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Résumé : L’objet de cette these est I'étude spectrale et dynamique de systéemes de la mécanique
quantique en utilisant des techniques de commutateurs. Deux parmi les trois articles présentés trait-
ent 'opérateur de Schrodinger discret sur un réseau.

Dans le premier article, un principe d’absorption limite est établi pour le Laplacien discret multi-
dimensionnel perturbé par la somme d’un potentiel de type Wigner-von Neumann et d'un potentiel
de type longue portée. Ce résultat implique notamment ’absolue continuité du spectre de cet Hamil-
tonien a certaines énergies.

Dans le second article, nous considérons a nouveau l'opérateur de Schrdédinger discret multi-
dimensionnel dont le potential est de type longue portée. Il est démontré que les fonctions propres
correspondant a des valeurs propres de I’'Hamiltonien décroissent sous-exponentiellement lorsque ces
dernieres ne sont pas un seuil. En dimension un, il est démontré de surcroit que ces fonctions propres
décroissent exponentiellement. Une conséquence de ceci est I’absence de valeurs propres dans la partie
centrale du spectre délimité aux extrémités par des seuils.

Le troisieme article étudie des propriétés dynamiques d’Hamiltoniens vérifiants des hypotheses min-
imales dans la théorie des commutateurs. En se basant sur une estimation des vitesses minimales d’une
part et une version améliorée du théoreme du RAGE d’autre part, nous dérivons deux estimations de
propagation pour cette famille d’Hamiltoniens. Ces estimations indiquent que les états du systeme se
comportent dynamiquement de fagon tres similaire aux états de diffusion. Toutefois, ceci n’écarte pas
la possibilité de spectre singulier continu.

Mots-clés : Théorie spectrale, estimation de propagation, commutateurs, théorie de Mourre, opérateurs
de Schrodinger discrets

Abstract : This thesis deals with the analysis of spectral and dynamical properties of quantum me-
chanical systems using techniques of operator commutators. Two of the three research papers that are
presented deal exclusively with the discrete Schrodinger operators on the lattice.

The first article proves a limiting absorption principle for the multi-dimensional discrete Laplacian
perturbed by the sum of a Wigner-von Neumann potential and long-range potential. This result no-
tably implies the absolute continuity of the spectrum of this Hamiltonian at certain energies.

The second article proves that eigenfunctions corresponding to non-threshold eigenvalues of multi-
dimensional discrete Schrodinger operators decay sub-exponentially. In one dimension, it is further
proven that these eigenfunctions decay exponentially. A consequence of this is the absence of eigen-
values when the middle portion of the spectrum does not contain any thresholds.

The third article investigates dynamical properties of Hamiltonians under very minimal assump-
tions in the theory of commutators. Based on minimal escape velocities and an improved version of the
RAGE Theorem, we derive propagation estimates for these types of Hamiltonians. These estimates
indicate that the states of the system behave dynamically very much like scattering states. Nonethe-
less, the existence of singularly continuous states cannot be disproved.

Key words : Spectral theory, propagation estimates, commutators, Mourre theory, discrete Schrodinger
operators

Research Laboratory : Institut de Mathématiques de Bordeaux, 351 cours de la Libération,
F 33405 Talence, France
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INTRODUCTION

Notation: For Hilbert spaces F and G, let B(F,G) and K(F,G) respectively be the set
of bounded linear operators and compact linear operators from F into G. If F = G, then
we set B(F) = B(F,G) and K(F) = K(F,G). The Hilbert space by default will be denoted
‘H and it will be assumed to be separable and over the complex numbers. For an arbitrary
self-adjoint operator 7" on H we denote by D(T') its domain and o(T) its spectrum. The
two specific Hilbert spaces we will be working with are L?(R¥) and ¢2(Z"), where v is the
dimension. More notation will be added as we go along.

1 Generalities about Schrodinger operators

1.1 The continuous and discrete Schréodinger operators

Quantum mechanics is an important branch of physics concerned with the theoretical and
experimental study of atoms and subatomic particles. A quantum mechanical system consists
of one or several subatomic particles interacting between themselves and with the surrounding
environment. Because of the interactions, the configuration of the system changes. We say
that system evolves through various states. The states of the system are represented by unit
vectors belonging to a Hilbert space. The observable physical quantities of the system, such
as position of the particles, their momentum, spin or energy, are represented by self-adjoint
linear operators acting on the Hilbert space.

Unlike the everyday world, where the macroscopic systems that surround us appear to
have a definite position, a definite momentum and a definite energy, all at a definite time of
occurrence, quantum systems are probabilistic in nature. This means that when making an
experiment, there are several possible outcomes for a given measurement. In theory, all of
these outcomes are associated a probability — or likeliness — of occurrence.

In mathematical physics, one of the simplest systems is that of a single particle that is free
to travel in v dimensions. The particle could be an electron for example. At any given time ¢,
the position of the particle is given by coordinates in R¥. The Hilbert space for the associated
position states is L2(R¥). This is the collection of functions 1 : RV + C such that

6l = [ 1@)Pds < +oo, @ = (@1,m) € R

A state describing the system at time ¢ is a function ¢ € L?(R”) with ||¢|| = 1. This function
is just a probability distribution for position. This means that the probability of finding the
particle at time ¢ in a region €2 of space is given by

/ (e D)Pd .
Q

If at time ¢ the system is in a state ¢ (x, t), then we expect the particle to be in a neighborhood
of the point with coordinates

/ 2|, )Pz
[Rl/



This quantity is called the expectation value of the position of the particle in the state ¢(x)
at time t. If the state of the particle is known in position space, we can infer the state of the
particle in momentum space, thanks to the Fourier transform. It is given by

_ 1 —ix-p qv _ v
Y(p,t) = @n) 2 /[RV Yz, t)e " Pd"z, p=(p1,....,pv) €ER".
The expectation value of the momentum of the particle in this state is then
/[R pli(p, ) Pd”p.

Another observable of central importance is energy. The kinetic energy is given by |p|?/2m,
where m is the mass of the particle. In the mathematical physics literature, it is standard to
set the non-relativistic kinetic energy operator to be Hy := |p|? = |p1|> + ... + |p,|?>. This is an
operator of multiplication in momentum space. In other words, it is diagonalized in momentum
space. By applying the inverse Fourier transform, we see that Hy = —A := =7 | 0% /0x2.
As many problems are initially formulated in position space, this is the form that is often
used. In addition to kinetic energy, the particle may have potential energy V(z) depending
on its position. Here V' is a function from R to R. For this reason, we denote the full energy
operator for the particle H := Hy+ V in position space. It is typically called the Hamiltonian
for the system. Under suitable conditions on the potential V', H is a self-adjoint operator on
H2(RY ), the Sobolev space corresponding to the operator domain of Hy. By the Kato-Rellich
Theorem for instance, this is the case if V' is real-valued and Hy-bounded with relative bound
strictly less than 1. For more details about self-adjointness, we refer to [Si3] and references
therein for a concise review. The set of all possible energies the system can take is called the
spectrum of H and it is denoted by o(H). If the particle is free, that is, in the absence of any
potential energy, it is well-known that o(H) = o(Hy) = [0,+00). In particular, the kinetic
energy may be arbitrarily large. This follows easily from the Spectral Theorem.

The thesis is more geared towards a discretized version of the latter example. It consists
in discretizing position. We can imagine the electron is now hopping from one lattice site to
another, instead of moving in a continuous space. The lattice is composed of regularly spaced
out sites. The Hilbert space for the position states is then £2(Z¥). This is the collection of
functions ¥ : Z¥ — C such that

[l = > [p(n)]* < +o0, n=(n1,...,n,) € 2"
nezv

If the particle is in the quantum state ¢ at time ¢, then the probability of finding it at site
n is simply [+(n,t)|?. By the Fourier transform, the state of the particle in momentum space
L? (-, 7]V, d"p) is given by

b(pt) =Y (n, )™, p=(p1,...,p) € [-m,7]".
nezv
The kinetic energy operator is diagonalized in momentum space. It is given by

Hy ::ZQ—QCos(pi). (1)

i=1



In position space, it acts on a state 1) € £2(Z¥) in this way:

(Ho)(n) = (Ay)(n) = Y w(n) —w(m). (2)

[n—m|=1

Here |n —m| := Y7, |n; — my| for all n = (ni,...,n,) and m = (m1,...,m,) belonging to
Z¥. The spectrum of the kinetic energy operator is o(Hy) = [0,4v], since it corresponds to
the range of the function given in (1). If the particle has potential energy V' (n) depending on
position, then the Hamiltonian is H = Hy + V. If V is real-valued and bounded for example,
then H is a bounded self-adjoint operator on ¢2(Z" ). This model has important applications
in Solid State Physics, notably for the so-called tight-binding approximation. The lattice Z¥
represents regularly spaced out atoms composing a crystal and the electron is hopping from
one atom to another. In this model, the interatomic motion of the free electron is slowed down
by the atoms, so that the kinetic energy has an a priori upper bound which does not exist in
the continuous case.

1.2 The spectral decomposition of the Hamiltonian

As mentioned previously, the spectrum of H = Hy + V is the set of energies the system can
have. Mathematically, the spectrum of H is defined as the collection of z € C such that either
(H — z) is not invertible or (H — 2)~! is not bounded. When the potential energy is non-zero,
the spectrum of H is typically different than that of Hp. One of the main goals of Spectral
Theory is to characterize the differences between the spectra of Hy and Hy + V. To recall a
first well-known result, we need a definition.

Definition 1.1. Let T be a self-adjoint operator on a Hilbert space H. The discrete spectrum
of T is defined to be

04(T) :=={Ne€o(T):0 < dimker(T — \) < +o0 and X is isolated in o(T')}.
The essential spectrum of T is defined to be oess(T) := o(T) \ 0q(T).

We now recall Weyl’s Theorem on relative compactness, applied to continuous Schréodinger
operators:

Theorem 1.2 (Weyl’s Theorem). Let Hy be the self-adjoint realization of the Laplace operator
—Ain L*(RY). Let V : RV v R be a bounded function that goes to zero at infinity, and consider
H = Hy+ V. Then V is Hy-form relatively compact, and so 0ess(H) = 0ess(Hop).

The corresponding result holds in the discrete case as well. The only major difference is
that in the discrete case, V' is Hy-relatively compact if and only if it is compact. This powerful
result says that a relatively compact perturbation of Hy may produce only eigenvalues of finite
multiplicity located in (—o0,0) in the continuous case and (—oo, 0) U (4v, 4+00) in the discrete
case. In the first (resp. second) case, these eigenvalues may accumulate only at energy 0 (resp.
0 and 4v).

Not all energies are of the same nature. The above discussion shows that o(H) is a disjoint
union of o4(H) and oess(H). But there is also another significant way of differentiating the



energies, which we now describe. Let f belong to a Hilbert space H. By the Spectral Theorem,
to f is associated a unique Borel measure on the real line, pf, such that

(f, et £y = /[Re_mduf(x), for all t € R.

This is equivalent to saying that p¢(X) = (f, Ex(H)f) for all Borel sets ¥ C R. Here Ex,(H)
is the spectral projection of H onto Y. By the Lebesgue Decompostion Theorem,

pp = (pif)ac + (tf)se + (1) pps

where (ftf)ac and (juy)sc are measures respectively absolutely continuous and singularly con-
tinuous with respect to the Lebesgue measure, and (jf)pp is a pure point measure. We can
now refine the spectrum of H in terms of the support of measures:

Definition 1.3. Let oy(H) := Ufe?—[ supp (pg)g, where § stands for ac, sc, or pp. This defines
the absolutely continuous, singularly continuous and point spectrum of H.

It can be shown that op,(H) is the closure of the collection of eigenvalues of H. Further-
more, we have that o(H) is a union of o,.(H), os.(H) and opp(H), however this union is not
necessarily disjoint. For instance, there are many examples of H where singularly continuous
or point spectrum is embedded in the absolutely continuous spectrum. If we further let H,c
(resp. Hse and Hyp) be the closure of the linear span of vectors of the form (H —z) ™! f, where
z € C\ R and f € H is such that its spectral measure is purely absolutely continuous (resp.
purely singularly continuous and pure point), then we have the following decomposition:

H = Hac ® Hsc ® Hpp, and He = Hac ® Hse.

We denote by Py.(H), P.(H) and P,,(H) the orthogonal projections onto Hac, He and Hpp
respectively. An important task of Spectral Theory is to characterize the three components
of the spectrum according to the potential. In the absence of a potential, the spectrum of Hy
is purely absolutely continuous for both the continuous and discrete Schrédinger operator. In
the next section, we give a meaningful physical interpretation of this spectral decomposition.

1.3 Dynamical properties of the spectrum

The time-dependent Schrodinger equation describes the evolution of a non-relativistic system
with time. For a single particle in R, it reads

i%‘/}(xvt) = Hi(a,t) = [~ A+ V(2)](2,1), (2,0) = f € LA(RY).

Assuming H to be self-adjoint, this equation has a unique solution for the given initial condition
1. The solution is the wave function 1(x,t) = e 4 f.

Theorem 1.4 (Dynamics of continuous Schrodinger operators). Assume H = —A 4+ V s
self-adjoint on L*(RY).

1. If f € Hpp, then
lim sup/ le T f(2)|?dx = 0. (3)
R\[-R,R]¥

R—+o00 t=>0



2. If f € H, then for all R > 0,

1 [T :
lim / / e f()2dvx | dt = 0. 4)
T—+o0 T 0 < [-R,R]¥ | ( )| (

3. If f € Hac, then for all R > 0,

. —itH 2w .
Jim - e f(@)]"d"x = 0. (5)

Estimate (3) says that states f € Hpp, do not escape at infinity with time. For this
reason these are called bound states. On the other hand, estimate (4) says that states f € H,
propagate to infinity averagely in time. If further f € Hac then estimate (5) improves (4). We
should mention that (4) is a consequence of the RAGE Theorem, while estimate (5) follows
from the Riemann-Lebesgue Lemma, which we quote for convenience:

Theorem 1.5 (RAGE). If H is a self-adjoint operator on a Hilbert space H, then for any
f €M and any W € B(H) that is H-relatively compact,

17 .
lim  — TP (H)f|]?dt = 0.
T;glmT/o We (H)f|"dt =0 (6)

The RAGE Theorem is attributed to Ruelle [Ru], Amrein and Georgescu [AG| and Enss
[E]. The version cited here can be found in [CFKS, Theorem 5.8] for example. In [GM], we
remark that this result can be improved, namely, under the same assumptions we have

I :
li = We ™ p.(H) f||2dt = 0. 7
Jim s [ we e ) ")
Ifll<1

Here we have included the supremum, which we have not found in the literature, see [CFKS,
Theoerm 5.8] and |GM, Appendix B| for more details.

Theorem 1.6 (Riemann-Lebesgue Lemma). If H is a self-adjoint operator on a Hilbert space
H, then for any f € H and any W € B(H) that is H-relatively compact,
. —itH _
i [ Wt P (H) f = 0. (8)

Although estimate (6) characterizes states f € Hsc, it is not specific to these states. Let
us provide another dynamical property of these states. Let H be a self-adjoint operator on
a Hilbert space H. Let 0 C R” be a set of finite Lebesgue measure. We define the indicator
function of the set €2 to be
U(zx), ifxeQ

(Lav)(@) = {0 itz ¢ Q.

The probability that the particle with initial state f be found in a region of space 2 after time
tis [[1oe " f||2. Then the total time the particle with initial state f spends in the region of
space (2 is given by

“+oo .
1, f) = / I Lae— f|12dt.
0

We call J(, f) the total time of sojourn of the initial state f in the region €.



Theorem 1.7. If there exists a sequence of regions {Qy}, with |Q,| < +oo, such that
s-lim 1o, = 1 and J(Qp, f) < +oo for all n, then f € Hac. If f € Hse, then there ex-

n—-+o0o

ists at least one finite region of space  such that J(Q, f) = +o0.

This means that if f € H., then the probability |[1ge " f||? decays sufficiently slowly
that it is not integrable for large times. This is a result due to Sinha [Sin].
1.4 Analytical properties of the spectrum

If the Hamiltonian is diagonalizable, then we may infer information about its spectrum. In
many situations however, we do not know how to do this and so we rely on practical analytical
tools to infer information about the quality of the spectrum. Perhaps the simplest and best
known result in this regard is the Theorem of de la Vallée Poussin:

Theorem 1.8. Let H be a self-adjoint operator on a Hilbert space H. For f € H, let s be
the associated spectral measure. For Lebesque almost every A € R, the following limit exists in
C, is finite and non-zero:

lim(f, (H — X —ie) " f) = lim/(x — X —ie) tdug(z).
€l0 el0 JR
The absolutely continuous part of the measure piy is given by

ac - _11' I H—-)\—i -1 =i E — 5 .
Aprlaele) = gt U =2 =07 = i wr g @)

As for the singular part of the measure, (puf)sc + (ff)pp, it is concentrated on the set

{AeR: liﬁ}lm(f, (H—X—1i€e)7f) = +oo}.

This is yet another powerful way of characterizing the absolutely continuous and singular
parts of the spectrum. One of the aims of this thesis is to prove the absence of singularly con-
tinuous spectrum for some discrete Schrédinger operators. The estimate that really underlies
our approach is the following. It is a direct consequence of the above Theorem:

Corollary 1.9. Let (A1, A2) C R be an open interval, and let f € H. If

sup sup |[Im(f,(H — XA — ie)_lfﬂ < e(f) < 400, 9)
e>0 Ae(A1,\2)

then the spectral measure 3 — (f, Ex.(H) f) is purely absolutely continuous with respect to the
Lebesgue measure on (A1, A2).

A resolvent estimate like (9) is often called a limiting absorption principle (LAP) for H.



2 Positive Commutator Techniques

Given two observables A and B on a Hilbert space H, their commutator is defined to be
the operator [A, B] := AB — BA. Rigorous domain considerations will be specified later.
Commutators arise naturally in quantum mechanics and play a central role. As a matter of
fact, the Heisenberg picture is formulated in terms of a commutator:

d 0A
—A(t) =1[H, A(t — ] .
A0 =i+ (51)
Here H is the Hamiltonian of the system and A(t) is an observable. Commutators also appear
in the formulation of the uncertainty principle:

oA0B > %}([A, B))|.
Here 04 and op are the standard deviations for observables A and B. This inequality gives
a fundamental limit to the precision with which the expectation values of A and B can be
known simultaneously for a given state.
It turns out that commutator techniques give insight into the spectral decomposition of a
system. In the mathematical physics community, a first result in this direction was obtained
by Putnam in [P].

Proposition 2.1. Let H € B(H) be a self-adjoint operator. If there are A,C € B(H), with A
self-adjoint and C' injective such that [H,iA] = C*C, then for all f € D((C*)™1),

supsup [Im(f, (H — A —ie) "' f)] <4 A[| - [(C*) 7|2 = e(f) < +oo.
e>0 AeR

In particular the spectrum of H is purely absolutely continuous.

This Proposition establishes a clear link between the commutator and the LAP (boundary
values of the resolvent), which is so valuable to characterize the spectral decomposition, as seen
in the previous section. The problem with this result however is that practical applications are
limited, partly because the result does not allow H to have eigenvalues, partly because many
important Hamiltonians H are unbounded, and partly because A is typically unbounded, see
e.g. |Go, Proposition 3.2.1].

2.1 Commutators as derivatives: regularity

We work in an abstract and more general setting. Consider two self-adjoint (possibly un-
bounded) operators T and A acting in some complex separable Hilbert space H. The goal is
to study the spectral properties of T with A as auxiliary. We define the commutator of 7" and
A in the form version:

This definition makes sense provided f,g € D(T)ND(A). Typically we wish the r.h.s. extends

to a closed operator. For instance, if D(T") N D(A) is dense in D(T') and if there is ¢ > 0 such
that for all f,g € D(T) N D(A),

([T Alg) < cl(T+ ) fI - (T + 1)l



then by the Riesz lemma the closure of [T, A] belongs to B(D(T),D(T)*). In any case, the
closure is denoted [T, A]o. In principle, two levels of assumptions are expected:

1. the first commutator of T" with A, [T, A,, belongs to B(D(T'), D(T)*).
2. the second commutator of T' with A, [[T, A],, Ao, belongs to B(D(T'), D(T)*).

Looking back with more than thirty years of Mourre theory, one can say that assumption
(1) is minimal, whereas (2) is plentiful. A lot of the work in abstract Mourre theory has
been to formulate refined assumptions that fit somewhere in between these two. This will be
explained in greater detail in Section 2.3.

Let us get into the rigorous details of regularity. Consider the map

R>t— (T +1)Le ™ e B(H). (10)

If this map is of class C*(R) for some k& € N, with B(H) endowed with the strong operator
topology, then we say that 7' € C¥(A). If T € C!(A), then the derivative of the map (10)
at ¢ = 0 is denoted by [T,1A], and belongs to B(#). If however we endow B(#H) with the
operator norm topology, then we say that 7' € C¥"(A). Finally, we say that T € C1'(A) if

1
/ H [[(T +1)~L, €], e‘tA]OHt_zdt < .
0

It turns out that
.. CC3A) CcC*A) cchl(A) cclm(A) ccl(A). (11)

We note that if 7' € C*(A) then (1) holds; whereas if 7' € C2(A) then (2) holds. A good part
of this thesis deals with bounded T'; in this case we may simply take T instead of (T +i)~!
in the above definitions. Importantly, for T' € B(H), there is a simpler criterion to verify the
Cl(A) regularity, see [ABG, Lemma 6.2.9] and [ABG, Theorem 6.2.10)].

Let us take a moment to explain how these abstract definitions relate to the concrete
problems of Schrodinger operators.

Example 2.2 (Continuous Schrodinger operators). Let Hy be the self-adjoint realization of the
Laplace operator —A in L*>(RY). Let Q be the operator of multiplication by x = (1, ...,x,) €
RY, and let P := —iV. Set

H := Hy + ‘/sr(Q> + ‘/lr(Q)a

where Vg (z) and Viy(x) are real-valued functions that belong to L>°(RY). Thus Vi (Q) and
Vie(Q) are bounded self-adjoint operators on L*(RY) and they are respectively the short- and
long-range perturbations. Thus H is a self-adjoint operator. For the long-range perturbation,
further assume that x-V'Vi.(x) is a well-defined function. Suppose thatlim Vg (z) = lim W, (x) =
0 as ||z|| = 4o00. Thus Ve (Q)+Vir(Q) is a Hy-form relatively compact operator. In particular,
Uess(H) = Uess(HO) = [07 +OO)
Let
A=(Q-P+P-Q)/2. (12)

It is self-adjoint and essentially self-adjoint on the Schwartz space S(RY). It is called the
generator of dilations and is the standard conjugate operator to H. Table 1 displays continuous
Schrodinger operators belonging to each of the classes introduced in (11). The idea is clear:
stronger decaying bounds on the potential imply stronger reqularity.

10



In addition, if (z)Vs(z) and = - VVi(x) are | Then H belongs to
=) CTA)
L>*(R") and o(1) Clu(A)
L>*(R") and o((x)~°), for some € > 0 Cl(A)
L>®(R¥) and O({z)~1) C?(A)

Table 1: Regularity of Hamiltonian H w.r.t. a bound on the decay of the potential at infinity

The corresponding example for the discrete Schrodinger operators is the following. Note
that in this case, short-range potentials are long-range.

Example 2.3 (Discrete Schrodinger operators). Let H = ¢2(ZV). Let Hy = A be the discrete
Schrédinger operator on 79 given by (2). Set

H=Hy+V,

where V : Z% — R is a bounded function. Thus V and H are bounded self-adjoint operators
on H. Suppose that imV(n) = 0 as |[n| — +o0o0. Then V is compact and in particular,
Oess(H) = 0ess(Ho) = [0,4v]. To define the conjugate operator A, we need some notation. Let
S =(S1,...,5)), where, for 1 <i < v, S; is the shift operator given by

(Siv)(n) :=v(ny,...,ni — 1,...,my), foralln € Z¥ and i € H.

Let N = (Ny,...,N,), where, for 1 <i <wv, N; is the position operator given by

(N;)(n) :=nitp(n), with domain D(N;) := {w €eH: Z Insp(n)|? < —|—oo}.
nezv

The conjugate operator, denoted by A, is the closure of the following operator

> (S = S;)IN; + Ni(Si — S7),  with domain  D(Ag) := £o(Z"), (13)

=1

i

A02::2

the sequences with compact support. The operator A is self-adjoint, see [BS] and [GGol. Let
7V be the shifted potential acting as follows:

[(V)Y](n) :=V(ng,...,ni — 1, ..,n)(n),  for all € H.
Table 3 displays discrete Schrodinger operators belonging to the classes introduced in (11).

We refine the above definitions. Let G and H be Hilbert spaces verifying the following
continuous and dense embeddings G C ‘H = H* C G*, where we have identified H with its
antidual H* by the Riesz isomorphism Theorem. Let A be a self-adjoint operator on #H, and
suppose that the semi-group {e*4},cg stabilizes G. Then by duality it stabilizes G*. Let
T € B(G,G*) be a self-adjoint operator on H and consider the map

R >t e AT € B(G,G7). (14)
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In addition, if for all 1 <i < v, ni(V —7V)(n)is | Then H belongs to
o) C'(4)
o(1) chu(4)
o((n)~¢) for some € > 0 chi(A)
o({n)™H) c*(4)

Table 2: Regularity of Hamiltonian H w.r.t. a bound on the decay of the potential at infinity

If this map is of class C*(R; B(G,G*)), with B(G,G*) endowed with the strong operator topol-
ogy, we say that T' € C*(A; G, G*); whereas if the map is of class C¥(R; B(G, G*)), with B(G,G*)
endowed with the norm operator topology, we say that T' € C*"(A;G,G*). If T € C*(A; G, G*),
then the derivative of map (14) at ¢ = 0 is denoted by [T,iA], and belongs to B(G,G").
Moreover, by [ABC, Proposition 5.1.6], for all § € {k;k,u}, T € C*(A;G,G*) if and only if
(T 1)~ € C¥(A; G*,G). This notably implies that C*(A4;G,G*) C Ci(A).

To finish this Section, we recall one very useful result for unbounded 7' :

Proposition 2.4. [ABG, p. 258] Let T and A be self-adjoint operators in a Hilbert space
H and denote H' := D((T)/?), the form domain of T, and H~' := (H')*. Suppose that
AHY € HY. Then the following are equivalent:

1. TeCH AHLH™Y
2. The form [T,iA] defined on D(T) ND(A) extends to an operator in B(H, H™1).
Remark 2.1. The form [T,iA] is defined for 1, ¢ € D(T) ND(A) as follows :

(¥, [T,iA]¢) := (T, iA¢) — (A™),iT'¢) = (T'Y,1A¢) — (AY,iTp).

The last equality holds because T and A are assumed to be self-adjoint.

2.2 Localizing commutators in energy: Mourre’s estimate

In the beginning of the eighties, E. Mourre realized that localizing [H,iA] in energy would
generalize the idea of Putnam to unbounded operators, see Proposition 2.1. In the seminal
paper [M], the absence of singularly continuous spectrum was proved for 3-body Schrodinger
operators with the help of positive commutators methods and their scattering properties were
studied. The results were generalized to the N-body case in [PSS|. Today, Mourre’s com-
mutator theory is a fundamental tool to study the stationary scattering theory of general
self-adjoint operators. An excellent and thorough work in this field is [ABG|.

Let H and A be self-adjoint operators in a Hilbert space H. Suppose that H € Cl(A). We
say that the Mourre estimate holds for H with respect to A on a bounded interval Z C R if
there is ¢ > 0 and a compact operator K such that

Er(H)[H,iAl,Ez(H) > cE7(H) + K, (15)

in the form sense on Hx#H. Since E7(H) belongs to B(H, D(H)), it also belongs to B(D(H)*, H)
by duality, and so we see that the C!(A) hypothesis ensures that the Lh.s. of (15) is a bounded
operator.
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If the Mourre estimate holds over some interval Z with K = 0, then we say that the estimate
is strict, in which case it can be shown that H has no eigenvalues in the interval Z. This is
a consequence of the Virial Theorem, see [ABG, Proposition 7.2.10]. If the Mourre estimate
holds on Z, but is not strict, then the best we can say is that the number of eigenvalues of H
in 7 is finite, including multiplicities, see [ABG, Corollary 7.2.11]. This is still good enough to
conclude that for every A € Z that is not an eigenvalue of H, there is an interval Z, containing
A (perhaps much smaller than Z) such that the strict Mourre estimate holds for H on Z).
This is because ||Ez/(H)KE7 (H)|| — 0 as |Z’| — 0 for all Z’ void of eigenvalues. So when
we localize in energy away from eigenvalues, we may assume without loss of generality that a
strict Mourre estimate holds.

To distinguish between the strict and non strict Mourre estimates, we introduce notation.

Definition 2.5 (The sets u(T) and i (T)). For a self-adjoint operator T acting on H, let
(T be the set of reals for which there is neighborhood where the strict Mourre estimate holds
for T with respect to A. Let i(T) be the set of reals for which there is neighborhood where
the Mourre estimate holds for T with respect to A.

Let us examine the Mourre estimate for our two ongoing examples.

Example 2.6 (Continuous Schrédinger operators). Let H2(RY) be the Sobolev space corre-
sponding to the domain of the self-adjoint realization Hy of the Laplacian —A, and H' =
HY(RY) its form domain. Let A := (Q-P+ P-Q)/2 be the generator of dilations. The relation

(eitAl/))(m) = et”/2¢(etx), for all o € L*(R"), z € RV, t € R,

implies that {e*}ier stabilizes H2(RY), and thus HP(RY) for all 6 € [—2,2] by duality and
interpolation. A straightforward computation gives

[Ho,iAlo = 2H,

in the sense of operators in B(H',H ™), thereby implying that Hy € C*(A; H', H™') by Propo-
sition 2.4. An easy induction yields Hy € CF(A;HY, H™') for all k € N. The strict Mourre
estimate therefore holds for Ho with respect to A on all intervals T verifying T C (0, +o0). In
particular, p*(Hy) = (0, 4+00).

Example 2.7 (Discrete Schrodinger operators). Let H = (*(Z"), and Hy = A, the discrete
Schrédinger operator. A calculation shows that

[Ho,iAlo = > Ay(4 - A)) (16)

as operators in B(H). Here A; :=2 — S; — SF. In particular, Hy € C*(A). An easy induction
shows that Hy € C*(A) for all k € N. In dimension one, we see that u?(Ho) = (0,4) because

the function x — x(4 — x) is strictly positive above (0,4). In higher dimensions, we have, by
(16) and [ABG, Theorem 8.5.6] that

p(Hp) = [0,40]\ {4k : k=0, ...,v}. (17)
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In the previous examples, we explained the Mourre estimate for the free operator Hy. If
we want to consider a potential in addition, then we have a general result, the proof of which
follows from the definitions. For a self-adjoint operator H, let H' denote its form domain.

Proposition 2.8. Let V € K(H, H™ ) NCYY(A; HYL, HY). Then [V,iA], € K(HY, H™Y).
We can immediately apply this result.

Example 2.9 (Continuous Schrodinger operators). Let H = —A + Vi (Q) + Vi (Q), with both
components of the potential being bounded real-valued functions. Suppose that |Vi(z)| — 0
and |Viy(x)| — 0 as ||z|| — +oo, so that the potential is Ho-form relatively compact. If also
x - VVi(z) € L®(RY), (2)Va(z) = 0 and z - VWi () — 0 as ||z]| — +o0o, then the Mourre
estimate holds for H on every bounded interval T with T C (0, +00).

Example 2.10 (Discrete Schrodinger operators). Let H = A + V', where V is a bounded
real-valued potential. If V(n) — 0 as ||n| — +oo, then V. € K(H). If for all 1 < i < v,
ni(V—71V)(n) = 0 as ||n| — 400, then the Mourre estimate holds for H on every bounded
interval T with T C [0,4v]\ {4k : k= 0,...,v}.

If the potential does not belong the Cl’u(A) class, then the Mourre estimate may still hold,
but it becomes a case by case analysis. We have examples of this for the discrete Schrédinger
operators:

Example 2.11 (Discrete Wigner-von Neumann operator 1). Let H = (2(Z"). Let ¢ € R and
ke (0,m)U(m, 2m). Let W be a Wigner-von Neumann potential defined by

_gsin(k(ny + ... +nq))
- ]

(Wu)(n) : u(n), foralln € Z” and u € H. (18)

Note that W € K(H)NCL(A). Consider also a V € K(H)NCY(A), and let H := A+W + V.
We define the sets

m{H) = {28’2(>;)ii((fz}— J;Zk;;/)l’for v>2 (19)

where

4 —4cos(k/2)  fork e (0,m)

Ey(k):=2+2cos(k/2) and E(k):= {4+4cos(k/2> for k € (m,2m).

Then it is proved in [Mal, Propositions 3.5 and 4.5] that m(H) C g (H).

Example 2.12 (Discrete Wigner-von Neumann operator 2). Let H = (*(Z"). Let q =
(¢)Y_y € R” and k = (k;)¥_, € ((0,m) U (7, 2m))". Consider this variant of the Wigner-von
Neumann potential:

(W'u)(n) == (ﬁ W) u(n), foralln € 7" and u € H. (20)
i=1 !
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Note that W' € K(H)NC(A). Consider also a V € K(H)NCY(A), and let H' := A+W'+V.
We define the sets

m(H/) = {(0’4) \{E+(k)} for v=1,

(0, E'(k))U (4v — E'(k),4v) for v > 2, @)

where Ex (k) are as in the previous example, and E'(k) := min{l(k;) : 1 <i < v}, with

2 —2cos(ki/2), k; € (0,27/3]
U(k;) == 2+ 2cos(ki), ki€ (2n/3,7)U (7, 47/3]
24 2cos(k;/2), ki€ (4w/3,2m).

Then it is proved in [Mal, Propositions 3.5 and 4.6] that m(H') C p(H').

Remark 2.2. [t is proved in [Mal, Propositions 3.3 and 4.2] that W and W' of the previous
two examples do not belong to CLU(A).

At this point, one may wonder what the Mourre estimate is good for. In the next section,
we shall see that it plays a key role in proving the absence of singularly continuous spectrum
with the method of commutators.

2.3 Mourre theory: absence of singularly continuous spectrum

There is a simple argument using only the C'(A4) hypothesis and the Mourre estimate that
shows that the time expectation value of A basically grows linearly with time. Precisely, let us
suppose that the strict Mourre estimate holds for H on the bounded interval Z. If f = p(H)g
is a unit vector with g € D(A) and ¢ € C°(Z), then there are ¢,C' > 0 such that

ct < (e Hf AT F) — (f, Af) < Ct, forallt>0.

This argument is detailed for instance in [GM, Appendix A|. This means that the transport
of the particle is ballistic with respect to A. From a dynamical point of view, this behav-
ior suggests purely absolutely continuous spectrum. In [M], using a method of differential
inequalities and assuming the strict Mourre estimate for H on the interval Z together with
a second-commutator hypothesis, H € C2(A) in the setting of [ABG], the author proves a
limiting absorption principle (LAP) on any compact sub-interval Z’ of Z:

sup ||(A)"*(H — X — ie)_1<A>_5|| < +00, (22)
AET >0

for all s > 1/2. Here (A) := 1+ A2. This yields the following Kato-type propagation
estimate:

+oo .
sup / H<A>_se_ltHEI/(H)wH2dt< +00, (23)
YeH J—oo
llvll<1

which in turn implies the absence of singularly continuous spectrum on Z’, e.g. [RS4, Section
XIIL.7]. The main improvement of this result is done in [ABG|. The same LAP is derived
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assuming only H € CY'(A) and the Mourre estimate. It is further shown that this class
is optimal in the general abstract framework. Indeed, in [ABG, Appendix 7.B|, there is an
example of H € C%(A) for which no LAP holds.

The aim of Mourre theory can therefore be summarized as follows: Prove a resolvent
estimate (LAP) for H over some interval Z, which in turn yields robust dynamical properties for
H at these energies (propagation estimates), as well as the the absence of singularly continuous
spectrum for H on 7.

Moving forward, it is relevant to restrict our attention to H belonging to a class somewhere
between C*!(A) and C'(A). Natural questions that arise are the following:

1. Are there propagation estimates, like (23) for instance, that hold?
2. Is the absence of singularly continuous spectrum of H still valid?
3. What more about the point spectrum of H can be said?

These questions are all the more justified given the following known results concerning
continuous Schrodinger operators. When v = 1, Kiselev proved in [Ki| that the continuous
Schrodinger operator H = —A + V on R has no singularly continuous spectrum whenever
V = O(|z|7!). The decay assumption is optimal, since it is further proved that for any positive
function h which grows to infinity, there is a potential V such that V = O(h(|z|)|z|~!) and
H = —A + V has some singularly continuous spectrum. Naboko [Nab] and Simon [Si] have
also shown, that for this same function h, one can also construct a potential V' such that
V = O(h(|z|)|z|1) as well and H = —A + V has dense point spectrum. In v dimensions, if
V(x) = Vi(x)+ Va(x) where |z||Vi(z)| = 0 and |(x-V)Va(x)| — 0 as || — 400, then —A+V
has no eigenvalues in [0, +00). This was proved by Kato [Ka| when V5 = 0, and the full result
is attributed to Agmon [A] and Simon [Si2], but we refer also to [FH| and [CFKS, Section 4.4].

Finally, we underline that the LAP has been derived for several specific systems where
the Hamiltonian H belongs to a regularity class as low as C'(A), and sometimes even lower
(see for example [DMR], [GJ2], [JM] and [Mal| to name a few). In all these cases, a strong
propagation estimate of type (23) and absence of singularly continuous spectrum hold.

3 LAP for the discrete Wigner-von Neumann operator

We present the results of [Mal]. A LAP for the discrete Wigner-von Neumann operators
presented in Examples 2.11 and 2.12 is proved. We recall that H = A+ W + V and H =
A+ W +V, where W and W’ are some Wigner-von Neumann type potentials and V is a
long-range perturbation. However, slightly stronger conditions on the additional perturbation
V € K(H)NCY(A) are required here. Specifically, we suppose that there is p > 0 such that

(1), (24)
(1), for alll<i< (25)

(n)?|V(n)| = O
n)?|ni||(V — V) (n)] = O

Recall that m(H) and m(H') are given by (19) and (21) respectively. Let Py, (H) and Po(H)
respectively denote the spectral projectors onto the pure point subspace of H and its comple-
ment. We prove:
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Theorem 3.1. We have that m(H) C i(H). For all E € m(H) there is an open interval T
containing E such that for all s > 1/2 and all compact intervals T' C I, the reduced LAP for
H holds with respect to (Z',s, A), that is,

sup |[(A)*(H — z — iy) ' Po(H)(A)™*|| < +o0. (26)
x€Z! y#0

Notably, the spectrum of H is purely absolutely continuous on ¥’ when Py,(H) =0 on T'.

This is actually a slightly improved version of the original result of [Mal|. The improvement
relies on [Ma2, Theorem 1.5|, which allows to remove the abstract assumption ker(H — E) C
D(A) that appears in [Mal, Theorem 1.1|. The corresponding result also holds for H'.

The proof follows the approach of [GJ2|, where the corresponding LAP is proved in the
continuous operator case. The LAP for the continuous Wigner-von Neumann operator had
been proved previously in [DMR], but using different techniques and did not include the
long-range perturbation V.

The Wigner-von Neumann operator has two interesting aspects. First, when the long-range
perturbation V' is chosen suitably, the Schrédinger operator H has an eigenvalue embedded in
its absolutely continuous spectrum, see [RS4, Section XIII.13, Example 1| and [Ma2, Propo-
sition 1.6]. Second, the regularity of the Wigner-von Neumann potential is only C!(A), and
yet we are able to get a Mourre estimate and a LAP using commutator methods. Without a
doubt, the oscillations of the potential play a key role in this. With regard to second point,
we mention that at the heart of the proof of the LAP (26) is a weighted Mourre estimate. This
idea originates from Gérard’s proof of the abstract LAP using energy estimates [G]. In [GJ2]
and our proof, this weighted Mourre estimate is the starting point of the proof, rather than
an intermediary estimate. This allows to overcome the low regularity of H. However, and
unfortunately, the LAP (26) does not come with any information about the continuity of the
boundary values, as it is the case when the operator is of class C1'1(A). This is because we
use an approach to Mourre theory that proves the LAP by contradiction, see [GJ1].

4 The Mourre estimate and decay of eigenfunctions

This topic deals with the link between the point spectrum of the discrete Schrodinger operator
H = A+ V and the Mourre estimate. The method we use is entirely based on ideas of
Froese and Herbst in [FH|. They essentially show that under a first commutator hypothesis,
V € C(A) in the setting of [ABG], if ¢ is an eigenfunction of the continuous Schrédinger
operator H = —A + V with eigenvalue E, then exp(a||z||)y € L?(R¥) for all a € [0,v/7 — E),
where 7 is the nearest threshold above E. By a threshold, we mean a real for which the
Mourre estimate does not hold over any interval containing this value. A consequence is that
if V' has slightly better decay, for instance |(z-V)V ()| — 0, then H does not have any positive
eigenvalues, see e.g. [CFKS, Theorem 4.19].

We now present the results of [Ma2|. Let H = ¢2(Z¥). Let V : Z¥ + R be a bounded
function. Let us identify two hypotheses that will be needed:
Hypothesis 1: The potential V satisfies

ni(V — V) (n)| = O(1), foralll<i< . (27)
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Hypothesis 2: V is compact, i.e.
V(n) =0, as|n|— +oc. (28)

Note that the first hypothesis sets us right in the C'(A) class. The best result we have is in
one dimension:

Theorem 4.1. Assume Hypotheses 1 and 2, and v = 1. If HY = Evy with ¢ € H, then if

_Jsup {2+ (F —2)/cosha:a >0 and exp(aln|)y € H}, for E <2
" |inf {2+ (E—2)/cosha: a >0 and exp(aln|)y € H}, for E>2,

one has that either 0 € R\ pA(H) or 0p = 2. If E = 2, the statement is that either
exp(aln|)y € H for alla >0 or 2 € R\ g (H). Moreover, if exp(a|n|)y € H for all a > 0,
then ¢ = 0.

So if E is both an eigenvalue and a threshold, this result does not provide any information.
However, if F is an eigenvalue but not a threshold, the corresponding eigenfunction decays at
a rate at least of cosh™ ((F — 2)/(fg —2)). As in the continuous operator setting, we deduce
the absence of eigenvalues:

Theorem 4.2. Let v = 1. Suppose that V' satisfies limy,| ;o [1||V(n) = V(n —1)] = 0 and
lim,| 100 [V(n)| = 0. Then H := A+ V has no eigenvalues in (0,4).

At this point, we recall Remling’s optimal result [R], that if lim,|_, ;o [2[[V(n)| = 0, then
the spectrum of the one-dimensional discrete operator A+V is purely absolutely continuous on
(0,4). Of course, Remling’s result is stronger than that of Theorem 4.2, but the assumptions
are also stronger.

In the multi-dimensional discrete operator case, we prove:

Theorem 4.3. Let v > 1. Suppose that Hypothesis 1 holds for the potential V. If HY = Ev
with ¢ € H and E € f(H), then exp(a(1 + [n|>)"/2) € H for all (o, ) € [0,00) x [0,2/3).

Although Theorem 4.3 does not yield exponential decay of eigenfunctions at non-threshold
energies as in the continuous operator case, the result is still useful for applications in Mourre
theory. Let us note that in a general abstract framework, it is proved in [FMS] that if the
second commutator of H and A exists and other domain conditions hold, then ¢ € D(A).
This general result is optimal and improves that of [Ca| and [CGH]. Here, we see that for the
discrete Schrodinger operators, minimal hypotheses yield much stronger results.

It appears that the method of Froese and Herbst adapts quite well for the one-dimensional
discrete operator; however, there seems to be a non-trivial difference between the dimensions
v > 2 and v = 1 in the discrete setting as far as the method is concerned. The exponential
decay of eigenfunctions at non-threshold energies in higher dimensions therefore remains an
open question because our proof does not attain it. Yet an indication it may occur comes
from the Combes-Thomas method, see [Ma2, Theorem 1.1] and references therein. The latter
method proves the exponential decay of eigenfunctions corresponding to eigenvalues outside
the essential spectrum of H.
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On the one hand, if £ belongs to the discrete spectrum of H, then for any interval X
containing E and located outside the essential spectrum of H, Ex;(H) is simply a finite rank
eigenprojection and so the Mourre estimate holds by default, both sides of (15) being com-
pact operators. So under Hypothesis 1 only, the corresponding eigenfunction decays sub-
exponentially according to Theorem 4.3. In this case, the Combes-Thomas method is clearly
superior. On the other hand, the Mourre estimate typically holds above the essential spectrum
of H. So Theorem 4.3 is able to characterize the decay of eigenfunctions for non-threshold
eigenvalues embedded in the essential spectrum, if any exist. We emphasize the last point,
because to our knowledge there is no example of a Schrédinger operator with a non-threshold
embedded eigenvalue. What is certainly known however is the existence of operators with a
threshold embedded eigenvalue, the Wigner-von Neumann operator being the classical illus-
tration of it, as discussed in the previous Section.

We give two applications of Theorem 4.3. First, it can be used to show that an eigenvalue
embedded in the essential spectrum of H is a threshold. An example of this is depicted in
[Ma2, Proposition 1.6]. It is interesting to note that in this example the eigenfunction does
not belong to the domain of A. The second application consists in improving [Mal, Theorem
1.1] and [GM, Theorem 4.4] by suppressing the abstract condition ker(H — E) C D(A).

5 Propagation estimates for the C"(A) class

We present the results of [GM]. The goal is to obtain propagation estimates for Hamiltonians
belonging to the C1"(A) class and infer information about the nature of the spectrum. The
first result shows that when the Mourre estimate holds over an interval Z, the Fourier transform
of the spectral measures of H go to zero at infinity whenever 7 is void of eigenvalues.

Theorem 5.1. Let H and A be self-adjoint operators in a separable Hilbert space H with
H € CY(A). Assume that T C R is a compact interval for which \ € i (H) for all X € T.
Suppose moreover that ker(H — \) C D(A) for all \ € Z. Then for ally € H and all s > 0,

lim [[(A)~*¢~ """ P,(H)EZ(H)| = 0. (20)

t—-+o0

Moreover, if W is H-relatively compact, then

: —itH _
i [ Wt R(H) By (H) ) = 0. (30)
In particular, if H has no eigenvalues in L, then the Fourier transform of the spectral measure
Y (Y, Ernx(H)Y) tends to zero at infinity.

The proof of this result is an application of the minimal escape velocities obtained in [Ri],
itself a continuation of [HSS|. Note that (23) implies (29). Indeed, the integrand of (23) is a
real-valued L' (R) function with bounded derivative (hence uniformly continuous on R). Such
a function must go to zero at infinity. We should mention also that it is an open question
to know if (23) is true when H € CY"(A). While (30) is a consequence of the Riemann-
Lebesgue Lemma (8) when 1) = P,.(H ), our result is new. However, it is not strong enough
to imply the absence of singularly continuous spectrum for H. Indeed, there exist measures
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whose Fourier transform goes to zero at infinity, and yet their support is a set of Hausdorff
dimension zero, see [B].

Note that the estimates (29) and (30) cannot hold uniformly on the unit sphere of states
in H. We now present a second propagation estimate, and this one however will be uniform.
It is based on an improved version of the RAGE Theorem, see (7). Let us go deeper in the
hypotheses. Let Hy be a self-adjoint operator on H, with domain D(Hp). We use standard
notation and set H? := D(Hy) and H' := D((H)'/?), the form domain of Hy. Also, H =2 :=
D(Hp)*, and H~' := D((Hy)'/?)*. The following continuous and dense embeddings hold:

HCH ' CH=H"CH 'cH ™2 (31)

These are Hilbert spaces with the appropriate graph norms. We split the assumptions into
two groups: spectral and regularity assumptions. We start with the former.
Spectral Assumptions:

e Al : Hj is a semi-bounded operator.
e A2 : V defines a symmetric quadratic form on H'.
e A3 Ve K(HL,HY).

Importantly, these assumptions allow us to define the perturbed Hamiltonian H. Indeed, Al
- A3 imply, by the KLMN Theorem, e.g. [RS2, Theorem X.17|, that H := Hy+ V in the form
sense is a semi-bounded self-adjoint operator with domain D((H)'/?) = H'. Furthermore, we
have by Weyl’s Theorem that oess(H) = 0ess(Hp)-

Under these few assumptions, both the (improved) RAGE Theorem (7) and the Riemann-
Lebesgue Lemma (8) hold. We continue with the assumptions concerning this operator.
Regularity Assumptions: There is a self-adjoint operator A on H such that

o A4 : Y Cc H! forall t € R.
e A5 : Hy e CEH(A;HL, HY).
e A6 : V e CVY(A;HYL, HY).

We refer to Section 2.1 for a description of the regularity classes. While A4 and A5 are
standard assumptions to apply Mourre theory, A6 is significantly weaker. It causes H to
have no more than the C%(A4;H', H~!) regularity, in which case the LAP may fail to hold.
Assumption A3 together with the C1"(A) regularity implies that g (H) = ji*(Hp), by [GM,
Lemma 3.3 or [ABG, Theorem 7.2.9]. The uniform estimate derived in [GM] is:

Theorem 5.2. Suppose A1 through A6. Let X\ € iA(H) be such that ker(H — \) C D(A).
Then there exists a bounded open interval T containing \ such that for all s > 1/2,

1T .
lim sup — / |{A)~* P.(H)Er(H)e "Hap||? dt = 0. (32)
T—+o0 YEH T 0
lpli<t
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This formula is to be compared with (7), (23) and (29). The parallel between (32) and
the RAGE formula (7) raises an important concern however. The novelty of the propagation
estimate (32) depends critically on the non-compactness of the operator (A) *Ez(H). This
issue is discussed in [GM, Section 7|, where we study several examples including continuous
and discrete Schrodinger operators. In all of these examples, it appears that (A) *E7(H) is
compact in dimension one, but not in higher dimensions. Theorem 5.2 therefore appears to be
a new result for multi-dimensional Hamiltonians. Interestingly, our proof of this Theorem is
very similar to the derivation of the weighted Mourre estimate which is used in the proof of a
LAP for Hamiltonians with oscillating potentials belonging to the C*(A) class, see [G], [GJ2]
and [Mal].

The various propagation estimates discussed in the Introduction are listed in Table 3
according to the regularity of the potential V. Sufficient regularity for the free operator Hy is
implicit. In this table, question marks indicate open problems.

Visof | RAGE R.-L. | Prop. estimates Prop. Kato - type | LAP
class | formula | formula | (29) and (30) | estimate (32) | Prop. estimate

Ccl(A) v v ? ? ? ?

chu(A) v v v v ? ?

chl(A) v v v v v v
C%(A) v v v v v v

Table 3: The estimates for H depending on the regularity of the potential V'

In this article we also provide a criterion to check the C1"(A; H!, H~1) condition, see [GM,
Proposition 2.1]. A very similar result appears in [ABG, Theorem 9.4.10].

Proposition 5.3. Suppose that T € B(H', H V) NCY(A;H, H™Y). If [T,iA]l, € K(H', H™Y),
then T € CLU(A; HY, H™Y).

We apply the results of this Section to the continuous Schrodinger operators.
Theorem 5.4. Let H = L?(RY). Let H := Hy + Vir(Q) + Vie(Q) and A be as follows:
1. Hy=—-A and A= (Q-P+P-Q)/2,
V() and Vip(x) are real-valued functions in L (RY),
Clim Vg (2) = lim W (2) = 0 as ||z — +o0,

lim(x) Vg () = 0 as ||z]| — 400, and

S NS

x-VWii(x) exists as a function, belongs to L (RY), and limx-VV,(x) = 0 as ||z| — +oo.

Then Vi (Q) and Vi,(Q) belong to CHY(A;HYL, H™Y). In particular H € CYY(A). Moreover,
pA(H) = i (Hy) = (0, +00). Finally, for all A € (0, +00) there is a bounded open interval T
containing A such that for all s > 1/2 and ¢ € H, the propagation estimates (29), (30) and
(32) hold.
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Remark 5.1. Notice that the condition ker(H — X) C D(A) that appears in the formulation
of Theorems 5.1 and 5.2 is totally absent here. As mentioned previously in the Introduction,
this is because under the assumptions im(x)Vy(z) = limz - VVi(z) = 0 as ||z]| — +o0, it
is well-known that the continuous Schrédinger operator H does not have any eigenvalues in
[0,4+00), see articles by Kato [Kaf, Simon [Si2] and Agmon [A].

Finally, we apply the results of this Section to the discrete Schrodinger operators.
Theorem 5.5. Let H = (*(Z"). Let H := Hy+ V and A be as follows:

1. Hy = A is the Laplacian (2) and A is the standard conjugate operator (13),

2. V(n) is a bounded real-valued function defined on 7",

3. imV(n) =0 as |n| — +o0, and

4. lim [n;(V —7V)(n)| =0 as |n| = 400 for all 1 <i<v.

Then V' and H belong to CH"(A). Moreover, i (H) = i (Hp) = [0,4v] \ {4k : k=0, ...,v},
by (17). Finally, for all X € p(H) there is a bounded open interval T containing X such that
for all s > 1/2 and 1) € H, the propagation estimates (29), (30) and (32) hold.
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THE LIMITING ABSORPTION PRINCIPLE
FOR THE DISCRETE WIGNER-VON NEUMANN OPERATOR

MANDICH, MARC-ADRIEN

ABSTRACT. We apply weighted Mourre commutator theory to prove the limiting absorption
principle for the discrete Schrédinger operator perturbed by the sum of a Wigner-von Neu-
mann and long-range type potential. In particular, this implies a new result concerning the
absolutely continuous spectrum for these operators even for the one-dimensional operator.
We show that methods of classical Mourre theory based on differential inequalities and on
the generator of dilation cannot apply to the aforementioned Schrodinger operators.

1. INTRODUCTION

The spectral theory of discrete Schrodinger operators has received much attention in the past
few decades. The absolutely continuous spectrum is important because it allows to describe
the quantum dynamics of a system. The limiting absorption principle (LAP) plays a profound
role in spectral and scattering theory, in particular, it implies the existence of purely absolutely
continuous spectrum. The LAP has been derived for a wide class of potentials, including the
Wigner-von Neumann potential (cf. [NW], [DMR], [RT1], [RT2], [MS]| and [EKT] to name a
few), but only recently has the sum of a Wigner-von Neumann and long-range potential been
studied in the continuous setting (cf. [GJ2]). The LAP has not been studied for the discrete
Wigner-von Neumann operator. On the other hand, the absolutely continuous spectrum of
the one-dimensional Wigner-von Neumann operator plus a potential V' € (P(Z) has already
been studied, both in the discrete and continuous setting in [L1], [L2] and [L3|, but also in
[Si], [JS], [KN], [NS] and [KS] for the case V € £!(Z) more specifically. In this paper we study
the sum of a Wigner-von Neumann and long-range potential in the discrete setting which we
now describe.

The configuration space is the multi-dimensional lattice Z?¢ for some integer d > 1. For
a multi-index n = (n1,...,nq) € Z¢ we set |n|? := n? + ... + n2. Consider the Hilbert space
H := (%(Z%) of square summable sequences u = (u(n)),cza. The discrete Schrédinger operator

(1.1) H=A+W+V
acts on H, where A is the discrete Laplacian operator defined by

(Au)(n) := Z (u(n) —u(m)), for all ne Z% and u € H,

mez?
[n—m|=1

W is the Wigner-von Neumann potential defined by
~gsin(k(ny + ... + ng))
In|

(1.2) (Wu)(n) : u(n), forallne ¢ and ue H,

2010 Mathematics Subject Classification. 39A70, 81Q10, 47B25, 47A10.
Key words and phrases. Wigner-von Neumann potential, limiting absorption principle, discrete Schrodinger
operator, Mourre theory, weighted Mourre theory.
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with ¢ € R and k € T := [0,27]\{n}, and V is a multiplication operator by a real-valued
sequence (V(n)),ezd:

(Vu)(n) :== V(n)u(n), forallnezZ%and ue H.

The potential V' will be of long-range type, hence a compact operator, but we postpone the
characterization of its exact decay properties. We will also investigate the following variation
on the Wigner-von Neumann potential:

d <1 . .
(13) (Wu)(n) = (H ‘“;(’“”) un), for all ne 2% and ue A,
i=1 @

with ¢ = (¢:)%, € R? and k = (k;)%_, € T¢. In this case, we shall denote H' := A + W' + V.
In the definitions of W and W’ it is understood that sin(0)/0 := 1. Using the discrete Fourier
transform F : H — L?([—m, ], d€), € = (&1, ..., &q), we get
d
(14) (FAF')(E) = f(§) D (2—2c0s(&)),  where (Fu)(§) := > u(n)e™(2m) 42,
1=1 nezd

This shows that A is a bounded self-adjoint operator on H, and that o(A) = 0a.(A) = [0,4d].
The operators H and H' are compact perturbations of A and 80 oess(H) = 0ess(H') = [0, 4d].

The Wigner-von Neumann potential is famous for producing an eigenvalue embedded in the
absolutely continuous spectrum when coupled with an appropriate perturbation V' (cf. [NW],
[RS4]). In the continuous setting it has been shown that the 1d Schrodinger operator

2 .
G N gsin(kx)
dx?
covers the interval [0, 00) with absolutely continuous spectrum and may produce exactly one
eigenvalue with positive energy. In the discrete setting the 1d Schrédinger operator A + W
covers the interval (0,4) with absolutely continuous spectrum due to the fact that W e £2(Z)
(cf. |[DK]), and it has been shown (cf. [JS], [Si]) that there are two points located at

(1.5) Ei(k):=242cos(k/2)

which may be half-bound states or eigenvalues. If V € £}(Z), the spectrum of H := A+ W +V
is purely absolutely continuous on (0,4)\{E+(k)} (cf. [JS]). The works [Si], [JS], [KN], [NS],
and [KS| are concerned with the asymptotics of the generalized eigenvectors of H := A+ Vp +
W + V, where Vp is periodic, W is the Wigner-von Neumann potential and V e ¢1(Z).

We fix some notation. Let S := (S, ..., Sq) where, for 1 < i < d, S; is the shift operator

(1.6) (Siu)(n) :=u(ny,...,n; — 1,...,nq), forallne 7% and u e H.

+ O(m72)

We denote by 7,V (resp. 7,°V') the operator of multiplication acting by
[(iV)u](n) := V(ni,...,n; — 1,..ng)u(n) (resp. [(7V)u](n) :=V(n1,....,n; + 1, ..ng)u(n)).

We will also be using the bracket notation (o) := 4/1 + |a|?. Let us now get into the details
of the potential V. All in all, we will require two conditions on V: we suppose that there exist
p,C > 0 such that

(1.7) )PV (n)|

< C, forallne Zd, and
(1.8) )P Ing|[(V = 7V)(n)| < C, forallmez?and 1 <i<d.
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These conditions can be interpreted as a discrete version of the standard long-range type
potential [0V (z)| < C{x)~1*I=7 in the continuous case. Examples of potentials V satisfying
these two conditions include |V(n)| < C{(n)~'7?, the so-called short-range potential, and
V(n) = C{n)y=".

The goal of this paper is to establish the LAP for H as defined in (1.1). The formulation
of the LAP requires a conjugate operator which we now introduce. But first, we need the
position operator N := (Nq, ..., Ng), where the N; are defined by

(Nju)(n) :=nu(n), D(N;) = {u eEH: Z Insu(n)|* < oo}.
nezZd
The conjugate operator to H will be the generator of dilations denoted A and is the closure of
d d

(1.9) Ay = iZ (2_1(S;< + Sl) — (Sz* — SZ)Nl) = iZ 21 ((Sl — SZ*)NZ + NZ(SZ — SZ*))

i=1 1=1
defined on D(Ag) = £o(Z?), the collection of sequences with compact support. The operator
A is self-adjoint. We will also make use of the projectors onto the pure point spectral subspace
of H and its complement, denoted P and Pt := 1 — P respectively. We define the following
sets:

(1.10) p(H) = p(H') = (0, \{Ex(k)} for d =1,
(1.11) w(H) := (0, E(k)) U (4d — E(k),4d) for d > 2,
(1.12) w(H') := (0, E'(k)) u (4d — E'(k),4d) for d = 2.

Recall Ey (k) defined by (1.5). The definitions of E(k) and E’(k) are respectively given in
Propositions 4.5 and 4.6. We may as well already mention that the sets p consist of points
where the classical Mourre estimate holds for H and H’. The main result of the paper is the
following:

Theorem 1.1. Let E € p(H). Then there is an open interval T containing E such that
H has finitely many eigenvalues in T and these are of finite multiplicity. Furthermore, if
ker(H — E) < D(A), then Z can be chosen so that for any s > 1/2 and any compact interval
T’ < Z, the reduced LAP for H holds with respect to (Z', s, A), that is to say,

(1.13) sup (AT (H — x — iy) " LPHAY| < 0.
zel’ y#0

In particular, the following local decay estimate holds:
(1.14) J{R KNy~ e pLo(H)u|?dt < Clu|?®,  for any ue H,0 € CP(R), and s > 1/2,

and the spectrum of H is purely absolutely continuous on ' whenever P =0 on Z'.

The corresponding result also holds for H’. The last part of Theorem 1.1 are two well-known
consequences of the LAP. The local decay estimate gives a better insight into how the initial
state O(H)u diverges to infinity.

Our result is a discrete version of the LAP for the corresponding continuous Schrédinger
operator obtained by Golénia and Jecko in [GJ2], and our proof is very much inspired from
theirs. The proof is based on variations of classical Mourre theory. Classical Mourre theory
was proven very successful to study the point and continuous spectra of a wide class of self-
adjoint operators. Standard references are the original paper by Mourre [M]| and the book
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[ABG]| in which optimal results are obtained for a wide class of potentials. We also refer to
[Sal.

In [GJ1] and |GJ2], a new approach to Mourre’s theory is developed. Their approach proves
the LAP without the use of differential inequalities, as it is done in Mourre’s original work
[M]. In the separate work of Gérard |G|, he proves the LAP using traditional energy estimates
and introduces weighted Mourre estimates. In [GJ2|, Golénia and Jecko are able to prove the
LAP under weaker conditions on the potential than what is usually assumed in [ABG]| or [Sa]
for example, because their starting point is not the classical Mourre estimate but rather the
weighted Mourre estimate. Roughly speaking, the original Mourre theory required [[V, 4], A]
to be bounded in a weak sense, whereas the more recent and different approaches require V' to
belong to a class where solely [V, A] is bounded. This allows for new classes of potentials to
be studied, such as the Wigner-von Neumann potential. In Propositions 3.3 and 4.2, we show
that the standard Mourre commutator techniques exposed in [ABG] or [Sa| cannot be used
to treat the discrete Wigner-von Neumann potential. Finally, the LAP derived in this paper
is interesting because we include a long-range type potential V' in addition to the Wigner-von
Neumann potential and therefore provide new results including the question of the absolutely
continuous spectrum.

The paper is organized as follows: In Section 2, we recall the basic notions of classical and
weighted Mourre theory that we will be using. In Section 3, we study the classical Mourre
theory for the one-dimensional Schrodinger operators H and H’, and show that the discrete
Wigner-von Neumann potential cannot be treated with the classical methods. In Section 4,
we repeat our analysis for the multi-dimensional Schrodinger operators H and H’, and recycle
results from the one-dimensional case. In Section 5, we prove the weighted Mourre estimate
that leads to the LAP. This section is done independently of the dimension. Finally in the
Appendix 6, we recall essential facts about almost analytic extensions of C*(R) functions that
we need to establish the weighted Mourre estimate.

Acknowledgments: It is a pleasure to thank my thesis supervisor Sylvain Golénia for offering
me this topic and his generous support and guidance throughout my research. I would also
like to thank Thierry Jecko, Milivoje Lukic and the anonymous referees for useful comments,
as well as the University of Bordeaux for funding my studies.

2. PRELIMINARIES

2.1. Regularity. We consider two self-adjoint operators 7" and A acting in some complex
Hilbert space H, and for the purpose of the overview T will be bounded. Given k € N, we say
that T is of class C*(A), and write H € C¥(A) if the map

(2.1) R3t— ATe 4y e 1

has the usual C"“([R) regularity for every u € H. Let Z be an open interval of R. We say that
T is locally of class C¥(A) on Z, and write T € CE(A), if for all p € CX(R) with support in Z,
©(T) € C*(A). The form [T, A] is defined on D(A) x D(A) by

{u, [T, Alv) :={Tu, Av) — (Au, Tv).
We recall the following result of [ABG, p. 250]:

Proposition 2.1. Let T € B(H), the bounded operators on H. The following are equivalent:
(1) T e C1(A).
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(2) The form [T, A] extends to a bounded form on H x H defining a bounded operator
denoted by ady(T) := [T, A..

(3) T preserves D(A) and the operator TA — AT, defined on D(A), extends to a bounded
operator.

Consequently, T’ € C*(A) if and only if the iterated commutators ad”y (T") := [adi_l(T), Alo
are bounded for 1 < p < k. We recall a general Lemma which can found in [GGM, section 2]:

Lemma 2.2. The class C'(A) is a *-algebra, that is, for Ty, Ty € C(A) we have:
(1) Ty + Th € CH(A) and [Ty + Ty, Alo = [T1, Al + [T, Al..
(2) T, e Cl(A) and [TlTQ, A]o = Tl[TQ,A]o + [Tl, A]OTQ.
(3) T} € C(A) and [T}, A], — [Ti, A]?.

Finally we will also need the following result from [GJ1]:

Proposition 2.3. For u,v € D(A), the rank one operator |uy(v| : w — (v, wyu is of class
Cl(A).

2.2. The scale of the different classes. Let us introduce other classes inside C'(A). We
say that T € C1U(A) if the map

(2.2) R3t— ATe 4 ¢ B(H)
has the C!(R) regularity. Note the difference with definition (2.1). We say that T e Cb1(A) if

1
[ ey, e e 2ar < o
0
Finally we say that T e C1*0(A) if T € C!'(A) and
1
f IEHALT, Aloe At~ dt < 0.
—1

It turns out that

(2.3) C*(A) c C'0(A) c cH(A) = ¢t (A) = M (A).
The local classes are defined in the obvious way: T € CE(A) if, for all ¢ € CF(Z), ¢(T) €
cll(A).

In [Sal, the LAP is obtained on compact sub-intervals of Z when the Schrodinger operator
belongs to C37°(A), while in [ABG, section 7.B], it is obtained for Schrédinger operators
belonging to C1'(A) and this class is shown to be optimal among the global classes in the
framework.

2.3. The Mourre estimate and the LAP. Let Z, 7 be open intervals with Z c J, and
assume 1" € C‘17(A). We say that the Mourre estimate holds for T on T if there exist a finite
¢ > 0 and a compact operator K such that

(2.4) E7(T)[T,iAl.EZ(T) = ¢ Ez(T) + K

in the form sense on D(A) x D(A). We say that the strict Mourre estimate holds for T on T if
(2.4) holds with K = 0. Assuming Z < J and T € C}(A), there are finitely many eigenvalues
of T in 7 and they are of finite multiplicity when K # 0; whereas T has no eigenvalues in 7
when K = 0. This is a direct consequence of the Virial Theorem ([Sa|, [ABG, Proposition
7.2.10)).
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Let Z(E; ¢) be the open interval of radius € > 0 centered at E € R. When the strict Mourre
estimate holds for 7" on some interval containing F, it is natural to consider the following
function g4 : R — (—o0, +o0]:

o (E) := sup {a € R:3e > 0 such that Erpe) (DT, 1Al E7(g,e)(T) = a - Ez(gye) (T)}.

It is known for example that o7} is lower semicontinuous and g4 (E) < oo if and only if E € o(T).
For more properties of this function, see [ABG, chapter 7].
Variations of classical Mourre theory make use of a weighted Mourre estimate (cf. |G,

[GI2]):
(2.5) Ex(D)[T,ip(A)] E2(T) > Bo(T)(A)*(c + K)(A)*Ex(T)

where 0 < ¢ < o0, s > 1/2 and ¢ is some function in By(R), the bounded Borel functions.
Recall that P is the orthogonal projection onto the pure point spectral subspace of H, and
Pt :=1— P. We now quote the essential criterion established in [G.J2] that we will need to
prove the LAP for H as defined in (1.1).

Theorem 2.4. [GJ2]| Let T be an open interval, and assume that PL0(T) € C'(A) for all
0 € CP(Z). Assume the existence of an sy € (1/2,1] with the following property : for any
s € (1/2,s0], there exist a finite ¢ > 0 and a compact operator K such that for all R > 1, there
exists Vg € By(R) so that the following projected weighted Mourre estimate

(26)  P-EL(T)[T.ipr(A/R)].EL(T)P* > PLEL(T)A/Ry™(c + K)(A/Ry™Er(T)P*

holds. Then for all s > 1/2 and compact T' with T' < T, the reduced LAP (1.13) for T holds
with respect to (I',s, A).

3. THE ONE-DIMENSIONAL CASE

We begin with the study of the one-dimensional operator. We write the Laplacian in terms
of the shift operators defined in (1.6) : A =2 — (S* + 5). Note that [S,A], = [S*, Ao = 0.
Recall that A is the conjugate operator to H introduced in (1.9). It is the closure of the
operator

(3.1) Ag = —1(271(S* + ) + N(S* - 9)) =i (271(S* + §) — (S* — S)N)

on the domain D(Ap) := ¢y(Z). The domain of A has been shown explicitly to be D(A) =
D(N(S* —S)) and this operator has been shown to be self-adjoint (cf. [GGo]). Moreover A is
unitarily equivalent to the self-adjoint realization of the operator

Ar = isin(g);g + iCZsin(g), D(Ar) := {f € L*([-7,7),d€) : Axf € L*([—m, 7], dE)}.

3.1. C1(A) Regularity. We now show that H and H’ are of class C1(A).
Proposition 3.1. The form [A,iA] extends to a bounded form denoted [A,iA]s and
(3.2) [AiA], = A4 — A).

Furthermore A is of class C*(A).

Proof. A straightforward and well-known computation shows that (u, [A,iA]v) = {(u, A(4 —
A)v) for all u,v € €y(Z). Thus [A,iA4] extends to a bounded form and we have (3.2). Using

induction and applying Lemma 2.2 shows that ad]j‘(A) is a polynomial of degree k£ + 1 in
A. O
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Define the bounded operators

(3.3) Kw :=27'W(58* +8)+274(S* + )W, and By := UW(S* —S) — (S* — S)WU,
where W and U are respectively the operators

(Wu)(n) := gsin(kn)u(n), and (Uu)(n) := sign(n)u(n).
We use the convention sign(0) = 0. A simple calculation shows that for all u,v € ¢y(Z),

(u, [W)iA]v) = (u, Kwv) + {u, Byyv).
We also investigate the form [IW’',iA]. Define the bounded operators
(3.4) Ky :=27"W/(S* +8) +271(S* + )W, and By := W(S* —S) — (5* — S)W.
A straightforward computation shows that for all u,v € £y(Z),
lu, [W'iA]w) = (u, Kyv) + (u, Byrv).

Hence both [W,1A] and [W’,iA] extend to bounded forms and we have
(3.5) [W,iA], = Kw + Bw, and [W,id], = Ky~ + By

Note that Ky and Ky~ are compact, while By, and By are bounded (but not compact by
Proposition 3.3). Finally, we turn to the form [V,iA]. For u € ¢y(Z) we have

(VA=AV)u)(n) =iln—2"Y(V(n)=V(n—1)u(n—1)+i(n—2")(V(n) = V(n+1))u(n+1).
Therefore in the form sense, we have for u, v € {y(Z),
(3.6) (u, [V,id]v) = —(u, [(N =271 (V = 7V)S + (N — 27 (V — 7%V S*]v).

By hypothesis (1.8), we see that [V,iA] can be extended to a bounded form, and that [V,iA4],
is a compact operator. The above discussion leads to:

Proposition 3.2. H=A+W +V and H = A+ W' +V are of class C}(A).

We now explain why the usual Mourre theory with conjugate operator A cannot be applied.
We have proved that H € C!(A), however in order to apply the standard Mourre theory,
one typically has to prove that H is in a better class of regularity w.r.t. A. As mentionned
previously, the existing standard theory in [ABG] is optimal for the class C1'*(A4). However,
we are not dealing with potentials in this class as shown in the following Proposition. The
same phenomenon occurs in the case of the continuous Schrédinger operator (cf. [GJ2]).

Proposition 3.3. H and H' are not of class C1(A).

Proof. We stick with H as the same proof works for H'. Since A € C*(A), we have A € CH¥(A).
Let us assume by contradiction that H € C1'%(A). Then H — A € CH%(A). In particular

lim [e " 4(H — A)el™ — (H — A)|t™ = [(H — A),id]o = [(W + V),i4],
is a compact operator as the norm limit of compact operators. As explained before, [V,iA], is
compact, and [W,14]; is the sum of the compact operator Ky and the bounded operator By .

We show that By is not compact, and this will be our contradiction. Consider the sequence
(67)j>2 of unit vectors in ¢*(Z) satisfying (J;)(n) = &j.n. Then

Byd; = g (sin(k(j — 1)) — sin(kj)) ;-1 — g (sin(k(j + 1)) — sin(kj)) 5.1

31



For this operator to be compact, we require
0 = lim [q|sin(k(j — 1)) —sin(kj)| + [q| sin(k(j + 1)) — sin(kj)|
— Tim 2ql| cos(kj — k/2)]| sin(k/2)| + 2lg| cos(kj + k/2)|| sin(k/2)].
J—a0

As j — o0, we would need kj — k/2 — 7/2 (mod 7) and kj + k/2 — 7/2 (mod 7), but this is
not possible precisely because k # . O

3.2. Classical Mourre Theory. In this section we derive the classical Mourre estimate
(2.4) for the one-dimensional Schrodinger operator H. From the previous section, we know
that [V,iA], is compact and that [W,iA], = Kw + Bw, with Ky compact but By just
bounded. Therefore, in order to derive the Mourre estimate, what really remains to show is
that E7(A)Bw Ez(A) is compact for some well-chosen Z < [0,4]. We show precisely:

Lemma 3.4. Recall that E1 (k) := 2 £ 2cos(k/2). Let E € [0,4]\{E+(k)}. Then there exists
e =¢(F) > 0 such that for all € C(R) supported on L := (E — ¢, E +¢), 0(A)WO(A) = 0.
Thus 6(A)By0(A) = 0 and §(A)Bw0(A) is compact.

The proof of this Lemma is deferred to the end of this section, but note that the last part
of the Lemma is easy, since if §(A)WE(A) = 0, then

O(A)Byr0(A) = (A)WO(A)(S* — 8) — (S* — $)O(A)YWH(A) = 0.

Commuting U with A produces a finite rank, hence compact operator by (3.7), so 0(A) By 6(A)
is compact. The classical Mourre estimate for H and H' is easily deduced:

Proposition 3.5. For every E € (0,4)\{E+(k)}, there is an open interval Z containing E such
that the Mourre estimate (2.4) holds for H and H'. In particular, the number of eigenvalues
of H and H' in T are finite and they are of finite multiplicity.

Proof. For E € (0,4)\{F(k)}, let 6 € CP(R) be as in Lemma 3.4, with supp(f) = Z. By the
resolvent identity, Q2 := 0(H) — 6(A) is compact. Indeed, by the Helffer-Sjostrand formula,
i [ 00
Q= % ) = H) 7 W+ V)(z =) dz n dz
is a norm converging integral of compact operators. We have for some compact operator K:
O0(H)[H,iAl.0(H) = 0(A)[H,1A].0(A) + Q[H,iA]l.0(H) + 0(A)[H,1A].Q
=0(A)A(4—-A)I(A) + K.
By functional calculus, §(A)A(4 — A)O(A) = ch*(A), ¢ := minger #(4 — x). Thus
O(H)[H,iAl.0(H) = c0*(H) + K + c(0*(A) — 6*(H)).

For all open intervals 7' with Z' — Z, we obtain the Mourre estimate when applying Fr (H)
to either sides of the last inequality. O

We now show that compactness of Ez(H)Bw Ez(H) is not possible for any interval Z

centered about Fy (k). Let B < Z and let 6g(n) =1 if n € B and dg(n) = 0 if n ¢ B. Thanks
to

(3.7) S*U =US* + 5{0}5* + 5{,1}5*7 and SU =US— 5{0}5 - 5{1}5,
one shows that
(3.8) O(A) By d(A) = U(A) (W(S* _8)—(S* - S)W) f(A) + compact.
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Proposition 3.6. Fiz E € {E+(k)}, and suppose that ¢ # 0, k € (0,27)\{r}. Then for all
0 € CP(R) with supp(0) 3 E, 0(A)BwO(A) and 6(A)By 0(A) are not compact.

Proof.  We show that Q := (A)[W(S* — ) — (S* — S)W]A(A) = 0(A)ByH(A) is not
compact for any 6 supported about Ey (k). Applying U to this operator does not make the
product any more compact, and so the result will follow by (3.8). In Fourier space, () becomes

g8 (2 —2cos(+)) o [sin(-) o (T — T—) — (T}, — T—y) o sin(-)] 0 6 (2 — 2 cos(")).
Here T4 is the operator of translation by +k. It is not hard to see that if ¢ solves
2 —2cos(¢p) =2 —2cos(¢p + k), or 2—2cos(p)=2—2cos(¢p—k)

then it is possible to construct a sequence of «delta» functions f, supported in a neighborhood
of ¢ converging weakly to zero, but | f,/2 = 1. The solutions to the previous equations are
¢ = k/2,m — k/2 for the first, and ¢ = —k/2, 7 + k/2 for the second. Either way, we retrieve
the threshold energies Fy (k) = 2 + 2 cos(k/2). O

The rest of the section is devoted to proving Lemma 3.4. Recall that F is the discrete
Fourier transform defined in (1.4). Let T} denote the multiplication operator on ¢?(Z) given
by (Thu)(n) := e*"u(n). Then T} corresponds to a translation by k in the Fourier space
of 2m-periodic functions, that is, (FTF1f)(&) = f(€ + k). Also denote i[o,n] the operator
on (%(Z) satisfying (]-"i[om]]-"’lf)@) = 1j0,x)(€)f(§). This operator is bounded, self-adjoint,
commutes with A, and its spectrum is 0’(\]1[0’77]) = ess ran(1pp(£)) = {0,1}. We need a
formula describing how T}, and A commute.

Lemma 3.7. Let k € [0,2n]\{w}. Then for all € C(R),

(3.9) Ti0(A) = 0(gi(A, Tjo,7)) Tk
where gi(z,y) : [0,4] x {0,1} — R is the function
(3.10) gk (x,y) := 2+ (x — 2) cos(k) — sin(k)\/z(4 — x)(2y — 1).

Proof. First
(FTRAF L)) = (2 — 2cos(€ + k) f(€ + k)
(3.11) = [2 — 2cos(k) cos(€) — 2sin(k)\/1 — cos?(€)(21[o.(§) — D] f(€ + k).

Now

9i(A, Lo ap) := 2+ (A — 2) cos(k) — sin(k)/A(4 — A)(2L[g - — 1).

Then (3.11) provides us with the following key relation:
TkA = gk(Aai[O,r])Tk~
In particular, for all z € C\R,

-1 bt -1
Tk(z — A) = (Z - gk(A7 1]-[0,71'])) T

The result follows by applying the Helffer-Sjostrand formula. ]
We are now ready to prove Lemma 3.4.
Proof of Lemma 3.4. We apply (3.9) and get

O(L)WO(A) = 0(A)0(g1(A, Tjo.1))aTi/(21) = O(A)0(g2r—1(A L0 7)) qTor—1/(20)-

33



FIGURE 1. gi.—, gp-+, by and . for k = /3 (left) and k = 27/3 (right)

We show that for all k € [0, 27]\{7}, one may choose 6 appropriately so that
0(A)0(gi(A, Lo ) = 0.

Also, as will be seen shortly, G(A)Q(gk(A,i[O,ﬂ)) = 0 iff G(A)Q(ggﬂ,k(A,i[om])) = 0. We
appeal to the functional calculus for two self-adjoint commuting operators. Consider the
function g (z,y) of (3.10) defined for (z,y) € o(A) xa(i[oﬂr]) = [0,4]x{0,1}. We show that for
all E € [0,4]\{E+(k)}, there exists € = ¢(F) > 0 such that for the interval Z := (F —¢, E+¢),

(3.12) T o A{g(a,y) :xe Ly e{0,1}} = &.
In this way if supp(#) = Z, then we will have 0(z)0(gx(z,y)) = 0 as required. Set
(3.13) E(k) :=={E €[0,4] : there exists y € {0,1} such that E = gi(F,y)}.

Clearly if E' € £(k), then (3.12) does not hold at E. To simplify the analysis, we let
(3.14)  grp+(x) =2+ (x —2)cos(k) sin(k)\/z(4 —x) and hy+(x) = gr+(z) — 2.
Notice that hy.+(E+(k)) = 0, and so E4 (k) € £(k). To show that £(k) = {E_(k), E+(k)}, it
is equivalent to show that these are the only roots of hy.+. Because of the symmetry relations
(3.15) kit () =4 —gr.— (4 —2) and  hpq(z) = —hg,— (4 — ),
we may focus our analysis on gp.— and hy._. Define a(k) := (cos(k) — 1)(sin(k))~*. The
equation
hj._(z) = (cos(k) — 1) —sin(k)(—z + 2)(z(4 —2)) /2 =0

can be solved via the quadratic formula and yields a single solution given by

2+2y/1—(1+a%(k)1 ifke(0,n)

2—-2y/1—(1+a%(k)t ifke(r2m).
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Consequently hj.— has exactly one local extremum. Combining this with the fact that hy,_
is continuous, hy,—(0) = 2 —2cos(k) > 0 and hy,—(4) = —2 + 2cos(k) < 0, we conclude that
E_(k) is the only root of hy,_. By (3.15) we immediately get that E (k) is the only root of
hi:+. We move on to the analysis of gi._. The equation

i (@) = cos(k) — sin(k)(—z + 2)(z(4 — 2)) "2 = 0

has a single solution given by
2 —2¢/1—(1+ B2(k))"1 =2—2|cos(k)| if ke (0,7/2] U (m,37/2]
A_(k) := .
2+2¢/1—(1+B2(k))"1 =2+2|cos(k)| if ke [r/2,7) U [37/2,27).
Here B(k) := cot(k). We conclude that gy, has exactly one local extremum. We note that
Gi:i—(A=(k)) = 0 when k € (0,7) and g,— (A—(k)) = 4 when k € (7, 2m). Finally, we have

W) = g () = dsin(k) ({4 — 2)) 92,

The relevant details are summarized in Tables 1, 2, 3 and 4. We are ready to complete the
proof.

. A (k) B (k) o, () = i, _(2)
€(0,m) | =2—2cos(k) | =2—2cos(k/2) | E_(k) < A_(k) | >0VYze]0,4]
€ (m2m) | =2+ 2cos(k) | =2—2cos(k/2) | \_(k) < E_(k) | <0Vze]|0,4]
TABLE 1. Analysis of gy, and hy._ for different values of k
x 0 E_(k) A (k) 4 x 0 A_(k) E_(k)
gk~ () N\ N0 Ii;— (@) /4N N
I, — () + 0 - - hi;— () + + 0 -

TABLE 2. Variations of g._ and sign of hy,_ for k € (0,7) (left) and k € (m,2m) (right)

A+ (k)

Ey (k)

g;::;—&-(m) = h%,+(m)

€ (0,7)

=2+ 2cos(k)

=2+ 2cos(k/2)

A (k) < By (k)

<0Vzel0,4

€ (m,2m)

=2 —2cos(k)

= 2+ 2cos(k/2)

Ey (k) < Ay (k)

|
> 0 Vz € [0,4]

TABLE 3. Analysis of gy, and hy. for different values of k

xT

0

x

E. (k)

X ()

Jk;+ ()

/

N

gk;+(x)

N

0

hk;Jr(x)

+

0

hk;+ (1‘)

+

0

N /

TABLE 4. Variations of gy, and sign of hy, for k € (0,7) (left) and k € (m, 2m) (right)
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Case k € (0,m), y = 0: Depending on E € [0,4]\{E_(k)}, we show that there exists an interval
7 3 FE such that one of the two following hold:

(3.16) T < g (D),

(3.17) T > gi (D).

(A) For E € [0, E_(k)), there is € > 0 such that E + ¢ < gj._(E + ¢). Thus (3.16) holds for
I=(F—¢E+e¢). (B)For Ee (E_(k),\_(k)), there is € > 0 such that g, (F —¢) < F—e¢.
Thus (3.17) holds for Z = (E —¢,E 4+ ¢). (C) For E = A\_(k), there is e > 0 such that
GO\ () — 21) < A—(K) — 1. Thus [0, g (A-(K) — 1)] = g ([A-(k) — 21, A-()]) <
[A_(k)—e1, A_(k)]. By continuity of g, there is 2 > 0 such that g, ([A-(k), \— (k) +e9]) =
[0, gr.— (A— (k) +e2)] < [0, gr,— (A—(k)—e1)]. Thus (3.17) holds for Z = (A_ (k) —e1, A_(k)+e2).
(D) Finally for E' € (A_(k), 4], there is ¢ > 0 such that hy._(t) < —2c forall t € [E—¢, E+¢],
and so gy, (E +¢) < E—¢e. Thus (3.17) holds for T = (£ — ¢, E + ¢).

Case ke (0,7), y = 1: We denote A\, (k) = 4 — A_(k) the location of the extremum of g..
Depending on E € [0,4]\{E4(k)}, one procedes in the same fashion as before to show that
there exists an interval Z 3 E such that one of the two following hold:

(3.18) T < giur (T),
(3.19) T > g+ (Z).
The case of k € (m, 27) is also covered because g(ar—p);+ () = gr;— () for all k € (0, 7)\{x}. O

4. THE MULTI-DIMENSIONAL CASE

We introduce the tensor product notation. The position space is the Hilbert space H =
(7% ~ ®¢_,(*(Z). The d-dimensional Laplacian is equivalent to

ArxAIRI®..Q1 + 1®A2®..01 + ... + 1®...1R Ay

where the A; are copies of the one-dimensional Laplacian. The potentials W and V' cannot
be written explicitely in tensor product notation, whereas W’ can. The generator of dilations
is

Arx4R1Q..01 + 1Q4:0...01 + ... + 1Q..Q1Q Ay, D(A):=QL,D(4;)
where the A; are copies of the 1d generator of dilations defined as the closure of (3.1). Since
the copies A; are all self-adjoint, A is self-adjoint.
4.1. C*(A) Regularity. It is immediate that [A,iA] extends to a bounded form and
[AiAlo * A1(4—A1D)RL..®L + 10A24—A)®...QL + ... + 1® ... QLIR®A (4 —Ay).
By induction, we have that A € C*(A). We turn to the potential . Define

d d
(4.1) Kw :=27"W Y \(SF + Si) + 271 Y (SF + Si)W,
i=1 =1
d B d ~
(4.2) By = Y UW(S] — 8;) — Y (S — S)W U,
=1 =1

where the U are the operators (Usu)(n) := n;|n|~'u(n) and W is the operator (Wu)(n) :=
gsin(k(ny + ... + ng))u(n). We have that for all u,v € £y(Z%),

{u, [W)iA]v) = (u, Kwv) + {u, Byyv).
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Thus [W,14] extends to a bounded operator and [W,iA], = Ky + By . For the potential W/,
(W' iAo ~ [W1,id1]o @Ws® ... W + Wi ®[W5,id2]o ® ... W}
+ e+ W ®..OW_, ®[WS,iAdlo
= Ky + By
where

(4.3) Kwr = Ky, @W3®...0W; + WI@Ky;®...0W; + ... + Wi®..QW;_® Ky,
(44) Bwr = By ®@W3®..@ Wy + Wi®By; ®...0W; + ... + W{®..@ Wj_; ® By,

(45) Ky = 27" W/(S; +8:) +271(S; + S))W/, and By = W/(S7 — Si) — (57 — Si)W.

Here W/ and Wi’ are one-dimensional operators defined by (W/u)(n) = g;sin(k;n)n~tu(n),

and (WN/Z’u)(n) := ¢;sin(k;n)u(n). Note that Ky and Ky are compact, while By and By
are bounded but not compact by Proposition 4.2. As for the form [V,iA], we have as in (3.6)
that for all u,v € £o(Z%),

d
(4.6)  (u,[V,iAJv) = — Z(u, [(N; =27 )(V = V) S + (N; = 271)(V = 75°V) SF o).

Hypothesis (1.8) allows us to extend [V,iA] into a compact operator. This leads to the
following

Proposition 4.1. H and H' are of class C*(A).
As in the one-dimensional case, we have
Proposition 4.2. H and H' are not of class C1(A).

Proof. As in the proof of Proposition 3.3, one shows that By and By are not compact.
This can be done by considering the sequence (d;);j>2 of unit vectors in 0%2(2%) satisfying
(0j)(n) = 0j:n,00:ns+-00:n,- This sequence is converging weakly to zero. If By was compact, we
would require Byy/d; to converge strongly to zero, but this would lead to the same contradiction
as in Proposition 3.3. As for By, we commute U; with (S} —.5;) to produce a compact and
get

d
By = Z Ui[W(SF — S;) — (Sf — S;)W] + compact.
i=1

Again, applying this operator to J; and requiring the limit to converge strongly to zero would
generate the same contradiction. O

4.2. Classical Mourre Theory. Recall that o(A) = o(A1) + ... + 0(Ag) = [0,4d]. We
would like to identify the sub-intervals of o(A) for which a strict Mourre estimate for A holds.
Recall the function pfi(E) introduced in paragraph 2.3. In the setting of the tensor product
of two operators we have the standard result [ABG, Theorem 8.3.6]:
(4.7) of(B) = inf [0} (z1) + 072 (w2)],

E=x1+

1Tx2
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FIGURE 2. Support of xz(x; + z2) for Z = (0.5,3.5).

where T :=T1 ®1+1®Ts and A := A1 ® 1 + 1 ® Ay are an arbitrary pair of conjugate
self-adjoint operators. Now, an easy consequence of the one-dimensional result (3.2) is that
for all x; € [0, 4]
oA, (wi) = wi(4 — ).

Therefore we infer that in the case of d = 2, 0 < g4 (E) < o if and only if E € (0,8)\{4}, so
that the strict Mourre estimate for A holds at every point of the spectrum of A, except at the
critical points {0, 4, 8}. If d > 2, then a similar formula to (4.7) holds with nested terms. One
easily sees that 0 < o4 (E) < oo if and only if E € (0,4d)\{4j ?;%, so that the strict Mourre
estimate holds at every point of the spectrum of A, except at the critical points {4j };l:o. For
the special case of the discrete Laplacian, the classic strict Mourre estimate can be derived
without resorting to formula (4.7) whose proof is somewhat elaborate. We show how this can
be done.

We work in two dimensions, but remark that the same setup can be generalized for d > 2.
Let € € (0,2) be given and let Z = (¢,4 — ). By (3.2), we have

(4.8) EI(AZ‘)[AZ‘, iAi]OEI(Ai) = 6(4 - E)EI(AZ‘), for all i=1,2.

The following Proposition converts the one-dimensional (optimal) strict Mourre estimate for
A into a two-dimensional strict Mourre estimate.

Proposition 4.3. For every € € (0,2), let Z := (e,4 —¢), or L := (44,8 —¢). Then the

strict Mourre estimate holds for the two-dimensional Laplacian A on I, namely:

(4.9) Ez(A)[AIA]GEL(A) = (4 — e)EZ(A).

Proof. We consider the case Z = (¢,4 — ¢), as the other case is similar. Note that xz(x; + x2)

is supported on the open set U := {(x1,z2) € [0,4] x [0,4] : 1 + xo € Z} which has the

form of a trapezoid. We decompose U in four regions, namely U ;) := U n [0,¢) x [0,¢),

Une) :=Unl0,e)x[e,4—¢), Uy := Un[e,4—¢)x[0,¢), and Uz 9y := Un[e, 4—¢) x[e,4—¢).
For ne N and (4,75) € {1,...,2"} x {1,...,2"}, consider the disjoint intervals of the form
Tiyigm = [(i = 1)27",i27 ")  and Zoyy = e+ (j — 1)27"(4 — 2¢),e + j27"(4 — 2¢))

which satisfy U?";Z1.., = [0,¢) and UJQ-ZIIQ;]‘;” =[e,4 —¢). For a, 5 € {1,2}, let

Fa,ﬁ,n = {(Z,j) € {17 "'72n} X {17 "'72n} :Ia;i;n x Iﬂ;j;n < U(Oéﬂ)}'
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Then
7}1—{%0 U Lasizn X Lgsjm = Ula,p)-
(i)j)eFOtyﬁa"

In terms of operators, we have

%_Er;:l Z Z EIa;i;n (AI) ® EIﬁ;j;n (A2) = EI(A)

a,f=1,2 (iyj)eFa,['},n

Now, [A,i4]c = [A1,141]o ® 1 4+ 1 ® [Ag,142]., so for fixed n we calculate:

Z Z EIa;i;n(A1)®EIﬁ;j;n(A2 A Z Z EI !5l (Al ®Ezﬂ' i’ (AQ)
o, (i,) o\B(#5')

=SSN Br L (A)[AL A EL, . (A1) ® Bz, (M)
a,B (i,5) o (i,5)

+ Zﬂ (Z) ; (Z) EIOW?" (Al) ® EIﬁ;j;n (AQ)[AQ’ iAQ]OEIﬁl;j/;n (AQ)
o,B (i,7) B (4,5’

Z Z EIa'Ln 1) Al’lAl] azn(Al) ®EI,6’] n(AQ)
a,B (4,5)

+ Z Z EIu;i;n (Al) ® EIB;j;n (AZ)[A27 iA2]OEIB;j;n (A2)
a,B (1,5)

> Z Z (Ca;i§n + cB;j;n)EIa;i;n (Al) ® Ezﬁ;j;n (A2>
DZ’B (7’7])

for some positive constants cq.., and cg.j., which can possibly be 0 if « = 1 and 7 = 1
or if 3 = 1 and j = 1. However cu;n and cg.j,, are not independent since (i,7) € Fo gn;
in fact caiim + Cgjm = (4 —¢) > 0 for all a,8 € {1,2} and (i,j) € F,p,. The case
a = [ =1 is the least obvious. Consider I'(z1,z2) = z1(4 — z1) + 22(4 — z2) defined for
(z1,22) € [0,e) x [0,e) which represents how cq:im + €g.jin varies. Then ciip + c1jm =
(21,6 — x1) = =222 + 2116 — €2 + 4 > —? + 4e. The proof is now complete by taking the
limit n — oo. (I

We are now working our way towards a classic Mourre estimate (2.4) for the full Schrodinger
operator H. As in the one-dimensional case, [V,iA4], is compact, and [W,iA], is the sum of a
compact operator Ky and a bounded operator By defined by (4.2), so we really only have
to show that Ez(H)Byw Ez(H) is compact.

Let k € [0, 27]\{7}, and let T}, be the multiplication operator on ¢?(Z¢) given by (Tju)(n) :=
eik(”1+"'+”d)u(n). Then T} corresponds to a translation in the Fourier space of 2w-periodic
functions by k in each direction, that is, (FTF~1f)(&) = f(£ + k) (see (1.4) for the defini-
tion of the discrete Fourier transform). Denote by i[O,fr],i the operator on EQ(Zd) satisfying
(]-"]l 0,7, 1A = Ljo,x)(&) f(§). Note that i[o’ﬂ]ﬂ- is a bounded self-adjoint operator with
spectrum U(]l[o,ﬂ ) = essran (1) (&) = {0,1}. Moreover i[O,ﬂ'],i commutes with i[O,ﬂ],j
and Aj; for all 1 < 4,5 < d. Here Aj is the Laplacian restricted to the 4 dimension :
(FA;FLA)(E) = £(€)(2 —2cos(§5)) and o(A;) = [0,4]. We need a formula describing how

A and T}, commute.
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Lemma 4.4. Let k € [0,2n|\{w}. Then for all € CL(R),

d
(4.10) Tx0(A) =0 (Z g (A, ]l[O,ﬂ],i)> T,
im1

where gi(z,y) : [0,4] x {0,1} — R is the function defined in (3.10).
Proof. First

(FLAFHF)(E) = FE+ k) D, (2~ 2cos(& + k)

=~

S
Il
—

[2 — 2cos(k) cos(&;) — 2sin(k)y/1 — cos?(&) (210,71 (&) — 1)].

M=~

(4.11) = f(&+k)

S
Il
—

Letting gi (A, i[om],i) =24 (A;—2) cos(k) —sin(k)y/Ai(4 — Ai)(Q\ﬂ[Om]’i —1) and continuing
as in Lemma 3.7 leads to the required formula. O

Since {A;, i[o’ﬂ]ﬂ-}f:l forms a family of 2d self-adjoint commuting operators, we may apply
the functional calculus for such operators. We are now ready to prove that 6 can be chosen

so that 6(H)Bw0(H) is compact.
Proposition 4.5. Let

4 —4cos(k/2)  for ke (0,7)

4+ 4cos(k/2)  for ke (m,2r) and  p(H) := (0, E(k))u(4d—E(k), 4d).

(4.12) E(k) := {
For each E € p(H) there exists ¢ = €(E) > 0 such that for all 0 € CF(R) supported on
T:=(E—-¢,FE+e¢), 0(A)WO(A) =0. In particular, 0(A) By 0(A) is compact. Consequently,
for every E € u(H), the classical Mourre estimate (2.4) holds for H on ', where I' < T.

Remark 4.1. The unitary transformation u(n) — (—1)"1 T +"ay(n) for all u € H := (>(Z%)
shows that A and 4d — A are unitarily equivalent, (and likewise for H := A+ W +V and
4d — A+ W + V). Because of this symmetry, showing that 0(A)BwO(A) is compact for 0
supported on LT = (E —¢,E +¢) and E € (0, E(k)) implies it for E € (4d— E(k),4d) (and vice
versa). This symmetry is due to the bipartite structure of z%.

Remark 4.2. That (A)Bw0O(A) is compact and not zero is because commuting U; with A
produces a compact operator. Then using the strict Mourre estimate for A from Proposition
4.3 or (4.7), one derives the Mourre estimate for H in the same way as in Proposition 5.5.

Proof. The strategy is the same as in 1d (cf. Lemma 3.4 for the notation). Thanks to (4.10),
O(AYWO(A)
d - d -
=0(A)0 (Z JAVAVE Jl[o,w],i)> qTy/(21) — 6(A)0 (Z Gor—k (A, 1[0,7r],i)> qTor—1/(2i),
i=1 i=1

and so it is enough to show that #(A)6 (Zl gr(A [0,7r],i)> = 0 for k € (0,27)\{w} and 0
f (3.10) defined for (z,y) € o(A;) x

29 i
appropriately chosen. Consider the function gx(x,y) o
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o(i[o,ﬂ]ﬂ-) = [0,4] x {0,1}. We want to find ¢ = ¢(E£) > 0 such that for the interval Z :=
(E—¢,FE+e¢).

(4.13) Zn { Z gk (zi,yi) : (21, ...,zq) € R and (y1,...,y4) € {O,l}d} = .
1<i<d
Here R is the region defined by R := {(21,...,24) € [0,4]% : &1 + ... + x4 € Z}. In this way if
supp() = Z, then we will have 0(x1 + ... + 24)0(>; 9r(xi,yi)) = 0 as required. Set
(4.14)  E4(k) := {E €[0,4d] : there exist (z1,...,24) € [0,4]¢ and (y1, ..., yq) € {0, 1}¢
such that £ = z1 + ... + 4 = gx(x1,91) + .. + gk(xa,ya) }-

If £ € &i(k), then (4.13) does not hold at E. Note also that Eg(k) = Ei(2m — k). First we
work in d = 2, and extend the result for d > 3 at the very end. To identify the set & (k), we
solve

(4.15) Ehimio © P (1) + hio(x2) = 0, for x,0€ {—, +}.

We denote by Sk.x.o the solutions to & and let Ep..o 1= {21 + 22 : (21,22) € Sko}-
By (3.15), (x1,22) € Sk—— iff (4 — 21,4 — x2) € Sp.4.. By symmetry, (z1,22) € Sk, iff
(x2,21) € Skyy;—. We focus first on &,_._. In this case, note that (z1,x2) is a solution iff
(z2,21) is a solution. With the change of variables (z1,22) = (2 — 2cos(¢),2 — 2cos(p)),
(¢, ) € [0,7]?, &.—.— becomes

—2cos(¢)(cos(k) — 1) — 2sin(k) sin(¢) — 2 cos(p)(cos(k) — 1) — 2sin(k) sin(p) = 0
which reduces to
(4.16) — 8sin(k/2)sin((¢ + ¢ — k)/2) cos((¢ — ¢)/2) = 0.

Thus (¢ + ¢ — k)/2 = 0 [mod 7] or (¢ — ¢)/2 = 7/2 [mod «]. Considering (¢, ) € [0, 7]?
and the cases k € (0,7) and k € (7, 2m) separately, one can rule out several possibilities. Let
Ji :=[0,k] if k€ (0,7), and Jy, := [k — 7, 7] if k € (7, 27). The valid solutions of the previous
equation are (¢, ) € {(0,7), (7,0), (¢, k — ¢), with ¢ € Ji}. The solutions to &,_,_ are

Sk?*;* = {(074)7 (470)7 (2 - 2COS(¢)7 2- 2COS(k - ¢))7 ¢ € Jk}7
Let fy,—.—(¢) := 2 —2cos(¢) + 2 — 2cos(k — ¢) = 4 — 4 cos(k/2) cos(¢ — k/2). Thus

{4} U [4 — 4cos(k/2),2 — 2cos(k)] for ke (0,m)

£2(k) 2 Biiim = {4} © fiims-(Jb) = {{4} U [6 + 2cos(k),4 — 4cos(k/2)] for k€ (m,2m).

The solutions of &.,., are

Sk;+;+ = {(07 4)7 (47 0)7 (2 + 2COS(¢)7 2+ 2COS(k - ¢))7 ¢E Jk}
Let fi+i4(¢) := 24 2cos(¢) + 2+ 2cos(k — ¢) = 4 + 4cos(k/2) cos(¢ — k/2). Then

{4} U [6 + 2cos(k),4 + 4cos(k/2)] for ke (0,7)

£2(k) 2 B = 14} firsr (o) = {{4} U [4 +4cos(k/2),2 — 2cos(k)] for k€ (m,2m).

We now solve &j,,—.,. With the same change of variables as before, this equation becomes

(4.17) 8sin(k/2)sin((¢ — ¢ + k)/2) cos((¢ + ¢)/2) = 0.
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FIGURE 3. Solutions S_._, S..;, 5 .. and S,._ to & for k = 7/3 and
x,0€{—,+},d=2

Let J, := [k,7] for k € (0,7) and J}, := [0,k — «] for k € (m,27). The solutions to this
equation are (¢, ¢) € {(¢, ™ — ¢), with ¢ € [0,7], (¢,¢ — k), with ¢ € J;}. Thus

Sk;*H“ = {(t74 - t)vt € [074]7 (2 - 2COS(¢)7 2- QCOS(k - d)))a ¢ € ']llf}
Note that fj._._ is strictly increasing on J;. Thus
4} U [2 — 2cos(k),6 4+ 2cos(k)]  for k€ (0,7)
Ex(k) > Brnrs — (4} U foe (J1) = 41 : :

2(k) = Bt = {4} © fiimi= (1) {{4} U [2—2cos(k),6 + 2cos(k)] for k € (m,2m).
Finally, by symmetry, E... = Ej,_.,. Putting together our previous results, we have
(4.18) Ea(k) = [Ae(k), Ar(R)] = Epi—— U Eire O By U By

We now aim to derive (4.13) on Ly := [0, E(k)). Fix k € T := (0,27)\{r}. For XA € L
define the function Fy,; on [0, A] by
(2) = hi,— () + hg— (A — ) for (A, k) € My, := Ly, x (0,7)
M b () + hiee A — ) for (A k) € N, := Ly x (0, 27)
(A =4)(cos(k) — 1) = sin(k)y/z(4 — x) —sin(k)y/(—z + N) (4 + x — A) for (\, k) € M,
(A —4)(cos(k) — 1) + sin(k)y/z(4 — x) + sin(k)y/(—z + A)(d + 2 — A) for (\, k) € Nj.

A surprising calculation yields the single solution = A/2 to the equation F},, (z) = 0 for all
ke T and X € L. Also, when (A, k) € L, x T, F)\(0) = Fx\.x(\) > F\x(\/2). Hence

VA€ ,Ck, Vk e T, min F)\;k(x) = F)\’k()\/Z)
z€[0,A]

Define for A € £, x T the function
- ~J (A =4)(cos(k) — 1) —sin(k)y/A(8 = A) for (A k) € M,
fe(A) = Fap(V/2) = {()\ — 4)(cos(k) — 1) + sin(k)/AS —A) for (A, k) € N}

Then for all k € T, fi(0) = 4(1 — cos(k)) > 0 and fr(E(k)) = 0. We claim that for all k€ T,
fr is strictly decreasing and positive on L. To prove this, consider the functions

Mz (M) i= (A — 4)(cos(k) — 1) F sin(k)/A(8 — \)
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defined on [0,8] x 7" The equation mj_, () = 0 has a single solution

A=4+4/1—(1+a(k)?)~t> E(k) when (k,*) € (0,7) x {—} U (7,27) x {+}.
Recall a(k) := (cos(k) — 1)(sin(k))~!. The claim is therefore verified. Now let E € Ly, and
choose ¢ > 0 such that Z := (F — ¢/, E + ¢’) © L. Recall that R is the region defined after
(4.13). Let (k,*) € (0,7) x {—=} u (m,27) x {+}. We have:

inf {gr.« (1) + grx(x2) : (1, 22) € R} = inf {gp(z) + grsu(A —2) : A€ L,z € [0, A]}
inf {fx(A\) +A: XeTI}

>
>ce+E—¢.

Here ¢ is any real in (0, fx(E+¢’)). Taking ¢’ even smaller, the above inequalities remain valid
with the same ¢ since f, is decreasing. Thus we may take ¢/ = £/2 for example. Moreover, since
Gkt = gr;—(x) for all (z,k) € [0,4] x (0,7) and gg.— = gk, +(x) for all (x,k) € [0,4] x (7, 27),
we have proven that for all (k,*,0) € T x {—,+} x {—, +},

(4.19) inf {gr.«(21) + gro(22) : (x1,22) € R} = E + ¢/2.

This proves (4.13) for E € Ly, withZ = (E —¢/2, E+¢/2) and ke T.

Now we proceed to extend the results for d > 3. Recall the properties of the function
g+ listed in Tables 2 and 4. In particular, gy.—(x) > 0 for all (z,k) € [0, A\_(k)] x (0, )
where A_(k) = 2 — 2cos(k), and gg.4(x) = 0 for all (x,k) € [0, (k)] x (7,27) where
Ai(k) = 2 —2cos(k). We take advantage of the fact that E(k) < A_(k) for all k € (0, )
and E(k) < M\i(k) for all k € (m,27). Again, let E € Lj, and choose ¢ > 0 such that
Z:=(E—-¢/2,FE+¢/2) ¢ L. Let (k,*) € (0,m) x {—=} u (m,27) x {+}. Applying the
two-dimensional result we obtain

d
inf { ) gr(wiy) : (@)l € B, ()i € 0.1}

1nf{2gk*acl :L“HleR}

> inf {gk;*( )+ gex(A—z) : AeZ,x e [0,\]}
> FE +¢/2.

As this implies (4.13) for E € Ly, the proof is now complete. O
The method employed is optimal in the following sense: let d = 2, ¢ # 0 and k € (0, 27)\{7}.
Then for all E € (0,8)\u(H) = [E(k),8 — E(k)] and for all # € CF(R) with supp(d) s E,
O(A)ByO(A) is not compact. Indeed, it is not hard to see that if & = (&1,...,&) € [, 7]¢
solves
d d d d
(4.20) 2(2 2cos(&)) Z (2—2cos(&+k)) or 2(2*2COS(&)) = 2(272005(&716)),
i=1 i=1 i=1 i=1
then 6(A)Bw6(A) is not compact for all  with supp(f) 3 E = > (2 — 2cos(&;)). We note
that (4.20) is precisely the same as (4.16) and (4.17) when d = 2. By using the method of
Lagrange multipliers for example, a slightly better value for E(k) can be found when d > 3 (a
value increasing with d). The method consists in extremizing £ = >, (2 — 2cos(§;)) with the
constraints given in (4.20). We move on to derive the classic Mourre estimate (2.4) for the full
Schrodinger operator H'. We really only have to show that Ez(H') By Ez(H') is compact.
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Proposition 4.6. Let k = (ki,..., kq) € ([0,2x]\{7})? be given parameters, and let
(4.21)
2 —2cos(ki/2), ki€ (0,2m/3]
E'(k) :=min{l(k;) : 1 <i<d}, where £(k;):=<{ 24 2cos(k;), k;e (2r/3,7) U (,4m/3]
2+ 2cos(ki/2), ki€ (4m/3,2m).
Denote p(H') := (0, E'(k)) u (4d — E'(k),4d). Then for every E € u(H') there exists € =
e(E) > 0 such that for all 0 € CF(R) supported on T := (E —¢,E+¢), 0(A)By0(A) =0. In
particular, for every E € u(H'), the classical Mourre estimate (2.4) holds for H' on T', where
I'c 1.

Proof. Asmentioned in Remark 4.1, we show the result for E € (0, E'(k)) and apply symmetry
to get the result at the other end of the spectrum. We use the results from the one-dimensional
case and follow the notation of Lemma 3.4. For now we denote by A the 1d Laplacian. The
idea is the following : given A € o(A) = [0, 4], we want to find an interval Z satisfying:

(4.22) {I is of the form Z = [0,\) or Z = (A, 4], and

Ings(Z,y) = for ye{0,1}.

Here gp(z,y) is the function defined in (3.10). The motivation for wanting Z of this form
will be clear later in the proof. We examine the inequalities (3.16), (3.17), (3.18) and (3.19).
Fix k € (0,7). (3.16) gives us (4.22) for A € [0, E_(k)) and y = 0, whereas (3.18) gives us
(4.22) for A € [0, A (k)) and y = 1, however with the condition that A\ < gj.;(0). We there-
fore let ¢'(k) := min(E_(k), A+ (k), gk:+(0)) = min(2 — 2cos (k/2),2 + 2cos(k),2 — 2 cos(k)),
and it is readily checked that ¢(k) = ¢ (k). Similarly, for k£ € (m, 2m), we find 4(k) =
min(A_(k), E4(k), gi;—(0)) = min(2+ 2 cos(k),2+2cos(k/2),2—2cos(k)). All intervals of the
form Z = [0, \) with A < ¢(k) will satisfy (4.22).

Now we show how this can be of use for the two-dimensional case, although one can
generalize for d > 2. Let k = (ki,k2) be the Wigner-von Neumann paramters and let
E'(k) := min(¢(k1),4(k2)). Let E € Ly := [0,F'(k)) be given. Choose ¢ > 0 such that
Z:= (F—-—¢eF+¢) c L. If E =0 was chosen, take Z := [0,e) < L. Now let
7y =TIy := [0, E + €). Notice that
(423) {(1’1,1‘2) T+ x9 € I} N (O’(Al) X O’(Ag)) c 1) x I,
so that as functions on (z1,22) € 0(A1) x 0(A2), xz(x1 + x2) = xz(21 + T2) X7, (1) X7, (T2).
Thus as operators on £2(Z) ® (*(Z), BEz(A) = Ez(A) - Bz, (A1) ® Bz, (A2). By (4.22),

EL. (Az)WllEIZ (Al) =0 fori = 1, 2.
Recall that By is given by (4.5). For i = 1,2,

Ez,(A) By Bz, (Ai) = Br, (M)W Bz, (A:)(SF = Si) — (SF — Si) Bz, (A) W' Exz,(Ai) = 0.
Therefore
Ez(A) - By @ W3 - Ex(A)
= E1(A) - Br, (A1) ® Ez,(A2) - Byyy @ Wy - B, (A1) ® Ez,(A2) - Bz(A)
= Ez(A) - Bz, (A1) By Bz, (A1) ® Bz, (A2)W3 Bz, (A2) - EZ(A)
=0.
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Similarly, Ez(A) - Wi ® By, - Bz(A) = 0. Thus E7(A)ByEz(A) = 0, and the proof is
complete. 0

5. WEIGHTED MOURRE THEORY : PROOF OF THEOREM 1.1

In this section we prove the main result Theorem 1.1. For s € R, let {N)® be the operator
on £o(Z%) defined by ((N)*u)(n) = (n)*u(n). The following Lemma says that the conjugate
operator A is comparable to the position operator N:

Lemma 5.1. For all € € [0,1], both (AY*{N)~¢ and (N) ¢(A)* are bounded operators.

Proof. We use the notation || f| < |g| if there is ¢ > 0 such that | f| < c|g|. Let u e ®L ,4o(Z),
which is dense in ®?_,¢%(Z). We have:

AR = [l + [ Aul? < [l + (5l + | Noul)? S [l + X, (Jul®+ INowlP) € KVl
The first inequality follows from (1.9), and the second inequality holds by equivalence of the
norms on ¢1(G) and £?(G) for finite dimensional Hilbert spaces G. By complex interpolation,
[(AYu| < [[{N)*ul. Hence, for a dense set of u' € ®?_,%(Z), we have |[(AY(NY~eu/|| < ||v/].
This shows that (A)*(IN)™¢ extends to a bounded operator, and taking adjoints yields the
result. O

In our proof of the projected weighted Mourre estimate (2.6), the following Lemma is crucial.
At this point we will be using the full strength of hypothesis (1.7) on V, namely (N)?|V| < C.

Lemma 5.2. Let 0 € CP(R), and p be as in (1.7). Then for all € € [0, min(p, 1)), the following
operators are compact :

(5.1) (6(H) — 6(A)(AF  and (8(H') — 6(A))(AY".

Proof. First, by Proposition 6.6, A € C1({A)?) since f(x) = (x)° € 8¢, thus [A,(A)], exists
as a bounded operator. By the Helffer-Sjostrand formula and the resolvent identity,

00

(O(H) — B(A))(AY = i S )W £ V) - A) A A 3
_ % . gi(z — H)Y MW + VA (2 — A)Vdz A dz
= ) 2‘% — H)NW + V)2 — A) (A udz A d3
_ i ) Zi(z — H)THW + VNSNS S(AY (2 — A) Nz A dz
+ % ) Zf(Z CH)TYW A V) (2 — A) A LAY (2 — A)Ndz A d.

By (1.2), W and W({IN)® are compact, and so are V and V(NN)® by assumption (1.7). By
Lemma 5.1, (N)7¢(A)® is bounded, and so the integrands of the last two integrals are compact
operators. With the support of 6 compact, the integrals are converging in norm, and so the
compactness of (Q(H) — 0(A))(A)" is preserved in the limit. As for the Schrodinger operator
H' the same proof works, but the additional point that has to be verified is that W/{IN)* is
compact. Indeed, since

d 2 d d
<H qi sin(kmi)nil> (n)* < (H ¢ sin2(kmi)ni2> (1 + Z n?) (n)?ED < o)),
i=1 i=1 i=1
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it follows that W’(n){(n)® — 0 as |n| — o0. O
Because we are aiming at a projected Mourre estimate, we need some information on possible
eigenvalues embedded in the interval on which the LAP takes place. Recall that P denotes
the orthogonal projection onto the pure point spectral subspace of H (resp. H'), and pu(H)
and pu(H') are points where the classical Mourre estimate hold for H and H' respectively.

Lemma 5.3. Let E € u(H) and suppose that ker(H — E) € D(A). Then there is an interval
T c u(H) containing E such that PEz(H) and Prn(H) are of class C*(A) for all n € C*(R)
with supp(n) = Z. The corresponding statement also holds for H'.

Proof. Since the Mourre estimate holds at F, the point spectrum is finite in a neighborhood Z
of E. Therefore PE7(H) is a finite rank operator. Further shrinking Z around F if necessary,
we have that ker(H — \) € D(A) for all A € Z. We may therefore apply Lemma 2.3 to get
PEz(H) e C'(A). In addition, Ptn(H) = n(H) — PEz(H)n(H) € C'(A). O

We are now ready to prove the projected weighted Mourre estimate (2.6). The proof makes
use of almost analytic extensions of C*(R) bounded functions. The reader is invited to consult
the appendix for some notation and useful results about these functions. We also mention that
the proof is essentially the same as that of [GJ2]|[Theorem 4.15], but we display it in detail for
the reader’s convenience.

Theorem 5.4. Let E € u(H) be such that ker(H — E) < D(A). Then there exists an open
interval T 5 E such that the projected weighted Mourre estimate (2.6) holds on I for all
s > 1/2. Thus, for all compact T' with ' = I, the LAP for H holds with respect to (I', s, A).
The corresponding result holds for H'.

Proof. First choose Z 5 E so that for all A € Z, ker(H — \) € D(A). This is of course possible
as explained in Lemma 5.3. Let ,n,x € CX(u(H)) be bump functions such that nf = 6,
xn = n and supp(x) < Z. Later we will shrink Z appropriately. Let s € (1/2,2/3) be given.
Define

(5.2) ¢p:R-R, () := J_ (x)"*dx.

Note that ¢ € S (see (6.1) for the definition of S°). For R > 1, consider the bounded operator
F := PYO(H)[H,ip(A/R)].0(H) P+

= % )po(H) (= — A/R)[HIA/R].(= — A/R)O(H)P*dz A dz.

o Jo 07
By Lemma 5.3, P1y(H) e C*(A), so
(5.3) [Pn(H), (z = A/R)™']o = (2 = A/R)"[Py(H), A/R]o(z — A/R) .
Next to PLO(H) we introduce PLn(H) and commute it with (z — A/R)™":
F-o | ()P OUH) (= — A/RY P () + [PRn(H), (= — A/R) ™)) [H,1A/R],
(n(H)P*(z — A/R)™ + [(z — A/R)™", PIn(H)).) 0(H)P*dz A dz
_ i . %(Z)PJ‘Q(H)(Z — A/R)"'PLy(H)[H,iA/R],

n(H)PY(z— A/R)VO(H)PYdz ndz+ 1, + L + I3
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where I1, I, I3 are the 3 other integrals one obtains when expanding. For example

I = 217r 690 )PJ-Q( )(Z—A/R)*I[PLTZ(H)’A/R]O(Z_A/R)—l[H’iA/R]O

n(H)PY(z — A/R)"'0(H)Ptdz A dz
= Pro(H )<R R2<R>

for some bounded operator B whose norm is uniformly bounded with respect to R, as shown
in Lemma 6.5 with p = 0 and n = 3. The same holds for I and I3, so for i = 1,2, 3,

A\-3 B; J A\ s
o pl - v/ L
=P 0(H)<R> R2<R> 6(H)P-.
Next to either n(H) we insert x(H), and we let G := n(H)[H,1A/R]on(H). We have:
i

af( VPLO(H)(z — A/R) ' Py (H)Gx(H)P*(z — A/R)"'0(H)Ptdz A dz

2T

w oy (B () ot

We decompose G as follows

G=R" (nm)m, iAJn(A) + (AW ALn(A) + g(A)V:iA]n(A)

+ (n(H) = n(A)[H,iAlon(A) +n(H)[H,iA]o(n(H) — n(A))>-

We put into action our previous results. Shrink the support of 1 if necessary to ensure that
n(A)Bwn(A) is compact (or zero) according to Lemma 3.4 and Propositions 4.5 and 4.6. Thus
G = R '(n(A)[A,iA]on(A) + Ko) where Ko := n(A)Kwn(A) + n(A)Bwn(A) +

+ n(A)[V,iA]on(A) + (n(H) — n(A))[H,iAlon(A) + n(H)[H, iAo (n(H) — n(A)).
We claim that

i

,7 op A\ “1pl 1/AN® -1
(G Ki=go | g(z)<§> (2 — A/R)" Py (H) Kox(H)P <§> (2 — A/R)"Ydz A dz,
converges in norm to a compact operator for s sufficiently close to 1/2. Although K is clearly
compact, convergence in norm requires careful justification. Define
K = (AP X (H)n(A) Kwn(A),
12 1= <A>€PLX(H)77(A)BW77(A)7
13 1= (AP X(H)n(A)[V,iAlon(A),
Ky := (AP (H)(n(H) — n(A))[H, 1A]an(A),
Kis :=n(H)[H,iAlo(n(H) — n(A)x(H)PH{A).

Let & € [0, min(p, 1)). Since Py (H)n(A) € C*(A) and f(x) = (x)* € 8, [(A)*, PLx(H)n(A)],
exists by Proposition 6.6. Moreover, (N )® Ky is compact and (A)*(N)~¢ is bounded. Thus
Ko = Py (H)n(A) A (NY (N Kn(A) + (A, Py (H)n(A) ] Kwn(A)

is compact. We turn to K. Commuting (A)* with Pty (H) gives
Kig = P x(H){AN) (N (D) Bwn(A) + [(A)F, Prx(H)]on(A)Bwn(A).
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Applying the mean value theorem shows that (N)°[S;, Uil and (N)°[S7,U;]o are compact
Vi,7=1,...,d. Since

n(A)Bwn(A) = Y [0(A), UiJeW (SF = Si)n(A) = n(A) (S = S)W[Us,n(A)].,
i

we see that (N )*n(A)Bwn(A), and hence K9 is compact. As for K3, we use the full strength
of hypothesis (1.8) on V' to guarantee compactness of (N)*[V,iA],. Commuting (A)* with
PLx(H)n(A) as before shows that K3 is compact. By Lemma 5.2, (n(H)—n(A)){A)* and its
adjoint (A)(n(H) —n(A)) are compact. Recall that this Lemma uses the full strength of hy-
pothesis (1.7) on V. Commuting (A)® with P+x(H) and using the fact that [Py (H),{A)],
exists shows that K4 and K5 are compact. Finally, (A/R)*(A)~¢ and (A)"(A/R)* are
uniformly bounded operators w.r.t. R. Thus invoking (6.5) for £ = 2 and (6.11) we see
that K is a norm converging integral of compact operators provided s additionally satisfies
s < 1/2 + €/2. This proves the claim. Another important point to take into consideration is
that |K| is bounded above by

(5.5)

Cr (| Knx(H) P + [Kiox(H) P + [ Kisx(H) P + | Kiax (H) P + | PTx(H) K15
for some finite C; > 0 independent of R. Hence | K| vanishes as the support of x gets tighter
around E. Let

M := PEx(H)n(A)[A, iA]on(A)x(H) P+
So far we have
i1 (
T 2TR 57

) (P ) ()

Next we commute (z — A/R)~! with M:

YPLO(H) (2 — A/R)*M(z — A/R)"'0(H)Ptdz A dz

2171’;2 Zi( )PLO(H)(» — A/R)2MO(H)P*dz A dz
- i% Zf( )PHO(H)(z — A/R)™'[M, (2 — A/R)"'].0(H)P*dz A dz

) (B ) )

We apply (6.9) to the first integral (which converges in norm), while for the second integral
we use the fact that M e C'(A) to conclude that there exists a uniformly bounded operator
By, such that

F =R 'Po(H), (A/R)YMO(H)P

L ploH <R>—S <BI+B2;‘233+B4+I;1><R>_S )P

Now ¢'(A/R) = (A/R)~2*. As a result of the Helffer-Sjostrand formula, (6.5) and (6.11),
[{A/R)™, M].CA/R)* = R™'Bs
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for some uniformly bounded operator Bs. Thus commuting (A/R)™* and M gives
F=R'ProH < y M< )
R R

+PL0(H)<E> <B1+B2+§3+B4+B5 1><R>s

> CR™'PLo(H < > Py )X(H)PL<—>_ o(H)P*
n A —s B1+BQ+B3—|—B4+B5 *3
P 0<H)<R> ( R? <R>
where C' > 0 comes from applying the Mourre estimate. Let
(5.6) Ky := PHx(H)(*(A) = 1°(H))x(H) P~

Note that Ky is compact with ||K3| vanishing as the support of x gets tighter around E. Thus
AN~ AN~
F> C’R_lPLQ(H)<—> SPLX(H)nQ(H)X(H)Pi<R> "0(H) Pt

~s (Bi+By+ By + Bi+Bs Ky +Ky\ / A\~
1 1+ B2+ B3+ By + Bs 1+ K\ /A 1
+ProH <R> ( R? TR ><R> bH)P

Finally, we commute Py (H)n?(H)x(H)P+ = Ptn?(H)P+ with (A/R)~*%, and see that
[P0*(H) P, (A/R)"*].(A/R)* = R~ By

for some uniformly bounded operator Bg. Thus we have

F>CR'PLoH <é>_2sf)(H)PL

PlogH <R> (B1+BQ+Bg+B4+B5+Bﬁ+K1+K2><z>SG(H)PL-

R? R
To conclude, we shrink the support of x to ensure that |K; + K| < C/3 and choose R > 1
so that | 30, Bi||/R < C/3. Then K; + Ky > —C/3 and zg‘ | Bi/R = —C/3, so
C o1
5.7 F>_—P-0(H 0(H)P
(5.7) 3R <R> (

Let Z' be any open interval with 7/ < Z. Applying Ez/(H) on both sides of this inequality
yields the projected weighted Mourre estimate (2.6), with ¢ = C/(3R), K = 0, and s €
(1/2,min(2/3,1/2 + p/2)). As a result of Theorem 2.4, the proof is complete. O

6. APPENDIX : REVIEW OF ALMOST ANALYTIC EXTENSTIONS

We refer to [D], [DG], [GJ1], [GJ2], [HS] and [Mo] for more details. We collect basic and
essential results that are spread out in the mentioned literature. Let p € R and denote by
SP(R) the class of functions ¢ in C*(R) such that

(6.1) lo®) (z)| < Crlay?™*,  for all k = 0.

For p < 0, §” consists of the slowly decreasing functions at infinity, and contains every rational
function whose denominator doesn’t vanish on R and is of degree higher than its numerator.
On the other hand, for p > 0, §” also allows for slowly increasing functions at infinity.

49



Lemma 6.1. [D] and [DG| Let ¢ € S, pe R. Then for every N € Z™ there exists a smooth
function pn : C — C, called an almost analytic extension of ¢, satisfying:

(6.2) on(r +10) = ¢(z) Yz e R;

(6.3) supp (Pn) = {z + 1y« [y| < @)k

(6.4) on(z +1y) = 0 Yy € R whenever ¢(x) = 0;

(6.5) VleNn[0,N], 52;4(;10 +iy)| < el 1 y|* for some constants ¢, > 0.

Proof. Let 6 € C(R) be a bump function such that §(z) = 1 for z € [—1/2,1/2] and 0(z) =
for x € R\[-1, 1], and consider

N .
o) e S o™ () 39 (Y
(6:6) oate+in) = 30 0@ 0 ().

The Wirtinger derivative is easily calculated:

o= SO (2)(-5) - ()

=0

Therefore,

5s0N I@(”)(xllyln Lo vy Y
‘ Z ) X{(@ e} @) + Sl @I Xy} @

It follows that:

0P .
(@)l Y (4 4 iy)

e <x>€n<<z>>“+ i C<:c>f " gyt 4 LON

> | |
0z = n! 2 et 2 N!
l N
- Z Cn 1 + Z & ECNH —
T 4l ot n 2 NI ¢
n=0 n=~¢+1

Moreover, for ¢ € CP(R), we have the following key formula (cf. [DG]):

o(t) = - aSD,N (2)(z—t)"Ydz A dz, YNeZT.
21 C 62

By a limiting argument, this formula holds pointwise when ¢ € §?,p < 0. Now let A be a
self-adjoint operator acting on a Hilbert space H. In terms of operators, we have

(6.7) o(A) = i ) a;a; (2)(2 — A)Ydz A dz.

Thus, in the case where ¢ € §”,p < 0, the point of the analytic extension is that it allows
for an explicit expression of the operator p(A) whose existence is known from the spectral
theorem. This formula can be extended for p > 0 as follows:
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Lemma 6.2. |GJ1| Let p = 0 and ¢ € SP. Let p(A) with domain D(p(A)) > D((A)P) be the
operator whose existence is assured by the spectral theorem. Then for f € D({A)P),

R B -
(6.9) PA)f = Jim o | STEN () — )z .
where Or(x) := 6(x/R) and 0 is like in Lemma 6.1.
Proof.
L[ AN (o - 4 i 2 = () (A)F = (e 0R) ANAYS
o = (PVR = (YpVR )
where @, (t) = <p( )<t> ? is a bounded function. Thus (¢,0r)(A) is converging strongly to
p(A)(A)™P, and this shows (6.8). O

Notice that when p < 0, the r.h.s. of (6.8) is equal to the r.h.s of (6.7) applied to f by the
dominated convergence theorem.

Lemma 6.3. Let p <0 and ¢ € §”. Then for all k e N and N € N:

(6.9) oM (A4) = (QW) ) &;,’QN( )z — AV Fdy A dz

where the integral exists in the morm topology. For p = 0, the following limit exists:

610) oM (A)f = Jim 0 J AORIN (). 4y 1k e n dz. for all f € DAY,
C

R—w 2T 0z

In particular, if ¢ € S” with 0 < p < k and ¢*) is a bounded function, then ¥ (A) is a
bounded operator and (6.9) holds (with the integral converging in norm,).

Proof. First we show (6.9). Assume for now that ¢ € C°(R). By definition,

i o) -
SO(k) (A) = o L 8062 N (2)(z— A)7ldz A dz.

Now consider 4,0(’“) ~ and the k'™ partial derivative of ¢y in & respectively given by

(k) (k) 9 ( Y > d
() :v +iy) ) an
Z ()

NGyt & R -
n= j=

Notice that |g0(k)N(:c +iy) — 08Py (x +iy)| is identically zero in a small strip around the x-axis,
and so by [D, Lemma 2.2.3], we have that

i ) i [ ook
(k) 1 890 N —A ld dz = 1 J;QON _A —ld dz
()= 5= | G- n e = o | T ) — Ay s
The result follows by performing k partial integrations w.r.t. z. The formula extends to ¢ € S*

by density of C°(R) in S” for p < 0. As for (6.10), let ¢,(t) := (t)7". We have, using (6.9),

' _ k
o |, AORIN (2) (- A1 fdznd = (pb) (Zcﬂ?( eRW)) (A)AP ],
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Here ¢; := K!(j!(k — 7))~ L. First note that (0z)V)(z) = R770Y)(z/R). Moreover, o*=7)¢,
are bounded functions for 0 < j < k, so (¥ ¢,)(A) are bounded operators and
(¢ ’H)%)(A) = %lim(@(k*j)%)(flw(j) (A/R).
—00
Thus

s hm <Z cjgp ¢p(0R) ﬁ) (A)=0

and this implies (6.10). Finally, if 0 < p < k and ©®) is a bounded function, then we use
(6.5) with ¢ = k + 1 and apply the dominated convergence theorem to pass the limit inside
the integral. O

Lemma 6.4. [GJ2| Let s € [0,1] and D := {(x,y) € R? : 0 < |y| < {(x)}. Then there exists
¢ > 0 independent of A such that for all z =x +iye D :

(6.11) KA (A =27 < e day” -yl
Lemma 6.5. Let ¢ € SP, and let By, ..., By, be bounded operators. Then for s € [0, 1] satisfying
s<1—=(14p)/n, and any N = n, the following integral

(6.12) o7 e H<A> T'B; dz A dz

converges in norm to a bounded operator. In particular, for p =0 and n = 3, (6.12) converges
to a bounded operator for s € [0,2/3).

Proof. Combine (6.11) and (6.5) for £ = n. O
We end this section with two very useful formulas.

Proposition 6.6. [GJ1| Let T be a bounded self-adjoint operator satisfying T € C(A). Then:

(6.13) [T, (2 = Ao = (= — AT, ALz — A,
and for any ¢ € S” with p < 1, T € C*(¢(A)) and
(6.14) (7oA = —— [ 22 (5 = A)Y[T, Al (2 — A)dz A dz.
2 C 02
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SUB-EXPONENTIAL DECAY OF EIGENFUNCTIONS FOR SOME
DISCRETE SCHRODINGER OPERATORS

MANDICH, MARC-ADRIEN

ABSTRACT. Following the method of Froese and Herbst, we show for a class of potentials
V' that an eigenfunction ¢ with eigenvalue E of the multi-dimensional discrete Schrédinger
operator H = A+V on Z¢ decays sub-exponentially whenever the Mourre estimate holds at
FE. In the one-dimensional case we further show that this eigenfunction decays exponentially
with a rate at least of cosh™ (£ —2)/(0r —2)), where 0 is the nearest threshold of H located
between E and 2. A consequence of the latter result is the absence of eigenvalues between 2
and the nearest thresholds above and below this value. The method of Combes-Thomas is
also reviewed for the discrete Schrédinger operators.

1. INTRODUCTION

The analysis of the decay rate of eigenfunctions of Schrédinger operators goes back to
the famous works of Slaggie and Wichmann [SW]|, Agmon [Al], and Combes and Thomas
[CT]. Their results showed that eigenfunctions corresponding to eigenvalues located outside
the essential spectrum decay exponentially. Subsequently, Froese and Herbst [FH], but also
[FHHO1] and [FHHO2], investigated the decay of eigenfunctions corresponding to eigenvalues
located in the essential spectrum of Schrodinger operators. They showed that eigenfunctions
of the continuous Schrodinger operator on R™ decay exponentially at non-threshold energies
for a large class of potentials. Since their pioneering work a solid literature has grown using
these ideas. For example, these ideas have been applied to Schrodinger operators on manifolds
[V], Schrodinger operators in PDE’s [HS], and self-adjoint operators in Mourre theory [FMS].
This short list is by no means complete. The question however does not seem to have been
investigated for the discrete Schrédinger operator on the lattice and constitutes the subject of
this paper. For completeness and convenience, this paper will also review the Combes-Thomas
method for the discrete Schrodinger operators. A nice historical review on the exponential
decay of eigenfunctions is done by Hislop in [Hi].

We now describe the mathematical setup of the article. The configuration space is the multi-
dimensional lattice Z¢ for some integer d > 1. For a multi-index n = (n1,...,nq) € 7%, we set
In|? := n? + ... + n2. Consider the complex Hilbert space H := (*(Z%) of square summable
sequences (u(n)),cz¢. The discrete Schrédinger operator acting on H is

(1.1) H:=A+YV,
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Key words and phrases. discrete Schrodinger operator, decay eigenfunction, embedded eigenvalue, absence
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where A is the non-negative discrete Laplacian defined by

(Au)(n) := Z (u(n) —u(m)), forallne Z% ueH,
meZ4,
[n—m|=1
and V is a multiplication operator by a bounded real-valued sequence (V(n)),cza. It is
common knowledge that the spectrum of A, denoted o(A), is purely absolutely continuous
and equals [0, 4d]. Define for (a, ) € [0,00) x [0, 1] the operator of multiplication on #H by

(1.2) Doy i= €Xp (a (1+ |n|2)w2> ,  with domain

D(Way) = uecH: Z exp <2a (1+ |n\2)7/2) lu(n)|? < 400
nezd
In this manuscript, we will say that ) € H decays sub-exponentially (resp. exponentially) if
1 € D(Vq,) for some v < 1 (resp. for v = 1) and some o > 0. Write ¥, := U4,1. We begin
with a well-known fact and formulate a version of the main result of Combes and Thomas in
the context of multi-dimensional discrete Schrodinger operators:

Theorem 1.1. Let (V(n)),cza be a bounded sequence. Suppose that Hy = Ev, with ¢ € H
and B € R\ 0(A) = (—00,0) U (4d, +00). If imsup, | o [V(n)| < dist(c(A), E), then there
exists v > 0 depending on dist(c(A), E) such that for all o € [0,v), 1) € D(Jy).

Remark 1.1. We recall that in the discrete setting, a multiplication operator V is compact
if and only if im0 V(n) = 0. If V is compact, then 0 = Hmsup,_, o |V(n)| <
dist(o(A), E) is automatically verified and also oess(H) = 0ess(A) = o(A) by Weyl’s Theorem.
So in this case, Theorem 1.1 is indeed proving the exponential decay of the eigenfunction
when the eigenvalue E is located outside the essential spectrum of H.

The advantage of the perturbative method of Combes-Thomas is that it yields exponential
decay of eigenfunctions with a convenient and explicit geometric bound under rather general
assumptions for the potential. Another big plus is that it is easy to implement in many
different scenarios. The drawback however is that it does not work if the eigenvalue F belongs
to the spectrum of the free operator A. In addition to the aforementioned references, we refer
to [BCH] for an improved Combes-Thomas method with optimal exponential bounds.

The method of Froese and Herbst does not exploit a condition like dist(c(A), E) > 0, but
rather a Mourre estimate, which is a local positivity condition on the commutator between
H and some appropriate conjugate operator. The article is largely devoted to the study of
this method. Before presenting the results, we elaborate on the Mourre estimate, the key
relation in the theory developed by Mourre [Mo|. We refer to [ABG| and references therein
for a thorough overview of the improved theory. The position operator N = (Ny,..., Ng) is
defined by

(1.3) (Njw)(n) := nju(n), D(N;) = ue >z : Z Inu(n)|? < +oo 3,
nezd

and the shift operators S; and S} to the right and to left respectively act on H by
(1.4) (S;u)(n) == u(ny,....,n; — 1,...,ng), forallncZ%and u € H,
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and correspondingly for S;. We note that the Laplacian may alternatively be written as
A= 2?21(2 — S —S5;). The conjugate operator to H that is used in this manuscript is the
discrete version of the so-called generator of dilations. We denote it by A and it is the closure
of the operator Ay given by
d

(1.5) = 12 27 (87 + 8i) — (57 — S))Ni = =i )27 1(Sf + 8i) + Ni(Sf — i)

i=1
with domain D(Ap) = EO(Zd), the collection of sequences with compact support. It is well-
known that A is a self-adjoint operator, see e.g. [GGo|. Let T be an arbitrary bounded
self-adjoint operator on H. If the form

(u,v) — (u, [T, AJv) := (T'u, Av) — (Au, Tv)

defined on D(A) x D(A) extends to a bounded form on H x H, we denote by [T, A], the
bounded operator extending the form, and say that T is of class C'(A), cf. [ABG]|Lemma
6.2.9]. We refer the reader to [ABG]|[Theorem 6.2.10] for equivalent definitions of this class.
We have that

d

d
(1.6) [AiAl =D A4 —A) =D (2 (5))% — (S)%)
i=1

i=1
and this is a non-negative operator. We must also discuss the commutator between the po-
tential V' and A. To this end, denote by 7;V and 7,V the operators of multiplication by the
shifted sequence (V' (n)),cza to the right and left respectively on the i'" coordinate, namely
(T V)u)(n) :== V(ng,....n; — 1, ...,ng)u(n), VYneZ%ueH,andi=1,..,d,

and correspondingly for 7°V. The commutator between V' and A is given by

(1.7)

(w, [V,id]o) = > (u, (271 = Ni)(V = 7V)Si+ (27 + N)(V = 77 V)Sf o), Vu, 0 € £o(Z9).

Assuming V' to be bounded, note that [V,iA], exists if and only if Hypothesis 1 stated below
holds. Assuming [H,i1A], to exist, we say that the Mourre estimate holds at A € R if there
exists an open interval 3 containing A, a constant ¢ > 0 and a compact operator K such that

(1.8) Bx(H)[H,iAlEs.(H) > cEx(H) + K,

in the form sense on H x H. Here Ex(H) is the spectral projector of H onto the interval
Y. Denote O(H) the set of points where a Mourre estimate (1.8) holds for H with respect to
A. In other words, R\ O(H) is the set of thresholds of H. In addition to V bounded, two
hypotheses on the potential appear in this manuscript:

Hypothesis 1: The potential V satisfies

(1.9) 112232315;;1 [ni(V — V) (n)] < +o0.

Hypothesis 2: V is compact, i.e.
(1.10) V(n) — 0, as|n|— +oo.

The main result of the paper concerning the one-dimensional operator H is:
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Theorem 1.2. Assume Hypotheses 1 and 2, and d = 1. If H1p = Exp with ¢ € (*(Z), then if
Or sup{2+ (E —2)/cosha:a >0 andp € D(Vy)}, for E<2
" |inf{2+4 (E —2)/cosha:a >0 and ¢ € DW,)}, for E>2,

one has that either 0y € R\O(H) or g = 2. If E = 2, the statement is that either 1) € D(Jy)
for alla >0 or2 € R\ O(H). Moreover, if 1) € D(Vq) for all a > 0, then ¢ = 0.

Remark 1.2. The function RT 3 a +— 0g(a) := 2+ (E —2)/cosh(a) € [E,2) is increasing to
two when E < 2 so that E < g < 2, whereas the function is decreasing to two when E > 2 in
which case ¥ > 0p > 2. This function is graphed in Figure 1 for four different values of E.

(1.11)

FIGURE 1. Graph of 0g(«a) =2+ (E — 2)/ cosh(«) for four different values of E.

If E is both an eigenvalue and a threshold, Theorem 1.2 does not give any information
about the rate of decay of the corresponding eigenfunction, whereas if E is not a threshold,
the corresponding eigenfunction decays at a rate at least of cosh ™' ((E — 2)/(0g — 2)). As in
the continuous operator setting, the possibility of ¢ € D(1,) for all & > 0 can be eliminated.
The last part of Theorem 1.2 implies the absence of eigenvalues in the middle of the band
[0, 4], more precisely between 2 and the nearest thresholds above and below this value.

The study of the absence of positive eigenvalues for Schrodinger operators has a long his-
tory. For continuous Schrodinger operators, it was shown in the sixties in articles by Kato
[K2], Simon [Sil| and Agmon [A2] that the multi-dimensional operator —A + V; + V5 has no
eigenvalues in [0, +00) whenever lim|g_, ;o [2[|Vi(z)| = 0 and lim |, o [(z-V)V2(z)| = 0. In
fact, the method of Froese and Herbst allows to extend this result to N-body Hamiltonians,
see [CFKS, Theorem 4.19]. So, if the discrete case were to resemble the continuous case, it is
not unreasonable to expect the multi-dimensional operator A + V' to have no eigenvalues in
(0,4d) whenever |n;(V — 7;V)(n)| — 0 as |n| — +o00. A one-dimensional result pointing in
this direction is the following. It actually comes as a corollary of Theorem 1.2.

Theorem 1.3. Let d = 1. Suppose that V' satisfies lim|,| ;o [n||V(n) = V(n —1)] = 0 and
lim,| 100 [V(n)| = 0. Then H := A+ V has no eigenvalues in (0,4).
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Proof. First, if [n(V(n)—V(n—1))| — 0, we see from (1.7) that [V,14], is not only a bounded
operator but also compact. It follows by [GMa, Proposition 2.1] that V' € CL(A). Let B(H)
denote the bounded operators on H. We recall that a bounded operator T" belongs to the
CL(A) class if the map R s e #ATe4 is of class C1(R; B(H)), with B(H) endowed with the
norm operator topology. It is well-known that A is of class CL(A), see e.g. [Man|. We then
apply [ABG, Theorem 7.2.9] to conclude that ©(H) = O(A) = (0,4). Here ©(A) denotes the
set of points where a Mourre estimate holds for A with respect to A, and ©(A) = (0,4) is a
direct consequence of (1.6). Since H does not have any thresholds in (0,4), it must be that H
has no eigenvalues in this interval, by Theorem 1.2. O

This is very much related to Remling’s optimal result [R], that if lim, |, [n||V(n)] =
0, then the spectrum of the one-dimensional discrete operator A + V' is purely absolutely
continuous on (0,4). Of course, Remling’s result is stronger than that of Theorem 1.3, but the
assumptions are also stronger. Also related is a one-dimensional discrete version of Weidmann'’s
Theorem proven in [Si2], namely if V' is compact and of bounded variation, then the spectrum
of A +V is purely absolutely continuous on (0,4). Finally, another interesting result is that
of [JS| where it is shown that the spectrum of the half-line discrete Schrodinger operator A +
W +V is purely absolutely continuous on (0,4)\ {242 cos(k/2)}, where W (n) = gsin(kn)/n®
with ¢,k € R, 8 € (1/2,1] and (V(n)) € £}(Z). Note that Theorem 1.2 is in conformity with
their example when 8 =1 and V' = 0. In the same spirit, we provide a simple application of
Theorem 1.3:

Proposition 1.4. Let d = 1 and W (n) := gsin(k|n|*)/|n|? be a Wigner-von Neumann poten-
tial, with q,k € R. Then for B > a > 0, 0ess(A+ W) =1[0,4] and (0,4) is void of eigenvalues.

An analogous result for continuous Schrédinger operators is obtained and thoroughly dis-
cussed in [JM], and is also inspired from [FH|. We now turn to the multi-dimensional discrete
Schrédinger operators. The main result concerning these is:

Theorem 1.5. Let d > 1. Suppose that Hypothesis 1 holds for the potential V. If Hy = E1
with 1 € (*(Z%) and E € O(H), then ) € D(Yq) for all (a,7) € [0,00) x [0,2/3).

Although Theorem 1.5 does not yield exponential decay of eigenfunctions at non-threshold
energies as in the continuous operator case, the result is still useful for applications in Mourre
theory. It appears that the method of Froese and Herbst adapts quite well for the one-
dimensional discrete operator; however, there seems to be a non-trivial difference between the
dimensions d > 2 and d = 1 in the discrete setting as far as the method is concerned. The
exponential decay of eigenfunctions at non-threshold energies in higher dimensions therefore
remains an open question because our proof does not attain it. Yet an indication it may occur
comes from the Combes-Thomas method presented above.

On the one hand, if E belongs to the discrete spectrum of H, then for any interval X
containing E and located outside the essential spectrum of H, Ex(H) is simply a finite
rank eigenprojection and so the Mourre estimate holds by default, both sides of (1.8) be-
ing compact operators. So under Hypothesis 1 only, the corresponding eigenfunction decays
sub-exponentially according to Theorem 1.5. In this case, the Combes-Thomas method is
clearly superior. On the other hand, the Mourre estimate typically holds above the essen-
tial spectrum of H. So Theorem 1.5 is able to characterize the decay of eigenfunctions for
non-threshold eigenvalues embedded in the essential spectrum, if any exist. We emphasize
the last point, because to our knowledge there is no example of a Schrodinger operator with
a non-threshold embedded eigenvalue. What is certainly known however is the existence of
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operators with a threshold embedded eigenvalue, the Wigner-von Neumann operator being
the classical illustration of it, see e.g. [RS4].

Let us provide an example of a discrete Wigner-von Neumann type operator H that has
an eigenvalue embedded in its essential spectrum. An eigenvector for this eigenvalue will be
given explicitly. Here’s how Theorem 1.5 turns out to be useful: as the eigenvector will have
slow decay at infinity, we infer that the eigenvalue is a threshold, in the sense that no Mourre
estimate holds for the pair of self-adjoint operators (H, A) above any interval containing this
value. Our example and approach is inspired from the one that appears in [RS4, Section
XIII.13, Example 1].

Proposition 1.6. For given ki, ...,kq € (0,7), let (tki)f:1 be real numbers such that
tr, + sin(2k;)n; — sin(2k;n;) # 0,  for all n; € Z.

Then there exists an oscillating potential V. on Z% that has the asymptotic behavior

d . .
4 sin(k;) sin(2k;n; _
V(ng,...ng) =>» - (hi) sin(2kini) | Ok, (%)

i
e
i=1 v

and such that E := 2d — Z;jzl 2 cos(k;) is both a threshold and an eigenvalue for H := A+ 'V,

with eigenvector P(ny,....,ng) = Hle sin(k;n;)[tg, + sin(2k;)n; — sin(2k;n;)] ™1 belonging to

02(72%). Moreover, E € [0,4d] C 0ess(H).

The exact expression of the potential V' is given in the proof. By the notation Oy, ;, (n; 2,
we mean that this decaying term depends on the choice of k; and ¢j,. It is interesting to further
note that the eigenvector ¢ does not belong to the domain of A, for (N; (S} — S;)v¢) (n1, ..., nq)
does not go to zero as |n;| — 4o0o0. To further motivate Theorem 1.5, let us give another
application to discrete Wigner-von Neumann operators.

Example 1.7 (from [Man|). Let W be the discrete Wigner-von Neumann potential given by

_gsin(k(ny + ... +ng))
N Id

(Wu)(n) = W(n)u(n) : u(n), VneZ%ucH,

for some (q,k) € Rx (—m, ), and let V' be a multiplication operator satisfying for some p > 0,

sup (n)?|V(n)| < oo, and max sup (n)’In;||(V —1;V)(n)| < +o0.
nezd Isisd pezd

Here (n) := \/1+ |n]?. Let H := A+ W +V be the Schrodinger operator on H, and let P
and Pt respectively denote the spectral projectors onto the pure point subspace of H and its
complement. Let E(k) :=4 — 4 -sign(k) cos(k/2), and consider the sets

w(H) :=(0,4)\ {2 £ 2cos(k/2)}, ford=1,

w(H) := (0, E(k)) U (4d — E(k),4d), ford > 2.
By combining Theorem 1.5 with [Man, Theorem 1.1|, one can remove the abstract assumption

ker(H — E) C D(A) that appears in the latter Theorem; and for the one-dimensional result,
we can use the stronger result of Theorem 1.2. We get the following improved result:

Theorem 1.8. We have that u(H) C O(H). For all E € p(H) there is an open interval ¥
containing E such that for all s > 1/2 and all compact intervals X' C X, the reduced limiting
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absorption principle for H holds for with respect to (X', s, A), that is,

sup  [[(A) 7 (H — 2 — iy) "' PH(A) 77 < oc.
reX! y#0

In particular, the spectrum of H is purely absolutely continuous on ¥’ whenever P =0 on Y/,
and for d =1, H does not have any eigenvalues in the interval (2 —2cos(k/2),2+ 2 cos(k/2)).

From a perspective of Mourre theory and in an abstract setting, an area of research is
to show that the eigenfunction ¢ € D(A") for some n > 1. The first results of this kind
were obtained in [Ca] and [CGH]|, where it was shown that if HyY = Ev¢ with E embedded
in the continuous spectrum of H, and the iterated commutators ad”(H) are bounded for
k = 1,...,v together with appropriate domain conditions being satisfied by H and A, then
1 € D(A™) for all n > 0 satisfying n + 2 < v, whenever the Mourre estimate holds at E.
Here A is the conjugate operator to the Hamiltonian H in the abstract framework, and the
iterated commutators are defined by ady(H) := [H,iA], and ad% (H) := [ad% *(H),iA]s. So
in the simplest case, one would obtain v € D(A) provided ad®(H) exists. Then in [FMS],
the authors reduce by one, from n + 2 to n + 1 the number of commutators that need to be
bounded in order to obtain i) € D(A™), and show that the result is optimal. In counterpart
of these abstract results, we should point out that in the framework of Schrodinger operators,
minimal hypotheses yield much stronger results. Indeed, a direct consequence of Theorem 1.5
is that ¢ € D(A™) for all n > 0 assuming only [H,iA], bounded.

Finally, we point out that the notion of the C'(A) class of operators also exists for un-
bounded operators. It appears to us that the results of this paper could also apply to
Schrodinger operators with unbounded potentials satisfying the C'(A) condition. A sim-
ple criterion to check if the potential belongs to this class is given in [GMo|[Lemma A.2|. This
criterion is straightforward to verify in the setting of this paper. It is however doubtful to us
if the generalization of the result to unbounded potentials is significant.

The plan of the paper is as follows: in Section 2, we provide a proof of Theorem 1.1 for
the reader’s convenience. Section 3 is devoted to the proof of the main result for the multi-
dimensional Schrodinger operator, namely Theorem 1.5. In Section 4, we prove Proposition
1.6. In Section 5, we further develop the method of Section 3 in the case of the one-dimensional
operator, and prove Theorem 1.2. Finally Section 6 is the Appendix and contains a long tech-
nical calculation proving a key relation required for both Sections 3 and 5.
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numerous useful comments and advice, and also Thierry Jecko and Milivoje Lukic for enlight-
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2. THE METHOD OF COMBES-THOMAS: PROOF OF THEOREM 1.1

We follow the approach given in [Hi| and to a lesser extent [BCH|. We point out that the
Combes-Thomas method typically involves techniques of analytic continuation which require
some care if the operators are unbounded, see e.g. [RS4, Section XII.2]. However, since all
operators are bounded in this setting, things are simpler. Let B(H) be the bounded operators
on H, and let p = p(n) := \/1+ |n|?, n € Z¢. First we need an estimate:
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Proposition 2.1. Let V' be any bounded real-valued potential, and denote T := A +V. Then
C3 A= T(N) :=MTe M € B(H) is an analytic map. If E € R\ o(T), then for \ satisfying
2d - ePM|)| 1

2 dist(o(T). ) = 2

(2.2) (T(\) — E)7 Y| < 2/dist(o(T), E).
Proof. A first calculation gives that
T(\) := MTe ™ =T 4+ D)),
where J
D) =Y (1= A7) 554 (1 - N0 57
By the Mean Value Theoremz,_llp —7;p| and |p — 77 p| are bounded above by one. Also, ||.S;|| =

S| = 1. Thus D(A) : C+— B(H) is a differentiable function, and so A — T'()) is an analytic
family of bounded operators on C. Suppose that £ € R\ o(7"). Then

(T(\) —E)= (1+D\)(T - E) ") (T -E).
Thanks to the inequality |1 — e?| < |z|el?l, for all z € C, we get
IDI < 2d- )AL
Also note that ||(T — E)~!|| < 1/dist(o(T), E) since T is self-adjoint. Therefore if we require
that |\| satisfies (2.1), it follows that |D(A\)(T — E)~!|| < 1/2 and we may invert (T'(\) — E).
Consequently, bounding above by a geometric series gives
1T = )7 < 1T = B)HII(L+ DONT = )™~ < 2/dist(o(T), E).

]
Proof of Theorem 1.1: Suppose first that V has compact support in Z%. Then the condition
dist(c(A), E) > limsup,| 4 [V(n)| is automatically true since the right side equals zero.
Since HY = (A + V)i = Ev, we write, for A € R,

@y = — (M(A = B)TLeTV) (V) = — (AN - B) T (V).

Because of the analyticity of A(\) and the compactness of the support of V', both terms on
the right of the previous equation admit an analytic continuation to all of C. Let v be the
unique positive solution to the equation

2d - etp 1
2.3 Rt Spurs ————— L = —,
(23) R Qist(o(A), E) ~ 2
Set A = —ia, with a € (0,v). Taking norms and applying Proposition 2.1 with T'= A, we see
that there exists a constant Cg v,y depending on E, V' and 1, so that

le®* | < 2|[ll - sup |e*V (n)]/dist(o(A), E) := Cpyy-
nez

We now assume that the support of V' is not compact, but lim sup,,|_, o [V (n)| < dist(o(A), E)
holds. We may write V' = V 4V}, where V, is compactly supported and || V|| = sup,,cz¢ |Vi(n)| <
[ for some [ < dist(c(A), E). Consider the operator H; := A + V;. Since V; is a bounded op-
erator, H;(\) is an analytic family. If ¢ > 0 is any number verifying ¢ < dist(o(A), E) — [,
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then H; has a spectral gap around F of size at least e. This is due to the following spectral
inclusion formula, see e.g. [K1, Theorem 3.1J:

o(H;) C{p e R:dist (a(A), ) < [Vil}-
In particular, (H; — E) is invertible. Since
(H— B) = (14 Vi(A — B) V) (A — B)
and ||[Vi(A — E)7Y| < I/dist(c(A), E) < 1, we get
(H—E) ' =(A-BE) ' (1+Vi(aA-E))".
From the eigenvalue equation Hy = (H; + V.)1) = Ev), we may write
e = —(Hi(A) — B) (Vo).
Let v be the unique positive solution to the equation
2d - et 1
24 R —_—— =
24) S M7 Sist(o(H), E) 2
Set A = —ia, with a € (0,v). Taking norms and applying Proposition 2.1 with T' = Hj, we
see that there exists a constant Cg v, so that
llell < 2011l - sup |e*Ve(n)l/dist(o(Hi), E) = Cpvy-
nez

3. THE MULTIDIMENSIONAL CASE : SUB-EXPONENTIAL DECAY OF EIGENFUNCTIONS

We begin this section by fixing more notation, and build on the one introduced above. Let
A;:=2-8'-5; and
Agy = —1(271(SF 4+ Si) + Ni(S; — S)) =1(271(SF + i) — (57 — S)N;)
Let

d
(3.1) Aj:=1iAgs, and A=) Aj=id, with D(A') =D(A).
i=1
Then the following is a non-negative operator on H:
[As, Aflo = A4 — Ai) =2 — (57)* — (i)
A useful identity relating the shift operators and the potential is:
(3.2) S,V =(rV)S; and S;V = (7;V)S;.

Consider an increasing function F' € C3([0,00)) with bounded derivative away from the origin.
Ideally we would like to take F'(x) = ax later on, with o > 0 as in [FH]|, but it will turn out that
slightly better decay conditions on the derivative are required. So examples to keep in mind
for a later application are F o~ : [0,00) — [0,00), where (s, ,7) € [0,00) x [0,00) x [0,2/3)
and

(3.3) Fsaq(x) :=T(ax?).

Here Ty is an interpolating function defined for s > 0 by

(3.4) Ty(@) = / (st) 2.
0
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Then Y4(z) T« as s | 0, and
(3.5) To(x)<ecs for s>0, and [T (z)| < cx™™H,

where the first constant in (3.5) depends on s whereas the second one does not. It is readily
seen that there are constants C' > 0 not depending on s and v such that

(3.6) |Fl o (x) < Ca?™' and  |FY, (2)] < Ca7 72
We also have that for all > 0,
(3.7) Fio(x)>0 and FY,. (z)<0.

So Fj o~ is increasing and concave.

For n = (n1,...,nq) € Z%, let (n) := /1 + |n]2. The function F induces a radial operator
of multiplication on #, also denoted by F' and acting as follows: (Fu)(n) := F({n))u(n),
Yu € ‘H. For i =1, ...,d, we introduce the multiplication operators on H:

(3.8) = (el —ef)jef =emF —1 and ¢, = (r7el” — el el = FF 1,

(3.9) ge; = ¢e,/Ni and  gp; := r; /N;.

In other words, if U; : Z¢ + Z? denotes the flow (n1,...,nq) — (n1,...,n; — 1, ...,ng) and Ui_1
its inverse, then ¢, and ¢,, are multiplication at n respectively by ¢, (n) = eF(Um)—=F((n) 1
and ¢, (n) = FUUT ) =F((n) 1, while gy, and g,, are multiplication at n respectively by
ge;(n) = ¢y, (n)/n; and gy, (n) = ¢y, (n)/n;. Since gy, (n) and gr,(n) are not well-defined when
n; =0, set gg,(n) = gr,(n) := 0 in that case. We will need the operator g on H given by

/
F(m) o)
(n)
Three remarks are in order. First, by the Mean Value Theorem, F’ bounded away from the
origin ensures that ¢y, ¢, g¢, and g,, are bounded operators on H; secondly, F' increasing
implies sign(n;)pr,(n) = 0, sign(n;)ee,(n) < 0, gr,(n) > 0, go,(n) < 0 and g(n) > 0; and
thirdly, we remark that F, ¢y, ©r, and g are radial potentials on H.

(3.10) (gu)(n) = gln)u(n) :=

Proposition 3.1. Suppose that Hypothesis 1 holds for the potential V. Let F be a general
function as described above and suppose that for all i,5 =1,...,d,

-1 gl €0(1) and |g| € O(1),

© T2 [mg —g|N; € O(1),

A3 mier — @nINj,  Tive, — 00N, |Tier; — o INiand  |Tipr; — e | Ng € O(1),
- fa (gr; — 9) — (90, + 9)|NiN; € O(1).

Suppose that Hy = Ev, with ¢ € H. Let ¥p = e, and assume Yp € H. Then Yp €
D(\/gA’) and there exist bounded operators (Wi)ey, L, M and G on H depending on F such
that

d
(r, [H, Alovr) = =2|gAvr|* =3 [|[VAiE = A)Wir
i=1

+ 271<1/)F, (L+ M+ Q)x/)F>

(3.11)
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The W; are multiplication operators given by W; = Wg,; := \/COSh(TiF — F) — 1. The expres-
sions of L, M and G are involved; they are given by (6.9), (6.10) and (6.11) respectively. The
relevant point is that these three operators are a finite sum of terms, each one of the form

(3.12) Pr(S1, s Say STy ST P (S, oy Say ST, .o S,

where Py and Py are multivariable polynomials in Si, ..., 84,57, ..., Sy and T are multiplication
operators of the kind listed in 11 — T4.

Remark 3.1. Formula (3.11) has an additional negative term compared to the corresponding
formula for the continuous Schrodinger operator, cf. [FH, Lemma 2.2|:

(Wr, [H, Aloyr) = —4l\gAYr|? + (Yr, Qur), with Q= (z-V)’g—x-V(VF)>.

Remark 3.2. As mentioned in [FH|, if we consider the Virial Theorem disregarding operator
domains, it is reasonable to expect (1), [H,e" A'ef b)) = 0. This idea underlies (3.11).

Proof. Let ¢ € KO(Zd), the sequences with compact support, and ¢p := ef"¢. The first step
of the proof consists in establishing the following identity :

(¢, " Ae?, Alp) = (¢, [, Alor) — 2||/gA'dr||”
(3:13) = Y WA= A WisrP +2 Y er, (£ + M+ G)or).

1<i<d

The proof of (3.13) is technical and long, so it is done in the Appendix. The assumptions of
this Proposition together with F’ bounded away from the origin imply that the W;, £, M and
G stemming from this calculation are bounded operators. Exactly where these assumptions
are applied are indicated in the Appendix by (f). The second step consists in using (3.13)
to prove (3.11). For m > 1, define the cut-off potentials x,,(n) := x({n)/m) on Z%, where
X € C2°(R) and x equals one in a neighborhood of the origin. Then (3.13) holds with ¢ = x,, ¥
and ¢p = ey, Adding (xm¥, [eF A", Vixmp) = (eFxmth, [A/, V]eF xmt)) to each side
of (3.13), and introducing the constant E in the commutator on the left gives

{(Xm?, el Al H — ElXmi) = <eFXm@b, [A', H]eFquﬁ) — QH\/EA’eFXmQ/JHQ

(3.14) - > VA= AW xud |

1<i<d
+ 2*1<eFme, (L+ M+ g)eFxm¢>.

Since e\ — ¥p in H as m — oo, the first, third and fourth terms on the right side of
(3.14) converge. The left side of (3.14) is handled in the same way as in [CFKS, Proposition
4.16]:

(xmtp, [e7 A H = E]xmap) = —2R((e" A" xonth, (H = B)xm)))
= 2R(((N) ' AP\, (N)e! (H — E)ximt))).

Since supp(xm) C [~2m,2m]¢, supp((H — E)xm¥) C K := [-2m — 1,2m + 1]¢ and so
commuting x,, with (H — F) gives

<N>€F(H — E)xm¥ = <N>6F1K(H — E)xm
(3.15) = > (N)(tm = Tixm)e" S0 + (N)(xm — 7 Xm)e™ S} 4.

1<i<d
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An application of the Mean Value Theorem shows that | (') (Xm —7iXm)| and [(N) (xm—7; Xm)|
are bounded by a constant independent of m. Moreover, ¢¥r € H and I’ bounded imply that
eF'Spp = Sie™ F=Fapp and ef'Sfyp = SremiF~Fapp € H. Thus the sequence (3.15) is uniformly
bounded in absolute value in H. Furthermore, it converges pointwise to zero. By Lebesgue’s
Dominated Convergence Theorem,

(3.16) [(NYeF (H — E)Xm?¢| =0 as m — oco.

Since (N) " A’ is a bounded operator on H, the left side of (3.14) converges to zero as m — oo.
The only remaining term in (3.14) is 2||\/gA’e" xm1)||?, hence it must also converge as m — oc.
To finish the proof, it remains to show that ¢¥p € D(,/gA’). Let ¢ € £o(Z). Then

(6, AVGS)| = T [(Fxmth, A'/50)| < (T /GA'e xmtr]) 9]

This shows that ¢y € D((—A'\/9)*) = D(,/gA’). Then it must be that ||\/gA' e" xm|? —
Iv/gA’ ¥r||? and the proof is complete after rearranging the terms accordingly in (3.14). O
As mentionned in the last Proposition, £, M and G are a finite sum of terms of the form

Py(S1,..., 84,85, ST Py(S1, ..., Sa, ST, oy S3)

for some polynomials P, and P». Going forward, it is essential that the multiplication operators
T = T(n) decay radially at infinity. In other words, for the minimal assumptions 1 — {4, we
will need o(1) instead of O(1). The following Lemma shows that this is the case for F' = F 4 .

Lemma 3.2. Let F' = F, .~ be the function defined in (3.3). Consider its corresponding
functions o, ©u,, gr;» g, and g. The following estimates hold uniformly with respect to s and

v

“ 1 gl and ge] € Oa((n)72),

2 [mg =gl € Oa((n)7?),

cd3 T — el and |7 or — o] € Oa((n)7?),

1 1(r = 9) = (96 +9)| € Oal(m)™7),

-~ i5 |(F = F) = 1i(niF — F)| € Oa((n)772).
Therefore 1; improve 1; for i =1,2,3,4 respectively.
Proof.  These estimates are simple applications of the Mean Value Theorem (MVT). Let
n = (ni,..,nq) € Z% and fix i € {1,...,d}. There is n' = (n},...,n);}) with n} € (n;,n; +1) and
n’; = n; for j # i such that
n F'((n/))e" ()

/

9r; (n) = <n> nieF(<”>)

This, together with (3.6), and an analogous calculation for gy, (n) shows i;. Define g : R — R,
g(z) == F'((x)){(z)~1. Then i follows from
99 , \ _ i F'({z)){x) — F'({z))

() = 2 .
O (z) (z)
Now fix 4, j € {1,...,d}. First there is n’ = (n},...,ny) with n; € (nj,n; + 1) and nj, = ny, for
k # j such that

_oF

(7 F = F)(w) = () = 2P (o), with F(@) = Fi((a)).




Then there is n” = (nf,...,n))) with n € (n,n; + 1) and n], = nj, for k # i such that
aQF " 8Tﬁ.(”")
(7, = 00 ) = g )P,

This proves I3 since
O°F [F"((x))]
< =\
dzi0z, D S

+[F"((z))]-

The latter estimate on 02F/ (Ox;0x;) also implies I5. Finally, for {4, we start with

S T I N (2 L pp| -1 0k
(1) = 9(0) = s | T F (X0 — e P (e | = s 2 )
where )

(x)
and n” = (nf,...,ny) with n} € (n;,n}) and n}j = n; for j # i. We compute
Ok _ (F'(@) «iF (@) | afF"((z)) | «{(F'(()*Y r(ay
7= (T g )

Thus for some " = (nY’, ...,ny’) with nj” € (n; — 1,n; + 1) and nJ’ = n; for j # i, we have

2
(90, () — 90) — (g1, (m) + () = — 05 5 E ")

x

A calculation of 02k/dx? yields the required estimate. O
We are now ready to prove the main result concerning the multi-dimensional operator H:

Proof of Theorem 1.5.  Let vp, . = eer¢ and let Wy =g, . /|vp,.. | We suppose
that for some (o,7) € [0,00) x [0,2/3), ¥ & D(Va,,) and derive a contradiction. Of course,
YF,,., € H for all s > 0, but by the Monotone Convergence Theorem, |9, .| — +oc as
51 0. Thus, for any bounded set B C 79,

(3.17) lim ) [, (n)[* = 0.

0
s neB

In particular, Wy converges weakly to zero. As « and + are fixed, we shall write Fy instead
of Fy o~ for simplicity. Introduce the operator Hp, := efsHe=¥s. Then H r, is a bounded
operator and Hp Vs = EV,. We claim that

(3.18) lim [|(H — E)¥|| = 0.
sl0
To see this, write Hp, as follows:

Hp, = H + Z Si(1 — e FsmFsy 4 gF(1 — eribs—Fy),

1<i<d
To show (3.18), it is therefore enough to show that
(3.19) Hm [|(1 — e B F) T || = Tim || (1 — e F) 0, || = 0.
s]0 sJ0
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Let B(N) = {n € 7% : (n) < N}, and B(N)° the complement set. For all ¢ > 0, there is
N > 0 such that

sup 1= e@FFIM| = gqup |1 = eorn) T L@l
neB(N)® n€B(N)®
s>0 s>0

(here n' = (n},...,ny) with nj € (ni,n; + 1) and nj; = n; for j # i). Combining this with
(3.17) proves the first limit in (3.19), and the second one is shown in the same way. Thus the
claim is proven. Because F € ©(H), there exists an interval ¥ := (E — §, E + 0) with 6 > 0,
n > 0 and a compact K such that

(3.20) Ex(H)[H,A'|.Ex(H) > nEx(H) + K.
By functional calculus,

(3.21) lm || By (H) ]| < lim 6| By () (H = E)¥]| = 0.

It follows by the Mourre estimate (3.20) and (3.21) that
(3.22) limﬁ)nf (U, Bx(H)[H, Ao Ex(H)W,) > nhr%nf | Ex(H)U,||*> =5 > 0.

We now look to contradict this equation. We start with
(3.23) (U, Ex,(H)[H, A'|oEx,(H)V ) = (U, [H, A'|oVs) — fi(s) — fa(s), where
fi1(s) = (¥s, Er\x(H)[H, AlEx,(H)U,) and fos) = (U, [H, A’]OE[R\Z(H)\I/s).

Applying (3.21) gives
=0.

li =i
i |f1(s)] = lina | f2(s)
Now apply (3.11) with F' = Fy, -, and after dividing this equation by || ¥]|?, we have

limsup (U, [H, A'lo¥,) < 0.
sJ0
Here we took advantage of the negativity of the first two terms on the right side of (3.11),
and used the uniform decay of £L + M + G together with the weak convergence of ¥, to
get (U, (L+ M+ G)Us) — 0 as s | 0. To check this thoroughly, one needs to apply the
estimates of Lemma 3.2 to where indicated in the Appendix by a (). Note that £ given by
(6.9) is the most constraining term; it has the necessary decay provided 3y — 4 < —2, i.e.
v < 2/3. Note also that I5 allows to conclude, by continuity of the map x — /cosh(z) — 1,
that (U, (Wg,.i — Wr,.;)¥s) and like terms converge to zero. Thus by (3.23),

limsup (U, Ex.(H)[H, A'|cEx(H)¥s) < 0.
sJ0

This is in contradiction with (3.22), so the proof is complete. O

4. PROOF OF PROPOSITION 1.6

As an application of Theorem 1.5, we display a Wigner-von Neumann type operator that has
an eigenvalue embedded in the essential spectrum. The eigenvalue is proven to be a threshold.
Proof of Proposition 1.6. First, we construct the potential in dimension one. Second, we
generalize this potential to higher dimensions. Third, we show that the eigenvalue is also a
threshold and belongs to the essential spectrum.
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Part 1. We follow |[RS4, Section XIII.13, Example 1]|. Starting with the eigenvalue equation
2¢(n) —h(n+1) = p(n — 1) + V(n)y(n) = E¢(n),

we shift terms to write
Yo 1) | b 1)
P(n) b(n)
We try the Ansatz ¢(n) = sin(kn)wi(n), k € (0,7). For simplicity, write w(n) instead of
wi(n). We get

V(n)=(E—-2)+

Vin) = (B-2)
N sin(kn) cos(k) + cos(kn) sin(k) w(n + 1) n sin(kn) cos(k) — cos(kn) sin(k) w(n — 1)
sin(kn) w(n) sin(kn) w(n)
o cos wn+1) wn-—1) sin cos(kn) (w(n+1) w(n—1)
= -2 ooty (W0 + S0 ) e an S (U005 - )
For the moment, let us assume that
(4.1) ng(:)l) — 1, as|n|— +o0
and
(4.2) sin(k):?j((zg (ng(:)l) - wgﬁ(;)l)) 0, as|n| — +oo.

Thus if we want V(n) — 0, we must have (F — 2) 4+ 2cos(k) = 0, i.e. E =2 — 2cos(k). We
now seek a suitable wy. Let

gk (n) = g(n) := sin(2k)n — sin(2kn).
For simplicity, we would like to define wg(n) := 1/gr(n). But then wy(—1), wi(0) and wy(1)
are not well-defined, nor is wy, for that matter if k& = /2. To circumvent this problem, we
could define wy(n) := (1+ (gx(n))?)~! instead, as it is done in [RS4, Section XII1.13, Example

1], but alternatively we note that there is ¢t = ¢, € (0, +00) such that ¢; + gx(n) = 0 has no

solutions for n € Z. So we let .

C oty +gr(n)’
In any case, with either choice we certainly have ¢ € ¢%(Z) and (4.1) is clearly satisfied. As
for (4.2), we calculate

cos(kn)  gn—1)—g(n+1)

n cos(kn) fw(n+1)  w(n—1) _sin ( .
(k) sin(kn) ( w(n) w(n) ) (k) sin(kn) [t + g(n —1)][t + g(n + 1)] [t +g(n)]
_ —2sin(k) sin(2k) sin(2kn) .
"ot -l + gt
_ 2 sin(k) sin(2kn) L Om?).
So (4.2) also holds. Note that this calculation follows from these useful relations:
g(n+1) — g(n) = sin(2k) — 2sin(k) cos(2kn + k),
L L i om), and Ll Low
[t+g(n+1)] sin(2k)n ’ [t+g(n—1)] sin(2k)n ’
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Letting F = 2 — 2 cos(k), we then find that V' is given by

V(n) = cos(k) ( 2t+g(n—1)+g(n+1) 4+ g(n)] 2> _ 2sin(k) sin(2k) sin(2kn) [t + g(n)]
[t+g(n— DIt +g(n+1)] [t+g(n— DIt +g(n+1)]
— cos(k) <g(n) —gln—1) gn+1)- g(n)> _ 2sin(k) sin(2k) sin(2kn)[t + g(n)]
t+gtn—D]  [t+gn+1) t+gn—Dlt+gn+1)]
By a calculation done above, we know the asymptotic behavior of the second term of this
expression. Another calculation shows that the first term of this expression has the exact
same asymptotic behavior as the second. Thus, we have found a potential having the property
that 2 — 2cos(k) is an eigenvalue of A + V with eigenvector given by ¢ (n) = sin(kn)[ty +
sin(2k)n — sin(2kn)]~!. Moreover the potential has the asymptotic behavior

4 sin(k) sin(2kn _
( )nl ( )+Ok,tk(n 2).

Part 2. We simply extend to two dimensions. The Schrédinger equation is rewritten as
follows:

Vin)=—

Y(n+1,m) YPn-1,m) Ym,m+1) Pn,m-—1)
P(n,m) ¢(n,m) P(n,m) ¢(n,m)

Try the Ansatz ¢(n,m) = sin(kin)wg, (n)sin(kem)wy,(m), for some ki, ko € (0,7). For

simplicity, write wi(n) instead of wy, (n), and wa(m) instead of wy,(m). We get

V(n,m)=(E —4)

V(n,m)=(E—4)+

+cos(hy) ((H(n 1) + wl( AN sin(k )Z?E(klz) wi(n + 1u)}—nw1(n ~1)
+ cos( k: EwQ (m + 1 + w2( 13) n Sm(;) 00(81{222371? <w2(m +11() 1 wa(m >1)>
(m) sin(kom) wa(m) '

Let E :=4 — 2cos(ky) — 2cos(l<:2) and
wi(n) := (t; + g1(n))™',  where g1(n) := sin(2k;)n — sin(2k;n),

wa(m) = (ta + go(m)) ™%,  where go(m) := sin(2ks)m — sin(2kom).

Here t; = tx, and to = ty, are real numbers chosen so that ¢; + g1(n) # 0 and t2 + g2(m) # 0
for all n,m € Z. The calculations of the first part show that V is given by

V(n,m) =

cos(k) [gl(n) —gin—1) gi(n+1)—g (n)} _ 2sin(ky) sin(2k1) sin(2k1n) [t + g1(n)]
t1 +gl(n—1) t1 —l—gl(n—|—1) [tl +gl(n—1)][t1 +gl(n+1)]
+ cos(hy) [gz(m) —g(m—1) g(m+1) - gz(m)} _ 2sin(ky) sin(2k) sin(2kym) [tz + g2(m)]
ty + ga(m — 1) ty + ga(m + 1) [t2 4+ g2(m — )][t2 + g2(m +1)]

This potential has the property that 4 — 2 cos(k1) — 2 cos(kz) is an eigenvalue of A + V' with
eigenvector

Y(n,m) = sin(kyn) sin(kom)[tg, + sin(2k)n — sin(2k1n)] " tr, + sin(2ke)m — sin(2kem)] L.
Moreover V' has the asymptotic behavior

V(n,m) = _4s1n(/€1)21n(2k:1n) _ 4sin(ky) sin(2kgm)

+ Okhtkl (n_2) + Ok27tk2 (m_2)'
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Part 3. We still have to prove that the eigenvalue E := 4 —2cos(k;1) — 2 cos(kz) is a threshold
of H = A+ V. But V satisfies Hypothesis 1, and the eigenvector 1 has slow decay at
infinity. So we conclude by Theorem 1.5 that this eigenvalue is unmistakably a threshold. If
H, (k) denotes the one-dimensional Schrodinger operator of Part 1 and H denotes the two-
dimensional operator of Part 2, then we have H = Hy(k1) ® 1 +1 ® Hj(k2). A basic result
on the spectra of tensor products gives

o(H) = o(Hi (k1)) + o(Hi(k2)) O [0,8].
Thus E € [0,8] C 0ess(H). O

5. THE ONE-DIMENSIONAL CASE: EXPONENTIAL DECAY OF EIGENFUNCTIONS

In this section we deal with the one-dimensional Schrédinger operator H on H = £2(Z). We
follow the same definitions as in the Introduction and Section 3, but since i = 1, we will drop
this subscript. We shall write S and S* instead of S; and S}, N instead of IV;, etc...Consider
an increasing function F € C?(]0,00)) with bounded derivative away from the origin. This
function induces a radial operator on H as in Section 3: (Fu)(n) := F((n))u(n) for all u € H.

Proposition 5.1. Suppose that Hypothesis 1 holds for the potential V. Let F be as above,
and suppose additionally that

(5.1) lzF"(x)| < C, for x away from the origin.

Suppose that Hy = Ev, with 1 € H. Let ¥p = efy, and assume that Y € H. Then
Yvp € D(\V/gr — geA’) and there exist bounded operators W, M and G depending on F such
that

2 2 o
(5.2) (Yp,[H, ATr) = —||Var — 9eA0r||” — ||V AU = A)Wop||” + 27 (¢F, (M + G)Yr).
The exact expressions of W, M and G are given by (6.13), (6.14) and (6.15) respectively.

Proof. The proof is done in two steps. The first step consists in proving that
<¢7 [eFA,eFa A]¢> = <¢F7 [Ala A]¢F> - || V3r — gZA,¢F||2
— IVA@A = D)Wor|?* + 27 or, (M + G)¢r).

The proof of this is in the Appendix starting from (6.12). That F” is bounded away from the
origin ensures that W and (g, —g¢) are bounded. The additional assumption (5.1) ensures that
(7*¢r — )N and like terms are bounded. The second step is the same as that of Proposition
3.1, and the proof is identical. O

(5.3)

Lemma 5.2. Suppose that Hy = Ev with 1) € (*(Z). Let F be a general function as above,
and assume that 1 = ef'tp € £2(Z). Define the operator

(5.4) Hp:=el'He F.

Then Hp is bounded, Hpyrp = EYr and there exist bounded operators Cr and Rp such that
(5.5) Hp =CpH 4+ (2—2Cp) + 27 'Rp, where

(5.6) Cp =271 (eF*TF + eF*T*F) and

Rp :=V(2=2CF) + (t¢r — r)(S" = 8) + (¢ — 7"0e) (5" = 5)

(5.7) + (90 — 90)A' — 27 (g, — g0)(S* + 9).
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Proof. Because F’ is bounded away from the origin, both efSe "¢ = Se” F~F¢ and
ef'S*e P = S*e™F=F¢ belong to ¢*(Z) whenever ¢ € (*(Z). Thus Hp is bounded, and
Hpyp = Evyr follows immediately. Now

Hp=2+V -l — g,
Rewriting this relation in two different ways, we have
Hp = FH 4+ (24 V)(1— el —F) 4 (I —7F _ F—7"F)g*,
Hp=e""TFPH+ 2+ V)1 =) 4 (e 77F — g
Adding these two relations gives
(5.8) 2Hp = 2CpH + (2+ V)(2 = 20p) + (7 — =71y (5* — 5).
We further develop the third term on the right side:
(7T =TT (S = 8) = (19 — T00) (ST — )
= (Tor — o) (S™ = 5) + (e = T@e) (5™ = ) + (or — ) (5" = 5)
= (Tor — @r)(S* = 5) + (e — T7p) (5" = 5)
+ (gr — g0) A" =27 (gr — 90) (S + 9) + (or — 00) 1o} (S* = 9).

Here, 1p is the projector onto B C Z. Note that (¢, — w¢)1lg,—oy = 0, and thus (5.5) is
shown. |
We are now ready to prove the main result concerning the one-dimensional operator H:

Proof of Theorem 1.2, the first part. ~ We first handle the case £ # 2. Suppose that the
statement of the theorem is false. Then g = 0g(ag) = (E —2)/cosh(ap) +2 € ©(H) \ {+2}
for some o € [0,00), and there is an interval

(5.9) Yo = (QE(QQ) — 20, QE(Oéo) + 25)
such that the Mourre estimate holds there, i.e.
(5.10) Es,(H)[H,A'|cEx,(H) = nEks,(H) + K

for some 1 > 0 and some compact operator K. For the remainder of the proof, 4, n and K
are fixed. If ap > 0, choose a1 > 0 and ~ > 0 such that

(5.11) o < ag < og+ 7.

If however ap = 0, let @1 = 0 and 7 > 0. By continuity of the map g («a) = (E—2)/ cosh(a)+2,
0p(a1) = Op(ap) as a1 — ap, so taking a; close enough to ap we obtain intervals

Y= <9E(a1) -9, 9E<051) + 5) C Yo

with the inclusion remaining valid as a; — ag. Multiplying to the right and left of (5.10) by
Ex, (H), we obtain

(5'12) Es, (H) [H) Al]oEzl (H) = nks, (H) + Ex, (H)KEEI (H)

Later in the proof aq will be taken even closer to ag allowing « to be as small as necessary in
order to lead to a contradiction (in this limiting process, d, n and K are fixed). Before delving
into the details of the proof, we expose the strategy. For a suitable sequence of functions

{Fs(x)}s>0, let
(5.13) U, = ey /ey
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With Fy and ¥, instead of F' and ¥ respectively, we apply Proposition 5.1 to conclude that

(5.14) limsup (s, [H, Alo¥,) < limsup [(¥,, 27" (Mp, + Gr,)V,)|.
s0 s]0

Notice how the the negativity of the first two terms on the right side of (5.2) was crucial. We
have also written Mp, and G, instead of M and G to show the dependence on Fs. The first
part of the proof consists in showing that
(5.15) limsup (¥, [H, A'],¥,) < limsup [(¥,, 27! (MFS + GFS)\IJS>| < cey

s]0 sJ0
for some €, > 0 satisfying e, — 0 when v — 0. Here and thereafter, ¢ > 0 denotes a constant
independent of s, oy and 7. The second part of the proof consists in showing that

(5.16) limsup ||(H — 0p(a1)) V|| < ce,.
50

Roughly speaking (5.16) says that W, has energy concentrated about 6g(«;) and so localizing
(5.15) about this energy will lead to
(5.17) limsup (¥, Ex;, (H)[H, A'|oEx, (H)¥,) < cey.
sl0

However, the Mourre estimate (5.12) holds on ¥;. In the end, the contradiction will come
from the fact that the Mourre estimate asserts that the left side of (5.17) is not that small.

We now begin in earnest the proof. Notice that ) € D(¥,,) but ¢ € D(Ja,4). Let T be
the interpolating function defined in (3.4), and for s > 0 let

(5.18) Fy(z) == aqz + Y (x).

As explained in the multi-dimensional case, Fi induces a radial potential as follows : (Fsu)(n) :
Fy((n))u(n), for all u € £2(Z). By (3.5), efsy) € £2(Z) for all s > 0, but |efse)|| — 0o as s | 0.
To ease the notation, we will be bounding various quantities by the same constant ¢ > 0, a
constant that is independent of aq, 7, s and of position z (or n).

Part 1. We use Proposition 5.1 with Fy replacing F', and so we verify that F satisfies the
hypotheses of that proposition. Since

Fl(a) = a1 +9Th(z) and F!(x) = 77/(x).
indeed |F!(z)| < ¢, |¢F"(x)| < c. Dividing (5.2) by ||ef*1||? throughout we obtain (5.14) as
claimed. To prove (5.15), we need two ingredients. First, for any bounded set B C Z,

5.19 li U 2-0.
(5.19) ;g%%ldml

In particular, Uy converges weakly to zero. What’s more, we also have for any k € N

(5.20) lim > [(S*) () =0, and Tim > |((59) @) () = 0.
neB

neB

Now Mp, and Gp, are a finite sum of terms of the form P (S, S*)TP,(S, S*), where P; and
P, are polynomials and the T'= T'(n) are sequences. The second item to show is that,

(5.21) IT(0)] < e((n) ™" +¢,).

In other words we want smallness coming from decay in position n or from ~. Outside a
sufficiently large bounded set, decay in position can be converted into smallness in v by using
(5.19) while Py(S,S*) and P»(S, S*) get absorbed in the process thanks to (5.20). Consider
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first M = Mp, given by (6.14). Applying the Mean Value Theorem (MVT) gives the uniform
estimates in s

(5.22) |TFs — Fs| and |7%Fs — Fg| € O(1).
It follows that
lpel and |or| € O(1), and |gr —ge € O((n) ™).

To handle the term (7*p; — ), define the function f(z) := ef*(@=1)=Fs(#)  Then (r*¢, —
we)(n) = f(n+1) — f(n). Applying twice the MVT gives

(7" e = o) ()] < ()™ + () 7).
The same estimate holds for the similar terms like (¢, —7¢,), (7", —@,) and so forth. We turn
our attention to G = G, given by (6.15). By (5.22), |[Wg,| € O(1). To estimate (Wg,—W;+p,),
let g(z) := y/cosh(Fs({x — 1)) — F5s({(z))) — 1, so that (Wg, — Wr=g,)(n) = g(n) — g(n + 1).

Moreover,
§(x) = (Fo((z — 1)) — F5((2))) sinh(Fy ({z — 1)) — Fs({x)))
2/eosh(Fs({z — 1)) — Fs((@)) - 1
If a1 > 0, then |Fy((x —1)) — F5((x))| = ¢'a; for some constant ¢’ > 0 independent of = and s,

and so cosh(Fs({(x —1)) — Fs((z))) — 1 is uniformly bounded from below by a positive number.
Applying the MVT to (F.({(x — 1)) — F.({x))) yields the estimate

(Wr, = Wrep)(n)] < e({n) ™ + () ™).

If however a1 = 0, then

(5:23) (TFs = Fy)(n) — (Fy = 7 Fy)(n)] < e(n) ™"

By continuity of the function x +— y/cosh(z) — 1 we have that for any e, > 0,
\Wg, — Woep,| = |[\/cosh(TFs — Fs) — 1 — y/cosh(Fs — 7*F,) — 1| < ¢,

whenever (5.23) holds. A similar argument works for (Wg, — W;p,). Thus (5.21) is proven,
and this shows (5.15) when combined with the fact that W, converges weakly to zero.
Part 2. We now prove (5.16). Consider Lemma 5.2 with Fy instead of F. We claim that

(5.24) lim H (CrH+2—E—2Cp) ¥,/ =0.

By (5.5) of Lemma 5.2, this is equivalent to showing that
lim || Rp, W] = 0.
sl0

Dividing each term in (5.2) by [lef1[|?, we see that ||/g, — grA’¥|| < c. Let xn denote the
characteristic function of the set {n € Z: (g, — g¢) < N~'}. Then

. . _1 _1
hmfoup 1(gr —ge) AT || < hmeupN 2 XxnVar — ge AV ||+ |1 = xn) (gr —90) AT || < eN 72,

Here we used the fact that 1 — x5 has support in a fixed, bounded set as s | 0. Since N is
arbitrary, this shows that ||(g, — g¢)A'Us|| — 0 as s | 0. The other terms of Rp, are handled
similarly. Note that for the term containing V' we use the fact it goes to zero at infinity, and
from Part 1, (¢, — @), (pe — 7"¢¢) and (g, — g¢) also go to zero at infinity. Hence (5.24) is
proved. Let k := k(n) = sign(n). From the expression of F., we have the estimates :

|(Fa=Fy)(n)—r(n)aa| < clon(n)™'+7) and  [(Fy=r"Fy)(n)—(=r(n)an)| < c(ar(n)~'+7).

73



Therefore, outside a fixed bounded set we have
(5.25) |(Fs — TFs) — kap| < ey and  |(Fs —7°Fs) — (—kaq)| < .
By continuity of the exponential function, we have for any e, > 0 that

|er—TFs _ eKZO[1| < € and |6F3—T*Fs _ e—KOé1| < €

whenever the respective terms of (5.25) hold. It follows from (5.24) that

lim sup || [2_1 (eo‘l + e_o‘l) H+2-F— (60‘1 + 6_0‘1) ]\I’SH < cey.
sl0
Dividing this expression by cosh(ay) proves (5.16).
Part 3. By functional calculus and (5.16), we have

(5.26) limfoup | Er\s, (H) Vsl < hmfoup 5_1HE[R\21(H) (H — 0g(a1)) Ws]| < ces.
We have
(5.27) (Us, By, (H)[H, A'lsEx, (H)Vs) = (s, [H, A']oWs) — fi(s) = fa(s), where

fi(s) = (Vs, Er\s, (H)[H, AloEx, (H)W,), and  fas) = (s, [H, AJo Bz, (H)Vs).

By (5.26),
max limsup | f;(s)| < ce,.

1,2 sl0
This together with (5.15) and (5.27) implies
(5.28) limsup (U, Ex, (H)[H, Ao Ex, (H)Vy) < ce,.

sJ0
On the other hand, by the Mourre estimate (5.12), we have that
(5.29) (s, By, (H)[H, A'Jo By, (H)Vs) 2 1|| s, (H)V|* + (¥, By, (H)K s, (H) V).

Thus, since ¥4 converges weakly to zero and Ex, (H)K Eyx, (H) is compact, we have, using
(5.26)

(5.30) limﬁ)nf (U, Ex, (H)[H, A'l,Es, (H)¥,) = n(1 - ce2).

Recall that e, — 0 as v — 0. Taking first o sufficiently close to ag, we can then take v small
enough to see that (5.30) contradicts (5.28). The proof is complete for the case E # 2.
Part 4. Case E = 2: the proof is almost the same as before but a bit simpler. We briefly go
over the proof to point out the small adjustments. Assuming the statement of the theorem to
be false, we have that 2 € ©(H), and also that 1 € D(,) for some a € (0,00). Since O(H)
is open, there is an interval

¥:=(2-0,240)
such that the Mourre estimate holds there, i.e.
(5.31) Ex(H)[H,A'|oEx(H) > nEx(H) + K

for some 1 > 0 and some compact operator K. Let o := inf{ax > 0: ¢ & D(V4)}. As before,
let a; and v be such that a3 < ap < a; + v if ag > 0; if g =0, let @1 = 0. Let Fs and Wy
be defined as before (see (5.18) and (5.13)), so that W, has norm one but converges weakly to
zero. The calculation of Part 1 shows that

limsup (s, [H, A']o¥) < cey,
50
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whereas the calculation of Part 2 shows that

li H —2)U,| < cey.
im (= 2)¥, | < ce,

The functional calculus then gives

limisoup | Er\s(r) Ysl| < limeUP 0| Brys (H)(H — 2)¥y | < cey.

As in Part 3, we get inequalities (5.28) and (5.30) with ¥ instead of ¥;. Taking ay very
close to g in order to take ~ sufficiently small, these two inequalities disagree. The proof is

complete. 0
It remains to show however that

(5.32) Hy =FEy, and ¢ €D(W,) forall a>0 implies o =0.

We slightly modify the notation we have been using so far. Let

(5.33) F.(n):=aln| and va(n):=eMypn) = e ly(n), forall n e 7.

Proof of Theorem 1.2, the second part.  The proof is by contradiction, and the strategy is
as follows: we assume that ¢ # 0 and define W, := 1, /||¢a||. It is not hard to see that ¥,
converges weakly to zero as & — +o0o (use the fact that the difference equation Hy) = Ev
implies ¥(n) # 0 infinitely often). In the first part we apply Proposition 5.1 with F}, replacing
F'. In this case we can exactly compute terms to show that

(5.34) 0= cosh(a) (U, [V, Ao W,) + 2 tanh()||/|N](S* — S) W, %

+ IV/AE = A)Wa|? ~ tanh(a) (202(0) + (Wa(~1) — ¥a(1))?).
In the second part, we apply Lemma 5.2 again with F, replacing F'. We show that
(5.35) im VA= A)WP = lm R (Ue, A(d— A)Te) =2,

The conclusion is then imminent: taking the limit & — +o00 in (5.34), and recalling that [V, A'],
exists as a bounded operator and ¥, converges weakly to zero leads to a contradiction.
Part 1. It follows from (6.2) and the limiting argument of Proposition 3.1 that

(Yo, [H, Alotpa) = (a, A'le?, Ale Ftha) + (Pa, e F el A]AY,).

All terms are computed exactly:

(5.36) e(TFa=Fa)m) — {e_a %f nz=l1 and (T FamFa)(n) _ {ec_“ %f n >0
e* ifn<0 e ifn< -1,
(5.37)  eFa=mFa)(n) — {eaa %f” > 1 and o(Fa—7"Fa)(n) _ {6a %f n =0
e ifn<0 e ifn<—-1.
Let 15 be the projector onto B C Z. Therefore
©r — ¢ = 2sinh(a)sign(N) 1,20}, Or + pr =2 (cosh(a) -1+ Sinh(a)l{nzo}) ,
T 1 — ¢ = —2sinh(a) 1, o — Tpg = —2sinh(a)1— 41y,
Tor — pp = —2sinh(a)1lg,—, r — T r = —2sinh(a) 1= 13,
™o — Ty = 2sinh(a)1—_1}, Tor — T2 = 2sinh (o) 1,y 13-
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Let 7 := A'lef’, Ale ™" + e F'lef", A]A’. By (6.3) and (6.4), we have:
T = A (=Sef'p, — S*eFpp)e™ + e F(prel"S* + ppe"S) A/
= —A'(Spr + 5% 00) + (rS™ + puS)A'.
Plug in A’ = 271(S* + 8) + N(S* — S) and simplify to get 7 = T; + T2, where
Ti =271 (=S%0r +30r(5%)? = (") + 3¢eS?) — (¢r +¢r), and
To:= N (S%0r + 0r(8™)” = (5")%00 — 925%) — 2N (v — o).
We calculate 7i:
Ti=—2""(pr +0) (2= 57 = (57)%) =271 (S%pr + 91 8® + (%) 20 + 9u(S™)?)
+ 0r(8%)? + 4y S?
= —(cosh(a) — 1+ sinh(a)1,—0y) A(4 — A) + (¢r — ¢¢) ((5%)* = 5?)
+271 (00 = T°0e) (") + (700 = T*204) (") + (1 — T0) 8% + (o0 — 7%;) S7)
=Tia+Ti2
where

(5.38) Ti1 = —(cosh(a) —1)A(4 — A), and

Ti2 := —sinh(a) 11— A4 — A) +2 Sinh(a)sign(N)l{n?go}((S*)2 - 5?)
+ sinh(e) (Lz03(S*)? 4 L 13(5%)% + Ly S + 1321357 -
We calculate 7Ta:
To = —N(pr — ¢0) (2= 5% = (5%)%) + N(S%¢r — 9r5%) + N(pe(5*) = (5*)*¢0)
= —N(pr — p)A(4 = A) + N (120, — Tor + T0r — ) S°
+ N (0 — 700 + 00 — T%0y) (57)?
= —2sinh(a)|N|A(4 — A)
+ 2sinh(a)N (—(Lpe1y + Lnm0y)S® + (Lo + 1ne—13)(5%)?)
= —2sinh(e)|N|A(4 — A) — 2sinh(a) (11,=1)5% + 1= 13(5%)?) .

The following commutation formulae hold

(5.39) S*(Lgpzoysign(N)) = [1pnz0ysign(N) + 1oy + 1n=—13]S,
(5.40) S(Linzoysign(N)) = [Linz0y8ign(N) — 1) — 1n=y13]S-
Using

S|N| = |N|S + (1{n:0} — l{n;,go}sign(N)) S,
S*IN| = |N|S* + (1gpz0) + Linzoysign(N)) S,
one checks that
(5.41) |N|A(4—A) = (5= S)IN|(S* = ) = Ly A4 — A) — 1, 20psign(N)(S? — (5%)?).
Therefore 75 = 72,1 + 72,2, where
(5.42) T2 = —2sinh(a)(S — S*)|N|(S* = S5), and
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Top = —2 sinh(«) (1{n:1}52 + 1{n:_1}(5*)2)
+ 2sinh(a) (1{n:0}A(4 —A)+ l{n;,éo}sign(]\/)(S2 — (S*)2)) .

Finally, a calculation shows that
(543) 71;2 + 75;2 = Sinh(a) (21{n=O} - 1{n:—1}(S*)2 - 1{n=1}52) .
Note that

<¢om [H7 A/]owa> = <"/)om Twa> = <"/)om (7-1;1 + 7-2;1 + 7-1;2 + 75;2) 1/Ja>~
Plugging in for 71,1, T2;1 and Ti.2 + 72,2 given by (5.38), (5.42) and (5.43) yields

(Vo [H, Alotha) = —2sinh(a)[|\/[N](S* — S)pa* — (cosh(e) — 1)(tba, A(4 — A)tha)
+ sinh(a) (202(0) + (a(=1) = ¢a(1))*) .

Cancelling (Yo, [A, A'|Ye) = (Yo, A(4 — A)thy) on both sides and dividing throughout by
cosh(a)||1a||? yields (5.34) as required.
Part 2. From (5.37),

91 (Fa—TFa y gFa=T"Fay _ cosh(a) if [n| > 1
e @ if n=20,

271 (efoFa _ o= Fa) — sinh(a)1,20ysign (V).
We apply (5.8) of Lemma 5.2:
Hp, = cosh(a)A + 1g,—py(e™* — cosh(a))A +V + 2(1 — cosh(a))
+ 21,0 (cosh(a) — ™) + sinh(a) 1y, -ysign(N)(S* — 9).
The goal is to square Hf,. Divide throughout by cosh(a) and let ¢, := (e~ cosh(a)~! — 1):
(5.44)  cosh(a) 'Hp, = A+ Calin—o}A + cosh(a) ™'V + 2(cosh(a) ™! — 1) — 2¢a1pp—0y
(5.45) + tanh(a)1,-0ysign(N)(S™ — 9).

Note that sup,>q|ca| < 2. Since (S* —5) is antisymmetric, by (5.39) and (5.40), we see that
l{n;ﬁo}sign(N)(S* —S) is antisymmetric up to a couple of rank one projectors. The same goes
for Aly,ysign(N)(S* — S) and 1g,pysign(NV)(S* — S)A. Therefore

lim R (W, [120y5ign(N)(S* — 9)|¥,) =0,

a—r+00
Jm R (P, Allgrzoysign(N) (5" — 5)]¥a) =0,
Jim R (o, [14,20p5ign(N) (5" — )] AWa) = 0.

We compute [ tanh(a)1y,opsign(N)(S* — S)]2 using (5.39) and (5.40):
(5.45)? = tanh?(a) [1{n¢0}(52 +(S*)? = 2) + ey (1= (5%)%) + 1y (7 = 1)

Thus squaring cosh(a) "' Hp,, given by (5.44)-(5.45) and recalling that A(4—A) = 2—5%—(5*)?
we get

cosh(a) ?Hp = A(A —4) +4 — tanh?*(@)A(4 — A) + P,
where P, is a bounded operator satisfying

lim R (¥, P,U,) = 0.

a—r00
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Rearranging and recalling that Hr, ¥, = EV¥,, yields (5.35) as required. ]

6. APPENDIX : TECHNICAL CALCULATIONS

The Appendix is devoted to proving the key relations (3.13) and (5.3) that appear in
Propositions 3.1 and 5.1 respectively. Recall that for B C Z%, 15 denotes the projector onto
B. We start with the proof of the multi-dimensional formula

(¢, [e"A'e”, Alg) = <¢>F, (A, Alpr) — 2| vGA ¢r ||
- Z VA= A)Wigr||* + 27 bk, (L + M+ G)or),

where ¢ € £o(Z%) and ¢p := ngb. To jump to the proof of the 1d relation, go to (6.12).
Proof. It is understood that the operators are calculated and the commutators developed
against ¢ € £o(Z%), so we omit the ¢ for ease of notation. Usual commutation relations give
(6.2) el Alel’ Al = el'[A/, Alel” + P A'[el, A] + [ef', A] AT

We now concentrate on the second and third terms on the right side of the latter relation. The

goal is to pop out e’ A’gA’e!" and control the remainder. As pointed out in [FH| and [CFKS],
this is the key quantity to single out. The following commutators will be used repeatedly:

(6.3) [eF, Si| = —(TZEF — eF)Si = Si(TZ-*eF — eF) = —eFWiSi = SigorieF,

(6.1)

(6.4) [ef', 87 = —(r7el” — ') S = S (mel” — ef') = —el'p,.. 57 = SFpy,el.
Part 1 : Creating e/’ A’gA’e’ in a first way. We have
el A] = or el SF + gt S;
= g, N;e!' S7 + cpn.l{m:o}eFS;‘ + el S;
= g Nie" (SF — ) + @r 1 pn—0ye” (7 = Si) + (r, + ¢2,) e S;
= gr, Ni(SF = Si)e™ + gr, Nile", (5§ — Si)] + @r, Lin=oye” (SF = Si) + (or, + 1,)e" S
= gNi(Sf — Si)e + (gr, — 9)Ni(SF — Si)e" + or Loy (S7 — Si)e”
+ or, €5, (S5 = S)] + (o + ;)€™ S;
= gAje" —271g(SF + Si)e" + (gr, — 9)Ni(SF — Si)e" + or 1=y (SF — Si)e”
+orsle, (57 = S+ (n + w1, )" S
[ef', Al = —=SieFp,, — Siel oy
= —SieFNigri — SierOril{ni:o} — S;‘eri
= (S — Si)e" Nigr, + (S; — Si)e" or Loy — Sie” (or, + 1)
= e!'(Sf — Si)Nigr, + [(S] — i), "I Nigr, + (S — Si)e or, 1 (n,—0y — Sie” (or, + 04,)
= (5] = Si)Nig + " (S} — Si)Ni(gr, — 9) + €7 (S} = Si)or, Lin,—0
—[e", (57 - 5‘)]% — Sie" (or; + 0,)
= el Ajg+ 271" (SF + Si)g + " (SF — Si)Nilgr, — 9) + €" (5] = Si)r L in,—0}
—[eF,(S; = Si)ler — Sier (or, + 04,).
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Therefore we have obtained

6.5)  eF Al Al 4 [ef, AlA'el = 2P A'gA' el + &P (L, + M, + G, + H,)el,

Ly =Y Aj(gr, — 9)N;(S; = S) + (S§ — S))Ni(gr, — 9) A7,

M, =2~ 12 —Ajg(S5 + 55) + (S + Si)g AL,

r = ZA/ sOT‘] ’ - =5 )}eiF + (Sprj + wej)eFSjeiF)

—Z L, (S = Sl + € Ste" (gr + 00,)) A), and

H, := ZAmrjl{ny_o}(S = 8j) + (87 = S)er 1=} 45

7]

We split M, as follows: M, = M;.; + M,.2, where

w1 =271 = Ajg(ST+ S)) + (S + Si)g A,
i#)

where

My =271 Z —Alg(SF +8;) 4 (SF + Si)gA} = My9.q + Mygo, with

M9 = 27! Z —A;g”(Sf +8;) + (S + Si)gnA;v

My =271 —Ai(g — 9,.)(S] + i) + (S7 + Si) (g — gr) Al

i

We calculate M, by expanding A; and A’:

My =271 Z Si)g(Sj + 5;) + (57 + Si)gN; (S5 — Sj)
i#]
=271 —Ni[(779)SF — (1ig9)Si] (ST + ) + (77 (9N})) S} + (r:(gN;))Si] (S5 — ;)
i#]
fZN g — T]g]SS —|—N[Tg ]S*S*
i#£j

+ [Ni(rjg — 779) + Nj(rjg — 7 9)] 87 S;.12)
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Again expanding A’:
My =271 Z(Sf +8i)gr, (57 + i) = (87 = 8i)r; Lin, 20y (57 + Si)
+27 Z S;+ Si)er L, 201 (S] = Si)
= 22 (S7 + Si)gr, (SF + Si) + Sir, SF — Sfr. S;

(Sz @Til{ni:O}Si - Si(pTil{ni:O}S;)
= r;2;1;1 + Mr;2;1;2, where

Moz = 32271 ST+ S00r (7 .50+ (ripn, = i) (1)

Mr;2;1;2 = Z(Ti*(p”)l{ni:71} — (Tiwn)l{ninrl}‘

We calulate GG,.. We note that
(6.6)
(Tier )0, = e (Titor,) = =(Tior, + 05,),  and (g, )or, = @r (T 01,) = — (700, + or,)-
G = ZA; (¢, (S50e, = Sjon,) + (or; +02,) S (r, + 1))
- Z - 907’1'5% + 90&'51')907’1' + (‘Pn‘ + 1)S;k (907"1' + ‘Pfi)) A;’
= ZA/ T]SOTJ -5 (T ‘PTJ)‘PTJ +5; (T SDT])(@TJ +1) + Sj (T Pe; )(SOT] + 1))
+ Z ery (73 0r) S5 — e (Titor)Si = (o + 1)(75°00,) S = (o + 1)(75°00,) SF) A
= Z A2 (=S5 (e, + mi00;) + Si(TFor; —00))) + > ((Pr, = 70r) ST + (00, + Tit0r,)Si) A

i’j
=Gy + G,  where

T 1= Z A/ T 3 ¥Pr; — SD’"J‘) + (907«1- - Ti*SDT‘i)S;A;‘a(iB)

7‘2 _Z Al J QOE +T]907" )+(80€1+7—1§0r1)5114;
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To end this section we note that we are left to deal with L, + M;.2.1,0 + M;2.0 + G2 + H,.
Part 2 : Creating e’"A’gA’e’ a second way. We repeat the calculation with a variation.

[ef, A = gpgieFSi + ﬁprieFSf
= g0, Nie" Si + 0o, 1(n,—0ye” Si + or,e" S}
= —ge, Nie" (SF — ) + @o, Loy’ (Si = SF) + (¢r, + 0,) " S}
= —g0, Ni(S; — Si)e" — g, Nile™, (S; — Si)] + 0o, Lini—oye” (Si = S7) + (or, + 00,) " S}
= gNi(S} = Si)e” = (g, + 9)Ni(S} = Si)e” + @1, 1n,—0y (i — SF)e”
— eu,[e" (SF = S)l + (#r, + o) €™ St
= gA;eF — 2_19(52‘ + Si)eF — (ge, + 9)N:i(S; — Si)eF + @0, 1in,—0y (Si — Si*)eF
— ¥, [eF, (S;F—Si)] + (Lpri + wgi)eFSi*.
[ef',A] = —SfeFWi — Sielp,,
= =S’ Nigi, — Sie"pu, 1,201 — Sic"or,
—(SF = Si)e" Nige, + (Si — SP)e"0u, 10y — Sie” (or, + 02,)
= —e"' (5] = Si)Nige, — [(S; — Si), " INige, + (Si = S7)e vo,1gn,—0y — Sie” (er, + 1,)
= e"'(SF — Si)Nig — " (S} = Si)Ni(ge, + 9) + €7 (Si = S} )1, 1 in,~0y
+ e, (7 = Sl — Sie” (or, + 1)
=P Ajg+271eP(S] + Si)g — €' (Sf — Si)Ni(ge, + 9) + €7 (Si — S) e, Lini—o0y
+ [, (S = Si)lee, — Sie" (er, + ¢1,)
Therefore we have obtained
6.7) el Al A] + [ef, AlAel = 2eF A'g Al + e (L + My + Gy + Hy)er',  where

=3 Klar, + NS ~ 5) + (57 — 5Nl + )4,

My =271 " —Ajg(S; + S;) + (S; + Si)g A,

Gy _ZA —pg;[e", (ST = S)le™" + (¢r, + 0y, Sje™T)
+ Z = S)lee, —e FSiel (o, + 1)) A}, and

Hyp =Y Ao 1in,—0} (S5 — S5) + (Si = S, 1 n—0 Aj-
i?j
We split My as follows: My := My, + My.2, where

My =27 12 —Ajg(S} +8;) + (S7 + Si)gAl,
i#]

—212 —Ajg(S; + i) + (5 + Si)gA; = My + My,  with
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My.9.q =27 ZAzge (87 +8i) — (S§ + Si)ge, Al

My =271 ) = Aj(g+90) (5] + 8i) + (8] + Si)(9 + 90,) A
i
We calculate My;; by expanding A} and A’:

My =271 " =Ni(S7 = 8:)g(S; + ;) + (SF + Si)gN;(Sy — S))

7]
=271 —Ni[(7]9)S} — (7ig)Si] (S} + S;) + [(7 (9N;)) S} + (ri(gN;))Si] (S} — S5)
i
fZN 79 — 759)S:S; + Ni[77g — 77 9] S; S;
i#]
+ [Ni(rjg — 77 9) + Nj(rj9 — 77 9)] 575,42

Again expanding A’:
Mgy =277 —(S7 + S0)96,(Sf + Si) + (S = 8:)¢e, 1,03 (S7 + Si)

i

-2 Z (57" + Si)pe Lin 203 (57 — Si)
—Z L(SF 4 Si)ge,(SF + Si) + Sipe.Si — Siwe, Si

+ (Sz'wil{m:o}sz‘ — 87001 {n,=0} i)
= My, + Myga;2,  where

MZ;2;1;1 = Z _2_1(52"( + Sl)g& (Sz* + S’L) + (Ti*(pfi - Ti(p&)a(ihh)

i

Mg =Y (Tipe) Ln—s1y — (77 00,) L {n,=—1}.

We calculate Gy:
Gy = ZA 5 (ST 00, = Sjeny) + (or; +0,) S5 (94, +1))

+ Z ‘PTiSi + @fisi)tpfi - (90&' + 1)Si ((707%' + Soez‘)) A;'
= ZA’ *(mi00, )00, + Si (T 00,)er, + S5 (Tion,)(pe; + 1) + S5 (ri00,) (00, + 1))
+ Z —0r, (7700,) S + 0r,(Ti02,)Si — (e, + 1) (T30r,)Si — (@r; + 1) (T300,)55) A;‘

= Z A; S; TiPe; — (Pfj) - Sj(T]ik<pfj + 907”]‘)) + Z ((90& - Ti(pfi)si + (Ti*(pfz‘ + 907"1)51*) A;
i:j Z’]
— Gf,l + G&27 Where
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Gy = ZA"S* Tive, — pu;) + (o, — Tipe,) Si A} 0

G = Z —AiS(TF e, + pry) + (101, + pr,) STA]
Note that we are left to deal Wlth Lo+ My.o.1.0 + Moo + Gpo + Hy.
Part 3 : Adding the terms of Parts 1 and 2. Take the average of (6.5) and (6.7):
68) [ef Aef | A] = P [A, Alef + 27 AgAlel
' +27 % (L + Lo+ My + My + Gy + Gy + Hy + Hy) "

Applying ¢ € £o(Z?) to this equation and taking inner products leads to (6.1). We go into
details. The terms that still have to be dealt with are L, + M;.2.1,20 + M;.2.0 + G20 + H, from

144y

the first part and Ly, 4+ My.1,0 + Mp.2.0 + G2 + Hy from the second part. Since
(75 r = T 00) Lni=—130 = (Tive, — Tipri ) L{n,—4136 = 0, and  (¢r, — @1;)1in,—01¢ = 0,
it follows that
(Mr;2;1;2 + M€;2;1;2)¢ = 07 and (H'r + Hﬁ)d) =0.
We add L, and L, and define this to be L:
L:=L.+L = ZA [(gr, — 9) — (¢, + 9)IN;(S; = S;)
(6.9) . ' )
+Z (S; [(gr; — 9) — (g2, + 9)] A}
We add MT;Q;Q and Mg;Q;QZ

Moo+ Mg =270 Ail(gr— 9) — (96 + 9)I(S] +8i) — (57 +50)[(9r — 9) — (g6, + 9)] A}V
We can now define M:

(610) M =M, + M, = Mr;l + Mr;2;1;1 + MZ;l + MZ;2;1;1 + (Mr;2;2 + MZ;Q;Q)-
The final step is to add G2 and Gy.o:

GT;2 =+ G€;2 = Z _Ais;((pfj + Tj‘PW) + (@Zi + Ti@m)siAj
ij
+ Z —A;S; (7—;9063- + SOT]‘) + (Ti*gpéi + @Ti)S;Aj
==Y [27N(S] +5) + Ni(S} = SIS (e, + Tiepr,)
+ Z(w. + Tipr)Si[=271(S] + S5) + (S} — S;)Nj]
- Z Y(SE+ 8i) + Ni(Sy — S)S;(5 e, + ¢r))
+ Z(Ti o, + o) S;[=271(S] + Sj) + (S] — SN

i7j
=G+ G+ G3+ Gy + Gy + Gg, where
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Gii=)  —NiS;S;(¢e, + m%0r;) + (7 0a, + 0r,)STS; N,

2
Gy =Y NiSiSj(7} e, + ¢r;) — (0o, + Titpr,) SiSi N,
i,J
Gs =Y NiSiS; (e, +7jpr;)—NiS; (15 00, +0r,)— (77 00, +0r,) St SiNi+ (e, +7ispr,) SiS; Ny,
2
Ga:= =271 SISt (oo, + mi0r,) + (700, + r,) S S5,
i,J
Gs:=—2"") (e, +Titpr,)SiS; + SiSi(t5pe, + 1),
(2]
Gg = —27" Z SiS7 (e, + 7jor;) + (0o, + Titor,)SiST + S 85(75 ey + ory) + (77 P, +00,) 57 S

i7j
We calculate G; for ¢ = 1...6. G1 = G1;1 + G1,2 + G1.3, with
G1§1 = Z[(T;QOZ]- - Ti*T]*(pf]') + (QOTJ‘ - TZ*(&OTJ)]NZS:S;7@3)
i?j
Guo =Y (T/er, +¢r)SiS; and Gig:=2) (77 +or)(S]).
i£] i
Gy = Gz;l + GQ;Q + G2;3, where

Ga =Y _[(Tipe; — p;) + (TiTjr, — 500, )| Ni iS5, )

ij
Gaz =Y (1, +Tipr)SiSj and  Gag =2 (o1, +Tipr,)(S:)*.
i#] i
Gz = Z N;SiS; (e, + Tjpr;) — NiS;Si(75 pe; + or;)

i)
- (Ti*(p&: + (pTi)S:SjNJ‘ + (SO&‘ + Ti@ri)SiS;Nj
+ Y Nilpe, + 7o) — Ni(7 00, + 0r) — (700, + 0r) Ni + (01, + 7o) N

)

= (rimi e, + Tior, )NiSiS; — (7700, + 7 00, ) NiSFS;

i#]

+ Z _(Ti*goei + SOTi)NjS;S]' + (90&' + Ti@ri)NjSiS;
7]

+ Z(Ti*gofi + @Ti)S;Sj + ((Pfi + Ti(pTi)SiS; +2 Z[(‘p& - Ti*tp&') + (Tior, — @r,)INi
i2j i

= G3;1 + G302 + Gz, where

G3§1 = § [(TiT;(pfj _T;(pej)—i—(Ti@Tj_(ij )]NZSIS;—’_[(SO@] _Ti*(pfj)—’_(Tj(ij _Ti*Tj(ij )]N’LSZ*SWGS)
i#]
Ga2 =Y (7700, + ) SiSj + (pu, + Titor,)SiS5
i#j
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G 1= QZ —7700) + (Tior, — o, )| N;.1H2)
Ga= -2 (7500, + 70r,) + (7700, + 00)1SF S} = Gan + Ga,  with

Gu 1= =27 S [ on, + 7 0n,) + (700, + 00 )ISIS],
i#j

Gup = —27" Z[(Ti*ﬂ*wi + 7o) + (1500, + r)](5F)2.
i

Gs=—2"" Z[(S% + Tipr;) + (Titpe; + TiTior;)]18iS; = Gsa + G2, with
,J
Gsa = —27" Z[(S% + Titr;) + (Tite; + TiTjpr;)]15iS;,
i#i
Gs2 = =271 (e, + Tisor,) + (Tipe, + TiTitpr,)](S)?.
i
Ge=—2"" z[(Tinﬁpej + Titor;) + (0o, + Tior)|SiS] 4+ (700, + T Tj0r,) + (7700, + 01,)]57S;
,J
= Gﬁ;l + GG;Q, with
Go == =271 Y (137 e, +7i0r,) + (00,4 Tipr )| SiSF +(77 0e, 47 Tj60r,) + (77 0t + 011 SE S5,
i#]
Ge2 := — Z(‘pﬁi + Tipr,) + (77 pe; + ory)-
We add G2 and Ga.1:
Gia+Gua =) (Tfor, +¢r)SIS5 =271 Y (77 e, + 7 or,) + (100, + 01,157
i#£j i#£j
= 2_1 Z[(T;(P(j - Ti*T;SOZJ‘) + (‘ij - TZ*SOT])]S:S]*(iS)
i#£]
We add G1;3 and Gy.2:
Gia+Gaa =2 (7Fpe +@r)(S))? =271 D (77 vn + 7o) + (7 n, + 0r)I(SF)°
i i
= G7+ Gg, where

C717 = 2_1 Z[(Ti*@& - Ti*Ti*QD&) + (QDM - Ti*QOTi)](S;)Z (t3) and GS = Z(Ti*@& + Qa’f‘z)(sz*)z
7 7
We add G2;2 and G5;1:
Gaa + Gsn = Y (e, + 7ir)SiS; — 271 [(u, + Tispr,) + (Tieu; + Timi0r,)1Si;
i#] i#]

=271 Z —Tipe;) + (Tjeor; — TiTjtij)]SiSj.(h)
i#£]
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We add Gg;g and G5;2:

Gas+ Gsa =2 (e, +7ir,)(8:)* = 270D [(¢e; + Tipr,) + (Tatpe, + Timispr))(Si)?

2

= Gg + Gy, where

Gy =271 [(pr, — mive,) + (Taspr, — Tamipr))(Si)* ) and - Gho := Y (¢, + Tipr, ) (Si)*.

2

We add G3;2 and Gﬁ;li

Gaa+Gon = =271 Y [(1i] pe, =75 0e, )+ (Tior; =0, )+ (77 01— 01, )+ (7 Tispr, —Tiipr )| SiSy. ()
i#]

We are left to deal with Gg.2, Gg and G1o:

Gs+ Gro+ Ge2 = > (1701, + ©r,)Si St + (@0, + Tipr,)SiSi — (0, + Tipr,) — (100, + or,)

i

= Z(TZ—*% +9r)((SF)? = 1) + (e, + Tipr ) ((85)? = 1)
= ZKT"'*% —@,) + (o, = e ))((S)? = 1)

+ (e, +7it0r ) ((S7)? + 57 — 2)
= G111+ G2, where

G =Y |7 or, — oe) + (or, — mir N(S7)? — 1))

and
G12 = —2 Z(COSh(TZ‘F - F) - I)Az(4 — Az>

Let Wp,; = \/COSh(TiF — F) — 1. Commuting Wg.; with A; gives
Wi = AiWeyi + Si(Wri — 7 Wry) + S (Wey — Wey).
Thus
Wi Ai(4 = Ai) = WeiAi(4 = Ai)Wr + Rpy,  where
Rpyi = —WpiANiSi(Wri — 77 Wey) — WeiAiS; (Wey — 7Wry)
+ WeiSi(Wry — 7 W) (4 — Ag) + Wiy SF(Wey — W) (4 — Ay).
A final accounting job gives the expression of G:

g:= GT;1 + Gé;l + G1;1 + G2;1 + G3;1 + G3;3 + (G1;2 + G4;1)

(6.11) + G7 4+ (Gao+ Gs.1) + Go + (G2 + Ge,1) + G11 — 2 Z Ry,
or equivalently, G = G, + Gy + 2, WpAj(4 — Ay)) Wry. O
k k *

86



We now turn to the proof of relation (5.3) that is key in Proposition 5.1. Here d = 1. For
convenience we rewrite the relation we want to show. For ¢ € £y(Z), ¢ :=ef¢ :

(6" A", Alg) = (6r, |4, Alor) — |[Vor — geA'dr||”

6.12
( ) — H\/A(Zl—A)W(bFHQ—|—2_1<¢F,(M—|—G)¢F>, where
(6.13) W = Wp := \/cosh(rF — F) — 1,
M = Mp :=2"2(S" + S)(g, — g¢)(S* + S)
(6.14)
+ [(T0e — o) + (00 — T0e) + (Tr — 1) + (pr — T"pr)],  and
(6.15)

G=Gp:=AS50"0r —pr) + (or —T50r)S* A + A'S*(T0s — 1) + (0o — T0p) SA’

+ [(7* 00 = T200) + (pr — T 0r) |NS*? + [(T%0r — T0r) + (1900 — 02) [N S?
+ 2[00 =700 + (or — )| (87 + 5 (70 — T00) + (e — 7)) S

2
+2[(0e — 700) + (Tor — 00)|N + [(T* 00 — @0) + (0 — Tr)] ((5*)? = 1)
+ 2WpAS(Wp — Wrep) + 2WpAS*(Wp — Wp)
—2WpS(Wp — Weep) (4 — A) = 2WpS* (Wp — Wep) (4 — A).
Proof of (6.12). For the most part, the proof of this relation is the same as that of (6.1)
when d > 1. However, the main difference is that here we do not introduce the function

g(n) :== F'({n))/(n). We go over the proof done just above and point out the differences. As
before we start with

el Alel’ Al = ' [A/, Ale! + &P A'[el) A] + [, A]Ale”

and develop the last two terms of this relation.
Part 1 : Creating ef"A’g, A’el".

1
el A] = g, Al — 597,(5* + 9)e + ©rlin=gy(S* — SYel” + pplef’, (5% — 9)] + (or + gOg)eFS’.

1
[e", A] = " Alg, + ieF(S* +8)gr + (S = 8)prLin=gy — [e7, (5" = )] — 5% (o1 + 0).

Therefore we have obtained
(6.16) Al A+ [, AJA el = 268 Al g, Alel” 4 ' (M, + G, + H,)e!",  where

M, = —2""A'g,(5* + §) + 27 1(S* + S)g, A',

Gy = Apoel (5% = 9)e ™ + A (r + r)e SeF
— e e (5" = 9)pr A" — TS e (r +p0) A, and

H, = Ap gy (S* — 8) 4 (57— 8)or Ly A
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We calculate M,
1 1 1 1

M, = ) (-2 (S*+8)+ (5" — S)N) gr(S*+8) + 3 (S*+5)gr (2 (S*+S)+N(S*— S)>

=271(S* + 9)g, (" + 5) =271 (5 = 8) orLppsop (S* + S)

+271(S" + 9) gm0y (S = 5)

=271S* 4+ 9)g,.(S* + S) + (S, S* — S*p,.S) + (5" 0rlneyS — Serlgn_0}S*)

= M,.q1 + M,.2, where
M,y o= 278" +8)g- (S*+8)+[(rer—¢r)+(r—T"¢r)] and M,;5 == ¢,(0) (Lne—1y — Lpne1y) -
Part 2 : Creating e/ A’g,A’e".

1 * *
[ef',A] = —ggA'eF—I—§gg(5*—|—5)eF—wl{n:0}(S* —S)el"—pylel’, (8 — 9)] + (@T—i—(pg)eFS .

]' * * *
[e",A] = —eFAlg, — §6F(5 +8) g0 — € (S* = S)pelingy — [(S* = S), " e — Se¥ (¢r + ).
Therefore we have obtained
(6.17) Al A+ [, AJAel = —2eF AlgyAlel” + e (My + Gy + Hy)e!',  where
M, = 2_1A’gg(S* + S) — 2_1<S* + S)ggA,,

Go = —Aple?, (S* = 9)]e " + A'(pr + po)ef S*e™F
+e Flel, (S* — )] Al — e FSef (¢, + o) A, and

Hyp = —Aloglip—y (8" = S) — (8" = S)pilpn—ny A'.
We calculate My:
M, = Mg;l + Mg;g, where
My := =271 (5" +9)ge(S*+8)+ (7" pe—0e)+(pe—Tr)| and My := ©4(0) (Lm1y — Lin=—1}) -
Part 3 : Adding the terms of Parts 1 and 2. Take the average of (6.16) and (6.17) to
get :
[eFA'el Al = P [A Al +eF Al(g, — go)Aler + 27! (M, + My + G, + Gy + H, + Hy) ™.
Applying ¢ € lo(Z) to this equation and taking inner products will yield (6.12). Let us
elaborate exactly how this is achieved. First, let
M :=M,+ M, = Mr;l + Mg;l.

The latter equality holds because (M. + My2)¢ = 0. Second, note that G, Gy, H, and
H, are exactly the same as in the preceding proof when ¢ = j = 1, which corresponds to
d = 1. These terms are handled in the same way. In particular (H, + Hy)¢ = 0. Finally, we
investigate GG. Referring to the preceding proof with i = 7 =1, let

G :=Gr1+Gp1 + G+ Go1 + G333+ Gr+ Gog+ G — 2Rp,.

Terms that do not contribute here are: G3.1, G1.0+Ga.1, Go.o+Gs.1, G320 +Ge.1. We warn the
careful reader that G is not simply G, + G/, because somewhere hidden in G2 + G2 is the
term —2WA(4 — A)W which needs to be extracted. After taking inner products, this term
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ultimately produces —||\/A(4 — A)W¢p|?. Alternatively, G = G, + Gy +2WA(4—-A)W. O
We also note that
(6.18)

Gy + Gy =Gra + G + G+ Go + Gz + Gy +Gog + G + Gro

=2[(T" e — T%00) + (¢r — T 0r) NS = 2[(r0r — T20,) + (00 — T0)| N S?
+2[(pe — T00) + (T*0r — 1) + (02 — T 00) + (Tor — )| N
+ [(T*(pg — 7'*2(,0() +2(¢r — T*(pr)]S*Q + [(7’(,0,» —720,) + 2(0 — Tng)]SQ

+ [(Tor = 00) + (T"0r — 00)] + [(T 00 = 00) + (0r = T9p)| (8% = 1)
—2(cosh(TF — F) — 1)A(4 — A).
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PROPAGATION ESTIMATES FOR ONE COMMUTATOR REGULARITY

GOLENIA, SYLVAIN AND MANDICH, MARC-ADRIEN

ABSTRACT. In the abstract framework of Mourre theory, the propagation of states is un-
derstood in terms of a conjugate operator A. A powerful estimate has long been known for
Hamiltonians having a good regularity with respect to A thanks to the limiting absorption
principle (LAP). We study the case where H has less regularity with respect to A, specifically
in a situation where the LAP and the absence of singularly continuous spectrum have not
yet been established. We show that in this case the spectral measure of H is a Rajchman
measure and we derive some propagation estimates. One estimate is an application of min-
imal escape velocities, while the other estimate relies on an improved version of the RAGE
formula. Based on several examples, including continuous and discrete Schrédinger opera-
tors, it appears that the latter propagation estimate is a new result for multi-dimensional
Hamiltonians.

1. INTRODUCTION

In quantum mechanics one is often interested in knowing the long-time behavior of a given
state of a system. It is well-known that there exist states that to tend to remain localized in
a region of space, called bound states, while there are states that tend to drift away from all
bounded regions of space, called scattering states. The present article is concerned with the
study of the latter. In particular, a propagation estimate is derived and serves to rigorously
describe the long-time propagation, or behavior of these states. A classical way of obtaining
a propagation estimate is by means of some resolvent estimates, or a Limiting Absorption
Principle (LAP). The LAP is a powerful weighted estimate of the resolvent of an operator
which implies a propagation estimate for scattering states as well as the absence of singular
continuous spectrum for the system.

The theory of Mourre was introduced by E. Mourre in [M| and aims at showing a LAP.
Among others, we refer to [CGH, FH, GGM, HS1, JMP, S, G, GJ1] and to the book [ABG]
for the development of the theory. In a nutshell, Mourre theory studies the properties of a
self-adjoint operator H, the Hamiltonian of the system, with the help of another self-adjoint
operator A, referred to as a conjugate operator to H. The standard Mourre theory relies on
three hypotheses on the commutator of H and A which are, loosely speaking, that

(M1) [H,iA] be positive,
(M2) [H,iA] be H-bounded,
(M3) [[H,iA],iA] be H-bounded.

2010 Mathematics Subject Classification. 81Q10, 47B25, 47A10, 35Q40, 39A70.
Key words and phrases. Propagation estimate, Mourre theory, Mourre estimate, Commutator, RAGE
Theorem, Schrédinger operators, Rajchman measure.
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The main theory goes as follows:

(M1) 4+ (M2) + (M3) = Resolvent estimates (LAP) = Propagation estimates
——_———

lL = No singular continuous spectrum.

Absence of eigenvalues.

The purpose of the paper is to show that (M1) + (M2") = Weaker propagation estimates,
where (M2’) is slightly stronger than (M2).

We set up notation and basic notions. For arbitrary Hilbert spaces F and G, denote the
bounded operators from F to G by B(F,G) and the compact operators from F to G by
K(F,G). When F = G, we shall abbreviate B(G) := B(G,G) and K(G) := K(G,G). When
G C H, denote G* the antidual of G, when we identify H to its antidual H* by the Riesz
isomorphism Theorem. Fix self-adjoint operators H and A on a separable complex Hilbert
space H, with domains D(H) and D(A) respectively. In Mourre theory, regularity classes are
defined and serve to describe the level of regularity that A has with respect to H. The most
important of these classes are defined in Section 2, but we mention that they are typically
distinct in applications and always satisfy the following inclusions

(1.1) C2(A) C CYL(A) c CM(A) C CH(A).

Of these, C1(A) is the class with the least regularity, whereas C?(A) is the class with the
strongest regularity. Indeed if H € C!(A), then the commutator [H,iA] extends to an operator
in B(D(H),D(H)*) and is denoted [H,iA],; whereas if H € C?(A), then in addition the
iterated commutator [[H,iA],1A] extends to an operator in B(D(H),D(H)*) and is denoted
by [[H,iA]o,iA]s (see Section 2). As the C1'%(A) class plays a key role in this article we recall
here its definition. We say that H belongs to the C1"(A) class if the map ¢ — e A (H i)~ LeitA
is of class C'(R; B(H)), with B(H) endowed with the norm operator topology. The standard
example of operators belonging to the aforementioned classes is the following.

Example 1.1 (Continuous Schrédinger operators). Let Hy be the self-adjoint realization of the
Laplace operator —A in L*(R?). Let Q be the operator of multiplication by x = (21, ...,x4) €
RY, and let P := —iV. Set

H := Ho + Var(Q) + Vi(Q),

where Vi (z) and Vi(z) are real-valued functions that belong to L™(RY). Thus Vi (Q) and
Vie(Q) are bounded self-adjoint operators on L*(RY) and they are respectively the short- and
long-range perturbations. Suppose that lim Vs (x) = lim Vi, (x) = 0 as ||z|| = +o00. Then Viu(Q)
and Vi.(Q) are Hy-form relatively compact operators. This notably implies that oess(H) =
[0,4+00) by the Theorem of Weyl on relative compactness. Let A := (Q - P + P -Q)/2 be the
so-called generator of dilations. It is the standard conjugate operator to H. For the long-
range perturbation, further assume that x-VVi(x) is a well-defined function. Table 1 displays
Hamiltonians belonging to each of the classes introduced in (1.1). The idea is clear: stronger
decaying bounds on the potential imply stronger reqularity. We study this example in Section
4 and prove the information reported in Table 1.

Let Ez(H) be the spectral projector of H on a bounded interval Z C R. Assuming H €
Cl(A), we say that the Mourre estimate holds for H on Z if there is ¢ > 0 and K € K(H) such
that

(1.2) Er(H)[H,iAl,Ex(H) > cE(H) + K,
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In addition, if (x)Vy(x) and x - VWi (x) are | Then H belongs to
(R CTA)
L>®(RY) and o(1) Clu(A)
L®(RY) and o({x)~¢), for some ¢ > 0 Cli(A)
L®(RY) and O({z)~1) C%(A)

TABLE 1. Regularity of Hamiltonian H w.r.t. a bound on the decay of the
potential at infinity

in the form sense on H x H. The Mourre estimate (1.2) is the precise formulation of the
positivity assumption (M1) alluded to at the very beginning. The Mourre estimate is localized
in energy, hence it allows to infer information about the system at specific energies. Let A (H)
be the set of points where a Mourre estimate holds for H, i.e.

pA(H) == {A€R:3¢>0,K € K(H) and T open for which (1.2) holds for H on Z and A € T},

In [M], Mourre assumes roughly H € C?(A) and the estimate (1.2) with K = 0 to prove the
following LAP on any compact sub-interval J C Z:

(1.3) sup [[(A)"*(H — z —iy) = (4) || < +oo,
zeJ, y>0

for all s > 1/2. Here (A4) := v/1+ A2. We remark that if the Mourre estimate holds on Z with
K = 0, then Z is void of eigenvalues, as a result of the Virial Theorem [ABG, Proposition
7.2.10]. Estimate (1.3) can be shown to yield the following Kato-type propagation estimate:

o0
(1.4) sup / 1(A) =5 By (Y| 2dt < +oo,
[lp]|<1

which in turn implies the absence of singular continuous spectrum on 7, e.g. [RS4, Section
XIIL.7]. The main improvement of this result is done in [ABG|. The same LAP is derived
assuming only H € C''(A) and the estimate (1.2). It is further shown that this class is optimal
in the general abstract framework. Precisely in [ABG, Appendix 7.B|, there is an example
of H € CY(A) for which no LAP holds. However, other types of propagation estimates
were subsequently derived for H € C1'U(A), see [HSS, Ri] for instance. One major motivation
for wanting to obtain dynamical estimates for this class was (and still is) to have a better
understanding of the nature of the continuous spectrum of H. The aim of this article is
to provide new propagation estimates for this class of operators. We also provide a simple
criterion to check if an operator belongs to the C1%(A) class.

Let P.(H) and P,.(H) respectively denote the spectral projectors onto the continuous and
absolutely continuous subspaces of H. Our first result is the following:

Theorem 1.2. Let H and A be self-adjoint operators in a separable Hilbert space H with
H € CY(A). Assume that T C R is a compact interval for which X\ € p(H) for all X € T.
Suppose moreover that ker(H — X\) C D(A) for all X\ € Z. Then for all ) € H and all s > 0,

(1.5) Jim[[(A)~e " PL(H) Er(H)6 = 0.
Moreover, if W is H-relatively compact, then

: —itH _
(L6) i [ We P (H) B ()| = 0.
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In particular, if H has no eigenvalues in T and ) € H, then the spectral measure
Q — (Y, Eqnz(H)Y) is a Rajchman measure, i.e., its Fourier transform tends to zero at
infinity.

Remark 1.1. The last part of the Theorem follows by taking W = (). If H has no
eigenvalues in L, then P.(H)Ez(H) = Ez(H) and so by the Spectral Theorem,

We ' P (H)Br(H)p =1 x (1, e "M Er(H)p) = 1) x /Reimdﬂ(zp,EI(H)w) (z).
The spectral measure i satisfies Q= iy, gy (1)) (2) = (¥, BEo(H)Ez(H)Y) = (¢, Eong (H)).
Remark 1.2. The separability condition on the Hilbert space is used for the proof of (1.6),
because the compact operator W is approxzimated in norm by finite rank operators.

Remark 1.3. Perhaps a few words about the condition ker(H — \) C D(A). In general, it is
satisfied if H has a high regularity with respect to A. Although in the present framework it is
not granted, it can be valid even if H € C1(A) only, as seen in [JM].

This result is new to us. However, it is not strong enough to imply the absence of singular
continuous spectrum for H. Indeed, there exist Rajchman measures whose support is a set of
Hausdorff dimension zero, see [B]. We refer to |L] for a review of Rajchman measures. The
proof of this result is an application of the minimal escape velocities obtained in [Ri]. The
latter is a continuation of [HSS]. We refer to those articles for historical references.

We have several comments to do concerning the various propagation estimates listed above.
First, it appears in practice that (A)~*E7(H) is not always a compact operator, and so (1.5)
is not a particular case of (1.6). The compactness issue of (A) *E7(H) is discussed in Section
7, where we study several examples including continuous and discrete Schrodinger operators.
In all of these examples, it appears that (A) *FEz(H) is compact in dimension one, but not
in higher dimensions. Second, note that (1.4) implies (1.5). Indeed, the integrand of (1.4)
is a LY(R) function with bounded derivative (and hence uniformly continuous on R). Such
functions must go to zero at infinity. On the other hand, it is an open question to know if
(1.4) is true when H € CY%(A). Third, we point out that (1.6) is a consequence of the Riemann-
Lebesgue Lemma (see (1.10) below) when ¢ = P,.(H ). This can be seen by writing the state
in (1.6) as W(H +1)"te " P,(H)Ez(H)(H +i)7 and noting that W(H +1i)~! € K(H) and
Er(H)(H +1) € B(H).

Propagation estimates (1.5) and (1.6) cannot hold uniformly on the unit sphere of states in
‘H, for if they did, they would imply that the norm of a time-constant operator goes to zero
as t goes to infinity. Moving forward, we seek a propagation estimate uniform on the unit
sphere and go deeper into the hypotheses. Let H be a Hilbert space. Let Hy be a self-adjoint
operator on H, with domain D(Hp). We use standard notation and set H? := D(H) and
H' := D((Hy)'/?), the form domain of Hy. Also, H2 := D(Hp)*, and H~' := D((Hy)'/?)*.
The following continuous and dense embeddings hold:

(1.7) HCH ' cH=H CH 'cH™

These are Hilbert spaces with the appropriate graph norms. We split the assumptions into
two categories: the spectral and the regularity assumptions. We start with the former.
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Spectral Assumptions:

e Al : Hj is a semi-bounded operator with form domain H!.

e A2 : V defines a symmetric quadratic form on H!.

e A3 : Ve KHLH™Y.

Importantly, these assumptions allow us to define the perturbed Hamiltonian H. Indeed, A1
- A3 imply, by the KLMN Theorem (|RS2, Theorem X.17|), that H := Hy + V in the form
sense is a semi-bounded self-adjoint operator with domain D((H)'/?) = H'. Furthermore, we
have by Weyl’s Theorem that oess(H) = 0ess(Hp)-

Before proceeding with the other assumptions, let us take a moment to recall two well-known
propagation estimates that typically hold under these few assumptions. The first estimate is
the RAGE Theorem due to Ruelle [Ru], Amrein and Georgescu [AG| and Enss [E|. It states
that for any self-adjoint operator H and any W € B(H) that is H-relatively compact, and any
YeH,

. i —itH |12
(1.8) TLITOOT/O W P.(H)e " 4||*dt = 0.
We refer to the appendix B for an observation on this Theorem. Let us go back to Example 1.1,
the case of the Schrédinger operators. Assuming only that the short- and long-range potentials
be bounded and go to zero at infinity, we see that A1 - A3 hold. Thus H := Hy+ Vi (Q)+ Vi (Q)
is self-adjoint. Moreover 1x(Q) is a bounded operator that is H-relatively compact whenever
¥ C R? is a compact set. Hence, in this example, the above spectral assumptions and the
RAGE Theorem combine to yield the following very meaningful propagation estimate:

1

: r —itH 2
(1.9) Jim 7 [ Is@Pne = o,

In words, the scattering state P.(H )1 escapes all compact sets averagely in time. The second
standard estimate we wish to recall is the Riemann-Lebesgue Lemma, see e.g. [RS3, Lemma
2]. It states that for any self-adjoint operator H and any W € B(H) that is H-relatively
compact, and any 1 € H,

(1.10) lim ||[W Pac(H)e ™y = 0.

t—to0

In particular, this estimate implies that the Fourier transform of the spectral measure
Qi (¢, Eq(H) Pac(H)) = 11y, Poc (1) ()

goes to zero at infinity, i.e.
/Reit’:du(w,pac(mw@) —0 as t— +oo.

Applying the Riemann-Lebesgue Lemma to Example 1.1 gives for all compact sets ¥ C RY,
. —itH || _
(1.11) lim[[15(Q) Pac (H)e s = 0,

Thus, the scattering state P,.(H )1 escapes all compact sets in the long run. In contrast, a
basic argument such as the one given in the Appendix A as well as estimates like (1.4) or (1.5)
indicate that the scattering states tend to concentrate in regions where the conjugate operator
A is prevalent. We continue with the assumptions concerning the operator H.

Regularity Assumptions: There is a self-adjoint operator A on H such that

e Ad: MY c M for all t € R.
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o A5 : Hy e C*A;HY, H).

e AG : V e CVU(A;HY, H.

e A6 V e CY(A;HY, H™Y) and [V,iA], € K(H', H~1).

First we note that C*(A;H', H™') C C*A) for § € {1;1,u;2}. We refer to Section 2
for a complete description of these classes. While A4 and A5 are standard assumptions to
apply Mourre theory, A6 is significantly weaker. It causes H to have no more than the
CLU(A; HY, H 1) regularity, in which case the LAP is not always true, as mentioned previously.
Proposition 2.1 proves the equivalence between A6 and A6’. In many applications, A6’ is more
convenient to check than AG6.

Let u?(Hp) be the set of points where a Mourre estimate holds for Hy. The assumptions
mentioned above imply that p?(H) = p?(Hy), by Lemma 3.3. The uniform propagation
estimate derived in this paper is the following:

Theorem 1.3. Suppose A1 through A6. Let X\ € pA(H) be such that ker(H — \) C D(A).
Then there exists a bounded open interval T containing \ such that for all s > 1/2,

T

1 .
(1.12) lim sup — | |[(A)"°P(H)Er(H)e "Hy|? dt = 0.
T—+o0 YEH T 0

llll<1

This formula is to be compared with (1.4), (1.5) and (1.8). First note that (1.4) implies
(1.12). Also, on the one hand, (1.12) without the supremum is a trivial consequence of (1.5).
On the other hand, if (1.5) held uniformly on the unit sphere, then it would imply (1.12).
But we saw that this is not the case. So the main gain in Theorem 1.3 over Theorem 1.2 is
the supremum. Let us further comment the supremum in (1.12). This is because one can in
fact take the supremum in the RAGE formula, as explained in the Appendix B. The parallel
with the RAGE formula (see Theorem B.1) raises an important concern however. The novelty
of the propagation estimate (1.12) depends critically on the non-compactness of the operator
(A)"*E7z(H). As mentioned previously, it appears that (A)"*FE7(H) is not always compact.
Theorem 1.3 therefore appears to be a new result for multi-dimensional Hamiltonians.

To summarize, the various propagation estimates discussed in the Introduction are listed
in Table 2 according to the regularity of the potential V. Sufficient regularity for the free
operator Hy is implicit. In this table, question marks indicate open problems and R.-L. stands
for Riemann-Lebesgue.

Visof | RAGE | R.-L. | Prop. estimates Prop. Kato - type | LAP
class | formula | formula | (1.5) and (1.6) | estimate (1.12) | Prop. estimate

Cl(A) v v ? ? ? ?

Cchu(A) v v v v ? ?

chl(A) v v v v v v
C%(A) v v v v v v

TABLE 2. Regularity of Hamiltonian H w.r.t. a bound on the decay of the
potential at infinity

We underline that the LAP has been derived for several specific systems where the Hamil-
tonian H belongs to a regularity class as low as C'(A), and sometimes even lower (see for
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example [DMR], |GJ2], [JM] and [Mal] to name a few). In all these cases, a strong propaga-
tion estimate of type (1.4) and absence of singular continuous spectrum follow. We also note
that the derivation of the propagation estimate (1.12) is in fact very similar to the derivation
of a weighted Mourre estimate which is used in the proof of a LAP for Hamiltonians with
oscillating potentials belonging to the C1(A) class, see [G] and [GJ2].

The article is organized as follows: in Section 2, we review the classes of regularity in Mourre
theory and in particular prove the equivalence between A6 and A6’. In Section 3, we discuss
the Mourre estimate and justify that under the assumptions of Theorem 1.3, H and H share
the same set of points where a Mourre estimate holds. In Section 4, we give examples of
continuous and discrete Schrodinger operators that fit the assumptions of Theorems 1.2 and
1.3. In Section 5, we prove Theorem 1.2 and in Section 6, we prove Theorem 1.3. In Section
7, we discuss the compactness of the operator (A) *E7z(H). In Appendix A, we provide a
simple argument as to why we expect scattering states to evolve in the direction where the
conjugate operator prevails. In Appendix B we make the observation that one may in fact take
a supremum in the RAGE Theorem. Finally, in Appendix C we review facts about almost
analytic extensions of smooth functions that are used in the proof of the uniform propagation
estimate.
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Philippe Jaming and Thierry Jecko for precious discussions. We are very grateful to Serge
Richard for explaining to us how [Ri] could be used to improve our previous results. Finally, we
warmly thank the anonymous referee for a meticulous reading of the manuscript and offering
valuable improvements. The authors were partially supported by the ANR project GeRaSic
(ANR-13-BS01-0007-01).

2. THE CLASSES OF REGULARITY IN MOURRE THEORY

We define the classes of regularity that were introduced in (1.1). Let T" € B(H) and A be
a self-adjoint operator on the Hilbert space H. Consider the map

(2.1) R >t e AT ¢ B(H).

Let k € N. If the map is of class C*(R; B(H)), with B(#H) endowed with the strong operator
topology, we say that T € CF(A); whereas if the map is of class C*(R; B(H)), with B(H)
endowed with the operator norm topology, we say that 7' € C*"(A). Note that C¥%(A) C
C¥(A) is immediate from the definitions. If T € C!(A), then the derivative of the map (2.1)
at t = 0 is denoted [T,1A], and belongs to B(H). Also, if T1, T € B(H) belong to the C'(A)
class, then so do T} + Ty and T1T5. We say that T € CHL(A) if

1
/ H[[T, eltA}o,eifA]oHﬂdt < 0.
0

The proof that C2(A) C CH1(A) C CHU(A) is given in [ABG, Section 5]. This yields (1.1).

Now let T" be a self-adjoint operator (possibly unbounded), with spectrum o(7"). Let z €
C\o(T). Wesay that T € C*(A) if (z—T)~! € C*(A), for 4 € {k; k,u;1,1}. This definition does
not depend on the choice of z € C\ o(7'), and furthermore if 7" is bounded and self-adjoint
then the two definitions coincide, see [ABG, Lemma 6.2.1]. If T € C(A), one shows that
[T,iA], € B(D(T'),D(T)*) and that the following formula holds:

(2.2) [(z = T)"LiA], = (2 — T) YT, iA]o(2 — T) L.
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These definitions can be refined. Let G and H be Hilbert spaces verifying the following
continuous and dense embeddings G C ‘H = H* C G*, where we have identified H with its
antidual H* by the Riesz isomorphism Theorem. Let A be a self-adjoint operator on #, and
suppose that the semi-group {e*4};cg stabilizes G. Then by duality it stabilizes G*. Let T be
a self-adjoint operator on H belonging to B(G,G*) and consider the map

(2.3) R >t e AT € B(G,GY).

If this map is of class C¥(R; B(G, G*)), with B(G,G*) endowed with the strong operator topol-
ogy, we say that T' € C*(A; G, G*); whereas if the map is of class C¥(R; B(G,G*)), with B(G,G*)
endowed with the norm operator topology, we say that T" € Ck’u(A; G,G*). f T € CY(A;G,G*),
then the derivative of map (2.3) at t = 0 is denoted by [T',iA], and belongs to B(G,G*). More-
over, by [ABG, Proposition 5.1.6], T' € C¥(A; G, G*) if and only if (z — T)~' € C*(A;G*,G) for
all z € C\ o(T) and 4 € {k; k,u}. This notably implies that C*(A;G,G*) C C¥(A).

In the setting of Theorem 1.3, G = H' := D((Hp)'/?), and T stands for Hy, V or H. In
all cases T € B(H',H™'). We also assume that {el*4},cg stabilizes H', see A4. Consider the
map

(2.4) R >t (Ho) V2 AT (Hy) Y2 € B(H).
The latter operator belongs indeed to B(H) since the domains concatenate as follows:

<H0>71/2 efitA T eitA <H0>71/2 )
O~ ~~ - Y
GB('H_I,'H) GB(’H_I,'H_l) GB(HI,H_I) GB('HI,HI) EB(’H,’HI)

We remark that T € C*(A; H', H 1) is equivalent to the map (2.4) being of class C*(R; B(H)),
with B(H) endowed with the strong operator topology; whereas T' € CFY(A;HY, H ™) is
equivalent to the map being of class C¥(R; B(H)), with B(H) endowed with the norm operator
topology.

In many applications, the free operator Hy has a nice regularity with respect to the conjugate
operator A, i.e. Hy € ck(A;g,g*) for some k > 2 and for some G C H. However, the
perturbation V' typically doesn’t have very much regularity w.r.t. A and showing that V is
of class C1(A;G,G*) directly from the definition is usually not very practical. To ease the
difficulty we provide the following criterion. Its proof is inspired by |Ge, Lemma 8.5].

Proposition 2.1. Suppose that T € K(H', H )NC*(A; HL, H™Y). ThenT € CHY(A;HYL, HY)
if and only if [T,iA], € K(HY, H™Y).

Remark 2.1. The proof actually shows that if T € B(H',H-H)NC(A; H', H™!) and [T,iA], €
KHL,HY), then T € CYY(A;HYL, H™Y). Thus the compactness of T is needed only for the
reverse implication in Proposition 2.1.

Remark 2.2. Adapting the proof of Proposition 2.1, one can see that the results of Proposition
2.1 and Remark 2.1 are still valid if K(H', H™Y) (resp. CH(A; HY, H™L), resp. CVU(A; HE, HY),
resp. B(H', H™1)) is replaced by K(H) (resp. CL(A), resp. CHU(A), resp. B(H)).

Proof. We start with the easier of the two implications, namely 7' € C1"(A; H', H 1) implies
[T,iA]o € K(H', H™1). Let

RSt A(t) := (Ho)~ Y2 AT (Hy) ~1/2 € B(H).
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To say that T € CM(A;H',H™!) is equivalent to A being of class C*(R, B(H)), with B(H)
endowed with the norm operator topology. Since
A(t) — A
(Ho) V2T, 1AL, (H) ™72 = Jimg 22O

t—0 t
holds w.r.t. the operator norm on B(#) and A(t) — A(0) is equal to

<H0>71/267itA<H0>1/2 <H0>71/2T<H0>71/2 <H0>1/2€itA<HO>71/2 o <H0>71/2T<H0>71/2’
€ B(H) € K(H) € B(H) € K(H)

we see that (Ho)~Y/2[T,iA]o(Ho)~"/? € K(H) as a norm limit of compact operators. Hence
[T,iA], € K(HY, H1).

We now show the reverse implication. We have to show that the map A is of class
CY(R,B(H)). This is the case if and only if A is differentiable with continuous derivative
at t =0. Let . '

0(t) := (Ho) ™2 AT, 1Al (Hy) /% € B(H).
The following equality holds strongly in A for all # > 0 due to the fact that T € C*(A, H', H™!):
At) — A(0)
t

Let us estimate the integrand:
H<H0>—1/2 (e—i’TA[T7 iA]Oei’TA — T, iA]o) <HO>—1/2H
< | (Ho) ™2 (e AT 1AL — e TITAT 1AL (Ho) V2|
)2 (e AT A, — [7141,) () 2]
(2.6) < H (Ho)~Y2eTA(Ho)\ /2 (Ho)~V2[T,iA]. (Hp) 1/ (<H0>1/2617A<H0>71/2 B I) H

[I-lI<1 € K(H)

(2:5) —4(0) = 1/t<Ho>_1/2 (e71TAIT,iAloel™ — [T,iA]o) (Ho)~V/2dr.
0

0
+ H <<Ho>*1/2efiTA<Ho>1/2 _ ]) <H0>71/2[T’ iA]O<H0>*1/2 H
€ K(H)

=0
Thus the integrand of (2.5) converges in norm to zero as t goes to zero. It follows that
the Lh.s. of (2.5) converges in norm to zero, showing that A’(0) = £(0). It easily follows that
AN (t) =£(t) for all t € R. Again invoking (2.6) shows that A’ is continuous at ¢t = 0, completing
the proof. O

3. A FEW WORDS ABOUT THE MOURRE ESTIMATE

This section is based on the content of [ABG, Section 7.2], where the results are presented
for a self-adjoint operator T' € C'(A), which (we recall) contains the C*(A; G, G*) class. Let T
be a self-adjoint operator on H with domain D(T') C H. Let G be a subspace such that

D(T) c G € DU(T)V?) ¢ H =H* ¢ D((T)Y?)* € G* < D(T)*.

If T € CY(A,G,G*), then in particular [T,iA], € B(G,G*). If T C R is a bounded interval, then
Ez(T) € B(H,G) and by duality Ez(T') € B(G*,H). We say that the Mourre estimate holds
for T w.r.t. A on the bounded interval Z if there exist ¢ > 0 and K € K(H) such that

(3.1) Er(T)[T,iAlEz(T) > cEf(T) + K
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in the form sense on H x #H. Note that both the Lh.s. and r.h.s. of (3.1) are well-defined
bounded operators on H. For reminder, if this estimate holds, then the total multiplicity of
eigenvalues of T in Z is finite by [ABG, Corollary 7.2.11|, whereas if the estimate holds with
K = 0, then Z is void of eigenvalues, as a result of the Virial Theorem [ABG, Proposition
7.2.10]. We let u(T) be the collection of points belonging to neighborhood for which the
Mourre estimate holds, i.e.

pMT) :={\eR:3¢>0,K e K(H) and T open for which (3.1) holds for T on Z and A € Z}.

This is an open set. It is natural to introduce a function defined on p“(7T") which gives the
best constant ¢ > 0 that can be achieved in the Mourre estimate, i.e. for A € pu(T), let

0\ == :SZHI; {sup{c € R: EZ(T)[T,iA]loEz(T) > cEz(T) + K, for some K € K(H)}}.

Equivalent definitions and various properties of the Q‘ﬁ function are given in [ABG, Section
7.2]. One very useful result that we shall use is the following:

Proposition 3.1. [ABG, Proposition 7.2.7] Suppose that T has a spectral gap and that T €
CL(A). Let R(s) := (¢ — T)~', where s is a real number in the resolvent set of T. Then

(3-2) 07 (V) = (s = A ?oq (s = N7

In particular, T is conjugate to A at \ if and only if R(s) is conjugate to A at (¢ — \)~L.

As a side note, this Proposition is stated without proof in [ABG], so we indicate to the reader
that it may be proven following the same lines as that of [ABG, Proposition 7.2.5] together
with the following Lemma, which is the equivalent of [ABG, Proposition 7.2.1]. Denote Z(\;¢)
the open interval of radius € centered at A.

Lemma 3.2. Suppose that T € C1(A). If X & 0ess(H), then o4(\) = +00. If X\ € 0ess(H),
then 04 ()\) is finite and given by

Q%()O = 61_i>%1+ inf {<w7 [Ta 1A]°¢> tp ENH, Hd)H =1 and EI()\;s) (T)Tﬁ - 1/)}
Furthermore, there is a sequence (1)1 of vectors such that ¥, € H, ||tn]| = 1, (¥n, Ym) =
Onm, EI(,\;l/n)wn =y, and limy, Wm [Ta iA]Own> = IQ%(/\)

We will be employing formula (3.2) in the proof of the main result of this paper, but for the
moment we apply it to show that under the assumptions of Theorem 1.3, H and Hj share the
same points where a Mourre estimate hold. The remark is done after [ABG, Theorem 7.2.9].
Let R(z2) := (2 —T)~! and Ry(z) := (2 — Tp) L.

Lemma 3.3. Let Ty, T and A be self-adjoint operators on H. Let Ty have a spectral gap, and
suppose that T, Ty € CH(A). If R(1) — Ro(i) € K(H) then p(T) = p(Tp).

Remark 3.1. The assumptions of Theorem 1.3 fulfill the requirements of this Lemma, with
(To, T) = (Ho, H). Indeed, D((H)Y/?) = D((Hy)'/?) implies the compactness of R(i) — Ro(i):

R(i) — Ro(i) = R()V Ro(i) = R()(H)"/? (H)~'*(Ho)"/? (Ho)~"*V (Hy) ™"/ (Ho)'* Ry i) .

EB(H) EB(H) €(H) by A3 EB(H)

100



Proof.  Firstly, the assumption that R(i) — Ro(i) is compact implies 0ess(10) = Oess(T).
Because Ty has a spectral gap, cess(To) = 0ess(T) # R, and therefore there exists ¢ € R\
(o(T)Uo(Tp)). For all z,2" € R\ (¢(T) Uoc(Tp)), the following identity holds:

R(z) = Ro(2) = [[ + (7' = 2)R(2)][R(2') — Ro()][I + (' — 2) Ro(2)]-

Thus R(s) — Ro(s) is compact. To simplify the notation onwards, let Ry := Ro(s) and R :=
R(s).

Secondly, if A € puA(Tp), then (¢ — A)~! € pu?(Ry) by Proposition 3.1, and so there is an
open interval Z 3> (¢ — A\)~!, ¢ > 0 and a compact K such that

EI(R())[R(), iA]OEI(Ro) > CEI(R()) + K.

Applying to the right and left by 6(Rp), where § € C°(R) is a bump function supported and
equal to one in a neighborhood of (¢ — \)~!, we get

0(Ro)[Ro,1A4].0(Ro) > c6*(Ro) + compact.

By the Helffer-Sjotrand formula and the fact that R(z) — Ro(2) is compact for all z € C\ R,
we see that §(R) —0(Rp) is compact, and likewise for §2(R) — 0?(Ry). Note also that Ry — R €
Cl1U(A) and so by Remark 2.2, [Ry — R,iA], € K(H). Thus exchanging Ry for R, 0(Ry) for
9(R), and 6%(Rg) for #%(R) in the previous inequality, we have

O(R)[R,iA],0(R) > ch*(R) 4 compact.

Let Z/ C 6=*({1}). Applying Ez(R) to the left and right of this equation shows that the
Mourre estimate holds for R in a neighborhood of (¢ — A\)~!. Thus A € u4(T") by Proposition
3.1, and this shows p?(Ty) € pA(T). Exchanging the roles of T and Tj shows the reverse
inclusion. g

4. EXAMPLES OF SCHRODINGER OPERATORS

4.1. The case of continuous Schrédinger operators. Our first application is to contin-
uous Schrédinger operators. The setting has already been described in Example 1.1 for the
most part. For an integer d > 1, let H := L?*(R?). The free operator is the Laplacian, i.e.
Hop := —A = =% 82/02? with domain the Sobolev space H2 := H2(R?). Then Hy is a
positive operator with purely absolutely continuous spectrum and o(Hy) = [0, +0o0). Let Q
be the operator of multiplication by = = (1, ...,z4) € R%, and let P := —iV. Set

H = HO + ‘/sr(Q) + ‘/ir(Q)7

where Vi (z) and Vi (z) are real-valued functions belonging to L*(R?), satisfying Vi (x),
Vir(z) = o(1) at infinity. Then Vg (Q) and V}(Q) are bounded self-adjoint operators in H
and Ho-form relatively compact operators, i.e. Vi (Q), Vi (Q) € K(H', H™'), where H! de-
notes the form domain of Hy. The latter is a direct consequence of the following standard
fact:

Proposition 4.1. Let f,g be bounded Borel measurable functions on R® which vanish at

infinity. Then g(Q)f(P) € K(L*(R?)).

Assumptions Al - A3 are verified. We add that oess(H) = [0, 400) by the Theorem of Weyl
on relative compactness. Moving forward, we use the following result:
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Proposition 4.2. |[ABG, p. 258| Let T and A be self-adjoint operators in a Hilbert space
H and denote H' = D((T)'/2), the form domain of T, and H~' := (H')*. Suppose that
AN C HY. Then the following are equivalent:

(1) T € CH(A;HL, HY)

(2) The form [T,iA] defined on D(T) ND(A) extends to an operator in B(H, H™L).

Remark 4.1. The form [T,i4] is defined for 1, ¢ € D(T) ND(A) as follows :
(W, [T,1A]6) = (T*,1A) — (A™,iT'6) = (Th,iA¢) — (Av,iT9).
The last equality holds because T and A are assumed to be self-adjoint.

Let A:=(Q-P+ P-Q)/2 be the generator of dilations which is essentially self-adjoint on
the Schwartz space S(R?). The relation

(eitA¢)($) — etd/Qw(@tQj)’ for all ¢ S L2([Rd)>x € [Rd

implies that {el*4};cg stabilizes H2(R?), and thus HP(R?) for all # € [—2,2] by duality and
interpolation. Thus A4 holds. A straightforward computation gives

<77/}7 [H071A]¢> = <w7 2HO¢>

for all ¢, € H2ND(A). Let H' := D((Hy)'/?). We see that [Hp,1A4] extends to operator in
B(H!', H™'), thereby implying that Hy € C'(A;H', H~') by Proposition 4.2. The extension
of [Hy,iA] is in fact [Hp,iA],. An easy induction gives Hy € C*(A; H',H~!) for all k € N. In
particular, A5 is fulfilled. The strict Mourre estimate holds for Hy with respect to A on all
intervals Z verifying Z C (0, 400). In particular, u(Hg) = (0, 4+00).

We now examine the commutator between the potentials Vi (Q) + Vi:(Q) and A. For the
long-range potential, we now additionally assume that = - VW, (z) exists as a function and
belongs to L®(R?). A computation gives

(¥, [Vi(Q),14]¢) = = (¥, Q - VVi(Q)¢),
for all ¢,¢ € D(A). In particular, this shows that [V},(Q),iA] extends to an operator in
B(H',H~!), and by Proposition 4.2, this implies that Vi,(Q) € C*(A;H',H~!). Furthermore,
W (Q),iA]e = —Q - VW(Q). If - VVi(x) = o(1) at infinity is further assumed, then
(Ho)~'2Q - VWi (Q)(Ho)~1/? € K(L*(R%)) by Proposition 4.1, i.e. [Vi,(Q),14], € K(H', H1).
In this case, we have that Vi,(Q) € CY4(A; H,H~1) by Proposition 2.1.

We now analyze the commutator with the short range potential, and additionally assume
that (z)Vi(z) € L%®(RY). For ¢, ¢ € D(A), we have

(¥, [Var(Q),14]9) = (Var(Q)1,149) + (1A%, Ver (Q) )
= ((QVar(@)¥,(Q)TH(Q - P+ d/2)0) + ({Q)71(1Q - P+ d/2)¢, (Q)Vsx (Q)9).

We handle the operator in the first inner product on the r.h.s. of the previous equation. Note

that (Q)~1(iQ - P+ d/2) € B(H',H) and (Q)Vi(Q) € B(H,H™!). Thus

(4.1) (@Var(Q) x (Q)7H(Q - P +d/2)

belongs to B(H!',H~!). The operator in the second inner product on the r.h.s. of the pre-
vious equation also belongs to B(H!,H 1), because it is the adjoint of (4.1). We conclude
that [Vi(Q),i4] extends to an operator in B(H!,H~!), and by Proposition 4.2, this implies
that Vi (Q) € CH(A;HL, H™!). The extension of [Vi(Q),iA4] is precisely [Vi(Q),iA]o. If
z - VVi(x) = o(1) at infinity is further assumed, then (Ho)~/2(Q)Vi(Q) € K(L*(R%)) by
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Proposition 4.1, i.e. (Q)Ve(Q) € K(H,H™1). So (4.1) and its adjoint belong to K(H, H™1).
Thus [Vi.(Q),i4], € K(H!, H™) and Vi (Q) € CH(A; HE, H L) follows from Proposition 2.1.

The above calculations along with Theorems 1.2 and 1.3 yield the following specific result
for continuous Schrodinger operators:

Theorem 4.3. Let H := Hy + Vi (Q) + Vi (Q) and A be as above, namely

(1) Hy=—-A and A= (Q-P+P-Q)/2 in L*>(R?),

(2) Vir(x) and Vie(x) are real-valued functions in L=(R?),

(8) lim Vg (z) = lim Vi, (z) = 0 as ||z] = +oo,

(4) lim(z) Ve () =0 as ||z|| = +oo, and

(5) x - VVi(x) exists as a function, belongs to L>°(R%), and limz - Vi, (z) = 0 as ||z| —

+00.

Then Vi (Q) and Vi (Q) belong to CYu(A;HY, H™Y). In particular H € CY(A). Moreover,
pA(H) = p(Hy) = (0, +00), by Lemma 3.3. Finally, for all X € (0,+00) there is a bounded
open interval T containing \ such that for all s > 1/2 and 1 € H, the propagation estimates
(1.5), (1.6) and (1.12) hold.

Remark 4.2. Notice that the condition ker(H — X\) C D(A) that appears in the formula-
tion of Theorems 1.2 and 1.3 is totally absent here. This is because under the assumptions
lim(z) Ve (z) =lima - VW (x) =0 as ||z|| — 400, it is well-known from research in the sixties
that the continuous Schrodinger operator H does not have any eigenvalues in [0, +00), see
articles by Kato [K2], Simon [Si] and Agmon [A].

4.2. The case of discrete Schréodinger operators. Our second application is to discrete
Schrédinger operators. For an integer d > 1, let H := EQ(Zd) The free operator is the discrete
Laplacian, i.e. Hy := A € B(H), where

(4.2) (Ag)(n) = > $(n)—b(m).

m:||m—n||=1

Here we have equipped Z¢ with the following norm: for n = (n1, ..., nq), ||n|| := Zle Ing|. Tt
is well-known that A is a bounded positive operator on ‘H with purely absolutely continuous
spectrum, and o(A) = 0,.(A) = [0,4d]. Let V be a bounded real-valued function on Z% such
that V(n) — 0 as ||n|| = oco. Then V induces a bounded self-adjoint compact operator on # as
follows, (Va))(n) := V(n)y(n). Recall that a multiplication operator V on ¢?(Z%) is compact
if and only if V(n) — 0 as ||n|| — oo. Assumptions Al - A3 are verified. Set H := Hy+ V.
Then H is a bounded self-adjoint operator and oess(H) = [0, 4d].

To write the conjugate operator, we need more notation. Let S = (51, ...,Sq), where, for
1 <i<d, S; is the shift operator given by

(Si)(n) :=(ny,...,n; — 1,....nq), foralln e Z%and ¢ € H.
Let N = (Ny, ..., Ng), where, for 1 < i < d, N; is the position operator given by

(N;Y)(n) :=nitp(n), with domain  D(N;) := {w eH: Z Ingap(n))? < oo}.
nez4
The conjugate operator, denoted by A, is the closure of the following operator
d
> (i = S;)N; + Ni(Si — S7),  with domain  D(Ag) = £o(Z%),
i=1

i

(43) Ao = 9
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the sequences with compact support. The operator A is self-adjoint, see [BS| and [GGo|. That
{4} ;R stabilizes the form domain of Hy is a triviality, because D(Hg) = H. So Assumption
A4 is true.

Next, we study the commutator between Hy and A. A calculation shows that

d
(4.4) (i, [Ho, 1AJ) = (1, > Ay(4 = Ai)),

i=1
for all ¢ € £o(Z%). Here A; :=2 — S; — S¥. Since Hy is a bounded self-adjoint operator, (4.4)
implies that Hy € C'(A), thanks to a simple criterion for such operators, see [ABG, Lemma
6.2.9] and [ABG, Theorem 6.2.10]. We could also have invoked Proposition 4.2, but that is
a bit of an overkill. An easy induction shows that Hy € C*(A) for all k € N. In particular,
Assumption A5 holds. By (4.4) and [ABG, Theorem 8.3.6], we have that

(4.5) p(Ho) = [0,4d] \ {4k : k=0, ...,d}.

Let us now study the commutator between V and A. Let 3V be the shifted potential acting
as follows:

[(mV)Y](n) ==V (n,....,ni — 1,...,nq)1p(n), forall ¢ € H.

Define 7V correspondingly. A straightforward computation gives

d
W, ViA) = 3 (0, (@7 + N)(V = 5V)S; + (27 = N)(V = V)83 )v),

i=1
for all o € £o(Z%). If sup,eza [n:(V — 7V)(n)| < +oc is assumed for all 1 < i < d, we
see that V' € C1(A). The bounded extension of the form [V,iA] is precisely [V,iA],. If
lim [n;(V — 7;V)(n)] = 0 as ||n|| — +oo for all 1 < i < d is further assumed, then [V,iA], €
IC(H). This is equivalent to V € C1(A), by Remark 2.2. Thus A6 is fulfilled.

The above calculations along with Theorems 1.2 and 1.3 yield the following specific result

for discrete Schrodinger operators:

Theorem 4.4. Let H :== Hy+V and A be as above, namely

(1) Hy is given by (4.2) and A is the closure of (4.3),

(2) V(n) is a bounded real-valued function defined on 7¢,

(3) imV(n) =0 as ||n|| = +oo, and

(4) lim |n;(V — 7;V)(n)| = 0 as ||n|]| = 400 for all 1 < i< d.
Then V belongs to CHU(A). In particular H € CY(A). Moreover, p(H) = p?(Hy) =
[0,4d] \ {4k : k = 0,...,d}, by Lemma 3.3 and (4.5). Finally, for all X € p(H) there is a
bounded open interval T containing \ such that for all s > 1/2 and ¢ € H, the propagation
estimates (1.5), (1.6) and (1.12) hold.

Remark 4.3. As in the continuous operator case, the condition ker(H — \) C D(A) holds
here for all X € pA(H). Indeed, if 1 € ker(H — \) and X € p(H), then for all p > 0 there
is ¢p > 0 such that [1(n)| < cp(n)™P, n € Z%. This is a consequence of [Ma2, Theorem 1.5]
for instance. Under Assumptions (3) and (4), the absence of positive eigenvalues holds for
one-dimensional discrete Schrodinger operators, by [Ma2, Theorem 1.3]. To our knowledge,
the absence of positive eigenvalues under Assumptions (3) and (4) is an open problem for
multi-dimensional discrete Schrodinger operators on 7¢.
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5. PROOF OF THEOREM 1.2
We start with an improvement of [GJ1, Proposition 2.1].
Lemma 5.1. For ¢, € D(A), the rank one operator |¢){¢| : 1 — (¢, V)¢ is of class CLU(A).
Proof. First, by [ABG, Lemma 6.2.9], |¢)(¢| € C(A) if and only if the sesquilinear form
D(A) 3 ¢ = (i, [|0) (el Al) == (@, ¥)p, AY) — (A, (@) §)

is continuous for the topology induced by H. Since

(0, [lo) (el Al) = (¥, @) (Ap, ¥) — (¥, Ap) {0, ) = (¥, (|9)(Ap| — [Ag)(¢l) ¥),

we see that |¢)(p| € C1(A) and [|¢)(p], Alo = |¢)(Ap| — | Ad){y|, which is a bounded operator
of rank at most two. Apply Proposition 2.1, more specifically Remark 2.2, to obtain the
result. O

Next, we quote for convenience the result of [Ri| that we use in the proof of Theorem 1.2.

Theorem 5.2. [Ri, Theorem 1| Let H and A be self-adjoint operators in H with H € CHU(A).
Assume that there exist an open interval J C R and ¢ > 0 such that n(H)[H,iAlon(H) >
c-n*(H) for all real n € C°(J). Let a and t be real numbers. Then for each real n € C°(J)
and for each v < ¢ one has uniformly in a,

| E(—o0,a+vt] (A)eiitHn(H)E[aﬁoo)(A)H —0 as t— +o0.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let T C R be a compact interval as in the statement of Theorem 1.2,
that is, for all A € Z, A € p(H) and ker(H — \) C D(A). Let A € Z be given, and assume
that a Mourre estimate holds with K € K(#) in a neighborhood J of A.

Step 1: This step is a remark due to Serge Richard. In this step, we assume that A is not
an eigenvalue of H. In this case, from the Mourre estimate, we may derive a strict Mourre
estimate on a possibly smaller neighborhood of A, because E;(H)KE;(H) converges in norm
to zero as the support of J shrinks to zero around A. So, without loss of generality, there is
an open interval J containing A and ¢ > 0 such that a strict Mourre estimate holds for H on
J, l.e.

EJ(H) [Hv iA]oEJ(H) 2 CEJ(H)'

In particular, J does not contain any eigenvalue of H. We look to apply [Ri, Theorem 1|. Let
1 € H, and assume without loss of generality that ||¢|| = 1. Fix v € (0,¢) and let a € R. Let
n € C°(J) be such that max,ec s |[n(x)| < 1, so that ||n(H)|| < 1. Note also that [[(4)%|| <1
for all s > 0. Then

1(A) =™ n(H )| < [(A) e n(H) B _o.0) (AP + [[(A) 5™ n(H) Efy 1o0) (A) 9]
|E(—soa) (DY + 1(A) ™ B s atot) (A)e T n(H) Efg 400 (A1
+ {A) ™ Elagot +00) (A e n(H) Efg yo0) (A
< E(—oo.a) (DY + 1 Bovsarot) (A)e ™ T n(H) Efg 4o0) (Al
+{A) ™ E(a ot 100) (A |

< |
< |
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Let € > 0 be given. Choose a so that ||[E(_s4)(A)¥] < €/3. Then take t large enough so
that the other two terms on the r.h.s. of the previous inequality are each less than £/3. The

second one is controlled by [Ri, Theorem 1] and the third one by functional calculus. Then
|(A4) e Hy(H)p]| < e Thus

lim [ (A4) e~ y(H)y|| = 0.

t—+4o00

By taking a sequence n € C2°(J) that converges pointwise to the characteristic function of .J,
we infer from the previous limit that

lim |[(A) e 2 E;(H)y| = 0.

t—-+o0

Finally, as there are no eigenvalues of H in J, E;(H) = E;(H)P.(H) and we have
(5.1) lim |[(A) e "2 E;(H)P.(H)y| = 0.

t—+o0

Step 2: In this step, A € Z is assumed to be an eigenvalue of H. By adding a constant to
H, we may assume that A # 0. By assumption, there is an interval J containing A, ¢ > 0 and

K € K(H) such that
E;(H)[H,iAlcE;(H) > cE;(H) + K.
As the point spectrum of H is finite in J, we further choose J so that it contains only one

eigenvalue of H, namely A. Furthermore, the interval J is chosen so that 0 ¢ J. Denote
P = P\ (H) and P+ :=1— Py, (H). Also let H' := HP~+. Then

PYE;(H)[H,iAl,E;(H)P* > cE;(H)P+ + P*E;(H)KE;(H)P*.

Functional calculus yields P+E;(H) = E;(HP=) - this is where the technical point 0 ¢ J is
required. Moreover, P+FE;(H)K E;(H)P* converges in norm to zero as the size of the interval
J shrinks to zero around A. Therefore there is ¢ > 0 and an open interval J’ containing \,
with J' C J, such that

EJ/(H/)[H/, iA]OEJ/(H/) >dEy (H/)
In other words, a strict Mourre estimate holds for H on J'. Now H' := HP+ = H—HP. Note
that P is a finite sum of rank one projectors because \ € MA(H ). Thanks to the assumption

ker(H —\) C D(A), we have by Lemma 5.1 that P € C%(A). Thus H' € C%(A). Performing
the same calculation as in Step 1 with (H’,.J’) instead of (H,J) gives

lim ||(A) e " B (H')y|| = 0.

t—-+o0
Since e ' B (H') = e "M E; (H) P, we have

lim |(A) e T E; (H)PLy|| = 0.

t——+oo
The only eigenvalue of H belonging to J' is A, so Ey(H)P+ = E;/(H)P.(H). Thus
(5.2) lim |(A) e T E;(H)P.(H)Y| = 0.

t—-+o0

Step 3: In this way, for each A € Z, we obtain an open interval Jy or J} containing A such that
(5.1) or (5.2) holds true, depending on whether A is an eigenvalue of H or not. To conclude,
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as

U Ul U =«

AETZ, AEZ,
Neoc(H) AEopp(H)

is an open cover of Z, we may choose a finite sub-cover. If {J;}" ; denotes this sub-cover, we
may further shrink these intervals so that J; NJ; = 0 for i # j, UJ; =7, and J; N 7] € o.(H)
fori# j. Thus Ez(H)P.(H) = . Ej,(H)P.(H). Then, by applying (5.1) and (5.2) we get

n

lim ||(A) e " Er(H)P.(H)Y| < lim

t—+4o00 t——+o0

(A) =™ By, (H) Po(H)y|| = 0.
i=1
This proves the estimate (1.5).
Step 4: We turn to the proof of (1.6). Since, A is self-adjoint, D(A) is dense in H. Let
{¢n}22, C D(A) be an orthonormal set. Let W € K(#) and denote Fiy := SN (¢, YW by
The proof of [RS1, Theorem VI.13| shows that [|[W — Fy|| — 0 as N — 400. Then
IW P(H)Ez(H)e || < (W — Fy)Po(H)Ez(H)e || + || Fy Po(H) Er (H)e ™|

IW — Ewl| + [ Ex (A [{A4) " Pe(H) Br(H)e o).

—_———
— 0 as N—+o0 — 0 as t—+o00

The result follows by noting that Fi(A) is a bounded operator for each N. If W is H-relatively
compact, use the fact that E7(H)(H + 1) is a bounded operator. O

<
<

6. PROOF OF THEOREM 1.3
To prove the result, we will need the following fact:

Lemma 6.1. Let T be a self-adjoint operator with T € C*(A). Let A € p(T) and suppose that
ker(T' —\) C D(A). Then there is an interval T C pu(T) containing X such that P-(T)Ez(T)
and P.(T)n(T) are of class C*(A) for all n € C(R) with supp(n) C T.

Proof. Since there are finitely many eigenvalues of 7T in a neighborhood of A, there is
a bounded interval Z containing A such that ker(7" — X)) C D(A) for all X' € Z. Then
PH(T)Ez(T) is a finite rank operator and belongs to the class C'(A) by Lemma 5.1. Moreover
T € CY(A) implies n(T) € C'(A), by the Helffer-Sjéstrand formula. So PH(T)Ez(T)n(T) €
Cl(A) as the product of two bounded operators in this class. Finally, P.(T)n(T) = n(T) —
PHT)Ez(T)n(T) is a difference of two bounded operators in C!(A), so P.(T)n(T) € C(A).

O

Proof of Theorem 1.3. Since Hy is semi-bounded and oess(H) = 0ess(Hp), there is ¢ € R\
(o(H) U o(Hp)). Denote the resolvents of H and Hy respectively by R(z) := (z — H)™! and
Ro(2) := (z— Hp)~!. Also denote the spectral projector of R(z) onto the continuous spectrum
by P.(R(z)). We split the proof into four parts. First we translate the problem in terms of
the resolvent R(s). Second we show the following formula:

Fe(R())O(R())[R(s), 1p(A/L)]O(R(<)) Pe(R(<)) >

(61) L P (RIDOCR() (CLA/L) ™ + K )O(R()) Pu(R(),
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where 6 is a smooth function compactly supported about (¢—\)~!, ¢ is an appropriately chosen
smooth bounded function, L € RY is sufficiently large, K is a compact operator uniformly
bounded in L, C' > 0, and s € (1/2,1). 0,¢,C and s are independent of L. This formula is
expressed in terms of the resolvent R(s). Third, we look to convert it into a formula for H.
We show that the latter formula implies the existence of an open interval J containing A\ such
that

Pe(H)E;(H)[R(s),ip(A/L)]o E;(H)Pe(H) >

(6.2) L™ P.(H)E;(H) (C(A/Lr?s + K) E;(H)Po(H).

We note that the operator K is the same in (6.1) and (6.2). Fourth, we insert the dynamics
into the previous formula and average over time. We notably use the RAGE Theorem (B.1)
to derive the desired formula, i.e.
e :

(6.3) lim sup — ||<A>_Se_ltHPC(H)EJ(H)wHth = 0.

T—+o0 ll)l<1 T
Part 1: Let A € pu”(H) be such that ker(H — \) C D(A). Then there are finitely many
eigenvalues in a neighborhood of A including multiplicity. We may find an interval Z = (Ag, A1)
containing \ such that Z C p(H) and for all X' € Z, ker(H — \') C D(A). Define

(6.4) f:R\{s} =R, f:x—1/(c—ux).

Since eigenvalues of H located in Z are in one-to-one correspondence with the eigenvalues of
R(s) located in f(Z) = (f(Xo), f(A1)), it follows that f(Z) is an interval containing f(\) such
that f(Z) C p(R()) and ker(R(s)—X') € D(A) for all X' € f(Z). Note the use of Proposition
3.1.

To simplify the notation in what follows, we let R := R(s), Ro := Ro(s) and P, := P.(R(s)),
as ¢ is fixed. Also let R4(z) := (2 — A/L)~!, where L € R*.
Part 2: Let 6,7,y € C*(R) be bump functions such that f(\) € supp(f) C supp(n) C
supp(x) C f(Z), nf = 6 and xn =n. Let s € (1/2,1) be given. Define

v :R—R, ©: tr—>/ V25,

Note that ¢ € S°(R). The definition of S°(R) is given in (C.1). Consider the bounded operator
i
2rL

By Lemma 6.1 with T'= R, P.ny(R) € C*(A), so
[Pen(R), Ra(2)]o = L™ Ra(2)[Pen(R), AloRa(2).
In the formula defining F', we introduce P.n(R) next to P.6(R) and commute it with R4(2):

F := PO(R)[R,ip(A/L)]0(R) P, = %(Z)PCG(R)RA(Z)[R, iAo Ra(2)0(R) P dz A dz.

— Q;L gf 2)P.0(R) <RA(Z)PC77(R) + [P.n(R), RA(Z)]O) [R,iA]ox
(n(R)PCRA(Z) + [RA(Z)v PcU(R)]o)Q(R)PC dz Ndz
~ ol
+ L7'PO(R) (I + I + I3) O(R) P,

%(Z)PCH(R)RA(,Z)PCU(R) [R,iA]on(R)P.RA(2)0(R)P. dz A dz
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where

I = i o %(z)[Pcn(R), RA(Z)]O[R’ iA]On(R)PCRA(z) dz A dE’
_ 2; %(2)[13&7(}%), RA(2)]o[R,14], dz A dZ,
™ Jc O
1= - [ P2 () Ra) Pen(R)[R.AAL[RA(2). Pen(R)]e dz A .

21 Jo 02

Applying (C.5) and Lemma C.4, and recalling that s < 1, we have for some operators B;
uniformly bounded with respect to L that

I = <%>_S%<%>_S, fori = 1,2,3.

Using xn = 1, we insert x(R) next to n(R) . So far we get the following expression for F :

= 57 | e ORI RA() Pox(R) R SALn(R) x(R)PeRa ()O(RP. d =

to be developed

+ PCH(R)<%>7S (W) <%>789(R)PC.

Now write
n(R)[R,iA]on(R) = n(R)R[H,iAlsRn(R) = n(R)R[Ho,1Als Rn(R) + n(R)R[V,1A]o Rn(R).
Let us start with the second term on the r.h.s. of this equation. It decomposes into

n(R)R[V,iAloRn(R) = n(R) R(H) (H)~"/? (H)~/2(Ho)"/? (Ho)~'/?[V,iA]o(Ho) /2 x

N——
€ B(H) € B(H) € K(H) by A6’
x (Ho)'/>(H)™'/?(H)""/* (H)R n(R).
N—_——— — N——
€ B(H) € B(H)

It is therefore compact. As for the first term on the r.h.s., it decomposes as follows
n(R)R[Ho, iAo Rn(R) = n(Ro)Ro[Ho,1A]o Ron(Ro) + Z1 + 2,

where

E1 = (n(R)R — n(Ro)Ro)[Ho,1A]cRn(R) and Ep := n(Ro)Ro[Ho,1A]o(Rn(R) — Ron(Ro)).

We show tht = is compact, and similarly one shows that =9 is compact. We have

1 = (n(R)R — n(Ro) Ro)(Ho)"/* (Ho) ~"/?[Ho,1A]o(Ho)™"/* (Ho)'/*(H)~'/>(H)~'/* (H) R n(R).
€ K(H) € B(H) by A5 € B(H) € B(H)
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Let us justify that (n(R)R — n(Ro)Ro)(Ho)'/? is compact. Let s : 2 — zn(z). By the
Helffer-Sjostrand formula,

i Ok

(n(R)R — 1(Ro)Ro) (Ho)'/? = o | 522 ((z—R)™ — (2 — Ro)™Y) (Ho)Y/? dz A dz

i [ OR
=5 . 5(2)(2 — R)'RVRy(z — Ro)""(Ho)"/? dz A dz
== a—f(z)(z — R)™ R(H)Y2 (H) V2 (Hp)'/* x

21 Je 0% —_——

€ B(H) € B(H)
x (Ho) ™2V (Ho) ™'/ (Ho)'/* Ro(Ho)"/*(z — Ro) ™" dz A dz.
€ K(H) by A3 € B(H)

The integrand of this integral is compact for all z € C\ R, and moreover the integral converges
in norm since x has compact support. It follows that (n(R)R — n(Ro)Ro){Hp)"/?, and thus
=1, is compact. Thus we have shown that

(6.5) n(R)[R,iA]on(R) = n(Ro)[Ro,1Alon(Ro) + compact.
Therefore there is a compact operator K7 uniformly bounded in L such that

i %(z)PCH(R)RA(z)MRA(z)H(R)PC dz Ndz

~ 27l Jo 02
Kq A\—s By + By + Bs A\ —s
+ POR)ZHO(R)P. + PO(R)( ) (LQ) () omP.
Here M := P.x(R)n(Ro)[Ro,1A]on(Ro)x(R)P.. Since P.x(R),n(Ro) and [Rp,iA], belong to
Cl(A), it follows by product that M € C'(A) and we may commute Ra(z) with M:

i 0P
- 2nL C%
i

2L Je

(2)P.B(R)RA(2)*MO(R)P. dz A dz

00 (IPOR RA) M, RAO(R)P: dz A2

A

+PC9(R)%9<R>PC + Pc9<R><>_S< - =) 6(R)P..

L

Bl+Bz+B3) <A
L

We apply (C.8) to the first integral (which converges in norm), while for the second integral we
use the fact that M € C'(A) to conclude that there exists an operator By uniformly bounded
in L such that

F =L"'P.O(R)¢ (A/L)MO(R)P.

+PC9(R)%H(R)PC + PCH(R)<%>7S <Bl +B?;B3+B4> <%>789(R)PC.

Now ¢'(A/L) = (A/L)~2%. As a result of the Helffer-Sjostrand formula, (C.5) and (C.10),

[(A/L)=*, M]o(A/L)* = L™'Bs
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for some operator Bs uniformly bounded in L. Thus commuting (A/L)™° and M gives

F= L*lpce(R)<%>_SM<%>_89(R)PC
A

+P69(R>%6(R>Pc + P09<R><>s<

- —>7$9(R)PC

L

Bl+BQ+BS+B4+B5> <A
L

> e PO () Pox(Rm(Ro X(RIP( %) “0(R)P.

K| + K, A\=5 (B1+ By + B3+ By + Bs\ /A\~5
+ PO(R)=—20(R)P. + PCH(R)<Z> < - ><L> 9(R)P.,

where ¢ > 0 and Ky come from applying the Mourre estimate (3.1) to Ry on f(Z). Exchanging
n(Rp)? for n(R)?, we have a compact operator K3 uniformly bounded in L such that

K1+ Ko+ K3

: 0(R)P,

F> cL*lpce(R)<%>75PCX(R)77(R)2X(R)PC<%>759(R)PC + PA(R)

+PC9(R)<%>_S (Bl + By +f§,+B4+Bs) <%>_56(R)PC.

We commute Pex(R)n(R)%x(R)P. = Pon(R)?P, with (A/L)~*, and see that
[PC,’](R)QPCﬂ <A/L>_S]0<A/L>S - L_1B6

for some operator Bg uniformly bounded in L. Thus

Ay -2 K+ Ko+ K
F;aL’lPCG(R)<Z> O(R)P, + PCG(R)%Q(R)PC

+PCH(R)<é>7S (Bl+B2+BS+B4+Bs+Be> <A

L L2 Z> O(R)Pe.

Taking L large enough gives C' > 0 such that ¢+ (B + B2 + B3 + By + Bs + Bg)/L > C.
Denoting K := K; + K + K3 yields formula (6.1).
Part 3: For all open intervals (e, e2) located strictly above or below ¢ we have the identity

(6.6) Eey,e0)(H) = E(f(er), f(e2)) (B(S)),

where f is the function defined in (6.4). Now let J := interior(¢~'{1}). This is an open
interval and we have E7(R)§(R) = Ez(R). Thus applying E7(R) to (6.1) gives

P.E7(R)[R,ip(A/L)|sE7(R)P. > L' P.E7(R) (C{A/L)"* + K) E7(R)P..

We have that P.E7(R) := P.(R)E 7(R) is a spectral projector of R onto a finite disjoint union
of open intervals. Let {\;} be the (finite) collection of eigenvalues of R located in J. Then
{f71(\i)} are the eigenvalues of H located in f~1(7), and by (6.6),

Pe(R)Eg(R) =} Eg(R) =} Epsg)(H) = Pe(H)E g (H),

where the J; are the open intervals such that U;J; U {\;} = J. Denoting the open interval
J = f~YJ) proves formula (6.2). Note that A € J.
Part 4: Let F’ be the Lh.s. of (6.2), i.e.

F' = Po(H)E;(H)[R(s),ip(A/L)|o Ey (H) Pe(H).
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Formula (6.2) implies that for all » € H and all T > 0:
L (" i c (" i |2
= /0 (e, Pl y)at > /0 A/ D) By ()P || der

+ % / T(E J(H)P.(H)e "oy, KE;(H)P.(H)e ") dt.
0

First, for all L > 1,

L (" . L., .
= / et gt — [ P (H)E;(H)R(s)p(A/L)R(<)Ey (H)Po(H)e ] ——— 0.
Second, by the RAGE Theorem (B.1),
1 g itH itH
sup (Ej(H)P.(H)e "7, KE;(H)P;(H)e ") dt
lpli<t £ Jo
e .
< sup — || KE;(H)e P (H)y| dt
i<t T Jo
1 T 1/2
< sw (g [CIKEme IR dr)
lel<t \T" Jo T—=00
It follows that for L sufficiently large (but finite),
1 T Ay —s . 2
li - =) e "MP(H)E;(H)Y| dt=0.
Pim, s 7 [ (T) e RAEDEH| dt =0
Finally (6.3) follows by noting that (A)~°(A/L)% is a bounded operator. O

7. A DISCUSSION ABOUT THE COMPACTNESS OF OPERATORS OF THE FORM (A) *FEr(H)

As pointed out in the Introduction, the novelty of formula (1.12) is conditional on the non-
relative compactness of the operator (A) *Ez(H). The non-compactness of (A) *E7(H) is
also what sets (1.5) apart from (1.6). We start by noting that (A)"*Ez(H) is H-relatively
compact if and only if it is compact, since Z C R is a bounded interval.

We will allow ourselves to consider operators of the form (A)~*x(H), where y is a smooth
function, rather than (A) *Ez(H). On the one hand, if (A)"*Ez(H) is compact, then so is
(A)~*x(H), where x is any smooth function that has support contained in Z. On the other
hand, if (A)7*x(H) is compact, where x is a smooth bump function that approximates the
characteristic function of Z and equals one above Z, then so is (A)"*E7(H).

We will also suppose that H = Hy + V, where V' is some Hy-form compact operator, and
Hy is viewed as the "free" operator. In other words we will work under the assumption A3.
The reason for doing so is that Hgy is much easier to work with than H in practice. In this
case we note that (A)~*x(H) is compact if and only if (A)~%x(Hp). We therefore have the
question: Is (A)*x(Hp) a compact operator? A first result is:

Proposition 7.1. Let Hy, A be self-adjoint operators in H. Suppose that Hy has a spectral
gap. Suppose that Hy € C1(A) and that for some A € R, [(Hy — A\)"1,id]o := C > 0 is an
injective operator. Then A does not have any eigenvalues. In particular, (A)=°5 & KC(H) for
any s > 0.
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Remark 7.1. The examples of Section /j satisfy the hypotheses of Proposition 7.1. The posi-
tiity of C' holds because o(Hy) C [0, +00). The injectivity holds because 0 is not an eigenvalue
Of Hg.

Proof.  Let v be an eigenvector of A. Since A € C'((Hy — A\)™!), the Virial Theorem
(JABG, Proposition 7.2.10]) says that 0 = (1, [(Hy — \)"L,i4loy) = (1, Cy) = |VCy|>.
The injectivity of v/C forces ¢ = 0, i.e. op(A) = 0. Now, it is known that the spectrum of
a self-adjoint operator with compact resolvent consists solely of isolated eigenvalues of finite
multiplicity, see e.g. [K, Theorem 6.29]. So if A had compact resolvent, then we would have
o(A) = 0p(A) = (. However this is not possible because the spectrum of a self-adjoint
operator is non-empty. We conclude that A does not have compact resolvent. Writing (z —
A7t = (2 — A)7HA)(A)7L, we infer that (A)~! & K(H). Finally, consider the bounded self-
adjoint operator (A)~ % for some s > 0. If this operator were compact, then by the spectral
theorem for such operators we would have (4) ™% = 3" X\i(¢;, -)¢; for some eigenvalues {\;} and

eigenvectors {¢;} which form an orthonormal basis of H. But then (A)~! =", )\3/8<¢i, Vi,
implying that the latter operator is compact. This contradiction proves (A)~* & IC(H) for all
s> 0. U

Unfortunately, this result does not settle the debate because it does not guarantee the non-
compactness of (A)7*x(Hp). In fact, we have examples where this operator is compact. For
lack of a more robust result, we shall spend the rest of this section examining several examples.
Our conclusion is that (A)~*x(Hp) is sometimes compact, sometimes not. Specifically, in each
of our examples, the compactness holds in dimension one but does not in higher dimensions. To
start off, we cook up a simple example that will reinforce the viewpoint that non-compactness
is possible, especially in higher dimensions.

Example 7.2. Let H = L*(R?), Hy := —0?/0x3 and A := —i(210/0x1 + 0/0x171) be a
conjugate operator to Hy. The spectrum of Hy is purely absolutely continuous and o(Hy) =
[0,4+00). In particular, ker(Hy — \) = 0 for all X € R. Also [Hy,iAlo = 2Hy exists as
a bounded operator from D((Hy)'/?) to D((Ho)/?)*, implying that Hy € C™(A) and that
the Mourre estimate holds for all positive intervals supported away from zero. In addition,
{e'NY g stabilizes D(Hy). The assumptions of Theorems 1.2 and 1.3 are therefore thoroughly
verified. Moreover (AY~5x(Hy) is clearly not compact in L?(R?). This can be seen by applying
(A)™*x(Ho) to a sequence of functions (f(x1)gn(w2)),2] with gn chosen so that [ |gn(z2)[*dxs
15 constant.

To continue with other examples, we set up notation. Let Cy(R) be the continuous functions
vanishing at infinity and C°(R) the compactly supported smooth functions.

Example 7.3. Let H := L*(RY), Hy := 21 + ... + 14 and A :=i(0/0x1 + ... + 0/0xq). This
system verifies the Mourre estimate at all energies thanks to commutator relation [Hy,iA]o =
dI, and Hy € C*(A) holds. Although this system does not quite fall within the framework of
this article because Hy is not semi-bounded (o(Hy) = R), it conveys the idea that compactness
holds only in dimension one:

Proposition 7.4. Let Hy and A be those from Example 7.3. Let x € Co(R) and s € R be
given. If d = 1, then (A)*x(Hp) € K(L*(R)). If d = 2, then (A)~x(Hy) & K(L?*(R?)).

Proof. The one-dimensional result is a classic, see Proposition 4.1. We prove the two-
dimensional result. Let Z(\, r) denote the open interval centered at A € R and of radius r > 0.
Fix A and r such that Z(\,r) C supp(x). Then the function of two variables y(z1 + x2) has
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support containing the oblique strip Usez(y){(s,t —5) : s € R} C R2. Let ¢ € C°(R) be a
bump function that equals one on Z(\,r) and zero on R\ Z(A,2r). Let 6 € C2°(R) be a bump
function that equals one on [—1, 1] and zero on R\[—2, 2]. Let W, (x,y) := n~ 2y (z+y)0(y/n).
Then ||¥,| = |¢|/[|0]|. Here || - || denotes the norm on L?(R?). Fix v € N, and let " :=
(A+1)"W,,. For v =0, clearly ||¢%]| = ||¥,] is uniformly bounded in n and an easy induction
proves it for all fixed values of v € N. Consider now ¢, := x(Ho)(A + 1)Vl = x(Ho)¥y,.
Since x € Co(R) and ¥,, % 0, ¢, — 0. If x(Ho)(A +1i)7” € K(L*(R?)) for some v € N,
then the image of the ball B(0,sup,; [|¢%||) by this operator is pre-compact in L?*(R?), and
so there exists ¢ € L*(R?) and a subsequence (ng)$2; such that lim||¢,, — ¢[| = 0 as k —
+00. Since ¢y, 25 0, it must be that ¢ = 0 since the strong and weak limits coincide and
are unique. But this contradicts the fact that [[¢,, || = [[x1z»()[l[0] for all & > 1. So
x(Ho)(A +1)7" ¢ K(L*(R?)), and this implies that y(Ho)(A)™* € K(L*(R?)) for all s < v.
The result follows by taking adjoints. O

For what it is worth, we tweak Example 7.3 to create a system that fits all the assumptions
of this article. We state a variation of it and leave the details of the proof to the reader.

Example 7.5. Let H := L*(R?). Let Hy be the operator of multiplication by x1h(z1) +
o + xgh(xq), where h € C*(R) is a smooth version of the Heaviside function (which is zero
below the origin, positive above the origin and strictly increasing). Then o(Hp) = [0, +00). In
particular, Hy is a positive operator. The conjugate operator is still A :=i(0/0x1+...+0/0xy).
We have Hy € C*°(A) and the Mourre estimate holds on all positive bounded intervals. One
also verifies that {4 },cr stabilizes D(Hy) (note that {e¥4}ier is the group of translations on
L%(RY)). Assumptions A1 - A5 are verified. With regard to the compactness issue, Proposition
7.4 holds, but for the two-dimensional result, one must also assume that x has non empty
support in (0, +00).

Our next model is the continuous Laplacian. We refer to Section 4.1 for a description of the
model. The situation is the same as with the preceding example: compactness in dimension
one, non-compactness in higher dimensions.

Example 7.6 (Continuous Laplacian with generator of dilations). Let H := L*(R?), Hy :=

—A be the Laplacian and A = —i(x -V +V -2)/2 = —i(2x - V + d)/2 be the generator of
dilations. We will be making use of the Fourier transform on L*(R?) given by

(7.) FONE) = (2m 2 [ il

Note that FAF ' = —A =0 i(¢,0/9¢; + 8/0€:€)/2 and FHoF ' = [¢]2 == S0 €2,

Proposition 7.7. Let Hy and A be those from Ezample 7.6. We have 7(A)x(Hp) € K(L*(R))
for all T, x € Co(R), with x supported away from zero.

First proof: Let @ be the operator of multiplication by the variable x and P := —id/dx.

Let x € C2°(R) be supported away from zero. Let (A + 1)~ tx(Hy) = (A +1)"1x1(P), where
X1 = x oo and o(§) = £2. We implement a binary relation ~ on B(L?(R)) whereby two
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operators are equivalent if their difference is a compact operator. We have:

(A+1)""x(Ho) = (A+1) " a(P)Q+D)(Q+1) 7
~(A+1) T a(P)R@Q+1)™
~(A+) QP @ +i)
= (A+1)7HQP)x2(P)(Q+1)7
~ (A+)THA+Dx2(P)(Q +1) 7! = 0.

Note the use of Proposition 7.4 each time a compact operator was removed. In the third step
we used that [y1(P), Qo(Q+i)~! = x| (P)(Q+i)~! ~ 0. In the fourth step we took advantage
of the fact that x; is supported away from zero to let yo(P) := P~1x1(P) and thereby allow
to recreate A := (QP + PQ)/2 = QP —1i/2.

Thus we have shown that (A +1)~'x(Ho) € K(L?(R)). It follows that (A — z)~'x(Hyp) €
K(L%(R)) for all 2 € C\ R. Note that the functions {(z — 2)~! : z € C\ R} and C°(R) are
dense in Co(R) with respect to the uniform norm. Since Hy and A are self-adjoint operators,
they are unitarily equivalent to a multiplication operator by a real-valued function in some
appropriate L?(M) space. The norm of a multiplication operator from L?(M) to L?(M) is
equal to the uniform norm of the multiplication function. Two limiting arguments, one for the
Hj first and then one for Ag, or vice-versa, extends the compactness to 7(A)x(Hp) as in the
statement of the Proposition. O
Second proof: We see that F(A — i/2) 'y (Hy)F~! is an integral transform acting in the
momentum space as follows:

i £
L(R) 3 > (FLA=1/2 X(HOF0)(E) = ¢ /0 (#)p(t)dt € LA(R).

The fact that y is supported away from zero is crucial here. Moreover, if x € C°(R), then
this integral transform is Hilbert-Schmidt and there is ¢ > 0 such that

I(A—i/2)1X(Ho)|%s=//1(o,g)(t)§QIX(t2)|2dtd€<C||XI|§-
RJR

In particular, (A —i/2)" y(Hp) is compact. One extends the compactness to operators of
the form 7(A)x(Hp) as in the statement of the Proposition using the same limiting argument
explained in the first proof. O

To complete the one-dimensional picture, we mention for what it is worth that it is possible
to show that (A +1i)~tx(Hy) € K(L%(R)) for any y € C2°(R) with x(0) # 0. We now turn to

the multi-dimensional case.

Proposition 7.8. Let Hy and A be those from Ezample 7.6. If d > 2, then (A) 5x(Hy) &
K(L2(R)) for any x € C*(R) whose support is non-empty in (0, +00) and for any s € R.

Proof.  Let Z(\,r) denote the interval of radius r > 0 centered at A\. There are A € (0,400)
and 7 > 0 such that Z(\,r) C (0, +00) and m := inf,e7(5 ) [X(2)| > 0. Consider the constant
energy curves

{(&1,...,&0) e R E =2+ ..+ €2}

For d = 2, these are just circles centered at the origin. Forth we work in dimension two to
keep the notation clean, but the necessary adjustments are obvious for d > 2. The support
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of the function of two variables x(£7 + £3) contains the annulus obtained by rotating Z(\', ')
about the origin, where

Ni=(WA+r+vA—r)/2, 7= +r—vA-1)/2.
Let 1,12 € C°(R) be any bump functions verifying : a) ¢1(0) # 0, b) supp(¢1) = [—1,1],
c) supp(v2) C Z(N,7'/2), and d) ||| = 1, where || - || denotes the L? norm. Now let
U, (&1,&) = /1 (&n)2(&2). Then ||[W,]| = 1 for all n > 1, and ¥,, > 0. Also, for n

sufficiently large, W, is supported in the aforementioned annulus. Now fix v € N and let
oV = F(A+1)?F1¥,. Then for v =0, ||¢%| = ||¥,| = 1, while for v = 1,

ol (&1, &) = =20 2HE W (E1n) w2 (&2) — 2021 (E1n) &ty (&2) — 1T, (2),

and we see that ||¢Y| is uniformly bounded in n. A simple induction on v shows that for
every fixed value of v € N, ||¢¥]| is uniformly bounded in n. Consider ¢, = Fx(Hp)(A +
D)VF Ll = Fx(Ho)F~'W,. If Fx(Ho)(A +i)7VF~ 1 € K(L*(R?)) for some value of v,
the image of the ball B(0,sup,, [|¢%|) by this operator is pre-compact in L*(R?), and so
there exists ¢ € L?*(R?) and a subsequence (ng)$, such that limg_, o |, — @]l = 0. Since
Ony 25 0, it must be that ¢ = 0 since the strong and weak limits coincide and are unique. But
this contradicts the fact that [[¢n,[| = m|[ ¥y, || =m > 0 for all k > 1. So x(Ho)(A +1)™" ¢
K(L?(R?)) and this implies that x(Hp)(A)~* & K(L?*(R?)) for all s < v. The result follows by
taking adjoints. O

A nice corollary of Proposition 7.8 that deserves a mention is the following. It uses Propo-
sition 4.1. The result can also be proven to hold in dimension one.

Corollary 7.9. Let A be that from Example 7.6. Let d > 2. Then for all (s,e) € R x (0, +00),
(A)7(Q)* & B(L*(RY).
Example 7.10 (Continuous Laplacian with Nakamura’s conjugate operator). In [N]|, Naka-

mura presents an alternate conjugate operator to the continuous Laplacian Hy. Let > 0. In
momentum space it reads

. d
-1._ 1 nigen 2 4 9 se
./T'-A.F = 25 ; <Sln(6€Z)a€i + 661 Sln(ﬁ§1)> .

Under some conditions on the potential V', it is shown that the Mourre theory holds for H :=
Ho+V with respect to A on the interval (0, (7/3)?/2). We refer also to [Ma] for a generalization
of this conjugate operator and a more in-depth discussion. An argument as in Propositions
7.8 and 7.13 shows that, for d > 2, (A)™5x(Hy) & K(L*(R?)) for all x € Co(R) and s € R.

Our last example is the discrete Laplacian on Z%. We refer to Section 4.2 for the details on
the model.

Example 7.11 (Discrete Schrédinger operators). Let H := ¢2(Z9), Hy := A be the discrete
Laplacian and A be its conjugate operator as in Example 4.2. Let

(2% 5w (Fu)(0) = 27)" Y2 > u(n)e” € L ([, x]%)
nezd
be the Fourier transform. We recall that Hy is unitarily equivalent to the operator of multipli-

cation by Z?ZI(Q —2cos(0;)) and that A is unitarily equivalent to the self-adjoint realization
of the operator iZle(sin(b’i)a/(%i + 0/00;sin(0;)), which we denote by Ar.

116



Proposition 7.12. Let Hy and A be those from Example 7.11. If d = 1, then 7(A)x(Hy) €
K(02(Z)) for all T € Co(R) and x € C([0,4]) supported away from zero and four.

Proof.  Using simple techniques from the theory of first order differential equations, we see
that x(Ho)(A +1i)~! is a Hilbert-Schmidt integral transform acting as follows:

P, 3 0 (P (A1) F 00 (0) = g [P (o oo s

o X = 2isin(0/2) J, sin(t) o8 '

Note that it is crucial that x(2 — 2 cos(t)) be supported away from zero and +. O
B2

Vs

FIGURE 1. Level curves {(61,62) € [-7,7|? : E = 2—2cos(f1) +2 —2cos(f2)}
of constant energy for d = 2

Proposition 7.13. Let Hy and A be those from Ezample 7.11. If d > 2, then (A)"x(Hy) ¢
K(2(2%)) for all x € C([0,4d]) with non-empty support in (0,4d), and for all s € R.

Proof. Let A € (0,4d) and r > 0 be such that Z(\, ) C (0,4d) and m := inf 7)) [x(2)| > 0.
Fix an energy F € Z(\,r). Consider the constant energy curves

{(61,....,04) € [-m, 7] : E=2—2cos(01) + ... + 2 — 2cos(8,) }.

For d = 2, these level curves are drawn in Figure 1 for various energies in [0, 8]. Let us proceed
in dimension two to keep things simple. The aim is to show that Fy(Ho)F 1(Ax +1)7" is
not compact for every fixed value of v € N. Now Fy(Hg)F ! is equal to the operator of
multiplication by x(2—2cos(61)+2—2cos(f2)). The support of this function of two variables
contains a neighborhood of a portion of the following vertical axes : #; = —7m,0 or w. Let
N be such a neighborhood. Let T be one of these three values depending on the situation.
We can then create a sequence W,, (01, 63) = \/ni1((61 — T)n)2(62) that is supported in N,
converges weakly to zero and ||V, || = 1. Now let ¢¥ := (Ar +1)"V¥,,. Then for every fixed
value of v, ||¢%| is uniformly bounded in n. The rest of the proof follows the guidelines as
that of Proposition 7.8. O
Finally, as in the continuous case, we have:
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Corollary 7.14. Let A be that from Ezample 7.11. Let d > 2. Then for all (s,e) € R x
(0,+00), (A)"*(N)= & B(£*(27)).

APPENDIX A. WHY SCATTERING STATES EVOLVE WHERE A IS PREVALENT

This appendix is based on [Go, Section 3.2]. We give an idea why it is not unreasonable to
expect both purely absolutely continuous spectrum and a propagation estimate under the only
assumptions H € C!(A) and the Mourre estimate (1.2) on Z, when Z is void of eigenvalues.
Without loss of generality, we may assume that the Mourre estimate for H is strict over the
interval Z. Given a state f and f; := e *# f its evolution at time ¢+ € R under the dynamics
generated by the operator H, one looks at the Heisenberg picture:

(A1) Ap(t) := (fr, Afe)-
This is the time-evolution of the expectation value of the observable A. Since we are localized
in energy in Z, and A is generally an unbounded operator, we take f := ¢(H)g, with g € D(A)
and ¢ € C°(Z), the smooth functions compactly supported on the interval Z. In addition to
imply that [H,iA], € B(D(H),D(H)*), the assumption H € C'(A) implies that e " (H)
stabilizes the domain of A, ensuring that A¢(t) is well defined. Differentiating (A.1) gives
(A.2) .A’f(t) = (fe, [H,iAlo fr) = (ft, BEx(H)[H,iAlc Ez(H) f1).
By using the strict Mourre estimate and the boundedness of [H,iA], we get
ol fII? < AL(t) < KIFI1%

where k := ||[[H,iAl]o| o), p(m)+)- Integrating this equation yields

ct||fI* < Ap(t) — Ap(0) < kt[|f]|?, for all £ > 0.

The transport of the particle is therefore ballistic with respect to A. This is characteristic of
purely absolutely continuous states and propagation estimates are usually obtained in these
circumstances.

APPENDIX B. A UNIFORM RAGE THEOREM

We would like to make a relevant observation about the RAGE Theorem that appears to
be absent from the literature. A small modification of the proof of [CFKS, Theorem 5.8| leads
to:

Theorem B.1 (RAGE). Let H be a self-adjoint operator on H. Let T be a bounded interval.
(1) If W e K(H),

1 (7 .
(B.1) sup |[We ™ P(H)p|* dt =0 as T — oco.
ver =1 T Jo

(2) If W € B(H) and is H-relatively compact, then for all ¢ € H,

1 [T .
T/ |We tHp(H)p||* dt -0 as T — oco.
0

and
T

1 .
sup |We M p(HYEZ(H)||* dt =0 as T — oo.
ver =1 T Jo
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(3) If W € K(H), then
IR :
HT/ et We M p(H) dtH =0 asT — oo.
0

The improvement consists in the supremum which is absent in the standard version of the
Theorem. In [CFKS], they prove (3). They state a weaker version of (1), although their proof
gives in fact (1). The first part of (2) is proven in [CFKS|. For the second part, apply (1) with
¢ := (H +1)Ez(H)1 and conclude by noticing that (H 4 i)Ez(H) is a bounded operator.

APPENDIX C. OVERVIEW OF ALMOST ANALYTIC EXTENSION OF SMOOTH FUNCTIONS

We refer to [D], [DG], [GJ1], [GJ2], [HS2] and [M] for more details. We review basic results
that are spread out in the mentioned literature. Let p € R and denote by S?(R) the class of
functions ¢ in C*°(R) such that

(C.1) | ()| < C(x)?™*, for all k € N.

For the purpose of this article we only need the class SY(R). This class consists of the smooth
bounded functions having derivatives with suitable decay.

Lemma C.1. |[D] and [DG| Let p € SP(R), p € R. Then for every N € Z" there exists a
smooth function ¢ : C — C, called an almost analytic extension of p, satisfying:

(C.2) on(z+10) = ¢(x) Vo € R;
(C.3) supp (pn) C{z +iy : [yl < (2)};
(C.4) on(x +1iy) = 0 Vy € R whenever ¢(z) = 0;

(C.5) Vvl e NN [0, N], ﬁg%(x +iy)| < eoz)? 1yl for some constants ¢; > 0.

Lemma C.2. [GJ1] Let p > 0 and ¢ € SP(R). Let ¢(A) with domain D(p(A)) D D((A)*) be
the operator whose existence is assured by the spectral theorem. Then for f € D({(A)P)

co o) = fim o [ S5

where Op(z) = 6(z/R) and 0 € CX(R) is a bump function such that 0(x) = 1 for x €
[—1/2,1/2] and O(z) =0 for x € R\ [-1,1].

Lemma C.3. For p >0 and ¢ € SP(R), the following limit exists:

(2)(z — A7 f dz A dz,

(CT) WA f = Jim i(;;:) (wgg)N (2)(z — Ak f dzAdz,  for all f € D((A)),
—00 C

where 0 is the same as in Lemma C.2. Moreover, if 0 < p < k and ¢®) is a bounded function,
then p*)(A) is a bounded opemtor and

(C.8) ") (A) = 27r /GQON()( — AR dzndz

holds with the integral converging in norm.
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Lemma C.4. [GJ2] Let s € [0,1] and D := {(z,y) € R?: 0 < |y| < (z)}. Then there exists
¢ > 0 independent of A such that for all z=x+iy € D :

(C.9) (A (A= 2)7H ] < e (@) -yl

Proposition C.5. [GJ1] Let T be a bounded self-adjoint operator satisfying T € C*(A). Then
for any p € SP(R) with p < 1, T € C'(¢p(A)) and

i oL,
(C.10) T, 0(A)o = — [ C2%( - A) YT, Alo(z — AL dz A d.
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