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Summary

In high dimensional settings, Wishart distributions defined within the framework of graph-

ical models are of particular importance.

A graphical model for a random vector pX1, . . . , Xnq is a family tfθ : θ P Θu of prob-

ability distributions such that each fθ satisfies a set of conditional independence relations

encoded in graph G: each random variable is represented by a node and the absence of

an edge between two nodes symbolizes conditional independence of the corresponding

random variables given the remaining random variables. For a Gaussian graphical model,

with covariance matrix Σ and concentration matrix K “ Σ´1, the conditional indepen-

dence constraints are equivalent to Kij “ 0 for all non-adjacent vertices i and j. This

implies that the entries of Σ corresponding to non-adjacent vertices are not free parame-

ters and the model can be alternatively parametrized by an incomplete matrix with entries

corresponding to non-adjacent vertices left out. In the framework of Gaussian graphical

models, Wishart distributions are therefore defined on two alternative restrictions of the

cone of symmetric positive definite matrices: the cone PG of symmetric positive definite

matrices x satisfying xij “ 0 for all non-adjacent vertices i and j and its dual cone QG.

The existing construction of Wishart exponential families on QG and PG used two differ-

ent approaches for homogeneous and non-homogeneous cones and as a result, provides

two different presentations of the distributions on the two classes of cones. Also, it does

not specify the set of parameters of these families for non-homogeneous graphs. Only a

conjecture was made about this parameter set.
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In this thesis, we propose some parameter parsimonious models which are of great

importance in high dimensional data analysis. We first present a background of classical

Wishart distributions and multiparameter Wishart distributions in terms of the canonical

measures of cones. Then, we provide a harmonious construction of Wishart exponen-

tial families in nearest neighbour interaction graphical models, in other terms governed

by the graph An :
1
‚ ´

2
‚ ´ ¨ ¨ ¨ ´

n
‚. Our simple method is based on analysis on con-

vex cones compared to existent work which relies more on graph theory. The focus is on

nearest neighbours interactions graphical models which have the advantage of being rela-

tively simple while including all particular cases of interest such as the univariate case, a

symmetric cone case, a non-symmetric homogeneous cone case and an infinite number of

non-homogeneous cone cases. We derive the Laplace transforms of the Riesz generating

measures. Next, we define the Wishart distributions and explicitly determine their classical

objects such as the Wishart densities, the Laplace transforms and the mean functions. The

Wishart distributions on QAn are constructed as the exponential family generated from

the gamma function on QAn . The Wishart distributions on PAn are then constructed as

the Diaconis-Ylvisaker conjugate family for the exponential family of Wishart distribu-

tions on QAn . For Wishart distributions on QAn , explicit formulas for the inverse mean

map and the variance function are derived. Later, the methods of construction of Wishart

laws introduced in this thesis are used to solve the Letac-Massam Conjecture on the set

of parameters of type I Wishart distributions on QAn . Finally, we introduce and study ex-

ponential families of distributions parametrized by a segment of means with an emphasis

on their Fisher information. This class of models will be useful in high-dimensional data

analysis, particularly when one is hesitating between two parameter values. We derive the

mean function, the variance function and the Fisher information of the model. We also

propose some estimators and explore their properties. The particular cases of Gaussian

and Wishart exponential families parametrized by a segment of means are examined.
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Résumé

En analyse multivariée de données de grande dimension, les lois de Wishart définies dans

le contexte des modèles graphiques revêtent une importance particulière. Un modèle

graphique pour un vecteur aléatoire pX1, . . . , Xnq est une famille tfθ : θ P Θu de lois

de probabilité satisfaisant chacune un ensemble de relations d’indépendances condition-

nelles représentées par un graphe G : chaque variable aléatoire est représentée par un

sommet et l’absence d’une arête entre deux sommets symbolise l’indépendance condi-

tionnelle des variables correspondantes étant données les autres variables. Ce mariage

entre la théorie de la probabilité et la théorie des graphes assure une représentation mo-

dulaire et parcimonieuse en paramètres de la loi jointe des variables du modèle, permettant

ainsi l’estimation des paramètres avec une taille d’échantillon raisonnable et un calcul plus

efficient des lois marginales a posteriori. Pour un modèle graphique Gaussien avec une ma-

trice de covariance Σ et une matrice de précision K “ Σ´1, les relations d’indépendances

conditionnelles sont équivalentes à Kij “ 0, pour tous sommets non adjacents i et j. Cela

implique que les éléments de la matrice Σ, correspondant à une paire de sommets non

adjacents, ne sont pas des paramètres libres. Le modèle peut donc de manière alternative

être paramétré par une matrice incomplète dont les éléments correspondant à une paire de

sommets non adjacents sont omis. Dans le contexte des modèles graphiques Gaussiens,

les lois de Wishart sont par conséquent définies sur des restrictions du cône des matrices

symétriques définies positives : le cône PG des matrices symétriques définies positives x

satisfaisant xij “ 0, pour tous sommets i et j non adjacents, et son cône dual QG. Lorsque
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ces cônes sont non-homogènes, la construction existante de lois de Wishart sur les cônes

QG et PG utilise deux méthodes différentes pour les graphes homogènes et les graphes

non homogènes résultant ainsi à deux formulations différentes des lois de Wishart sur les

deux classes de cônes. De plus, elle ne spécifie pas entièrement l’ensemble des valeurs

possibles pour les paramètres. Seule une conjecture sur cet ensemble est fournie.

Dans cette thèse nous proposons des modèles parcimonieux en paramètres qui sont

de grande utilité en analyse de données de grande dimension. Nous rappelons d’abord

les lois de Wishart classiques et multiparamètres présentées du point de vue des mesures

canoniques des cônes. Puis, nous présentons une construction harmonieuse de familles

exponentielles de lois de Wishart sur les cônes PG et QG. Elle se focalise sur les modè-

les graphiques d’interactions des plus proches voisins qui sont régis par le graphe An :

1
‚ ´

2
‚ ´ ¨ ¨ ¨ ´

n
‚ et qui présentent l’avantage d’être relativement simples tout en incluant

des exemples de tous les cas particuliers intéressants : le cas univarié, un cas d’un cône

symétrique, un cas d’un cône homogène non symétrique, et une infinité de cas de cônes

non-homogènes. Notre méthode, simple, se fonde sur l’analyse sur les cônes convexes

en contraste avec les travaux précédents qui se basent surtout sur la théorie des graphes.

Les lois de Wishart sur QAn sont définies à travers la fonction gamma sur QAn et les lois

de Wishart sur PAn sont definies comme la famille de Diaconis-Ylvisaker conjuguée à la

famille des lois de Wishart sur QAn . Les objets classiques associés, tels que les mesures

génératrices de ces familles exponentielles, les densités, les transformées de Laplace et

les fonctions moyennes, sont déterminés. De plus, pour les lois de Wishart sur QAn , les

formules de la fonction réciproque de la moyenne et la fonction variance sont établies.

Ensuite, les méthodes développées sont utilisées pour résoudre la conjecture de Letac-

Massam sur l’ensemble des paramètres de la loi de Wishart de type I sur QAn .

Cette thèse étudie aussi les sous-modèles paramétrés par un segment rm1,m2s dansM,

lorsque pQmqmPM est une famille exponentielle paramétrée par le domaine des moyennes

v



M. Ces sous-modèles présentent l’avantage d’être parcimonieux en paramètres dans les

cas multidimensionnels et sont particulièrement utiles lorsque l’on hésite entre deux possi-

bles valeurs d’un paramètre. L’accent est mis sur les modèles paramétrés par des matrices.

La fonction moyenne, la fonction variance, l’information de Fisher et les estimateurs sont

déterminés et les cas particuliers des familles exponentielles Gaussiennes et Wishart sont

examinés.
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Notations

In this work, unless otherwise stated,

Sn is the space of symmetric positive definite nˆ n matrices;

S`n is the cone of positive definite nˆ n matrices;

S`n is the cone of positive semidefinite nˆ n matrices;

E is the closure of the set E;

A ą 0 means the matrix A is positive definite;

TrpAq is the trace of the matrix A;

tA or AT denotes the transpose of the matrix A;

xx, yy is the inner product of x and y;

xb y is the Kronecker product of x and y;

detpAq or |A| is the determinant of matrix A;

fpxq is the density function of the random variable X;

fpx|yq is the conditional density of X given Y ;

G is a graph with set of vertices V with cardinality n and set of edges
E ;

C is the set of cliques of G;

S is the set of minimal separators of G;

An is the graph 1´ 2´ ¨ ¨ ¨ ´ n;

ZG is the space of symmetric matrices y such that yij “ 0 for all non-
adjacent vertices pi, jq in the graph G;

xi



Z˚G is the space of incomplete symmetric matrices x with entries xij
missing for all non-adjacent vertices pi, jq in the graph G;

PG is the convex cone ZG X S`n ;

QG is the dual of the cone PG;

π is the projection of Sn on Z˚G;

ϕ is the bijective function PG to Q˚G defined by ϕpyq “ πpy´1q;

yA is the submatrix of y obtained by extracting from y the rows and
columns indexed by A;

x̂ is the unique positive definite completion of x P QG such that x̂´1 P

PG;

pzAq
0 is the matrix obtained from zA by filling up the entries corresponding

to V zA with zero entries: pzAq0ij “

#

zij if i, j P A Ă V ,

0 otherwise.

xii



Introduction

1.1 Introduction

The classical Wishart distribution, was first derived by Wishart (1928) as the distribution

of the maximum likelihood estimator of the covariance matrix of the multivariate normal

distribution. It is a matrix variate generalization of the gamma distribution. In high dimen-

sional settings, Wishart distributions defined within the framework of graphical models are

of particular importance.

A graphical model for a random vector X “ pX1, . . . , Xnq is a family tfθ : θ P Θu of

probability distributions such that each fθ satisfies a set of conditional independence re-

lations encoded in graph: each random variable is represented by a node and the absence

of an edge between two nodes represents conditional independence between the corre-

sponding random variables given the remaining random variables. This marriage between

Probability Theory and Graph Theory provides a parameter parsimonious and modular

representation of the joint distribution of the random variables of the model, thereby allow-

ing estimation of model parameters with a reasonable amount of data and a more effective

computation of marginal posterior distributions.

Graphical models encompass as particular cases well-known statistical models such

as naive Bayes models, state-space models, Markov and hidden Markov models and some

particular hierarchical log-linear models. They are also applied to regression analysis (Do-

bra et al., 2010), longitudinal data analysis (Smith et al., 2009), spatial statistics (Irvine and

Gitelman, 2011) or time series analysis (Avventi et al., 2013), (Dahlhaus, 2000), (Songsiri
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et al., 2010) or (Eichler, 2012). It should, however, be noted that not all models that use a

graph representation with some nodes and some edges are graphical models. Examples of

such models include neural networks although these models can sometimes be reformu-

lated as graphical models as explained by Jordan et al. (1999).

Graphical models find real-world applications to complex stochastic systems where

they provide a powerful tool for modelling high dimensional multivariate distributions by

only specifying the direct interactions between variables but succeeding in capturing all

the complexity of the system. Graphical models are intuitive and easy to interpret which

facilitates communications between subject-area experts and statisticians. This explains

the wide range of applications which go from genetics (Lauritzen and Sheehan, 2003) to

computer vision for self-driving cars (Oliver and Pentland, 2000) through finance (Abdel-

wahab et al., 2008), (Carvalho and West, 2007) or (Sewart and Whittaker, 1998), social

science (Berrington et al., 2008), medical science (Caputo et al., 2003) or (Gather et al.,

2002), image processing (Murphy et al., 2003), climate science (Callies et al., 2003) and

environmental science (Irvine and Gitelman, 2011).

Graphical models are therefore extensively used in statistics, machine learning and

artificial intelligence and the theory is developed by both statisticians and computer sci-

entists. According to Koller and Friedman (2009), the rich development of the field is

ensured by this synergy between statisticians and computer scientists, and the close and

continuous interaction between theory and practice.

For a Gaussian graphical model, with covariance matrix Σ and concentration matrix

K “ Σ´1, the conditional independence constraints are equivalent to Kij “ 0 for all

non-adjacent vertices i and j. This implies that the entries of Σ corresponding to non-

adjacent vertices are not free parameters and the model can be alternatively parametrized

by an incomplete matrix with entries corresponding to non-adjacent vertices left out. In

the framework of Gaussian graphical models, Wishart distributions are therefore defined

on two alternative restrictions of the cone of symmetric positive definite matrices: the
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cone PG of symmetric positive definite matrices x satisfying xij “ 0 for all non-adjacent

vertices i and j and its dual cone QG.

1.2 Objectives of the research

This research will address two main problems:

1. The existing construction of Wishart exponential families on QG and PG does not

fully specify the set of parameters of these families for non-homogeneous graphs.

Also, the construction used two different techniques for homogeneous and non-

homogeneous graphs and as a result provides two different presentations of the pa-

rameter range for homogeneous and non-homogeneous graphs.

The first objective is to provide an alternative construction of exponential families of

Wishart distributions on the cones PG and QG, a construction that fully specifies the

shape parameters set and gives a unique description of this set for both homogeneous

and non-homogeneous graphs. The focus will be on nearest neighbour interaction

graphical models, in other terms governed by the graph An :
1
‚ ´

2
‚ ´ ¨ ¨ ¨ ´

n
‚,

which have the advantage of being relatively simple while including all particular

cases of interest such as the univariate case, a symmetric cone case, a non-symmetric

homogeneous cone case and an infinite number of non-homogeneous cones cases.

The conditional independence relations encoded in such graph are of the form: Xi K

Xj|pXkqk‰i,j , for all |i´ j| ą 1.

2. Let pQmqmPM be a natural or general exponential family on Rd parametrized by the

means domainM. Let m1 and m2 be two points inM.

The submodel pQθm1`p1´θqm2qθPr0,1s parametrized by the segment rm1,m2s in M

presents the advantage of being parameter parsimonious in high dimensional set-

tings. This model will be particularly useful in practical situations when hesitating

3



between two parameter estimates m1 and m2 or in sequential data collection, when

an updated estimate of a parameter largely differs from the previous estimate.

The second objective is the study of the submodel pQθm1`p1´θqm2qθPr0,1s. The em-

phasis will be on models with a matrix parameter. The mean function, the variance

function, the Fisher information and estimators will be derived, and the particular

cases of Gaussian and Wishart exponential families parametrized by a segment of

means will be examined.

1.3 Organization of the work

In Chapter 2, a literature review on graphical models and Wishart distributions is pre-

sented. Chapter 3 introduces some important background concepts and results on convex

cones, graphical models, exponential families of distributions and Wishart distributions.

Chapter 4 presents a novel construction of exponential families of Wishart distributions on

PAn and QAn . Chapter 5 answers the Letac-Massam conjecture on the set of parameters

of type I Wishart distributions on QAn . Chapter 6 is devoted to exponential families of

distributions parametrized by a segment of means with a strong emphasis on their Fisher

information. The work is concluded with a discussion on the work done and perspectives

of future extensions.
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Chapter 2

LITERATURE REVIEW

The origins of graphical models are explained in Koller and Friedman (2009), Edwards

(2000) or Lauritzen (1996). These origins are traced back to Gibbs (1902) in the area of

statistical physics, Wright (1921, 1934) in the area of genetics and to Wold (1954) and

Blalock (1971) in economical and social science. But modern statistical graphical mod-

els genuinely started with Darroch et al. (1980) who, building on the work of Goodman

(1970) on the analysis of contingency tables, introduced undirected graphical models for

contingency tables as a special subsclass of hierarchical log-linear models with a more

efficient parameter estimation and an intuitive interpretation in terms of conditional inde-

pendence. It should however be noted that Dempster (1972) introduced a model which

is essentially the graphical Gaussian model although it does not explicitly use a graphical

representation. It was a Gaussian model with prescribed zeros in the concentration ma-

trix for which he derived the maximum likelihood estimator Σ̂ of the covariance matrix

Σ. Σ̂ is the positive definite matrix whose inverse has the same pattern of zeros as Σ´1

and agrees with the empirical covariance matrix for all pairs of indices corresponding to

non-zero elements of the concentration matrix. He also proposed an iterative method for

model selection and parameter estimation. Graphical Gaussian models are also known as

covariance selection models (Dempster, 1972). They are also called concentration graph

models in contrast to covariance graph models (Khare and Rajaratnam, 2011)) which ex-

5



ploit the pattern of zeros in the covariance matrix, thus reflecting marginal independence

instead of conditional independence. Wermuth (1976) made the analogy between models

for contingency tables and covariance selection models. She showed that both models are

based on the definition of the pairwise independence structure and proposed log-likelihood

ratio test statistics for model selection. But it was Speed and Kiiveri (1986) who formally

associated an undirected graph to a covariance selection model.

Graphical models are broadly classified into two main groups: directed graphical mod-

els, also referred to as Bayesian networks or belief networks, which use directed edges be-

tween the nodes in the graph representing the statistical model, and undirected graphical

models, also referred to as Markov networks or Markov random fields, which use undi-

rected edges between the nodes of the graph representing the statistical model. Graphical

chain models (Whittaker, 1990), (Cox and Wermuth, 1996), (Edwards, 2000) unify undi-

rected and directed graph models. They are extensions of graphical models that allow for

partially ordered data such as panel data. From subject-matter knowledge, the variables

are partitioned into an ordered list of blocks; dependence relationships between variables

within the same box are represented by undirected edges while dependence relationships

between variables in different boxes are represented by directed edges.

The most natural class of graphical models to use in practice depends on whether the

relationships of variables are symmetric like with spatial data (in which case undirected

graphical models are more natural) or assymmetric (in which case directed graphical mod-

els are more natural). Very often, undirected models can be also equivalently represented

as a directed model and conversely. But there are sets of conditional independence rela-

tions that can be encoded with either a directed or an undirected graph but not with the

other. Conditional independence is easier to check on undirected graphs while model pa-

rameters are easier to interpret in directed graphical models. Directed graph models have

also the potential of causal interpretation. Graphical models can be used with discrete or

continuous variables or a mix of discrete and continuous variables.
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The graphical modelling process consists of two steps: the selection of the graph struc-

ture which can be built from an expert opinion or learnt from data and the estimation of

parameter values. Graphical model selection methods are virtually similar to model se-

lection methods in regression models; including or not an explanatory variable is replaced

by including or not an edge between two nodes. The methods, therefore include log-

likelihood ratio tests, Akaike information criterion (AIC), Bayesian information criterion

(BIC), graphical lasso (Friedman et al., 2008),(Banerjee et al., 2008). Inference methods

in graphical methods include exact methods like the junction tree algorithm and approxi-

mation methods such as Markov chain Monte Carlo and variational methods (Wainwright

and Jordan, 2008).

Missing data in graphical models were dealt with by Lauritzen (1995). Graphical

models for mixed discrete and continuous variables were introduced by Lauritzen and

Wermuth (1989). Decomposable graphical models are particularly important as they yield

closed form maximum likelihood estimators.

Various theoretical aspects of graphical models have been extensively studied. More

details can be found in monographs dedicated to the subject which include (Lauritzen,

1996), (Edwards, 2000), (Whittaker, 1990) and (Højsgaard et al., 2012). Other books have

an extensive treatment of the subject; these include (Bishop, 2006), (Koller and Friedman,

2009), (Hastie et al., 2009), (Murphy, 2012).

The scope of applications of graphical models is very wide. Applications of graphical

models in Artificial Intelligence started with Lauritzen and Spiegelhalter (1988).

Graphical models for time series are sometimes called dynamic graphical models.

Avventi et al. (2013) applied graphical models to a zero-mean stationary Gaussian vec-

tor stochastic process.

Application of graphical models to regression analysis is illustrated by Dobra et al.

(2010) who proposed a method of variables selection in regression analysis using undi-

rected graphical Gaussian models and applied the method to the prediction of macroeco-
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nomic growth.

In social science, Berrington et al. (2008) used a graphical chain model to study

women’s gender role attitudes and changes in their participation in labour force. The

graphical modelling allowed the authors to go beyond previous research in being able to

simultaneously studying impacts of gender role attitudes on changes in participation in

labour force and also impacts of changes in participation in labour force on gender role

attitudes.

In medical science, Caputo et al. (2003) used a graphical chain model to investigate the

interactions between the determinants of undernutrition in Benin. Mohamed et al. (1998)

used a chain graph model to investigate infant mortality and its determinants in Malaysia.

In environmental science, Irvine and Gitelman (2011) applied a directed graphical

Gaussian model to stream health data in a study of the effects of urban land use on terres-

trial life stages of insects.

Applications of graphical models in Finance are diverse. Carvalho and West (2007)

applied a dynamic graphical model to the study of the interdependence of some finan-

cial markets and to stock portfolio selection. They constructed a dynamic matrix variate

graphical model by adding a graphical model component to the state-space structure of

matrix-variate dynamic linear models. The model captures the dependence structure be-

tween the time series but also the change of this dependence structure over time.

Sewart and Whittaker (1998) and Hand et al. (1997) used a graphical model for credit-

scoring.

Carvalho and West (2007) and Carvalho et al. (2007) explored international currency

portfolio selection and exchange rates prediction using a graphical model.

The classical Wishart distribution, was first derived by Wishart (1928) as the distribution

of the maximum likelihood estimator of the covariance matrix of the multivariate normal

distribution. It can therefore be viewed as a generalization of the gamma distribution
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defined on the set of positive real numbers to a distribution defined on the set of positive

definite matrices. A good treatment on the classical Wishart distribution can be found in

(Muirhead, 2005) or (Eaton, 2007).

One important characterization of these classical Wishart distributions, defined on the

cone S`n of symmetric positive definite matrices, is as the natural exponential family gen-

erated by measures µp with a Laplace transform defined on S`n byLµppθq “ pdetpθqq´p for

p belonging to the Gindikin set t1
2
, 1, 3

2
, . . . , n´1

2
uYsn´1

2
,8r. The measures µp are called

Riesz measures.

The non-central Wishart distribution is a natural generalization of Wishart distribu-

tion; it is defined as the distribution of W “ Y1Y
T

1 ` . . . ` YnY
T
n , when the random

vector pY1, . . . , Ynq follows a multivariate normal distribution with a non-zero mean. The

construction of the exponential family of non-central Wishart distributions is presented in

(Letac and Massam, 2008).

Multi-parameter Riesz measures are obtained by generalizing the real power of the

determinant of θ to a product of powers of the principal minors of θ. Multi-parameter

Wishart distributions are then obtained as the exponential family of distributions generated

by these multi-parameter Riesz measures. Multi-parameter Wishart distributions are also

called Riesz distributions by Hassairi and Lajmi (2001) and Boutouria and Hassairi (2009),

who studied these distributions on symmetric and homogeneous cones, respectively.

Another important generalization of the Wishart distribution in connection with graph-

ical models was introduced by Dawid and Lauritzen (1993). They showed that the unique

distribution p that is Markov over a graphG and has consistent clique marginals pC , C P C

has the form p
ś

CPC
pCq{p

ś

SPS
pSq, where C is the set of cliques of G, and S is the set of min-

imal separators of G. They introduced the hyper Markov property and showed that the

maximum likelihood estimator of the parameter of an exponential family of distributions

Markov over G is hyper Markov. They also proved that hyper Markov laws with respect
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to a graph G are conjugate priors for the sampling family of distributions Markov over

the graph G. Dawid and Lauritzen (1993) considered the example of zero mean graphical

Gaussian models where they called the distribution of the maximum likelihood estimator

of the covariance matrix the hyper Wishart distribution. They also introduced the hyper

inverse Wishart distribution as the unique hyper Markov law corresponding to a consis-

tent specification of (classical) inverse Wishart distributions for the cliques marginals and

showed that it is the conjugate prior of the covariance matrix in the Bayesian analysis of

graphical Gaussian models.

Roverato (2000) derived the distribution of the concentration matrix K “ Σ´1 when

πpΣq follows a hyper inverse Wishart distribution and called it the G-conditional Wishart

distribution.

Andersson and Wojnar (2004) generalized the Wishart distribution from the cone of

positive definite matrices to a general homogeneous cone.

In the framework of graphical Gaussian models, Letac and Massam (2007) constructed

two classes of multi-parameter Wishart distributions on the cones QG and PG associated

to a decomposable graph G and called them type I and type II Wishart distributions. They

showed that type I and type II Wishart distributions generalize the hyper Wishart distri-

bution and the G-conditional Wishart distribution respectively. Type I and type II Wishart

distributions were constructed as exponential families of distributions generated by some

kind of Markov combinations of the measure |x|p|x|´pn`1q{21S`n pxqdx that generates the

exponential family of classical Wishart distributions. They introduced the inverse type

I Wishart distribution as the distribution of the ‘inverse’ Y “ X̂´1 of a random vari-

able X following the type I Wishart distribution and derived its density function. They

also introduced the inverse type II Wishart distribution as the distribution of the ‘inverse’

X “ πpY ´1q of a random variable Y following the type II Wishart distribution and derived

its density function. When the cones QG and PG are homogeneous the parameter set of

type I and type II Wishart distributions is fully specified but for non-homogeneous cones
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QG and PG, only a subset of the parameter set of the distributions is specified. Letac and

Massam (2007) made a conjecture about this parameter set but recent work by Ben-David

and Rajaratnam (2014) suggests that this conjecture may not hold for some decomposable

non-homogeneous graphs.

Andersson and Klein (2010) proposed another construction of Wishart distributions on

decomposable graphs that generalizes type I Wishart distributions. The construction relies

on the representation of a decomposable undirected graph as an acyclic mixed graph.

Graczyk and Ishi (2014) showed how Wishart distributions can be constructed on con-

vex cones via quadratic maps as in the classical case. They defined Riesz measures as-

sociated to a quadratic map as the image of the Lebesgue measure by that quadratic map

and derived the Wishart distributions as the exponential families generated by these Riesz

measures.

The main application of the classical Wishart distribution is as a model for covariance

matrices, thus its pervasive use in multivariate stochastic volatility models. For example,

Philipov and Glickman (2006) used a model in which asset returns follow a multivari-

ate normal distribution with a time dependent concentration matrix Σ´1
t which follows a

Wishart distribution with a time dependent scale parameter St´1.

The Wishart distribution also occurs in Wishart processes as the distribution of the

time-marginals. Wishart processes, first introduced by Bru (1989, 1991), are solutions of

the matrix stochastic differential equation dXt “ X0`
?
XtdBt`dB

T
t

?
Xt`αIdt, where

α ą 0 and Bt is a Brownian matrix.

When a graphical model is used to exploit sparsity in a multivariate stochastic model,

the hyper Wishart and G-Wishart distributions come in naturally. This is illustrated in

(Carvalho and West, 2007), where a hyper inverse Wishart distribution is used as the

distribution of the covariance matrix in a matrix dynamic linear model combined with

a graphical model that exploits the sparsity in the cross-sectional concentration matrix.
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Chapter 3

BACKGROUND

3.1 Convex cones

In this section, some important concepts and results on convex cones are recalled. More

details can be found in (Faraut and Korányi, 1994).

Consider a Euclidean space H .

A subset Ω of H is said to be a convex cone if for all x, y P Ω and λ1, λ2 ą 0, we have

λ1x` λ2y P Ω.

The (open) dual cone of an open convex cone Ω is defined as

Ω˚ “ ty P H : xx, yy ą 0, @x P Ωzt0uu. (3.1)

The cone Ω is said to be self-dual if Ω “ Ω˚.

Let GLpHq be the general linear group of H , that is, the group of bijective linear maps

on H . The automorphism group GpΩq of an open convex cone is defined by

GpΩq “ tg P GLpHq : gΩ “ Ωu. (3.2)

The cone Ω is said to be homogeneous if GpΩq acts transitively on Ω, that is, for all

x, y P Ω there exists g P GpΩq such that y “ gpxq.

The cone Ω is said to be symmetric if it is homogeneous and self-dual. For example, S`n ,

the set of positive definite symmetric n ˆ n matrices is a symmetric cone of the space Sn
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of symmetric nˆn matrices. GpS`n q is the set of linear transformations on S`n of the form

ρpAq : S`n ÝÑ S`n , x ÞÑ ρpAqx “ AxAT , where A is an invertible matrix.

The cone S`n is homogeneous. Indeed for any x, y P S`n , we can write x “ aaT and

y “ bbT where a and b are invertible lower triangular matrices and let A “ ba´1; then

ρpAqpxq “ ba´1aaT pba´1qT “ y.

The characteristic function ϕΩ of a cone Ω is defined as

ϕΩpxq “

ż

Ω˚
e´xx,yydy, for all x P Ω. (3.3)

The measure ϕΩpxqdx is called the canonical measure of the cone Ω. It is GpΩq invariant;

this means that for any measurable function f : Ω Ñ Ω and g P GpΩq,

ż

f ˝ gpxqϕΩpxqdx “

ż

fpxqϕΩpxqdx. (3.4)

3.2 Graphical Models

In this section, some important concepts and results on undirected graphical models are

recalled. More details can be found in (Lauritzen, 1996),(Letac, 2014), (Edwards, 2000)

and (Koller and Friedman, 2009). In the thesis, it becomes clear that using the “cliques-

separators” approach in the theory of Riesz measures and Wishart laws on graphical cones

is not the natural one.

3.2.1 Undirected graphs

An undirected graph is a pair of sets G “ pV, Eq, where V is a finite set and E is a subset

of P2pV q, the set of all subsets of V with cardinality two. The elements of V are called

nodes or vertices and the elements of E are called edges. If v1 “ v2 or tv1, v2u P E , then

v1 and v2 are said to be adjacent and this is noted v1 „ v2. The set of neighbours of a

vertex i is defined as Nepiq “ tj P V ztiu : j „ iu and the closure of i is defined as
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Clpiq “ NepiqYtiu. Graphs are visualized by representing each node by a point and each

edge tv1, v2u by a line with the nodes tv1, v2u as endpoints.

A graph G0 “ pV0, E0q is said to be a subgraph of a graph G “ pV, Eq if V0 Ă V and

E0 Ă E .

Let U be a subset of V and define EU “ ttv1, v2u P E : v1 P U and v2 P Uu. The graph

GU “ pU, EUq is called the subgraph of G induced by U .

A subset A Ă V is said to be complete if all pairs of vertices in A are adjacent. A graph

G “ pV, Eq is said to be complete if V is complete. A complete subset C of V is said to

be a clique if it is not strictly contained in another complete subset of V . The set of all

cliques is denoted by C.

A path of length n between two vertices α and β is a subgraph α “ v0 „ . . . „ vn “ β

of G. A graph is said to be connected if there is a path between every pair of vertices. A

cycle of length n is a path α “ v0 „ . . . „ vn “ α. A cycle α “ v0 „ . . . „ vn “ α is

said to have a chord if there exists 0 ă i ă n and j R ti ´ 1, i ` 1u such that vi „ vj . A

tree is a connected graph with no cycles.

A subset S of V is said to separate a subset A of V from a subset B of V if every path

between a vertex in A and a vertex in B contains a vertex in S. A subset S of V is said to

be a minimal separator of A and B if it is a separator of A and B and no subset of it is a

separator of A and B.

Definition 3.2.1. Consider an ordering C 11 ă . . . ă C 1k of the cliques of G. Let H 1
1 “ C 11

and for all 2 ď j ď k, let H 1
j “ H 1

j´1 Y C
1
j and S 1j “ H 1

j´1 X C
1
j .

The ordering C 11 ă . . . ă C 1k is a perfect order of cliques if for all 2 ď j ď k, there exists

i ď j ´ 1 such that S 1j Ă C 1i.

The S 1j are minimal separators of G. The number of j such that S “ S 1j is called the

multiplicity of the separator S and will be denoted by λpSq.

Definitions 3.2.2.
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1. A graph with no chordless cycle of length greater than three is called a decomposable

graph.

2. A graph G is said to be homogeneous if it is decomposable and does not contain the

graph A4 as an induced subgraph.

The nearest neighbours interactions graph An :
1
‚´

2
‚´ ¨ ¨ ¨ ´

n
‚, is complete for n ď 2,

homogeneous for n ď 3, and non-homogeneous for n ě 4. Its sets of cliques and minimal

separators are respectively C “ tti, i`1u : 1 ď i ď n´1u and S “ ttiu : 2 ď i ď n´1u.

3.2.2 Conditional independence and graphs

Definition 3.2.3. Two random variables X and Y are said to be conditionally independent

given a random variable Z if the conditional density function of pX, Y q given Z factorizes

as fpx, y|zq “ fpx|zqfpy|zq. This will be noted X K Y |Z.

Consider a graph G “ pV, Eq. Let pXvqvPV be a collection of random variables and let

A, B, C be three subsets of V . If XA and XB are conditionally independent given XC , we

write XA K XB|XC .

Definition 3.2.4 (Markov properties).

1. pXvqvPV is pairwise Markov with respect to G if for all α, β P V ,

α  β ùñ Xα K Xβ|XV ztα,βu.

2. pXvqvPV is local Markov with respect to G if for all v P V , Xv K XV zClpvq|XNepvq.

3. pXvqvPV is global Markov with respect to G if for all A, B, C non-empty disjoint

subsets of V such that C separates A and B, we have XA K XB|XC .

Definition 3.2.5 (Factorization). A joint density function f of the pXvqvPV is said to fac-

torize with respect to G if

fpxq “
k
ź

i“1

ψipxCiq,
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where for all 1 ď i ď k, the function ψi depends on x only through xCi and tC1 . . . Cku is

the set of cliques of G.

Theorem 3.2.6. If f factorizes with respect to G, then pXvqvPV is global Markov with

respect to G.

Further, if fpxq ą 0 for all x, then

f factorizes with respect to G ðñ pXvqvPV is global Markov with respect to G;

ðñ pXvqvPV is local Markov with respect to G;

ðñ pXvqvPV is pairwise Markov with respect to G.

Theorem 3.2.7. Let C and S be the sets of cliques and minimal separators of a graph G.

Let λpSq be the multiplicity of a minimal separator S as defined in Definition 3.2.1.

fpxq “

ś

CPC
fcpxCq

ś

SPS
λpSqfSpxSq

is the unique distribution Markov over G that has the given consistent distributions fC ,

C P C as its clique marginals.

3.2.3 Graphical Gaussian models

In this paragraph, we recall some results from (Letac and Massam, 2007; Andersson and

Klein, 2010).

Consider an n-dimensional Gaussian model Np0,Σ) which is Markov over a graph

G “ pV, Eq. Let C be the set of cliques of G. Let ZG be the space of symmetric matrices

y such that yij “ 0 for all non-adjacent vertices pi, jq.

Let Z˚G be the space of incomplete symmetric matrices x with entries xij missing for all

non-adjacent vertices pi, jq.

Let π : Sn Ñ Z˚G be the projection of Sn on Z˚G.
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The conditional independence constraints are equivalent to

K “ Σ´1
P PG :“ ZG X S

`
n . (3.5)

They are also equivalent to Σij “ Σi,V zti,juΣ
´1
V zti,ju,V zti,juΣV zti,ju,j for all non-adjacent

vertices i and j, which in turn is equivalent to

πpΣq P tx P Z˚G : xC ą 0, @C P Cu. (3.6)

tx P Z˚G : xC ą 0, @C P Cu is actually the dual cone of PG,

QG “ tx P Z
˚
G : Trpxyq ą 0, @ y P PGzt0uu.

Indeed, an adaptation forAn graphs of the general proof given in Letac and Massam (2007)

is as follows:

• Proof of tx P Z˚G : xC ą 0, @C P Cu Ă QAn:

Let x P QAn and let y P PAnzt0u. Since the mapping P´1
G Ñ QG, x ÞÑ πpxq is a

bijection, there exists x̂ positive definite such that x̂ is a completion of x.

We have x̂1{2yx̂1{2 ą 0, thus Trpxyq “ Trpx̂yq “ Trpx̂1{2yx̂1{2q ą 0.

Therefore, x P QAn .

• Proof of QAn Ă tx P Z
˚
G : xC ą 0, @C P Cu:

Let x P QAn . Let i P t1, . . . , n´ 1u and let α P R2. Consider v P Rn defined by

vj “

$

’

&

’

%

α1 if j “ i

α2 if j “ i` 1

0 else

We have vvT P PAnzt0u. Thus, vTxv “ Trpx vvT q ą 0. But we have vTxv “

αTxti,i`1uα. Therefore, αTxti,i`1uα ą 0 and x P QAn .

PG and QG are homogeneous (as defined in Section 3.1 ) if the graph G is homoge-

neous (as defined in Definition 3.2.2 ) (Letac and Massam, 2007). Therefore, the cones
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PA3 and QA3 are homogeneous and for all n ě 4, the cones PAn and QAn are non-

homogeneous.

Theorem 3.2.8. For a decomposable graph G, for all x P QG, there exists a unique

completed matrix x̂ P S`n such that πpx̂q “ x and x̂´1 P PG.

Lauritzen’s formula gives

x̂´1
“

ÿ

CPC

`

pxCq
´1
˘0
´

ÿ

SPS
λpSq

`

pxSq
´1
˘0
, (3.7)

where λpSq is the multiplicity of the separator S as defined in Definition 3.2.1 and pzAq0

denotes the matrix obtained from zA by filling up the entries corresponding to V zA with

zero entries.

ϕ will denote the bijective map from PG to QG such that ϕpyq “ πpy´1q.

3.3 Exponential families of distributions

In this section, some important concepts and results on exponential families of distribution

are introduced. Exponential families of distributions are extensively used in statistics and

intensively studied. More details can be found in (Barndorff-Nielsen, 1978), (Brown,

1986), (Lehmann and Casella, 1998) or (Lehmann and Romano, 2005). The presentation

given here essentially follows (Letac and Casalis, 2000).

Consider a real vector space E and its dual space E˚ (the space of linear forms on E).

Let x y : E˚ ˆ E ÝÑ R, ps, xq ÞÝÑ xs, xy be the canonical bilinear form on E˚ ˆ E. Let

µ be a positive measure on E.

The moment generating function of µ is the mapMµ : E˚ Ñ r0,8s defined byMµpsq “
ş

E
exs, xyµpdxq. Let Kpsq “ lnpMµpsqq.

The natural exponential family generated by µ is the family of probability distributions

defined by tPspdx;µq “ exs , xy´Kpsqµpdxq : s P Su, where S is the interior of the set

ts : Kpsq ă 8u, assumed to be non-empty.
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Consider a σ-finite measurable space pΩ,A, νq. The general exponential family gen-

erated by the measure ν and the map T : Ω Ñ E is the family

tPspT, νq “ exptxs , T y ´Kpsqudν : s P Su. (3.8)

If µ is the image of the measure ν by T on E, the family Pspµq is called the natural

exponential family associated with the general exponential family PspT, νq. The mean

function of the exponential family is the map m defined by mpsq “ EspT q “ K 1psq which

is an analytic diffeomorphism from S0 (the interior of S) to the open setM “ mpS0q.M

is called the domain of the means of the family.

The map ψ : M Ñ S0, m ÞÑ ψpmq “ pK 1q´1pmq is called the inverse mean map. The

exponential family, parametrized by the domain of the means M is given by

Qmpµqpdxq “ exψpmq , xy´Kpψpmqqµpdxq, m PM. (3.9)

The variance function of the family is defined by V pmq “ K2pψpmqq :“ vpψpmqq. The

variance function is very important as it characterizes the exponential family. Indeed, if

the variance functions VF1 and VF2 of two natural exponential families F1 and F2 coincide

on a non-empty subset of the intersection MF1 XMF2 of the domains of means, then

F1 “ F2 (Letac, 1989).

3.4 The Wishart distribution

In this section, we introduce the definition and some important properties of the classical

Wishart distribution. More details can be found in Eaton (2007), Faraut and Korányi

(1994) and Muirhead (2005). The presentation here is based on the characteristic function

and the canonical measure of a cone.
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3.4.1 The gamma and chi-square distributions

The gamma function is defined for s ą 0 as

Γpsq “

ż 8

0

e´xxs´1dx. (3.10)

Observing that the characteristic function of the cone p0,8q is

ϕR`pxq “

ż 8

0

e´xydy “ x´1,

the gamma function can be rewritten as

Γpsq “

ż 8

0

e´xxsϕR`pxqdx. (3.11)

Using the invariance (formula (3.4)) of the canonical measure ϕR`pxqdx, we obtain

ż 8

0

e´xypxyqsϕR`pxqdx “ Γpsq. (3.12)

Therefore,

γps, y;xqdx “
1

Γpsq
e´xypxyqsϕR`pxq1R`pxqdx (3.13)

is a probability density function. The corresponding probability distribution is called the

Gamma distribution Gps, yq. The Laplace transform of Gps, yq is, for all θ ą 0, given by

LGps,yqpθq “
ż 8

0

1

Γpsq
e´xpθ`yqpxyqsϕR`pxqdx “

´

1` θ
y

¯´s

. (3.14)

The mean and variance of the gamma distribution are respectively s
y

and s
y2

.

The probability distributionG
`

k
2
, 1

2

˘

is called the chi-square distribution. It is the distribu-

tion of
řk
i“1X

2
i when the random variables Xi, i “ 1, . . . , k are independent and follow a

standard normal distribution.

20



3.4.2 The Wishart distribution

The gamma function on S`n is defined for all s ą n´1
2

as

ΓS`n psq :“

ż

S`n

e´Trpxq
|x|s´

n`1
2 dx “ π

npn´1q
4

n
ź

i“1

Γ

ˆ

s´
i´ 1

2

˙

. (3.15)

If Y is an n ˆ n symmetric matrix and A an n ˆ n invertible matrix, the Jacobian of the

transformation Z “ AY tA is |A|n`1 (Mathai et al., 2012). Therefore, the characteristic

function of the cone S`n is

ϕS`n pxq “

ż

S`n

e´Trpxyqdy “

ż

S`n

e´Trpx1{2yx1{2qdy “ |x|´
n`1
2

ż

S`n

e´Trpzqdz “ c|x|´
n`1
2 ,

where c is a constant.

In the sequel, we will omit the constant and write ϕS`n pxq “ |x|
´n`1

2 . The gamma function

on S`n can thus be rewritten as

ΓS`n psq :“

ż

S`n

e´Trpxq
|x|sϕS`n pxqdx.

Using the invariance (formula (3.4)) of the canonical measure ϕS`n pxqdx, we obtain

ż

S`n

e´Trpxyq
|xy|sϕS`n pxqdx “

ż

S`n

e´Trpy1{2xy1{2q
|y1{2xy1{2

|
sϕS`n pxqdx “ ΓS`n psq.

Therefore,

γS`n ps, y;xqdx “
1

ΓS`n psq
e´Trpxyq

|xy|sϕS`n pxq1S`n pxqdx

is a probability density function; the corresponding probability distribution is the Wishart

distribution Wnps, yq. It is sometimes also called the matrix-variate gamma distribution

(Mathai et al., 2012).

The Laplace transform of Wnps, yq is LWnps,yq given by

LWnps,yqpθq “ |In ` y
´1θ|´s. (3.16)
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Rewriting the density function as

γS`n ps, y;xqdx “ ex´x,yy´ln |y|´sνpdxq,

where νpdxq “ |x|s

Γ
S`n
psq
ϕS`n pxq1S`n dx, we note that for a fixed s ą 0, Wnps, yq is an ex-

ponential family of distributions generated by the measure ν with a Laplace transform

Lνpyq “ |y|´s, for all y P S`n .

The mean and variance of Wnps, yq are respectively sy´1 and spy´1 b y´1q.

3.4.3 The classical Wishart distribution

The reparametrization W c
nps, yq “ Wn

`

s
2
, 1

2
y´1

˘

is similar to the chi-square distribution.

It is called the classical Wishart distribution. If X1, . . . , Xd is a random sample from an

n-dimensional normal distribution with mean zero and covariance Σ, then W “ X1X
T
1 `

. . .`XdX
T
d follows the classical Wishart distributionW c

npd,Σq. The maximum likelihood

estimator of Σ follows the classical Wishart distribution W c
npd,

1
d
Σq.

Defining the classical Wishart distribution W c
nps, yq by its Laplace transform

LW c
nps,yqpθq “ detpIn ` 2 Σθq´s{2 extends the set of possible values of the parameter s to

the so-called Gindikin’s set t1, 2, 3, . . . , n ´ 1uYsn´ 1,8r. The mean and covariance of

W c
nps,Σq are respectively sΣ and 2sΣ b Σ. If s ą n ´ 1, W c

nps,Σq has a density given

by

fpxq “
1

ΓS`n psq

|x|
s´n´1

2

2
ns
2 |Σ|

s
2

e´
1
2

TrpΣ´1xq. (3.17)

For s P t1, 2, 3, . . . , n ´ 1u, the classical Wishart distribution is singular; it has no den-

sity function with respect to the Lebesgue measure and is concentrated on a subspace of

positive semidefinite matrices of rank less than n.
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3.4.4 The multiparameter Wishart distribution

For all y P S`n and 1 ď i ď n, the matrix yt1:iu is the upper left submatrix of y of size iˆ i,

and yti:nu is the lower right submatrix of size pn´ i` 1q ˆ pn´ i` 1q.

The generalized power functions ∆s and δs on S`n are defined by

∆spyq “ ys1´s211 |y1:2|
s2´s3 . . . |y1:n´1|

sn´1´sn |y1:n|
sn (3.18)

and

δspyq “ |y1:n|
s1 |y2:n|

s2´s1 . . . |yn´1:n|
sn´1´sn´2ysn´sn´1

nn . (3.19)

The two power functions are known to be related by the property ∆´spyq “ δspy
´1q (Fa-

raut and Korányi, 1994, Proposition VII.1.5), where the notation ∆´s means ´s replaces

s.

The multiparameter Gamma function on S`n is defined, for s P Rn such that si ą i´1
2

, as

ΓS`n psq :“

ż

S`n

e´Trpxq∆spxqϕS`n pxqdx “ π
npn´1q

4

n
ź

i“1

Γ

ˆ

si ´
i´ 1

2

˙

. (3.20)

Using the invariance of the measure ϕS`n pxqdx by linear automorphisms of S`n and writing

y P S`n as y “ tbb and z “ bx tb with b a lower triangular matrix with positive diagonal

elements, we get

x “ b´1z tb´1, Trpxyq “ Trpx tbbq “ Trpbx tbq,

∆spxq “ ∆spb
´1z tb´1q “ ∆spb

´1 tb´1q∆spzq “ ∆spy
´1q∆spbx

tbq (Faraut and Korányi,

1994, Proposition VI.3.10) and
ż

S`n

e´Trpxyq∆spxqϕS`n pxqdx “ ∆spy
´1
q

ż

S`n

e´TrpbxbT q∆spbxb
T
qϕS`n pxqdx “ δ´spyqΓS`n psq.

Therefore,

ωps, y;xqdx “
1

ΓS`n psq
e´Trpxyq∆spxqδspyqϕS`n pxqdx (3.21)
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is a probability density function on S`n ; the corresponding probability distribution is called

the multiparameter Wishart distribution Wnps, yq.

Moreover, for a fixed s, Wnps, yq is an exponential family of distributions generated by

the measure Rspdxq “
1

Γ
S`n
psq

∆spxqϕS`n pxqdx which has a Laplace transform given by

LRspyq “ δ´spyq.

The Laplace transform of Wnps, yq is LWnps,yqpθq “
δ´spy`θq

δ´spyq
.

Remark 3.4.1. Consider y P S`n and s P Rn.

Let us define y˚ “ Ry tR and s˚ by y˚ij “ yn´i`1,n´j`1 and s˚i “ sn´i`1.

Then, it is easy to see that Trpy˚q “ Trpyq, δs˚py˚q “ ∆spyq, ϕS`n py
˚q “ ϕS`n pyq and

dy˚ “ dy.

Remark 3.4.2. We could have alternatively defined the multi-parameter gamma function

as

Γ̃S`n psq :“

ż

S`n

e´TrpxqδspxqϕS`n pxqdx, (3.22)

Using Remark 3.4.1, we obtain

Γ̃S`n psq “

ż

S`n

e´Trpx˚q∆s˚px
˚
qϕS`n px

˚
qdx˚ “ ΓS`n ps

˚
q.

A similar reasoning as above gives, for fixed s, the exponential family of multiparameter

Wishart distributions W̃nps, yq with density function

ω̃ps, y;xqdx “
1

Γ̃S`n psq
e´Trpxyqδspxq∆spyqϕS`n pxqdx. (3.23)

W̃nps, yq is generated by the measure R̃spdxq “
1

Γ̃
S`n
psq
δspxqϕS`n pxqdxwhich has a Laplace

transform given by LR̃spyq “ ∆´spyq.

The Laplace transform of W̃nps, yq is LW̃nps,yq
pθq “

∆´spy`θq

∆´spyq
“

δ´s˚ py
˚`θ˚q

δ´s˚ py
˚q

.

Therefore, Wnps, yq “ W̃nps
˚, y˚q.
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Chapter 4

WISHART EXPONENTIAL
FAMILIES ON CONES RELATED TO
NEAREST NEIGHBOURS
INTERACTIONS GRAPHS

4.1 Introduction

The classical Wishart distribution was first derived by Wishart (1928) as the distribution

of the maximum likelihood estimator of the covariance matrix of the multivariate normal

distribution. Applications in estimation and other practical aspects of Wishart distributions

are intensely studied, cf. Sugiura and Konno (1988); Tsukuma and Konno (2006); Konno

(2007, 2009); Kuriki and Numata (2010).

In the framework of graphical Gaussian models, the distribution of the maximum like-

lihood estimator of πpΣq, where π denotes the canonical projection onto QG, was derived

by Dawid and Lauritzen (1993), who called it the hyper Wishart distribution. Dawid and

Lauritzen (1993) also considered the hyper inverse Wishart distribution which is defined on

QG as the Diaconis-Ylvisaker conjugate prior distribution for πpΣq, and Roverato (2000)

derived the so-called G-Wishart distribution on PG, that is, the distribution of the concen-

tration matrix K “ Σ´1 when πpΣq follows the hyper inverse Wishart distribution. Letac

and Massam (2007) constructed two classes of multi-parameter Wishart distributions on
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the cones QG and PG associated to a decomposable graph G and called them type I and

type II Wishart distributions, respectively. They are more flexible because they have mul-

tiple shape parameters. In fact, the type I and type II Wishart distributions generalize the

hyper Wishart distribution and the G-Wishart distribution respectively.

The Wishart exponential families introduced and studied in this thesis include the type

I and type II Wishart distributions constructed by Letac and Massam (2007) on the cones

QG and PG associated to nearest neighbours interactions graphs. Our methods, which are

new and different from methods of articles cited above, simplify in a significant way the

Wishart theory for graphical models. This chapter makes it clear that using the “cliques-

separators” approach in the theory of Riesz measures and Wishart laws on graphical cones

is not the natural one. Our approach allows the derivation of results which are technically

challenging until now.

The methods introduced in this chapter allow to solve the Letac-Massam Conjecture

on the cones QAn in Chapter 5. Together with the results presented in this chapter we

achieve in this way the complete study of all classical objects of an exponential family for

the Wishart natural exponential families on the cones QAn .

Some of the results of our research may be extended to cones related to all decompos-

able graphs (work in progress). Many of them are however specific for the cones QAn and

PAn (indexation of Riesz and Wishart measures by M “ 1, . . . , n, Letac-Massam Conjec-

ture, Inverse Mean Map, Variance function).

This chapter is orgarnized as follows. Sections 4.2, 4.3 and 4.4 provide the main tools

in order to define and to study the Wishart natural exponential families on the cones QAn

and PAn . In Section 4.2, useful notions of perfect elimination orders ă on An and of

generalized power functions δă
s and ∆ă

s , s P Rn will be introduced on the cones QAn and

PAn respectively. In Theorem 4.2.9, a classical relation between the power functions δă
s

and ∆ă
´s is proved as well as the dependence of δă

s and ∆ă
s on the maximal element M
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of ă only. Thus, in the sequel, only generalized power functions δpMqs and ∆
pMq
s appear.

Next important tool of analysis of Wishart exponential families are recursive construction

of the cones PG and QG and corresponding changes of variables. They are introduced and

studied in Section 4.3, and are immediately applied in Section 4.4 in order to compute

the Laplace transform of generalized power functions δpMqs and ∆
pMq
s (Theorems 4.4.1 and

4.4.2).

In Section 4.5, Wishart natural exponential families on the cones QAn are defined, and

all their classical objects are explicitly determined, beginning with the Riesz generating

measures, Wishart densities, Laplace transform, mean and covariance. In Theorem 4.5.4

and Corollary 4.5.7, an explicit formula for the inverse mean map is proved. It provides

an infinite number of versions of Lauritzen formulas for bijections between the cones QG

and PG. In Section 4.5.3, two explicit formulas are given for the variance function of a

Wishart family. The formula of Theorem 4.5.15 is surprisingly simple and similar to the

case of the symmetric cone S`n .

Section 4.6 is on Wishart natural exponential families on the cones PAn and follows a

similar scheme as Section 4.5, however the inverse mean map and variance function are

not available on the cones PAn . The analysis on these cones is more difficult.

Finally, in Section 4.7, we establish the relations between the Wishart natural expo-

nential families defined and studied in this chapter and the type I and type II Wishart

distributions from Letac and Massam (2007). Our methods give a simple proof of the for-

mulas for Laplace transforms of type I and type II Wishart distributions from Letac and

Massam (2007).

4.2 Preliminaries on An graphs and related cones

In this section, we study properties of nearest neighbours interactions graphs that will be

important in the theory of Riesz measures and Wishart distributions on the cones related
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to these graphs. In particular, we characterize all the eliminating orders of vertices and

we introduce generalized power functions related to such orders. We show that they only

depend on the maximal element M P t1, . . . , nu of the order.

Recall that an undirected graph is a pair G “ pV, Eq, where V is a finite set and E is

a subset of P2pV q, the set of all subsets of E with cardinality two. For convenience, we

introduce a subset E Ă V ˆ V defined by E :“ tpv, v1q : v „ v1u Y tpv, vq : v P V u. The

graph with V “ tv1, v2, . . . , vnu and E “ ttvj, vj`1u : 1 ď j ď n´ 1u is denoted by An

and represented as
1
‚´

2
‚´¨ ¨ ¨´

n
‚. An n-dimensional Gaussian model pXvqvPV is said to be

Markov with respect to a graph G if for any pv, v1q R E, the random variables Xv and Xv1

are conditionally independent given all the other variables. The conditional independence

relations encoded in An graph are of the form: Xvi K Xvj |pXvkqk‰i,j , for all |i ´ j| ą 1.

Thus, An graphs correspond to nearest neighbours interactions models. In what follows,

we often denote the vertex vi by i.

For a graph G, let ZG Ă Sn be the vector space consisting of y P Sn such that yij “ 0

if pi , jq R E. Let IG “ Z˚G be the dual vector space with respect to the scalar product

xy, ηy “ Trpyηq “
ř

pi,jqPE yijηij, y P ZG, η P IG. In the statistical literature, the vector

space IG is commonly realized as the space of nˆ n symmetric matrices η, in which only

the elements ηij , pi, jq P E, are given. We adopt this realisation of IG in this thesis.

If I Ă V , we denote by yI the submatrix of y P ZG obtained by extracting from y the

lines and the columns indexed by I . The same notation is used for η P IG. Let PG be

the cone defined by PG “ ty P ZG : y ą 0u, and QG Ă IG the dual cone of PG, that is,

QG “ tη P IG : @y P PGzt0u, xy, ηy ą 0u. A Gaussian vector model pXvqvPV is Markov

with respect to G if and only if the concentration matrix K “ Σ´1 belongs to PG.

When G “ An, the cone QG is described as QG “ tη P IG : ηti,i`1u ą 0, i “

1, . . . , n ´ 1u. Let π be the projection of Sn onto IG, x ÞÑ η such that ηij “ xij if

pi, jq P E. Then it is known (cf. Letac and Massam (2007); Andersson and Klein (2010))
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that the mapping PG ÝÑ QG, y ÞÝÑ πpy´1q is a bijection.

4.2.1 Perfect elimination Orders

Different orders of vertices v1, v2, . . . , vn should be considered in order to have a harmo-

nious theory of Riesz and Wishart distributions on the cones related to An graphs. The

orders that will be important in this work are called perfect elimination orders of vertices

and will be presented now.

Definition 4.2.1. Consider a graph G “ pV, Eq and a total strict order ă of the vertices

of G. The set of future neighbours of a vertex v is defined as v` “ tw P V : v ă

w and v „ wu. The set of all predecessors of a vertex v P V with respect to ă is defined

as v´ “ tu P V : u ă vu.

Definition 4.2.2. A total strict order ă of the vertices of a graph G is said to be a perfect

elimination order if v` is complete for all v P V .

Example 4.2.3. For the graphA3 : 1´2´3, the orders 1 ă 2 ă 3, 1 ă 3 ă 2, 3 ă 2 ă 1

and 3 ă 1 ă 2 are perfect elimination orders while 2 ă 1 ă 3 and 2 ă 3 ă 1 are not.

Theorem 4.2.4 (Grone et al. (1984); Paulsen et al. (1989); Roverato (2000)).

There exists a perfect vertex elimination order of the vertices of the graph G “ pV,Eq if

and only if G is decomposable.

Also, provided a perfect vertex elimination order of vertices is used, the upper triangu-

lar matrix in the Choleski decomposition of the concentration matrix in a graphical model

has the same pattern of zeros as the concentration matrix.

Next, we present a characterization of the perfect elimination orders in the case of the

graph An. An algorithm that generates all perfect elimination orders for a general graph is

given by (Chandran et al., 2003).
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Proposition 4.2.5. Consider the graph An : 1 ´ 2 ´ 3 ´ ¨ ¨ ¨ ´ n. A total strict order ă

is a perfect elimination order if and only if there exits M P t1, . . . , nu such that ă is an

intertwining of the two sequences 1 ă . . . ă M and n ă . . . ă M .

In particular M is the maximal element, ă is the ordinary order if M “ n and the

reversed one if M “ 1. Finally, there are 2n´1 possible perfect elimination orders on the

graph An.

Proof. Consider a perfect elimination order ă on An. The only vertices of An having only

one neighbour are the two exterior vertices. If a vertex v with two neighbours v ´ 1 and

v ` 1 were minimal for ă, then the set v` would contain these vertices and would not

be complete. Thus, the minimal element of ă is one of the exterior vertices 1 or n of

the graph. Without loss of generality, let us say the order starts with 1. It follows from

Definition 4.2.2 that a perfect elimination order without its minimal element forms again

a perfect elimination order on the graph An´1 obtained from An by suppressing 1 or n.

The element following 1 may be 2 or n. This recursive argument proves that in a perfect

elimination order the sequences 1 ă 2 . . . ă M and n ă n ´ 1 ă . . . ă M must appear

intertwined. We also see that we construct in this way 2n´1 different orders.

Conversely, if an order ă on An is obtained by intertwining of the sequences 1 ă

2 . . . ă M and n ă n ´ 1 ă . . . ă M , it follows that the sets v` of future neighbours of

v are singletons or empty (for v “M ). Thus ă is a perfect elimination order.

Example 4.2.6. Consider n “ 4 and M “ 3. By intertwining of the sequences 1 ă 2 ă 3

and 4 ă 3 we obtain the perfect elimination orders

4 ă 1 ă 2 ă 3; 1 ă 4 ă 2 ă 3; 1 ă 2 ă 4 ă 3.

Similarly, for M “ 1 we get the perfect elimination order 4 ă 3 ă 2 ă 1; for M “ 2 we

get three perfect elimination orders 4 ă 3 ă 1 ă 2, 4 ă 1 ă 3 ă 2, 1 ă 4 ă 3 ă 2, and

for M “ 4 we have the usual order 1 ă 2 ă 3 ă 4.
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Thus there are 8 perfect elimination orders and 16 non-perfect elimination orders of

the four vertices of A4 graph.

4.2.2 Generalized power functions

In this section, we define and study generalized power functions on the cones PG and QG.

First let us introduce some useful notations. For 1 ď i ď j ď n, let ti : ju Ă V be the

set of a P V for which i ď a ď j. Then, for y P ZG and 1 ď i ď n, the matrix yt1:iu is

the upper left submatrix of y of size pi ˆ i, and yti:nu is the lower right submatrix of size

pn ´ i ` 1q ˆ pn ´ i ` 1q. Recall that on the cone S`n , the generalized power functions

are ∆spyq “
śn

i“1 |yt1:iu|
si´si`1 and δspyq “

śn
i“1 |yti:nu|

si´si´1 , with s0 “ sn`1 “ 0.

Definition 4.2.7. For s P Rn, setting det yH “ 1 “ det ηH, we define

∆ă
s pyq :“

ź

vPV

´det y
tvuYv´

det yv´

¯sv
py P PGq, (4.1)

δă
s pηq :“

ź

vPV

´det η
tvuYv`

det ηv`

¯sv
pη P QGq. (4.2)

Note that Definition 4.2.7 applied to the complete graph with the usual order 1 ă . . . ă

n gives ∆s and δs. For any s the following formula δspy´1q “ ∆´spyq holds (Faraut and

Korányi, 1994). In Theorem 4.2.9 we find an analogous formula in the case of the cones

PG and QG.

We will see in Theorem 4.2.9 that on the cones related to the graphs An, different order-

depending power functions ∆ă
s and δă

s defined in Definition 4.2.7 may be expressed in

terms of explicit "M -power functions" ∆
pMq
s and δpMqs that will be defined below. They

depend only on the choice of M P V .

Definition 4.2.8. Let M P V , y P PAn and η P QAn . We define the M -power functions

∆
pMq
s pyq on PAn and δpMqs pxq on QAn by the following formulas:
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∆pMq
s pyq “

˜

M´1
ź

i“1

|yt1:iu|
si´si`1

¸

|y|sM

˜

n
ź

i“M`1

|yti:nu|
si´si´1

¸

, (4.3)

δpMqs pηq “

´

śM´1
i“1 |ηti:i`1u|

si

¯

`
śn

i“M`1 |ηti´1:iu|
si
˘

´

śM´1
i“2 η

si´1

ii

¯

η
sM´1´sM`sM`1

MM

`
śn´1

i“M`1 η
si`1

ii

˘

. (4.4)

Observe that for M P t1, nu there are n ´ 1 factors in the denominator of (4.4), and

for M P t2, . . . n´ 1u there are n´ 2 factors (powers of η22 . . . ηn´1,n´1).

The main result of this section is the following theorem.

Theorem 4.2.9. Consider a graph An with a perfect elimination order ă. Let M be the

maximal element with respect to ă. Then for all y P PAn , we have

δă
s pπpy

´1
qq “ ∆ă

´spyq “ ∆
pMq
´s pyq. (4.5)

The proof of Theorem 4.2.9 is preceded by a series of elementary lemmas.

Lemma 4.2.10. Let y P PAn and i ă j ă j ` 1 ă k ă m. The determinant of the

submatrix yti : juYtk :mu can be factorized as |yti : juYtk :mu| “ |yti : ju||ytk :mu|.

Lemma 4.2.11. Let y P PAn and η “ πpy´1q. Then for all i, i` 1 P V , we have

∣∣ηti,i`1u

∣∣ “ |y|´1
|yV zti,i`1u|.

Proof. We repeatedly use the cofactor formula for an inverse matrix. We use ηii “

|y|´1|yV ztiu| and show that ηi,i`1 “ ´yi,i`1|y|
´1|yV zti,i`1u|. It follows that∣∣ηti,i`1u

∣∣ “ |y|´2|yV zti,i`1u|
“

|yti`1 :nu||yt1 : iu| ´ y
2
i,i`1|yt1 : i´1u||yti`2 :nu|

‰

. The last factor

in brackets equals |y|.

Proof. (of Theorem 4.2.9)
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Part 1: δă
s pπpy

´1qq “ ∆
pMq
´s pyq. From Proposition 4.2.5, we have

i` “

$

’

&

’

%

ti` 1u if i ďM ´ 1,

H if i “M,

ti´ 1u if i ěM ` 1.

Using ηii “ |y|´1|yV ztiu|with η “ πpy´1q and Lemmas 4.2.10 and 4.2.11, we get δă
s pπpy

´1qq “

∆
pMq
´s pyq.

Part 2: ∆ă
s pyq “ ∆

pMq
s pyq. Let us first consider the perfect elimination order ăM given

by

1 ăM 2 ăM . . . ăM M ´ 1 ăM n ăM n´ 1 ăM . . . ăM M ` 1 ăM M. (4.6)

Using ηii “ |y|´1|yV ztiu|, Lemmas 4.2.10 and 4.2.11 again, we get ∆ăM
s pyq “ ∆

pMq
s pyq.

It is easy to see using Proposition 4.2.5 and the factorization from Lemma 4.2.10 that for

any other perfect elimination order ă, the factors of ∆ă
s pyq under the powers si are exactly

the same as for ăM . Indeed, if i ď M ´ 1, let n ´ j be the largest vertex greater than M

such that n´ j ă i. Then, the factor under the power si is

|ytiuYi´ |

|yi´|
“

|yt1:iu||ytn´j:nu|

|yt1:i´1u||ytn´j:nu|
“

|yt1:iu|

|yt1:i´1u|
.

A similar argument shows that this is also true for i “M and for i ąM .

Corollary 4.2.12. Let ă1 and ă2 be two perfect elimination orders on An such that

maxă1 V “ maxă2 V . Then δă1
s pηq “ δă2

s pηq for all η P QAn . If maxă V “ M

then we have δă
s pηq “ δ

pMq
s pηq.

4.3 Recursive construction of the cones PAn
and QAn

and changes of
variables

In this section, we introduce very useful recursive constructions of the cones PAn and QAn

from the cones PAn´1 and QAn´1 . There are two variants of them for An´1 : 2 ´ ¨ ¨ ¨ ´ n
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and An´1 : 1´ ¨ ¨ ¨ ´ pn´ 1q. Corresponding changes of variables for integration on PAn

and QAn are introduced.

Proposition 4.3.1. 1. For n ě 2, let Φn : R`ˆRˆPAn´1 ÝÑ PAn , pa, b, zq ÞÝÑ y with

y “ Apbq

¨

˚

˚

˚

˝

a 0 ¨ ¨ ¨ 0
0
... z
0

˛

‹

‹

‹

‚

tApbq, Apbq “

¨

˚

˚

˚

˝

1
b 1
... . . .
0 . . . 0 1

˛

‹

‹

‹

‚

,

and let Ψn : R` ˆ RˆQAn´1 ÝÑ QAn , pα, β, xq ÞÝÑ η with

η “ π

¨

˚

˚

˚

˝

tApβq

¨

˚

˚

˚

˝

α 0 ¨ ¨ ¨ 0
0
... x
0

˛

‹

‹

‹

‚

Apβq

˛

‹

‹

‹

‚

.

Then the maps Φn and Ψn are bijections.

2. Let Φ̃n : R` ˆ Rˆ PAn´1 ÝÑ PAn , pa, b, zq ÞÝÑ ỹ with

ỹ “ tBpbq

¨

˚

˚

˚

˝

0

z
...
0

0 ¨ ¨ ¨ 0 a

˛

‹

‹

‹

‚

Bpbq, Bpbq “

¨

˚

˚

˚

˝

1
0 1
... . . .
0 . . . b 1

˛

‹

‹

‹

‚

,

and let Ψ̃n : R` ˆ RˆQAn´1 ÝÑ QAn , pα, β, xq ÞÝÑ η̃ with

η̃ “ π

¨

˚

˚

˚

˝

Bpβq

¨

˚

˚

˚

˝

0

x
...
0

0 ¨ ¨ ¨ 0 α

˛

‹

‹

‹

‚

tBpβq

˛

‹

‹

‹

‚

.

Then the maps Φ̃n and Ψ̃n are bijections.
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3. The Jacobians of the changes of variables y “ Φnpa, b, zq and y “ Φ̃npa, b, zq are

given by

JΦnpa, b, zq “ a, JΦ̃n
pa, b, zq “ a. (4.7)

The Jacobians of the changes of variables η “ Ψnpα, β, xq and η “ Ψ̃npα, β, xq are

given by

JΨnpα, β, xq “ x22, JΨ̃n
pα, β, xq “ xn´1,n´1. (4.8)

It should be noted that for Φnpa, b, zq and Ψnpα, β, xq the rows and columns of z

and x are numbered 2, . . . , n while for Φ̃npa, b, zq and Ψ̃npα, β, xq they are numbered

1, . . . , n´ 1.

Proof. 1. Let y1 “

¨

˚

˚

˚

˝

a 0 . . . 0
0
... z
0

˛

‹

‹

‹

‚

and η1 “

¨

˚

˚

˚

˝

α 0 . . . 0
0
... x
0

˛

‹

‹

‹

‚

. Then

yij “

$

’

&

’

%

ab if pi, jq “ p1, 2q or pi, jq “ p2, 1q,
ab2 ` z22 if i “ j “ 2,

y1ij otherwise.
(4.9)

Thus, on the one hand, if pa, b, zq P R`ˆRˆPAn´1 , then y P ZAn . And z ą 0 implies y1 ą

0 as every principal minor of y1 equals a times a principal minor of z. From y “ Ty1 tT

with T “ Apbq, we get y P PAn . On the other hand, if y P PAn , we have a “ y11 ą 0,

b “ y12
y11

, z22 “ y22 ´
y212
y11

and zij “ yij for all i ‰ 2 and j ‰ 2. We use the notation

z “ pzijq2ďi,jďn. Now, let us show that z P PAn´1 . We have y1 “ T´1y tT´1 ą 0. Hence,

we have also z ą 0 since each principal minor of z equals 1{a times a principal minor of

y1. Therefore, the map Φn is indeed a bijection from R` ˆ Rˆ PAn´1 onto PAn .

Let us turn to Ψn. The relation between η and η1 is given by

ηij “

$

’

&

’

%

α ` β2x22 if i “ j “ 1,

βx22 if pi, jq “ p1, 2q or pi, jq “ p2, 1q,
η1ij otherwise.

(4.10)
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First we show that if pα, β, xq P R`ˆRˆQAn´1 , then η P IAn . Actually, since xt2,3u ą 0,

we have α ` β2x22 ą 0 and ηt1,2u “
ˆ

α ` β2x22 βx22

βx22 x22

˙

ą 0, where we recall that the

indices t2, 3u and t1, 2u denote sets. On the other hand, if η P QAn , we have xij “ ηij for

all i, j “ 2, . . . , n. Thus, η P QAn implies x P QAn´1 .

2. Let ỹ1 “

¨

˚

˚

˚

˝

0

z
...
0

0 . . . 0 a

˛

‹

‹

‹

‚

and η̃1 “

¨

˚

˚

˚

˝

0

x
...
0

0 . . . 0 α

˛

‹

‹

‹

‚

. Then we have

ỹij “

$

’

&

’

%

ab if pi, jq “ pn´ 1, nq or pi, jq “ pn, n´ 1q,

ab2 ` zn´1,n´1 if i “ j “ n´ 1,

ỹ1ij otherwise,
(4.11)

and

η̃ij “

$

’

&

’

%

α ` β2xn´1,n´1 if i “ j “ n,

βxn´1,n´1 if pi, jq “ pn´ 1, nq or pi, jq “ pn, n´ 1q,

η̃1ij otherwise.
(4.12)

Similar reasoning as above shows that Φ̃ and Ψ̃ are indeed bijections.

3. From (4.9), we have By11
Ba
“ 1; By11

Bb
“ 0; and for all i, j, By11

Bzij
“ 0;

By12
Ba
“ b; By12

Bb
“ a and for all i, j, By12

Bzij
“ 0 ;

By22
Ba
“ b2; By22

Bb
“ 2ab; By22

Bz22
“ 1 and for all pi, jq ‰ p2, 2q, By22

Bzij
“ 0;

for all i, j ‰ 1, 2, we have Byij
Bzij

“ 1 and Byij
Bzkl

“ 0 if pi, jq ‰ pk, lq.
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The Jacobian of the change of variable y “ Φnpa, b, zq is therefore,

J “

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

By11
Ba

By11
Bb

By11
Bz11

. . . By11
Bznn

By12
Ba

By12
Bb

By12
Bz11

. . . By12
Bznn

By22
Ba

By22
Bb

By22
Bz11

. . . By22
Bznn

...
...

...
...

...

Bynn
Ba

Bynn
Bβ

Bynn
Bz11

. . . Bynn
Bxnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

“

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 . . . . . . 0
b a 0 0 . . . . . . 0
b2 2ab 1 0 . . . . . . 0
0 0 0 1 0 . . . 0
...

... . . . . . . ...
0 0 . . . . . . 0 1 0
0 0 . . . . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
“ a.

The proof of the second part is similar.

Example 4.3.2. In order to obtain the cone PA4 associated to the graph A4 : 1´2´3´4

we can go as follows from the cone PA3 associated to the graph A3 : 2´ 3´ 4 :

Φ4 : R`ˆRˆPA3 ÝÑ PA4 , pa, b, zq ÞÝÑ

¨

˚

˚

˝

1 0 0 0
b 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

¨

˚

˚

˝

a 0 0 0
0 z22 z23 0
0 z23 z33 zz34

0 0 z34 z44

˛

‹

‹

‚

¨

˚

˚

˝

1 0 0 0
b 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

T

.

Hence, PA4 is the set of matrices of the form

¨

˚

˚

˝

a ab 0 0
ab ab2 ` z22 z23 0
0 z23 z33 z34

0 0 z34 z44

˛

‹

‹

‚

with a ą 0, b P R

and z “

¨

˝

z22 z23 0
z23 z33 z34

0 z34 z44

˛

‚P PA3 .

We can also obtain PA4 by going from the cone PA3 associated to the graph 1´ 2´ 3; we

proceed as follows:

Φ̃4 : R`ˆRˆPA3 ÝÑ PA4 , pa, b, zq ÞÝÑ

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 b 1

˛

‹

‹

‚

T ¨

˚

˚

˝

z11 z12 0 0
z12 z22 z23 0
0 z23 z33 0
0 0 0 a

˛

‹

‹

‚

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 b 1

˛

‹

‹

‚

.
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Hence, PA4 is the set of matrices of the form

¨

˚

˚

˝

z11 z12 0 0
z12 z22 z23 0
0 z23 ab2 ` z33 ab
0 0 ab a

˛

‹

‹

‚

with a ą 0, b P R

and z “

¨

˝

z11 z12 0
z12 z22 z23

0 z23 z33

˛

‚P PA3 .

Lemma 4.3.3.

1. Let y “ Φnpa, b, zq and η “ Ψnpα, β, xq.

Then, for all M P t2, . . . , nu, we have

∆pMq
s pyq “ as1∆

pMq
ps2,...,snq

pzq, (4.13)

δpMqs pηq “ αs1δ
pMq
ps2,...,snq

pxq. (4.14)

Let y “ Φ̃npa, b, zq and η “ Ψ̃npα, β, xq. Then, for all M “ 1, . . . , n´ 1,

∆pMq
s pyq “ asn∆

pMq
ps1,...,sn´1q

pzq, (4.15)

δpMqs pηq “ αsnδ
pMq
ps1,...,sn´1q

pxq. (4.16)

2. Let us define ϕAn : QAn Ñ R` by ϕA1pηq “ η´1, and for n ě 2

ϕAnpηq “
n´1
ź

i“1

|ηti,i`1u|
´3{2

ź

i‰1,n

ηii. (4.17)

Let η “ Ψnpα, β, xq and η̃ “ Ψ̃npα, β, xq. Then,

ϕAnpηq “ x
´1{2
22 α´3{2ϕAn´1pxq (4.18)

and

ϕAnpη̃q “ x
´1{2
n´1,n´1α

´3{2ϕAn´1pxq. (4.19)
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3. If y “ Φnpa, b, zq and η “ Ψnpα, β, xq, then

Trpyηq “ aα ` ax22pb` βq
2
` Trpzxq. (4.20)

If y “ Φ̃npa, b, zq and η “ Ψ̃npα, β, xq, then

Trpyηq “ aα ` axn´1,n´1pb` βq
2
` Trpzxq. (4.21)

Proof. 1. For M ě 2, we have

∆
pMq
s pyq

∆
pMq
ps2,...,snq

pzq
“ py11q

s1´s2

«

M´1
ź

i“2

ˆ

|yt1:iu|

|zt2:iu|

˙si´si`1
ff

ˆ

|y|

|z|

˙sM

.

Using Lemma 4.8.1 in the appendix, we have |yt1:iu| “ a|zt2:iu|. Thus,

∆
pMq
s pyq

∆
pMq
ps2,...,snq

pzq
“ as1 .

Noting that a “ ynn, we have for M “ 1, . . . , n´ 1,

∆pMq
s pỹq “ |ỹ|s1

n
ź

i“2

|ỹti:nu|
si´si´1 “ as1 |z|s1

n´1
ź

i“2

`

a |zti:nu|
si´si´1

˘

asn´sn´1

“ asn |z|s1
n´1
ź

i“2

|zti:nu|
si´si´1 “ asn∆

pMq
ps1,...,sn´1q

pzq.

Similarly, we show that δpMqs pηq “ αs1δ
pMq
ps2,...,snq

pxq for M ě 2 and that δpMqs pηq “

αsnδ
pMq
s pxq for all M ď n´ 1.

2. Let η “ Ψpα, β, xq and η̃ “ Ψ̃pα, β, xq. For n “ 2, we have

ϕA2pηq “ |ηt1,2u|
´3{2

“

∣∣∣∣α ` β2x βx
βx x

∣∣∣∣´3{2

“ α´3{2x´3{2

“ x´1{2α´3{2ϕA1pxq.
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For n ą 2, using (4.10), we have

ϕAnpηq “ η22 |ηt1,2u|
´3{2

n´1
ś

i“2

|ηti,i`1u|
´3{2

n´1
ś

i“3

η´1
ii

“ x
´1{2
22 α´3{2ϕAn´1pxq.

The proof of the second part is analogous.

3. We have

Trpyηq “
n
ÿ

i“1

n
ÿ

k“1

yikηki “ y11η11 ` y12η21 ` y21η12 `

n
ÿ

i“2

n
ÿ

k“2

yikηki

“ apα ` β2x22q ` 2abβx22 `

n
ÿ

i“2

n
ÿ

k“2

yikηki.

Now observing from (4.9) and (4.10) that

n
ÿ

i“2

n
ÿ

k“2

yikηki “ y22η22 ` Trpzxq ´ z22η22 “ pab
2
` z22qx22 ` Trpzxq ´ z22η22

we get

Trpyηq “ aα`aβ2x22`2abβx22`ab
2x22`Trpzxq “ aα`ax22pb`βq

2
`Trpzxq.

Formula (4.21) is proved similarly.

Lemma 4.3.4. Consider y P PAn .

1. If y “ Φnpa, b, zq, then ϕpzqjj “ ϕpyqjj for j ě 2.

2. If y “ Φ̃npa, b, zq, then ϕpzqjj “ ϕpyqjj for j ď n´ 1.

Proof. 1. Note that y “ Φnpa, b, zq is expressed in the form T

ˆ

a
z

˙

tT , where

T “ Apbq in Lemma 4.3.3. In general, let A,U, L be n ˆ n matrices with U upper
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triangular and L lower triangular. Then pUALqtj:nu “ Utj:nuAtj:nuLtj:nu. It follows

that py´1qtj:nu “ pp tT q´1qtj:nupz
´1qtj:nupT

´1qtj:nu “ pz´1qtj:nu for j ě 2 since

pT´1qtj:nu “ Itj:nu “ pp
tT q´1qtj:nu. In particular py´1qjj “ pz

´1qjj.

2. Similar to the proof of the first part.

4.4 Laplace transform of generalized power functions on QAn
and PAn

Theorem 4.4.1. For all n ě 1, for all 1 ďM ď n and for all y P PAn , the integral
ş

QAn
e´Trpyηqδ

pMq
s pηqϕAnpηqdη converges if and only if si ą 1

2
for all i ‰M , and sM ą 0.

In this case, we have
ż

QAn

e´TrpyηqδpMqs pηqϕAnpηqdη “ πpn´1q{2
!

ź

i‰M

Γpsi ´
1

2
q

)

ΓpsMq∆
pMq
´s pyq. (4.22)

Proof. We will proceed by induction on the number n of vertices. For n “ 1, we have the

gamma integral that converges if and only if s ą 0, so that

ż 8

0

e´yηδp1qs pηqϕA1pηqdη “

ż 8

0

e´yηηs´1dη “ Γpsqy´s.

Now assume that the assertion holds for a graph with n´ 1 vertices.

Case M ą 1. Let y “ Φnpa, b, zq and let us make the change of variable η “ Ψnpα, β, xq.

The induction hypothesis gives
ż

QAn´1

e´Trpzxqδ
pMq
ps2,...,snq

pxqϕAn´1pxqdx (4.23)

“ πpn´2q{2
!

ź

i‰1,M

Γpsi ´
1

2
q

)

ΓpsMq∆
pMq
´ps2,...,snq

pzq

if and only if si ą 1
2

for all i ‰ M , and sM ą 0. By Lemma 3, the change of variable

η “ Ψnpα, β, xq gives dη “ x22dαdβdx. Thus, we have

ż

QAn

e´TrpyηqδpMqs pηqϕAnpηqdη
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“

ż 8

0

ż 8

´8

ż

QAn´1

e´paα`ax22pb`βq
2`Trpzxqqαs1´3{2δ

pMq
ps2,...,snq

pxqϕAn´1pxqx
1{2
22 dαdβdx,

where we used parts 3 and 1 of Lemma 4.3.3. Now, using the Gaussian integral

ż 8

´8

e´ax22pb`βq
2

dβ “ π1{2a´1{2x
´1{2
22

and the gamma integral

ż 8

0

e´aααs1´3{2dα “ a´s1`1{2Γps1 ´
1

2
q,

that is finite if and only if s1 ą
1
2
, we get

ż

QAn

e´TrpyηqδpMqs pηqϕAnpηqdη

“ π1{2a´s1Γps1 ´
1

2
q

ż

QAn´1

e´Trpzxqδ
pMq
ps2,...,snq

pxqϕAn´1pxqdx.

(4.24)

Finally, using Formulas (4.23) and (4.13) completes the proof in the case M ą 1.

Case M “ 1.

Let y “ Φ̃npa, b, zq and let us make the change of variable η “ Ψ̃npα, β, xq. The induction

hypothesis gives

ż

QAn´1

e´Trpzxqδ
p1q
ps1,...,sn´1q

pxqϕAn´1pxqdx “ πpn´2q{2
!

ź

i‰n,1

Γpsi´
1

2
q

)

Γps1q∆
p1q
´ps1,...,sn´1q

pzq,

(4.25)

if and only if si ą 1
2
, for all i ‰M and sM ą 0.

By Lemma 3, the change of variable η “ Ψ̃npα, β, xq gives dη “ xn´1,n´1dαdβdx. Thus,

we have

ş

QAn
e´Trpyηqδ

p1q
s pηqϕAnpηqdη “

ş8

0

ş8

´8

ş

QAn´1
gpa, β, xqdαdβdx,
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where

gpa, β, xq “ e´paα`axn´1,n´1pb`βq2`Trpzxqqαsn´3{2δ
p1q
ps1,...,sn´1q

pxqϕAn´1pxqx
1{2
n´1,n´1

and where we used Lemmas 3 and part 1 of Lemma 4.3.3.

Now, using the Gaussian integral

ż 8

´8

e´axn´1,n´1pb`βq2dβ “ π1{2a´1{2x
´1{2
n´1,n´1

and the gamma integral

ż 8

0

e´aααsn´3{2dα “ a´sn`1{2Γpsn ´
1

2
q,

that converges if and only if sn ą 1
2
, we get

ż

QAn

e´Trpyηqδp1qs pηqϕAnpηqdη

“ π1{2a´snΓpsn ´
1

2
q

ż

QAn´1

e´Trpzxqδ
p1q
ps1,...,sn´1q

pxqϕAn´1pxqdx.

(4.26)

Finally, using Formulae (4.25) and (4.15) completes the proof.

Theorem 4.4.2. For all n ě 1, for all 1 ďM ď n and for all η P QAn , the integral
ş

PAn
e´Trpyηq∆

pMq
s pyqdy converges if and only if si ą ´3

2
for all i ‰M , and sM ą ´1. In

this case, we have

ż

PAn

e´Trpyηq∆pMq
s pyqdy “ πpn´1q{2

!

ź

i‰M

Γpsi `
3

2
q

)

ΓpsM ` 1qδ
pMq
´s pηqϕAnpηq. (4.27)

Proof. We will proceed by induction on the number n of vertices.
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• For n “ 1,

ż 8

0

e´yη∆p1q
s pyqdy “

ż 8

0

e´yηysdy “ Γps` 1qη´sϕA1pηq,

if and only if s ą ´1.

• Now assume that the assertion holds for some number of vertices n´ 1.

Case M ą 1:

Let η “ Ψnpα, β, xq and let us make the change of variable y “ Φnpa, b, zq ; then

the induction hypothesis gives
ż

PAn´1

e´Trpzxq∆
pMq
ps2,...,snq

pzqdz (4.28)

“ πpn´2q{2
!

ź

i‰1,M

Γpsi `
3

2
q

)

ΓpsM ` 1qδ
pMq
´ps2,...,snq

pxqϕAn´1pxq.

By Lemma 3, the change of variable y “ Φnpa, b, zq gives dy “ adadbdz. Thus, we

have
ż

PAn

e´Trpyηq∆pMq
s pyqdy

“

ż 8

0

ż 8

´8

ż

PAn´1

e´paα`ax22pb`βq
2`Trpzxqqas1∆

pMq
ps2,...,snq

pzq a da db dz

“

ż 8

0

ż 8

´8

ż

PAn´1

e´paα`ax22pb`βq
2`Trpzxqqas1`1∆

pMq
ps2,...,snq

pzq a da db dz,

where we used Lemma 3 and part 1 of Lemma 4.3.3, for the first equality.

Now, using the Gaussian integral

ż 8

´8

e´ax22pb`βq
2

db “ π1{2a´1{2x
´1{2
22

and the gamma integral

ż 8

0

e´aαas1`1{2da “ α´ps1`3{2qΓps1 `
3

2
q,

44



if and only if s1 ą ´
3
2
, we get

ż

PAn

e´Trpyηq∆pMq
s pyqdy “ π1{2Γps1`

3

2
qx
´1{2
22 α´ps1`3{2q

ż

PAn´1

e´Trpzxq∆
pMq
ps2,...,snq

pzqdz.

Finally, using (4.28), (4.14) and (4.18) completes the proof.

Case M “ 1:

Let η “ Ψ̃npα, β, xq and let us make the change of variable y “ Φ̃npa, b, zq ; then

the induction hypothesis gives
ż

PAn´1

e´Trpzxq∆
p1q
ps1,...,sn´1q

pzqdz (4.29)

“ πpn´2q{2
!

ź

i‰n,1

Γpsi `
3

2
q

)

Γps1 ` 1qδ
p1q
´ps1,...,sn´1q

pxqϕAn´1pxq.

By Lemma 3, the change of variable y “ Φ̃npa, b, zq gives dy “ adadbdz. Thus, we

have

ż

PAn

e´Trpyηq∆p1q
s pyqdy

“

ż 8

0

ż 8

´8

ż

PAn´1

e´paα`axn´1,n´1pb`βq2`Trpzxqqasn∆
p1q
ps1,...,sn´1q

pzq a da db dz

“

ż 8

0

ż 8

´8

ż

PAn´1

e´paα`axn´1,n´1pb`βq2`Trpzxqqasn`1∆
pMq
ps1,...,sn´1q

pzq a da db dz,

where we used Lemma 3 and part 1 of Lemma 4.3.3, for the first equality.

Now, using the Gaussian integral

ż 8

´8

e´axn´1,n´1pb`βq2db “ π1{2a´1{2x
´1{2
n´1,n´1

and the gamma integral

ż 8

0

e´aαasn`1{2da “ α´psn`3{2qΓpsn `
3

2
q,
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if and only if sn ą ´3
2
, we get

ż

PAn

e´Trpyηq∆p1q
s pyqdy

“ π1{2Γpsn `
3

2
qx
´1{2
n´1,n´1α

´psn`3{2q

ż

PAn´1

e´Trpzxq∆
p1q
ps1,...,sn´1q

pzqdz.

Finally, using (4.28), (4.16) and (4.19) completes the proof.

For n ą 1 and the order ăM , we first make M ´ 1 times use of case M ą 1 (with Φ and

Ψ) and next we make n´M times use of case M “ 1 (with Φ̃ and Ψ̃).

Corollary 4.4.3. ϕQAn “ const . ϕAn .

Proof. The result,
`

4
π2

˘
n´1
2
ş

PAn
e´Trpyηqdy “ ϕAnpηq, is obtained by substituting s “

p0, . . . , 0q into Theorem 4.4.2.

Remark 4.4.4. Formulas (4.22) and (4.27) may seem similar but in (4.27) the integrand

does not contain the characteristic function of the cone PAn . This function is unknown

except for A4 when it is not a power function (Letac and Massam, 2007, Prop.3.2).

4.5 Wishart exponential families on QAn

Let us define the Riesz measure RpMqs on QG by

RpMqs pdxq “
1

Γ
pMq
QAn

psq
δpMqs pxqϕAnpxq1QAn pxqdx, (4.30)

where Γ
pMq
QAn

psq “ πpn´1q{2

ˆ

ś

i‰M

Γpsi ´
1
2
q

˙

ΓpsMq. From Theorem 4.4.1, the Laplace

transform of the measure RpMqs is given for all si ą 1
2
, i ‰M and sM ą 0 by

LpRpMqs qpyq “

ż

QAn

e´TrpyηqdRpMqs pdηq “ ∆
pMq
´s pyq, y P PAn . (4.31)
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The Wishart natural exponential family γpMqs,y on QAn is, by definition, generated by the

Riesz measure dRpMqs . The density function of the Wishart distribution on QAn is given by

γpMqs,y pdxq “
1

Γ
pMq
QAn

psq
e´Trpyxq∆pMq

s pyqδpMqs pxqϕAnpxq1QAn pxqdx. (4.32)

The Laplace transform of γpMqs,y pdxq is

LpγpMqs,y qpzq “
LpRpMqs qpz ` yq

LpRpMqs qpyq
“

∆
pMq
´s pz ` yq

∆
pMq
´s pyq

.

The family γpMqs,y does not depend on the normalization of the Riesz measure.

4.5.1 Mean and covariance of the Wishart distributions on QAn

In this subsection we derive a formula for the mean of the Wishart exponential family on

the cones QAn . It is known from the general theory of exponential families of distribu-

tions, that the mean of γpMqs,y is obtained by differentiation with respect to y of the Laplace

transform of the Riesz measure:

mpMq
s pyq “ ´∇y ln ∆

pMq
´s pyq P QAn . (4.33)

For all matrix A in ZG and a subset B Ă V of the set of vertices V of An we note

pABq
0 the matrix in ZAn such that pABq0ij “

#

Aij if i, j P B,

0 otherwise.

Proposition 4.5.1. The mean function of the Wishart family γpMqs,y on QAn is equal to

mpMq
s pyq “ π

˜

M´1
ÿ

i“1

psi ´ si`1qrpyt1:iuq
´1
s
0
` sMy

´1
`

n
ÿ

i“M`1

psi ´ si´1qrpyti:nuq
´1
s
0

¸

.

(4.34)

Proof. Use formulas (4.3), (4.33) and ∇y ln |yA| “ ppyAq
´1q

0.
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Proposition 4.5.2. For all y P PAn , we have

xmpMq
s pyq, yy “ κpsq,

where the constant κpsq is
řn
i“1 si ´ pn´MqsM .

Proof. Observe that by (4.3), for any c ą 0, ∆
pMq
´s pcyq “ c´κpsq∆

pMq
´s pyq.

Let F : PAn Ñ R, y ÞÑ ln ∆
pMq
´s pyq and hy : RÑ PAn , t ÞÑ ety.

We have ∇yF “ ´m
pMq
s pyq and ∇thy “ ety.

Set ϕy “ F ˝ hy. We have ϕyptq “ ´tκpsq ` F pyq and ∇t ϕy “ ´κpsq.

On the other hand, the chain rule gives∇t ϕy “ x∇hyptqF,∇thyy “ x´m
pMq
s petyq, etyy.

Thus, x´mpMq
s petyq, etyy “ ´κpsq. Taking t “ 0 gives the desired result.

Differentiating the mean function gives the covariance function. ForA P Sn, let PpAq :

ZAn Ñ IG be the quadratic operator defined by PpAqu “ πpAuAq, u P ZG.

Proposition 4.5.3. The covariance function of the Wishart family γpMqs,y on QAn is equal

vpyq “ ´∇ym
pMq
s pyq “

M´1
ÿ

i“1

psi ´ si`1qP
”

`

pyt1:iuq
´1
˘0
ı

` sM Ppy´1
q (4.35)

`

n
ÿ

i“M`1

psi ´ si´1qP
”

`

pyti:nuq
´1
˘0
ı

.

4.5.2 Inverse mean map

In the study of the exponential family pγpMqs,y qyPPAn , it is important to determine explicitly

the inverse of the mean map ψpMqs : m “ m
pMq
s pyq ÞÑ y, which we refer to as the inverse

mean map in the sequel. The following theorem is known for Wishart exponential families

on homogeneous cones (Ishi, 2014). Surprisingly, it is also true on QAn .
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Theorem 4.5.4. The inverse mean map ψpMqs is given by the formula

ψpMqs pmq “ ∇m ln δpMqs pmq, m P QAn . (4.36)

The proof consists in following steps:

1. One shows that there exists a constant cs depending only on s such that for any y P PAn

δpMqs pmpMq
s pyqq “ cs∆

pMq
´s pyq “csδ

pMq
s pπpy´1

qq.

This is done in Proposition 4.5.5 below.

2. One uses a differential calculus argument, based on the Legendre transform methods.

Proposition 4.5.5. The following formula holds for any y P PAn and s P Rn:

δpMqs pmpMq
s pyqq “

˜

n
ź

i“1

ssii

¸

∆
pMq
´s pyq “

˜

n
ź

i“1

ssii

¸

δpMqs pπpy´1
qq.

The proof of Proposition 4.5.5 will need a generalization of Lemma 4.2.11, where co-

efficients of inverse matrices of principal submatrices yt1:ku (or of ytk:nu) are simultanously

considered. Define for y P PAn , ηpkq “ pyt1:kuq
´1, ηrks “ pytk:nuq

´1. The rows and the

columns of the matrix ηpkq are numbered by i “ 1, . . . , k and the rows and the columns of

the matrix ηrks are numbered by i “ k, . . . , n.

Lemma 4.5.6. Let y P PAn .

1. For all i P V and k, j ě i` 1 we have

Dk,j
i :“

∣∣∣∣∣ ηpkqii η
pjq
i,i`1

η
pkq
i,i`1 η

pjq
i`1,i`1

∣∣∣∣∣ “ |yt1:ju|
´1
|yt1:juzti,i`1u|. (4.37)

2. For all i P V and k, j ď i ă n we have

D
rk,js
i :“

∣∣∣∣∣ ηrksii η
rjs
i,i`1

η
rks
i,i`1 η

rjs
i`1,i`1

∣∣∣∣∣ “ |ytk:nu|
´1
|ytk:nuzti,i`1u|. (4.38)
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Proof. Similar to the proof of Lemma 4.2.11; instead of y use yt1:ku or ytk:nu.

Proof. (of Proposition 4.5.5) We will deal with δpMqs pm
pMq
s pyqq “ δăM

s pm
pMq
s pyqq where

the order ăM was defined in (4.6). By formula (4.34) and by the definition of δăM
s we

obtain that δăM
s pmspyqq equals

M´1
ź

i“1

ˆ

1

ci

∣∣∣∣xi ` ai bi
bi ci

∣∣∣∣˙si

psMη
pnq
MMq

sM

n
ź

i“M`1

ˆ

1

c1i

∣∣∣∣x1i ` a1i b1i
b1i c1i

∣∣∣∣˙si

,

where xi “ psi ´ si`1qη
piq
ii , ai “

řM´1
k“i`1psk ´ sk`1qη

pkq
ii ` sMη

pnq
ii ,

bi “
M´1
ÿ

k“i`1

psk ´ sk`1qη
pkq
i,i`1 ` sMη

pnq
i,i`1,

ci “
M´1
ÿ

k“i`1

psk ´ sk`1qη
pkq
i`1,i`1 ` sMη

pnq
i`1,i`1,

a1i “
i´1
ÿ

k“M`1

psk ´ sk´1qη
rks
ii ` sMη

r1s
ii ,

b1i “
i´1
ÿ

k“M`1

psk ´ sk´1qη
rks
i,i´1 ` sMη

r1s
i,i´1,

c1i “
i´1
ÿ

k“M`1

psk ´ sk´1qη
rks
i´1,i´1 ` sMη

r1s
i´1,i´1,

and x1i “ psi ´ si´1qη
ris
ii .

Let us first compute the factors
∣∣∣∣xi ` ai bi

bi ci

∣∣∣∣ {ci for i P t1, . . . ,M ´ 1u. We will show that

1

ci

∣∣∣∣xi ` ai bi
bi ci

∣∣∣∣ “ siη
piq
ii , i P t1, . . . ,M ´ 1u. (4.39)

We have
1

ci

∣∣∣∣xi ` ai bi
bi ci

∣∣∣∣ “ xi `
1

ci

∣∣∣∣ai bi
bi ci

∣∣∣∣ , so in order to prove (4.39), it is sufficient to
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prove that

1

ci

∣∣∣∣ai bi
bi ci

∣∣∣∣ “ si`1η
piq
ii . (4.40)

In order to prove (4.40), we first use the multilinearity of the determinant with respect to

its columns and we write, using the notation Dk,j
i from Lemma 4.5.6,∣∣∣∣ai bi

bi ci

∣∣∣∣ “

M´1
ÿ

k,j“i`1

psk ´ sk`1qpsj ´ sj`1qD
k,j
i ` sM

M´1
ÿ

k“i`1

psk ´ sk`1qD
k,n
i

` sM

M´1
ÿ

j“i`1

psj ´ sj`1qD
n,j
i ` s2

MD
n,n
i .

By Part 1 of Lemma 4.5.6 we haveDk,j
i “ |yt1:ju|

´1|yt1:juzti,i`1u|, which is independent

of the left index k. The last fact allows to write∣∣∣∣ai bi
bi ci

∣∣∣∣ “ si`1

M´1
ÿ

j“i`1

psj ´ sj`1qD
n,j
i ` si`1sMD

n,n
i

“ si`1

˜

M´1
ÿ

j“i`1

psj ´ sj`1q
|yt1:juzti,i`1u|

|yt1:ju|
` sM

|yt1:nuzti,i`1u|

|y|

¸

.

We factorize the determinants |yt1:juzti,i`1u| and |yt1:nuzti,i`1u| in the last sum according to

Lemma 4.2.10 and we write this sum as

|yt1:i´1u|

|yt1:iu|

˜

M´1
ÿ

j“i`1

psj ´ sj`1q
|yt1:iu||yti`2:ju|

|yt1:ju|
` sM

|yt1:iu||yti`2:nu|

|y|

¸

.

We have |yt1:ju|
´1|yt1:iu||yti`2:ju| “ η

pjq
i`1,i`1. By definition of ci we finally obtain∣∣∣∣ai bi

bi ci

∣∣∣∣ “ si`1

|yt1:i´1u|

|yt1:iu|
ci “ si`1η

piq
ii ci

and formulas (4.40) and (4.39) are proved.

A ‘mirror’ proof based on Part 2 of Lemma 4.5.6 shows that

1

c1i

∣∣∣∣x1i ` a1i b1i
b1i c1i

∣∣∣∣ “ siη
ris
ii , i “M ` 1, . . . , n (4.41)
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and that δpMqs pm
pMq
s pyqq “

śn
i“1 s

si
i

śM´1
i“1 pη

piq
ii q

sipη
pnq
MMq

sM
śn

i“M`1pη
ris
ii q

si .

Recall that

η
piq
ii “

|yt1:i´1u|

|yt1:iu|
, η

ris
ii “

|yti`1:nu|

|yti:nu|
, η

pnq
MM “

|yt1:M´1u||ytM`1:nu|

|y|
,

so we deduce, using formula (4.3) that

M´1
ź

i“1

pη
piq
ii q

sipη
pnq
MMq

sM

n
ź

i“M`1

pη
ris
ii q

si “ ∆
pMq
´s pyq.

Applying Theorem 4.2.9, we see that δpMqs pm
pMq
s pyqq “

śn
i“1 s

si
i δ

pMq
s pπpy´1qq.

Proof. (of Theorem 4.5.4).

Let m0 P QAn and y0 “ Ψ
pMq
s py0q. Then, by formula (4.33), we have

m0 “ mpMq
s py0q “ ´∇y ln ∆

pMq
´s py0q “ ∇yfpy0q,

where fpyq “ ´ ln ∆
pMq
´s pyq.

Let f˚ be the Legendre-Fenchel conjugate of f : QAn Ñ R:

f˚pmq “ sup
yPPG

txm, yy ´ fpyqu “ sup
yPPG

gmpyq with gmpyq “ xm, yy ´ fpyq.

We have ∇ygmpyq “ m´∇yfpyq and the Hessian of gm is given by

Hpgmqpyq “ ´Hpfqpyq. Since f is convex, gm0 has a unique maximum y˚ which satisfies

∇y gm0py
˚q “ 0 and thus m0 “ ∇yfpy

˚q. Hence, y˚ “ y0, f˚pm0q “ gm0py0q “

xm0, y0y ´ fpy0q and ∇m0f
˚pm0q “ y0. Now using Proposition 4.5.2, we get

y0 “ ∇m0 pxm0, y0y ´ fpy0qq “ ∇m0 pκs ´ fpy0qq “ ´∇m0fpy0q “ ∇m0 ln ∆
pMq
´s py0q.

Finally, Proposition 4.5.5 gives

y0 “ ∇m0 ln c´1
s δpMqs pm0q “ ∇m0 ln δpMqs pm0q.
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Corollary 4.5.7. The inverse mean map ψpMqs : QAn Ñ PAn is given by

ψpMqs pmq “
M´1
ÿ

k“1

sk
`

pmtk:k`1uq
´1
˘0
`

n
ÿ

k“M`1

sk
`

pmtk´1:kuq
´1
˘0

´

M´1
ÿ

k“2

sk´1

`

pmtkkuq
´1
˘0
´ psM´1 ´ sM ` sM`1q

`

pmtMMuq
´1
˘0

´

n´1
ÿ

k“M`1

sk`1

`

pmtkkuq
´1
˘0
. (4.42)

Proof. The result is obtained by computing the gradient of ln δ
pMq
s pmq, as indicated in

(4.36). We use the formula (4.4).

The Lauritzen formula (Lauritzen, 1996) is an explicit formula for a bijection between

QG and PG. It states that for all x P QAn , the unique y P PAn such that πpy´1q “ x is

given by

y “
n´1
ÿ

i“1

px´1
ti:i`1uq

0
´

n´1
ÿ

i“2

px´1
ii q

0. (4.43)

Setting s1 “ . . . “ sn “ 1 in formula (4.34) for the mean function, we get

m
pMq
p1,...,1qpyq “ πpy´1

q “ x. (4.44)

Thus,

ψ
pMq
p1,...,1q pxq “ y (4.45)

is the Lauritzen formula. Indeed, for s1 “ . . . “ sn “ 1, formula (4.42) gives

ψ
pMq
p1,...,1qpmq “

n´1
ÿ

i“1

pm´1
ti:i`1uq

0
´

n´1
ÿ

i“2

pm´1
ii q

0. (4.46)

Thus we found a new proof of the Lauritzen formula, based on the observation that the

Lauritzen map is the inverse mean map for s “ 1 “ p1, 1, . . . , 1q. At the same time we
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find an infinite number of explicit isomorphisms from QAn onto PAn , given by the inverse

mean maps ψpMqs . It is an essential generalization of the Lauritzen formula. Each map

ψ
pMq
s is a generalized Lauritzen map.

Remark 4.5.8. We note that if X̄ is the mean of a sample from γ
pMq
s,y , then the maximum

likelihood estimator of y is ψpMqs pX̄q.

4.5.3 Variance function

Properties of lower-upper M -triangular matrices

Here, we define and prove basic properties of lower-upper M -triangular matrices, that we

will denote by LU(M). They are very important in proofs of this section.

Definition 4.5.9. A matrix T is said to be an LU(M) triangular matrix if for all i ă M ,

Tij “ 0 if j ą i and for all i ąM , Tij “ 0 if i ą j.

In particular, T is an LU(n) triangular matrix if and only if it is lower triangular, and

T is an LU(1) triangular matrix if and only if it is upper triangular. An LU(M) triangu-

lar matrix T is a succession of an M ˆ M lower triangular matrix L “ Tt1:Mu and an

pN ´Mq ˆ pN ´Mq upper triangular matrix U “ TtM :nu with diagonal term TMM in

common. We write T “ spL,Uq.

T “ TMM
L

U

T can be decomposed in blocks as

T “

ˆ

T1:M,1:M T1:M,M`1:n

0 TM`1:n,M`1:n

˙

orT “
ˆ

T1:M´1,1:M´1 0
TM :n,1:M´1 TM :n,M :n

˙

, (4.47)
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where T1:M,1:M is a lower triangular matrix, TM`1:n,M`1:n is an upper triangular matrix,

TM :n,1:M´1 is a matrix with all rows but the last one having zero elements, T1:M´1,1:M´1

is a lower triangular matrix, TM :n,M :n is an upper triangular matrix and TM :n,1:M´1 is a

matrix with all rows but the first one having zero elements.

Proposition 4.5.10. 1. spL,UqspL1, U 1q “ spLL1, UU 1q.

2. If spL,Uq is invertible, then pspL,Uqq´1 is also an LU(M) triangular matrix and

pspL,Uqq´1
“ spL´1, U´1q.

3. The set of LUpMq triangular matrices is a group.

Proof. Part 1 is proved by block matrix multiplication. Part 2 is straightforward

using Part 1. Part 3 follows from Parts 1 and 2.

Lemma 4.5.11. Let S and T be LU(M) triangular nˆ n matrices.

1. (a) Let A “ K0 with K “ At1:ku. If k ďM ´ 1, then tSAT “
`

tSt1:kuKTt1:ku

˘0.

(b) LetB “ K0 withK “ Btk:nu. If k ěM`1, then tSBT “
`

tStk:nuKTtk:nu

˘0
.

2. Let A be an n ˆ n matrix. Then pTA tSqt1:iu “ Tt1:iuAt1:iu
tSt1:iu for i ď M ´ 1,

and pTA tSqti:nu “ Tti:nuAti:nu
tSti:nu for i ěM ` 1.

3. If T is invertible, then

(a) pTt1:kuq
´1 “ pT´1qt1:ku for all k ďM ´ 1;

(b) pTtk:nuq
´1 “ pT´1qtk:nu for all k ěM ` 1.

Proof. Part 1 is straightforward using block matrix multiplication and Part 1 of Lemma

4.8.1 in Appendix; for Part 2, just imagine which lines and columns intervene in the com-

putation; Part 3 follows from Part 2 of Proposition 4.5.10 and Part 3 of Lemma 4.8.1.
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Proposition 4.5.12. For all y P PAn , for all 1 ďM ď n, there exists an LU(M) triangular

matrix T satisfying Tij “ 0 if i  j and such that y “ T tT .

Proof. We will proceed by induction on n. The statement is obviously true for n “ 1. Let

us assume that the statement is true for n ´ 1. Let y P PAn and M ‰ 1. Let us write

y “ Φnpa, b, zq with z P PAn´1 . The induction assumption implies that there exists V

an pn ´ 1q ˆ pn ´ 1q LU(M) triangular matrix such that Vij “ 0 if i  j and such that

z “ V tV . Let us write

T “

¨

˚

˚

˚

˝

1
b 1
... . . .
0 . . . 0 1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

?
a 0 . . . 0

0
... V
0

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

?
a 0 . . . 0

?
ab
... V
0

˛

‹

‹

‹

‚

.

T is LU(M) triangular satisfying Tij “ 0 if i  j and y “ T tT .

For M “ 1, we use y “ Φ̃npa, b, zq with z P PAn´1 .

Two formulas for the variance function

Let m P QAn . Let m̂ P S`n be the unique symmetric positive definite matrix verifying

πpm̂q “ m and m̂´1 P PAn . We note the following interpretation of m̂: if m is the mean of

a sample from the Wishart model γpMq
p1,...,1q,y, then m̂ is the maximum likelihood estimator

of y´1.

Define y “ ψ
pMq
s pmq P PAn . Decompose y “ T tT , with T an LU(M) triangular

matrix such that Tij “ 0 when i  j.

Lemma 4.5.13. We have

m̂ “
tT´1

¨

˚

˝

s1 . . . 0
. . .

0 . . . sn

˛

‹

‚

T´1. (4.48)
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Proof. Note that y “ ψ
pMq
s pmq is equivalent to m “ m

pMq
s pyq. The formula of the mean

function (4.34) gives m “ πpZq, where

Z “
M´1
ÿ

i“1

psi ´ si`1qrpyt1:iuq
´1
s
0
` sMy

´1
`

n
ÿ

i“M`1

psi ´ si´1qrpyti:nuq
´1
s
0. (4.49)

Using Part 2 of Lemma 4.5.11, we have yt1:iu “ Tt1:iuIt1:iu
tTt1:iu for i ď M ´ 1. By Part

3 of Lemma 4.5.11, we get pyt1:iuq
´1 “ tpT´1qt1:iuIt1:iupT

´1qt1:iu. Finally, using Part 1 of

Lemma 4.5.11, we obtain

rpyt1:iuq
´1
s
0
“

tT´1
pIt1:iuq

0T´1, i ďM ´ 1. (4.50)

Similarly, we have

rpyti:nuq
´1
s
0
“

tT´1
pIti:nuq

0T´1, i ěM ` 1. (4.51)

Thus,

Z “ tT´1

˜

M´1
ÿ

i“1

psi ´ si`1qpIt1:iuq
0
` sMI `

n
ÿ

i“M`1

psi ´ si´1qpIti:nuq
0

¸

T´1

“
tT´1

¨

˚

˝

s1 . . . 0
. . .

0 . . . sn

˛

‹

‚

T´1.

Therefore, Z is positive definite and Z´1 “ T

¨

˚

˝

s´1
1 . . . 0

. . .
0 . . . s´1

n

˛

‹

‚

tT P PAn . Indeed, for

all i ă i ` 1 ă j, we have pZ´1qij “
řn
k“1 TikTjks

´1
k . Since Tik “ 0 for |k ´ i| ą 1,

pZ´1qij “ Ti,i´1Tj,i´1s
´1
i´1 ` TiiTjis

´1
i ` Ti,i`1Tj,i`1s

´1
i`1. But since |j ´ i| ą 1, we have

Tj,i´1 “ 0 “ Tji and pZ´1qij “ Ti,i`1Tj,i`1s
´1
i`1. Now since T is LU(M), we have

Ti,i`1Tj,i`1 “ 0. In fact, Ti,i`1 “ 0 for i ď M ´ 1 and Tj,i`1 “ 0 for i ě M . In

conclusion, we have shown that m “ πpZq with Z´1 P PAn , which implies Z “ m̂.
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The following Proposition derives the formula for the variance function V pmq which,

for each fixed m P QAn is a continuous operator V pmq : ZAn Ñ IAn (Casalis and Letac,

1996). Recall that PpAq : ZAn Ñ IAn is the quadratic operator defined by PpAqu “

πpAuAq. For A,B P Sn, let PpA,Bqu “ 1
2
πpAuB `BuAq. For all m P QAn and I Ă V ,

we note

MI “ rppm̂
´1
qIq

´1
s
0. (4.52)

Proposition 4.5.14. The variance function V pMqpmq of a Wishart exponential family on

QAn is equal to

V pMqpmq “
M´1
ÿ

i“1

psi ´ si`1qP

˜

i´1
ÿ

j“1

ˆ

1

sj
´

1

sj`1

˙

Mt1:ju `
1

si
Mt1:iu

¸

` sM P

˜

m̂

sM
`

M´1
ÿ

j“1

ˆ

1

sj
´

1

sj`1

˙

Mt1:ju `

n
ÿ

k“M`1

ˆ

1

sk
´

1

sk´1

˙

Mtk:nu

¸

`

n
ÿ

i“M`1

psi ´ si´1qP

˜

1

si
Mti:nu `

n
ÿ

j“i`1

ˆ

1

sj
´

1

sj´1

˙

Mtj:nu

¸

. (4.53)

Proof. The variance function is given for all m P QAn by V pMqpmq “ vpψ
pMq
s pmqq, where

vpyq is given by (4.35). Let y “ ψ
pMq
s pmq “ T tT , where T is LU(M). From Lemma

4.5.13, we have

m̂´1
“ T

¨

˚

˝

s´1
1 . . . 0

. . .
0 . . . s´1

n

˛

‹

‚

tT.

Using Lemma 4.5.11, we get

Mt1:iu “
tT´1

pdiagps1, . . . , siqq
0 T´1, i ďM ´ 1 (4.54)

and

Mti:nu “
tT´1

pdiagpsi, . . . , snqq
0 T´1, i ěM ` 1. (4.55)
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Thus, for all 2 ď i ďM ´ 1, we have

1

s1

M1 “
tT´1e1T

´1,
1

si
pMt1:iu ´M1:i´1q “

tT´1eiT
´1, (4.56)

and for all n´ 1 ě i ěM ` 1, we have

1

sn
Mn “

tT´1enT
´1,

1

si
pMti:nu ´Mi`1:nq “

tT´1eiT
´1, (4.57)

where ei is the matrix with eii “ 1 and eij “ 0 for all i ‰ j. Observing that pIt1:iuq
0 “

ři
k“1 ei and pIti:nuq0 “

řn
k“i ei, and using (4.50) and (4.56), we obtain for i ďM ´ 1

rpyt1:iuq
´1
s
0
“

tT´1
pIt1:iuq

0T´1
“

tT´1

˜

i
ÿ

k“1

ei

¸

T´1
“

i
ÿ

k“1

`

tT´1eiT
´1
˘

“
1

s1

Mt1u `
1

s2

pMt1:2u ´Mt1uq ` . . .`
1

si
pMt1:iu ´Mt1:i´1uq

“

ˆ

1

s1

´
1

s2

˙

Mt1u ` . . .`

ˆ

1

si´1

´
1

si

˙

Mt1:i´1u `
1

si
Mt1:iu.

Similarly, using (4.51) and (4.57), we obtain for i ěM ` 1,

rpyti:nuq
´1
s
0
“

1

si
Mti:nu `

ˆ

1

si`1

´
1

si

˙

Mti`1:nu ` . . .`

ˆ

1

sn
´

1

sn´1

˙

Mtnu.

We also observe that

tT´1eMT
´1
“

1

sM

`

m̂´Mt1:M´1u ´MtM`1:nu

˘

. (4.58)

Thus, by (4.56), (4.57) and (4.58), we get

y´1
“

n
ÿ

i“1

tT´1eiT
´1
“

M´1
ÿ

i“1

tT´1eiT
´1
`

tT´1eMT
´1
`

n
ÿ

i“M`1

tT´1eiT
´1

“
m̂

sM
`

M´1
ÿ

j“1

ˆ

1

sj
´

1

sj`1

˙

Mt1:ju `

n
ÿ

j“M`1

ˆ

1

sj
´

1

sj´1

˙

Mtj:nu. (4.59)

Substituting these expressions of rpyt1:iuq
´1s0, y´1 and rpyti:nuq´1s0 into vpyq given by

(4.35), we obtain the stated result.
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We prove now a much simpler formula for the variance function on QG, surprisingly

similar to the variance function on a homogeneous cone, in particular on the symmetric

cone S`n (cf. Graczyk et al. (2016a)).

Theorem 4.5.15. The variance function of the Wishart exponential family γpMqs,y is

V pMqpmq “

ˆ

1

s1

`
1

sn
´

1

sM

˙

Ppm̂q (4.60)

`

M´1
ÿ

i“1

ˆ

1

si`1

´
1

si

˙

Ppm̂´Mt1:iuq `

n
ÿ

i“M`1

ˆ

1

si´1

´
1

si

˙

Ppm̂´Mti:nuq,

where Mt1:iu and Mti:nu are defined in (4.52).

Proof. Using Ppa´ bq “ Ppaq ` Ppbq ´ 2Ppa, bq, we see that (4.60) is equivalent to

V pMqpmq “
1

sM
Ppm̂q `

M´1
ÿ

i“1

ˆ

1

si`1

´
1

si

˙

PpMt1:iuq `

n
ÿ

i“M`1

ˆ

1

si´1

´
1

si

˙

PpMti:nuq

´ 2

˜

M´1
ÿ

i“1

ˆ

1

si`1

´
1

si

˙

Ppm̂,Mt1:iuq `

n
ÿ

i“M`1

ˆ

1

si´1

´
1

si

˙

Ppm̂,Mti:nuq

¸

. (4.61)

We show that the right hand sides of (4.53) and (4.61) are the same. Below, we expand

(4.53) using Ppa ` bq “ Ppaq ` Ppbq ` 2Ppa, bq and compute the coefficients in the

expanded formula. Note that for all Z P ZAn , PpMt1:iu,Mtk:nuqZ “ 0 for all i ď M ´ 1

and k ěM ` 1, since Zt1:iu,tk:nu “ 0.

For a fixed r ďM ´ 1, the coefficient of PpMt1:ruq is

sr ´ sr`1

s2
r

`

M´1
ÿ

i“r`1

psi ´ si`1q

ˆ

1

sr
´

1

sr`1

˙2

` sM

ˆ

1

sr
´

1

sr`1

˙2

“
1

sr`1

´
1

sr
.

By a mirror argument, for a fixed r ěM ` 1, the coefficient of PpMtr:nuq is 1
sr´1

´ 1
sr

. On

the other hand, the coefficient of Ppm̂q is 1
sM

.

For a fixed r, the coefficient of Ppm̂,Mt1:ruq is 1
sr
´ 1

sr`1
if r ďM ´ 1, and the coefficient
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of Ppm̂,Mtr:nuq is 1
sr
´ 1

sr´1
if r ě M ` 1. Moreover, if k ă r ď M ´ 1, the coefficient

of PpMt1:ru, Mt1:kuq is

psr ´ sr`1q
1

sr

ˆ

1

sk
´

1

sk`1

˙

`

M´1
ÿ

i“r`1

psi ´ si`1q

ˆ

1

sr
´

1

sr`1

˙ˆ

1

sk
´

1

sk`1

˙

` sM

ˆ

1

sr
´

1

sr`1

˙ˆ

1

sk
´

1

sk`1

˙

“

ˆ

1

sk
´

1

sk`1

˙ˆ

1´
sr`1

sr
` sr`1

ˆ

1

sr
´

1

sr`1

˙˙

“ 0.

By a mirror argument, for a fixed M ` 1 ď k ă r, the coefficient of PpMtk:nu,Mtr:nuq is

0.

Remark 4.5.16. m̂ can be computed using the Lauritzen formula:

m̂´1
“

n´1
ÿ

i“1

`

pmti:i`1uq
´1
˘0
´

n´1
ÿ

i“2

`

pmiiq
´1
˘0
.

Alternatively, to compute the missing entries m̂ij for non-adjacent i and j, one can use the

formula (Letac and Massam, 2007, p.1279):

m̂ij “ m̂i,V zti,jupm̂
´1
V zti,ju,V zti,juqm̂V zti,ju,j (4.62)

For n “ 3, only m̂13 needs to be computed and (4.62) gives: m̂13 “ m12m
´1
22 m23. But for

n ą 3, (4.62) does not give the missing elements directly. For example for n “ 4, we need

m̂13, m̂14 and m̂24 to complete m. Formula (4.62) gives

m̂13 “ pm12, m̂14q

ˆ

m22 m̂24

m̂24 m44

˙´1 ˆ
m23

m43

˙

(4.63)

m̂14 “ pm12, m̂13q

ˆ

m22 m23

m23 m33

˙´1 ˆ
m23

m34

˙

(4.64)
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m̂24 “ pm21,m23q

ˆ

m11 m̂13

m̂13 m33

˙´1 ˆ
m̂14

m34

˙

(4.65)

The matrixm is completed by by solving the system of three equations with three unknowns

above.

An extensive literature exists on methods of computation m̂ and iterative algorithms are

available (Grone et al., 1984; Paulsen et al., 1989; Johnson, 1990; Laurent, 1998; Glunt

et al., 1999). The problem is sometimes referred to as positive definite matrix completion

with maximum determinant constraint.

In the next Corollary, we consider s “ p1, p ą 1{2. We note that δpMqp1 and γpMqp1, y :“ γp,y

do not depend on M .

Corollary 4.5.17. The variance function of the Wishart exponential family γp,y is

V pmq “
1

p
Ppm̂q.

A relation between the inverse mean map and m 1
s

Recall that for the classical Wishart exponential families Ws1,y on the symmetric cone S`n

the bijection between the cone QG and PG is given by Lpmq “ m´1. The mean map is

mspyq “ sy´1 and the inverse mean map ψspmq “ sm´1. It follows that

ψs “ L ˝m 1
s
˝ L,

that is, the maps ψs and m 1
s

are intertwined by the bijection L.

An analogous property holds on the cone QAn , with the intertwiner given by the Lau-

ritzen map. The bijection L : QAn Ñ PAn is the Lauritzen map Lpmq “ pm̂q´1. Its

inverse L´1 : PAn Ñ QAn is L´1pyq “ πpy´1q.
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Proposition 4.5.18. The inverse mean map ψpMqs : QG Ñ PG satisfies

ψpMqs “ L ˝m
pMq
1
s

˝ L.

Equivalently, for any m P QG, πpψ
pMq
s pmq´1q “ m

pMq
1
s

pm̂´1q.

QAn

ψ
pMq
s //

L
��

PAn

PAn
m
pMq
1
s

// QAn

L

OO

Proof. Using formula (4.34) of the mean function and definition (4.52) of Mt1:iu and

Mti:nu, we see that mpMq
1
s

pm̂´1q equals

π

˜

M´1
ÿ

j“1

ˆ

1

sj
´

1

sj`1

˙

Mt1:ju `
m̂

sM
`

n
ÿ

j“M`1

ˆ

1

sj
´

1

sj´1

˙

Mtj:nu

¸

.

Confronting this result with (4.59), we obtain m
pMq
1
s

pm̂´1q “ π
´

ψ
pMq
s pmq´1

¯

.

4.6 Wishart exponential families on the cone PAn
.

The Diaconis-Ylvisaker conjugate family (Diaconis and Ylvisaker, 1979; Gutiérrez-Peña

and Smith, 1997) for the exponential family of Wishart distributions γpMqs,y pxq is

πs,η,βpyq “ e
´xη,yy´β ln ∆

pMq
´s pyq´ln

ş

PAn
e´xη,yy∆

pMq
βs pyqdydy.

Using Theorem 4.4.2, we obtain, for all s1 P Rn such that s1M ą ´1 and s1i ą ´3{2,

i ‰M ,

πs,η,βpyq “ cβse
´xη,yy∆

pMq
βs pyqδ

pMq
´βspηqϕQAn pηqdy “ cs1e

´xη,yy∆
pMq
s1 pyqδ

pMq
´s1 pηqϕQAn pηqdy

:“ γ̃
pMq
s1,η pyq,
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where

c´1
s “ πpn´1q{2

!

ź

i‰M

Γpsi `
3

2
q

)

ΓpsM ` 1q.

We call the probability distribution corresponding to the density function

γ̃pMqs,x pdyq “ cse
´xx,yy∆pMq

s pyqδ
pMq
´s pxqϕQAn pxq1PAn pyqdy (4.66)

the Wishart distribution on PAn .

For a fixed s, γ̃pMqs,x is an exponential family generated by the measure R̃pMqs pdyq “ Cs∆
pMq
s pyqdy

with Laplace transform

L
R̃
pMq
s
pxq “

ż

PAn

e´xx,yyR̃pMqs pdyq “ δ
pMq
´s pxqϕQAn pxq. (4.67)

Its Laplace transform is

L
γ̃
pMq
s,x
pθq “

ż

PAn

e´xθ,yyγ̃pMqs,x pdyq “
L
R̃
pMq
s
pθ ` xq

L
R̃
pMq
s
pxq

“
δ
pMq
´s pθ ` xqϕQAn pθ ` xq

δ
pMq
´s pxqϕQAn pxq

. (4.68)

4.6.1 Mean and covariance

Theorem 4.6.1. The mean function of the Wishart exponential family on PAn is for all

si ą ´
3
2

and x P QAn ,

m̃pMq
s pxq “

M´1
ÿ

i“1

psi `
3
2
qpx´1

ti:i`1uq
0
`

n
ÿ

i“M`1

psi `
3
2
qpx´1

ti´1:iuq
0 (4.69)

´

M´1
ÿ

i“2

psi´1 ` 1qpx´1
ii q

0
´ psM´1 ´ sM ` sM`1 ` 1qpx´1

MMq
0

´

n´1
ÿ

i“M`1

psi`1 ` 1qpx´1
ii q

0.

The covariance function ṽpxq : IAn Ñ ZAn of the Wishart exponential family on PAn

equals

ṽpxq “
M´1
ÿ

i“1

psi `
3
2
qP

”

px´1
ti:i`1uq

0
ı

`

n
ÿ

i“M`1

psi `
3
2
qP

”

px´1
ti´1:iuq

0
ı
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´

M´1
ÿ

i“2

psi´1 ` 1qP
“

px´1
ii q

0
‰

´ psM´1 ´ sM ` sM`1 ` 1qP
“

px´1
MMq

0
‰

´

n´1
ÿ

i“M`1

psi`1 ` 1qP
“

px´1
ii q

0
‰

,

where we identify IAn with ZAn by the trace inner product.

Proof. We have m̃pMq
s pxq “ ´∇x lnL

µ
pMq
s
pxq “ ´∇x ln δ

pMq
´s pxqϕQAn pxq. The covariance

operator is obtained by differentiation of (4.69).

4.7 Relations with the type I and type II Wishart distributions of Letac
and Massam (2007)

In this section, we will explain the relation between our work and type 1 and type 2 Wishart

distributions constructed by Letac and Massam (2007).

Letac and Massam (2007) introduced, studied and used the function Hpα, β, xq on QG

as a generalized power function for constructing type I and type II Wishart distributions.

The reader is referred to the cited paper for the general definition of the functionHpα, β, xq

as well as for graphical theoretic notions such as cliques, separators and perfect order of

cliques (see also Lauritzen (1996)). For our purpose, it is sufficient to recall that for

α P Rn´1 and β P Rn´2

Hpα, β;xq “

śn´1
i“1 |xti,i`1u|

αi

śn´1
i“2 x

βi
ii

, x P QAn , (4.70)

that the cliques (i.e. the sets of vertices of maximal complete subgraphs) are t1, 2u, . . . ,

tn ´ 1, nu and the separators t2u, . . . , tn ´ 1u. The definition of the function Hpα, β;xq

does not include any restrictions on the values of the parameter pα, βq of dimension 2n´3.

However, the existence of type I Wishart distributions on QG is only showed for pα, βq

belonging to some setAP dependent on a perfect order of cliques P , i.e. for pα, βq P A0 “
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YPAP , where the union is on all perfect order of cliques. Proposition 4.7.3 describes this

set for An graphs. It also makes clear a phenomenon observed by Letac and Massam

(2007) for the graph A4, where there are only two different sets AP although there are 4

perfect orders of cliques. To prove Proposition 4.7.3 we use the following explicit relation

between two concepts: perfect orders of cliques used by Letac and Massam (2007) and

perfect elimination orders of vertices used in this work.

Definition 4.7.1. Let P be a perfect order P : C 11 ă C 12 ă . . . ă C 1n´1 on C and let

S 12, . . . , S
1
n´1 be the sequence of separators associated to this order. Let α : C ÞÑ R and

β : S ÞÑ R be two real functions of cliques and separators. The pair pα, βq belongs to AP

if

(1) αpC 1kq “ βpS 1kq for k “ 3, . . . , n´ 1

(2) αpCq ą 1
2

for all C P C

(3) αpC 11q ` αpC
1
2q ´ βpS

1
2q ą 0.

Proposition 4.7.2. Let G “ An : 1´ 2´ 3´ . . .´n. A clique ordering C 11 ă . . . ă C 1n´1

is perfect if and only if C 1n´1 ă . . . ă C 11 is a perfect elimination order on the An´1 graph

G1 : C1 ´ C2 . . .´ Cn´1. There are 2n´2 perfect orders of cliques on An.

Proof. The proof is in two parts, for the two inclusions of the claimed equality. Both

parts are straightforward and based on the definitions of a perfect order of cliques and of a

perfect elimination order on a graph. We omit the details.

Proposition 4.7.3. Let P 1 : C 11 ă C 12 ă . . . ă C 1n´1 and P 2 : C21 ă C22 ă . . . ă C2n´1 be

two perfect orders of cliques on G “ An. Let S 12 and S22 be the first separators of P 1 and

P 2, respectively. If S 12 “ S22 then AP 1 “ AP 2 , i.e. the parameter set AP depends only on

the first separator S2 with respect to the clique order P . If S2 “ tMu then the set AP is
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described by the conditions:

#

αj “ βj`1 if 1 ď j ďM ´ 2,

αj “ βj if M ` 1 ď j ď n´ 1,
(4.71)

and

αj ą
1

2
for all 1 ď j ď n´ 1; αM´1 ` αM ´ βM ą 0. (4.72)

Thus A0 “ YPAP is the set of pα, βq such that there exists 2 ď M ď n ´ 1 for which

(4.71) and (4.72) are satisfied.

Proof. We use Propositions 4.2.5 and 4.7.2.

The reference measure µG used by Letac and Massam (2007) is, on the cone QAn ,

µAnpxqpdxq “ HAnp´
3

2
1,´1;xq1QAn pxqdx. (4.73)

By (4.17), we observe that µAnpxqpdxq “ ϕQAn pxq1QAn pxqdx. Namely, the reference

measure µAn is the characteristic measure of the cone QAn .

Theorem 4.7.4. (Letac and Massam (2007) Theorem 3.3) If pα, βq P A0, then, for a

constant Γ1pα,βq, and for all y P PAn

ż

QAn

e´TrpxyqHpα, β;xqµAnpxqpdxq “ Γ1pα,βqHpα, β; πpy´1
qq.

The methods developed in this thesis give a new simple proof of Theorem 4.7.4, see

the proof of Corollary 4.7.6 below.

Let us compare now the functionsHpα, β;xq andHpα, β; πpy´1qqwith the generalized

power functions δpMqs and ∆
pMq
s .
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Proposition 4.7.5. 1. Let α P Rn´1 and β P Rn´2. There exists s P Rn such that

Hpα, β;xq “ δ
pMq
s pxq if and only if (4.71) holds for some 2 ďM ď n´ 1.

Then sj “ αj if 1 ď j ďM´1, sM “ αM´1`αM´βM and sj “ αj´1 if M`1 ď

j ď n.

2. Moreover, under the hypothesis of Part 1, we have Hpα, β; πpy´1qq “ ∆
pMq
´s pyq.

Proof. The equality of Hpα, β;xq and δpMqs pxq is easily verified by confronting their defi-

nitions (4.70) and (4.4). Part 2 follows from Theorem 4.2.9.

Corollary 4.7.6. The type I Wishart distributions indexed by the set A0 are equal to the

subset
Ťn´1
M“2pγ

pMq
s,y qyPPG of Wishart NEF families defined in Section 4.5. Thus they are

strictly contained in the set of all Wishart NEF families onQAn , equal to
Ťn
M“1pγ

pMq
s,y qyPPAn .

Proof. It is a direct application of Proposition 4.7.5 and Theorem 4.4.1. Note that Theorem

4.4.1 implies Theorem 4.7.4 of Letac and Massam (2007).

The family of functionsHpα, β, xq does not contain the power functions δp1qs or δpnqs . In

fact, the last functions contain powers of n´1 diagonal elements xii, whereas the function

Hpα, β, xq contains powers of n´ 2 such elements.

Similar comparisons can be done on the cones PAn . In this case, Letac and Massam

(2007) define type II Wishart distributions on PAn indexed by a set B0, analogous to the

set A0 for QAn . Similar arguments as on the cone QAn lead to

Corollary 4.7.7. The type II Wishart distributions on PAn indexed by the set B0 are

equal to the subset
Ťn´1
M“2pγ̃

pMq
s,x qxPQAn of Wishart NEF families defined in Section 4.6.

Thus they are strictly contained in the set of all Wishart NEF families on PAn , equal to
Ťn
M“1pγ̃

pMq
s,x qxPQAn .
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4.8 Appendix

We list here some properties of triangular matrices, used in proofs.

Lemma 4.8.1. 1. Let A “ K0, where K “ At1:ku and let L be lower triangular and U

upper triangular nˆ n matrices. Then UAL “
`

Ut1:kuKLt1:ku

˘0
.

2. Let B,L, U be matrices n ˆ n, with L lower triangular and U upper triangu-

lar. Then, for all i “ 1, . . . , n, pLBUqt1:iu “ Lt1:iuBt1:iuUt1:iu and pUBLqti:nu “

Uti:nuBti:nuLti:nu.

3. If T is an invertible triangular matrix then pTt1:kuq
´1 “ pT´1qt1:ku for all k “

1, . . . , n.

All these properties are elementary and easy to prove, by block multiplication of ma-

trices (1,2) or by inverse matrix formula with cofactors (3).

69



Chapter 5

ON THE LETAC-MASSAM
CONJECTURE

5.1 Introduction

In this chapter, we solve on an important class of cones, the conjecture stated by Letac and

Massam in (Letac and Massam, 2007, p.1314), and called "Letac-Massam conjecture"

in (Ben-David and Rajaratnam, 2014). This conjecture on the set parameters of type I

and type II Wishart distributions is of fundamental importance in harmonic analysis of

Riesz and Wishart measures on convex cones connected to graphs and in its applications

to modern multivariate statistics. More generally, the Letac-Massam conjecture is closely

related to an important problem in a wide range of analysis on cones:

pPq Is the Laplace transform of a product of powers of given polynomials equal to a

product of powers of some polynomials?

According to (Letac and Massam, 2007, Corollary 3.1), the Letac-Massam conjecture

is true on the cones QA4 and PA4 , but these results are “obtained by a nontrivial and long

computation” and the proofs are omitted. Letac and Massam (2007) states that for n “ 5

“calculations are terrifying.” Our method of proof is simple and based on tools introduced

in Chapter 4: triangular changes of variables on QAn and using natural “future” and “past”

power functions δpMqs and ∆
pMq
s on QAn and on PAn . We show that the Letac-Massam

conjecture is true on the cones QAn and PA4 .
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5.2 Letac-Massam conjecture on QAn

The Letac-Massam Conjecture is a conjecture on the Laplace transform of functions

η ÞÑ Hpα, β, ηq, η P QAn , α “ pα1, . . . , αn´1q, β “ pβ2, . . . , βn´1q, introduced in Letac

and Massam (2007). When needed, we will use a more precise notationHn for the function

H on QAn . Let µAnpdηq be the reference measure on the cone QAn , defined in Letac and

Massam (2007) by

µAnpdηq “ ϕQAn pηqdη “
n´1
ź

i“1

|ηti,i`1u|
´3{2

ź

i‰1,n

ηiidη, (5.1)

where dη is the Lebesgue measure on QAn .

The Letac-Massam conjecture on the cone QAn says that there exists Cα,β ą 0 such

that
ż

QAn

e´TrpyηqHpα, β, ηqdµAnpηq “ Cα,βHpα, β, πpy
´1
qq py P PAnq (5.2)

if and only if pα, βq P A, whereA “ n´1
Y
M“2

AM and the setsAM are defined by the following

conditions (C) and (I):

(C) αj “ βj`1 if 1 ď j ďM ´ 2, and αj “ βj ifM ` 1 ď j ď n´ 1,

(I) αj ą 1
2

for all j “ 1, . . . , n´ 1, and αM´1 ` αM ´ βM ą 0.

The sufficiency of the condition pα, βq P A was shown in Letac and Massam (2007) and

the necessity conjectured and proved true for n “ 4. For n “ 2 and n “ 3 the equivalence

of (5.2) with pα, βq P A is well known. The necessity of (I) is evident (consider diagonal

y P PAn , cf. Lemma 5.3.1 below), so the necessity of (C) is to be proved for n ě 4.

In the sequel, the equality (5.2) will be referred to as the Letac-Massam formula on

QAn and the conditions (C) as Letac-Massam conditions. The main result of this chapter

is the following:

Theorem 5.2.1. Let n ě 4. The formula (5.2) implies conditions (C).

71



5.2.1 Letac-Massam conjecture in terms of power functions δpMq
s and ∆

pMq
s

Now we recall the power functions δpMqs onQAn and ∆
pMq
s on PAn . For all 2 ďM ď n´1,

δpMqs pηq “

śM´1
i“1 |ηti:i`1u|

si
śn

i“M`1 |ηti´1:iu|
si

śM´1
i“2 η

si´1

ii η
sM´1´sM`sM`1

MM

śn´1
i“M`1 η

si`1

ii

∆pMq
s pyq “

ź

iăM

|yt1:iu|
si´si`1 |y|sM

ź

iąM

|yti:nu|
si´si´1 ,

where, for I Ă t1, . . . , nu, the matrix AI is the submatrix of A indexed by I , and the

symbol ta : bu with 1 ď a ď b ď r denotes the set of i for which a ď i ď b.

Define ri “ αi`1 ´ βi and pi “ αi ´ βi for all 2 ď i ď n ´ 1. We have, as defined in

Letac and Massam (2007),

Hpα, β, ηq “

śn´1
i“1 |ηti:i`1u|

αi

śn´1
i“2 η

βi
ii

(5.3)

so that Hpα, β, ηq “ δ
pMq
s pηq

śM´1
i“2 ηriii

śn´1
i“M`1 η

pi
ii , where si “ αi, for all 1 ď i ď

M ´ 1; si “ αi´1, for all M ` 1 ď i ď n and sM “ αM´1 ` αM ´ βM . This implies

rM “ sM ´ sM`1 and pM “ sM ´ sM´1. We notice that s “ psiq depends on M , whereas

neither r “ priq nor p “ ppiq does.

Let ϕpyq “ πpy´1q.

The Letac-Massam formula (5.2) is equivalent, for each 2 ďM ď n´ 1, to

ż

QAn

e´TrpyηqδpMqs pηq
M´1
ź

i“2

ηriii

n´1
ź

i“M`1

ηpiii dµAnpηq

“ Cα,β∆
pMq
´s pyq

M´1
ź

i“2

ϕpyqriii

n´1
ź

i“M`1

ϕpyqpiii . (5.4)

The Letac-Massam conditions (C) are equivalent to the following n´ 2 alternative condi-

tions:

r2 “ ¨ ¨ ¨ “ rM´1 “ pM`1 “ ¨ ¨ ¨ “ pn´1 “ 0 (5.5)
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for an M P t2, . . . , n ´ 1u, or, in other words, to the equality Hpα, β, ¨q “ δ
pMq
s for an

M P t2, . . . , n´ 1u.

A positive answer to the Letac-Massam conjecture implies that the natural generalized

power functions on QAn are the families δpMqs pηq, motivated by analysis on symmetric

and homogeneous cones, with n-dimensional parameter s. Power functions Hpα, β, ηq,

η P QAn are motivated by advanced graph theory, more exactly by cliques and separators

formalism. The parameters α, β have dimension 2n ´ 3. Even if we start with a larger

family Hpα, β, ηq, in order to have the property pPq satisfied, we boil down to the families

δ
pMq
s pηq, withM “ 2, . . . , n´1. Moreover, the families δp1qs pηq and δpnqs pηq are "forgotten"

in the graph theory approach of Letac and Massam (2007).

5.3 Proof

We are going to prove the Letac-Massam conjecture by induction on n. The proof of

the initiation part (n “ 4) and the heredity part (n ě 5) are the same, so they are given

together.

First, in the following lemma, we express, for each M , the constant Cα,β as a function

of M, s “ psiq, r “ priq and p “ ppiq. This is convenient and needed in further study of

the formula (5.4).

Lemma 5.3.1. If the formula (5.4) holds for all y P PAn then we have

Cα,β “ πpn´1q{2ΓpsMq
!

ź

i‰M

Γpsi ´
1

2
q

)

M´1
ź

i“2

Γpsi ` riq

Γpsiq

n´1
ź

i“M`1

Γpsi ` piq

Γpsiq
. (5.6)

If y is diagonal, then (5.4) holds if and only if si ą 1
2

for i ­“ M , sM ą 0, si ` ri ą 0 for

2 ď i ăM , and si ` pi ą 0 for M ă i ď n´ 1.

Proof. We take y diagonal. The proof is a by-product of the Step 1 of the main proof.

Step 1 (descent in Letac-Massam formula, from QAn to QAn´1). Let n ě 4, α “

pα1, . . . , αn´1q and β “ pβ2, . . . , βn´1q.
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Suppose that the Letac-Massam formula (5.2) holds for Hnpα, β, ¨q on QAn . Then the

Letac-Massam formula holds on QAn´1 for:

(i) Hn´1ppα1, . . . , αn´2q, pβ2, . . . , βn´2q, ¨q and the graph 1´ ¨ ¨ ¨ ´ pn´ 1q

(ii) Hn´1ppα2, . . . , αn´1q, pβ3, . . . , βn´1q, ¨q and the graph 2´ ¨ ¨ ¨ ´ n.

Proof. Let us prove (i). We choose 2 ď M ď n ´ 2. For all y P PAn , let, successively,

y “ Φ̃npa
1, b1, zq and z “ Φn´1pa

2, b2, Zq. We easily check that for 2 ď i ď n´1, ϕpyqii “

ϕpzqii “ ϕpZqii, see Lemma 4.3.4 (by our convention, z is indexed by 1, . . . , n´ 1 and Z

is indexed by 2, . . . , n ´ 1). Integration on QAn with two successive changes of variables

η “ Ψ̃npµ
1, ν 1, ξq and then ξ “ Ψn´1pµ

2, ν2,Ξq gives

ż

QAn´2

e´TrpZΞqδ
pMq
ps2,...,sn´1q

pΞq
M´1
ź

i“2

Ξri
ii

n´1
ź

i“M`1

Ξpi
ii dµAn´2pΞq (5.7)

“ C
pn´2q
α,β ∆

pMq
´ps2,...,sn´1q

pZq
M´1
ź

i“2

ϕpZqriii

n´1
ź

i“M`1

ϕpZqpiii ,

where Cpn´2q
α,β “

Cα,β

πΓps1´
1
2
qΓpsn´

1
2
q

and the rows and columns of Ξ and Z are numbered

2, . . . , n ´ 1. Now, we apply one more change of variable Ξ “ Ψ̃n´2pµ, ν,Θq in formula

(5.7) and we set Z “ Φ̃n´2pa, 0, T q. The lines and columns of Θ and T are numbered

2, . . . , n´ 2.

LetF pµ, ν,Θq be the integrand. We first compute J “
ş8

´8

ş8

0
Fdµdν “ 2

ş8

0

ş8

0
Fdµdν.

Using the change of variables u “ aµ, t “ aΘn´2,n´2ν
2, we get

J “ 2a´pn´1

ż 8

0

ż 8

0

e´paµ`aΘn´2,n´2ν2qµsn´1´3{2
paµ` aΘn´2,n´2ν

2
q
pn´1dµdν

“ a´psn´1`pn´1qΘ
´1{2
n´2,n´2

ż 8

0

ż 8

0

e´pu`tqusn´1´
3
2 t´

1
2 pu` tqpn´1dudt.

Using the change of variables pu, vq “ pu, u` tq, we get

J “ a´psn´1`pn´1qΘ
´1{2
n´2,n´2

ż 8

0

ˆ
ż v

0

usn´1´
3
2 pv ´ uq´

1
2du

˙

e´vvpn´1dv (5.8)
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“ a´psn´1`pn´1qΘ
´1{2
n´2,n´2Bpsn´1 ´

1

2
,
1

2
qΓpsn´1 ` pn´1q,

where, in the integral with respect to du we made a change of variable x “ u{v. We get

ż

QAn´3

e´TrpTΘqδ
pMq
ps2,...,sn´2q

pΘq
M´1
ź

i“2

Θri
ii

n´2
ź

i“M`1

Θpi
ii dµAn´3pΘq (5.9)

“ C
pn´3q
α,β ∆

pMq
´ps2,...,sn´2q

pT q
M´1
ź

i“2

ϕpT qriii

n´2
ź

i“M`1

ϕpT qpiii , (5.10)

where

C
pn´3q
α,β “

Cα,β

π
3
2 Γps1 ´

1
2
qΓpsn ´

1
2
qΓpsn´1 ´

1
2
q

Γpsn´1q

Γppn´1 ` sn´1q
. (5.11)

Recall that throughout the thesis Cα,β denotes the constant from formulas (5.2) and (5.4).

By the same argument as to obtain formula (5.7), we observe that the Letac-Massam

formula for the function Hn´1ppα1, . . . , αn´2q, pβ2, . . . , βn´2q, ¨q on QAn´1 and the graph

1´ 2´ ¨ ¨ ¨ ´ pn´ 1q is equivalent to formula (5.9). This finishes the proof of (i).

By a similar ‘mirror-like’ argument with the change of variables Ξ “ Ψn´2pµ, ν,Θq in

(5.7), we get the Letac-Massam formula for Hn´1ppα2, . . . , αn´1q, pβ3, . . . , βn´1q, ¨q and

the graph 2´ ¨ ¨ ¨ ´ n, and we prove part (ii) of Step 1.

Proof of Lemma 5.3.1. For y diagonal, formula (5.11) leads by induction to formula

(5.6), observing that the last equation we get is a´sM
ş8

0
e´axxsM dx

x
“ C

p1q
α,βa

´sM , so that

C
p1q
α,β “ ΓpsMq.

Step 2 (induction step). The Letac-Massam conjecture on QAn´1 implies the Letac-

Massam conjecture on QAn .

Proof. Let n ě 4. Suppose that the Letac-Massam formula (5.2) holds for some α and β

and suppose that the Letac-Massam conjecture is true on QAn´1 .
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For n ě 5, we use Step 1 and the induction hypothesis. Thus one of the following

n´ 3 conditions has to be satisfied:

r2 “ ¨ ¨ ¨ “ rM´1 “ pM`1 “ ¨ ¨ ¨ “ pn´2 “ 0,

for an M P t2, ¨ ¨ ¨ , n ´ 2u, and, simultaneously, one of the following n ´ 3 "shifted"

conditions has to be satisfied:

r3 “ ¨ ¨ ¨ “ rM “ pM`2 “ ¨ ¨ ¨ “ pn´1 “ 0,

for an M P t2, . . . , n´ 2u. This implies that either conditions (5.5) are satisfied or

p3 “ ¨ ¨ ¨ “ pn´2 “ 0; r3 “ ¨ ¨ ¨ “ rn´2 “ 0. (5.12)

Let us assume this single remaining case and show that it also implies conditions (5.5).

The equality rM “ 0 implies sM “ sM`1 and pM “ 0 implies sM “ sM´1. Also, from

pj “ rj for all 3 ď j ď n ´ 2, we get s2 “ ¨ ¨ ¨ “ sM´1 and sM`1 “ ¨ ¨ ¨ “ sn´1. Thus,

s2 “ ¨ ¨ ¨ “ sn´1 “ s. In the case (5.12), using the cofactor formula for Z´1, equation

(5.7) reduces to
ż

QAn´2

e´TrpZΞqδ
pMq
ps,...,sqpΞqΞ

r2
22Ξ

pn´1

n´1, n´1dµAn´2pΞq (5.13)

“ C
pn´2q
α,β |Z|´s

ˆ

|Zt3:n´1u|

|Z|

˙r2 ˆ |Zt2:n´2u|

|Z|

˙pn´1

.

We apply the second derivative with respect toZn´2,n´1 on both sides of (5.13) and we take

Zn´2,n´1 “ 0. Theorem 2.7.1 in Lehmann and Romano (2005) ensures that the derivatives

of all orders of the integral (5.13) can be computed under the integral sign. We obtain
ż

QAn´2

e´TrpZΞqδ
pMq
ps,...,sqpΞqΞ

r2
22Ξ

pn´1

n´1, n´1Ξ2
n´2,n´1dµAn´2pΞq

ˇ

ˇ

Zn´2,n´1“0
(5.14)

“
C
pn´2q
α,β

4

B2

BZ2
n´2,n´1

ˇ

ˇ

Zn´2,n´1“0
gpZq,
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where gpZq “ |Z|´s
´

|Zt3:n´1u|

|Z|

¯r2 ´ |Zt2:n´2u|

|Z|

¯pn´1

.

Let us change the variables Ξ “ Ψ̃n´2pµ̃, ν̃,Θq and set Z “ Φ̃n´2pa, 0, T q, i.e.

Zn´2,n´1 “ 0. Similarly as in the proof of (5.9) in Step 1, we find that the left hand

side of (5.14) is

a´ps`pn´1`1qΓps` pn´1 ` 1qB
`

s´ 1
2
, 3

2

˘

ż

QAn´3

e´TrpTΘqδ
pMq
ps,...,sqpΘqΘ

r2
22Θn´2,n´2dµAn´3pΘq.

(5.15)

We write 1
4
C
pn´2q
α,β D the right hand side of (5.14) and we compute D. Denoting S “

´ps` r2 ` pn´1q and hpZq “ |Z|S|Zt3:n´1u|
r2 we have

D “ |Zt2:n´2u|
pn´1

B2

BZ2
n´2,n´1

ˇ

ˇ

ˇ

ˇ

Zn´2,n´1“0

hpZq.

We apply formulas

|Z| “ Zn´1,n´1|Zt2:n´2u| ´ Z
2
n´2,n´1|Zt2:n´3u|,

|Z|S “ pZn´1,n´1|Zt2:n´2u|q
S
p1´ S

Z2
n´2,n´1|Zt2:n´3u|

Zn´1,n´1|Zt2:n´2u|
` opZ2

n´2,n´1qq.

Thus, for Zn´2,n´1 “ 0, we get B|Z|S

BZn´2,n´1
“ 0 and

B2|Z|S

BZ2
n´2,n´1

“ ´2SpZn´1,n´1|Zt2:n´2u|q
S´1|Zt2:n´3u|.

Similarly,

|Zt3:n´1u| “ Zn´1,n´1|Zt3:n´2u| ´ Z
2
n´2,n´1|Zt3:n´3u|

(for n “ 5 we set |Zt3:n´3u| “ 1) and

B2|Zt3:n´1u|
r2

BZ2
n´2,n´1

ˇ

ˇ

ˇ

ˇ

Zn´2,n´1“0

“ ´2r2pZn´1,n´1|Zt3:n´2u|q
r2´1

|Zt3:n´3u|.

Using Z “ Φ̃n´2pa, 0, T q, where the matrix T is indexed by 2, . . . , n ´ 2, we obtain

Zn´1,n´1 “ a, Zt2:n´2u “ T , Zt3:n´2u “ Tt3:n´2u, |Zt3:n´1u| “ a|Tt3:n´2u| and |Z| “ a|T |.

By Leibniz formula,

D “ ´2ar2`S´1
|T |pn´1`S´1

|Tt3:n´2u|
r2´1

`

S|Tt3:n´2u||Tt2:n´3u| ` r2|Tt3:n´3u||T |
˘

,
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where for n “ 5 we set |Tt3:n´3u| “ 1. Hence, for Zn´2,n´1 “ 0, the right hand side of

(5.14) is

C
pn´2q
α,β

2
a´ps`pn´1`1q

|T |´ps`r2`1q
|Tt3:n´2u|

r2´1fpT q, (5.16)

where

fpT q “ ps` r2 ` pn´1q|Tt3:n´2u||Tt2:n´3u| ´ r2|Tt3:n´3u||T | .

Equating (5.16) and (5.15), we obtain, using (5.11),
ż

QAn´3

e´TrpTΘqδ
pMq
ps,...,sqΘ

r2
22Θn´2,n´2dµAn´3pΘq

sdps, r2, T q

s` pn´1

fpT q, (5.17)

where

dps, r2, T q “ C
pn´3q
α,β |T |´ps`r2`1q

|Tt3:n´2u|
r2´1.

Formula (5.17) is supposed to be true for our pn´1 “ αn´1 ´ βn´1. It is surely true for

pn´1 “ 0, because the Letac-Massam conditions (5.5) are then satisfied. Equating (5.17)

for these two values of pn´1, and noting that by (5.6) the constant Cpn´3q
α,β does not depend

on pn´1, we get

ps` r2 ` pn´1q|Tt3:n´2u||Tt2:n´3u| ´ r2|Tt3:n´3u||T |

s` pn´1

“
ps` r2q|Tt3:n´2u||Tt2:n´3u| ´ r2|Tt3:n´3u||T |

s
,

which is equivalent to

r2pn´1

`

|Tt3:n´2u||Tt2:n´3u| ´ |Tt3:n´3u||T |
˘

“ 0, (5.18)

where for n “ 5 we set |Tt3:n´3u| “ 1. We observe that |Tt3:n´2u||Tt2:n´3u|´|Tt3:n´3u||T | ‰

0, for example for T such that Tii “ 2 for all 2 ď i ď n ´ 2, Ti,i`1 “ Ti`1,i “ 1 for

2 ď i ď n ´ 3 and Tij “ 0 for all other i, j (in this case, this expression equals 1). Thus,
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for n ě 5, in the remaining case (5.12), we also have r2 “ 0 or pn´1 “ 0. In both cases we

fall in the Letac-Massam conditions (5.5) and the proof of the induction step is finished.

For n “ 4, we get formula (5.7) for M “ 2, the computations are simpler (no use

of Leibniz formula is needed), and no condition s2 “ s3 “ s appears. The analogue of

formula (5.17) is

Γps3 ` p3 ` 1qBps3 ´
1

2
,
3

2
q

ż 8

0

e´tuus2u
1

u
du
C
p2q
α,β

2
ps2 ` p3qt

´ps2`1q, t ą 0. (5.19)

After substitution of the constant

C
p2q
α,β “ π

1
2 Γps2qΓps3 ´

1

2
q
Γps3 ` p3q

Γps3q
,

one gets ps3 ` p3qs2 “ s3ps2 ` p3q equivalent to r2p3 “ 0, so r2 “ 0 or p3 “ 0. We get

the Letac-Massam conditions for QA4 .

Remark 5.3.2. The expression on the RHS of (5.18), i.e. |Tt3:n´2u||Tt2:n´3u|´|Tt3:n´3u||T |,

where T “ Tt2:n´2u is known in matrix theory. It is treated in Desnanot-Jacobi identity

p(Bressoud, 1999, Thm 3.12)q, called also Lewis Caroll por Dodgson’sq identity pChenevier

and Renard (2008)q and is equal to p
śn´3

i“2 Ti,i`1q
2, the square of the monomial of the off-

diagonal entries.

Remark 5.3.3. The same method applies in order to prove the Letac-Massam Conjecture

on PA4 . We take M “ 2 and apply two changes of variables Φ4 and Φ̃3 on PA4 and PA3 , (

see Lemma 4.3.3). We obtain an integral on PA2 “ S`2 , which is the same as the integral

on QA2 “ S`2 in the proof above. The work on the Letac-Massam Conjecture on PAn for

n ě 5 is in progress. The analysis on these cones is more difficult.

Remark 5.3.4. Our method of differentiating the Letac-Massam formula with respect to

Z12 gives a simple proof of the “Mellin transform” Lemma 3.1 in (Letac and Massam,

2007, p. 1302), announced without proof. However, instead of the second derivative in

Z12, the complete Taylor expansion in Z12 is needed.
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5.4 Generalized Letac-Massam conjecture

In the first part of the proof of Theorem 5.2.1, we showed that the Letac-Massam formula

(5.2) on QAn , with M P t2, . . . , n´ 1u, is equivalent to a Laplace transform formula (5.4)

on QAn´2 , for a function δpMq
ps2,...,sn´1q

. Next we proved that (5.4) implies that the formula

is rewritten for an M 1 P t2, . . . , n ´ 1u with ri “ 0 “ pj, i “ 2, . . . ,M 1 ´ 1, j “

M 1 ` 1, . . . , n ´ 1. Thus, in fact we showed a stronger result that we call Generalized

Letac-Massam Conjecture (GLMC):

Theorem 5.4.1. Let M P t1, . . . , nu. There exists a multi-index s P Rn and a constant

C ą 0 such that for all y P PAn
ż

QAn

e´TrpyηqδpMqs pηq
M´1
ź

i“1

ηriii

n
ź

i“M`1

ηpiii dµAnpηq “ C ∆
pMq
´s pyq

M´1
ź

i“1

ϕpyqriii

n
ź

i“M`1

ϕpyqpiii

if and only if the formula is rewritten with M 1 P t1, . . . , nu such that ri “ 0 “ pj, i “

1, . . . ,M 1 ´ 1, j “M 1 ` 1, . . . , n and si ą 1
2
, i ­“M 1, sM 1 ą 0.

The GLMC gives a partial answer to the question which products of powers of well-

defined minors on QAn have the property pPq.

5.5 Discussions on (Ben-David and Rajaratnam, 2014)

Recent work by Ben-David and Rajaratnam (2014) suggests that the Letac-Mass conjec-

ture may not hold for some non-homogeneous graphs. The rationale of their work is the

following: According to Ben-David and Rajaratnam (2014) the Letac-Massam conjecture

implies that the number rD of separators of G that are ancestral in the DAG (Directed

Acyclic Graph) version D of G is such that rD ď 1; any graphs such that rD ą 1 would

therefore constitute a counterexample to the Letac-Massam conjecture.

In this section, we prove that for all An graphs, we have rD “ 1 and therefore, An

graphs are not members of those potential counterexamples suggested by Ben-David and
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Rajaratnam (2014). To this end, we need to first quickly recall some concepts associated to

directed acyclic graphs that we will use in this section. The reader is referred to Lauritzen

(1996) for details on any other concepts not clearly defined here.

A perfect DAG is a DAG in which all parents of the same vertex are adjacent. A DAG

version D of an undirected graph G is any perfect directed acyclic graph that yields the

graph G when all directed edges are replaced by undirected ones.

Consider a decomposable graph G “ pV, Eq with set of cliques pC1, . . . Crq and let

P be a perfect of order of the cliques of G. Set H1 “ C1 and define for all 2 ď i ď r,

Hi “ Hi´1 Y Ci and Si “ Hi´1 X Ci.

1. A subset A of V is said to be ancestral in a directed graph with set of vertices V if it

contains all parents of all vertices in it.

2. A DAG version D of a decomposable graph G is said to be induced by a perfect

order P of the cliques of G if H1, . . . , Hr´1 are all ancestral in D.

From the above definitions, we have the following:

A DAG D is a version of G induced by P such that S2 is ancestral if D can be obtained

by replacing the undirected edges of G by directed edges such that

• for all 1 ď i ď r ´ 1, Hi contains all parents of all vertices in it;

• S2 contains all parents of all vertices in it.

(Ben-David and Rajaratnam, 2014, Lemma 5.1) states that for all perfect order P of a

decomposable graph G there exists a DAG version of G induced by P . So this should be

true for An graphs in particular and we have the following result.

Lemma 5.5.1. Consider an An graph and P a perfect order of the cliques of An. Let D

be a DAG version of An induced by P . At most one separator tiu of An is ancestral in D

and in this case D is unique and is given by

1 Ð ¨ ¨ ¨ Ð i´ 1 Ð iÑ i` 1 Ñ ¨ ¨ ¨ Ñ n.
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Proof. Let tiu, 2 ď i ď n, be a separator of An which is ancestral in D. Then, for all

j P V , we cannot have j Ñ i. This means that D has the pattern i´ 1 Ð iÑ i` 1.

Also, we cannot have i´ 2 ÝÑ i´ 1 because then i´ 2 ÝÑ i´ 1 ÐÝ i would constitute

an immorality (the parents of i ´ 1 are not adjacent) and we know from Lemma 5.1 in

[Ben-David and Rajaratnam] that D is a perfect DAG (it has no immoralities). Repeating

the same argument inductively shows that we cannot have k ´ 1 ÝÑ k for all k ă i.

Therefore, we have k ´ 1 ÐÝ k, for all 1 ă k ă i.

The same reasoning shows that we have k ÝÑ k ` 1, for all i ă k ă n.

D is therefore the directed graph 1 Ð ¨ ¨ ¨ Ð i´ 1 Ð iÑ i` 1 Ñ ¨ ¨ ¨ Ñ n and no other

separator of An is ancestral in D.

Theorem 5.5.2. ForAn graphs (n ą 2), the DAG version ofAn induced by a perfect order

P , such that S2 “ tiu is ancestral, is given by

1 Ð ¨ ¨ ¨ Ð i´ 1 Ð iÑ i` 1 Ñ ¨ ¨ ¨ Ñ n.

Moreover, we always have r “ n´ 1 and rD “ 1.

Proof. The proof follows from Lemma 5.5.1.

We have thus proved that An graphs are not members of those potential counterexam-

ples suggested by (Ben-David and Rajaratnam, 2014).
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Chapter 6

FISHER INFORMATION AND
EXPONENTIAL FAMILIES
PARAMETRIZED BY A SEGMENT
OF MEANS

6.1 Introduction

Fisher information is a key concept in mathematical statistics. Its importance stems from

the Cramér-Rao inequality which says that the covariance of any unbiased estimator

T pX1, . . . Xnq of an unknown parameter θ, is bounded by the inverse of the Fisher in-

formation: VarθpT q ´ pIpθqq
´1 is semi-positive definite. Fisher information is therefore

a measure of the maximum precision attainable in parameter estimation. The efficiency

of an estimator is based on whether this precision is achieved. This justifies the use of

Fisher information in experimental design for predicting the maximum precision an ex-

periment can provide on model parameters. This also justifies the important role Fisher

information plays in estimation theory where it provides bounds for confidence regions,

and also in Bayesian analysis where it provides a basis for noninformative priors. Fisher

information can be used to investigate the trade-off between parsimony of parameters and

precision of the estimation of the parameters (Andersson and Handel, 2006). Besides its

importance in statistical theory, Fisher information has different interpretations that lead
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to some practical applications. For example, the interpretation of Fisher information as a

measure of the state of disorder of a dynamic system leads to the use of Fisher information

in stochastic optimal control as a tuning tool to stabilise the performance of a dynamic sys-

tem (Ramirez et al., 2010). Viewing Fisher information as a measure of information, leads

to the statement of a “minimum information principle” akin to the well-known maximum

entropy principle for determining the “maximally unpresumptive distribution” satisfying

some predefined constraints (Bercher and Vignat, 2009). Gupta and Kundu (2006) de-

scribe the use of Fisher information in model selection as a tool to discriminate between

two models with otherwise very similar fit to some data. The use of Fisher information

however goes far beyond statistics; Frieden (2004) explains that Fisher information is in

fact a key concept in the unification of science in general, as it allows a systematic ap-

proach to deriving Lagrangians.

The objective of this chapter is the study of exponential families pQmqmPM parametrized

by a segment of means rm1,m2s with a particular emphasis on Fisher information. These

models were first considered by Letac (2012). Exponential families of distributions are

extensively used in statistics and intensively studied, cf. Lehmann and Casella (1998);

Lehmann and Romano (2005); Letac (1992); Letac and Casalis (2000). They are the only

models for which the Cramér-Rao bound is always attained. A parametrization of the

family by a segment instead of the whole means domain allows to obtain a parsimonious

model when the mean domain is high-dimensional. The parametrization of the mean pa-

rameter by a segment is particularly useful in practical situations when hesitating between

two equally convenient mean values m1 and m2. Such parametrization will also serve in

sequential data collection, when an updated estimate of a parameter largely differs from

the previous estimate.

In this chapter, we prove explicit formulas for the Fisher information of

pQθm1`p1´θqm2qθPr0,1s if the full model is either the multivariate Gaussian family of known

mean and unknown covariance matrix or a family of Wishart distributions with unknown
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scaling parameter.

The chapter is organised as follows. In Section 6.2, basic definitions and results on

Fisher information and exponential families are recalled. Section 6.3 contains new results

on the Fisher information of exponential Gaussian and Wishart sub-families parametrized

by a segment of means rm1,m2s. When m1 and m2 are colinear, we construct efficient

estimators for the segment parameter θ.

6.2 Preliminaries

Definition 6.2.1. Consider a σ-finite measurable space pΩ,A, νq with a family of strictly

positive probability density functions fs, s P S Ă Rd with respect to ν. Let ls “ ln fs.

Assume that the function s ÞÑ lspωq is differentiable for every ω P Ω. Consider the

gradient l1s of the map s ÞÑ ls as a random vector on the statistical model pΩ,A, fsdνq.

Suppose that it satisfies Esp}l1s}2q ă 8, where }.} is the Euclidean norm.

The Fisher information matrix is defined by Ipsq “ Espl1sl1s
T
q.

In the sequel we restrict our attention to exponential statistical models. We first recall

some important concepts and results on exponential families of distribution.

Definition 6.2.2. Let T : Ω Ñ Rd. Set

S “ ts : Kpsq “ ln

ż

exptxs, T yudν ă 8u Ă Rd.

We suppose that the set S has non-empty interior S0.

The general exponential family generated by the measure ν and the map T is the family

tPspT, νq “ exptxs , T y ´Kpsqudν “ fsdν : s P Su. (6.1)

Let µ be the image of the measure ν by T . We assume that µ is not concentrated on a strict

affine subspace of Rd. The natural exponential family associated with the above general

exponential family is the family of probability distributions defined by

tPspµq “ exptxs , .y ´Kpsqudµ : s P Su. (6.2)
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Natural exponential families may be viewed as a special case of general exponential

families with Ω Ă Rd, T pωq “ ω and ν “ µ.

As usual, Es will denote the integral on the exponential model pΩ,A, pPsqsPSq where

Ps “ PspT, νq. We have ls “ xs , T y ´Kpsq. Theorem 2.7.1 in (Lehmann and Romano,

2005) ensures that the cumulant functionK and the function s ÞÑ lspωq are analytic on S0.

Moreover the differentiation with respect to s can be carried out under the integral sign in

1 “

ż

exptxs , T y ´Kpsqudν

as long as s P S0. This gives, by taking the derivatives and by integration by parts

Esl1s “ 0

´Esl2s “ Ipsq. (6.3)

Similarly, we obtain the mean and the covariance

mpsq “ EspT q “ K 1
psq (6.4)

vpsq “ CovspT q “ K2
psq. (6.5)

From (6.3) and (6.5) it follows that the Fisher information of a general exponential family

PspT, νq equals for s P S0

Ipsq “ K2
psq “ vpsq. (6.6)

The following important result is proved in (Letac and Casalis, 2000).

Proposition 6.2.3. The map s ÞÑ mpsq “ EspT q “ K 1psq is an analytic diffeomorphism

from S0 to the open set M “ mpS0q Ă Rd called the domain of the means of the family.

Let ψ : M Ñ S0, m ÞÑ ψpmq “ pK 1q´1pmq denote the inverse of the “mean”

diffeomorphism K 1. The general exponential family, parametrized by the domain of the

means M is given by the family of distributions

Qpm,T, νqpdωq “ exψpmq , T pωqy´Kpψpmqqνpdωq, m PM. (6.7)
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The mean of the family (6.7) is equal to m. Let V pmq denote the covariance of the

family (6.7). Then, by (6.5) we have

V pmq “ vpψpmqq “ K2
pψpmqq. (6.8)

The function V : m P M Ñ V pmq is called the variance function of the exponential

family.

In order to avoid confusion, when the parameter of an exponential family is the mean

m, the Fisher information will be noted Jpmq.

Theorem 6.2.4. The Fisher information of the exponential family (6.7) equals

Jpmq “ V pmq´1
“ ψ1pmq, (6.9)

where V pmq is the variance function of the exponential family, given by (6.8).

Proof. By Definition 6.2.1 and by the chain rule,

Jpmq “ ψ1pmqT Ipψpmqqψ1pmq on M . Since ψpmq “ pK 1q´1pmq, we have

ψ1pmq “ rK2pψpmqqs´1. Thus, using formula (6.6), we get

Jpmq “ rK2pψpmqqs´1 “ V pmq´1.

Remark 6.2.5. Note a striking contrast in the formulas (6.6) and (6.9) for the Fisher in-

formation of an exponential family parametrized either by the canonical parameter s P S0

or by the mean m PM ; in the first case we have

Ipψpmqq “ V pmq, in the second Jpmq “ V pmq´1.

Finally, consider the general exponential familyQpm,T, νq parametrized by the means

domain. Let A ­“ 0, B P Rd. Define Θ “ tθ P R : θA` B P Mu. The set Θ Ă R is open

because M is open. Suppose that Θ ­“ H. The parametrization by a segment of means

I Ă Θ consists in considering the submodel

tQpθA`B, T, νq : θ P Iu. (6.10)
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Such models contain the case tQpθm1 ` p1 ´ θqm2, T, νq : θ P r0, 1su which is suitable

when one hesitates between two different estimations m1,m2 P M of the true mean m of

an exponential family (6.7).

The following corollary gives the Fisher information of a general exponential family

parametrized by a segment of means. By analogy to the notation Jpmq, this information

is noted Jpθq.

Corollary 6.2.6. The Fisher information of the model tQpθA`B, T, νq : θ P Iu equals

Jpθq “ AT V pθA`Bq´1A. (6.11)

Proof. We use Definition 6.2.1 and the chain rule similarly as in the proof of Theorem

6.2.4, for the reparametrization f : IÑM, fpθq “ θA`B, with

f 1pθq “ A. We conclude by Theorem 6.2.4.

6.3 Fisher information of Gaussian and Wishart families parametrized by
a segment of means

In this section, we study the Fisher information for multivariate Gaussian and Wishart

exponential families. These families are parametrized by symmetric positive definite ma-

trices. Therefore we first adapt the presentation to suit this case. We denote by Rkˆm the

space of real matrices with k rows and m columns and by A b B the Kronecker product

of two matrices. We use the usual notation xA,By “ Trp tABq for the scalar product of

two matrices. The operator Vec converts a k ˆm matrix A into a vector VecpAq P Rkm

by stacking the columns one underneath the other. The Vec operator is commonly used in

applications of the matrix differential calculus in statistics, cf. (Magnus and Neudecker,

2007; Muirhead, 2005).

The following properties of the Kronecker product are used in this work (Magnus and

Neudecker, 2007, p.32,35). For non-singular squared matrices A, B we have
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pAbBq´1 “ A´1bB´1. For all matrices A, B and C such that the product ABC is well

defined

VecpAB Cq “ pCT
b AqVecpBq. (6.12)

We use the following convention of matrix differential calculus: if a function f : Rkˆp Ñ

Rnˆm is differentiable then its derivative is a matrix f 1pxq P Rnmˆkp such that

Vecpdfpxqpuqq “ f 1pxqVecpuq, u P Rkˆp. (6.13)

The only exception we will make is the derivative of a function K : Rkˆm Ñ R, for which

the following convention is used: the derivative of K is not a row vector but the matrix

K 1pxq P Rkˆm, related to the differential of K by

dKpxqpuq “ xK 1pxq, uy “ TrpK 1pxqTuq, for all u P Rkˆm. This convention is needed to

give sense to formula (6.4) for the mean of an exponential family.

The following Lemma is useful for the derivation of an alternative formula for the

Fisher information of an exponential family parametrized by a segment of means and

verifying an additional condition (6.14). We will see that this condition holds for Gaussian

and Wishart models.

Lemma 6.3.1. Assume that for all m PM,

xm, ψpmqy “ c, (6.14)

for some constant c P R. Then, for all u PM,

xm, dψpmqpuqy “ ´xu , ψpmqy. (6.15)

Proof. By (6.14) the differential of the function g : M Ñ R, m ÞÑ xm, ψpmqy is zero.

Therefore, dgpmqpuq “ xm, dψpmqpuqy ` xu , ψpmqy “ 0 for all m,u PM and (6.15)

follows.
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Corollary 6.3.2. Let tQpθA`B, T, νqpdωq : θ P Iu be an exponential model parametrized

by a segment of means. If the condition (6.14) holds then the Fisher information of the

model equals

Jpθq “ ´
d2

dθ2
rKpψpθA`Bqqs . (6.16)

Proof. Let hpθq “ KpψpθA ` Bqq and fpθq “ θA ` B. We want to compute h2pθq. If

θ, u P R,

dhpθqpuq “ dKpψpfpθqqq
`

dψpfpθqqpdfpθqpuqq
˘

“ xK 1
pψpfpθqqq , dψpfpθqqpdfpθqpuqqy

“ xfpθq , dψpfpθqqpdfpθqpuqqy

“ ´xdfpθqpuq , ψpfpθqqy

“ ´uxA , ψpfpθqqy,

where we used successively: the convention on K 1 introduced after (6.13), the equality

K 1 ˝ ψpmq “ m, Lemma 6.3.1 and the formula dfpθqpuq “ uA. Thus we have h1pθq “

´xA , ψpfpθqqy. Now, starting as in the computation of h1pθq and using (6.13), we get

h2pθq “ ´xA , dψpfpθqqpAqy “ ´VecpAqT VecpdψpfpθqqpAqq

“ ´VecpAqTψ1pθA`BqVecpAq.

We conclude using (6.9) and Corollary 6.2.6.

6.3.1 Exponential families of Gaussian distributions

We denote by Sd the vector space of d ˆ d symmetric matrices and by S`d the open cone

of positive definite matrices.

Let us recall the construction of the multivariate Gaussian model tNpu,Σq; Σ P S`d u

as a general exponential family. Here u is a fixed vector of Rd. We consider Ω “ Rd
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equiped with a rescaled Lebesgue measure νpdωq “ dω{p2πqd{2, the vector space Sd and

the map

T : Rd
Ñ Sd, T pωq “ ´

1

2
pω ´ uqpω ´ uqT .

The image of T is contained in the opposite of the cone of semi-positive definite matrices

of rank one. For s P S`d , we have

ż

Ω

exs,T pωqyνpdωq “
1

p2πqd{2

ż

Rd
e´

1
2

Trpspω´uqpω´uqT qdω “ pdet sq´1{2

and the integral is infinite otherwise. Thus S “ S`d and the cumulant function is

Kpsq “ ´
1

2
ln detpsq, s P S “ S`d .

The general exponential family is therefore

PspT, νqpdωq “
1

p2πqd{2
exs ,´

1
2
pω´uqpω´uqT y` 1

2
ln detpsqdω

“
pdet sq1{2

p2πqd{2
e´

1
2
pω´uqT spω´uqdω, (6.17)

which is the family of Gaussian distributions Npu, s´1q on Rd with a fixed mean u P Rd,

parametrized by s “ Σ´1. The derivative of the function X P Rdˆd
Ñ detX is the

cofactor matrix X7 which equals pdetXqpX´1qT when X is invertible. It follows that

mpsq “ K 1
psq “ ´

1

2
s´1, s P S`d .

The means domain is M “ ´S`d and the inverse mean map is ψpmq “ ´1
2
m´1. The

Gaussian general exponential family parametrized by m P M “ ´S`d is therefore the

family

Qpm,T, νq “ Npu,´2mq. (6.18)
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Up to a change of parameter Σ “ ´2m, this parametrization by the covariance parameter

is more natural than the parametrization of the family pNpu, s´1qqsPS`d
by the canonical

parameter s.

In order to compute the variance function, recall that XX´1 “ Id implies that

dX´1 “ ´X´1pdXqX´1 and pX´1q1 “ ´X´1 b X´1.

Thus K2psq “ 1
2
s´1 b s´1 and formula (6.8) implies that

V pmq “ 2mbm. (6.19)

The Fisher information of the family pNpu, s´1qqsPS`d
is Ipsq “ 1

2
s´1 b s´1. By Theorem

6.2.4 and formula (6.19), the Fisher information of the model pNpu,´2mqqmP´S`d
equals

Jpmq “ 1
2
m´1 bm´1.

Corollary 6.3.3. The Fisher information matrix of the Gaussian model pNpu,ΣqqΣPS`d is

JpΣq “
1

2
Σ´1

b Σ´1.

Proof. Using chain rule and a reparametrization Σ “ ´2m we see that the information

for the new parameter Σ is J̃pΣq “ 1
2
Σ´1 b Σ´1 “ JpΣq.

Let us now consider Gaussian models parametrized by a segment of covariances.

Corollary 6.3.4. Let C and D be two symmetric matrices and let I Ă R be a non-empty

segment such that I Ă Θ “ tθ P R : θC ` D P S`d u. The Fisher information of the

Gaussian model tNpu, θC `Dq, θ P Iu is

Jpθq “
1

2
Tr

`

CpθC `Dq´1CpθC `Dq´1
˘

.

Proof. We use Corollary 6.3.3 and the chain rule with fpθq “ θC `D. It follows that

Jpθq “ VecpCqTJpθC `DqVecpCq
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“
1

2
VecpCqT

`

pθC `Dq´1
b pθC `Dq´1

˘

VecpCq.

Applying (6.12) we get

Jpθq “
1

2
VecpCqT Vec

`

pθC `Dq´1CpθC `Dq´1
˘

“
1

2
Tr

`

CpθC `Dq´1CpθC `Dq´1
˘

.

On the other hand, we have the following alternative formula for the information Jpθq.

Corollary 6.3.5. The Fisher information of the Gaussian model

tNpu, θC `Dq, θ P Iu is

Jpθq “ ´
1

2

d2

dθ2
pln detpθC `Dqq. (6.20)

Proof. Observe that the condition (6.14) holds for the Gaussian exponential familiesQpm, t, νq:

xm, ψpmqy “ ´
1

2
Trpmm´1

q “ ´
d

2
.

The model Npu, θC `Dq “ Npu,´2mq “ Qpm,T, νq, with

m “ θA ` B PM “ ´S`d where A “ ´C
2

and B “ ´D
2

. We apply Corollary 6.3.2 and

the fact that

KpψpθA`Bqq “ ´
1

2
ln detpθC `Dq.

Formula (6.20) follows.

Now we characterize the information Jpθq in terms of the eigenvalues of the matrix

D´1{2CD´1{2.
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Theorem 6.3.6. Let C and D be two symmetric matrices and let I Ă R be a segment such

that IC `D Ă S`d . Let a1, . . . , ad be the eigenvalues of the matrix D´1{2CD´1{2.

The Fisher information of the Gaussian model tNpu, θC `Dq, θ P Iu equals

Jpθq “
1

2

d
ÿ

j“1

ˆ

aj
1` ajθ

˙2

. (6.21)

Proof. The idea of the proof is to use formula (6.20). Let P pλq be the characteristic

polynomial of the matrix D´1{2CD´1{2. We have

P pλq “ detpD´1{2CD´1{2
´ λIdq

“ detpD´1C ´ λIdq “ pdetDq´1 detpC ´ λDq.

On the other hand, P pλq “
śd

j“1paj ´ λq. It follows that

|θC `D| “ |θDpD´1{2CD´1{2
´

1

θ
Idq| “ |D|

`

θdP p´1{θq
˘

“ |D|
d
ź

j“1

pθaj ` 1q.

The last formula allows to compute easily d2

dθ2
pln detpθC `Dqq. First we see that

d

dθ
pln detpθC `Dqq “

d
dθ

detpθC `Dq

detpθC `Dq
“

d
ÿ

j“1

aj
θaj ` 1

.

One more derivation and formula (6.20) lead to (6.21).

We finish by computing the Fisher information of two Gaussian models in Rd, parametrized

by an explicitly given segment of covariances. First, let A be a circulant matrix with the

first row e2 ` ed “ p0, 1, 0, . . . , 0, 1q. Then for a segment I Ă R containing 0 and θ P I

θA` Id “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 θ 0 . . . 0 θ
θ 1 θ 0 . . . 0
0 θ 1 θ 0 . . .

. . . . . . . . .
0 . . . 0 θ 1 θ
θ 0 . . . 0 θ 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

P S`d . (6.22)
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Corollary 6.3.7. The Fisher information of the model pNp0, θA` IdqqθPI is given by

Jpθq “
1

2

d´1
ÿ

j“0

˜

2 cosp2πj
d
q

1` 2θ cosp2πj
d
q

¸2

. (6.23)

Proof. Let A be a circulant matrix with the first row pr0, r1, . . . , rd´1q. It is well known

(see e.g. (Gray, 2006)) and easy to check that if ε is a d-th root of unity, εd “ 1, then

a “
řd´1
l“0 rlε

l is an eigenvalue of A with an eigenvector p1, ε, ε2, . . . , εd´1q.

Therefore if εj “ e
2πji
d , j “ 0, . . . , d´ 1 are the d distinct d-th roots of unity, then the

matrix A has d distinct eigenvalues aj “
řd´1
l“0 rlε

l
j . In our particular case,

aj “ e
2πji
d ` e

2pd´1qπji
d “ 2 cos

ˆ

2πj

d

˙

.

Formula (6.23) follows from Theorem 6.3.6.

Now, let us consider a tridiagonal matrix C such that

θC ` Id “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 θ 0 0 0 . . .
θ 1 θ 0 0 . . .
0 θ 1 θ 0 . . .

. . . . . . . . . . . .
0 . . . 0 θ 1 θ
0 . . . 0 0 θ 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (6.24)

As in the preceding case, there exists a segment I Ă R such that θC ` Id P S`d for θ P I .

Corollary 6.3.8. The Fisher information of the model pNp0, θC ` IdqqθPI is given by

Jpθq “
1

2

d
ÿ

j“1

˜

2 cos
`

j
d`1

π
˘

1` 2θ cos
`

j
d`1

π
˘

¸2

. (6.25)

Proof. We will apply Theorem 6.3.6 with C and D “ Id.

Expanding ψdpλq “ det pC ´ λIdq along the first row, we get

95



ψdpλq “ ´λψd´1pλq ´ M1,2. Expanding the minor M1,2 along its first column gives

M1,2 “ ψd´2pλq and

ψdpλq “ ´λψd´1pλq ´ ψd´2pλq, d ě 3.

We set ϕdpλq “ p´1qdψdp2λq and we obtain

ϕdpλq “ 2λϕd´1pλq ´ ϕd´2pλq, d ě 3

with initial conditions ϕ1pλq “ 2λ, ϕ2pλq “ 4λ2 ´ 1. Therefore ϕd is a Tchebyshev

polynomial of the second kind (Mason and Handscomb, 2003) and it satisfies

ϕdpcosxq “
sinpd` 1qx

sinx
, d ě 1.

We have, for all λ P r´2, 2s,

ψdpλq “ 0 ðñ ϕd

ˆ

λ

2

˙

“ 0 ùñ
sinpd` 1qx

sinx
“ 0, x “ arccos

λ

2
.

Therefore λj “ 2 cos
`

j
d`1

π
˘

, 1 ď j ď d, are d distinct eigenvalues of the matrix C.

6.3.2 Exponential families of Wishart distributions

Wishart distributions on the cone S`d are defined as elements of natural exponential fami-

lies generated by Riesz measures, (Faraut and Korányi, 1994). Recall that the Riesz mea-

sures µp on the cone S`d are unbounded positive measures such that their Laplace transform

equals for t P S`d

Lµpptq “
ż

S`d

e´xt,xydµppxq “ pdet tq´p.

By the celebrated Gindikin theorem, such measures exist if and only if p belongs to the

Gindikin set Λd “ t
1
2
, . . . , d´1

2
u Y

`

d´1
2
,8

˘

. Their support is equal to the cone S`d if and
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only if p ą d´1
2

and they are absolutely continuous in that case. Otherwise, when p P

t1
2
, . . . , d´1

2
u, the measures µp are singular and concentrated on semipositive symmetric

matrices of rank 2p.

The family of Wishart distributionsW pp; sq on S`d is defined as the natural exponential

family generated by the Riesz measure µp. It means that p P Λd, s P S “ ´S`d and

W pp; sqpdxq “
exs , xy

Lµpp´sq
µppdxq

“ exs , xypdetp´sqqpµppdxq “ exs , xy´Kppsqµppdxq,

with Kppsq “ ´p ln detp´sq. It follows that LW pp; sqptq “ detpId ` p´sq
´1tq´p and

that µppdxq “ eTrxW pp;´Idq.

Wishart distributions are multivariate analogs of the gamma distributions with den-

sity λpΓppq´1e´λxxp´1dx on R`( p ą 0, λ ą 0q, considered with a canonical parameter

s “ ´λ ă 0. Similarly as in dimension 1, the Wishart distributions are often parametrized

by a scale parameter σ “ p´sq´1 P S`d and then the notation γpp;σq “ W pp; p´σq´1q is

used, cf. (Letac and Massam, 2008). The study of Wishart distributions is motivated by

their importance as estimators of the covariance matrix of a Gaussian model in Rd.

Let us apply our results on the Fisher information to a natural exponential family of

Wishart distributions tW pp; sq : s P ´S`d u. The mean equals

mpsq “ K 1
ppsq “ pp´sq´1 P M “ S`d and the inverse mean map ψ : S`d Ñ´S`d is

ψpmq “ ´pm´1.

Thus the Wishart family Qpm,µpq parametrized by the domain of means is, up to a

trivial reparametrization mÑ 1
p
m, the family parametrized by its scale parameter:

Qpm,µpq “ W pp;´pm´1
q “ γpp;

1

p
mq, m P S`d . (6.26)
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As vpsq “ K2
ppsq “ pps´1 b s´1q, it follows that the variance function is

V pmq “
1

p
pmbmq. (6.27)

The Fisher information of the model tW pp; sq : s P ´S`d u is Ipsq “ ps´1 b s´1.

By Theorem 6.2.4 the Fisher information of the model tQpm,µpq, m PMu is Jpmq “

pm´1 bm´1.

Consequently, using the reparametrization mÑ 1
p
m “ σ and the chain rule, we see

that the Fisher information matrix of the Wishart model tγpp;σq : σ P S`d u parametrized

by the scale parameter σ equals

Jpσq “ pσ´1 b σ´1.

Theorem 6.3.9. Let I “ pa, bq Ă R and C,D P Sd be such that IC ` D Ă S`d . The

Fisher information Jpθq of the Wishart model

tγpp; θC `Dq : θ P Iu verifies the formulas

Jpθq “ pTr
`

CpθC `Dq´1
˘2 (6.28)

Jpθq “ ´p
d2

dθ2
pln detpθC `Dqq

Jpθq “ p
d
ÿ

j“1

ˆ

aj
1` ajθ

˙2

(6.29)

where a1, . . . , ad are the eigenvalues of the matrix D´1{2CD´1{2.

Proof. The proofs are similar to the proofs of the analogous results for exponential Gaus-

sian families in the previous subsection. The condition (6.14) holds true: xm, ψpmqy “

´pd, the model tγpp; θC `Dq : θ P Iu is equal to the model tQpθpC ` pD, µpq : θ P Iu

parametrized by the means and we have KppψpθpC ` pDqq “ p ln detpθC `Dq.

Corollary 6.3.10. Let σ1, σ2 P S`d and let I be the open interval containing θ such that
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σθ “ θσ1 ` p1 ´ θqσ2 P S`d . The Fisher information of the model tγpp;σθq : θ P Iu is

equal to Jpθq “ pTr
´

`

pσ1 ´ σ2qσ
´1
θ

˘2
¯

.

Proof. We write θσ1 ` p1´ θqσ2 “ θpσ1 ´ σ2q ` σ2 and we apply formula (6.28).

Using (6.29) we obtain the following corollary, analogous to Corollaries 6.3.7 and

6.3.8.

Corollary 6.3.11. 1. Consider the model tγpp; θA ` Idq : θ P Iu with θA ` Id as in

(6.22). Then its Fisher information equals

Jpθq “ p
d´1
ÿ

j“0

˜

2 cosp2πj
d
q

1` 2θ cosp2πj
d
q

¸2

.

2. Consider the model tγpp; θC ` Idq : θ P Iu with θC ` Id as in (6.24). Then its

Fisher information equals Jpθq “ p
řd
j“1

ˆ

2 cosp j
d`1

πq

1`2θ cosp j
d`1

πq

˙2

.

Remark 6.3.12. Let Pspµq be the natural exponential family corresponding to the Gaus-

sian general exponential family (6.17). If W has the law Npu, s´1q given by (6.17),

then T pW q has the law Pspµq. On the other hand, it is well known that ´T pW q “

1
2
pW ´ uqpW ´ uqT has the Wishart law γp1

2
; 2s´1q. This explains why the formulas

for the Fisher information are the same for the Gaussian family and for the Wishart family

with p “ 1
2
.

Exponential families of noncentral Wishart distributions

Let us finish the section on the Wishart models by considering the non-central case. The

main reference is (Letac and Massam, 2008). Let p P Λd “ t1
2
, . . . , d´2

2
u, a P S`d and

σ P S`d . The noncentral Wishart distribution γpp, a;σq is defined by its Laplace transform

Lγpp, a;σqptq “

ż

S`d

e´Trptxqγpp, a;σqpdxq “ detpId ` σtq
´pe´TrptpId`σ tq´1σaσq,
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for all t P S`d .

When p ě d´1
2

, then non-central Wishart laws exist for all a P S`d ; when p P Λd

then a must be of rank at most 2p (Letac and Massam, 2011). When p “ n
2
, n P N, the

non-central Wishart distributions are constructed in the following way from n independent

d-dimensional Gaussian vectors Y1, . . . , Yn. Let Yj „ Npuj , Σq and let u be the d ˆ n

matrix ru1, . . . , uns. Then, the dˆ d matrix W “ Y1Y
T

1 ` . . .` YnY
T
n has the noncentral

Wishart distribution γpp, a;σq with p “ n
2
, σ “ 2Σ and σaσ “ uuT . Such Wishart

distributions are studied in (Muirhead, 2005).

The non-central Wishart distributions may be constructed as a natural exponential fam-

ily tW pp, a; sq : s P ´S`d u generated by the positive measure

µ “ µa,ppdxq “ eTrpa`xqγpp, a; Idqpdxq. Its moment generating function is given for

s P ´S`d by
ż

S`d

eTrpsxqµa,ppdxq “ detp´sq´peTrpap´sq´1q.

We have W pp, a; sq “ γpp, a; p´sq´1q. Like for central Wishart families,

S “ ´S`d . The cumulant function is

Kpsq “ ´p log detp´sq ` Trpap´sq´1
q.

As before, we denote σ “ p´sq´1. We see that the mean equals

mpsq “ K 1
psq “ pp´sq´1

` p´sq´1ap´sq´1
“ pσ ` σaσ (6.30)

and the covariance

vpsq “ K2
psq “ pσ b σ ` pσaσq b σ ` σ b pσaσq

“ ´pσ b σ `mb σ ` σ bm. (6.31)

When the matrix a is non-singular, the inverse mean map ψpmq “ s is such that

p´sq´1
“ σ “ ´

p

2
a´1

` a´1{2

ˆ

a1{2ma1{2
`
p2

4
Id

˙1{2

a´1{2. (6.32)
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For other cases see (Letac and Massam, 2008, Prop.4.5). In order to write the variance

function V pmq “ vpψpmqq we compose the last expression from (6.31) and the formula

(6.32).

For a model tW pp, a;ψpθA ` Bqq : θ P Iu parametrized by a segment of means, the

Fisher information Jpθq is obtained from the expression of V pmq and Theorem 6.2.6.

Example 6.3.13. Suppose that a “ Id, A “ αId and B “ βId, α, β ą 0. The Fisher

information on θ is

Jpθq “ α2d

ˆ

pp2
` 2θα ` 2βqpθα ` β `

p2

4
q
1{2
´ 2ppθα ` βq ´

p3

2

˙´1

.

6.3.3 Applications to estimation of the mean in exponential families
parametrized by a segment of means

Consider a sample X1, . . . , Xn of a random variable X from a natural exponential family

Qpm,µq parametrized by the domain of means M, where the parameter m “ EpXq is

unknown andM is open.

Proposition 6.3.14. The sample mean X̄n is an unbiased, consistent and efficient estimator

of the parameter m. It is a maximum likelihood estimator of m.

Proof. By Theorem 6.2.4 we have CovpXq “ V pmq “ Jpmq´1, so the Cramér-Rao

bound is attained by X . Consequently, the sample mean X̄n is an efficient estimator of m.

It follows by equating zero to the derivative with respect to m of the logarithm of expres-

sion (6.7) that the sample mean X̄n is a maximum likelihood estimator of m. One can also

first show by (6.2) that the maximum likelihood estimator of s is ŝ “ pK 1q´1pXq “ ψpXq

and next use the functional invariance of the maximum likelihood estimator (Casella and

Berger, 2002, Theorem 7.2.10).
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Remark 6.3.15. For general exponential families Qpm,T, νq parametrized by an open

domain of means M , all these properties remain valid for m̂ “ T pXqn as an estimator of

m “ E pT pXqq.

Consider an exponential family QpθA ` B, µq parametrized by θ P I , a segment in R

with fixed A ­“ 0 and B P M. We will now discuss estimators of the real parameter θ

when we know that the mean EpXq “ m P IA ` B. Determining a maximum likelihood

estimator for θ seems impossible explicitly. This is the "price to pay" for the parsimony

of the segment model parametrized by m P IA ` B. On the other hand, the efficiency of

estimators of θ may be studied thanks to Corollary 6.2.6.

Knowing that

m “ θA`B (6.33)

for a value θ P I , we have many possibilities of writing down a solution θ of equation

(6.33). If A ­“ 0 then the solution θ is unique (Aθ ` B “ Aθ1 ` B implies θ “ θ1 when

A ­“ 0). We assume that m and therefore A and B are dˆ d matrices. For any C such that

xA , Cy ­“ 0 we have

θ “
xm´B , Cy

xA , Cy
.

We define an estimator θ̂C of the parameter θ by

θ̂C “
xX̄n ´B , Cy

xA , Cy

All the estimators θ̂C are unbiased and consistent. The natural question is whether they

are efficient. The variance of θ̂C may be computed using the variance function V pmq of

the exponential family:

Var θ̂C “
1

xA,Cy2
VarxX̄n, Cy “

1

xA,Cy2
Var

`

VecpCqT Vec X̄n

˘
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“
VecpCqTV pθA`BqVecpCq

nxA,Cy2
. (6.34)

On the other hand, the Cramér-Rao bound is equal by Corollary 6.2.6 to

1

nJpθq
“

1

nVecpAqT V pθA`Bq´1 VecpAq
. (6.35)

When the matrix A is invertible, we can take C “ A´1 and consider the estimator

θ̂A´1 “
xX̄n ´B,A

´1y

d
.

The following theorem shows that for Gaussian and central Wishart exponential families

and for linearly dependent A and B, the estimator θ̂A´1 is efficient as an estimator of the

meanm (withXi replaced by T pXiq “ ´
1
2
pXi´uqpXi´uq

T in the Gaussian case). In con-

clusion, we obtain efficient estimators for Gaussian models parametrized by a covariance

segment parameter and for Wishart models parametrized by a scale segment parameter.

Theorem 6.3.16. 1. Let I Ă R` be a non-empty segment. Let c ě 0, A P S`d and

B “ cA.

(a) Consider an n-sample pX1, . . . , Xnq from a Gaussian family Qpm,T, νq de-

fined by (6.18), where m “ θA`B, θ P I . Then

θ̂A´1 “
xT pXqn ´B,A

´1y

d

is a uniformly minimum-variance unbiased estimator of the parameter θ.

(b) Consider an n-sample pX1, . . . , Xnq from a Wishart model Qpm,µpq defined

by (6.26), where m “ θA`B, θ P I . Then

θ̂A´1 “
xX̄n ´B,A

´1y

d

is a uniformly minimum-variance unbiased estimator of the parameter θ.
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2. Let c ě 0, C P S`d and D “ cC.

(a) Consider an n-sample pX1, . . . , Xnq from a Gaussian model

tNpu, θC`Dq, θ P Iu parametrized by a segment of covariances. A uniformly

minimum-variance unbiased estimator of θ is given by

θ̂ “
1

d
x

1

n

n
ÿ

i“1

pXi ´ uqpXi ´ uq
T
´D,C´1

y.

(b) Consider a sample pX1, . . . , Xnq from a Wishart model tγpp, θC ` Dq, θ P

Iu parametrized by a segment of scale parameters. A uniformly minimum-

variance unbiased estimator of θ is given by

θ̂ “
x1
p
X̄n ´D,C

´1y

d
.

Proof. For the first part of the Theorem, we give the proof in the Wishart case. The proof

in the Gaussian case is identical, with p “ 1
2
, cf. Remark 6.3.12. By formulas (6.34) and

(6.27)

Var θ̂A´1 “
1

pd2n
TrppAθ `BqA´1

pAθ `BqA´1
q “

pθ ` cq2

pdn

On the other hand, by (6.35) and (6.27)

1

nJpθq
“

1

npTrpApAθ `Bq´1ApAθ `Bq´1q
“

1

nppθ ` cq´2d
.

Thus Var θ̂ “ 1
nJpθq

and the estimator θ̂A´1 is efficient.

The second part of the Theorem follows by necessary reparametrizations. For (2a),

using (6.18), we write θC `D “ ´2m with m “ θA`B, where A “ ´C
2

and B “ ´D
2

.

The part (2b) follows similarly from (6.26).
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Remark 6.3.17. It is an open question whether θ̂A´1 may be efficient for independent

A and B. Let n “ 1. The equality Var θ̂ “ 1
Jpθq

holds if and only if, writing Dθ “

pAθ `BqA´1pAθ `BqA´1, the equality 1
d2

TrpDθq “
1

TrpD´1
θ q

holds for all θ P I .
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Conclusion

In this thesis, we propose some parameter parsimonious models which are of great impor-

tance in high dimensional data analysis. We first provide a motivation for the work and crit-

ically discuss the available literature on the subject. Then, we present a background of clas-

sical Wishart distributions and multiparameter Wishart distributions in terms of the canoni-

cal measures of cones. Next, we provide a harmonious construction of Wishart exponential

families in nearest neighbours interactions graphical models. Our simple method is based

on analysis on convex cones compared to existent work which relies more on graph theory.

We define the Wishart distributions and explicitly determine their classical objects, such as

the Riesz generating measures, the Wishart densities, the Laplace transforms and the mean

functions. Wishart distributions on QAn are constructed as the exponential family gener-

ated from the gamma functionQAn , defined by Γ
pMq
QAn

psq “
ş

QAn
e´Trpxqδ

pMq
s pxqϕAnpxqdx.

Wishart distributions on PAn are then constructed as the Diaconis-Ylvisaker conjugate

family for the exponential family of Wishart distributions on QG. For Wishart distribu-

tions on QAn , explicit formulas for the inverse mean map and the variance function are

derived. Later, the methods of construction of Wishart laws introduced in this thesis are

used to solve the Letac-Massam Conjecture on the set of parameters of type I Wishart

distributions on QAn n ě 1. Finally, we introduce and study exponential families of distri-

butions parametrized by a segment of means with an emphasis on their Fisher information.

This class of models will be useful in high-dimensional data analysis, particularly when

one is hesitating between two parameter values. We derive the mean function, the variance
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function and the Fisher information of the model. We also propose some estimators and

explore their properties. The particular cases of Gaussian and Wishart exponential families

parametrized by a segment of means are examined.

The work presented in Chapter 4 has resulted in the article (Graczyk et al., 2016b)

written in collaboration with Piotr Graczyk and Hideyuki Ishi. It has been presented at

the “Séminaire triangulaire Probabilités et Statistique” in Le Mans (France) in June 2015,

and at the summer school “Mathematical Methods of Statistics” in Angers in June 2016.

Based on the work presented in Chapter 5, an article (Graczyk et al., 2017) was written in

collaboration with Piotr Graczyk, Hideyuki Ishi and Hiroyuki Ochiai. The work presented

in Chapter 6 has resulted in the article (Graczyk and Mamane, 2015) published in collab-

oration with Piotr Graczyk. It has been presented at the “Séminaire tournant Probabilités

et Statistique”, in Poitiers (France) in June 2015. The methods and tools developed in

this thesis can be used for a future generalization of the construction of graphical Wishart

exponential families to decomposable graphs. This generalization will set ground to the

solution of the Letac-Massam conjecture in general. Future research can also explore con-

crete applications of the models proposed in this thesis.
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Wishart laws on convex cones  
 

Résumé  
En analyse multivariée de données de grande dimension, 
les lois de Wishart définies dans le contexte des  modèles 
graphiques revêtent une grande importance car elles 
procurent parcimonie et modularité. Dans le contexte des 
modèles graphiques Gaussiens régis par un graphe G, les 
lois de Wishart peuvent être définies sur deux restrictions 
alternatives du cône des matrices symétriques définies 
positives : le cône PG des matrices symétriques définies 
positives x satisfaisant xij=0, pour tous sommets i et j 
non adjacents, et son cône dual QG. 
Dans cette thèse, nous proposons une construction 
harmonieuse de familles exponentielles de lois de 
Wishart sur les cônes PG et QG. Elle se focalise sur les 
modèles graphiques d'interactions des plus proches 
voisins qui présentent l'avantage d'être relativement 
simples tout en incluant des exemples de tous les cas  
particuliers intéressants: le cas univarié, un cas d'un cône 
symétrique, un cas d'un cône homogène non symétrique, 
et une infinité de cas de cônes non-homogènes. Notre 
méthode, simple, se fonde sur l'analyse sur les cônes 
convexes. Les lois de Wishart sur QAn sont définies à 
travers la fonction gamma sur QAn et les lois de Wishart 
sur PAn sont définies comme la famille de Diaconis-
Ylvisaker conjuguée. Ensuite, les méthodes développées 
sont utilisées pour résoudre la conjecture de Letac-
Massam sur l'ensemble des paramètres de la loi de 
Wishart sur QAn. Cette thèse étudie aussi les sous-
modèles, paramétrés par un segment dans M, d'une 
famille exponentielle paramétrée par le domaine des 
moyennes M.  
 
Mots clés : Wishart, Riesz, modele graphique, resea u 
Markovien, loi gamma matricielle, famille exponenti elle 
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Abstract  
In the framework of Gaussian graphical models 
governed by a graph G, Wishart distributions can 
be defined on two alternative restrictions of the 
cone of symmetric positive definite matrices: the 
cone PG of symmetric positive definite matrices x 
satisfying xij=0 for all non-adjacent vertices i and j 
and its dual cone QG. In this thesis, we provide a 
harmonious construction of Wishart exponential 
families in graphical models. Our simple method 
is based on analysis on convex cones. The focus is 
on nearest neighbours interactions graphical 
models, governed by a graph An, which have the 
advantage of being relatively simple while 
including all particular cases of interest such as the 
univariate case, a symmetric cone case, a non-
symmetric homogeneous cone case and an infinite 
number of non-homogeneous cone cases. The 
Wishart distributions on QAn are constructed as 
the exponential family generated from the gamma 
function on QAn. The Wishart distributions on 
PAn are then constructed as the Diaconis-
Ylvisaker conjugate family for the exponential 
family of Wishart distributions on QAn. The 
developed methods are then used to solve the 
Letac-Massam Conjecture on the set of parameters 
of type I Wishart distributions on QAn. Finally, 
we introduce and study exponential families of 
distributions parametrized by a segment of means 
with an emphasis on their Fisher information. The 
focus in on distributions with matrix parameters. 
The particular cases of Gaussian and Wishart 
exponential families are further examined. 
 
Key Words : Wishart, Riesz, graphical models, 
Markov network, matrix-variate gamma, exponential 
family 
---------------------------------------------------------------------------
------------------------------- 

 L’Université Bretagne Loire 

Lois de Wishart sur les cônes convexes  
 

Salha MAMANE   

 


	Presentation of the work
	Summary
	Résumé
	Acknowledgements
	Notations
	Introduction
	Introduction
	Objectives of the research
	Organization of the work

	Literature Review
	Background
	Convex cones
	Graphical Models
	Undirected graphs
	Conditional independence and graphs
	Graphical Gaussian models

	Exponential families of distributions
	The Wishart distribution
	The gamma and chi-square distributions
	The Wishart distribution
	The classical Wishart distribution
	The multiparameter Wishart distribution


	 Wishart exponential families on cones related to nearest neighbours interactions graphs
	Introduction
	Preliminaries on An graphs and related cones
	Perfect elimination Orders
	Generalized power functions

	 Recursive construction of the cones PAn and QAn and changes of variables
	Laplace transform of generalized power functions on QAn and PAn
	Wishart exponential families on QAn
	Mean and covariance of the Wishart distributions on QAn
	Inverse mean map
	Variance function

	 Wishart exponential families on the cone PAn. 
	Mean and covariance

	Relations with the type I and type II Wishart distributions of L-M
	Appendix

	On the Letac-Massam conjecture
	Introduction
	Letac-Massam conjecture on QAn
	Letac-Massam conjecture in terms of power functions s(M) and s(M)

	Proof
	 Generalized Letac-Massam conjecture
	Discussions on []ben2014

	Fisher Information and Exponential Families Parametrized by a Segment of Means
	Introduction
	Preliminaries
	Fisher information of Gaussian and Wishart families parametrized by a segment of means
	Exponential families of Gaussian distributions
	Exponential families of Wishart distributions
	Applications to estimation of the mean in exponential families parametrized by a segment of means


	Conclusion
	References



