two implications, namely T ∈ C1,u(A;H1,H−1) implies
[T, iA]◦ ∈ K(H1,H−1). Let

R ∋ t 7→ Λ(t) := 〈H0〉−1/2e−itATeitA〈H0〉−1/2 ∈ B(H).
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To say that T ∈ C1,u(A;H1,H−1) is equivalent to Λ being of class C1(R,B(H)), with B(H)
endowed with the norm operator topology. Since

〈H0〉−1/2[T, iA]◦〈H0〉−1/2 = lim
t→0

Λ(t)− Λ(0)

t

holds w.r.t. the operator norm on B(H) and Λ(t)− Λ(0) is equal to

〈H0〉−1/2e−itA〈H0〉1/2
︸ ︷︷ ︸

∈ B(H)

〈H0〉−1/2T 〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H)

〈H0〉1/2eitA〈H0〉−1/2

︸ ︷︷ ︸

∈ B(H)

−〈H0〉−1/2T 〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H)

,

we see that 〈H0〉−1/2[T, iA]◦〈H0〉−1/2 ∈ K(H) as a norm limit of compact operators. Hence
[T, iA]◦ ∈ K(H1,H−1).

We now show the reverse implication. We have to show that the map Λ is of class
C1(R,B(H)). This is the case if and only if Λ is differentiable with continuous derivative
at t = 0. Let

ℓ(t) := 〈H0〉−1/2e−itA[T, iA]◦e
itA〈H0〉−1/2 ∈ B(H).

The following equality holds strongly in H for all t > 0 due to the fact that T ∈ C1(A,H1,H−1):

(2.5)
Λ(t)− Λ(0)

t
− ℓ(0) =

1

t

∫ t

0
〈H0〉−1/2

(
e−iτA[T, iA]◦e

iτA − [T, iA]◦
)
〈H0〉−1/2dτ.

Let us estimate the integrand:
∥
∥〈H0〉−1/2

(
e−iτA[T, iA]◦e

iτA − [T, iA]◦
)
〈H0〉−1/2

∥
∥

6
∥
∥〈H0〉−1/2

(
e−iτA[T, iA]◦e

iτA − e−iτA[T, iA]◦
)
〈H0〉−1/2

∥
∥

+
∥
∥〈H0〉−1/2

(
e−iτA[T, iA]◦ − [T, iA]◦

)
〈H0〉−1/2

∥
∥

6

∥
∥
∥ 〈H0〉−1/2e−iτA〈H0〉1/2
︸ ︷︷ ︸

‖·‖61

〈H0〉−1/2[T, iA]◦〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H)

(

〈H0〉1/2eiτA〈H0〉−1/2 − I
)

︸ ︷︷ ︸
s−→0

∥
∥
∥

+
∥
∥
∥

(

〈H0〉−1/2e−iτA〈H0〉1/2 − I
)

︸ ︷︷ ︸
s−→0

〈H0〉−1/2[T, iA]◦〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H)

∥
∥
∥.

(2.6)

Thus the integrand of (2.5) converges in norm to zero as t goes to zero. It follows that
the l.h.s. of (2.5) converges in norm to zero, showing that Λ′(0) = ℓ(0). It easily follows that
Λ′(t) = ℓ(t) for all t ∈ R. Again invoking (2.6) shows that Λ′ is continuous at t = 0, completing
the proof. �

3. A few words about the Mourre estimate

This section is based on the content of [ABG, Section 7.2], where the results are presented
for a self-adjoint operator T ∈ C1(A), which (we recall) contains the C1(A;G,G∗) class. Let T
be a self-adjoint operator on H with domain D(T ) ⊂ H. Let G be a subspace such that

D(T ) ⊂ G ⊂ D(〈T 〉1/2) ⊂ H = H∗ ⊂ D(〈T 〉1/2)∗ ⊂ G∗ ⊂ D(T )∗.

If T ∈ C1(A,G,G∗), then in particular [T, iA]◦ ∈ B(G,G∗). If I ⊂ R is a bounded interval, then
EI(T ) ∈ B(H,G) and by duality EI(T ) ∈ B(G∗,H). We say that the Mourre estimate holds
for T w.r.t. A on the bounded interval I if there exist c > 0 and K ∈ K(H) such that

(3.1) EI(T )[T, iA]◦EI(T ) > cEI(T ) +K
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in the form sense on H × H. Note that both the l.h.s. and r.h.s. of (3.1) are well-defined
bounded operators on H. For reminder, if this estimate holds, then the total multiplicity of
eigenvalues of T in I is finite by [ABG, Corollary 7.2.11], whereas if the estimate holds with
K = 0, then I is void of eigenvalues, as a result of the Virial Theorem [ABG, Proposition
7.2.10]. We let µA(T ) be the collection of points belonging to neighborhood for which the
Mourre estimate holds, i.e.

µA(T ) := {λ ∈ R : ∃c > 0,K ∈ K(H) and I open for which (3.1) holds for T on I and λ ∈ I}.

This is an open set. It is natural to introduce a function defined on µA(T ) which gives the
best constant c > 0 that can be achieved in the Mourre estimate, i.e. for λ ∈ µA(T ), let

̺AT (λ) := sup
I∋λ

{
sup{c ∈ R : EI(T )[T, iA]◦EI(T ) > cEI(T ) +K, for some K ∈ K(H)}

}
.

Equivalent definitions and various properties of the ̺AT function are given in [ABG, Section
7.2]. One very useful result that we shall use is the following:

Proposition 3.1. [ABG, Proposition 7.2.7] Suppose that T has a spectral gap and that T ∈
C1(A). Let R(ς) := (ς − T )−1, where ς is a real number in the resolvent set of T . Then

(3.2) ̺AT (λ) = (ς − λ)2̺AR(ς)((ς − λ)−1).

In particular, T is conjugate to A at λ if and only if R(ς) is conjugate to A at (ς − λ)−1.

As a side note, this Proposition is stated without proof in [ABG], so we indicate to the reader
that it may be proven following the same lines as that of [ABG, Proposition 7.2.5] together
with the following Lemma, which is the equivalent of [ABG, Proposition 7.2.1]. Denote I(λ; ε)
the open interval of radius ε centered at λ.

Lemma 3.2. Suppose that T ∈ C1(A). If λ /∈ σess(H), then ̺AT (λ) = +∞. If λ ∈ σess(H),
then ̺AT (λ) is finite and given by

̺AT (λ) = lim
ε→0+

inf
{
〈ψ, [T, iA]◦ψ〉 : ψ ∈ H, ‖ψ‖ = 1 and EI(λ;ε)(T )ψ = ψ

}
.

Furthermore, there is a sequence (ψn)
∞
n=1 of vectors such that ψn ∈ H, ‖ψn‖ ≡ 1, 〈ψn, ψm〉 =

δnm, EI(λ;1/n)ψn = ψn and limn→∞〈ψn, [T, iA]◦ψn〉 = ̺AT (λ).

We will be employing formula (3.2) in the proof of the main result of this paper, but for the
moment we apply it to show that under the assumptions of Theorem 1.3, H and H0 share the
same points where a Mourre estimate hold. The remark is done after [ABG, Theorem 7.2.9].
Let R(z) := (z − T )−1 and R0(z) := (z − T0)

−1.

Lemma 3.3. Let T0, T and A be self-adjoint operators on H. Let T0 have a spectral gap, and
suppose that T, T0 ∈ C1,u(A). If R(i)−R0(i) ∈ K(H) then µA(T ) = µA(T0).

Remark 3.1. The assumptions of Theorem 1.3 fulfill the requirements of this Lemma, with
(T0, T ) = (H0, H). Indeed, D(〈H〉1/2) = D(〈H0〉1/2) implies the compactness of R(i)−R0(i):

R(i)−R0(i) = R(i)V R0(i) = R(i)〈H〉1/2
︸ ︷︷ ︸

∈B(H)

〈H〉−1/2〈H0〉1/2
︸ ︷︷ ︸

∈B(H)

〈H0〉−1/2V 〈H0〉−1/2

︸ ︷︷ ︸

∈K(H) by A3

〈H0〉1/2R0(i)
︸ ︷︷ ︸

∈B(H)

.
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Proof. Firstly, the assumption that R(i) − R0(i) is compact implies σess(T0) = σess(T ).
Because T0 has a spectral gap, σess(T0) = σess(T ) 6= R, and therefore there exists ς ∈ R \
(σ(T ) ∪ σ(T0)). For all z, z′ ∈ R \ (σ(T ) ∪ σ(T0)), the following identity holds:

R(z)−R0(z) = [I + (z′ − z)R(z)][R(z′)−R0(z
′)][I + (z′ − z)R0(z)].

Thus R(ς) − R0(ς) is compact. To simplify the notation onwards, let R0 := R0(ς) and R :=
R(ς).

Secondly, if λ ∈ µA(T0), then (ς − λ)−1 ∈ µA(R0) by Proposition 3.1, and so there is an
open interval I ∋ (ς − λ)−1, c > 0 and a compact K such that

EI(R0)[R0, iA]◦EI(R0) > cEI(R0) +K.

Applying to the right and left by θ(R0), where θ ∈ C∞
c (R) is a bump function supported and

equal to one in a neighborhood of (ς − λ)−1, we get

θ(R0)[R0, iA]◦θ(R0) > cθ2(R0) + compact.

By the Helffer-Sjötrand formula and the fact that R(z) − R0(z) is compact for all z ∈ C \ R,
we see that θ(R)−θ(R0) is compact, and likewise for θ2(R)−θ2(R0). Note also that R0−R ∈
C1,u(A) and so by Remark 2.2, [R0 − R, iA]◦ ∈ K(H). Thus exchanging R0 for R, θ(R0) for
θ(R), and θ2(R0) for θ2(R) in the previous inequality, we have

θ(R)[R, iA]◦θ(R) > cθ2(R) + compact.

Let I ′ ⊂ θ−1({1}). Applying EI′(R) to the left and right of this equation shows that the
Mourre estimate holds for R in a neighborhood of (ς − λ)−1. Thus λ ∈ µA(T ) by Proposition
3.1, and this shows µA(T0) ⊂ µA(T ). Exchanging the roles of T and T0 shows the reverse
inclusion. �

4. Examples of Schrödinger operators

4.1. The case of continuous Schrödinger operators. Our first application is to contin-
uous Schrödinger operators. The setting has already been described in Example 1.1 for the
most part. For an integer d > 1, let H := L2(Rd). The free operator is the Laplacian, i.e.

H0 := −∆ = −∑d
i=1 ∂

2/∂x2i with domain the Sobolev space H2 := H2(Rd). Then H0 is a
positive operator with purely absolutely continuous spectrum and σ(H0) = [0,+∞). Let Q
be the operator of multiplication by x = (x1, ..., xd) ∈ Rd, and let P := −i∇. Set

H := H0 + Vsr(Q) + Vlr(Q),

where Vsr(x) and Vlr(x) are real-valued functions belonging to L∞(Rd), satisfying Vsr(x),
Vlr(x) = o(1) at infinity. Then Vsr(Q) and Vlr(Q) are bounded self-adjoint operators in H
and H0-form relatively compact operators, i.e. Vsr(Q), Vlr(Q) ∈ K(H1,H−1), where H1 de-
notes the form domain of H0. The latter is a direct consequence of the following standard
fact:

Proposition 4.1. Let f, g be bounded Borel measurable functions on Rd which vanish at
infinity. Then g(Q)f(P ) ∈ K(L2(Rd)).

Assumptions A1 - A3 are verified. We add that σess(H) = [0,+∞) by the Theorem of Weyl
on relative compactness. Moving forward, we use the following result:
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Proposition 4.2. [ABG, p. 258] Let T and A be self-adjoint operators in a Hilbert space

H and denote H1 := D(〈T 〉1/2), the form domain of T , and H−1 := (H1)∗. Suppose that
eitAH1 ⊂ H1. Then the following are equivalent:

(1) T ∈ C1(A;H1,H−1)
(2) The form [T, iA] defined on D(T ) ∩ D(A) extends to an operator in B(H1,H−1).

Remark 4.1. The form [T, iA] is defined for ψ, φ ∈ D(T ) ∩ D(A) as follows :

〈ψ, [T, iA]φ〉 := 〈T ∗ψ, iAφ〉 − 〈A∗ψ, iTφ〉 = 〈Tψ, iAφ〉 − 〈Aψ, iTφ〉.
The last equality holds because T and A are assumed to be self-adjoint.

Let A := (Q · P + P ·Q)/2 be the generator of dilations which is essentially self-adjoint on
the Schwartz space S(Rd). The relation

(eitAψ)(x) = etd/2ψ(etx), for all ψ ∈ L2(Rd), x ∈ R
d

implies that {eitA}t∈R stabilizes H2(Rd), and thus Hθ(Rd) for all θ ∈ [−2, 2] by duality and
interpolation. Thus A4 holds. A straightforward computation gives

〈ψ, [H0, iA]φ〉 = 〈ψ, 2H0φ〉
for all ψ, φ ∈ H2 ∩ D(A). Let H1 := D(〈H0〉1/2). We see that [H0, iA] extends to operator in
B(H1,H−1), thereby implying that H0 ∈ C1(A;H1,H−1) by Proposition 4.2. The extension
of [H0, iA] is in fact [H0, iA]◦. An easy induction gives H0 ∈ Ck(A;H1,H−1) for all k ∈ N. In
particular, A5 is fulfilled. The strict Mourre estimate holds for H0 with respect to A on all
intervals I verifying I ⊂ (0,+∞). In particular, µA(H0) = (0,+∞).

We now examine the commutator between the potentials Vsr(Q) + Vlr(Q) and A. For the
long-range potential, we now additionally assume that x · ∇Vlr(x) exists as a function and
belongs to L∞(Rd). A computation gives

〈ψ, [Vlr(Q), iA]φ〉 = −〈ψ,Q · ∇Vlr(Q)φ〉,
for all ψ, φ ∈ D(A). In particular, this shows that [Vlr(Q), iA] extends to an operator in
B(H1,H−1), and by Proposition 4.2, this implies that Vlr(Q) ∈ C1(A;H1,H−1). Furthermore,
[Vlr(Q), iA]◦ = −Q · ∇Vlr(Q). If x · ∇Vlr(x) = o(1) at infinity is further assumed, then

〈H0〉−1/2Q ·∇Vlr(Q)〈H0〉−1/2 ∈ K(L2(Rd)) by Proposition 4.1, i.e. [Vlr(Q), iA]◦ ∈ K(H1,H−1).
In this case, we have that Vlr(Q) ∈ C1,u(A;H1,H−1) by Proposition 2.1.

We now analyze the commutator with the short range potential, and additionally assume
that 〈x〉Vsr(x) ∈ L∞(Rd). For ψ, φ ∈ D(A), we have

〈ψ, [Vsr(Q), iA]φ〉 = 〈Vsr(Q)ψ, iAφ〉+ 〈iAψ, Vsr(Q)φ〉
= 〈〈Q〉Vsr(Q)ψ, 〈Q〉−1(iQ · P + d/2)φ〉+ 〈〈Q〉−1(iQ · P + d/2)ψ, 〈Q〉Vsr(Q)φ〉.

We handle the operator in the first inner product on the r.h.s. of the previous equation. Note
that 〈Q〉−1(iQ · P + d/2) ∈ B(H1,H) and 〈Q〉Vsr(Q) ∈ B(H,H−1). Thus

(4.1) 〈Q〉Vsr(Q)× 〈Q〉−1(iQ · P + d/2)

belongs to B(H1,H−1). The operator in the second inner product on the r.h.s. of the pre-
vious equation also belongs to B(H1,H−1), because it is the adjoint of (4.1). We conclude
that [Vsr(Q), iA] extends to an operator in B(H1,H−1), and by Proposition 4.2, this implies
that Vsr(Q) ∈ C1(A;H1,H−1). The extension of [Vsr(Q), iA] is precisely [Vsr(Q), iA]◦. If

x · ∇Vsr(x) = o(1) at infinity is further assumed, then 〈H0〉−1/2〈Q〉Vsr(Q) ∈ K(L2(Rd)) by
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Proposition 4.1, i.e. 〈Q〉Vsr(Q) ∈ K(H,H−1). So (4.1) and its adjoint belong to K(H1,H−1).
Thus [Vlr(Q), iA]◦ ∈ K(H1,H−1) and Vsr(Q) ∈ C1,u(A;H1,H−1) follows from Proposition 2.1.

The above calculations along with Theorems 1.2 and 1.3 yield the following specific result
for continuous Schrödinger operators:

Theorem 4.3. Let H := H0 + Vsr(Q) + Vlr(Q) and A be as above, namely

(1) H0 = −∆ and A = (Q · P + P ·Q)/2 in L2(Rd),
(2) Vsr(x) and Vlr(x) are real-valued functions in L∞(Rd),
(3) limVsr(x) = limVlr(x) = 0 as ‖x‖ → +∞,
(4) lim〈x〉Vsr(x) = 0 as ‖x‖ → +∞, and
(5) x · ∇Vlr(x) exists as a function, belongs to L∞(Rd), and limx · ∇Vlr(x) = 0 as ‖x‖ →

+∞.

Then Vsr(Q) and Vlr(Q) belong to C1,u(A;H1,H−1). In particular H ∈ C1,u(A). Moreover,
µA(H) = µA(H0) = (0,+∞), by Lemma 3.3. Finally, for all λ ∈ (0,+∞) there is a bounded
open interval I containing λ such that for all s > 1/2 and ψ ∈ H, the propagation estimates
(1.5), (1.6) and (1.12) hold.

Remark 4.2. Notice that the condition ker(H − λ) ⊂ D(A) that appears in the formula-
tion of Theorems 1.2 and 1.3 is totally absent here. This is because under the assumptions
lim〈x〉Vsr(x) = limx · ∇Vlr(x) = 0 as ‖x‖ → +∞, it is well-known from research in the sixties
that the continuous Schrödinger operator H does not have any eigenvalues in [0,+∞), see
articles by Kato [K2], Simon [Si] and Agmon [A].

4.2. The case of discrete Schrödinger operators. Our second application is to discrete
Schrödinger operators. For an integer d > 1, let H := ℓ2(Zd) The free operator is the discrete
Laplacian, i.e. H0 := ∆ ∈ B(H), where

(4.2) (∆ψ)(n) :=
∑

m:‖m−n‖=1

ψ(n)− ψ(m).

Here we have equipped Zd with the following norm: for n = (n1, ..., nd), ‖n‖ :=
∑d

i=1 |ni|. It
is well-known that ∆ is a bounded positive operator on H with purely absolutely continuous
spectrum, and σ(∆) = σac(∆) = [0, 4d]. Let V be a bounded real-valued function on Zd such
that V (n) → 0 as ‖n‖ → ∞. Then V induces a bounded self-adjoint compact operator on H as
follows, (V ψ)(n) := V (n)ψ(n). Recall that a multiplication operator V on ℓ2(Zd) is compact
if and only if V (n) → 0 as ‖n‖ → ∞. Assumptions A1 - A3 are verified. Set H := H0 + V .
Then H is a bounded self-adjoint operator and σess(H) = [0, 4d].

To write the conjugate operator, we need more notation. Let S = (S1, ..., Sd), where, for
1 6 i 6 d, Si is the shift operator given by

(Siψ)(n) := ψ(n1, ..., ni − 1, ..., nd), for all n ∈ Z
d and ψ ∈ H.

Let N = (N1, ..., Nd), where, for 1 6 i 6 d, Ni is the position operator given by

(Niψ)(n) := niψ(n), with domain D(Ni) :=

{

ψ ∈ H :
∑

n∈Zd

|niψ(n)|2 <∞
}

.

The conjugate operator, denoted by A, is the closure of the following operator

(4.3) A0 :=
i

2

d∑

i=1

(Si − S∗
i )Ni +Ni(Si − S∗

i ), with domain D(A0) := ℓ0(Z
d),
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the sequences with compact support. The operator A is self-adjoint, see [BS] and [GGo]. That
{eitA}t∈R stabilizes the form domain of H0 is a triviality, because D(H0) = H. So Assumption
A4 is true.

Next, we study the commutator between H0 and A. A calculation shows that

(4.4) 〈ψ, [H0, iA]ψ〉 = 〈ψ,
d∑

i=1

∆i(4−∆i)ψ〉,

for all ψ ∈ ℓ0(Z
d). Here ∆i := 2− Si − S∗

i . Since H0 is a bounded self-adjoint operator, (4.4)
implies that H0 ∈ C1(A), thanks to a simple criterion for such operators, see [ABG, Lemma
6.2.9] and [ABG, Theorem 6.2.10]. We could also have invoked Proposition 4.2, but that is
a bit of an overkill. An easy induction shows that H0 ∈ Ck(A) for all k ∈ N. In particular,
Assumption A5 holds. By (4.4) and [ABG, Theorem 8.3.6], we have that

(4.5) µA(H0) = [0, 4d] \ {4k : k = 0, ..., d}.
Let us now study the commutator between V and A. Let τiV be the shifted potential acting

as follows:

[(τiV )ψ](n) := V (n1, ..., ni − 1, ..., nd)ψ(n), for all ψ ∈ H.
Define τ∗i V correspondingly. A straightforward computation gives

〈ψ, [V, iA]ψ〉 =
d∑

i=1

〈

ψ,
(

(2−1 +Ni)(V − τ∗i V )S∗
i + (2−1 −Ni)(V − τiV )Si

)

ψ
〉

,

for all ψ ∈ ℓ0(Z
d). If supn∈Zd |ni(V − τiV )(n)| < +∞ is assumed for all 1 6 i 6 d, we

see that V ∈ C1(A). The bounded extension of the form [V, iA] is precisely [V, iA]◦. If
lim |ni(V − τiV )(n)| = 0 as ‖n‖ → +∞ for all 1 6 i 6 d is further assumed, then [V, iA]◦ ∈
K(H). This is equivalent to V ∈ C1,u(A), by Remark 2.2. Thus A6 is fulfilled.

The above calculations along with Theorems 1.2 and 1.3 yield the following specific result
for discrete Schrödinger operators:

Theorem 4.4. Let H := H0 + V and A be as above, namely

(1) H0 is given by (4.2) and A is the closure of (4.3),
(2) V (n) is a bounded real-valued function defined on Zd,
(3) limV (n) = 0 as ‖n‖ → +∞, and
(4) lim |ni(V − τiV )(n)| = 0 as ‖n‖ → +∞ for all 1 6 i 6 d.

Then V belongs to C1,u(A). In particular H ∈ C1,u(A). Moreover, µA(H) = µA(H0) =
[0, 4d] \ {4k : k = 0, ..., d}, by Lemma 3.3 and (4.5). Finally, for all λ ∈ µA(H) there is a
bounded open interval I containing λ such that for all s > 1/2 and ψ ∈ H, the propagation
estimates (1.5), (1.6) and (1.12) hold.

Remark 4.3. As in the continuous operator case, the condition ker(H − λ) ⊂ D(A) holds
here for all λ ∈ µA(H). Indeed, if ψ ∈ ker(H − λ) and λ ∈ µA(H), then for all p > 0 there
is cp > 0 such that |ψ(n)| 6 cp〈n〉−p, n ∈ Zd. This is a consequence of [Ma2, Theorem 1.5]
for instance. Under Assumptions (3) and (4), the absence of positive eigenvalues holds for
one-dimensional discrete Schrödinger operators, by [Ma2, Theorem 1.3]. To our knowledge,
the absence of positive eigenvalues under Assumptions (3) and (4) is an open problem for
multi-dimensional discrete Schrödinger operators on Zd.
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5. Proof of Theorem 1.2

We start with an improvement of [GJ1, Proposition 2.1].

Lemma 5.1. For φ, ϕ ∈ D(A), the rank one operator |φ〉〈ϕ| : ψ 7→ 〈ϕ, ψ〉φ is of class C1,u(A).

Proof. First, by [ABG, Lemma 6.2.9], |φ〉〈ϕ| ∈ C1(A) if and only if the sesquilinear form

D(A) ∋ ψ 7→ 〈ψ, [|φ〉〈ϕ|, A]ψ〉 := 〈〈φ, ψ〉ϕ,Aψ〉 − 〈Aψ, 〈ϕ|ψ〉φ〉
is continuous for the topology induced by H. Since

〈ψ, [|φ〉〈ϕ|, A]ψ〉 = 〈ψ, φ〉〈Aϕ,ψ〉 − 〈ψ,Aφ〉〈ϕ, ψ〉 = 〈ψ, (|φ〉〈Aϕ| − |Aφ〉〈ϕ|)ψ〉,
we see that |φ〉〈ϕ| ∈ C1(A) and [|φ〉〈ϕ|, A]◦ = |φ〉〈Aϕ| − |Aφ〉〈ϕ|, which is a bounded operator
of rank at most two. Apply Proposition 2.1, more specifically Remark 2.2, to obtain the
result. �

Next, we quote for convenience the result of [Ri] that we use in the proof of Theorem 1.2.

Theorem 5.2. [Ri, Theorem 1] Let H and A be self-adjoint operators in H with H ∈ C1,u(A).
Assume that there exist an open interval J ⊂ R and c > 0 such that η(H)[H, iA]◦η(H) >

c · η2(H) for all real η ∈ C∞
c (J). Let a and t be real numbers. Then for each real η ∈ C∞

c (J)
and for each v < c one has uniformly in a,

‖E(−∞,a+vt](A)e
−itHη(H)E[a,+∞)(A)‖ → 0 as t→ +∞.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let I ⊂ R be a compact interval as in the statement of Theorem 1.2,
that is, for all λ ∈ I, λ ∈ µA(H) and ker(H − λ) ⊂ D(A). Let λ ∈ I be given, and assume
that a Mourre estimate holds with K ∈ K(H) in a neighborhood J of λ.
Step 1: This step is a remark due to Serge Richard. In this step, we assume that λ is not
an eigenvalue of H. In this case, from the Mourre estimate, we may derive a strict Mourre
estimate on a possibly smaller neighborhood of λ, because EJ(H)KEJ(H) converges in norm
to zero as the support of J shrinks to zero around λ. So, without loss of generality, there is
an open interval J containing λ and c > 0 such that a strict Mourre estimate holds for H on
J , i.e.

EJ(H)[H, iA]◦EJ(H) > cEJ(H).

In particular, J does not contain any eigenvalue of H. We look to apply [Ri, Theorem 1]. Let
ψ ∈ H, and assume without loss of generality that ‖ψ‖ = 1. Fix v ∈ (0, c) and let a ∈ R. Let
η ∈ C∞

c (J) be such that maxx∈J |η(x)| 6 1, so that ‖η(H)‖ 6 1. Note also that ‖〈A〉−s‖ 6 1
for all s > 0. Then

‖〈A〉−se−itHη(H)ψ‖ 6 ‖〈A〉−se−itHη(H)E(−∞,a)(A)ψ‖+ ‖〈A〉−se−itHη(H)E[a,+∞)(A)ψ‖
6 ‖E(−∞,a)(A)ψ‖+ ‖〈A〉−sE(−∞,a+vt](A)e

−itHη(H)E[a,+∞)(A)ψ‖
+ ‖〈A〉−sE(a+vt,+∞)(A)e

−itHη(H)E[a,+∞)(A)ψ‖
6 ‖E(−∞,a)(A)ψ‖+ ‖E(−∞,a+vt](A)e

−itHη(H)E[a,+∞)(A)‖
+ ‖〈A〉−sE(a+vt,+∞)(A)‖
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Let ε > 0 be given. Choose a so that ‖E(−∞,a)(A)ψ‖ 6 ε/3. Then take t large enough so
that the other two terms on the r.h.s. of the previous inequality are each less than ε/3. The
second one is controlled by [Ri, Theorem 1] and the third one by functional calculus. Then
‖〈A〉−se−itHη(H)ψ‖ 6 ε. Thus

lim
t→+∞

‖〈A〉−se−itHη(H)ψ‖ = 0.

By taking a sequence ηk ∈ C∞
c (J) that converges pointwise to the characteristic function of J ,

we infer from the previous limit that

lim
t→+∞

‖〈A〉−se−itHEJ(H)ψ‖ = 0.

Finally, as there are no eigenvalues of H in J , EJ(H) = EJ(H)Pc(H) and we have

(5.1) lim
t→+∞

‖〈A〉−se−itHEJ(H)Pc(H)ψ‖ = 0.

Step 2: In this step, λ ∈ I is assumed to be an eigenvalue of H. By adding a constant to
H, we may assume that λ 6= 0. By assumption, there is an interval J containing λ, c > 0 and
K ∈ K(H) such that

EJ(H)[H, iA]◦EJ(H) > cEJ(H) +K.

As the point spectrum of H is finite in J , we further choose J so that it contains only one
eigenvalue of H, namely λ. Furthermore, the interval J is chosen so that 0 6∈ J . Denote
P = P{λ}(H) and P⊥ := 1− P{λ}(H). Also let H ′ := HP⊥. Then

P⊥EJ(H)[H, iA]◦EJ(H)P⊥ > cEJ(H)P⊥ + P⊥EJ(H)KEJ(H)P⊥.

Functional calculus yields P⊥EJ(H) = EJ(HP
⊥) – this is where the technical point 0 6∈ J is

required. Moreover, P⊥EJ(H)KEJ(H)P⊥ converges in norm to zero as the size of the interval
J shrinks to zero around λ. Therefore there is c′ > 0 and an open interval J ′ containing λ,
with J ′ ⊂ J , such that

EJ ′(H ′)[H ′, iA]◦EJ ′(H ′) > c′EJ ′(H ′).

In other words, a strict Mourre estimate holds for H ′ on J ′. Now H ′ := HP⊥ = H−HP . Note
that P is a finite sum of rank one projectors because λ ∈ µA(H). Thanks to the assumption
ker(H−λ) ⊂ D(A), we have by Lemma 5.1 that P ∈ C1,u(A). Thus H ′ ∈ C1,u(A). Performing
the same calculation as in Step 1 with (H ′, J ′) instead of (H, J) gives

lim
t→+∞

‖〈A〉−se−itH′

EJ ′(H ′)ψ‖ = 0.

Since e−itH′

EJ ′(H ′) = e−itHEJ ′(H)P⊥, we have

lim
t→+∞

‖〈A〉−se−itHEJ ′(H)P⊥ψ‖ = 0.

The only eigenvalue of H belonging to J ′ is λ, so EJ ′(H)P⊥ = EJ ′(H)Pc(H). Thus

(5.2) lim
t→+∞

‖〈A〉−se−itHEJ ′(H)Pc(H)ψ‖ = 0.

Step 3: In this way, for each λ ∈ I, we obtain an open interval Jλ or J ′
λ containing λ such that

(5.1) or (5.2) holds true, depending on whether λ is an eigenvalue of H or not. To conclude,
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as 





⋃

λ∈I,
λ∈σc(H)

Jλ







⋃







⋃

λ∈I,
λ∈σpp(H)

J ′
λ







is an open cover of I, we may choose a finite sub-cover. If {Ji}ni=1 denotes this sub-cover, we

may further shrink these intervals so that Ji ∩ Jj = ∅ for i 6= j, ∪Ji = I, and Ji ∩ Jj ∈ σc(H)
for i 6= j. Thus EI(H)Pc(H) =

∑n
i EJi(H)Pc(H). Then, by applying (5.1) and (5.2) we get

lim
t→+∞

‖〈A〉−se−itHEI(H)Pc(H)ψ‖ 6 lim
t→+∞

n∑

i=1

‖〈A〉−se−itHEJi(H)Pc(H)ψ‖ = 0.

This proves the estimate (1.5).
Step 4: We turn to the proof of (1.6). Since, A is self-adjoint, D(A) is dense in H. Let

{φn}∞n=1 ⊂ D(A) be an orthonormal set. Let W ∈ K(H) and denote FN :=
∑N

n=1〈φn, ·〉Wφn.
The proof of [RS1, Theorem VI.13] shows that ‖W − FN‖ → 0 as N → +∞. Then

‖WPc(H)EI(H)e−itHψ‖ 6 ‖(W − FN )Pc(H)EI(H)e−itHψ‖+ ‖FNPc(H)EI(H)e−itHψ‖
6 ‖W − FN‖

︸ ︷︷ ︸

→ 0 as N→+∞

+ ‖FN 〈A〉‖ ‖〈A〉−1Pc(H)EI(H)e−itHψ‖
︸ ︷︷ ︸

→ 0 as t→+∞

.

The result follows by noting that FN 〈A〉 is a bounded operator for each N . If W is H-relatively
compact, use the fact that EI(H)(H + i) is a bounded operator. �

6. Proof of Theorem 1.3

To prove the result, we will need the following fact:

Lemma 6.1. Let T be a self-adjoint operator with T ∈ C1(A). Let λ ∈ µA(T ) and suppose that
ker(T −λ) ⊂ D(A). Then there is an interval I ⊂ µA(T ) containing λ such that P⊥

c (T )EI(T )
and Pc(T )η(T ) are of class C1(A) for all η ∈ C∞

c (R) with supp(η) ⊂ I.

Proof. Since there are finitely many eigenvalues of T in a neighborhood of λ, there is
a bounded interval I containing λ such that ker(T − λ′) ⊂ D(A) for all λ′ ∈ I. Then
P⊥
c (T )EI(T ) is a finite rank operator and belongs to the class C1(A) by Lemma 5.1. Moreover
T ∈ C1(A) implies η(T ) ∈ C1(A), by the Helffer-Sjöstrand formula. So P⊥

c (T )EI(T )η(T ) ∈
C1(A) as the product of two bounded operators in this class. Finally, Pc(T )η(T ) = η(T ) −
P⊥
c (T )EI(T )η(T ) is a difference of two bounded operators in C1(A), so Pc(T )η(T ) ∈ C1(A).

�

Proof of Theorem 1.3. Since H0 is semi-bounded and σess(H) = σess(H0), there is ς ∈ R \
(σ(H) ∪ σ(H0)). Denote the resolvents of H and H0 respectively by R(z) := (z −H)−1 and
R0(z) := (z−H0)

−1. Also denote the spectral projector of R(z) onto the continuous spectrum
by Pc(R(z)). We split the proof into four parts. First we translate the problem in terms of
the resolvent R(ς). Second we show the following formula:

Pc(R(ς))θ(R(ς))[R(ς), iϕ(A/L)]◦θ(R(ς))Pc(R(ς)) >

L−1Pc(R(ς))θ(R(ς))
(

C〈A/L〉−2s +K
)

θ(R(ς))Pc(R(ς)),
(6.1)
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where θ is a smooth function compactly supported about (ς−λ)−1, ϕ is an appropriately chosen
smooth bounded function, L ∈ R+ is sufficiently large, K is a compact operator uniformly
bounded in L, C > 0, and s ∈ (1/2, 1). θ, ϕ, C and s are independent of L. This formula is
expressed in terms of the resolvent R(ς). Third, we look to convert it into a formula for H.
We show that the latter formula implies the existence of an open interval J containing λ such
that

Pc(H)EJ(H)[R(ς), iϕ(A/L)]◦EJ(H)Pc(H) >

L−1Pc(H)EJ(H)
(

C〈A/L〉−2s +K
)

EJ(H)Pc(H).
(6.2)

We note that the operator K is the same in (6.1) and (6.2). Fourth, we insert the dynamics
into the previous formula and average over time. We notably use the RAGE Theorem (B.1)
to derive the desired formula, i.e.

(6.3) lim
T→±∞

sup
‖ψ‖61

1

T

∫ T

0
‖〈A〉−se−itHPc(H)EJ(H)ψ‖2dt = 0.

Part 1: Let λ ∈ µA(H) be such that ker(H − λ) ⊂ D(A). Then there are finitely many
eigenvalues in a neighborhood of λ including multiplicity. We may find an interval I = (λ0, λ1)
containing λ such that I ⊂ µA(H) and for all λ′ ∈ I, ker(H − λ′) ⊂ D(A). Define

(6.4) f : R \ {ς} 7→ R, f : x 7→ 1/(ς − x).

Since eigenvalues of H located in I are in one-to-one correspondence with the eigenvalues of
R(ς) located in f(I) = (f(λ0), f(λ1)), it follows that f(I) is an interval containing f(λ) such
that f(I) ⊂ µA(R(ς)) and ker(R(ς)−λ′) ⊂ D(A) for all λ′ ∈ f(I). Note the use of Proposition
3.1.

To simplify the notation in what follows, we let R := R(ς), R0 := R0(ς) and Pc := Pc(R(ς)),
as ς is fixed. Also let RA(z) := (z −A/L)−1, where L ∈ R+.
Part 2: Let θ, η, χ ∈ C∞

c (R) be bump functions such that f(λ) ∈ supp(θ) ⊂ supp(η) ⊂
supp(χ) ⊂ f(I), ηθ = θ and χη = η. Let s ∈ (1/2, 1) be given. Define

ϕ : R 7→ R, ϕ : t 7→
∫ t

−∞
〈x〉−2sdx.

Note that ϕ ∈ S0(R). The definition of S0(R) is given in (C.1). Consider the bounded operator

F := Pcθ(R)[R, iϕ(A/L)]◦θ(R)Pc =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)[R, iA]◦RA(z)θ(R)Pc dz ∧ dz.

By Lemma 6.1 with T = R, Pcη(R) ∈ C1(A), so

[Pcη(R), RA(z)]◦ = L−1RA(z)[Pcη(R), A]◦RA(z).

In the formula defining F , we introduce Pcη(R) next to Pcθ(R) and commute it with RA(z):

F =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)

(

RA(z)Pcη(R) + [Pcη(R), RA(z)]◦

)

[R, iA]◦×
(

η(R)PcRA(z) + [RA(z), Pcη(R)]◦

)

θ(R)Pc dz ∧ dz

=
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)Pcη(R)[R, iA]◦η(R)PcRA(z)θ(R)Pc dz ∧ dz

+ L−1Pcθ(R) (I1 + I2 + I3) θ(R)Pc,
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where

I1 =
i

2π

∫

C

∂ϕ̃

∂z
(z)[Pcη(R), RA(z)]◦[R, iA]◦η(R)PcRA(z) dz ∧ dz,

I2 =
i

2π

∫

C

∂ϕ̃

∂z
(z)[Pcη(R), RA(z)]◦[R, iA]◦ dz ∧ dz,

I3 =
i

2π

∫

C

∂ϕ̃

∂z
(z)RA(z)Pcη(R)[R, iA]◦[RA(z), Pcη(R)]◦ dz ∧ dz.

Applying (C.5) and Lemma C.4, and recalling that s < 1, we have for some operators Bi
uniformly bounded with respect to L that

Ii =
〈A

L

〉−sBi
L

〈A

L

〉−s
, for i = 1, 2, 3.

Using χη = η, we insert χ(R) next to η(R) . So far we get the following expression for F :

F =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)Pcχ(R) η(R)[R, iA]◦η(R)

︸ ︷︷ ︸

to be developed

χ(R)PcRA(z)θ(R)Pc dz ∧ dz

+ Pcθ(R)
〈A

L

〉−s
(
B1 +B2 +B3

L2

)〈A

L

〉−s
θ(R)Pc.

Now write

η(R)[R, iA]◦η(R) = η(R)R[H, iA]◦Rη(R) = η(R)R[H0, iA]◦Rη(R) + η(R)R[V, iA]◦Rη(R).

Let us start with the second term on the r.h.s. of this equation. It decomposes into

η(R)R[V, iA]◦Rη(R) = η(R) R〈H〉
︸ ︷︷ ︸

∈ B(H)

〈H〉−1/2 〈H〉−1/2〈H0〉1/2
︸ ︷︷ ︸

∈ B(H)

〈H0〉−1/2[V, iA]◦〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H) by A6′

×

× 〈H0〉1/2〈H〉−1/2

︸ ︷︷ ︸

∈ B(H)

〈H〉−1/2 〈H〉R
︸ ︷︷ ︸

∈ B(H)

η(R).

It is therefore compact. As for the first term on the r.h.s., it decomposes as follows

η(R)R[H0, iA]◦Rη(R) = η(R0)R0[H0, iA]◦R0η(R0) + Ξ1 + Ξ2,

where

Ξ1 := (η(R)R− η(R0)R0)[H0, iA]◦Rη(R) and Ξ2 := η(R0)R0[H0, iA]◦(Rη(R)−R0η(R0)).

We show tht Ξ1 is compact, and similarly one shows that Ξ2 is compact. We have

Ξ1 = (η(R)R− η(R0)R0)〈H0〉1/2
︸ ︷︷ ︸

∈ K(H)

〈H0〉−1/2[H0, iA]◦〈H0〉−1/2

︸ ︷︷ ︸

∈ B(H) by A5

〈H0〉1/2〈H〉−1/2

︸ ︷︷ ︸

∈ B(H)

〈H〉−1/2 〈H〉R
︸ ︷︷ ︸

∈ B(H)

η(R).
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Let us justify that (η(R)R − η(R0)R0)〈H0〉1/2 is compact. Let κ : x 7→ xη(x). By the
Helffer-Sjöstrand formula,

(η(R)R− η(R0)R0)〈H0〉1/2 =
i

2π

∫

C

∂κ̃

∂z
(z)

(
(z −R)−1 − (z −R0)

−1
)
〈H0〉1/2 dz ∧ dz

=
i

2π

∫

C

∂κ̃

∂z
(z)(z −R)−1RV R0(z −R0)

−1〈H0〉1/2 dz ∧ dz

=
i

2π

∫

C

∂κ̃

∂z
(z)(z −R)−1R〈H〉1/2

︸ ︷︷ ︸

∈ B(H)

〈H〉−1/2〈H0〉1/2
︸ ︷︷ ︸

∈ B(H)

×

× 〈H0〉−1/2V 〈H0〉−1/2

︸ ︷︷ ︸

∈ K(H) by A3

〈H0〉1/2R0〈H0〉1/2
︸ ︷︷ ︸

∈ B(H)

(z −R0)
−1 dz ∧ dz.

The integrand of this integral is compact for all z ∈ C\R, and moreover the integral converges

in norm since κ has compact support. It follows that (η(R)R − η(R0)R0)〈H0〉1/2, and thus
Ξ1, is compact. Thus we have shown that

(6.5) η(R)[R, iA]◦η(R) = η(R0)[R0, iA]◦η(R0) + compact.

Therefore there is a compact operator K1 uniformly bounded in L such that

F =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)MRA(z)θ(R)Pc dz ∧ dz

+ Pcθ(R)
K1

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3

L2

)〈A

L

〉−s
θ(R)Pc.

Here M := Pcχ(R)η(R0)[R0, iA]◦η(R0)χ(R)Pc. Since Pcχ(R), η(R0) and [R0, iA]◦ belong to
C1(A), it follows by product that M ∈ C1(A) and we may commute RA(z) with M :

F =
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)

2Mθ(R)Pc dz ∧ dz

+
i

2πL

∫

C

∂ϕ̃

∂z
(z)Pcθ(R)RA(z)[M,RA(z)]◦θ(R)Pc dz ∧ dz

+ Pcθ(R)
K1

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3

L2

)〈A

L

〉−s
θ(R)Pc.

We apply (C.8) to the first integral (which converges in norm), while for the second integral we
use the fact that M ∈ C1(A) to conclude that there exists an operator B4 uniformly bounded
in L such that

F = L−1Pcθ(R)ϕ
′(A/L)Mθ(R)Pc

+ Pcθ(R)
K1

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3 +B4

L2

)〈A

L

〉−s
θ(R)Pc.

Now ϕ′(A/L) = 〈A/L〉−2s. As a result of the Helffer-Sjöstrand formula, (C.5) and (C.10),

[〈A/L〉−s,M ]◦〈A/L〉s = L−1B5
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for some operator B5 uniformly bounded in L. Thus commuting 〈A/L〉−s and M gives

F = L−1Pcθ(R)
〈A

L

〉−s
M

〈A

L

〉−s
θ(R)Pc

+ Pcθ(R)
K1

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3 +B4 +B5

L2

)〈A

L

〉−s
θ(R)Pc

> cL−1Pcθ(R)
〈A

L

〉−s
Pcχ(R)η(R0)

2χ(R)Pc

〈A

L

〉−s
θ(R)Pc

+ Pcθ(R)
K1 +K2

L
θ(R)Pc + Pcθ(R)

〈A

L

〉−s
(
B1 +B2 +B3 +B4 +B5

L2

)〈A

L

〉−s
θ(R)Pc,

where c > 0 and K2 come from applying the Mourre estimate (3.1) to R0 on f(I). Exchanging
η(R0)

2 for η(R)2, we have a compact operator K3 uniformly bounded in L such that

F > cL−1Pcθ(R)
〈A

L

〉−s
Pcχ(R)η(R)

2χ(R)Pc

〈A

L

〉−s
θ(R)Pc + Pcθ(R)

K1 +K2 +K3

L
θ(R)Pc

+ Pcθ(R)
〈A

L

〉−s
(
B1 +B2 +B3 +B4 +B5

L2

)〈A

L

〉−s
θ(R)Pc.

We commute Pcχ(R)η(R)
2χ(R)Pc = Pcη(R)

2Pc with 〈A/L〉−s, and see that

[Pcη(R)
2Pc, 〈A/L〉−s]◦〈A/L〉s = L−1B6

for some operator B6 uniformly bounded in L. Thus

F > cL−1Pcθ(R)
〈A

L

〉−2s
θ(R)Pc + Pcθ(R)

K1 +K2 +K3

L
θ(R)Pc

+ Pcθ(R)
〈A

L

〉−s
(
B1 +B2 +B3 +B4 +B5 +B6

L2

)〈A

L

〉−s
θ(R)Pc.

Taking L large enough gives C > 0 such that c + (B1 + B2 + B3 + B4 + B5 + B6)/L > C.
Denoting K := K1 +K2 +K3 yields formula (6.1).
Part 3: For all open intervals (e1, e2) located strictly above or below ς we have the identity

(6.6) E(e1,e2)(H) = E(f(e1),f(e2))(R(ς)),

where f is the function defined in (6.4). Now let J := interior(θ−1{1}). This is an open
interval and we have EJ (R)θ(R) = EJ (R). Thus applying EJ (R) to (6.1) gives

PcEJ (R)[R, iϕ(A/L)]◦EJ (R)Pc > L−1PcEJ (R)
(
C〈A/L〉−2s +K

)
EJ (R)Pc.

We have that PcEJ (R) := Pc(R)EJ (R) is a spectral projector of R onto a finite disjoint union
of open intervals. Let {λi} be the (finite) collection of eigenvalues of R located in J . Then
{f−1(λi)} are the eigenvalues of H located in f−1(J ), and by (6.6),

Pc(R)EJ (R) =
∑

i

EJi
(R) =

∑

i

Ef−1(Ji)(H) = Pc(H)Ef−1(J )(H),

where the Ji are the open intervals such that ∪iJi ∪ {λi} = J . Denoting the open interval
J := f−1(J ) proves formula (6.2). Note that λ ∈ J .
Part 4: Let F ′ be the l.h.s. of (6.2), i.e.

F ′ := Pc(H)EJ(H)[R(ς), iϕ(A/L)]◦EJ(H)Pc(H).
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Formula (6.2) implies that for all ψ ∈ H and all T > 0:

L

T

∫ T

0
〈e−itHψ, F ′e−itHψ〉dt > C

T

∫ T

0

∥
∥
∥〈A/L〉−sEJ(H)Pc(H)e−itHψ

∥
∥
∥

2
dt+

+
1

T

∫ T

0
〈EJ(H)Pc(H)e−itHψ,KEJ(H)Pc(H)e−itHψ〉 dt.

First, for all L > 1,

L

T

∫ T

0
eitHF ′e−itH dt =

L

T

[
eitHPc(H)EJ(H)R(ς)ϕ(A/L)R(ς)EJ(H)Pc(H)e−itH

]T

0
−−−−−→
T→±∞

0.

Second, by the RAGE Theorem (B.1),

sup
‖ψ‖61

1

T

∫ T

0
〈EJ(H)Pc(H)e−itHψ,KEJ(H)Pc(H)e−itHψ〉 dt

6 sup
‖ψ‖61

1

T

∫ T

0
‖KEJ(H)e−itHPc(H)ψ‖ dt

6 sup
‖ψ‖61

(
1

T

∫ T

0
‖KEJ(H)e−itHPc(H)ψ‖2 dt

)1/2

−−−−−→
T→±∞

0.

It follows that for L sufficiently large (but finite),

lim
T→±∞

sup
‖ψ‖61

1

T

∫ T

0

∥
∥
∥
∥

〈A

L

〉−s
e−itHPc(H)EJ(H)ψ

∥
∥
∥
∥

2

dt = 0.

Finally (6.3) follows by noting that 〈A〉−s〈A/L〉s is a bounded operator. �

7. A discussion about the compactness of operators of the form 〈A〉−sEI(H)

As pointed out in the Introduction, the novelty of formula (1.12) is conditional on the non-
relative compactness of the operator 〈A〉−sEI(H). The non-compactness of 〈A〉−sEI(H) is
also what sets (1.5) apart from (1.6). We start by noting that 〈A〉−sEI(H) is H-relatively
compact if and only if it is compact, since I ⊂ R is a bounded interval.

We will allow ourselves to consider operators of the form 〈A〉−sχ(H), where χ is a smooth
function, rather than 〈A〉−sEI(H). On the one hand, if 〈A〉−sEI(H) is compact, then so is
〈A〉−sχ(H), where χ is any smooth function that has support contained in I. On the other
hand, if 〈A〉−sχ(H) is compact, where χ is a smooth bump function that approximates the
characteristic function of I and equals one above I, then so is 〈A〉−sEI(H).

We will also suppose that H = H0 + V , where V is some H0-form compact operator, and
H0 is viewed as the "free" operator. In other words we will work under the assumption A3.
The reason for doing so is that H0 is much easier to work with than H in practice. In this
case we note that 〈A〉−sχ(H) is compact if and only if 〈A〉−sχ(H0). We therefore have the
question: Is 〈A〉−sχ(H0) a compact operator? A first result is:

Proposition 7.1. Let H0, A be self-adjoint operators in H. Suppose that H0 has a spectral
gap. Suppose that H0 ∈ C1(A) and that for some λ ∈ R, [(H0 − λ)−1, iA]◦ := C > 0 is an
injective operator. Then A does not have any eigenvalues. In particular, 〈A〉−s 6∈ K(H) for
any s > 0.
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Remark 7.1. The examples of Section 4 satisfy the hypotheses of Proposition 7.1. The posi-
tivity of C holds because σ(H0) ⊂ [0,+∞). The injectivity holds because 0 is not an eigenvalue
of H0.

Proof. Let ψ be an eigenvector of A. Since A ∈ C1((H0 − λ)−1), the Virial Theorem

([ABG, Proposition 7.2.10]) says that 0 = 〈ψ, [(H0 − λ)−1, iA]◦ψ〉 = 〈ψ,Cψ〉 = ‖
√
Cψ‖2.

The injectivity of
√
C forces ψ = 0, i.e. σp(A) = ∅. Now, it is known that the spectrum of

a self-adjoint operator with compact resolvent consists solely of isolated eigenvalues of finite
multiplicity, see e.g. [K, Theorem 6.29]. So if A had compact resolvent, then we would have
σ(A) = σp(A) = ∅. However this is not possible because the spectrum of a self-adjoint
operator is non-empty. We conclude that A does not have compact resolvent. Writing (z −
A)−1 = (z − A)−1〈A〉〈A〉−1, we infer that 〈A〉−1 6∈ K(H). Finally, consider the bounded self-
adjoint operator 〈A〉−s for some s > 0. If this operator were compact, then by the spectral
theorem for such operators we would have 〈A〉−s = ∑

i λi〈φi, ·〉φi for some eigenvalues {λi} and

eigenvectors {φi} which form an orthonormal basis of H. But then 〈A〉−1 =
∑

i λ
1/s
i 〈φi, ·〉φi,

implying that the latter operator is compact. This contradiction proves 〈A〉−s 6∈ K(H) for all
s > 0. �

Unfortunately, this result does not settle the debate because it does not guarantee the non-
compactness of 〈A〉−sχ(H0). In fact, we have examples where this operator is compact. For
lack of a more robust result, we shall spend the rest of this section examining several examples.
Our conclusion is that 〈A〉−sχ(H0) is sometimes compact, sometimes not. Specifically, in each
of our examples, the compactness holds in dimension one but does not in higher dimensions. To
start off, we cook up a simple example that will reinforce the viewpoint that non-compactness
is possible, especially in higher dimensions.

Example 7.2. Let H := L2(R2), H0 := −∂2/∂x21 and A := −i(x1∂/∂x1 + ∂/∂x1x1) be a
conjugate operator to H0. The spectrum of H0 is purely absolutely continuous and σ(H0) =
[0,+∞). In particular, ker(H0 − λ) = ∅ for all λ ∈ R. Also [H0, iA]◦ = 2H0 exists as

a bounded operator from D(〈H0〉1/2) to D(〈H0〉1/2)∗, implying that H0 ∈ C∞(A) and that
the Mourre estimate holds for all positive intervals supported away from zero. In addition,
{eitA}t∈R stabilizes D(H0). The assumptions of Theorems 1.2 and 1.3 are therefore thoroughly
verified. Moreover 〈A〉−sχ(H0) is clearly not compact in L2(R2). This can be seen by applying
〈A〉−sχ(H0) to a sequence of functions (f(x1)gn(x2))

+∞
n=1 with gn chosen so that

∫

R
|gn(x2)|2dx2

is constant.

To continue with other examples, we set up notation. Let C0(R) be the continuous functions
vanishing at infinity and C∞

c (R) the compactly supported smooth functions.

Example 7.3. Let H := L2(Rd), H0 := x1 + ... + xd and A := i(∂/∂x1 + ... + ∂/∂xd). This
system verifies the Mourre estimate at all energies thanks to commutator relation [H0, iA]◦ =
dI, and H0 ∈ C∞(A) holds. Although this system does not quite fall within the framework of
this article because H0 is not semi-bounded (σ(H0) = R), it conveys the idea that compactness
holds only in dimension one:

Proposition 7.4. Let H0 and A be those from Example 7.3. Let χ ∈ C0(R) and s ∈ R be
given. If d = 1, then 〈A〉−sχ(H0) ∈ K(L2(R)). If d = 2, then 〈A〉−sχ(H0) 6∈ K(L2(R2)).

Proof. The one-dimensional result is a classic, see Proposition 4.1. We prove the two-
dimensional result. Let I(λ, r) denote the open interval centered at λ ∈ R and of radius r > 0.
Fix λ and r such that I(λ, r) ⊂ supp(χ). Then the function of two variables χ(x1 + x2) has
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support containing the oblique strip ∪t∈I(λ,r){(s, t − s) : s ∈ R} ⊂ R2. Let ψ ∈ C∞
c (R) be a

bump function that equals one on I(λ, r) and zero on R \ I(λ, 2r). Let θ ∈ C∞
c (R) be a bump

function that equals one on [−1, 1] and zero on R\[−2, 2]. Let Ψn(x, y) := n−1/2ψ(x+y)θ(y/n).
Then ‖Ψn‖ ≡ ‖ψ‖‖θ‖. Here ‖ · ‖ denotes the norm on L2(R2). Fix ν ∈ N, and let ϕνn :=
(A+ i)νΨn. For ν = 0, clearly ‖ϕνn‖ = ‖Ψn‖ is uniformly bounded in n and an easy induction
proves it for all fixed values of ν ∈ N. Consider now φn := χ(H0)(A + i)−νϕνn = χ(H0)Ψn.

Since χ ∈ C0(R) and Ψn
w−→ 0, φn

w−→ 0. If χ(H0)(A + i)−ν ∈ K(L2(R2)) for some ν ∈ N,
then the image of the ball B(0, supn>1 ‖ϕνn‖) by this operator is pre-compact in L2(R2), and

so there exists φ ∈ L2(R2) and a subsequence (nk)
∞
k=1 such that lim ‖φnk

− φ‖ = 0 as k →
+∞. Since φnk

w−→ 0, it must be that φ = 0 since the strong and weak limits coincide and
are unique. But this contradicts the fact that ‖φnk

‖ > ‖χ1I(λ,r)(·)‖‖θ‖ for all k > 1. So

χ(H0)(A + i)−ν 6∈ K(L2(R2)), and this implies that χ(H0)〈A〉−s 6∈ K(L2(R2)) for all s 6 ν.
The result follows by taking adjoints. �

For what it is worth, we tweak Example 7.3 to create a system that fits all the assumptions
of this article. We state a variation of it and leave the details of the proof to the reader.

Example 7.5. Let H := L2(Rd). Let H0 be the operator of multiplication by x1h(x1) +
... + xdh(xd), where h ∈ C∞(R) is a smooth version of the Heaviside function (which is zero
below the origin, positive above the origin and strictly increasing). Then σ(H0) = [0,+∞). In
particular, H0 is a positive operator. The conjugate operator is still A := i(∂/∂x1+...+∂/∂xd).
We have H0 ∈ C∞(A) and the Mourre estimate holds on all positive bounded intervals. One
also verifies that {eitA}t∈R stabilizes D(H0) (note that {eitA}t∈R is the group of translations on
L2(Rd)). Assumptions A1 - A5 are verified. With regard to the compactness issue, Proposition
7.4 holds, but for the two-dimensional result, one must also assume that χ has non empty
support in (0,+∞).

Our next model is the continuous Laplacian. We refer to Section 4.1 for a description of the
model. The situation is the same as with the preceding example: compactness in dimension
one, non-compactness in higher dimensions.

Example 7.6 (Continuous Laplacian with generator of dilations). Let H := L2(Rd), H0 :=
−∆ be the Laplacian and A := −i(x · ∇ + ∇ · x)/2 = −i(2x · ∇ + d)/2 be the generator of
dilations. We will be making use of the Fourier transform on L2(Rd) given by

(7.1) (Fψ)(ξ) = (2π)−d/2
∫

Rd

ψ(x)e−iξ·xdx.

Note that FAF−1 = −A =
∑d

i=1 i(ξi∂/∂ξi + ∂/∂ξiξi)/2 and FH0F−1 = |ξ|2 := ∑d
i=1 ξ

2
i .

Proposition 7.7. Let H0 and A be those from Example 7.6. We have τ(A)χ(H0) ∈ K(L2(R))
for all τ, χ ∈ C0(R), with χ supported away from zero.

First proof: Let Q be the operator of multiplication by the variable x and P := −id/dx.
Let χ ∈ C∞

c (R) be supported away from zero. Let (A + i)−1χ(H0) = (A + i)−1χ1(P ), where
χ1 := χ ◦ σ and σ(ξ) = ξ2. We implement a binary relation ≈ on B(L2(R)) whereby two
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operators are equivalent if their difference is a compact operator. We have:

(A+ i)−1χ(H0) = (A+ i)−1χ1(P )(Q+ i)(Q+ i)−1

≈ (A+ i)−1χ1(P )Q(Q+ i)−1

≈ (A+ i)−1Qχ1(P )(Q+ i)−1

= (A+ i)−1(QP )χ2(P )(Q+ i)−1

≈ (A+ i)−1(A+ i)χ2(P )(Q+ i)−1 ≈ 0.

Note the use of Proposition 7.4 each time a compact operator was removed. In the third step
we used that [χ1(P ), Q]◦(Q+i)−1 = χ′

1(P )(Q+i)−1 ≈ 0. In the fourth step we took advantage
of the fact that χ1 is supported away from zero to let χ2(P ) := P−1χ1(P ) and thereby allow
to recreate A := (QP + PQ)/2 = QP − i/2.

Thus we have shown that (A + i)−1χ(H0) ∈ K(L2(R)). It follows that (A − z)−1χ(H0) ∈
K(L2(R)) for all z ∈ C \ R. Note that the functions {(x − z)−1 : z ∈ C \ R} and C∞

c (R) are
dense in C0(R) with respect to the uniform norm. Since H0 and A are self-adjoint operators,
they are unitarily equivalent to a multiplication operator by a real-valued function in some
appropriate L2(M) space. The norm of a multiplication operator from L2(M) to L2(M) is
equal to the uniform norm of the multiplication function. Two limiting arguments, one for the
H0 first and then one for A0, or vice-versa, extends the compactness to τ(A)χ(H0) as in the
statement of the Proposition. �

Second proof: We see that F(A − i/2)−1χ(H0)F−1 is an integral transform acting in the
momentum space as follows:

L2(R) ∋ ϕ 7→ (F(A− i/2)−1χ(H0)F−1ϕ)(ξ) =
i

ξ

∫ ξ

0
χ(t2)ϕ(t)dt ∈ L2(R).

The fact that χ is supported away from zero is crucial here. Moreover, if χ ∈ C∞
c (R), then

this integral transform is Hilbert-Schmidt and there is c > 0 such that

‖(A− i/2)−1χ(H0)‖2HS =

∫

R

∫

R

1(0,ξ)(t)ξ
−2|χ(t2)|2dtdξ 6 c‖χ‖22.

In particular, (A − i/2)−1χ(H0) is compact. One extends the compactness to operators of
the form τ(A)χ(H0) as in the statement of the Proposition using the same limiting argument
explained in the first proof. �

To complete the one-dimensional picture, we mention for what it is worth that it is possible
to show that (A+ i)−1χ(H0) 6∈ K(L2(R)) for any χ ∈ C∞

c (R) with χ(0) 6= 0. We now turn to
the multi-dimensional case.

Proposition 7.8. Let H0 and A be those from Example 7.6. If d > 2, then 〈A〉−sχ(H0) 6∈
K(L2(Rd)) for any χ ∈ C∞

c (R) whose support is non-empty in (0,+∞) and for any s ∈ R.

Proof. Let I(λ, r) denote the interval of radius r > 0 centered at λ. There are λ ∈ (0,+∞)
and r > 0 such that I(λ, r) ⊂ (0,+∞) and m := infx∈I(λ,r) |χ(x)| > 0. Consider the constant
energy curves

{(ξ1, ..., ξd) ∈ R
d : E = ξ21 + ...+ ξ2d}.

For d = 2, these are just circles centered at the origin. Forth we work in dimension two to
keep the notation clean, but the necessary adjustments are obvious for d > 2. The support
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of the function of two variables χ(ξ21 + ξ22) contains the annulus obtained by rotating I(λ′, r′)
about the origin, where

λ′ := (
√
λ+ r +

√
λ− r)/2, r′ := (

√
λ+ r −

√
λ− r)/2.

Let ψ1, ψ2 ∈ C∞
c (R) be any bump functions verifying : a) ψ1(0) 6= 0, b) supp(ψ1) = [−1, 1],

c) supp(ψ2) ⊂ I(λ′, r′/2), and d) ‖ψi‖ = 1, where ‖ · ‖ denotes the L2 norm. Now let

Ψn(ξ1, ξ2) :=
√
nψ1(ξ1n)ψ2(ξ2). Then ‖Ψn‖ = 1 for all n > 1, and Ψn

w−→ 0. Also, for n
sufficiently large, Ψn is supported in the aforementioned annulus. Now fix ν ∈ N and let
ϕνn := F(A+ i)νF−1Ψn. Then for ν = 0, ‖ϕνn‖ = ‖Ψn‖ ≡ 1, while for ν = 1,

ϕνn(ξ1, ξ2) = −2n3/2iξ1ψ
′
1(ξ1n)ψ2(ξ2)− 2n1/2iψ1(ξ1n)ξ2ψ

′
2(ξ2)− iΨn(x),

and we see that ‖ϕνn‖ is uniformly bounded in n. A simple induction on ν shows that for
every fixed value of ν ∈ N, ‖ϕνn‖ is uniformly bounded in n. Consider φn := Fχ(H0)(A +
i)−νF−1ϕνn = Fχ(H0)F−1Ψn. If Fχ(H0)(A + i)−νF−1 ∈ K(L2(R2)) for some value of ν,
the image of the ball B(0, supn>1 ‖ϕνn‖) by this operator is pre-compact in L2(R2), and so

there exists φ ∈ L2(R2) and a subsequence (nk)
∞
k=1 such that limk→+∞ ‖φnk

− φ‖ = 0. Since

φnk

w−→ 0, it must be that φ = 0 since the strong and weak limits coincide and are unique. But
this contradicts the fact that ‖φnk

‖ > m‖Ψnk
‖ = m > 0 for all k > 1. So χ(H0)(A + i)−ν 6∈

K(L2(R2)) and this implies that χ(H0)〈A〉−s 6∈ K(L2(R2)) for all s 6 ν. The result follows by
taking adjoints. �

A nice corollary of Proposition 7.8 that deserves a mention is the following. It uses Propo-
sition 4.1. The result can also be proven to hold in dimension one.

Corollary 7.9. Let A be that from Example 7.6. Let d > 2. Then for all (s, ε) ∈ R× (0,+∞),
〈A〉−s〈Q〉ε 6∈ B(L2(Rd)).

Example 7.10 (Continuous Laplacian with Nakamura’s conjugate operator). In [N], Naka-
mura presents an alternate conjugate operator to the continuous Laplacian H0. Let β > 0. In
momentum space it reads

FAF−1 :=
i

2β

d∑

i=1

(

sin(βξi)
∂

∂ξi
+

∂

∂ξi
sin(βξi)

)

.

Under some conditions on the potential V , it is shown that the Mourre theory holds for H :=
H0+V with respect to A on the interval (0, (π/β)2/2). We refer also to [Ma] for a generalization
of this conjugate operator and a more in-depth discussion. An argument as in Propositions
7.8 and 7.13 shows that, for d > 2, 〈A〉−sχ(H0) 6∈ K(L2(Rd)) for all χ ∈ C0(R) and s ∈ R.

Our last example is the discrete Laplacian on Zd. We refer to Section 4.2 for the details on
the model.

Example 7.11 (Discrete Schrödinger operators). Let H := ℓ2(Zd), H0 := ∆ be the discrete
Laplacian and A be its conjugate operator as in Example 4.2. Let

ℓ2(Zd) ∋ u 7→ (Fu)(θ) = (2π)−d/2
∑

n∈Zd

u(n)eiθ·n ∈ L2([−π, π]d)

be the Fourier transform. We recall that H0 is unitarily equivalent to the operator of multipli-

cation by
∑d

i=1(2 − 2 cos(θi)) and that A is unitarily equivalent to the self-adjoint realization

of the operator i
∑d

i=1(sin(θi)∂/∂θi + ∂/∂θi sin(θi)), which we denote by AF .
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Proposition 7.12. Let H0 and A be those from Example 7.11. If d = 1, then τ(A)χ(H0) ∈
K(ℓ2(Z)) for all τ ∈ C0(R) and χ ∈ C([0, 4]) supported away from zero and four.

Proof. Using simple techniques from the theory of first order differential equations, we see
that χ(H0)(A+ i)−1 is a Hilbert-Schmidt integral transform acting as follows:

L2([−π, π]) ∋ ψ 7→ (Fχ(H)(A+i)−1F−1ψ)(θ) =
1

2i sin(θ/2)

∫ θ

0

sin(t/2)

sin(t)
χ (2− 2 cos(t))ψ(t)dt.

Note that it is crucial that χ(2− 2 cos(t)) be supported away from zero and ±π. �

−π −π
2

π
2

π

−π

−π
2

π
2

π

0
θ1

θ2

Figure 1. Level curves {(θ1, θ2) ∈ [−π, π]2 : E = 2−2 cos(θ1)+2−2 cos(θ2)}
of constant energy for d = 2

Proposition 7.13. Let H0 and A be those from Example 7.11. If d > 2, then 〈A〉−sχ(H0) 6∈
K(ℓ2(Zd)) for all χ ∈ C([0, 4d]) with non-empty support in (0, 4d), and for all s ∈ R.

Proof. Let λ ∈ (0, 4d) and r > 0 be such that I(λ, r) ⊂ (0, 4d) andm := infx∈I(λ,r) |χ(x)| > 0.
Fix an energy E ∈ I(λ, r). Consider the constant energy curves

{(θ1, ..., θd) ∈ [−π, π]d : E = 2− 2 cos(θ1) + ...+ 2− 2 cos(θd)}.
For d = 2, these level curves are drawn in Figure 1 for various energies in [0, 8]. Let us proceed
in dimension two to keep things simple. The aim is to show that Fχ(H0)F−1(AF + i)−ν is
not compact for every fixed value of ν ∈ N. Now Fχ(H0)F−1 is equal to the operator of
multiplication by χ(2−2 cos(θ1)+2−2 cos(θ2)). The support of this function of two variables
contains a neighborhood of a portion of the following vertical axes : θ1 = −π, 0 or π. Let
N be such a neighborhood. Let T be one of these three values depending on the situation.
We can then create a sequence Ψn(θ1, θ2) =

√
nψ1((θ1 − T )n)ψ2(θ2) that is supported in N ,

converges weakly to zero and ‖Ψn‖ ≡ 1. Now let ϕνn := (AF + i)νΨn. Then for every fixed
value of ν, ‖ϕνn‖ is uniformly bounded in n. The rest of the proof follows the guidelines as
that of Proposition 7.8. �

Finally, as in the continuous case, we have:
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Corollary 7.14. Let A be that from Example 7.11. Let d > 2. Then for all (s, ε) ∈ R ×
(0,+∞), 〈A〉−s〈N〉ε 6∈ B(ℓ2(Zd)).

Appendix A. Why scattering states evolve where A is prevalent

This appendix is based on [Go, Section 3.2]. We give an idea why it is not unreasonable to
expect both purely absolutely continuous spectrum and a propagation estimate under the only
assumptions H ∈ C1(A) and the Mourre estimate (1.2) on I, when I is void of eigenvalues.
Without loss of generality, we may assume that the Mourre estimate for H is strict over the
interval I. Given a state f and ft := e−itHf its evolution at time t ∈ R under the dynamics
generated by the operator H, one looks at the Heisenberg picture:

(A.1) Af (t) := 〈ft, Aft〉.
This is the time-evolution of the expectation value of the observable A. Since we are localized
in energy in I, and A is generally an unbounded operator, we take f := ϕ(H)g, with g ∈ D(A)
and ϕ ∈ C∞

c (I), the smooth functions compactly supported on the interval I. In addition to
imply that [H, iA]◦ ∈ B(D(H),D(H)∗), the assumption H ∈ C1(A) implies that e−itHϕ(H)
stabilizes the domain of A, ensuring that Af (t) is well defined. Differentiating (A.1) gives

(A.2) A′
f (t) := 〈ft, [H, iA]◦ft〉 = 〈ft, EI(H)[H, iA]◦EI(H)ft〉.

By using the strict Mourre estimate and the boundedness of [H, iA]◦ we get

c‖f‖2 6 A′
f (t) 6 k‖f‖2,

where k := ‖[H, iA]◦‖B(D(H),D(H)∗). Integrating this equation yields

ct‖f‖2 6 Af (t)−Af (0) 6 kt‖f‖2, for all t > 0.

The transport of the particle is therefore ballistic with respect to A. This is characteristic of
purely absolutely continuous states and propagation estimates are usually obtained in these
circumstances.

Appendix B. A uniform RAGE Theorem

We would like to make a relevant observation about the RAGE Theorem that appears to
be absent from the literature. A small modification of the proof of [CFKS, Theorem 5.8] leads
to:

Theorem B.1 (RAGE). Let H be a self-adjoint operator on H. Let I be a bounded interval.
(1) If W ∈ K(H),

sup
ψ∈H,‖ψ‖=1

1

T

∫ T

0
‖We−itHPc(H)ψ‖2 dt→ 0 as T → ∞.(B.1)

(2) If W ∈ B(H) and is H-relatively compact, then for all ψ ∈ H,

1

T

∫ T

0
‖We−itHPc(H)ψ‖2 dt→ 0 as T → ∞.

and

sup
ψ∈H,‖ψ‖=1

1

T

∫ T

0
‖We−itHPc(H)EI(H)ψ‖2 dt→ 0 as T → ∞.
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(3) If W ∈ K(H), then
∥
∥
∥
∥

1

T

∫ T

0
eitHWe−itHPc(H) dt

∥
∥
∥
∥
→ 0 as T → ∞.

The improvement consists in the supremum which is absent in the standard version of the
Theorem. In [CFKS], they prove (3). They state a weaker version of (1), although their proof
gives in fact (1). The first part of (2) is proven in [CFKS]. For the second part, apply (1) with

ψ̃ := (H + i)EI(H)ψ and conclude by noticing that (H + i)EI(H) is a bounded operator.

Appendix C. Overview of almost analytic extension of smooth functions

We refer to [D], [DG], [GJ1], [GJ2], [HS2] and [M] for more details. We review basic results
that are spread out in the mentioned literature. Let ρ ∈ R and denote by Sρ(R) the class of
functions ϕ in C∞(R) such that

(C.1) |ϕ(k)(x)| 6 Ck〈x〉ρ−k, for all k ∈ N.

For the purpose of this article we only need the class S0(R). This class consists of the smooth
bounded functions having derivatives with suitable decay.

Lemma C.1. [D] and [DG] Let ϕ ∈ Sρ(R), ρ ∈ R. Then for every N ∈ Z+ there exists a
smooth function ϕ̃N : C → C, called an almost analytic extension of ϕ, satisfying:

(C.2) ϕ̃N (x+ i0) = ϕ(x) ∀x ∈ R;

(C.3) supp (ϕ̃N ) ⊂ {x+ iy : |y| 6 〈x〉};

(C.4) ϕ̃N (x+ iy) = 0 ∀y ∈ R whenever ϕ(x) = 0;

(C.5) ∀ℓ ∈ N ∩ [0, N ],

∣
∣
∣
∣
∣

∂ϕ̃N
∂z

(x+ iy)

∣
∣
∣
∣
∣
6 cℓ〈x〉ρ−1−ℓ|y|ℓ for some constants cℓ > 0.

Lemma C.2. [GJ1] Let ρ > 0 and ϕ ∈ Sρ(R). Let ϕ(A) with domain D(ϕ(A)) ⊃ D(〈A〉ρ) be
the operator whose existence is assured by the spectral theorem. Then for f ∈ D(〈A〉ρ),

(C.6) ϕ(A)f = lim
R→∞

i

2π

∫

C

∂( ˜ϕθR)N
∂z

(z)(z −A)−1f dz ∧ dz,

where θR(x) := θ(x/R) and θ ∈ C∞
c (R) is a bump function such that θ(x) = 1 for x ∈

[−1/2, 1/2] and θ(x) = 0 for x ∈ R \ [−1, 1].

Lemma C.3. For ρ > 0 and ϕ ∈ Sρ(R), the following limit exists:

(C.7) ϕ(k)(A)f = lim
R→∞

i(k!)

2π

∫

C

∂( ˜ϕθR)N
∂z

(z)(z −A)−1−kf dz ∧ dz, for all f ∈ D(〈A〉ρ),

where θ is the same as in Lemma C.2. Moreover, if 0 6 ρ < k and ϕ(k) is a bounded function,
then ϕ(k)(A) is a bounded operator and

(C.8) ϕ(k)(A) =
i(k!)

2π

∫

C

∂ϕ̃N
∂z

(z)(z −A)−1−k dz ∧ dz

holds with the integral converging in norm.
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Lemma C.4. [GJ2] Let s ∈ [0, 1] and D := {(x, y) ∈ R2 : 0 < |y| 6 〈x〉}. Then there exists
c > 0 independent of A such that for all z = x+ iy ∈ D :

(C.9) ‖〈A〉s(A− z)−1‖ 6 c · 〈x〉s · |y|−1.

Proposition C.5. [GJ1] Let T be a bounded self-adjoint operator satisfying T ∈ C1(A). Then
for any ϕ ∈ Sρ(R) with ρ < 1, T ∈ C1(ϕ(A)) and

(C.10) [T, ϕ(A)]◦ =
i

2π

∫

C

∂ϕ̃N
∂z

(z −A)−1[T,A]◦(z −A)−1 dz ∧ dz.
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