Thèse de doctorat en Physique Théorique et Mathématique
Sous la direction de Oleg Ogievetsky.
Soutenue le 16-11-2017
à Aix-Marseille , dans le cadre de Ecole Doctorale Physique et Sciences de la Matière (Marseille) , en partenariat avec CPT Centre de physique théorique. UMR 7332 (Marseille ; Toulon) (laboratoire) .
Le président du jury était Robert Coquereaux.
Les rapporteurs étaient Vladimir Roubtsov, Sergei Khoroshkin.
Calcul différentiel sur des espaces h-déformés
L'anneau Diff_{h}(n) des opérateurs différentiels h-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels h-déformés de type gl. Contrairement aux espaces vectoriels q-déformés pour lequel l'anneau des opérateurs différentiels est unique à isomorphisme près, l'anneau généralisé des opérateurs différentiels h-déformés Diff_{h,σ}(n) est indexée par une fonction rationnelle σ en n variables, solution d'un système dégénéré d'équations aux différences finies. Nous obtenons la solution générale de ce système. Nous montrons que le centre de Diff_{h,σ}(n) est un anneau des polynômes en n variables. Nous construisons un isomorphisme entre des localisations de l'anneau Diff_{h,σ}(n) et de l’algèbre de Weyl Wn étendue par n indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de Diff_{h,σ}(n). Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau Diff_{h}(n,N) correspondant à N copies de Diff_{h}(n).
The ring Diff_{h}(n) of h-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the h-deformed vector spaces of gl-type. In contrast to the q-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diff_{h,σ}(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of Diff_{h,σ}(n) is a ring of polynomials in n variables. We construct an isomorphism between certain localizations of Diff_{h,σ}(n) and the Weyl algebra Wn extended by n indeterminates. We present some conditions for the irreducibility of the finite dimensional Diff_{h,σ}(n)-modules. Finally, we discuss difficulties for finding analogous constructions for the ring Diff_{h}(n,N) formed by several copies of Diff_{h}(n).
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.