Thèse soutenue

Pavages de la droite réelle, du demi-plan hyperbolique et automorphismes du groupe libre

FR  |  
EN
Auteur / Autrice : Björn Monson
Direction : François Gautero
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 17/07/2017
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Laboratoire J.-A. Dieudonné (Nice) - Laboratoire Jean Alexandre Dieudonné
Jury : Président / Présidente : Hervé Oyono-Oyono
Examinateurs / Examinatrices : François Gautero, Hervé Oyono-Oyono, Samuel Petite, Nicolas Bedaride, Indira Lara Chatterji, Pallavi Dani
Rapporteurs / Rapporteuses : Samuel Petite, Michael Heusener

Résumé

FR  |  
EN

Dans cette thèse, nous construisons des pavages de la droite réelle et du demi-plan hyperbolique à l’aide de représentants efficaces d’automorphismes IWIP du groupe libre Fn. Dans un premier temps, nous utilisons la substitution définie par P. Arnoux, V. Berthé, A. Siegel, A. Hilion associée à un représentant efficace d’un automorphisme IWIP pour générer des espaces de pavages substitutifs apériodiques de la droite réelle. Nous montrons, en nous servant d’un théorème de connexité des représentants efficaces d’automorphismes IWIP dû à J. Los, que le type topologique de ces espaces de pavages est indépendant du choix du représentant. Nous associons ainsi, à homéomorphisme près, un espace de pavages de la droite réelle à une classe d’automorphisme externe IWIP de Fn, puis à une classe de conjugaison d’un élément IWIP dans Out(Fn). D’autre part, nous construisons à partir des éléments de l’espace de pavage de la droite réelle précédemment construits des pavages faiblement apériodiques pour le groupe des transformations affines du demi-plan hyperbolique. Nous étudions les propriétés topologiques et dynamiques de ces espaces de pavages du plan hyperbolique. Enfin, dans une dernière partie, nous montrons que les espaces de pavages précédemment construits peuvent être munis d’une structure lisse en se servant de leur structure de limite projective.