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Summary

In high dimensional settings, Wishart distributions defined within the framework of graph-
ical models are of particular importance.

A graphical model for a random vector (X1, ..., X,,) is a family {f, : 6 € O} of prob-
ability distributions such that each fy satisfies a set of conditional independence relations
encoded in graph G: each random variable is represented by a node and the absence of
an edge between two nodes symbolizes conditional independence of the corresponding
random variables given the remaining random variables. For a Gaussian graphical model,
with covariance matrix ¥ and concentration matrix X = X!, the conditional indepen-
dence constraints are equivalent to /;; = 0 for all non-adjacent vertices 7 and j. This
implies that the entries of Y. corresponding to non-adjacent vertices are not free parame-
ters and the model can be alternatively parametrized by an incomplete matrix with entries
corresponding to non-adjacent vertices left out. In the framework of Gaussian graphical
models, Wishart distributions are therefore defined on two alternative restrictions of the
cone of symmetric positive definite matrices: the cone Fg of symmetric positive definite
matrices x satisfying x;; = 0 for all non-adjacent vertices ¢ and j and its dual cone Q)¢.
The existing construction of Wishart exponential families on () and Py used two differ-
ent approaches for homogeneous and non-homogeneous cones and as a result, provides
two different presentations of the distributions on the two classes of cones. Also, it does
not specify the set of parameters of these families for non-homogeneous graphs. Only a

conjecture was made about this parameter set.
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In this thesis, we propose some parameter parsimonious models which are of great
importance in high dimensional data analysis. We first present a background of classical
Wishart distributions and multiparameter Wishart distributions in terms of the canonical
measures of cones. Then, we provide a harmonious construction of Wishart exponen-

tial families in nearest neighbour interaction graphical models, in other terms governed

by the graph A, : o« 4 ... —s Our simple method is based on analysis on con-
vex cones compared to existent work which relies more on graph theory. The focus is on
nearest neighbours interactions graphical models which have the advantage of being rela-
tively simple while including all particular cases of interest such as the univariate case, a
symmetric cone case, a non-symmetric homogeneous cone case and an infinite number of
non-homogeneous cone cases. We derive the Laplace transforms of the Riesz generating
measures. Next, we define the Wishart distributions and explicitly determine their classical
objects such as the Wishart densities, the Laplace transforms and the mean functions. The
Wishart distributions on () 4, are constructed as the exponential family generated from
the gamma function on () 4,. The Wishart distributions on P, are then constructed as
the Diaconis-Ylvisaker conjugate family for the exponential family of Wishart distribu-
tions on () 4,. For Wishart distributions on () 4., explicit formulas for the inverse mean
map and the variance function are derived. Later, the methods of construction of Wishart
laws introduced in this thesis are used to solve the Letac-Massam Conjecture on the set
of parameters of type I Wishart distributions on () 4, . Finally, we introduce and study ex-
ponential families of distributions parametrized by a segment of means with an emphasis
on their Fisher information. This class of models will be useful in high-dimensional data
analysis, particularly when one is hesitating between two parameter values. We derive the
mean function, the variance function and the Fisher information of the model. We also
propose some estimators and explore their properties. The particular cases of Gaussian

and Wishart exponential families parametrized by a segment of means are examined.
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Résumé

En analyse multivariée de données de grande dimension, les lois de Wishart définies dans
le contexte des modeles graphiques revétent une importance particuliecre. Un modele
graphique pour un vecteur aléatoire (X7,..., X,,) est une famille {f, : 6 € ©} de lois
de probabilité satisfaisant chacune un ensemble de relations d’indépendances condition-
nelles représentées par un graphe GG : chaque variable aléatoire est représentée par un
sommet et I’absence d’une aréte entre deux sommets symbolise I’'indépendance condi-
tionnelle des variables correspondantes étant données les autres variables. Ce mariage
entre la théorie de la probabilité et la théorie des graphes assure une représentation mo-
dulaire et parcimonieuse en parametres de la loi jointe des variables du modele, permettant
ainsi I’estimation des parametres avec une taille d’échantillon raisonnable et un calcul plus
efficient des lois marginales a posteriori. Pour un modele graphique Gaussien avec une ma-
trice de covariance X et une matrice de précision K = X!, les relations d’indépendances
conditionnelles sont équivalentes a K;; = 0, pour tous sommets non adjacents 7 et j. Cela
implique que les éléments de la matrice Y., correspondant a une paire de sommets non
adjacents, ne sont pas des parametres libres. Le modele peut donc de maniere alternative
étre paramétré par une matrice incomplete dont les éléments correspondant a une paire de
sommets non adjacents sont omis. Dans le contexte des modeles graphiques Gaussiens,
les lois de Wishart sont par conséquent définies sur des restrictions du cone des matrices
symétriques définies positives : le cone Py des matrices symétriques définies positives x

satisfaisant z;; = 0, pour tous sommets ¢ et j non adjacents, et son cone dual (). Lorsque
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ces cones sont non-homogenes, la construction existante de lois de Wishart sur les cOnes
Q¢ et Pg utilise deux méthodes différentes pour les graphes homogenes et les graphes
non homogenes résultant ainsi a deux formulations différentes des lois de Wishart sur les
deux classes de cones. De plus, elle ne spécifie pas entierement 1’ensemble des valeurs
possibles pour les parametres. Seule une conjecture sur cet ensemble est fournie.

Dans cette these nous proposons des modeles parcimonieux en parametres qui sont
de grande utilité en analyse de données de grande dimension. Nous rappelons d’abord
les lois de Wishart classiques et multiparametres présentées du point de vue des mesures
canoniques des cones. Puis, nous présentons une construction harmonieuse de familles
exponentielles de lois de Wishart sur les cones Py et (). Elle se focalise sur les mode-

les graphiques d’interactions des plus proches voisins qui sont régis par le graphe A, :

e o ... —eet qui présentent 1’avantage d’étre relativement simples tout en incluant
des exemples de tous les cas particuliers intéressants : le cas univarié, un cas d’un cone
symétrique, un cas d’un cone homogene non symétrique, et une infinité de cas de cones
non-homogenes. Notre méthode, simple, se fonde sur 1’analyse sur les cones convexes
en contraste avec les travaux précédents qui se basent surtout sur la théorie des graphes.
Les lois de Wishart sur () 4, sont définies a travers la fonction gamma sur () 4, et les lois
de Wishart sur P4, sont definies comme la famille de Diaconis-Ylvisaker conjuguée a la
famille des lois de Wishart sur ) 4,. Les objets classiques associés, tels que les mesures
génératrices de ces familles exponentielles, les densités, les transformées de Laplace et
les fonctions moyennes, sont déterminés. De plus, pour les lois de Wishart sur () 4, , les
formules de la fonction réciproque de la moyenne et la fonction variance sont établies.
Ensuite, les méthodes développées sont utilisées pour résoudre la conjecture de Letac-
Massam sur I’ensemble des parametres de la loi de Wishart de type I sur () 4,,.

Cette these étudie aussi les sous-modeles paramétrés par un segment [, msy| dans M,

lorsque (@) menm est une famille exponentielle paramétrée par le domaine des moyennes



M. Ces sous-modeles présentent I’avantage d’€tre parcimonieux en parametres dans les
cas multidimensionnels et sont particulierement utiles lorsque 1’on hésite entre deux possi-
bles valeurs d’un parametre. L’ accent est mis sur les modeles paramétrés par des matrices.
La fonction moyenne, la fonction variance, I’information de Fisher et les estimateurs sont
déterminés et les cas particuliers des familles exponentielles Gaussiennes et Wishart sont

examinés.

vi



Acknowledgements

I am grateful to my supervisor Prof Piotr Graczyk. Merci pour votre disponibilité tout au
long du travail de cette these.

I am also grateful to Prof Montaz Ali, the co-supervisor of this thesis.

I would like also to thank Prof Coenraad Labuschagne for accepting to be the co-supervisor
of this thesis until he moved from Wits to the University of Johannesburg.

A special thanks to Prof Hideyuki Ishi for his collaboration on two of the papers written
as part of this thesis.

I wish also to thank Prof Hiroyuki Ochiai for his collaboration on one of the papers written
as part of this thesis.

Mes remerciements vont aussi aux Professeurs Gérard Letac, Lioudmila Vostrikova et Loic
Chaumont membres du comité de suivi de cette these.

Finally, I would like to gratefully acknowledge the financial support of the French Ministry

of Foreign Affairs through the French Embassy in South Africa.

vii



Contents

Presentation of the work

Summary

Résumé

Acknowledgements

Notations

Introduction

2

3

1.1
1.2

1.3

Introduction . . . . . . . .. L

Objectives of theresearch . . . . . . . . .. .. ... ... ........

Organizationof thework . . . . . .. ... ... ... ... .......

Literature Review

Background

3.1 Convexcones . . . . ... e e e

3.2 Graphical Models . . . . . . .. ... ...
3.2.1 Undirected graphs . . . . . . ... ... ... ... ...
3.2.2 Conditional independence and graphs . . . . . .. ... ... ..
3.2.3 Graphical Gaussianmodels. . . . . .. ... ... .. ......

3.3 Exponential families of distributions . . . . . . ... ... ... ...

3.4 The Wishart distribution . . . . . . .. ... ..o oo

viii

ii

iv

vii

xi



3.4.1 The gamma and chi-square distributions . . . . . . .. ... ... 20

3.4.2 The Wishart distribution . . . . . . . . . . . .. ... ... ... 21
3.4.3 The classical Wishart distribution . . . . . . . . ... ... ... 22
3.4.4 The multiparameter Wishart distribution . . . . . . .. ... ... 23

4 Wishart exponential families on cones related to nearest neighbours interac-

tions graphs 25
4.1 Introduction . . . . . . . . . ... 25
4.2  Preliminaries on A,, graphs and related cones . . . . . .. ... .. ... 27
4.2.1 PerfecteliminationOrders . . . . . .. ... .. ... ...... 29
4.2.2 Generalized power functions . . . . . . .. ... ... ... 31

4.3 Recursive construction of the cones Py, and () 4, and changes of variables 33

4.4 Laplace transform of generalized power functions on 4, and P4, . . . . 41
4.5 Wishart exponential familieson Q4,, . . . . . . . . . .. L. 46
4.5.1 Mean and covariance of the Wishart distributions on (04, . . . . . 47
452 Inversemeanmap . . . . . . . . ..t e 48
453 Variancefunction . . . . . ... ... oL 54
4.6  Wishart exponential families onthe cone Py,. . . . . . ... ... ... 63
4.6.1 Meanandcovariance . . . . . . . .. ...l 64

4.7 Relations with the type I and type II Wishart distributions of Letac and

Massam (2007) . . . . . . .. e e e 65

4.8 Appendix . ... ... e 69

5 On the Letac-Massam conjecture 70
5.1 Introduction . . . . . . . . .. ... 70

5.2 Letac-Massam conjecture on (4, . « « « . . . oo v e e e e 71

5.2.1 Letac-Massam conjecture in terms of power functions 5§M) and
AN 72

X



5.3 Proof . . .. e 73

5.4  Generalized Letac-Massam conjecture . . . . . . . . . .. .. ...... 80
5.5 Discussions on (Ben-David and Rajaratnam, 2014) . . .. ... ... .. 80
6 Fisher Information and Exponential Families Parametrized by a Segment of
Means 83
6.1 Introduction . . . . . . . . .. .. 83
6.2 Preliminaries . . . . . . . . . .. L 85

6.3 Fisher information of Gaussian and Wishart families parametrized by a

segmentofmeans . . . . . . . . ... Lo 88
6.3.1 Exponential families of Gaussian distributions . . . . . . . . .. 90
6.3.2 Exponential families of Wishart distributions . . . . . .. .. .. 96

6.3.3 Applications to estimation of the mean in exponential families

parametrized by a segmentof means . . . . . ... .. ... ... 101
Conclusion 106
References 108



Notations

In this work, unless otherwise stated,

is the space of symmetric positive definite n x n matrices;
is the cone of positive definite n x n matrices;

is the cone of positive semidefinite n x n matrices;
is the closure of the set £

means the matrix A is positive definite;

is the trace of the matrix A;

denotes the transpose of the matrix A;

is the inner product of x and y;

is the Kronecker product of x and y;

is the determinant of matrix A;

is the density function of the random variable X;
is the conditional density of X given Y;

is a graph with set of vertices V' with cardinality n and set of edges
&

is the set of cliques of G
is the set of minimal separators of G
isthe graph1 —2 —--- —n;

is the space of symmetric matrices y such that y;; = 0 for all non-
adjacent vertices (i, j) in the graph G}

xi



Yya

=>

is the space of incomplete symmetric matrices x with entries x;;
missing for all non-adjacent vertices (¢, j) in the graph G}

is the convex cone Zg N S;';

is the dual of the cone Fg;

is the projection of \S,, on Z;

is the bijective function Py to Qf, defined by ¢(y) = n(y™1);

is the submatrix of y obtained by extracting from y the rows and
columns indexed by A;

is the unique positive definite completion of z € () such that 27! €
Fa;

is the matrix obtained from z 4 by filling up the entries corresponding
. Zij if i,jEACV,

to V\ A with zero entries: (z4)y; 0

otherwise.
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Introduction

1.1 Introduction

The classical Wishart distribution, was first derived by Wishart (1928) as the distribution
of the maximum likelihood estimator of the covariance matrix of the multivariate normal
distribution. It is a matrix variate generalization of the gamma distribution. In high dimen-
sional settings, Wishart distributions defined within the framework of graphical models are
of particular importance.

A graphical model for a random vector X = (X3,...,X,,)is a family {fy : § € ©} of
probability distributions such that each f, satisfies a set of conditional independence re-
lations encoded in graph: each random variable is represented by a node and the absence
of an edge between two nodes represents conditional independence between the corre-
sponding random variables given the remaining random variables. This marriage between
Probability Theory and Graph Theory provides a parameter parsimonious and modular
representation of the joint distribution of the random variables of the model, thereby allow-
ing estimation of model parameters with a reasonable amount of data and a more effective
computation of marginal posterior distributions.

Graphical models encompass as particular cases well-known statistical models such
as naive Bayes models, state-space models, Markov and hidden Markov models and some
particular hierarchical log-linear models. They are also applied to regression analysis (Do-
braet al., 2010), longitudinal data analysis (Smith et al., 2009), spatial statistics (Irvine and

Gitelman, 2011) or time series analysis (Avventi et al., 2013), (Dahlhaus, 2000), (Songsiri



et al., 2010) or (Eichler, 2012). It should, however, be noted that not all models that use a
graph representation with some nodes and some edges are graphical models. Examples of
such models include neural networks although these models can sometimes be reformu-
lated as graphical models as explained by Jordan et al. (1999).

Graphical models find real-world applications to complex stochastic systems where
they provide a powerful tool for modelling high dimensional multivariate distributions by
only specifying the direct interactions between variables but succeeding in capturing all
the complexity of the system. Graphical models are intuitive and easy to interpret which
facilitates communications between subject-area experts and statisticians. This explains
the wide range of applications which go from genetics (Lauritzen and Sheehan, 2003) to
computer vision for self-driving cars (Oliver and Pentland, 2000) through finance (Abdel-
wahab et al., 2008), (Carvalho and West, 2007) or (Sewart and Whittaker, 1998), social
science (Berrington et al., 2008), medical science (Caputo et al., 2003) or (Gather et al.,
2002), image processing (Murphy et al., 2003), climate science (Callies et al., 2003) and
environmental science (Irvine and Gitelman, 2011).

Graphical models are therefore extensively used in statistics, machine learning and
artificial intelligence and the theory is developed by both statisticians and computer sci-
entists. According to Koller and Friedman (2009), the rich development of the field is
ensured by this synergy between statisticians and computer scientists, and the close and
continuous interaction between theory and practice.

For a Gaussian graphical model, with covariance matrix > and concentration matrix
K = Y71, the conditional independence constraints are equivalent to K;; = 0 for all
non-adjacent vertices ¢ and j. This implies that the entries of > corresponding to non-
adjacent vertices are not free parameters and the model can be alternatively parametrized
by an incomplete matrix with entries corresponding to non-adjacent vertices left out. In
the framework of Gaussian graphical models, Wishart distributions are therefore defined
on two alternative restrictions of the cone of symmetric positive definite matrices: the

2



cone Pg of symmetric positive definite matrices x satisfying x;; = 0 for all non-adjacent

vertices ¢ and j and its dual cone Q).
1.2 Objectives of the research

This research will address two main problems:

1. The existing construction of Wishart exponential families on () and P does not
fully specify the set of parameters of these families for non-homogeneous graphs.
Also, the construction used two different techniques for homogeneous and non-
homogeneous graphs and as a result provides two different presentations of the pa-

rameter range for homogeneous and non-homogeneous graphs.

The first objective is to provide an alternative construction of exponential families of
Wishart distributions on the cones Py and ()¢, a construction that fully specifies the
shape parameters set and gives a unique description of this set for both homogeneous
and non-homogeneous graphs. The focus will be on nearest neighbour interaction
graphical models, in other terms governed by the graph A, : o« o ,
which have the advantage of being relatively simple while including all particular
cases of interest such as the univariate case, a symmetric cone case, a non-symmetric
homogeneous cone case and an infinite number of non-homogeneous cones cases.

The conditional independence relations encoded in such graph are of the form: X; |

Xj‘(Xk)k#i,j’ for all |’L —j‘ > 1.

2. Let (Q.n)mer be a natural or general exponential family on R? parametrized by the
means domain M. Let m; and my be two points in M.
The submodel (Qgnm, +(1—6)ms )oe[0,1] Parametrized by the segment [m4, my] in M
presents the advantage of being parameter parsimonious in high dimensional set-

tings. This model will be particularly useful in practical situations when hesitating



between two parameter estimates 1, and ms or in sequential data collection, when

an updated estimate of a parameter largely differs from the previous estimate.

The second objective is the study of the submodel (Qg, +(1—6)ms )oc[o,1]- The em-
phasis will be on models with a matrix parameter. The mean function, the variance
function, the Fisher information and estimators will be derived, and the particular
cases of Gaussian and Wishart exponential families parametrized by a segment of

means will be examined.
1.3 Organization of the work

In Chapter 2, a literature review on graphical models and Wishart distributions is pre-
sented. Chapter 3 introduces some important background concepts and results on convex
cones, graphical models, exponential families of distributions and Wishart distributions.
Chapter 4 presents a novel construction of exponential families of Wishart distributions on
P,, and Q) 4,. Chapter 5 answers the Letac-Massam conjecture on the set of parameters
of type I Wishart distributions on () 4,. Chapter 6 is devoted to exponential families of
distributions parametrized by a segment of means with a strong emphasis on their Fisher
information. The work is concluded with a discussion on the work done and perspectives

of future extensions.



Chapter 2

LITERATURE REVIEW

The origins of graphical models are explained in Koller and Friedman (2009), Edwards
(2000) or Lauritzen (1996). These origins are traced back to Gibbs (1902) in the area of
statistical physics, Wright (1921, 1934) in the area of genetics and to Wold (1954) and
Blalock (1971) in economical and social science. But modern statistical graphical mod-
els genuinely started with Darroch et al. (1980) who, building on the work of Goodman
(1970) on the analysis of contingency tables, introduced undirected graphical models for
contingency tables as a special subsclass of hierarchical log-linear models with a more
efficient parameter estimation and an intuitive interpretation in terms of conditional inde-
pendence. It should however be noted that Dempster (1972) introduced a model which
is essentially the graphical Gaussian model although it does not explicitly use a graphical
representation. It was a Gaussian model with prescribed zeros in the concentration ma-
trix for which he derived the maximum likelihood estimator ¥ of the covariance matrix
3. ¥ is the positive definite matrix whose inverse has the same pattern of zeros as X1
and agrees with the empirical covariance matrix for all pairs of indices corresponding to
non-zero elements of the concentration matrix. He also proposed an iterative method for
model selection and parameter estimation. Graphical Gaussian models are also known as
covariance selection models (Dempster, 1972). They are also called concentration graph

models in contrast to covariance graph models (Khare and Rajaratnam, 2011)) which ex-



ploit the pattern of zeros in the covariance matrix, thus reflecting marginal independence
instead of conditional independence. Wermuth (1976) made the analogy between models
for contingency tables and covariance selection models. She showed that both models are
based on the definition of the pairwise independence structure and proposed log-likelihood
ratio test statistics for model selection. But it was Speed and Kiiveri (1986) who formally
associated an undirected graph to a covariance selection model.

Graphical models are broadly classified into two main groups: directed graphical mod-
els, also referred to as Bayesian networks or belief networks, which use directed edges be-
tween the nodes in the graph representing the statistical model, and undirected graphical
models, also referred to as Markov networks or Markov random fields, which use undi-
rected edges between the nodes of the graph representing the statistical model. Graphical
chain models (Whittaker, 1990), (Cox and Wermuth, 1996), (Edwards, 2000) unify undi-
rected and directed graph models. They are extensions of graphical models that allow for
partially ordered data such as panel data. From subject-matter knowledge, the variables
are partitioned into an ordered list of blocks; dependence relationships between variables
within the same box are represented by undirected edges while dependence relationships
between variables in different boxes are represented by directed edges.

The most natural class of graphical models to use in practice depends on whether the
relationships of variables are symmetric like with spatial data (in which case undirected
graphical models are more natural) or assymmetric (in which case directed graphical mod-
els are more natural). Very often, undirected models can be also equivalently represented
as a directed model and conversely. But there are sets of conditional independence rela-
tions that can be encoded with either a directed or an undirected graph but not with the
other. Conditional independence is easier to check on undirected graphs while model pa-
rameters are easier to interpret in directed graphical models. Directed graph models have
also the potential of causal interpretation. Graphical models can be used with discrete or

continuous variables or a mix of discrete and continuous variables.
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The graphical modelling process consists of two steps: the selection of the graph struc-
ture which can be built from an expert opinion or learnt from data and the estimation of
parameter values. Graphical model selection methods are virtually similar to model se-
lection methods in regression models; including or not an explanatory variable is replaced
by including or not an edge between two nodes. The methods, therefore include log-
likelihood ratio tests, Akaike information criterion (AIC), Bayesian information criterion
(BIC), graphical lasso (Friedman et al., 2008),(Banerjee et al., 2008). Inference methods
in graphical methods include exact methods like the junction tree algorithm and approxi-
mation methods such as Markov chain Monte Carlo and variational methods (Wainwright
and Jordan, 2008).

Missing data in graphical models were dealt with by Lauritzen (1995). Graphical
models for mixed discrete and continuous variables were introduced by Lauritzen and
Wermuth (1989). Decomposable graphical models are particularly important as they yield
closed form maximum likelihood estimators.

Various theoretical aspects of graphical models have been extensively studied. More
details can be found in monographs dedicated to the subject which include (Lauritzen,
1996), (Edwards, 2000), (Whittaker, 1990) and (Hgjsgaard et al., 2012). Other books have
an extensive treatment of the subject; these include (Bishop, 2006), (Koller and Friedman,
2009), (Hastie et al., 2009), (Murphy, 2012).

The scope of applications of graphical models is very wide. Applications of graphical
models in Artificial Intelligence started with Lauritzen and Spiegelhalter (1988).

Graphical models for time series are sometimes called dynamic graphical models.
Avventi et al. (2013) applied graphical models to a zero-mean stationary Gaussian vec-
tor stochastic process.

Application of graphical models to regression analysis is illustrated by Dobra et al.
(2010) who proposed a method of variables selection in regression analysis using undi-

rected graphical Gaussian models and applied the method to the prediction of macroeco-

7



nomic growth.

In social science, Berrington et al. (2008) used a graphical chain model to study
women’s gender role attitudes and changes in their participation in labour force. The
graphical modelling allowed the authors to go beyond previous research in being able to
simultaneously studying impacts of gender role attitudes on changes in participation in
labour force and also impacts of changes in participation in labour force on gender role
attitudes.

In medical science, Caputo et al. (2003) used a graphical chain model to investigate the
interactions between the determinants of undernutrition in Benin. Mohamed et al. (1998)
used a chain graph model to investigate infant mortality and its determinants in Malaysia.

In environmental science, Irvine and Gitelman (2011) applied a directed graphical
Gaussian model to stream health data in a study of the effects of urban land use on terres-
trial life stages of insects.

Applications of graphical models in Finance are diverse. Carvalho and West (2007)
applied a dynamic graphical model to the study of the interdependence of some finan-
cial markets and to stock portfolio selection. They constructed a dynamic matrix variate
graphical model by adding a graphical model component to the state-space structure of
matrix-variate dynamic linear models. The model captures the dependence structure be-
tween the time series but also the change of this dependence structure over time.

Sewart and Whittaker (1998) and Hand et al. (1997) used a graphical model for credit-
scoring.

Carvalho and West (2007) and Carvalho et al. (2007) explored international currency

portfolio selection and exchange rates prediction using a graphical model.

The classical Wishart distribution, was first derived by Wishart (1928) as the distribution
of the maximum likelihood estimator of the covariance matrix of the multivariate normal

distribution. It can therefore be viewed as a generalization of the gamma distribution



defined on the set of positive real numbers to a distribution defined on the set of positive
definite matrices. A good treatment on the classical Wishart distribution can be found in
(Muirhead, 2005) or (Eaton, 2007).

One important characterization of these classical Wishart distributions, defined on the
cone S;F of symmetric positive definite matrices, is as the natural exponential family gen-
erated by measures 1, with a Laplace transform defined on S, by £,, () = (det(6))~? for
p belonging to the Gindikin set {3, 1,3, ..., 25t} U]%5+, oo, The measures i, are called
Riesz measures.

The non-central Wishart distribution is a natural generalization of Wishart distribu-
tion; it is defined as the distribution of W = YlYlT + ...+ YnYnT, when the random
vector (Y7,...,Y,,) follows a multivariate normal distribution with a non-zero mean. The
construction of the exponential family of non-central Wishart distributions is presented in
(Letac and Massam, 2008).

Multi-parameter Riesz measures are obtained by generalizing the real power of the
determinant of # to a product of powers of the principal minors of #. Multi-parameter
Wishart distributions are then obtained as the exponential family of distributions generated
by these multi-parameter Riesz measures. Multi-parameter Wishart distributions are also
called Riesz distributions by Hassairi and Lajmi (2001) and Boutouria and Hassairi (2009),
who studied these distributions on symmetric and homogeneous cones, respectively.

Another important generalization of the Wishart distribution in connection with graph-
ical models was introduced by Dawid and Lauritzen (1993). They showed that the unique
distribution p that is Markov over a graph G and has consistent clique marginals p¢o, C' € C

has the form ([ [pc)/(] [ ps), where C is the set of cliques of G, and S is the set of min-
CeC SeS

imal separators of (G. They introduced the hyper Markov property and showed that the
maximum likelihood estimator of the parameter of an exponential family of distributions

Markov over G is hyper Markov. They also proved that hyper Markov laws with respect



to a graph GG are conjugate priors for the sampling family of distributions Markov over
the graph G. Dawid and Lauritzen (1993) considered the example of zero mean graphical
Gaussian models where they called the distribution of the maximum likelihood estimator
of the covariance matrix the hyper Wishart distribution. They also introduced the hyper
inverse Wishart distribution as the unique hyper Markov law corresponding to a consis-
tent specification of (classical) inverse Wishart distributions for the cliques marginals and
showed that it is the conjugate prior of the covariance matrix in the Bayesian analysis of
graphical Gaussian models.

Roverato (2000) derived the distribution of the concentration matrix X = X~! when
7(X) follows a hyper inverse Wishart distribution and called it the G-conditional Wishart
distribution.

Andersson and Wojnar (2004) generalized the Wishart distribution from the cone of
positive definite matrices to a general homogeneous cone.

In the framework of graphical Gaussian models, Letac and Massam (2007) constructed
two classes of multi-parameter Wishart distributions on the cones () and P associated
to a decomposable graph GG and called them type I and type II Wishart distributions. They
showed that type I and type II Wishart distributions generalize the hyper Wishart distri-
bution and the G-conditional Wishart distribution respectively. Type I and type II Wishart
distributions were constructed as exponential families of distributions generated by some
kind of Markov combinations of the measure |2[P|z|~("*1)/?1 4, . dx that generates the
exponential family of classical Wishart distributions. They introduced the inverse type
I Wishart distribution as the distribution of the ‘inverse’ ¥ = X! of a random vari-
able X following the type I Wishart distribution and derived its density function. They
also introduced the inverse type II Wishart distribution as the distribution of the ‘inverse’
X = 7(Y 1) of arandom variable Y following the type Il Wishart distribution and derived
its density function. When the cones ()i and P are homogeneous the parameter set of
type I and type II Wishart distributions is fully specified but for non-homogeneous cones
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Q¢ and Pg, only a subset of the parameter set of the distributions is specified. Letac and
Massam (2007) made a conjecture about this parameter set but recent work by Ben-David
and Rajaratnam (2014) suggests that this conjecture may not hold for some decomposable
non-homogeneous graphs.

Andersson and Klein (2010) proposed another construction of Wishart distributions on
decomposable graphs that generalizes type I Wishart distributions. The construction relies
on the representation of a decomposable undirected graph as an acyclic mixed graph.

Graczyk and Ishi (2014) showed how Wishart distributions can be constructed on con-
vex cones via quadratic maps as in the classical case. They defined Riesz measures as-
sociated to a quadratic map as the image of the Lebesgue measure by that quadratic map
and derived the Wishart distributions as the exponential families generated by these Riesz
measures.

The main application of the classical Wishart distribution is as a model for covariance
matrices, thus its pervasive use in multivariate stochastic volatility models. For example,
Philipov and Glickman (2006) used a model in which asset returns follow a multivari-
ate normal distribution with a time dependent concentration matrix ;' which follows a
Wishart distribution with a time dependent scale parameter S;_;.

The Wishart distribution also occurs in Wishart processes as the distribution of the
time-marginals. Wishart processes, first introduced by Bru (1989, 1991), are solutions of
the matrix stochastic differential equation dX; = X ++/X;dB; +dB}'\/X; + aldt, where
« > 0 and B; is a Brownian matrix.

When a graphical model is used to exploit sparsity in a multivariate stochastic model,
the hyper Wishart and G-Wishart distributions come in naturally. This is illustrated in
(Carvalho and West, 2007), where a hyper inverse Wishart distribution is used as the
distribution of the covariance matrix in a matrix dynamic linear model combined with

a graphical model that exploits the sparsity in the cross-sectional concentration matrix.
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Chapter 3

BACKGROUND

3.1 Convex cones

In this section, some important concepts and results on convex cones are recalled. More
details can be found in (Faraut and Koranyi, 1994).

Consider a Euclidean space H.
A subset €2 of H is said to be a convex cone if for all z,y € €2 and A\, Ay > 0, we have
Az + Ay € €.

The (open) dual cone of an open convex cone €2 is defined as
O ={yeH: {x,y)>0,YreQ\{0}}. (3.1)

The cone (2 is said to be self-dual if 2 = Q*.
Let GL(H) be the general linear group of H, that is, the group of bijective linear maps

on H. The automorphism group G({2) of an open convex cone is defined by
G(QY) ={9eGL(H): ¢02 =Q}. (3.2)

The cone €2 is said to be homogeneous if G(£2) acts transitively on €2, that is, for all
x,y € () there exists g € G(2) such that y = g(x).
The cone 2 is said to be symmetric if it is homogeneous and self-dual. For example, S,

the set of positive definite symmetric n X n matrices is a symmetric cone of the space 5,
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of symmetric n x n matrices. G(S,) is the set of linear transformations on .S, of the form
p(A): S — St 2w p(A)x = AvAT, where Ais an invertible matrix.

The cone S is homogeneous. Indeed for any z,y € S, we can write z = aa’ and
y = bbT where a and b are invertible lower triangular matrices and let A = ba~'; then
p(A)(z) = ba"taaT (ba=1)T = y.

The characteristic function ¢q of a cone (2 is defined as
va(x) = f e~ @y, forall z e Q. (3.3)
QO

The measure ¢q()dz is called the canonical measure of the cone €. It is G(£2) invariant;

this means that for any measurable function f : Q@ — Q and g € G(2),

| 7 s@hentaris = | sie)eatos (3.4)
3.2 Graphical Models

In this section, some important concepts and results on undirected graphical models are
recalled. More details can be found in (Lauritzen, 1996),(Letac, 2014), (Edwards, 2000)
and (Koller and Friedman, 2009). In the thesis, it becomes clear that using the “cliques-
separators” approach in the theory of Riesz measures and Wishart laws on graphical cones

1s not the natural one.

3.2.1 Undirected graphs

An undirected graph is a pair of sets G = (V, £), where V is a finite set and £ is a subset
of Py(V'), the set of all subsets of V' with cardinality two. The elements of V' are called
nodes or vertices and the elements of £ are called edges. If v; = vy or {vy,v2} € &, then
v, and vy are said to be adjacent and this is noted v; ~ vy. The set of neighbours of a
vertex i is defined as Ne(i) = {j € V\{i} : j ~ i} and the closure of i is defined as
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Cl(i) = Ne(i) u {i}. Graphs are visualized by representing each node by a point and each
edge {v1, v2} by a line with the nodes {v1, vo} as endpoints.

A graph Gy = (V, &) is said to be a subgraph of a graph G = (V. &) if V; < V and
Ey €.

Let U be a subset of V' and define &y = {{v1,v2} € £ : v; € U and v, € U}. The graph
Gy = (U, Ey) is called the subgraph of G induced by U.

A subset A < V is said to be complete if all pairs of vertices in A are adjacent. A graph
G = (V, &) is said to be complete if V' is complete. A complete subset C' of V' is said to
be a clique if it is not strictly contained in another complete subset of /. The set of all
cliques is denoted by C.

A path of length n between two vertices a and [ is a subgraph o = vy ~ ... ~ v, = 3
of G. A graph is said to be connected if there is a path between every pair of vertices. A
cycleof lengthnisapatha =vg~ ... ~v, = a. Acyclea=vy ~ ... ~v, = ais
said to have a chord if there exists 0 < ¢ < nand j ¢ {i — 1,7 + 1} such that v; ~ v;. A
tree is a connected graph with no cycles.

A subset S of V' is said to separate a subset A of IV from a subset B of V if every path
between a vertex in A and a vertex in B contains a vertex in S. A subset S of V' is said to
be a minimal separator of A and B if it is a separator of A and B and no subset of it is a

separator of A and B.

Definition 3.2.1. Consider an ordering C| < ... < C}, of the cliques of G. Let H] = (|
and forall 2 < j < k,let H; = H; ; v Cjand S} = H,_; n (.

The ordering C] < ... < C} is a perfect order of cliques if for all 2 < j < k, there exists
i < j — 1such that 57 = C}.

The S} are minimal separators of G. The number of j such that S = S is called the

multiplicity of the separator S and will be denoted by A(S).

Definitions 3.2.2.
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1. A graph with no chordless cycle of length greater than three is called a decomposable

graph.
2. A graph G is said to be homogeneous if it is decomposable and does not contain the

graph A, as an induced subgraph.

. . . 12 )
The nearest neighbours interactions graph A4,, : ¢ —e — - - — o, is complete for n < 2,
homogeneous for n < 3, and non-homogeneous for n > 4. Its sets of cliques and minimal

separators are respectively C = {{i,i+1}: 1 <i<n—1}andS = {{i}: 2<i<n—1}.
3.2.2 Conditional independence and graphs

Definition 3.2.3. Two random variables X and Y are said to be conditionally independent
given a random variable Z if the conditional density function of (X, Y") given Z factorizes

as f(x,ylz) = f(x|z)f(y|z). This will be noted X L Y|Z.

Consider a graph G = (V). Let (X,),ev be a collection of random variables and let
A, B, C be three subsets of V. If X 4 and X g are conditionally independent given X, we
write X4 1 Xp|Xc.

Definition 3.2.4 (Markov properties).

1. (X,)eev is pairwise Markov with respect to G if for all o, 5 € V,
arf = X, L1 XB‘XV\{a,B}-

2. (Xy)uev is local Markov with respect to G if for all v € V, X, L Xy ci0)| X ve(w)-

3. (X, )vev is global Markov with respect to G if for all A, B, C' non-empty disjoint
subsets of V' such that C' separates A and B, we have X, 1 Xp|Xc.

Definition 3.2.5 (Factorization). A joint density function f of the (X, ),cy is said to fac-

torize with respect to GG if



where for all 1 < i < k, the function ¢); depends on x only through ¢, and {C; ... C}} is

the set of cliques of G.

Theorem 3.2.6. If [ factorizes with respect to G, then (X,).ev is global Markov with
respect to G.

Further, if f(z) > 0 for all x, then

f factorizes with respect to G~ <= (X,)wev is global Markov with respect to G
<= (Xy)wev is local Markov with respect to G,

<= (Xy)wev is pairwise Markov with respect to G.

Theorem 3.2.7. Let C and S be the sets of cliques and minimal separators of a graph G.

Let \(S) be the multiplicity of a minimal separator S as defined in Definition 3.2.1.

[1fe(zc)

. CeC
fle) = [IA(S) fs(xs)
Ses

is the unique distribution Markov over G that has the given consistent distributions f¢,

C € C as its clique marginals.

3.2.3 Graphical Gaussian models

In this paragraph, we recall some results from (Letac and Massam, 2007; Andersson and
Klein, 2010).

Consider an n-dimensional Gaussian model N (0, Y) which is Markov over a graph
G = (V,&). Let C be the set of cliques of G. Let Z be the space of symmetric matrices
y such that y;; = 0 for all non-adjacent vertices (i, 7).
Let Zf, be the space of incomplete symmetric matrices x with entries x;; missing for all
non-adjacent vertices (i, ).

Let 7 : S, — Z be the projection of S,, on Z..
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The conditional independence constraints are equivalent to
K=Y"'eP;:=25n S} (3.5)

They are also equivalent to >;; = E@V\{i,j}z;/i{ij} V(i) 2V \(ij},; for all non-adjacent

vertices ¢ and 7, which in turn is equivalent to
m(X)e{reZi: xc >0,YC eC}. (3.6)
{reZl: xc >0,V C e} is actually the dual cone of Pg,
Qc = {z € Z¢ : Tr(zy) > 0, Yy € Po\{0}}.

Indeed, an adaptation for A,, graphs of the general proof given in Letac and Massam (2007)

1s as follows:

e Proofof {x € Z}: ©¢ > 0,YC eC} < Qa,:
Let ¥ € Q4, and let y € P4, \{0}. Since the mapping P;,' — Qg, v — 7(z) is a
bijection, there exists  positive definite such that z is a completion of z.
We have 2'/2y#/? > 0, thus Tr(zy) = Tr(dy) = Tr(2"%y2'/2) > 0.

Therefore, x € Q 4, .

e Proof of Qu, c{r € Z}f: xc>0,VC eC}:
Letz € Qa,. Letie {1,...,n— 1} and let « € R?. Consider v € R" defined by
(0%} if j:Z
v; = (6] if j=Z+1
0 else

We have vo? € P4 \{0}. Thus, v"zv = Tr(zwvv”) > 0. But we have v'zv =

o’z i 11ya. Therefore, o’z ;1 > 0and 2 € Q4,,.

P¢ and () are homogeneous (as defined in Section 3.1 ) if the graph G is homoge-

neous (as defined in Definition 3.2.2 ) (Letac and Massam, 2007). Therefore, the cones
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P,, and ()4, are homogeneous and for all n > 4, the cones P4, and ()4, are non-

homogeneous.

Theorem 3.2.8. For a decomposable graph G, for all x € Qg, there exists a unique
completed matrix & € S, such that m(&) = r and 7' € Pg.

Lauritzen’s formula gives

=3 (@)™ = DIAS) (@)™, (3.7)

CeC Ses

where \(S) is the multiplicity of the separator S as defined in Definition 3.2.1 and (z4)°
denotes the matrix obtained from z 4 by filling up the entries corresponding to V\ A with

zero entries.

¢ will denote the bijective map from Pg to Q¢ such that o(y) = w(y~1).
3.3 Exponential families of distributions

In this section, some important concepts and results on exponential families of distribution
are introduced. Exponential families of distributions are extensively used in statistics and
intensively studied. More details can be found in (Barndorff-Nielsen, 1978), (Brown,
1986), (Lehmann and Casella, 1998) or (Lehmann and Romano, 2005). The presentation
given here essentially follows (Letac and Casalis, 2000).

Consider a real vector space F and its dual space E* (the space of linear forms on F).
Let{): E* x E — R, (s,z) — (s, x) be the canonical bilinear form on £* x E. Let
/4 be a positive measure on F/.

The moment generating function of 4 is the map M, : E* — [0, 0] defined by M, (s) =
§p e u(dr). Let K(s) = In(M,,(s)).

The natural exponential family generated by p is the family of probability distributions
defined by {P,(dz;p) = e »~ KO y(dx) : s € S}, where S is the interior of the set
{s: K(s) < oo}, assumed to be non-empty.
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Consider a o-finite measurable space (€2, .4, ). The general exponential family gen-

erated by the measure v and the map 7" : 2 — F is the family
{Py(T,v) =exp{(s, T)— K(s)}dv: seS}. (3.8)

If 1 is the image of the measure v by 7" on E, the family P;(u) is called the natural
exponential family associated with the general exponential family P;(7',v). The mean
function of the exponential family is the map m defined by m(s) = E;(7") = K'(s) which
is an analytic diffeomorphism from S° (the interior of .S) to the open set M = m(S°). M
is called the domain of the means of the family.

The map ¢ : M — S° m — (m) = (K’)"'(m) is called the inverse mean map. The

exponential family, parametrized by the domain of the means M is given by
Qum (1) (dz) = VM) @=K@m) | (dg) me M. (3.9)

The variance function of the family is defined by V' (m) = K"(¢)(m)) := v(¢)(m)). The
variance function is very important as it characterizes the exponential family. Indeed, if
the variance functions Vp and Vg, of two natural exponential families F; and F5 coincide

on a non-empty subset of the intersection Mg, N Mp, of the domains of means, then

Fi = F5 (Letac, 1989).
3.4 The Wishart distribution

In this section, we introduce the definition and some important properties of the classical
Wishart distribution. More details can be found in Eaton (2007), Faraut and Koranyi
(1994) and Muirhead (2005). The presentation here is based on the characteristic function

and the canonical measure of a cone.
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3.4.1 The gamma and chi-square distributions

The gamma function is defined for s > 0 as

[(s) = f e "2 da. (3.10)
0

Observing that the characteristic function of the cone (0, o) is

o0
or+(T) = f e Vdy =a ",
0

the gamma function can be rewritten as

[(s) = JOO e Tz pp+ (x)dx. (3.11)
0

Using the invariance (formula (3.4)) of the canonical measure @g+ (x)dx, we obtain

foo e (zy)’pr+ (x)dx =T'(s). (3.12)

Therefore,

1
(s, y; x)dr = meﬂy(zy)sww(z)lw (x)dx (3.13)

is a probability density function. The corresponding probability distribution is called the

Gamma distribution G(s, y). The Laplace transform of G(s, y) is, for all § > 0, given by

© 1 s
;CG(s’y)(e) = L me—x(ew)@y}s@w (x)dz = (1 + g) . (3.14)

The mean and variance of the gamma distribution are respectively 5 and y%

The probability distribution G (%, %) is called the chi-square distribution. It is the distribu-
tion of Zle X? when the random variables X;, i = 1,. .., k are independent and follow a

standard normal distribution.
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3.4.2 The Wishart distribution

The gamma function on S, is defined for all s > "1 as

n n(n— n ), — 1
Ly (s) = L+ e~ T ||~ gy = " [T (s ! 5 ) . (3.15)
n i=1

If Y is an n x n symmetric matrix and A an n x n invertible matrix, the Jacobian of the
transformation Z = AY *A is |A|"*! (Mathai et al., 2012). Therefore, the characteristic

function of the cone S is

Psp () = J e T dy = J e TP ) gy — g _TJ e T dz = clx| "7,

where c 1s a constant.
In the sequel, we will omit the constant and write ¢ g+ () = |z|~"%". The gamma function

on S, can thus be rewritten as
[y (s) := f e~ Tz v (2)d.
Using the invariance (formula (3.4)) of the canonical measure g+ (z)dz, we obtain

e~ T B 2y 125 o () d = g (5).

| e ey @i - |
+ n

S+

n n

Therefore,

1
Yot (8, y;x)dr = ———e” Tr(zy) lzyP g+ ()1 g+ (x)dx

is a probability density function; the corresponding probability distribution is the Wishart
distribution W), (s, y). It is sometimes also called the matrix-variate gamma distribution
(Mathai et al., 2012).

The Laplace transform of W), (s, y) is Ly, (s given by

Ly, (s)(0) = L, +y710]7. (3.16)
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Rewriting the density function as

Yo (8,y;2)dw = ™0y (da),

|z*

s

(z)1g+dx, we note that for a fixed s > 0, W, (s,y) is an ex-

ponential family of distributions generated by the measure v with a Laplace transform
L,(y) =yl ° forally e S .

The mean and variance of W, (s, y) are respectively sy~ and s(y ! ® y~1).

3.4.3 The classical Wishart distribution

The reparametrization W (s,y) = W, (£, 3y™") is similar to the chi-square distribution.

It is called the classical Wishart distribution. If X5, ..., X; is a random sample from an
n-dimensional normal distribution with mean zero and covariance >, then W = X; X 1T +
...+ X4 X7 follows the classical Wishart distribution W¢(d, ). The maximum likelihood
estimator of ¥ follows the classical Wishart distribution W(d, £3).

Defining the classical Wishart distribution W (s, y) by its Laplace transform

Lywe(sy (0) = det(I, + 256)~*/% extends the set of possible values of the parameter s to
the so-called Gindikin’s set {1,2,3,...,n — 1}u]n — 1, 0[. The mean and covariance of

W¢(s,X) are respectively s ¥ and 2s X ® 3. If s > n — 1, W¢(s, X)) has a density given

by
f(z) = L e we_%Tr(E_lg”) (3.17)
Tgi(s) 27|32 ' '
For s € {1,2,3,...,n — 1}, the classical Wishart distribution is singular; it has no den-

sity function with respect to the Lebesgue measure and is concentrated on a subspace of

positive semidefinite matrices of rank less than n.
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3.4.4 The multiparameter Wishart distribution

Forall y € S;F and 1 < i < n, the matrix Y{1:4) 18 the upper left submatrix of y of size i x 1,
and y;.,y is the lower right submatrix of size (n —i + 1) x (n —i + 1).

The generalized power functions A and §; on S;" are defined by

A(Y) = ¥ a5 Y T [y (3.18)
and
Os(Y) = Y1 Y2 |27 o Yy [Tt I 2y (3.19)

The two power functions are known to be related by the property A_,(y) = d,(y~") (Fa-
raut and Kordnyi, 1994, Proposition VII.1.5), where the notation A_, means —s replaces

S.

The multiparameter Gamma function on S is defined, for s € R” such that s; > %, as

D+ (s) := L+ e’Tr(I)A§(x)gos+( P H <

1) . (3.20)

Using the invariance of the measure g+ (x)dx by linear automorphisms of S;* and writing
ye Stasy = 'band z = bx'b with b a lower triangular matrix with positive diagonal
elements, we get

=012, Tr(zy) = Tr(x'bh) = Tr(bz D),

Ag(x) = A (0712071 = A7 )AL (2) = Ag(y')Ag(bz 'b) (Faraut and Korényi,
1994, Proposition VI.3.10) and

f e T (2)pgr (v)da = Ay(y ™) f = TN (bab”)p gt (2)dr = 6_y(y)T g (5).
St Sy

Therefore,

w(s,y; x)de = ——e @A (2)0,(y) g+ (x)dx (3.21)
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is a probability density function on S;"; the corresponding probability distribution is called
the multiparameter Wishart distribution W, (s, y).
Moreover, for a fixed s, W,,(s,y) is an exponential family of distributions generated by

the measure R,(dz) = 0 A (7)¢pg+ (r)dz which has a Laplace transform given by

Lr,(y) = 0-s(y).

The Laplace transform of W), (s, y) is ﬁWn@,y)(G) _ 0-s(y+0)

o-s(y) ~

Remark 3.4.1. Consider y € S;" and s € R".

Let us define y* = Ry'R and s* by Yii = Yn—itin—j+1 and S7 = Sp_iy1.

Then, it is easy to see that Tr(y*) = Tr(y), 6(y*) = As(y), 0+ (Y*) = @g+(y) and

dy* = dy,.

Remark 3.4.2. We could have alternatively defined the multi-parameter gamma function

as

[ys(s) := f e~ 6, (1) pgr (x)de, (3.22)
St "
Using Remark 3.4.1, we obtain

L+ (s) = L+ efTr(x*)Aﬁ(x*)SOs: (z%)dx* = Fs:{ (s¥).

n

A similar reasoning as above gives, for fixed s, the exponential family of multiparameter

Wishart distributions W, (s, y) with density function

(s, y;x)dr = = e~ s, (2) Ay (y)p g () de. (3.23)
Fs;; (s) !

W (s, y) is generated by the measure Ry(dx) = = i B 6s(2)pg+ (v)dx which has a Laplace
gt (s

n

transform given by L (y) = A—s(y).

A_s(y+0)  I_gx(y*+0%)

The Laplace transform of W, (s, y) is Ly s(0) = N e e (7

Therefore, W, (s,y) = Wn(§*7 y*).
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Chapter 4

WISHART EXPONENTIAL
FAMILIES ON CONES RELATED TO
NEAREST NEIGHBOURS
INTERACTIONS GRAPHS

4.1 Introduction

The classical Wishart distribution was first derived by Wishart (1928) as the distribution
of the maximum likelihood estimator of the covariance matrix of the multivariate normal
distribution. Applications in estimation and other practical aspects of Wishart distributions
are intensely studied, cf. Sugiura and Konno (1988); Tsukuma and Konno (2006); Konno
(2007, 2009); Kuriki and Numata (2010).

In the framework of graphical Gaussian models, the distribution of the maximum like-
lihood estimator of 7(3), where 7 denotes the canonical projection onto (¢, was derived
by Dawid and Lauritzen (1993), who called it the hyper Wishart distribution. Dawid and
Lauritzen (1993) also considered the hyper inverse Wishart distribution which is defined on
()¢ as the Diaconis-Ylvisaker conjugate prior distribution for 7(3), and Roverato (2000)
derived the so-called G-Wishart distribution on Fg, that is, the distribution of the concen-
tration matrix K = X! when 7(3) follows the hyper inverse Wishart distribution. Letac

and Massam (2007) constructed two classes of multi-parameter Wishart distributions on
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the cones () and Py associated to a decomposable graph GG and called them type I and
type II Wishart distributions, respectively. They are more flexible because they have mul-
tiple shape parameters. In fact, the type I and type I Wishart distributions generalize the
hyper Wishart distribution and the G-Wishart distribution respectively.

The Wishart exponential families introduced and studied in this thesis include the type
I and type II Wishart distributions constructed by Letac and Massam (2007) on the cones
Q¢ and Py associated to nearest neighbours interactions graphs. Our methods, which are
new and different from methods of articles cited above, simplify in a significant way the
Wishart theory for graphical models. This chapter makes it clear that using the “cliques-
separators” approach in the theory of Riesz measures and Wishart laws on graphical cones
is not the natural one. Our approach allows the derivation of results which are technically
challenging until now.

The methods introduced in this chapter allow to solve the Letac-Massam Conjecture
on the cones ()4, in Chapter 5. Together with the results presented in this chapter we
achieve in this way the complete study of all classical objects of an exponential family for
the Wishart natural exponential families on the cones () 4,, .

Some of the results of our research may be extended to cones related to all decompos-
able graphs (work in progress). Many of them are however specific for the cones () 4, and
Py, (indexation of Riesz and Wishart measures by M = 1, ..., n, Letac-Massam Conjec-

ture, Inverse Mean Map, Variance function).

This chapter is orgarnized as follows. Sections 4.2, 4.3 and 4.4 provide the main tools
in order to define and to study the Wishart natural exponential families on the cones () 4,
and P4, . In Section 4.2, useful notions of perfect elimination orders < on A,, and of
generalized power functions ¢;° and A7, s € R" will be introduced on the cones (4, and
Py, respectively. In Theorem 4.2.9, a classical relation between the power functions o
and A~ is proved as well as the dependence of 0 and A7 on the maximal element M
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of < only. Thus, in the sequel, only generalized power functions 5§M) and AéM) appear.
Next important tool of analysis of Wishart exponential families are recursive construction
of the cones P and ()¢ and corresponding changes of variables. They are introduced and
studied in Section 4.3, and are immediately applied in Section 4.4 in order to compute
the Laplace transform of generalized power functions 5§M) and AéM) (Theorems 4.4.1 and
4.4.2).

In Section 4.5, Wishart natural exponential families on the cones () 4, are defined, and
all their classical objects are explicitly determined, beginning with the Riesz generating
measures, Wishart densities, Laplace transform, mean and covariance. In Theorem 4.5.4
and Corollary 4.5.7, an explicit formula for the inverse mean map is proved. It provides
an infinite number of versions of Lauritzen formulas for bijections between the cones Q)¢
and FPg. In Section 4.5.3, two explicit formulas are given for the variance function of a
Wishart family. The formula of Theorem 4.5.15 is surprisingly simple and similar to the
case of the symmetric cone S, .

Section 4.6 is on Wishart natural exponential families on the cones P4, and follows a
similar scheme as Section 4.5, however the inverse mean map and variance function are
not available on the cones P4, . The analysis on these cones is more difficult.

Finally, in Section 4.7, we establish the relations between the Wishart natural expo-
nential families defined and studied in this chapter and the type I and type II Wishart
distributions from Letac and Massam (2007). Our methods give a simple proof of the for-
mulas for Laplace transforms of type I and type 1I Wishart distributions from Letac and

Massam (2007).
4.2 Preliminaries on A,, graphs and related cones

In this section, we study properties of nearest neighbours interactions graphs that will be

important in the theory of Riesz measures and Wishart distributions on the cones related
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to these graphs. In particular, we characterize all the eliminating orders of vertices and
we introduce generalized power functions related to such orders. We show that they only
depend on the maximal element M € {1,...,n} of the order.

Recall that an undirected graph is a pair G = (V, ), where V is a finite set and & is
a subset of Py(V), the set of all subsets of £ with cardinality two. For convenience, we
introduce a subset F < V' x V defined by E := {(v,v) : v ~ v’} U {(v,v) : v € V}. The

graph with V' = {vy,v5,...,v,} and € = {{v;, vj11}: 1 < j <n — 1} is denoted by 4,

and represented as o e. An n-dimensional Gaussian model (Xy)vev is said to be
Markov with respect to a graph G if for any (v, v’) ¢ E, the random variables X, and X,
are conditionally independent given all the other variables. The conditional independence
relations encoded in A,, graph are of the form: X,, L X, |(Xy,)xri;» forall |i —j| > 1.
Thus, A,, graphs correspond to nearest neighbours interactions models. In what follows,
we often denote the vertex v; by 1.

For a graph G, let Z¢ < S, be the vector space consisting of y € S,, such that y;; = 0
if (i,7) ¢ E. Let I = Z¢, be the dual vector space with respect to the scalar product
yymy = Tr(yn) = X jyer YisMij» Y € Za, 1 € Ig. In the statistical literature, the vector
space I is commonly realized as the space of n x n symmetric matrices 7, in which only
the elements 7,;, (i, j) € E, are given. We adopt this realisation of I in this thesis.

If I < V, we denote by y; the submatrix of y € Zs obtained by extracting from y the
lines and the columns indexed by /. The same notation is used for n € I5. Let P be
the cone defined by P; = {y € Zg : y > 0}, and Q¢ < I the dual cone of Pg, that is,
Qc ={nelg: Vye Pe\{0}, {y,n) > 0}. A Gaussian vector model (X,),ey is Markov
with respect to G if and only if the concentration matrix X = X! belongs to Fy.

When G = A, the cone Q)¢ is described as Q¢ = {n € I : N1y > 0, 1 =
1,...,n — 1}. Let 7 be the projection of S, onto Iz, x — 7 such that Nij = X if

(7,7) € E. Then it is known (cf. Letac and Massam (2007); Andersson and Klein (2010))
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that the mapping P — Qg, y — 7(y 1) is a bijection.

4.2.1 Perfect elimination Orders

Different orders of vertices vy, v, . . ., v, should be considered in order to have a harmo-
nious theory of Riesz and Wishart distributions on the cones related to A,, graphs. The
orders that will be important in this work are called perfect elimination orders of vertices

and will be presented now.

Definition 4.2.1. Consider a graph G = (V) and a total strict order < of the vertices
of G. The set of future neighbours of a vertex v is defined as v© = {w e V : v <
w and v ~ w}. The set of all predecessors of a vertex v € V' with respect to < is defined

asv- ={ueV:u<uv}

Definition 4.2.2. A total strict order < of the vertices of a graph G is said to be a perfect

elimination order if v™* is complete for all v € V.

Example 4.2.3. For the graph A3 : 1—2—3, theorders1 <2 <3, 1 <3<2,3<2<1

and 3 < 1 < 2 are perfect elimination orders while 2 < 1 < 3 and 2 < 3 < 1 are not.

Theorem 4.2.4 (Grone et al. (1984); Paulsen et al. (1989); Roverato (2000)).

There exists a perfect vertex elimination order of the vertices of the graph G = (V, E) if
and only if G is decomposable.

Also, provided a perfect vertex elimination order of vertices is used, the upper triangu-
lar matrix in the Choleski decomposition of the concentration matrix in a graphical model

has the same pattern of zeros as the concentration matrix.

Next, we present a characterization of the perfect elimination orders in the case of the
graph A,,. An algorithm that generates all perfect elimination orders for a general graph is

given by (Chandran et al., 2003).
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Proposition 4.2.5. Consider the graph A, : 1 —2 — 3 — --- — n. A total strict order <
is a perfect elimination order if and only if there exits M € {1,...,n} such that < is an
intertwining of the two sequences 1 < ... < M and n < ... < M.

In particular M is the maximal element, < is the ordinary order if M = n and the
reversed one if M = 1. Finally, there are 2"~ possible perfect elimination orders on the

graph A,,.

Proof. Consider a perfect elimination order < on A,,. The only vertices of A,, having only
one neighbour are the two exterior vertices. If a vertex v with two neighbours v — 1 and
v + 1 were minimal for <, then the set v would contain these vertices and would not
be complete. Thus, the minimal element of < is one of the exterior vertices 1 or n of
the graph. Without loss of generality, let us say the order starts with 1. It follows from
Definition 4.2.2 that a perfect elimination order without its minimal element forms again
a perfect elimination order on the graph A, _; obtained from A, by suppressing 1 or n.
The element following 1 may be 2 or n. This recursive argument proves that in a perfect
elimination order the sequences 1 < 2... < M andn < n —1 < ... < M must appear
intertwined. We also see that we construct in this way 2"~! different orders.

Conversely, if an order < on A, is obtained by intertwining of the sequences 1 <
2...<Mandn <n-—1<...< M, it follows that the sets v™ of future neighbours of

v are singletons or empty (for v = M). Thus < is a perfect elimination order. [

Example 4.2.6. Consider n = 4 and M = 3. By intertwining of the sequences 1 < 2 < 3

and 4 < 3 we obtain the perfect elimination orders
41<1<2<3; 1<4<2<3; 1<2<4<3.

Similarly, for M = 1 we get the perfect elimination order 4 < 3 < 2 < 1; for M = 2 we
get three perfect elimination orders 4 < 3 <1 <2,4<1<3<21<4<3<2 and

for M = 4 we have the usual order 1 < 2 < 3 < 4.
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Thus there are 8 perfect elimination orders and 16 non-perfect elimination orders of

the four vertices of A4 graph.

4.2.2 Generalized power functions

In this section, we define and study generalized power functions on the cones Py and Q¢.
First let us introduce some useful notations. For 1 < i < j < n, let {i : j} < V be the
set of a € V for which ¢ < a < j. Then, for y € Zg and 1 < ¢ < n, the matrix y.; is
the upper left submatrix of y of size (i x 4, and ¥y, is the lower right submatrix of size

(n—1i+1)x (n—14+1). Recall that on the cone S;", the generalized power functions

are Ag(y) = [ ['—; |y ® % and 05(y) = [ 12y |Yginy

fimsi-1 with sg = s,41 = 0.

Definition 4.2.7. For s € R", setting det Yg = 1 = det Ngss WE define

det Yot oo\ Sv
s = () wera @1
detn sv
< L {v}ovt
=[S ) T =) (42)

Note that Definition 4.2.7 applied to the complete graph with the usual order 1 < ... <
n gives A, and d,. For any s the following formula d,(y~') = A_,(y) holds (Faraut and
Koranyi, 1994). In Theorem 4.2.9 we find an analogous formula in the case of the cones
Pg and Q.
We will see in Theorem 4.2.9 that on the cones related to the graphs A,,, different order-

depending power functions A7 and 07 defined in Definition 4.2.7 may be expressed in

terms of explicit "M -power functions" A(QM) and 5§M) that will be defined below. They

depend only on the choice of M € V.

Definition 4.2.8. Let M € V,y € P4, and n € 4,. We define the M-power functions

AM (y) on P4, and 5 () on @ 4, by the following formulas:
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M—-1 n
APD(y) - (H |y{m-}|8i—8i+l) ol ( [ |y{i;n}|8i—8i—1) BN
i=1

1=M+1

M—1 Si n S;
(TLE gy ) (T Iy *)

M-1_ s;—1 SM—1—SM+SM+1 n—1 Sit1 )
Hi:2 Mii >77MM (Hi:M-i-lmi )

4.4)

Observe that for M € {1,n} there are n — 1 factors in the denominator of (4.4), and
for M € {2,...n — 1} there are n — 2 factors (powers of 7ag . . . p—1.n—1)-

The main result of this section is the following theorem.

Theorem 4.2.9. Consider a graph A,, with a perfect elimination order <. Let M be the

maximal element with respect to <. Then for all y € Py, we have
05 (m(y™) = A% () = A (). 45)
The proof of Theorem 4.2.9 is preceded by a series of elementary lemmas.

Lemma 4.2.10. Lety € Py, andi < j < j+ 1 < k < m. The determinant of the

SUbmatrix yg; . jyo(k: m) can be factorized as |y . jyotk:my| = |Yii: 3 ||Yie:my |-

Lemma 4.2.11. Lety € Py, andn = w(y~'). Thenforall i,i + 1 €V, we have

|77{i,i+1}| = ‘y‘71|yV\{i,i+1}‘-

Proof. We repeatedly use the cofactor formula for an inverse matrix. We use 7; =

’y’_l ’yV\{z}‘ and show that Mii+1 = _yi,iJrl‘y‘_l‘yV\{i,iJrl} ’ It follows that
}77{1',141}} = |y|72‘yV\{i,i+1}| [|y{i+1:n}||y{1:i}| - yi2,i+1|y{1:i—l}||y{i+2:n}|]- The last factor

in brackets equals |y|. O

Proof. (of Theorem 4.2.9)
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Part1: 63 (n(y™")) = A(M)(y). From Proposition 4.2.5, we have

—S

(i+1} ifi<M-—1,
it ={g ifi = M,
(i—1} ifi>M+1.

Using 7;; = |y|~!|yv\gy| withn = 7(y~") and Lemmas 4.2.10 and 4.2.11, we get 6 (7(y ")) =

Part 2: AZ(y) = AM (y). Let us first consider the perfect elimination order <,; given

by
l<y2<y...<yM-1<yn<yn—1<py...<yM+1=<y M. 4.6)

Using 7;; = |y| ™" |yv\(i}|, Lemmas 4.2.10 and 4.2.11 again, we get A7V (y) = AéM)(y).
It is easy to see using Proposition 4.2.5 and the factorization from Lemma 4.2.10 that for
any other perfect elimination order <, the factors of A7 (y) under the powers s; are exactly

the same as for <j,. Indeed, if 1 < M — 1, let n — j be the largest vertex greater than M

such that n — j < 4. Then, the factor under the power s; is

aoi-l _ lyaeallym—iml vl
‘yl_\ |y{1:i—1}||y{n—j:n}| |y{1:i—1}|
A similar argument shows that this is also true for ¢ = M and for i > M. [

Corollary 4.2.12. Let <; and <5 be two perfect elimination orders on A, such that

max., V = max., V. Then 6;*(n) = 6;%(n) foralln € Qa,. Ifmax.V = M
then we have 63 (n) = 5§M)(77).

4.3 Recursive construction of the cones P4 and ()4, and changes of
variables

In this section, we introduce very useful recursive constructions of the cones Py, and () 4,,

from the cones Py, , and (04, ,. There are two variants of them for 4,,_; : 2 —--- —n
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and A, 1 :1—---— (n—1). Corresponding changes of variables for integration on Py,

and () 4, are introduced.

Proposition 4.3.1. . Forn = 2,let @, : R" xRx Py, _, —> Pa,, (a,b,z) —> y with

a 0 0 1
0 b 1
y = A(b) FAb),  A(b) =] . ,
z :
0 0 0 1

Then the maps ®,, and V,, are bijections.

2. Let &, : R* x R x Py, — Py, (a,b,z) —> § with

0 1
St z : 0 1
j = *B) deo o=l |
0 0 a 0 b 1

Then the maps ®,, and U,, are bijections.
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3. The Jacobians of the changes of variables y = ®,(a,b, z) and y = ®,(a,b, z) are
given by
Js,(a,b,2) =a, Jg (a,b,z2)=a. 4.7)

The Jacobians of the changes of variablesn = V¥, (a, 8, x) and n = Y, («a, 3, x) are
given by
J‘l’n(aaﬁ7$) = T22, J\i/n(avﬁ7$> = Tp—1,n—1- (48)

It should be noted that for ®,(a,b,z) and V,(«, 3, x) the rows and columns of z

and = are numbered 2, . .., n while for ®,(a,b,z) and ¥, (o, 3, ) they are numbered
1,...,n—1.

a 0 0 a 0 0

0 0
Proof. 1. Lety' = | . andn' = | . . Then

: z : T

0 0

ab i (i,7) = (1,2)or (i, ) = (2,1),
Yij = ab2 + 2992 ifi1 = ] = 2, (49)

y;; otherwise.

Thus, on the one hand, if (a,b,z) € Rt xRx Py, _ ,theny € Z,4,. And z > 0 implies ¢’ >

n—1?
0 as every principal minor of ¢’ equals a times a principal minor of z. From y = T%'*T
with T = A(b), we get y € Pa,. On the other hand, if y € P,4,, we have a = y;; > 0,

b = %, 299 = Yoo — Zy’—% and z;; = y;; foralli # 2 and j # 2. We use the notation
2 = (2i)2<ij<n- Now, let us show that z € Py, ,. We have ¢/ = T'y *T"~! > 0. Hence,
we have also z > 0 since each principal minor of z equals 1/a times a principal minor of
y'. Therefore, the map ®,, is indeed a bijection from R* x R x P4 _, onto Py,.
Let us turn to W,,. The relation between 7 and 7/’ is given by
04-1—522722 if ¢ =j = 1,
Nij = { Proe  if (1,7) = (1,2)or (i,7) = (2,1), (4.10)
n;; otherwise.
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First we show that if (o, 5, 2) € R* x Rx Q4,_,,thenn € 1,,. Actually, since x5 3, > 0,

a+ (%199 Bran

we have o + (%29 > 0 and 719y = ( Baa T2

) > 0, where we recall that the

indices {2, 3} and {1, 2} denote sets. On the other hand, if n € Q) 4,, we have x;; = 1;; for

all7,j =2,...,n. Thus,n e Q4, impliesz € Q4, ,

0 0
2. Lety = z O and 7' = L O . Then we have
0 0 a 0 . 0 «

ab if (i,5) = (n —1,n)or (i,j) = (n,n — 1),
Uij =< ab* + 2y 1,1 ifi=j=n—1, (4.11)
y;; otherwise,

and
a+52xn 1,n—1 le:]:n

Mij = § BTn—1n— if (4,5) = (n—1,n)or (i,5) = (n,n —1), (4.12)
7li;  otherwise.

Similar reasoning as above shows that ® and ¥ are indeed bijections.

3. From (4.9), we have ay“ =1; 8{%1 = 0; and for all ¢ j, = = 0;
% =0 ag—f = @ and for all 7, j, aay“ =0;

Qg2 — b2 22 — 9qb; $22 = 1 and for all (i, j) # (2,2), % 222 =0
foralli,j # 1,2, we have = 1 and ay” = 0if (1,7) # (k,1).
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The Jacobian of the change of variable y = ®,,(a, b, 2) is therefore,

oyin Oy Oyu 0y11

Jda ob 0z11 e 0zZnn

Oy12  Oyi2  Oyi2 0y12 1 0 0 0 0

oa ob 0z11 Tt Oznm b a 0 0 0
2

Y22 dy22 Y22 Y22 b 2ab 1 O Ce 0

J—|0a @ FEn U | _|0 0 0 1 0 0 — g

0 0 0 1

Ja oB 0z11 T OTmn

The proof of the second part is similar. [

Example 4.3.2. In order to obtain the cone P4, associated to the graph Ay : 1 —2—-3—4

we can go as follows from the cone Py, associated to the graph Az : 2 —3 — 4 :

1 00 0 a 0 0 0 100
b1 0 00 290 =z 0 b 1 0
(I>4 . R+XRXPA3 —> PA4, (CL, b, Z) — 0010 0 Zzz Zzz 22 00 1
00 01 0 0 234 244 0 00

a ab 0 0
ab ab® + 299 793 0
0 293 233 234
0 0 234 Za4

Hence, P,, is the set of matrices of the form witha > 0,be R

290 293 0
and z = | 223 233 234 | € Pa,.
0 234 2u

We can also obtain Py, by going from the cone Py, associated to the graph 1 —2 — 3; we

proceed as follows:
100 0\ /211 212 0 0\ /1 0
= 01 020 212 2922 293 0 01
. + — —
D,y RTXRxX Py, Py, (a,b,2) 00 10 0 2 2m 0|]0 0
00 b1 0 0 0 a/ \O O
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211 212 0 0

Hence, Py, is the set of matrices of the form 12 A2 2Z23 0 witha > 0,be R
4 0 293 ab® + 233 ab
0 O ab a

zi1 z12 0
and z = Z192 292 293 | € PA3.
0 223 233

Lemma 4.3.3.

1. Lety = ®,(a,b,z) and n =V, (a, B, x).
Then, for all M € {2,...,n}, we have

S M
AM(y) = a 1A§SQ}MSH)(2), (4.13)
30D () = aslé((?i)wsn)(w). (4.14)

Lety = ®,(a,b,z) andn = ¥, («, 8, z). Then, forall M =1,... ., n—1,

AM (y) = aS”AEfiwsn_l)(z), (4.15)
30D (1) = a5"5((£f7)_._78n_1)(x). (4.16)

2. Letus define pa, : Qa, — Ry by o4, (n) =071, and forn = 2

n—1
©a,(n) = H’n{i,i+1}’73/2 H Nis- “4.17)
i=1

1#=1n

L€l77 = ‘Iln(aa 57 x) andﬁ = \I]n(a’, ﬁ,l‘) Then,

pa, () = 233", (2) (4.18)
and
wa, () = 2, 0 a0, (). (4.19)
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3. Ify = ®,(a,b,z) andn = Y, («a, 5, x), then
Tr(yn) = aa + axyn(b + B)* + Tr(zx). (4.20)
Ify = &)n(aa b, Z) and n = \~I/n<a7 B, (L’), then

Tr(yn) = aa + az, 1,1 (b + B)* + Tr(zx). (4.21)

Proof. 1. For M > 2, we have

AN (y) _ () Aﬁl(|y{1:i}|)si_s”l (M)SM
AR ) AN K

Noting that a = y,,,, we have for M =1,...,n—1,

n n—1
AéM) (g) — |g|s1 1_[ ‘g{zn} Si—8i—1 _ as1|z|sl H (CL ‘Z{i:n} sifsi,l) asnsn—1
=2 1=2

n—1
= a™|z[" H 2y 575 = @ A (2)-
1=2

(Sl 7777 Sn—l)

Similarly, we show that (5§M)(7]) = 045158;[) o) for M > 2 and that 5 (n) =

-----

asn M () forall M < n — 1.

2. Letn = U(a,3,2) and ij = ¥(a, 3, z). For n = 2, we have

—3/2

o+ [Pr P _ o ~3/25-3/2

Bx x

0a,(n) = ’77{1,2}|_3/2 =

_ $_1/2(1/_3/2Q0A1 (I)
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For n > 2, using (4.10), we have

n—1
[TInginy 2
|73/2 =2 -1/2 _3/2

n—1 1 = Tp
[17:
=3

0a, (M) = m2lnpgy A, ().

The proof of the second part is analogous.

3. We have

Tr(yn) = Z Z YikMki = Y1171 + Y1271 + Ya1th2 + Z Z Yik M
i=1 k=1 =2 k=2

= a(a + ,621‘22) + 2@()51‘22 + Z Z YikMki-

1=2 k=2

Now observing from (4.9) and (4.10) that

Z Z YikMki = Yaoloa + Tr(2x) — 209me0 = (ab2 + 299) T2 + Tr(zx) — 229M92
i=2 k=2

we get
Tr(yn) = aa + af*ray +2abBray + ab’woy + Tr(2z) = aa+ azey (b+ B)* + Tr(zx).

Formula (4.21) is proved similarly.

Lemma 4.3.4. Consider y € Py, .

1. Ify = @,(a,b, 2), then o(2);; = p(y);; for j = 2.

2. Ify = ®,(a,b,2), then v(z);; = ©(y)j; for j <n — 1.

Proof. 1. Note that y = ®,(a,b, z) is expressed in the form T (a z) T, where

T = A(b) in Lemma 4.3.3. In general, let A, U, L be n x n matrices with U upper
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triangular and L lower triangular. Then (UAL){M} = UgjinyAgjiny Lijiny- 1t follows
that (") gy = () gy () gy (T ) gy = (271 gy for j > 2 since

(TN gieny = Lijmy = ((*T)7")jemy- In particular (y=');; = (2715

2. Similar to the proof of the first part.

4.4 Laplace transform of generalized power functions on ()4, and Py

Theorem 4.4.1. Foralln > 1, forall 1 < M <n and forall y € P,,, the integral
SQA e_Tr(y”)ééM) (1)@ a, (n)dn converges if and only if s; > 5 forall i # M, and sp; > 0.
In this case, we have
| e mmstmen, iy - w0 [ oo = A ). @2
QAn B Z#M -
Proof. We will proceed by induction on the number n of vertices. For n = 1, we have the
gamma integral that converges if and only if s > 0, so that
e} ee}
f e 180 ()pa, (n)dn = J eV dn = T(s)y ™.
0 0
Now assume that the assertion holds for a graph with n — 1 vertices.
Case M > 1. Lety = ®,,(a, b, z) and let us make the change of variable n = ¥, («a, 3, ).

The induction hypothesis gives

JQ e~ T ”)582{.”’5”)(x)gpAnfl(x)dx (4.23)

Ap—1

— 7T(n—2)/2{ H F(Si—%)}l—‘(SM)A(Aé)Q Sn)(z)

i#1,M

if and only if s; > % for all i # M, and s;; > 0. By Lemma 3, the change of variable

n=V,(«a, 5, x) gives dn = xy9dadfBdz. Thus, we have

f e M ()4, (n)dn
Qa,,
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where we used parts 3 and 1 of Lemma 4.3.3. Now, using the Gaussian integral

o0
. 2 12 —1/2
J e @20 g8 = 7112, 1/25622/

—00

and the gamma integral

© 1
J e 0 3 day = a7 2D (5 — 5)7
0

that is finite if and only if s; > %, we get

J e TSI ()., (n)dn
Qa, B
(4.24)

1
= 7r1/2a_$1r(81 - §)J e Mg, sn)(I)QOA"’l(x)dx'
Q

Ap—1

Finally, using Formulas (4.23) and (4.13) completes the proof in the case M > 1.
Case M = 1.
Lety = P, (a, b, z) and let us make the change of variable = @n(a, B, x). The induction

hypothesis gives

—Tr(za) £(1 e 1 1
J\Q c Tr( )5((51) 7777 Sn*l)(x)(pAn_l (x)dw - 7r( 2)/2{ 1_[ F(SZ_§)}F(81)A(7()81 77777 Snfl)(z)7

Ap—1 z;én,l

(4.25)
if and only if s; > %, forall ¢ # M and s,; > 0.
By Lemma 3, the change of variable = ¥, (a, 3, z) gives dn = x,,_1 ,_1dadfdz. Thus,

we have

§o. € W60 (m)pa, (mdn = § 57, S0  9la,8,z)dadBdr,
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where

—(aa+aTn_1.n_ 2 zT Sn— 1 1/2
gla, B, x) = em(eoremtnaOEOEIED 820 (@), (),

and where we used Lemmas 3 and part 1 of Lemma 4.3.3.

Now, using the Gaussian integral

n—1n—1

Jw e—axn_1,n—1(b+5)2d5 = 7T1/2a_1/2£13_1/2

—00

and the gamma integral

© 1
0

that converges if and only if s,, > % we get

f TS0 () o ()dy
Qay, B

(4.26)
—s 1 — Tr(zz) ¢(1
— 72D (s, — ) LA TS (@)pa (2)da.
n—1
Finally, using Formulae (4.25) and (4.15) completes the proof.
]

Theorem 4.4.2. Foralln > 1, forall 1 < M <n and foralln € Q) 4, the integral
§p, € Tm AM () dy converges if and only if s; > —3 foralli # M, and sy > —1. In

this case, we have

- e 3
f e~ MO AM (y)dy = 7T T(ss+ 5) PU(sar + 1005 (o, (). @27)
L i#M

Proof. We will proceed by induction on the number n of vertices.
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e Forn =1,

0 o0
J e AN (y)dy = f e”Vy*dy = T(s + 1)n~"pa, (n),

0 0

if and only if s > —1.

e Now assume that the assertion holds for some number of vertices n — 1.
Case M > 1:
Letn = U, (a, 3, x) and let us make the change of variable y = ®,,(a, b, z) ; then

the induction hypothesis gives

f e Tr(zac)A(M)
Py

(52 ----- Sn)

(z)dz (4.28)

n—1

3
_ 7T(n—m/z{ [T risi + 5)}r(sM + 1600 @) (@).

i#1,M

By Lemma 3, the change of variable y = ®,,(a, b, 2) gives dy = adadbdz. Thus, we

have

J e~ T A () dy
Py .

n

.....

.....

where we used Lemma 3 and part 1 of Lemma 4.3.3, for the first equality.
Now, using the Gaussian integral
0
J e—axzz(b+ﬁ)2db _ 7T1/2(I_1/2$2_21/2
—00

and the gamma integral

0 3
f e—aaas1+1/2da _ 04_(51+3/2)F(81 + 5)’
0
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if and only if s; > —%, we get

f e Tr(yn)AgM) (y)dy _ 7T1/2F(81—|—§)ZE2_21/2(J¢_(81+3/2) J e~ Tr(zx)A(M) (Z)dZ
Py N 2 Pa

n n—1

Finally, using (4.28), (4.14) and (4.18) completes the proof.
Case M = 1:

Letn = U, (o, B, x) and let us make the change of variable y = ®,,(a, b, z) ; then

the induction hypothesis gives

— Tr(zz 1
J e TEIAL  (2)dz (4.29)
Py

n—1

3
= 7T(n_2)/2{ H F(Si + 5)}F(81 + 1)5(—1()31 ..... Sn_l)($)¢An71(I)-

1#n,1

By Lemma 3, the change of variable y = ®,,(a, b, z) gives dy = adadbdz. Thus, we
have

f e~ ﬂ(yn)A(l)(y)dy
Py s

n

00 o0
_ J J J ef(aa+amn,1,n,1(b+5)2+Tr(zx))asnA8) , )(Z) adadbdz
0 JowdPs _ i

1

0 o
= f J J 6_(aa+a$n71’"71(b+ﬂ)2+Tr(zz))(lS"+1AEi\4) . )(Z) adadbdz,
0 —00 PAnf b nt

1

where we used Lemma 3 and part 1 of Lemma 4.3.3, for the first equality.

Now, using the Gaussian integral

foo efawn—l,n—l(bJrﬁ)de _ 71,1/2a—1/23;1/2

n—1,n—1
—o0
and the gamma integral

@ 3
f e—aaasn-i-l/Qda _ Oé_(Sn+3/2)F(Sn + _)
0 2 ’
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if and only if s,, > —%, we get

f e~ T AW (3))dy
Py *

n

9 /*n—1n-1 (51,-35n—1)

— 720 (s, + §)x_1/2 o (snt3/2) J e~ T A (2)dz.
Py

n—1

Finally, using (4.28), (4.16) and (4.19) completes the proof.

For n > 1 and the order <,,, we first make M — 1 times use of case M > 1 (with ¢ and

) and next we make n — M times use of case M = 1 (with ® and ﬁ/).

[
Corollary 4.4.3. pq, = const.pa,.
n—1
Proof. The result, (%) % SPA e~ Twndy = 4 (n), is obtained by substituting s =
(0,...,0) into Theorem 4.4.2. O

Remark 4.4.4. Formulas (4.22) and (4.27) may seem similar but in (4.27) the integrand
does not contain the characteristic function of the cone P,,. This function is unknown

except for A, when it is not a power function (Letac and Massam, 2007, Prop.3.2).

4.5 Wishart exponential families on ()4,

Let us define the Riesz measure RéM) on Q)¢ by

ROD(dz) = — 500 (2)pu (2)1q,. (2)dz, (4.30)

S M
o (s)

where F(Qj\ﬁ) (5) = n(n=1/2 ( [1T(s; — %)) ['(sy). From Theorem 4.4.1, the Laplace
" i#=M

transform of the measure RéM) is given for all s; > %, t # M and sp); > 0 by

L(RM)(y) = f e T aRM (dn) = A"D(y), ye Py, (4.31)
Qa, B -
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The Wishart natural exponential family vgf\;) on (4, is, by definition, generated by the

Riesz measure dRéM). The density function of the Wishart distribution on () 4, is given by

1
eI ALY ()50 (@)oo, ()1, (2)dr.  (432)

M s
o (s)

YD (dz) =

The Laplace transform of 7§(f\y4) (dx) is

M LRI (z+y) A (z+y)
Eloa)2) = c<R£M>><y>y T A

The family ygﬁf) does not depend on the normalization of the Riesz measure.

4.5.1 Mean and covariance of the Wishart distributions on () 4,

In this subsection we derive a formula for the mean of the Wishart exponential family on

the cones () 4,. It is known from the general theory of exponential families of distribu-

)

tions, that the mean of vg‘gf[ is obtained by differentiation with respect to y of the Laplace

transform of the Riesz measure:

mM(y) = =V, In A" (y) € Qa, . (4.33)

For all matrix A in Z; and a subset B — V of the set of vertices V' of A, we note

Aij if Z,j € B,

(Ap)? the matrix in Z4, such that (Ap)); = .
0 otherwise.

Proposition 4.5.1. The mean function of the Wishart family 7%) on Q) 4, is equal to

mM(y) == (Z (si = siv)[(ypa) 71"+ smy ™ + | D (si— Sz‘—l)[(y{i:n})_l]o> :

(4.34)

Proof. Use formulas (4.3), (4.33) and V, In|y4| = ((ya)™)".
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Proposition 4.5.2. Forall y € P4, we have

m{M(y),y) = K(s),

n
1=

where the constant r(s) is Y., s;i — (n— M)s.

Proof. Observe that by (4.3), for any ¢ > 0, A(_A;[) (cy) = c_”(ﬁ)A(_J‘;I) (y).

Let F/': Py, > R, y+— lnA(_]‘g)(y) and by : R — Py, , t— ely.

We have V, F = —m{™ (y) and Vih, = e'y.

Set ¢, = F o h,. We have @, (t) = —tr(s) + F(y) and V,¢, = —k(s).

On the other hand, the chain rule gives V, ¢, = (V;, ) F, Vih,) = <—méM)(ety), ely).

Thus, (—m™ (ety), ety) = —k(s). Taking t = 0 gives the desired resul.
0

Differentiating the mean function gives the covariance function. For A € S,,, let P(A) :

Z, — I be the quadratic operator defined by P(A)u = w(AuA), ue Zg.

Proposition 4.5.3. The covariance function of the Wishart family ”yg‘y@ on Q) 4, is equal

M—-1

v(y) = —VyméM)(y) = ‘ (8i — 8i41) P [((y{1;i})_1)0] +Sm P(y_l) (4.35)

4.5.2 Inverse mean map

In the study of the exponential family (yé(f\;))ye Py, » 1t 18 important to determine explicitly
the inverse of the mean map wéM) m = méM) (y) — vy, which we refer to as the inverse
mean map in the sequel. The following theorem is known for Wishart exponential families

on homogeneous cones (Ishi, 2014). Surprisingly, it is also true on Q) 4,, .
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Theorem 4.5.4. The inverse mean map 1/JéM) is given by the formula

M (m) =V, w6 (m), me Qa,. (4.36)

The proof consists in following steps:

1. One shows that there exists a constant ¢, depending only on s such that for any y € Py,

3 (M (y)) = e, A (y) =, 600 (n(y7h)).

This is done in Proposition 4.5.5 below.

2. One uses a differential calculus argument, based on the Legendre transform methods.

Proposition 4.5.5. The following formula holds for any y € P4, and s € R":

08 (mM (y)) = (]_[ 85”) A (y) = (]_[ Sfi) o8 (m(y ™).

i=1 i=1

The proof of Proposition 4.5.5 will need a generalization of Lemma 4.2.11, where co-
efficients of inverse matrices of principal submatrices yy;.xy (or of y(x.,}) are simultanously
considered. Define for y € Pa,, '™ = (yy)™", 1" = (yny)~". The rows and the
columns of the matrix *) are numbered by i = 1, ..., k and the rows and the columns of

the matrix n*] are numbered byi=~k,...,n.
Lemma 4.5.6. Lety € Py,
1. Forallie Vandk,j =i+ 1 we have

® G

i | e .
D=1 G| = e T ypan e (4.37)
iitl Thiv1i+1
2. ForallieV and k,j < i < nwe have
(k] (5]
k,j i ;i -
DI = | = e | g - (4.38)
MNiiv1t Thit1i+1
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Proof. Similar to the proof of Lemma 4.2.11; instead of y use 1.1y OF Yx:n}- O

Proof. (of Proposition 4.5.5) We will deal with 6."” (m{™ (y)) = oM (m™(y)) where
the order <,; was defined in (4.6). By formula (4.34) and by the definition of 5§<M we

obtain that 6 (m,(y)) equals

M—1
( 1
i—1 \Gi

/ / /
x; +a; b

)

Si
/ )
[

b c,

X; + a; bl
C;

Si ; . n 1
) (Sar775hr) ™ H (g

i=M+1

(k) (n)

] M-—1
where z; = (Sz‘ - 3i+1)77§2)7 a; = k=i+1(8k - 3k+1)77u' +SMmMNy s
M-—1
k
b; = Z (s — 5k+1)77§,i)+1 + SMUZ(ZL,
k=i+1

M—1
— (k) (n)
Ci = Z (Sk = Sk+1)Mis 1001 T SMTis 10115
k=i+1

i—1
a= ), (56— sk )+ Suly
k=M+1

i—1
b, = Z (sk — Sk—l)m[,];]q + San[}i]—l’

k=M+1

i—1
Z (8K — Sk—1) 771[ ]11 1+8an[]11 1

k=M+1

and z; = (s; — si_l)m[?.

Let us first compute the factors i ;r @ lc)’ Jc;forie {1,..., M —1}. We will show that
1 x; + a; bz . (3) .
| b . =sn;, 1€{l,...,M—1}. (4.39)
1 |z, b, 1 la: b,
We have — | +a; b =x; + — a; b , so in order to prove (4.39), it is sufficient to
C; bl C; C; bl C;
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prove that

1

C;

a; b
bi C;

= sipn?. (4.40)

In order to prove (4.40), we first use the multilinearity of the determinant with respect to

its columns and we write, using the notation Df 7 from Lemma 4.5.6,

M-1

M-1
= Z (Sk — Sk+1)(8j — Sj+1)Df’J + Spm 2 (Sk — 8k+1)Df’n

kj=i+1 k=i+1

a; b;
bi ¢

+ SM Z S]J,_l ’] + MD
j=i+1

By Part 1 of Lemma 4.5.6 we have D}/ — lyg153 | Y151 (i,i+13 |, which is independent

of the left index k. The last fact allows to write

a: b ML .
b; cz = Sit1 Z (sj = sj+1) D + sivasu D"
Jj=i+1
il ‘?J{lzj}\{i,ﬂl}‘ ’y{lzn}\{i,iJrl}’
= Sit1 Z (85— Sjr1)—1——F— +su——7 — |-
j=i+1 |y{13}| |y|

We factorize the determinants |y1.j3\(;.i+13| and |yg1.n) 5,141} | in the last sum according to

Lemma 4.2.10 and we write this sum as

|?/{1:¢71}\ ! |y{1:i}||y{z’+2:j}| |y{1:i}||y{i+2zn}|
_ 2 (sj — st)— +sy———1.

vl \,5h Y153 [
We have [y~ |y 1Yoy | = 771+1 ;+1- By definition of ¢; we finally obtain

Yf1:i—1 i
= Si-&-lMC = Sz+1"71(1)cz
Y1y

a; b
bi ¢

and formulas (4.40) and (4.39) are proved.

A ‘mirror’ proof based on Part 2 of Lemma 4.5.6 shows that

/ / /
x;+a; U

/ /
b; G

1 1.
- —smd i=M+1,....n (4.41)
C
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M M n Si M-1 1)\ s, n) \s n i]\s;
and that 5§ )(mé )(y)) =T si T 1oy (U@(i)) (771(\/13\4) MHz‘:M+1(77i[i]) :

Recall that

(i) _ |y{1:z>1}| ] |y{i+1:n}| (n) |y{1:M71}||y{M+1:n}|

ii v Thi = ) = )
so we deduce, using formula (4.3) that
M—-1 n
i)\s; (n i\ s, M
)y in)™ [T @l = A% ().
i=1 i=M+1
Applying Theorem 4.2.9, we see that 65" (m$™ (y)) = T, 5568 (w(y~1)). O

Proof. (of Theorem 4.5.4).

Let mg € Q4, and yg = \I/éM) (yo). Then, by formula (4.33), we have

mo = m® (y) = =V, In A (y0) = V, f(w0),

where f(y) = —1In A(_]\g)(y).

Let f* be the Legendre-Fenchel conjugate of f : Q4, — R:

fr(m) = sup {(m,y) — f(y)} = supgm(y) with g,,(y) = (m,y) — f(y).

yePq yePg
We have V,g,,(y) = m — V, f(y) and the Hessian of g,, is given by

H(gm)(y) = —H(f)(y). Since f is convex, g,,, has a unique maximum y* which satisfies

Vy gmo(y*) = 0 and thus mg = V, f(y*). Hence, y* = o, f*(mo) = gmy(%0) =
{mo, o) — f(yo) and V,,, f*(mg) = yo. Now using Proposition 4.5.2, we get

Yo = Vo ({10, 90) — F(40)) = Ving (s — F%0)) = ~Vino f¥0) = Voo I AP (3.

Finally, Proposition 4.5.5 gives

Yo = Vi In c;lééM)(mo) =V, In 5§M) (mo).
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Corollary 4.5.7. The inverse mean map wéM) :Qa, — Pa, is given by

1 n

M-
Zsk (Myrikt1y) 1)0+ Z Sk((m{kq:k})_l)o

k=

_
ol
I
=
+
R

1

M-
Z Sk_1 m{kk} 1)0 - (SM—1 —Spm + 3M+1) ((m{MM})_l)O
k=2

n—1

= sk (m)™)". (4.42)

k=M+1

Proof. The result is obtained by computing the gradient of In 6§M) (m), as indicated in

(4.36). We use the formula (4.4). ]

The Lauritzen formula (Lauritzen, 1996) is an explicit formula for a bijection between

Qg and Pg. It states that for all z € Q4,,, the unique y € P4, such that w(y~1) = x is

given by
n—1 n—1
y =2 (@)’ = (e (4.43)
i=1 i=2
Setting s; = ... = 5, = 1 in formula (4.34) for the mean function, we get
my” () =7y = = (4.44)
Thus,
vy @) =y (4.45)
is the Lauritzen formula. Indeed, for s; 1, formula (4.42) gives
n—1 n—1
M _ _
w§1,..).,1)(m) = E(m{i:li+1})0 - Z (mz')°. (4.46)
i=1 i=2

Thus we found a new proof of the Lauritzen formula, based on the observation that the

Lauritzen map is the inverse mean map for s = 1 = (1,1,...,1). At the same time we
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find an infinite number of explicit isomorphisms from () 4, onto P, , given by the inverse

mean maps wéM). It is an essential generalization of the Lauritzen formula. Each map

@M Visa generalized Lauritzen map.

Remark 4.5.8. We note that if X is the mean of a sample from ﬂyﬁf‘y@

, then the maximum

likelihood estimator of y is 1" (X).

4.5.3 Variance function

Properties of lower-upper M -triangular matrices

Here, we define and prove basic properties of lower-upper M -triangular matrices, that we

will denote by LU(M). They are very important in proofs of this section.

Definition 4.5.9. A matrix 7" is said to be an LU(M) triangular matrix if for all ¢« < M,

T;; =0if y >4and foralli > M, T;; = 0if i > j.

In particular, 7" is an LU(n) triangular matrix if and only if it is lower triangular, and
T is an LU(1) triangular matrix if and only if it is upper triangular. An LU(M) triangu-
lar matrix 7" is a succession of an M x M lower triangular matrix L = TY;.57) and an
(N — M) x (N — M) upper triangular matrix U = T{s.,j with diagonal term Ty, in

common. We write T" = s(L,U).

T can be decomposed in blocks as

Tl:M 1:M Tl:]V[ M+1n Tl:M—l 1:M—-1 0
T = ' ’ orl = ’ , 4.47
( 0 T]M+1:n,M+1:n TM:n,l:Mfl TM:n,M:n ( )

54



where T7.p71.0 18 @ lower triangular matrixX, T4 1.n, 07 +1:5 1S an upper triangular matrix,
T'nrip1:v—1 18 @ matrix with all rows but the last one having zero elements, T7.p7—1 1:07—1
is a lower triangular matrix, 7., a7 1S an upper triangular matrix and 7., 1.0/—1 18 @

matrix with all rows but the first one having zero elements.
Proposition 4.5.10. 1. s(L,U)s(L',U’) = s(LL',UU").

2. If s(L,U) is invertible, then (s(L,U)) ™" is also an LU(M) triangular matrix and
(s(L,U)" = s(L~1,UY).

3. The set of LU(M) triangular matrices is a group.

Proof. Part 1 is proved by block matrix multiplication. Part 2 is straightforward

using Part 1. Part 3 follows from Parts 1 and 2.

Lemma 4.5.11. Let S and T be LU(M) triangular n x n matrices.
1. (a) Let A = KO with K = A{l:k}- Ifk? < M —1, then tSAT = (tS{lzk}KT{lzk})O.
(b) Let B = K with K = Bjny. Ifk = M+1, then *SBT = (S ny K Tjpony)” -

2. Let A be ann x n matrix. Then (TA*S) .y = Ty Ay "Spaay fori < M — 1,
and (TAtS){zn} = T{zn}A{zn} tS{i:n} fOl"i =M+ 1.

3. If T is invertible, then
(a) (T{lzk})_l = (T‘l){lzk}for allk < M —1;
(b) (T{k:n})_l = (T‘l){k:n}for allk = M + 1.

Proof. Part 1 is straightforward using block matrix multiplication and Part 1 of Lemma
4.8.1 in Appendix; for Part 2, just imagine which lines and columns intervene in the com-

putation; Part 3 follows from Part 2 of Proposition 4.5.10 and Part 3 of Lemma 4.8.1. []
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Proposition 4.5.12. Forally € P,,, forall 1 < M < n, there exists an LU(M) triangular

matrix T satisfying T;; = 0 if i + j and such thaty =T *T.

Proof. We will proceed by induction on n. The statement is obviously true for n = 1. Let
us assume that the statement is true for n — 1. Lety € P4, and M # 1. Let us write
y = ®,(a,b,z) with z € Py,_,. The induction assumption implies that there exists V'
an (n — 1) x (n — 1) LUM) triangular matrix such that V;; = 0 if i « j and such that

z =V V. Let us write

1 Va 0 ... 0 va 0 ... 0
0 Vab

V : V

T is LUM) triangular satisfying 7;; = 0if ¢ « jand y = T *T.

For M = 1,weusey = ®,(a,b,z) with z € Py, _,. O

Two formulas for the variance function

Let m € Qa,. Let m € S be the unique symmetric positive definite matrix verifying
7(m) = mand m~! € P4, . We note the following interpretation of 7 if m is the mean of

M)

a sample from the Wishart model fy((l ) then m is the maximum likelihood estimator

-1

of y
Define y = @DéM) (m) € Py,. Decompose y = T *T, with 7" an LU(M) triangular

matrix such that 7;; = 0 when i # j.

Lemma 4.5.13. We have

m= Tt Tt (4.48)
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Proof. Note that y = zbéM) (m) is equivalent to m = méM) (y). The formula of the mean

function (4.34) gives m = w(Z), where

M-1 n
Z = (si = sue)wa) P+ sy + D (si— sim)[(ygny) 10 (449)
i=1

i=M+1

Using Part 2 of Lemma 4.5.11, we have y1.;3 = T4y lq1.y Ty for ¢ < M — 1. By Part
3 of Lemma 4.5.11, we get (yq1.3) " = “(T7 )10 Lg1:3 (T 1) 1.4} Finally, using Part 1 of

Lemma 4.5.11, we obtain
[(ygy) 1% = "T (Tpa)T~, i< M -1 (4.50)
Similarly, we have

[(Ygny) 1" = T (L) T, 0> M+ 1 4.51)

M-1 n
Z="'r! (Z (i — sie1) (L1y)® + saad + 2 (85 — Si—l)(I{i:n})0> T!

i=1 i=M+1
S1 0
tT— T—l
0 Sn
spt 0
Therefore, Z is positive definite and Z~! = T 'T' € Py, . Indeed, for
0 ... st
alli < i+ 1< j, wehave (Z7Y);; = Sp_, TuTyrs), . Since Ty, = 0 for [k —i| > 1,
(Z7Y)ij = TiaaTjiasi ) + TiTysy + ﬂ,¢+17},¢+15{f1- But since |j — ¢| > 1, we have

Tjic1 = 0 = Ty and (Z7Y); = T Ty Hls;ll. Now since 7" is LU(M), we have
Tiit1Tj41 = 0. Infact, T; ;11 = Ofori < M —1and T),;y = Ofors > M. In

conclusion, we have shown that m = 7(Z) with Z~! € Py, , which implies Z = m. [
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The following Proposition derives the formula for the variance function V' (m) which,
for each fixed m € @) 4, is a continuous operator V' (m) : Z, — I, (Casalis and Letac,
1996). Recall that P(A) : Z4, — Ia, is the quadratic operator defined by P(A)u =
m(AuA). For A, B € Sy, let P(A, B)u = $7(AuB + BuA). Forallm € Q4, and I  V,

we note

M= [((m 1)) 1° (4.52)

Proposition 4.5.14. The variance function V™M) (m) of a Wishart exponential family on

Qa, is equal to

= 1 = 1 1
+ E (Si — Si—l) P _M{zn} + E (— — —) M{]n} . (453)
. S; jSitl Sj Sj—1

Proof. The variance function is given for all m € Q 4, by V) (m) = o( M) (m)), where

v(y) is given by (4.35). Lety = wéM)(m) = T'T, where T is LU(M). From Lemma
4.5.13, we have

57t 0
mt =T T
0 s
Using Lemma 4.5.11, we get
M.y = T (diag(sy,...,s)) T, i<M—1 (4.54)
and
My = 'T7  (diag(siy ..., 5,))° T4 i= M+ 1. (4.55)
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Thus, forall 2 <7< M — 1, we have
1

Ml = tTilelTil, —
Si

<
1 t—1_ =1
s_ (M{lzi} - Ml:i—l) ="T"eT ", (4.56)
1
andforalln —1>17> M + 1, we have
1 1
—M, =T e, 771,

Sn Si

(M{zn} - Mi-‘rl:n) = tT_leiT_la (457)

where e; is the matrix with e;; = 1 and e;; = O for all i # j. Observing that (I{M})O =

22:1 e; and (Ig;ny)? = Do, €, and using (4.50) and (4.56), we obtain for i < M — 1

[(y{l:i})_l]o _ tT—l([{l:i})OT—l — tp—1 <Z €i> 71— Z (tT_leiT_l)

k=1 k=1

1 1 1
= —Mpyy + —(Mpay — Myy) + .o+ —(Mpay — Ma1y)
S1 S2 S;
1 1 1 1
S e I AT — =) Moy + =M,
(51 82) i <si_1 31> {La—1} {12}

Similarly, using (4.51) and (4.57), we obtain for ¢ > M + 1,

- 1 1 1 1 1
[(Yginy) ' 1° = —Miiny + ( - —> Mgsiny + ... + (— - ) My

S; Si+1 Si Sn Sp—1

We also observe that

r .
T leyT ™! = P (m — Mpp—y — M{M+1:n}) . (4.58)
M

Thus, by (4.56), (4.57) and (4.58), we get

n M-1 n
yl = Z tp=le. 1 = Z tp=le, Tt 4 T e, Tt 4 Z T e, !
i=1 i=1 i=M+1

I
|
+

mooa (11 G101
= — ) M+ — — —— | M. (4.59)
Z (Sj j 1) ) Z (Sj 5j1> b

Substituting these expressions of [(y;1.3)7']°, ¥y~ and [(yny)~']° into v(y) given by
(4.35), we obtain the stated result. ]
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We prove now a much simpler formula for the variance function on ()¢, surprisingly

similar to the variance function on a homogeneous cone, in particular on the symmetric

cone S, (cf. Graczyk et al. (2016a)).

Theorem 4.5.15. The variance function of the Wishart exponential family 'yg\j) is

VD (m) = (— +—— —) P (1) (4.60)

) P(1n — M) + '_znl ( Lo l) P — Miny ),

Si—1 Si
where M.y and M.,y are defined in (4.52).

Proof. Using P(a — b) = P(a) + P(b) — 2P(a, b), we see that (4.60) is equivalent to

VD () = —]P’ M; ( Z) (M) + Zn: ( 41 —S%> P(M{iny)

i=M+1 Si—1

Si+1

M—-1 1 1 n . .
o (Z ( * _S_i) PO, Misy) + ) < , _3_i> P(rm, M{Zzn})). (4.61)

im1 \Fi+l i=p+1 \Fiml

We show that the right hand sides of (4.53) and (4.61) are the same. Below, we expand
(4.53) using P(a + b) = P(a) + P(b) + 2P(a,b) and compute the coefficients in the
expanded formula. Note that for all Z € Z4 , ]P’(M{l;i}, M{km})Z =0foralli < M —1
and k > M + 1, since Zy1.53 (k:ny = 0.

For a fixed » < M — 1, the coefficient of IP(M{M}) 1S

2 2
ST_H 1 1 1 1 1 1
+ — S — = + — = = - —.
Z Sit+1) (Sr > SM (Sr

il Sry1 Sr41 Sr41 Sr

By a mirror argument, for a fixed r > M + 1, the coefficient of P(Mj,.,}) is — — --. On

the other hand, the coefficient of P(172) is —.

SM

For a fixed r, the coefficient of P12, M{y.,y) is -~ — if r < M — 1, and the coefficient

Sr+1
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of P, My.y) is i — L ifr > M + 1. Moreover, if k < r < M — 1, the coefficient

Sr—1

of P(M{1.yy, My1.1y) is
M—1
1 /1 1 1 1 1 1
o () S (L) (2 )
Sr \ Sk Sk+1 P Sp Sr41 Sk Sk+1
<1 1 ) (1 1 )
+ sy | —— _——
Sr Sp4l Sk Sk+1
1 1 r 1 1
() e (-21)-
Sk Sk+1 Sy Sr Sr+1

By a mirror argument, for a fixed M + 1 < k < r, the coefficient of P(M{k;n}, M{m}) is

0. ]

Remark 4.5.16. 1 can be computed using the Lauritzen formula:

m = Z ((m{i:i+1})_1)0 - Z ((mii)_l)o'

Alternatively, to compute the missing entries 1m;; for non-adjacent i and j, one can use the

formula (Letac and Massam, 2007, p.1279):
i = 10337 (ag) (T g iy v ) TV G (4.62)

For n = 3, only my3 needs to be computed and (4.62) gives: mi3 = m12m521m23. But for
n > 3, (4.62) does not give the missing elements directly. For example for n = 4, we need

M3, My4 and Moy to complete m. Formula (4.62) gives

N -1
. . m m m
miys = (m12,m14) <mz mij) (mii) (4.63)
Moy M\~ (M
Mg = (m12, m13) <mZ§ m§z> (mz?) (4.64)
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N -1 /.
Moy = (m21,m23) <m11 m13> (m14) (4.65)

miy3z MM33 ms3q

The matrix m is completed by by solving the system of three equations with three unknowns
above.

An extensive literature exists on methods of computation m and iterative algorithms are
available (Grone et al., 1984, Paulsen et al., 1989, Johnson, 1990; Laurent, 1998, Glunt
et al., 1999). The problem is sometimes referred to as positive definite matrix completion

with maximum determinant constraint.
In the next Corollary, we consider s = p1, p > 1/2. We note that (51()]1\4) and yﬁf’y = Ypy

do not depend on M.

Corollary 4.5.17. The variance function of the Wishart exponential family -y, ,, is

A relation between the inverse mean map and m:

Recall that for the classical Wishart exponential families 1V, , on the symmetric cone S,
the bijection between the cone Qg and Py is given by L(m) = m~!. The mean map is

ms(y) = sy~! and the inverse mean map v,(m) = sm™". It follows that
Vs =LomiolL,

that is, the maps ;s and m 1 are intertwined by the bijection L.
An analogous property holds on the cone () 4, with the intertwiner given by the Lau-
ritzen map. The bijection L : Q4, — P, is the Lauritzen map L(m) = (m)~!. Its

inverse L™ : Py, — Qa, is L™ (y) = n(y™).
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Proposition 4.5.18. The inverse mean map wéM) : Qg — Pg satisfies

S

PM = Lo m(lM) oL.

Equivalently, for any m € Qg, W(lDéM) (m)™1) = m(lM) (1.

Proof. Using formula (4.34) of the mean function and definition (4.52) of M., and

M.y, we see that m

lo = i
~

(1) equals

M-1 ~ n
1 1 m 1 1
) (; T ) Majy + — + (—, - —> Mjny | -
j=1 N\ g+l SMo 3 NS Si-1

4.6  Wishart exponential families on the cone Py, .

The Diaconis-Ylvisaker conjugate family (Diaconis and Ylvisaker, 1979; Gutiérrez-Pefia

and Smith, 1997) for the exponential family of Wishart distributions vg\j) (x)is

=B AN () —In(, =AM (y)dy
Tsns(y) =€ : Fan Pe dy.

Using Theorem 4.4.2, we obtain, for all s' € R" such that ¢, > —1 and s} > —3/2,

1 # M,

Tomp(y) = case™ MV AL ()5 () 0q,. (M dy = coe™ VAN ()5 () g, (n)dy

_§/

_ ~M)
Y (y)’
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where
3
c;t= ﬂ(”_l)/Q{ 1_[ I'(s; + —)}F(SM +1).
- iAM 2

We call the probability distribution corresponding to the density function

M (dy) = e @AM ()5 (1) g, (2)1p,, (y)dy (4.66)

the Wishart distribution on Py, .

M)

For a fixed s, :}/§(,x & (

is an exponential family generated by the measure RéM) (dy) = C,A
with Laplace transform

L on () = J e @0 R (dy) = 6% (2)pq, (z). (4.67)
( o

n

Its Laplace transform is

Lapon(@+z) s394 0+
L.on(0) = f 0300 (gy) = L _ 0l _ )00, 0+ - co)
Tz Py Efggm (ZE) (5(_§ ) (JI)QOQAR (LE)

n

4.6.1 Mean and covariance

Theorem 4.6.1. The mean function of the Wishart exponential family on P4, is for all

S; > —% andx € Qa4,,
M-1
MM () = Y (s + Daphey)’ + D, (si+ gl (4.69)
=1 i

1

M-
Z si1+ D (x;)° — (spro1 — s+ suen + D)(3fy)°
=2

n—1
- 2 (siv1 + 1)(a1)".
i=M+1

The covariance function ©(x) : 1, — Za, of the Wishart exponential family on Py,

equals

-1 n

=N o [ )]+ 3 (s DP [l

1=

H
i
S
+
-



—-}:(&_1+])P[@glw]—(SM_1—3M~+3M+1+1npnx&3»ﬂ

n—1

— 3 (s + DP[(21)°].

i=M+1
where we identify 14, with Z 4, by the trace inner product.

Proof. We have m{™ (z) = =V, In L an(r) = =V;In (5(_]\;) (z)¢q., (7). The covariance

operator is obtained by differentiation of (4.69). [l

4.7 Relations with the type I and type II Wishart distributions of Letac
and Massam (2007)

In this section, we will explain the relation between our work and type 1 and type 2 Wishart
distributions constructed by Letac and Massam (2007).

Letac and Massam (2007) introduced, studied and used the function H (o, 8, x) on Q¢
as a generalized power function for constructing type I and type II Wishart distributions.
The reader is referred to the cited paper for the general definition of the function H («v, 3, x)
as well as for graphical theoretic notions such as cliques, separators and perfect order of
cliques (see also Lauritzen (1996)). For our purpose, it is sufficient to recall that for
aeR"tand B e R"2
[T |2yl

w1 5 = TE Qa,» 4.70)

H(a,B;z) = T«
=2 it

that the cliques (i.e. the sets of vertices of maximal complete subgraphs) are {1,2}, ...,

{n — 1,n} and the separators {2}, ..., {n — 1}. The definition of the function H(c, 3; x)

does not include any restrictions on the values of the parameter («, ) of dimension 2n — 3.
However, the existence of type I Wishart distributions on (¢ is only showed for («, )

belonging to some set Ap dependent on a perfect order of cliques P, i.e. for («, 3) € Ay =
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upAp, where the union is on all perfect order of cliques. Proposition 4.7.3 describes this
set for A,, graphs. It also makes clear a phenomenon observed by Letac and Massam
(2007) for the graph A4, where there are only two different sets Ap although there are 4
perfect orders of cliques. To prove Proposition 4.7.3 we use the following explicit relation
between two concepts: perfect orders of cliques used by Letac and Massam (2007) and

perfect elimination orders of vertices used in this work.

Definition 4.7.1. Let P be a perfect order P : C] < Cj < ... < C/_, on C and let
Sy, ..., S, be the sequence of separators associated to this order. Let o : C — R and

p: S — R be two real functions of cliques and separators. The pair (o, 3) belongs to Ap

if
(1) a(CL) = B(Sy) fork =3,...,n—1
2) a(C) > LforallCeC
(3) a(C1) + a(Cy) — B(S3) > 0.

Proposition 4.7.2. Let G = A, : 1 —2—-3— ... —n. A clique ordering C; < ... < C!_,
is perfect if and only if C] | < ... < C is a perfect elimination order on the A,_, graph

G':C,—Cy...— C,_y. There are 2" perfect orders of cliques on A,,.

Proof. The proof is in two parts, for the two inclusions of the claimed equality. Both
parts are straightforward and based on the definitions of a perfect order of cliques and of a

perfect elimination order on a graph. We omit the details. 0

Proposition 4.7.3. Let P' : C] < Cy < ... < C/_jand P" : CY < CJ < ... < Cl'_, be
two perfect orders of cliques on G = A,,. Let S, and S’ be the first separators of P’ and
P", respectively. If St = SY then Apr = Apn, i.e. the parameter set Ap depends only on

the first separator Sy with respect to the clique order P. If Sy = {M} then the set Ap is
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described by the conditions:

0= fiif 1<j< M =2, @
ajzﬂjsz—i-lSjén—l,
and
1
aj>§f0ra111<j<n—1; ay—1+ ay — By > 0. 4.72)

Thus Ay = UpAp is the set of («, ) such that there exists 2 < M < n — 1 for which

(4.71) and (4.72) are satisfied.
Proof. We use Propositions 4.2.5 and 4.7.2. [

The reference measure 1 used by Letac and Massam (2007) is, on the cone ) 4,,,

3
pa, (z)(dr) = HAn(_éﬂa —1;2)1lg, (v)ds. (4.73)

By (4.17), we observe that y4, (2)(dz) = ¢q, (7)lg, (r)dx. Namely, the reference

measure /14, is the characteristic measure of the cone () 4,, .

Theorem 4.7.4. (Letac and Massam (2007) Theorem 3.3) If (o, 5) € Ao, then, for a

constant Iy, g), and for all y € Pa,

fQ e” " H(q, B;x)pa, (2)(dz) = T pH(a, B;m(y™)).

The methods developed in this thesis give a new simple proof of Theorem 4.7.4, see

the proof of Corollary 4.7.6 below.

Let us compare now the functions H («, 3; z) and H («v, 3; w(y~')) with the generalized

power functions (5§M) and AéM).
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Proposition 4.7.5. 1. Let o € R" and € R"> There exists s € R" such that
H(o, B;7) = 5§ (x) if and only if (4.71) holds for some 2 < M <n — 1.

Thens; = ajif 1 <j<M-1, sy =ay1+ay—PFyands; = aj_1if M+1 <

7 <n.

2. Moreover, under the hypothesis of Part 1, we have H (o, 8;w(y~')) = A(M)(y).

—S

Proof. The equality of H(«, 3; ) and 6§M) (x) is easily verified by confronting their defi-
nitions (4.70) and (4.4). Part 2 follows from Theorem 4.2.9. [

Corollary 4.7.6. The type I Wishart distributions indexed by the set Ay are equal to the

subset | Jy;_ 2(75 Y ))ye p., of Wishart NEF families defined in Section 4.5. Thus they are

strictly contained in the set of all Wishart NEF families on Q 4,,, equal to | Jy,_, (’Vg\yf) )yePa, -

Proof. Itis adirect application of Proposition 4.7.5 and Theorem 4.4.1. Note that Theorem
4.4.1 implies Theorem 4.7.4 of Letac and Massam (2007).

The family of functions H («, /3, z) does not contain the power functions (59 or (5§")
fact, the last functions contain powers of n — 1 diagonal elements z;;, whereas the function

H(a, B, x) contains powers of n — 2 such elements. O

Similar comparisons can be done on the cones P, . In this case, Letac and Massam
(2007) define type II Wishart distributions on P4, indexed by a set B, analogous to the

set Ay for () 4,,. Similar arguments as on the cone () 4, lead to

Corollary 4.7.7. The type Il Wishart distributions on P,, indexed by the set B, are

equal to the subset UE;Q('?S\J{))EQ . of Wishart NEF families defined in Section 4.6.

Thus they are strictly contained in the set of all Wishart NEF families on P, , equal to

n ~(M
Unre1 G e0n,
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4.8 Appendix

We list here some properties of triangular matrices, used in proofs.

Lemma 4.8.1. 1. Let A = K° where K = Aq.py and let L be lower triangular and U

upper triangular n x n matrices. Then UAL = (U{Lk}KL{Lk})O .

2. Let B, L,U be matrices n x n, with L lower triangular and U upper triangu-
lar. Then, for all i = 17 Lo, n, (LBU){M} = L{l:i}B{l:i}U{l:i} and (UBL){ML} =

3. If T is an invertible triangular matrix then (Tj1.43)~" = (T for all k =

1,....n.

All these properties are elementary and easy to prove, by block multiplication of ma-

trices (1,2) or by inverse matrix formula with cofactors (3).
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Chapter 5

ON THE LETAC-MASSAM
CONJECTURE

5.1 Introduction

In this chapter, we solve on an important class of cones, the conjecture stated by Letac and
Massam in (Letac and Massam, 2007, p.1314), and called "Letac-Massam conjecture"
in (Ben-David and Rajaratnam, 2014). This conjecture on the set parameters of type I
and type II Wishart distributions is of fundamental importance in harmonic analysis of
Riesz and Wishart measures on convex cones connected to graphs and in its applications
to modern multivariate statistics. More generally, the Letac-Massam conjecture is closely
related to an important problem in a wide range of analysis on cones:

(P) Is the Laplace transform of a product of powers of given polynomials equal to a
product of powers of some polynomials?

According to (Letac and Massam, 2007, Corollary 3.1), the Letac-Massam conjecture
is true on the cones () 4, and P,,, but these results are “obtained by a nontrivial and long
computation” and the proofs are omitted. Letac and Massam (2007) states that for n = 5
“calculations are terrifying.” Our method of proof is simple and based on tools introduced
in Chapter 4: triangular changes of variables on () 4, and using natural “future” and “past”
power functions 5§M) and AéM) on (Q4, and on P,,. We show that the Letac-Massam

conjecture is true on the cones () 4, and Pj,.
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5.2 Letac-Massam conjecture on () 4,

The Letac-Massam Conjecture is a conjecture on the Laplace transform of functions

ne— H(a,5,m),n€Qa,,a=(ar,...,0,1), = (Pa,...,0Bn_1), introduced in Letac
and Massam (2007). When needed, we will use a more precise notation H,, for the function
H on Qg4,. Let 4, (dn) be the reference measure on the cone () 4, defined in Letac and

Massam (2007) by

pa, (dn) = g, (n)dn = H|mz iy 2 | | misdn, (5.1)

1#=1n

where dn is the Lebesgue measure on () 4, .
The Letac-Massam conjecture on the cone () 4, says that there exists C, g > 0 such

that

L e T H (o, B,m)dpa, (n) = CasH(a, B,7(y™)) (y € Pa,) (5.2)

if and only if (o, 5) € A, where A = A’};A v and the sets A, are defined by the following
conditions (C) and (I):

O aj=01if1<j<M-—-2,ando; =3 if M +1<j<n-—1,

D o >4iforallj=1,....,n—1,and ay—_1 + an — Bu > 0.
The sufficiency of the condition («a, ) € A was shown in Letac and Massam (2007) and
the necessity conjectured and proved true for n = 4. For n = 2 and n = 3 the equivalence
of (5.2) with (a, ) € A is well known. The necessity of (I) is evident (consider diagonal
y € Py, ,cf. Lemma 5.3.1 below), so the necessity of (C) is to be proved for n > 4.

In the sequel, the equality (5.2) will be referred to as the Letac-Massam formula on

Q@ 4, and the conditions (C) as Letac-Massam conditions. The main result of this chapter

is the following:

Theorem 5.2.1. Let n > 4. The formula (5.2) implies conditions (C).
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5.2.1 Letac-Massam conjecture in terms of power functions 5§M) and A;M)

Now we recall the power functions 5§M) on () 4, and AéM) on Py, .Forall2 < M <n-—1,

M-—1 Si n
5(M)(77) _ Hizl \77{1':”1}‘ Hi:M+1
- | e VA l_L M1 i
AéM) (y) = 1_[ |y{lz} Si78i+l|y|SM 1_[ |y{zn} siTsio

<M i>M

where, for [ < {1,...,n}, the matrix A; is the submatrix of A indexed by I, and the
symbol {a : b} with 1 < a < b < r denotes the set of i for which a < i < b.

Define r; = a;,1 — §; and p; = «; — (§; forall 2 < ¢ < n — 1. We have, as defined in
Letac and Massam (2007),
H?;ll 14
H?;zl 7751

H(a,B,n) = (5.3)

so that H(a, 8,n) = 68 (n) | ]\1“1 nhi, where s; = «, forall 1 < i <
M —1;s; = aj_q,forall M +1 <1 <nandsy = apy_1 + ay — By. This implies
rar = Sy — Sam+1 and py = sy — spy—1. We notice that s = (s;) depends on M, whereas
neither r = (r;) nor p = (p;) does.

Let o(y) = 7(y™").

The Letac-Massam formula (5.2) is equivalent, foreach2 < M <n — 1, to

M—-1
f e” s () [T nii ]_[ nidpa, (n
Qay, i=2

i=M+1

M-1 n—1
= CasA W) [T e [T o). (5.4)
=2

1=M+1

The Letac-Massam conditions (C) are equivalent to the following n — 2 alternative condi-
tions:
ro =+ =TyM-1=DPu41 =" =Pp1=0 (5.5)
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for an M € {2,...,n — 1}, or, in other words, to the equality H(«, 3,-) = 5§M) for an
Me{2,...,n—1}.

A positive answer to the Letac-Massam conjecture implies that the natural generalized
power functions on ()4, are the families 5§M) (n), motivated by analysis on symmetric
and homogeneous cones, with n-dimensional parameter s. Power functions H(«, 3, 7),
1 € (4, are motivated by advanced graph theory, more exactly by cliques and separators
formalism. The parameters «, 5 have dimension 2n — 3. Even if we start with a larger
family H («, 8,7), in order to have the property (P) satisfied, we boil down to the families
5§M) (n), with M = 2,... n—1. Moreover, the families (5§1) (n) and 5§”) (n) are "forgotten”

in the graph theory approach of Letac and Massam (2007).
5.3 Proof

We are going to prove the Letac-Massam conjecture by induction on n. The proof of
the initiation part (n = 4) and the heredity part (n > 5) are the same, so they are given
together.

First, in the following lemma, we express, for each M, the constant C,, 3 as a function
of M,s = (s;),r = (r;) and p = (p;). This is convenient and needed in further study of

the formula (5.4).

Lemma 5.3.1. If the formula (5.4) holds for all y € P,, then we have

i ['(s; + 1) e C(s; + ;)
Cap = 7"~V (s I(s ST e e
- {117:]\[4 } E F<Sz) z':l];J_:;,_l F(Sl) -0)

If y is diagonal, then (5.4) holds if and only if s; > %fori + M, spy >0, 8, +1; >0 for
2<i< M,ands; +p; >0for M <i<n-—1.

Proof. We take y diagonal. The proof is a by-product of the Step 1 of the main proof. [

Step 1 (descent in Letac-Massam formula, from )4, to Q4, ,). Letn > 4, a =
(a1, 0n_1) and B = (Ba, ..., Bn_1)-
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Suppose that the Letac-Massam formula (5.2) holds for H,(a, (3,-) on Qa,. Then the
Letac-Massam formula holds on Q) 4, _, for:

(i) Hy 1 (a1, ..y an—2), (Bay - -+, Bn_s2), ) and the graph 1 — - - - — (n. — 1)

(i) Hy 1 ((a2, ...y n1), (B3, .- -, fn_1), ) and the graph 2 — - - - — n.

Proof. Let us prove (1). We choose 2 < M < n — 2. For all y € P4, let, successively,
y=®,(a/,0,2)and z = ®,_,(a”, V", Z). We easily check that for 2 < i < n—1, o(y)s; =
©(2)i = ¢(Z)u, see Lemma 4.3.4 (by our convention, z is indexed by 1,...,n—1and Z
is indexed by 2,...,n — 1). Integration on () 4, with two successive changes of variables

n =",V &) and then & = U, _(u", 1", =) gives

L e~ M@= () HE H Pidpa,(2) (5.7)

Ap—2 i=M+1
( ) M-1
n—2)
- C A_(52 ,,,,, Sp— 1)(Z H 80 1_[ 90 227
=2 i=M+1
where Céng D = o Cl‘;f( I and the rows and columns of = and Z are numbered
s 8175 Snfi
2,...,n — 1. Now, we apply one more change of variable = = ¥, 5 (s, v, ©) in formula

(5.7) and we set Z = Cfln_g(a, 0,7"). The lines and columns of © and 7" are numbered
2,...,n—2.
Let F(11, v, ©) be the integrand. We first compute J = §* §° Fdudv = 2§ §° Fdudv.

Using the change of variables u = ap, t = a0,,_5,_21?, we get

— 9q P 1J J —(anta®n_2n—2v )Msn*1_3/2(a,u + a@n—z,n—ﬂ/?)p”*ld#d”
oe] o0

_ g2 f J e~ ysn1=3 43 (y 4 1Pt dud.
0 0

Using the change of variables (u,v) = (u,u + t), we get

0 v
J = a_(S””p”l)@,_Li/Q%n_Zf (J (e 2(1} —u)” ;du> e vPr=tdv (5.8)
0

0
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11

__ _(5n71+pn71)@_1/2
“ 22

= n—2,n—23(5n 1= = )01 + pn1),

where, in the integral with respect to du we made a change of variable = = u/v. We get

M-—1

f O @) [ O [T et @ (5.9)

QAn73 i=M+1
M-—1 n—2

n—3 M)

- C )A( (82,,8n—2) ) 90 H 90 n’ (510)

=2 i=M+1
where

ol _ (5.11)

72T (51 — DT (sn — 3)T(sp-1 — 3) L(pn1+ Sn-1)

Recall that throughout the thesis C, 3 denotes the constant from formulas (5.2) and (5.4).
By the same argument as to obtain formula (5.7), we observe that the Letac-Massam
formula for the function H,_1((a1,...,an—2), (B2, ..., Bn—2),) on Q4,_, and the graph
1—2—---—(n—1)isequivalent to formula (5.9). This finishes the proof of (i).

By a similar ‘mirror-like’ argument with the change of variables = = V,,_o(u, v, ©) in
(5.7), we get the Letac-Massam formula for H,_1((as,...,an_1), (Bs,-..,Pn-1), ) and

the graph 2 — - - - — n, and we prove part (ii) of Step 1. [

Proof of Lemma 5.3.1. For y diagonal, formula (5.11) leads by induction to formula
(5.6), observing that the last equation we get is a~*M Sgo e~ WM df = ngga*sM , so that
1
O = T(sr)-

Step 2 (induction step). The Letac-Massam conjecture on () 4, , implies the Letac-

n—1

Massam conjecture on Q) 4, .

Proof. Letn > 4. Suppose that the Letac-Massam formula (5.2) holds for some « and 3

and suppose that the Letac-Massam conjecture is true on Q 4., _,
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For n > 5, we use Step 1 and the induction hypothesis. Thus one of the following

n — 3 conditions has to be satisfied:
Ty = =Ty-1=DPMt1="""=DPp2=0,

foran M € {2,--- ,n — 2}, and, simultaneously, one of the following n — 3 "shifted"

conditions has to be satisfied:
r3=-c=TM=DPMs2 = =Pp1 =0,

foran M € {2,...,n — 2}. This implies that either conditions (5.5) are satisfied or
p3=-""=ppo=0;1r3 =" =1 _9=0. (5.12)

Let us assume this single remaining case and show that it also implies conditions (5.5).
The equality ry; = 0 implies s); = sp741 and py; = 0 implies sy, = sp/—1. Also, from

pj =rjforall3 < j<n—-2 wegetsy = --=sy_jand sy =--- = S,_1. Thus,

Sy = -+ = 5,_1 = 5. In the case (5.12), using the cofactor formula for Z !, equation

(5.7) reduces to

—Tr(Z= M —\ =7y —mPn— -
fcz e )5((5 )5)(:):ﬁ:ﬁ,ﬁn,ldmn,z(:) (5.13)

77777

Ap—2

_ _ A 3:n—1}| " |Z{2:n—2} ’ Prt
= etz (Hezal) (Hecal) ™
7 Z| Z|

We apply the second derivative with respect to Z,,_s ,,_1 on both sides of (5.13) and we take
Zn—2n-1 = 0. Theorem 2.7.1 in Lehmann and Romano (2005) ensures that the derivatives

of all orders of the integral (5.13) can be computed under the integral sign. We obtain

»»»»»

—Tr(Z= M —\—=Tr2 —Pn— = =

fQ e )‘5((8 )s)(:):222:];,711,nflzi—m—ldﬂf‘w(:)’ang,ano .19
Ap—2
Cai” &

N PR
4 (’}ZTL 2.n—1 n—2,n—1




—8 ‘Z 3:in—1 | "2 |Z 2:n—2 | Prn—1
where ¢(Z) = |7 ( o }) ( e }) .

Let us change the variables & = W, ,(fi,7,0) and set Z = @, 5(a,0,7), ie.
Zyn—2n—1 = 0. Similarly as in the proof of (5.9) in Step 1, we find that the left hand
side of (5.14) is

(5.15)

We write }10&"6_ 2D the right hand side of (5.14) and we compute D. Denoting S =
—(s + 79+ pp_1) and h(Z) = | Z|%| Z3.n—13|"™* we have

52
07?2

n—2n—1lz

D = [Zpp-g"" hZ).

n72,n71:0
We apply formulas
’Z‘ = anl,nfl ’Z{2:n72}’ - Z2_27n_1 ’Z{Z:nffi} ‘7

Z72172,n71 ’Z{2rn—3} |

|Z|S = (Zn—l,n—1|Z{2:n—2}|)s(]- -5 + O(ZEL*Q,nfl))'

Zn-1n-1Z2m-2|

o|z|®
Thus, for Z,,_2,—1 = 0, we get T = 0 and
62|Z|S
072

n—2,n—1

= —28(Zn-19-11Z12n—2])° " Zi2n—3-
Similarly,
1 Zgin-1yl = Zn-1m-1|Zg3n-—2yl = Zn_9 1| Z(3in-3)|
(forn = 5 we set | Z(3.n—33| = 1) and
P Zgin—13]"
072

n—2n—1

= —2r9(Zp-1n-11Z3n-231)" " Z 303 |-

Zn72,n71 =0

Using Z = ®,,_5(a,0,T), where the matrix 7" is indexed by 2,...,n — 2, we obtain
Zn-n—1 = @ Zipm—9y = T Zizin—2y = Tizm-2, | Zigin—1y] = a|Tizm—2y| and |Z| = a|T|.
By Leibniz formula,

D = —2a" TP T gy |27 (S T2y [ Tizin—sy] + 72| Tz 1T1)
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where for n = 5 we set |T{3.,—3;| = 1. Hence, for Z,_5,_1 = 0, the right hand side of
(5.14) 1s

(n—2)
Cos

Do DT Ty (T, (5.16)

where

f(T) = (s + 72+ pu-1)[Tizn-2yl| Tizn—3y| — 2| Tzn—n[|T] -

Equating (5.16) and (5.15), we obtain, using (5.11),

sd(s,r9,T)

5t Py f(T), (5.17)

-----

JQ € Tr(T@)é((S )8)6222®n727n72d1u14n73(@)

Ap—3

where

d(s,r2,T) = CU5 T4 Ty 727,

Formula (5.17) is supposed to be true for our p,, | = «,,_1 — B,_1. It is surely true for
Pn—1 = 0, because the Letac-Massam conditions (5.5) are then satisfied. Equating (5.17)
for these two values of p,_1, and noting that by (5.6) the constant ng % does not depend
on p,_1, we get

(S + 1y + pn—1)|T{3:n72}|‘T{2:n73}| - T2|T{3:n73}||T|
s+ Pn—1

(3 + 7”2) |T{3:n—2}||T{2:n—3}‘ - r2|T{3:n—3} | |T|
s )

which is equivalent to

T2Pn—1 (|T{3:n72}||T{2:n73}| - |T{3n73}||T|) = 07 (518)

where for n = 5 we set | T3.,_3;| = 1. We observe that |Tys.,_oy || Ti2:n—33 | —| Tizn—s3 ||| #
0, for example for 7" such that 7;; = 2forall 2 < ¢ < n —2, T;;;1 = Tiy1,; = 1 for

2 <i<n—3andTj; = 0 for all other ¢, j (in this case, this expression equals 1). Thus,
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for n > 5, in the remaining case (5.12), we also have 5 = 0 or p,,_; = 0. In both cases we

fall in the Letac-Massam conditions (5.5) and the proof of the induction step is finished.
For n = 4, we get formula (5.7) for M = 2, the computations are simpler (no use

of Leibniz formula is needed), and no condition s, = s;3 = s appears. The analogue of

formula (5.17) is

13 * —tu, s 1 0542% —(s2+1)
C(ss+ps+1)B(ss— =, =) | e ™uu—du—==(ss + p3)t > t>0. (5.19)
2°27 )y U 2
After substitution of the constant
1 P(Sg + p3)

O = 730 (s9)(s5 — 7)

«

one gets (s3 + p3)ss = s3(S2 + p3) equivalent to rop3 = 0, s0 75 = 0 or p3 = 0. We get

the Letac-Massam conditions for () 4,. [

’

Remark 5.3.2. The expression on the RHS of (5.18), i.e. |Tign—o||Ti2m—3}| —|Tigin—33||T

where T" = T}y, 9y is known in matrix theory. It is treated in Desnanot-Jacobi identity
((Bressoud, 1999, Thm 3.12)), called also Lewis Caroll (or Dodgson’s) identity (Chenevier
and Renard (2008)) and is equal to (H;:QS T;.i+1)?, the square of the monomial of the off-

diagonal entries.

Remark 5.3.3. The same method applies in order to prove the Letac-Massam Conjecture
on Py,. We take M = 2 and apply two changes of variables ®, and d3 on P4, and Py,, (
see Lemma 4.3.3). We obtain an integral on Py, = Sy, which is the same as the integral
on Qa, = S5 in the proof above. The work on the Letac-Massam Conjecture on Py, for

n = 5 is in progress. The analysis on these cones is more difficult.

Remark 5.3.4. Our method of differentiating the Letac-Massam formula with respect to
Z1o gives a simple proof of the “Mellin transform” Lemma 3.1 in (Letac and Massam,
2007, p. 1302), announced without proof. However, instead of the second derivative in
Z9, the complete Taylor expansion in Z5 is needed.
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5.4 Generalized Letac-Massam conjecture

In the first part of the proof of Theorem 5.2.1, we showed that the Letac-Massam formula

(5:2)on Q4,, with M € {2,...,n — 1}, is equivalent to a Laplace transform formula (5.4)

on ()4, _,, for a function 5( .- Next we proved that (5.4) implies that the formula

is rewritten for an M’ € {2,...,n — 1} withr;, = 0 = p;,;0 = 2,...,M' — 1,5 =
M' +1,...,n — 1. Thus, in fact we showed a stronger result that we call Generalized

Letac-Massam Conjecture (GLMC):

Theorem 5.4.1. Let M € {1,...,n}. There exists a multi-index s € R" and a constant

C > 0 such that for all y € Py,

M—-1 M—-1 n

—Tr M T i
f e~ s ]_[ i 1_[ ndpa, () = CAY ) [T e T oW
Qan i=M+1 i=1 i=M+1
if and only if the formula is rewritten with M’ € {1,...,n} such that r; = 0 = p;,i =

L., M —=1,j=M+1,....nand s; > %,i+ M', sy > 0.

The GLMC gives a partial answer to the question which products of powers of well-

defined minors on () 4, have the property (P).
5.5 Discussions on (Ben-David and Rajaratnam, 2014)

Recent work by Ben-David and Rajaratnam (2014) suggests that the Letac-Mass conjec-
ture may not hold for some non-homogeneous graphs. The rationale of their work is the
following: According to Ben-David and Rajaratnam (2014) the Letac-Massam conjecture
implies that the number rp of separators of GG that are ancestral in the DAG (Directed
Acyclic Graph) version D of G is such that rp < 1; any graphs such that rp > 1 would
therefore constitute a counterexample to the Letac-Massam conjecture.

In this section, we prove that for all A,, graphs, we have rp = 1 and therefore, A,

graphs are not members of those potential counterexamples suggested by Ben-David and
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Rajaratnam (2014). To this end, we need to first quickly recall some concepts associated to
directed acyclic graphs that we will use in this section. The reader is referred to Lauritzen
(1996) for details on any other concepts not clearly defined here.

A perfect DAG is a DAG in which all parents of the same vertex are adjacent. A DAG
version D of an undirected graph G is any perfect directed acyclic graph that yields the
graph GG when all directed edges are replaced by undirected ones.

Consider a decomposable graph G = (V, £) with set of cliques (C},...C,) and let
P be a perfect of order of the cliques of G. Set H; = (4 and define forall 2 < ¢ < r,

Hi = Hi,1 ) Cl and Sz = Hi,1 N C,L

1. A subset A of V is said to be ancestral in a directed graph with set of vertices V' if it

contains all parents of all vertices in it.

2. A DAG version D of a decomposable graph G is said to be induced by a perfect

order P of the cliques of G if Hy, ..., H,_ are all ancestral in D.

From the above definitions, we have the following:
A DAG D is a version of G induced by P such that S is ancestral if D can be obtained

by replacing the undirected edges of GG by directed edges such that

e forall 1 < i < r — 1, H; contains all parents of all vertices in it;

e S, contains all parents of all vertices in it.

(Ben-David and Rajaratnam, 2014, Lemma 5.1) states that for all perfect order P of a
decomposable graph G there exists a DAG version of GG induced by P. So this should be

true for A,, graphs in particular and we have the following result.

Lemma 5.5.1. Consider an A,, graph and P a perfect order of the cliques of A,. Let D
be a DAG version of A,, induced by P. At most one separator {i} of A, is ancestral in D

and in this case D is unique and is given by

le i i—leioitl—o-—>n

81



Proof. Let {i}, 2 < i < n, be a separator of A,, which is ancestral in D. Then, for all
j €V, we cannot have j — ¢. This means that D has the pattern i — 1 «— 7 — ¢ + 1.
Also, we cannot have i — 2 — ¢ — 1 because then 7 — 2 — ¢ — 1 «— ¢ would constitute
an immorality (the parents of ¢ — 1 are not adjacent) and we know from Lemma 5.1 in
[Ben-David and Rajaratnam] that D is a perfect DAG (it has no immoralities). Repeating
the same argument inductively shows that we cannot have £ — 1 — £k for all £ < .
Therefore, we have k — 1 «—— k, forall 1 < k < 1.

The same reasoning shows that we have k — k + 1, forall i < k < n.

D is therefore the directed graph 1 «— --- <4 —1 «— ¢ —> 17+ 1 — --- — n and no other

separator of A, is ancestral in D. 0

Theorem 5.5.2. For A,, graphs (n > 2), the DAG version of A,, induced by a perfect order

P, such that Sy = {i} is ancestral, is given by
l— v —t1—-1—i—>1+1—--—>n.
Moreover, we always haver =n — 1l and rp = 1.

Proof. The proof follows from Lemma 5.5.1. [

We have thus proved that A,, graphs are not members of those potential counterexam-

ples suggested by (Ben-David and Rajaratnam, 2014).
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Chapter 6

FISHER INFORMATION AND
EXPONENTIAL FAMILIES
PARAMETRIZED BY A SEGMENT
OF MEANS

6.1 Introduction

Fisher information is a key concept in mathematical statistics. Its importance stems from
the Cramér-Rao inequality which says that the covariance of any unbiased estimator

T(Xy,...X,) of an unknown parameter 6, is bounded by the inverse of the Fisher in-
formation: Vary(T) — (I(6))~! is semi-positive definite. Fisher information is therefore
a measure of the maximum precision attainable in parameter estimation. The efficiency
of an estimator is based on whether this precision is achieved. This justifies the use of
Fisher information in experimental design for predicting the maximum precision an ex-
periment can provide on model parameters. This also justifies the important role Fisher
information plays in estimation theory where it provides bounds for confidence regions,
and also in Bayesian analysis where it provides a basis for noninformative priors. Fisher
information can be used to investigate the trade-off between parsimony of parameters and
precision of the estimation of the parameters (Andersson and Handel, 2006). Besides its

importance in statistical theory, Fisher information has different interpretations that lead
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to some practical applications. For example, the interpretation of Fisher information as a
measure of the state of disorder of a dynamic system leads to the use of Fisher information
in stochastic optimal control as a tuning tool to stabilise the performance of a dynamic sys-
tem (Ramirez et al., 2010). Viewing Fisher information as a measure of information, leads
to the statement of a “minimum information principle” akin to the well-known maximum
entropy principle for determining the “maximally unpresumptive distribution” satisfying
some predefined constraints (Bercher and Vignat, 2009). Gupta and Kundu (2006) de-
scribe the use of Fisher information in model selection as a tool to discriminate between
two models with otherwise very similar fit to some data. The use of Fisher information
however goes far beyond statistics; Frieden (2004) explains that Fisher information is in
fact a key concept in the unification of science in general, as it allows a systematic ap-
proach to deriving Lagrangians.

The objective of this chapter is the study of exponential families (Q,, )mer parametrized
by a segment of means [, ms] with a particular emphasis on Fisher information. These
models were first considered by Letac (2012). Exponential families of distributions are
extensively used in statistics and intensively studied, cf. Lehmann and Casella (1998);
Lehmann and Romano (2005); Letac (1992); Letac and Casalis (2000). They are the only
models for which the Cramér-Rao bound is always attained. A parametrization of the
family by a segment instead of the whole means domain allows to obtain a parsimonious
model when the mean domain is high-dimensional. The parametrization of the mean pa-
rameter by a segment is particularly useful in practical situations when hesitating between
two equally convenient mean values m, and ms. Such parametrization will also serve in
sequential data collection, when an updated estimate of a parameter largely differs from
the previous estimate.

In this chapter, we prove explicit formulas for the Fisher information of
(Q9m1+(1_9)m2)9€[071] if the full model is either the multivariate Gaussian family of known

mean and unknown covariance matrix or a family of Wishart distributions with unknown
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scaling parameter.

The chapter is organised as follows. In Section 6.2, basic definitions and results on
Fisher information and exponential families are recalled. Section 6.3 contains new results
on the Fisher information of exponential Gaussian and Wishart sub-families parametrized
by a segment of means [mq, ms]. When m; and my are colinear, we construct efficient

estimators for the segment parameter 6.
6.2 Preliminaries

Definition 6.2.1. Consider a o-finite measurable space (€, .4, v) with a family of strictly
positive probability density functions f,, s € S < R with respect to v. Let [, = In f,.
Assume that the function s — [ (w) is differentiable for every w € (). Consider the
gradient [’ of the map s — [, as a random vector on the statistical model (€2, A, f.dv).
Suppose that it satisfies E(||I}|?) < oo, where |.| is the Euclidean norm.

The Fisher information matrix is defined by I(s) = E,(I.I.").

In the sequel we restrict our attention to exponential statistical models. We first recall

some important concepts and results on exponential families of distribution.

Definition 6.2.2. Let 7 : Q — R?. Set

S ={s:K(s) = lnfexp{<s,T>}dl/ < w} c R

We suppose that the set S has non-empty interior S°.

The general exponential family generated by the measure v and the map 7" is the family
{P{(T,v) =exp{(s, T)— K(s)}dv = fedv: seS}. (6.1)

Let 1 be the image of the measure v by 7'. We assume that y is not concentrated on a strict
affine subspace of RY. The natural exponential family associated with the above general

exponential family is the family of probability distributions defined by

{Ps(pn) = exp{(s, >y — K(s)}du: seS}. (6.2)
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Natural exponential families may be viewed as a special case of general exponential
families with Q < R, T'(w) = w and v = p.

As usual, E, will denote the integral on the exponential model (€2, A, (P;)ses) where
P, = P,(T,v). We have I, = (s, Ty — K(s). Theorem 2.7.1 in (Lehmann and Romano,
2005) ensures that the cumulant function K and the function s — [,(w) are analytic on S°.

Moreover the differentiation with respect to s can be carried out under the integral sign in

1= Jexp{<s, T)— K(s)}dv

as long as s € S°. This gives, by taking the derivatives and by integration by parts
EJd., = 0
—EJ7 = I(s). (6.3)
Similarly, we obtain the mean and the covariance
m(s) = Ey(T)=K'(s) (6.4)
v(s) = Covy(T) = K"(s). (6.5)
From (6.3) and (6.5) it follows that the Fisher information of a general exponential family

P,(T,v) equals for s € S°
I(s) = K"(s) = v(s). (6.6)

The following important result is proved in (Letac and Casalis, 2000).

Proposition 6.2.3. The map s — m(s) = E,(T) = K’(s) is an analytic diffeomorphism

from S° to the open set M = m(S°) = R? called the domain of the means of the family.

Lety : M — S°% m — (m) = (K')"'(m) denote the inverse of the “mean”
diffeomorphism K’. The general exponential family, parametrized by the domain of the

means M is given by the family of distributions

Q(m, T,v)(dw) = V) T@WH=K®m) gy me M. (6.7)
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The mean of the family (6.7) is equal to m. Let V' (m) denote the covariance of the

family (6.7). Then, by (6.5) we have

V(m) = v(ib(m)) = K" (¢ (m)). (6.8)

The function V' : m € M — V{(m) is called the variance function of the exponential

family.

In order to avoid confusion, when the parameter of an exponential family is the mean

m, the Fisher information will be noted J(m).
Theorem 6.2.4. The Fisher information of the exponential family (6.7) equals

J(m) = V(m)™" = ¢/ (m), (6.9)
where V' (m) is the variance function of the exponential family, given by (6.8).

Proof. By Definition 6.2.1 and by the chain rule,

J(m) = (m)"I(4(m))/(m) on M. Since $(m) = (')~ (m), we have

' (m) = [K"(«(m))]~". Thus, using formula (6.6), we get

J(m) = [K"((m))] ™ = V(m)~. =

Remark 6.2.5. Note a striking contrast in the formulas (6.6) and (6.9) for the Fisher in-
formation of an exponential family parametrized either by the canonical parameter s € S°
or by the mean m € M in the first case we have

I(1y(m)) = V(m), in the second J(m) = V(m)~'.

Finally, consider the general exponential family () (m, T', v) parametrized by the means
domain. Let A & 0, B € R Define © = {# e R: A + B € M}. The set © = R is open
because M is open. Suppose that © 4 (J. The parametrization by a segment of means

I < O consists in considering the submodel

{QOA+ B, T,v):0¢€l}. (6.10)
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Such models contain the case {Q(6m; + (1 — 0)my, T, v) : 6 € [0, 1]} which is suitable
when one hesitates between two different estimations m, ms € M of the true mean m of
an exponential family (6.7).

The following corollary gives the Fisher information of a general exponential family
parametrized by a segment of means. By analogy to the notation .J(m), this information

is noted J(6).
Corollary 6.2.6. The Fisher information of the model {Q(0A + B, T,v) : 6 € 1} equals
J() = ATV (A + B) ' A (6.11)

Proof. We use Definition 6.2.1 and the chain rule similarly as in the proof of Theorem
6.2.4, for the reparametrization f : [ — M, f(0) = 0A + B, with
f'(0) = A. We conclude by Theorem 6.2.4. O

6.3 Fisher information of Gaussian and Wishart families parametrized by
a segment of means

In this section, we study the Fisher information for multivariate Gaussian and Wishart
exponential families. These families are parametrized by symmetric positive definite ma-
trices. Therefore we first adapt the presentation to suit this case. We denote by R¥*™ the
space of real matrices with k rows and m columns and by A ® B the Kronecker product
of two matrices. We use the usual notation (A, B) = Tr(*AB) for the scalar product of
two matrices. The operator Vec converts a k x m matrix A into a vector Vec(A4) € R*™
by stacking the columns one underneath the other. The Vec operator is commonly used in
applications of the matrix differential calculus in statistics, cf. (Magnus and Neudecker,
2007; Muirhead, 2005).

The following properties of the Kronecker product are used in this work (Magnus and

Neudecker, 2007, p.32,35). For non-singular squared matrices A, B we have
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(A B)™' = A~'® B~'. For all matrices A, B and C such that the product ABC is well
defined
Vec(ABC) = (CT ® A) Vec(B). (6.12)

We use the following convention of matrix differential calculus: if a function f : R**? —

R™ ™ is differentiable then its derivative is a matrix f’(z) € R"™™*kP such that
Vec(df (x)(u)) = f'(x) Vec(u), ue R, (6.13)

The only exception we will make is the derivative of a function K : R**™ — R, for which
the following convention is used: the derivative of K is not a row vector but the matrix
K'(z) € R¥*™ related to the differential of K by
dK (x)(u) = (K'(z),u) = Tr(K'(x)Tu), for all u € R**™. This convention is needed to
give sense to formula (6.4) for the mean of an exponential family.

The following Lemma is useful for the derivation of an alternative formula for the
Fisher information of an exponential family parametrized by a segment of means and
verifying an additional condition (6.14). We will see that this condition holds for Gaussian

and Wishart models.

Lemma 6.3.1. Assume that for all m € M,
(m, p(m)) =c, (6.14)
for some constant ¢ € R. Then, for all u € M,
(m, dip(m)(u)) = =Cu, h(m)). (6.15)

Proof. By (6.14) the differential of the function g : M — R, m — {(m, ¢(m)) is zero.
Therefore, dg(m)(u) = (m, dip(m)(u)) + {u, ¥(m)y = 0 for all m,u € M and (6.15)
follows. O]
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Corollary 6.3.2. Let {Q(0A+B,T,v)(dw) : 6 € I} be an exponential model parametrized
by a segment of means. If the condition (6.14) holds then the Fisher information of the

model equals
d2

JO) =~

[K(¢(0A + B))] . (6.16)

Proof. Let h(0) = K(¢)(0A + B)) and f(f) = 0A + B. We want to compute h”(0). If
0,uelR,

dh(0)(u) = dK((f(0)))(dv(f(0))(df (0)(u)))
= (K'(P(f(9))), dp(f(0))(df (0)(u)))
= (f(0), dv(f(0))(df (0)(u)))
= —df(0)(u), (f(0)))
= —u(A, P(f(0))),
where we used successively: the convention on K’ introduced after (6.13), the equality

K'o4(m) = m, Lemma 6.3.1 and the formula df (¢)(u) = uA. Thus we have h'(0) =

—(A, ¥(f(0))). Now, starting as in the computation of /’(#) and using (6.13), we get

K'(0) = —(A, dv(f(0))(A)) = — Vec(A)" Vec(dy(f(0))(A))
= —Vec(A)"Y/' (A + B) Vec(A).
We conclude using (6.9) and Corollary 6.2.6. [

6.3.1 Exponential families of Gaussian distributions

We denote by S, the vector space of d x d symmetric matrices and by S the open cone
of positive definite matrices.
Let us recall the construction of the multivariate Gaussian model {N (u,X); ¥ € S}

as a general exponential family. Here w is a fixed vector of RY. We consider 2 = R?
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equiped with a rescaled Lebesgue measure v(dw) = dw/(27)%?, the vector space S, and

the map
1
T:RY— Sy T(w)= —é(w —u)(w —u)’.

The image of 71" is contained in the opposite of the cone of semi-positive definite matrices

of rank one. For s € Sj , we have

1 1 T
(s,T(w)y — -5 Tr(s(wfu)(wfu) ) _ —1/2
JQ e v(dw) 2n) 7 J}Rd e 2 dw = (det s)

and the integral is infinite otherwise. Thus S = S and the cumulant function is
1 +
K(s)z—élndet(s), seS=25].

The general exponential family is therefore

PS(T7 V)(dw) = (2 1)d/2 e(S,*%(wfu)(wfu)T%r%lndet(s)dw
T
det 1/2
- %6‘5(“"“>Ts<w—“>dw, 6.17)
N

which is the family of Gaussian distributions N (u, s~') on R with a fixed mean u € R,
parametrized by s = X~!. The derivative of the function X € R det X is the

cofactor matrix X* which equals (det X)(X~!)” when X is invertible. It follows that

m(s) = K'(s) = —%sl, seSy.

The means domain is M = —S and the inverse mean map is 1)(m) = —im~'. The
Gaussian general exponential family parametrized by m € M = —S7 is therefore the
family

Q(m,T,v) = N(u,—2m). (6.18)
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Up to a change of parameter > = —2m, this parametrization by the covariance parameter
is more natural than the parametrization of the family (N (u,s™)) g+ by the canonical
parameter s.

In order to compute the variance function, recall that X X ~! = I; implies that

dX V= -X"1dX)Xtand (X! = -X"1@ XL

Thus K”(s) = $s~' ® s~* and formula (6.8) implies that

V(m) =2m®m. (6.19)

The Fisher information of the family (N (u, 3*1))8653 is I(s) = s7' ® s~'. By Theorem
6.2.4 and formula (6.19), the Fisher information of the model (N (u, —2m)),,,._s+ equals

J(m) =smt@m

Corollary 6.3.3. The Fisher information matrix of the Gaussian model (N (u, X))y gt i

1
J(X) = 52—1 X
Proof. Using chain rule and a reparametrization > = —2m we see that the information
for the new parameter ¥ is J(¥) = ;X1 @ Y7 = J(%). O

Let us now consider Gaussian models parametrized by a segment of covariances.

Corollary 6.3.4. Let C' and D be two symmetric matrices and let / < R be a non-empty
segment such that / ¢ © = {# € R : 6C + D € S;}. The Fisher information of the

Gaussian model { N (u,0C + D), 0 € I} is
1
J(O) = Tr (C(6C + D)~'C(6C + D)) .

Proof. We use Corollary 6.3.3 and the chain rule with f(6) = 6C' + D. It follows that

J() = Vec(C)'J(OC + D) Vec(CO)
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. %Vec(C’)T ((6C + D)@ (8C + D)) Vec(C).

Applying (6.12) we get

J0) - %Vec(C)T Vee ((6C + D)~'C(6C + D))

= JTr(C(C + D) OO0 + D)),
0

On the other hand, we have the following alternative formula for the information .J ().

Corollary 6.3.5. The Fisher information of the Gaussian model

{N(u,0C + D),0 € I} is

2

J(6) - —%%(m det (6C + D)), (6.20)

Proof. Observe that the condition (6.14) holds for the Gaussian exponential families ) (m, t, v):

G, wm)) = — Te(mm™) = ~2.

The model N (u,0C + D) = N(u, —2m) = Q(m,T,v), with
m=60A+ BeM =-S5, where A = —% and B = —%. We apply Corollary 6.3.2 and
the fact that

K(b(0A + B)) = —% Indet(6C + D).
Formula (6.20) follows. L]

Now we characterize the information .J(6) in terms of the eigenvalues of the matrix

D™2C D72,
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Theorem 6.3.6. Let C' and D be two symmetric matrices and let / < R be a segment such
that IC + D = S . Letay, . .., aq be the eigenvalues of the matrix D~/2C' D=2,

The Fisher information of the Gaussian model { N (u, 0C + D), 0 € I} equals

J@—ld a Y’ 6.21
()_E; 1+ a;0 ' 6.21)

Proof. The idea of the proof is to use formula (6.20). Let P()\) be the characteristic

polynomial of the matrix D~Y2C'D~"/2, We have

P(\) = det(D™Y2CD™Y2 - \I)

= det(D'C — M) = (det D)~ det(C — AD).
On the other hand, P()\) = []%_,(a; — A). It follows that

7j=1

1 d
0C' + D| = |§D(D~Y2C D2 — la)l = |D| (0P(~1/0)) = ]‘[ fa; + 1).

The last formula allows to compute easily chTQ? (Indet(0C + D)). First we see that

d L det(C + D) &
—(Indet(0C' + D)) =
2o M4t 0C + D)) = £ h) :
One more derivation and formula (6.20) lead to (6.21). ]

We finish by computing the Fisher information of two Gaussian models in R?, parametrized
by an explicitly given segment of covariances. First, let A be a circulant matrix with the

first row es + €4 = (0,1,0,...,0,1). Then for a segment I — R containing 0 and § € T

1 6 0 0 6
9 1 6 0 0
06 1 6 0 ..
0A + I, = o e ST (6.22)
0 0 6 1
0 0 0 6 1
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Corollary 6.3.7. The Fisher information of the model (N (0,0A + I;)),.; is given by

d

2
1'¢ 2 cos(%4)
= = i 6.23
QZ<1+20008(2—)> (623)
Proof. Let A be a circulant matrix with the first row (79,71, ...,74-1). It is well known

(see e.g. (Gray, 2006)) and easy to check that if € is a d-th root of unity, e? = 1, then

l d—l)'

-1 1. . . .
a = Y,_, i€ is an eigenvalue of A with an eigenvector (1,¢,€%,... €
27ji

Thereforeife; = e d , j = 0,...,d — 1 are the d distinct d-th roots of unity, then the

. .o . d—1 .
matrix A has d distinct eigenvalues a; = >;" r;€}. In our particular case,

2mji 2(d—1)mji 217
aj=ed +e d =2cos | — ).

Formula (6.23) follows from Theorem 6.3.6. L]

Now, let us consider a tridiagonal matrix C' such that

1 6 0 0 0
9 1 6 0 0
06 1 6 0 ..
0C + 1, = ST . (6.24)
0 0 6 1 0
0 0 0 6 1

As in the preceding case, there exists a segment I — R such that 0C + I, € S for 0 € I.

Corollary 6.3.8. The Fisher information of the model (N (0,0C + 1)), is given by

1 & 2 cos d+17T) 2
T2 Z (1 + 20 cos (—7r) ' 625

d+1

Proof. We will apply Theorem 6.3.6 with C'and D = I,;.
Expanding ©4(A) = det (C' — A1) along the first row, we get
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Pa(X) = —Mpg_1(\) — M2 Expanding the minor M2 along its first column gives
M2 =hy_5()\) and

Ya(X) = =Mg_1(X) — Ya—2(A), d = 3.
We set pg(\) = (—1)%py(2)\) and we obtain
©a(A) = 2Xp4-1(X) — @a—2(A), d =3

with initial conditions ¢;(A\) = 2\, @o(A\) = 4\* — 1. Therefore p  is a Tchebyshev

polynomial of the second kind (Mason and Handscomb, 2003) and it satisfies

i 1
palcosz) = AFDT oy
sin x
We have, for all A € [—2, 2],
A in(d + 1
¢d(>\) =0 < ¢4 (—) =0 w =0, x = arccos—.
2 sinx 2

Therefore \; = 2 cos (#W), 1 < j < d, are d distinct eigenvalues of the matrix C'. OJ

6.3.2 Exponential families of Wishart distributions

Wishart distributions on the cone S_j are defined as elements of natural exponential fami-
lies generated by Riesz measures, (Faraut and Kordnyi, 1994). Recall that the Riesz mea-

sures i, on the cone S_j are unbounded positive measures such that their Laplace transform

equals for t € S}

Lan(t) = [ Pdufa) = (dett)

Sa
By the celebrated Gindikin theorem, such measures exist if and only if p belongs to the
Gindikin set Aq = {3,..., %1} U (%2, ). Their support is equal to the cone S+ if and
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only if p > % and they are absolutely continuous in that case. Otherwise, when p €

{1 d—1

3+---, 55}, the measures ju, are singular and concentrated on semipositive symmetric

matrices of rank 2p.

The family of Wishart distributions W (p; s) on S_j is defined as the natural exponential

family generated by the Riesz measure f1,. It means thatp € Ay, s € S = =S and
Wipss)(de) = ()
p;s)(dx) = —————p(de
Lpp(—s)""

_ e<s’$><det(—8))pﬂp(d$) — €<S’I>_Kp(s),up<d‘r)7

with K,(s) = —plndet(—s). It follows that LW (p;s)(t) = det(Iy + (—s)~'t)"? and
that p1,(dz) = e™*W (p; —1,).

Wishart distributions are multivariate analogs of the gamma distributions with den-
sity \PT'(p)~te 2P~ 1dz on R*(p > 0,\ > 0), considered with a canonical parameter
s = —\ < 0. Similarly as in dimension 1, the Wishart distributions are often parametrized
by a scale parameter ¢ = (—s)~! € S; and then the notation v(p; o) = W (p; (—c)~?!) is
used, cf. (Letac and Massam, 2008). The study of Wishart distributions is motivated by

their importance as estimators of the covariance matrix of a Gaussian model in R?.

Let us apply our results on the Fisher information to a natural exponential family of
Wishart distributions {W (p; s) : s € —S; }. The mean equals
m(s) = K)(s) = p(—s)~" € M = S; and the inverse mean map ¢ : S; — =S is
(m) = —pm~".

Thus the Wishart family Q)(m, p,) parametrized by the domain of means is, up to a

trivial reparametrization m — %m, the family parametrized by its scale parameter:

1
Q(m, py) = W(p;—pm™") = v(p; ]3m>, me Sy (6.26)
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Asv(s) = K)/(s) = p(s—" ®s"), it follows that the variance function is
1
V(m)=—-(m®m). (6.27)
p

The Fisher information of the model {W (p;s) : s€ =SS }is I(s) =ps ' ®@s'.
By Theorem 6.2.4 the Fisher information of the model {Q(m, 11,,), m € M} is J(m) =
pm~t @mL.

Consequently, using the reparametrization m — %m = ¢ and the chain rule, we see
that the Fisher information matrix of the Wishart model {y(p; o) : o € S} parametrized

by the scale parameter o equals

J(o)=pot®c".

Theorem 6.3.9. Let [ = (a,b) < Rand C,D € S, be such that IC + D < S;. The
Fisher information J () of the Wishart model

{v(p;0C + D) : 0 € I} verifies the formulas

J) = pTr(C(OC + D))’ (6.28)
2
J(0) = —pﬁ(ln det(0C + D))
d N
J(0) = pJZ;(Haje) (6.29)
where a1, . . ., ag are the eigenvalues of the matrix D~/2C' D~1/2,

Proof. The proofs are similar to the proofs of the analogous results for exponential Gaus-
sian families in the previous subsection. The condition (6.14) holds true: (m , ¥(m)) =
—pd, the model {y(p;0C + D) : 6 € I} is equal to the model {Q(0pC + pD, i) : 0 € I}
parametrized by the means and we have K,(¢(0pC + pD)) = pIlndet(6C + D). O

Corollary 6.3.10. Let 01,0, € S; and let I be the open interval containing 6 such that
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o9 = 001 + (1 — 0)og € S} . The Fisher information of the model {y(p;09) : 6 € I} is
equal to J(0) = pTr <((01 — 09) 09_1)2> :
Proof. We write 0oy + (1 — 0)oy = 6(01 — 02) + 09 and we apply formula (6.28). O

Using (6.29) we obtain the following corollary, analogous to Corollaries 6.3.7 and

6.3.8.

Corollary 6.3.11. 1. Consider the model {~y(p;0A + I;) : 0 € I} with A + [, as in

(6.22). Then its Fisher information equals

d—1 2mj 2
2 cos(=5
J(0) = LR :
(6) p;) (1—1—20003(2’”))

4

2. Consider the model {v(p;0C + 1;) : 0 € I} with 0C + I, as in (6.24). Then its

1426 cos(d%rlﬂ

i 2
Fisher information equals J(0) = pZ;l:l (M) .

Remark 6.3.12. Let P,(u) be the natural exponential family corresponding to the Gaus-
sian general exponential family (6.17). If W has the law N(u,s™!) given by (6.17),
then T'(W) has the law Ps(x). On the other hand, it is well known that —7'(W) =
(W — w)(W — u)” has the Wishart law (3;2s™"). This explains why the formulas
for the Fisher information are the same for the Gaussian family and for the Wishart family

with p = %
Exponential families of noncentral Wishart distributions

Let us finish the section on the Wishart models by considering the non-central case. The
main reference is (Letac and Massam, 2008). Let p € Ay = {%, . %} a € S_;{ and
o € ST. The noncentral Wishart distribution v(p, a; o) is defined by its Laplace transform
L(p,a;o)(t) = fe T2y (p, 4y o) (dx) = det(I; + ot)Pe” T(Haron T oa)
S
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forallt € S;.

When p > %, then non-central Wishart laws exist for all a € S_j; when p € Ay
then a must be of rank at most 2p (Letac and Massam, 2011). When p = 3, n € N, the
non-central Wishart distributions are constructed in the following way from n independent
d-dimensional Gaussian vectors Y7,...,Y,. LetY; ~ N(u;, ) and let u be the d x n
matrix [u1, . .., u,]. Then, the d x d matrix W = Y, Y/ + ... + Y, YT has the noncentral
Wishart distribution v(p, a;0) with p = %, 0 = 2% and oac = uu’. Such Wishart
distributions are studied in (Muirhead, 2005).

The non-central Wishart distributions may be constructed as a natural exponential fam-
ily {W(p,a;s) : s —S]} generated by the positive measure
o= Hap(dz) = e y(p a;1;)(dr). Its moment generating function is given for

se€ —S; by

J e D)y, (da) = det(—s)’pe“(“(_s)fl).

57
We have W (p, a; s) = v(p, a; (—s)™'). Like for central Wishart families,

S = —S7. The cumulant function is
K(s) = —plogdet(—s) + Tr(a(—s)™).
As before, we denote o = (—s) 1. We see that the mean equals
m(s) = K'(s) = p(—s) ™" + (—=s)ta(—s)"" = po + cac (6.30)
and the covariance

v(s) = K'(s)=po®oc+ (0ac)®c + o ® (cao)

= —poR®Roc+mRo +oRQm. (6.31)

When the matrix a is non-singular, the inverse mean map ¢)(m) = s is such that

1/2
(— -1_ __ Db 12 172, 1/2 p? 4 —1/2
s) T =0= ¢ +a a’*ma’* + Zjd a '°. (6.32)
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For other cases see (Letac and Massam, 2008, Prop.4.5). In order to write the variance
function V(m) = v(y(m)) we compose the last expression from (6.31) and the formula
(6.32).

For a model {WW (p,a;¢(0A + B)) : 0 € I} parametrized by a segment of means, the

Fisher information J(6) is obtained from the expression of V' (m) and Theorem 6.2.6.

Example 6.3.13. Suppose that a = 1;, A = aly and B = pl;, o, > 0. The Fisher

information on 0 is

-1
J(0) = a’d <(p2 + 200+ 253)(0a + B + %2)1/2 —2p(fa + B) — %3> :

6.3.3 Applications to estimation of the mean in exponential families
parametrized by a segment of means

Consider a sample X, ..., X, of a random variable X from a natural exponential family
Q(m, u) parametrized by the domain of means M, where the parameter m = E(X) is

unknown and M is open.

Proposition 6.3.14. The sample mean X, is an unbiased, consistent and efficient estimator

of the parameter m. It is a maximum likelihood estimator of m.

Proof. By Theorem 6.2.4 we have Cov(X) = V(m) = J(m)™', so the Cramér-Rao
bound is attained by X. Consequently, the sample mean X, is an efficient estimator of m.
It follows by equating zero to the derivative with respect to m of the logarithm of expres-
sion (6.7) that the sample mean X, is a maximum likelihood estimator of m. One can also
first show by (6.2) that the maximum likelihood estimator of s is § = (K')"1(X) = ¢(X)
and next use the functional invariance of the maximum likelihood estimator (Casella and

Berger, 2002, Theorem 7.2.10). OJ
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Remark 6.3.15. For general exponential families )(m, T, v) parametrized by an open

domain of means ), all these properties remain valid for /i = 7'(X), as an estimator of

m = E(T(X)).

Consider an exponential family Q)(0 A + B, j1) parametrized by 6 € I, a segment in R
with fixed A 4+ 0 and B € M. We will now discuss estimators of the real parameter ¢
when we know that the mean E(X) = m € [A + B. Determining a maximum likelihood
estimator for f seems impossible explicitly. This is the "price to pay" for the parsimony
of the segment model parametrized by m € I A + B. On the other hand, the efficiency of
estimators of # may be studied thanks to Corollary 6.2.6.

Knowing that

m =0A+ B (6.33)

for a value 6 € I, we have many possibilities of writing down a solution 6 of equation
(6.33). If A + 0 then the solution 6 is unique (A0 + B = A0’ + B implies § = 0’ when
A % 0). We assume that m and therefore A and B are d x d matrices. For any C such that
(A, C) % 0 we have

(m—-B,C)
4,0

We define an estimator ¢ of the parameter 6 by

i _ X.-B.O
© {40

All the estimators f are unbiased and consistent. The natural question is whether they
are efficient. The variance of 6 may be computed using the variance function V (1) of

the exponential family:

Var 0 = 7A, C’>2 ———Var(X,,,C) = I 1C>2 Var (Vec(C’)T Vec X,,)
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~ Vec(O)TV(#A + B) Vec(C)
B n(A, C)?

(6.34)

On the other hand, the Cramér-Rao bound is equal by Corollary 6.2.6 to

1 1
nJ(0)  nVec(A)TV(OA + B)~* Vec(A) (6.35)

When the matrix A is invertible, we can take C' = A~! and consider the estimator

- (X, — B,A™"
far = : .

The following theorem shows that for Gaussian and central Wishart exponential families
and for linearly dependent A and B, the estimator 6,4-1 is efficient as an estimator of the
mean m (with X; replaced by T'(X;) = —3(X;—u)(X;—u)” in the Gaussian case). In con-
clusion, we obtain efficient estimators for Gaussian models parametrized by a covariance

segment parameter and for Wishart models parametrized by a scale segment parameter.

Theorem 6.3.16. 1. Let I = R™ be a non-empty segment. Let ¢ > 0, A € S, and

B = cA.

(a) Consider an n-sample (X1,...,X,,) from a Gaussian family Q(m, T, v) de-

fined by (6.18), where m = A + B, 6 € I. Then

; _(I(X),-BAY
fas = -

is a uniformly minimum-variance unbiased estimator of the parameter 6.
(b) Consider an n-sample (X1,...,X,,) from a Wishart model Q)(m, 1,,) defined

by (6.26), where m = #A + B, § € I. Then

. (X,-B,AT
fa1 = :

is a uniformly minimum-variance unbiased estimator of the parameter 6.
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2. Letc>0,C€S; and D = cC.

(a) Consider an n-sample (X7, ..., X,,) from a Gaussian model
{N(u,0C+D),0 € I} parametrized by a segment of covariances. A uniformly

minimum-variance unbiased estimator of 6 is given by

i — é% S(X; - w)(X; — w) = D,CY.

=1

(b) Consider a sample (X7, ..., X,) from a Wishart model {y(p,0C + D),0 €
I} parametrized by a segment of scale parameters. A uniformly minimum-

variance unbiased estimator of  is given by

<%Xn - Da C_1>

0 =
d

Proof. For the first part of the Theorem, we give the proof in the Wishart case. The proof

in the Gaussian case is identical, with p = %, cf. Remark 6.3.12. By formulas (6.34) and

(6.27)
R 6 + c)?
041 = Tr((Af + B)A~ (A BA‘1=<
Var A pd2n r(( + ) ( + ) ) pdn
On the other hand, by (6.35) and (6.27)
1 1 1

nJ(#) npTr(A(A0 + B)"1A(A0 + B)~Y)  np(d +c)-2d’

Thus Var § = #W) and the estimator 4—1 1S efficient.

The second part of the Theorem follows by necessary reparametrizations. For (2a),
using (6.18), we write 0C' + D = —2m with m = 6 A + B, where A = —% and B = —%.

The part (2b) follows similarly from (6.26). [
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Remark 6.3.17. It is an open question whether 04 may be efficient for independent

A and B. Let n = 1. The equality Varf = ﬁ holds if and only if, writing Dy =

(A6 + B)A~(A0 + B)A™', the equality = Tr(Dy) = m holds for all § € I.
e
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Conclusion

In this thesis, we propose some parameter parsimonious models which are of great impor-
tance in high dimensional data analysis. We first provide a motivation for the work and crit-
ically discuss the available literature on the subject. Then, we present a background of clas-
sical Wishart distributions and multiparameter Wishart distributions in terms of the canoni-
cal measures of cones. Next, we provide a harmonious construction of Wishart exponential
families in nearest neighbours interactions graphical models. Our simple method is based
on analysis on convex cones compared to existent work which relies more on graph theory.
We define the Wishart distributions and explicitly determine their classical objects, such as
the Riesz generating measures, the Wishart densities, the Laplace transforms and the mean
functions. Wishart distributions on () 4, are constructed as the exponential family gener-
ated from the gamma function Q) 4, , defined by nggl (s) = SQAn e~ T@§M (1) 4 (x)da.
Wishart distributions on Py, are then constructed as the Diaconis-Ylvisaker conjugate
family for the exponential family of Wishart distributions on ). For Wishart distribu-

tions on () 4, , explicit formulas for the inverse mean map and the variance function are

derived. Later, the methods of construction of Wishart laws introduced in this thesis are
used to solve the Letac-Massam Conjecture on the set of parameters of type I Wishart
distributions on () 4, » > 1. Finally, we introduce and study exponential families of distri-
butions parametrized by a segment of means with an emphasis on their Fisher information.

This class of models will be useful in high-dimensional data analysis, particularly when

one is hesitating between two parameter values. We derive the mean function, the variance
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function and the Fisher information of the model. We also propose some estimators and
explore their properties. The particular cases of Gaussian and Wishart exponential families
parametrized by a segment of means are examined.

The work presented in Chapter 4 has resulted in the article (Graczyk et al., 2016b)
written in collaboration with Piotr Graczyk and Hideyuki Ishi. It has been presented at
the “Séminaire triangulaire Probabilités et Statistique” in Le Mans (France) in June 2015,
and at the summer school “Mathematical Methods of Statistics” in Angers in June 2016.
Based on the work presented in Chapter 5, an article (Graczyk et al., 2017) was written in
collaboration with Piotr Graczyk, Hideyuki Ishi and Hiroyuki Ochiai. The work presented
in Chapter 6 has resulted in the article (Graczyk and Mamane, 2015) published in collab-
oration with Piotr Graczyk. It has been presented at the “Séminaire tournant Probabilités
et Statistique”, in Poitiers (France) in June 2015. The methods and tools developed in
this thesis can be used for a future generalization of the construction of graphical Wishart
exponential families to decomposable graphs. This generalization will set ground to the
solution of the Letac-Massam conjecture in general. Future research can also explore con-

crete applications of the models proposed in this thesis.
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Lois de Wishart sur les cones convexes

Wishart laws on convex cones

Résumé

En analyse multivariée de données de grande diomnsi
les lois de Wishart définies dans le contexte dexléle:
graphiques revétent une grande importance car elles
procurent parcimonie et modularifdans le contexte di
modeles graphiques Gaussiens régis par un graples G,
lois de Wishart peuvent étre définies sur deuxictigins
alternatives du cone des matrices symétriquesidsfin
positives : le cdne PG des matrices symétriquenidsf

positives x satisfaisant xij=0, pour tous sommaetdsji
non adjacents, et son cone dual QG.

Dans cette thése, nous proposons une construction

harmonieuse de familles exponentielles de lois de

Wishart sur les cones PG et QG. Elle se focalis¢esu
modeles graphiques d'interactions des plus proches

voisins qui présentent 'avantage d'étre relativeime

simples tout en incluant des exemples de tousaes c
particuliers intéressants: le cas univarié, undias cone

Abstract

In the framework of Gaussian graphical models
governed by a graph G, Wishart distributions can
be defined on two alternative restrictions of the
cone of symmetric positive definite matrices: the
cone PG of symmetric positive definite matrices x
satisfying xij=0 for all noradjacent vertices i an
and its dual cone QG. In this thesis, we provide a
harmonious construction of Wishart exponential
families in graphical models. Our simple method
is based on analysis on convex cones. The foc
on nearest neighbours interactions graphical
models, governed by a graph An, which have the
advantage of being relatively simple while
including all particular cases of interssich as th
univariate case, a symmetric cone case, a non-
symmetric homogeneous cone case and an infinite
number of non-homogeneous cone cases. The

symétrique, un cas d'un cbne homogéne non symétriquWishart distributions on QAn are constructed as

et une infinité de cas de cones non-homogenese Notr

méthode, simple, se fonde sur I'analyse sur leescén

convexes. Les lois de Wishart sur QAn sont définies
travers la fonction gamma sur QAn et les lois dshalit
sur PAn sont définies comme la famille de Diaconis-
Ylvisaker conjuguée. Ensuite, les méthodes dévélepp

sont utilisées pour résoudre la conjecture de Letac

Massam sur I'ensemble des parametres de la loi de
Wishart sur QAn. Cette thése étudie aussi les sous-
modeles, paramétrés par un segment dans M, d'une
famille exponentielle paramétrée par le domaine des

moyennes M.

Mots clés : Wishart, Riesz, modele graphique, resea u
Markovien, loi gamma matricielle, famille exponenti  elle

the exponential family generated from the gamma
function on QAN. The Wishart distributions on
PAn are then constructed as the Diaconis-
Ylvisaker conjugate family for the exponential
family of Wishart distributions on QAn. The
developed methods are then used to solve the
Letac-Massam Conjecture on the set of pararaet
of type | Wishart distributions on QAn. Finally,

we introduce and study exponential families of
distributions parametrized by a segment of means
with an emphasis on their Fisher information. The
focus in on distributions with matrix parameters.
The particular cases of Gaussian and Wishart
exponential families are further examined.

Key Words : Wishart, Riesz, graphical models,
Markov network, matrix-variate gamma, exponential
family
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