Croissance directe de graphène par dépôt chimique en phase vapeur sur carbure de silicium et nitrures d'éléments III

par Roy Dagher

Thèse de doctorat en Physique

Sous la direction de Yvon Cordier.

Soutenue le 22-09-2017

à l'Université Côte d'Azur (ComUE) , dans le cadre de École doctorale Sciences fondamentales et appliquées (Nice) , en partenariat avec Université de Nice (1965-2019) (établissement de préparation) , Centre de recherche sur l'hétéro-épitaxie et ses applications (Sophia Antipolis, Alpes-Maritimes) (laboratoire) et de Centre de recherche sur l'hétéroepitaxie et ses applications (laboratoire) .

Le président du jury était Isabelle Berbezier.

Le jury était composé de Yvon Cordier, Isabelle Berbezier, Abdelkarim Ouerghi, Xavier Wallart, Bérangère Hyot, Adrien Michon.

Les rapporteurs étaient Abdelkarim Ouerghi, Xavier Wallart.


  • Résumé

    Le graphène est un matériau bidimensionnel appartenant à la famille des allotropes du carbone. Il consiste en une couche atomique restant stable grâce à des liaisons chimiques fortes dans le plan entre les atomes de carbone. C'est un semi-conducteur sans bande interdite (gap) avec une dispersion d'énergie linéaire près des points de Dirac, ce qui facilite le transport balistique des porteurs de charge. De plus, tout comme n'importe quel semi-conducteur, il est possible de contrôler ses propriétés électriques sous l'influence d'un champ électrique externe, ce qui permet de modifier la densité de porteurs et leur type (électrons ou trous). Le graphène peut être élaboré par différentes techniques, mais nous avons considéré la croissance directe sur le carbure de silicium (SiC) par dépôt chimique en phase vapeur (CVD) avec une source de carbone externe, technique développée dans notre laboratoire depuis 2010. Cette approche est attrayante car elle permet de contrôler les propriétés du graphène en modifiant les paramètres de croissance. Notre objectif dans ce manuscrit est de donner une idée plus approfondie de cette technique de croissance et d'étudier son potentiel pour la croissance du graphène. À cette fin, nous avons discuté en détail de différents aspects de la croissance, en commençant par des simulations thermodynamiques pour comprendre la chimie gouvernant cette méthode. Nous avons également étudié l'influence des différents paramètres de croissance sur la formation du graphène et sur ses propriétés, tels que le temps de croissance, le débit de propane et d'autres paramètres. Cependant, nous nous sommes principalement concentrés sur deux paramètres majeurs : la quantité d'hydrogène dans le mélange gazeux, surtout que la croissance se fait sous hydrogène et argon, et la désorientation du substrat. Nos recherches ont révélé que la structure du graphène peut être modifiée en fonction de la proportion de l’hydrogène dans le mélange des gaz utilisé pour la croissance. Pour une faible proportion d’hydrogène, la croissance du graphène est associée à une reconstruction d'interface de (6√3×6√3), alors que pour une proportion élevée d’hydrogène, la couche de graphène est désordonnée dans le plan. Ces observations sont liées à l'intercalation de l'hydrogène à l'interface entre la couche de graphène et le substrat SiC, ce qui peut favoriser ou interdire la formation de la reconstruction (6√3×6√3) comme nous l'avons discuté dans le manuscrit. On s'attend à ce que la présence des deux structures de graphène ait un effet sur la contrainte dans la couche de graphène. Pour cette raison, nous avons discuté en détail les origines de la contrainte dans le graphène et tenté de corréler l'intercalation de l'hydrogène à l’interface avec la contrainte. Aussi, nous avons montré que l'angle de désorientation du substrat a une influence directe sur la croissance du graphène, affectant principalement la morphologie mais également la contrainte dans la couche du graphène. Enfin, nous avons pu produire du graphène de haute qualité, tout en démontrant la possibilité de contrôler ses propriétés électriques avec les conditions de croissance. Dans la deuxième partie de ce travail, nous avons étendu notre étude à la croissance du graphène sur les semi-conducteurs de type nitrures d’éléments III et en particulier le nitrure d’aluminium (AlN) massif ainsi que des couches hétéroépitaxiées d’AlN/SiC et AlN/Saphir, ce qui ouvre de nouvelles opportunités pour des applications innovantes. La croissance du graphène a été précédée d'une étude de recuit sur les différents échantillons d’AlN, dans le but d'améliorer leur qualité de surface, mais aussi pour tester leur stabilité à la température nécessaire pour la croissance du graphène. Bien que le film d’AlN ait été incapable de résister à la température élevée dans certains cas, une amélioration de la qualité cristalline a été détectée, attribuée à l'effet de recuit.

  • Titre traduit

    Direct growth of graphene by chemical vapor deposition on silicon carbide and III-nitrides


  • Résumé

    Graphene is a two-dimensional material belonging to the family of carbon allotropes, consisting of a stable single atomic layer owing to strong in-plane chemical bonds between carbon atoms. It can be identified as a gapless semiconductor with a linear energy dispersion near the Dirac points, which facilitates ballistic carrier transport. In addition, similarly to any semiconductor, it is possible to control its electrical properties under the influence of an external electric field, resulting in the tuning of its carrier density and doping type, i.e. electrons or holes. Graphene can be elaborated by different techniques and approaches. In this present work, we have considered the direct growth on silicon carbide (SiC) by chemical vapor deposition (CVD) with an external carbon source. This approach which has started to be developed in our laboratory since 2010 is very promising since it allows to control the graphene properties by manipulating the growth parameters. Our objective in this manuscript is to give further insights into this growth technique and to study its potential for the growth of graphene. For this purpose, we have discussed in details different aspects of the growth, starting with thermodynamic simulations to understand the chemistry behind our distinct growth approach. We have also investigated the influence of the different growth parameters, such as the growth time, the propane flow rate and other parameters on the growth of graphene and its properties. However, we mainly focused on two major factors: the hydrogen amount in the gas mixture, especially since the growth is carried out under hydrogen and argon, and the substrate’s miscut angle. Our investigations revealed that the graphene structure can be altered depending on the hydrogen percentage in the gas mixture considered for the growth. For low hydrogen percentage, the graphene growth is associated with a (6√3×6√3) interface reconstruction, whereas for high hydrogen percentage, the graphene layer is dominated by in-plane rotational disorder. These observations are related to the hydrogen intercalation at the interface between the graphene layer and the SiC substrate, which can allow or prohibit the formation of the (6√3×6√3) interface reconstruction as we have discussed thoroughly in this manuscript. The presence of two graphene structures was expected to impact the strain within the graphene layer. For this reason, we have discussed in details the origins of the strain in graphene and attempted to correlate the hydrogen intercalation at the interface to the strain amount. Furthermore, the substrate’s miscut angle was also found to have a direct influence on the growth of graphene, mainly affecting the morphology but also the strain within the graphene layer. In light of the different studies and results, we were able to combine the ideal growth parameters to produce state-of-the art graphene, while demonstrating the possibility of tuning its electrical properties with the growth conditions. In a second part of this work, we extended our study to the growth of graphene on III-nitrides semiconductors. We have considered substrates and templates such as bulk aluminum nitride (AlN), AlN/SiC and AlN/sapphire, which opens new opportunities for innovative applications. The growth of graphene was preceded by an annealing study on the different AlN substrates, in an attempt to enhance their surface quality, but also to test their stability at the temperatures necessary for the growth of graphene. Although the AlN film was found to be unable to withstand the high temperature in some cases, an enhancement of the crystalline quality was detected, attributed to the annealing effect.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Côte d'Azur. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.