Optimisation des requêtes skyline multidimensionnelles

par Patrick Kamnang Wanko

Thèse de doctorat en Informatique

Sous la direction de Nicolas Hanusse et de Sofian Maabout.

Le président du jury était Patrick Valduriez.

Le jury était composé de Nicolas Hanusse, Sofian Maabout, Patrick Valduriez, Bernd Amann, Mohand Saïd Hacid, Alessia Milani.

Les rapporteurs étaient Bernd Amann.


  • Résumé

    Dans le cadre de la sélection de meilleurs éléments au sein d’une base de données multidimensionnelle, plusieurs types de requêtes ont été définies. L’opérateur skyline présente l’avantage de ne pas nécessiter la définition d’une fonction de score permettant de classer lesdits éléments. Cependant, la propriété de monotonie que cet opérateur ne présente pas, rend non seulement (i) difficile l’optimisation de ses requêtes dans un contexte multidimensionnel, mais aussi (ii) presque imprévisible la taille du résultat des requêtes. Ce travail se propose, dans un premier temps, d’aborder la question de l’estimation de la taille du résultat d’une requête skyline donnée, en formulant des estimateurs présentant de bonnes propriétés statistiques(sans biais ou convergeant). Ensuite, il fournit deux approches différentes à l’optimisation des requêtes skyline. La première reposant sur un concept classique des bases de données qui est la dépendance fonctionnelle. La seconde se rapprochant des techniques de compression des données. Ces deux techniques trouvent leur place au sein de l’état de l’art comme le confortent les résultats expérimentaux.Nous abordons enfin la question de requêtes skyline au sein de données dynamiques en adaptant l’une de nos solutions précédentes dans cet intérêt.

  • Titre traduit

    Optimization of multidimensional skyline queries


  • Résumé

    As part of the selection of the best items in a multidimensional database,several kinds of query were defined. The skyline operator has the advantage of not requiring the definition of a scoring function in order to classify tuples. However, the property of monotony that this operator does not satify, (i) makes difficult to optimize its queries in a multidimensional context, (ii) makes hard to estimate the size of query result. This work proposes, first, to address the question of estimating the size of the result of a given skyline query, formulating estimators with good statistical properties (unbiased or convergent). Then, it provides two different approaches to optimize multidimensional skyline queries. The first leans on a well known database concept: functional dependencies. And the second approach looks like a data compression method. Both algorithms are very interesting as confirm the experimental results. Finally, we address the issue of skyline queries in dynamic data by adapting one of our previous solutions in this goal.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.