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Résumé
Dans cette thèse, nous étudions et concevons des algorithmes pour des agents
mobiles se déplaçant dans un graphe avec une énergie limité, restreignant leurs
mouvements. Chaque agent mobile est une entité, équipée d’une batterie, qui peut
parcourir les arêtes du graphe et visiter les noeuds du graphe. A chaque mouvement,
l’agent consomme une partie de son énergie. Contrairement à divers modèles bien
étudiés pour les agents mobiles, très peu de recherches ont été menées pour le modèle
compte tenu des limites d’énergie. Nous étudions les problèmes fondamentaux de
l’exploration d’un graphe, du gathering et du collaborative delivery dans ce modèle.
Le problème d’exploration des graphes consiste à visiter tous les noeuds d’un

graphe donné. Nous étudions l’exploration des graphes dans trois modèles différents.
Tout d’abord, nous considérons une exploration collaborative où le niveau d’énergie
des agents est fixé et nous souhaitons minimiser le nombre d’agents utilisés pour
explorer entièrement le graphe. Ensuite, nous considérons que les niveaux d’énergie
et le nombre d’agents sont fixés. L’objectif est de maximiser le nombre de noeuds
explorés. Enfin, nous considérons l’exploration d’arbres connus par un unique
agent qui peut collecter de l’énergie à partir des nœuds qu’il visite pour poursuivre
l’exploration. L’objectif est de maximiser la quantité d’énergie collectée que l’agent
ramène à la racine à la fin de l’exploration. Pour chacun des problèmes mentionnés,
nous présentons des algorithmes efficaces et prouvons plusieurs bornes inférieures.
Pour le problème du gathering, le but des agents est de se rencontrer à un seul

noeud d’un graphe, commençant des différents endroits. Pour le cas des agents
contraints en énergie, nous considérons le problème modifié du near-gathering où
l’objectif d’optimisation est de déplacer les agents, de telle sorte que la distance
maximale entre deux agents soit minimisée. Nous montrons que le problème est
NP-difficile et nous présentons un algorithme d’approximation qui correspond à la
borne inférieure que nous prouvons pour ce problème. Nous proposons également un
algorithme d’approximation de facteur constant pour le problème de minimisation
de la distance moyenne par paire d’ agents.
Le dernier problème considéré est le collaborative delivery, où étant donné un

graphe, l’objectif est de déplacer un paquet de sa source vers sa destination cible
par une équipe d’agents mobiles. Pour ce problème, nous supposons que les agents
peuvent partager leur énergie quand ils se rencontrent, sous deux scénarios. Dans le
premier scénario, nous permettons aux agents de partager leur énergie sans aucune
restriction, tandis que dans le deuxième scénario, nous supposons que les agents ont
limité la capacité énergétique. Nous montrons que le problème est NP-difficile pour
les deux cas. Nous présentons également un algorithme resource-augmented pour
le premier modèle et pour le second, nous montrons que nous pouvons résoudre le
problème efficacement si nous pouvons faire une hypothèse supplémentaire sur le
placement initial des agents.
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Abstract
In this thesis we study and design algorithms for solving various well-known
problems for mobile agents moving on a graph, with the additional constraint of
limited energy which restricts the movement of the agents. Each mobile agent is
an entity, equipped with a battery, that can traverse the edges of the graph and
visit the nodes of the graph, consuming a part of its energy for movement. In
contrast to various well-studied models for mobile agents, very little research has
been conducted for the model considering the energy limitations. We study the
fundamental problems of graph exploration, gathering and collaborative delivery
in this model.

For the graph exploration problem the goal of the agents is to visit all the nodes
of a given graph. We study graph exploration in three different settings. First, we
consider the energy level of the agents is fixed and we wish to minimize the number
of agents used. Next, we consider that both the energy levels and the number of
agents are fixed and the goal is to maximize the number of explored nodes. Last,
we consider the exploration of known trees by a single agent which can collect
energy from the nodes that it visits, enabling it to continue the exploration. The
goal in this setting is to maximize the amount of collected energy the agent brings
back to the root at the end of the exploration. For each one of the mentioned
problems, we present efficient algorithms and prove several lower bounds.

For the gathering problem the goal of the agents is to meet at a single node of a
graph, starting from different locations. For the case of energy constrained agents
we consider the modified problem of near-gathering where the optimization goal is
to relocate the agents, in such a way that the maximum distance between any two
agents is minimized. We show hardness results and we present an approximation
algorithm that matches the lower bound we prove for this problem. We also
provide a constant factor approximation algorithm for the problem of minimizing
the average pairwise distance between agents.

The last problem we consider is Collaborative Delivery where given a graph, the
goal is to move a package from its source to its target destination by a team of
mobile agents. For this problem, we suppose that the agents can share their energy
upon meeting, under two scenarios. In the first scenario, we allow the agents to
share their energy without any restrictions, while in the second scenario, we assume
the agents have restricted energy capacity. We show hardness results for both cases.
We also present a resource augmented algorithm for the first setting and for the
second, we show that we can solve the problem efficiently if we can make an extra
assumption about the initial placement of the agents.
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1 Introduction
Distributed computing systems are networks of computing devices that communi-
cate and coordinate with each-other to solve a common task. There are several
advantages of these systems such as the robustness to failures and the parallelization
of tasks to achieve speedup over sequential computing. In particular, when each
computing unit performs autonomously (such units are referred to as agents) there
is no single point of failure and such a system can tolerate an arbitrary number of
failures. However it is often challenging to design correct algorithms for distributed
systems due to several issues such as the problem of synchronization, problems in
communication between the agents and the data dependencies for the task to be
performed. In some cases, the computing entities or agents may be mobile and
mobility is a factor which adds to the difficulty of designing correct and efficient
algorithms for distributed systems. For example, consider a team of mobile robots
which are deployed to collectively explore an area of interest, to search for resources
(e.g. oil) or locate dangers (hidden mines) or to collect environmental data. When
the robots move autonomously, the coordination among the robots is a challenging
task which requires the design of sophisticated algorithms.

The model of mobile agent computing has been initially suggested in the context
of software engineering by Fukuda et al. [Fuk+99]. As a computational paradigm it
offers a simple and natural setting for describing distributed systems, [LO99], and
it has been studied a lot in the past few years [Kos13; Das13; FPS12; KKM10].
The mobile agents represent software entities that have the ability to move in

a network, or they can represent mobile robots that navigate in an environment.
The agents are usually modeled as automata and the network or the environment
in which they exist is modeled as a graph. The mobile agents have the ability to
move from node to node along the edges of the graph, can perform computations
and can interact with other agents.

There are various properties of the agents and the networks that host them that
have been considered in the literature, depending on the nature of the problem
concerned. We give a brief summary of the main features of the agents and the
hosts that have been considered.

· Identifiers. The agents can have unique identities or not. Agents without
distinct identities are called anonymous agents. Anonymous agents are limited
to execute the same algorithm, as opposed to agents with distinct identities,
whose identity can be part of the input of the executed algorithm. Furthermore,
the nodes of the graph can have unique labels or not. The model in which
the nodes do not have unique labels, is called anonymous network.

· Memory. The size of the memory of the agents can vary. It can be considered
to be unbounded, bounded or even equal to zero (oblivious agents).

8



1 Introduction

· Communication. The communication between the agents can be either
direct (global or local) or indirect. In the global communication scenario the
agents can exchange information while being located at arbitrary nodes. To
the contrary, in the local communication scenario the agents can exchange
information only when they are concurrently located at the same node. In the
indirect case, the agents communicate through the nodes of the graph. They
can leave messages at a shared memory space (whiteboard) that is present at
the nodes, or they can leave a mark (token or pebble) at a visited node.

· Visibility. The agents can have full knowledge of the graph a priori (global
vision), or they may have no information about the graph (local vision).
When the agents have local visibility, it is usually assumed that the agents
can distinguish between the incident edges of the node hosting them. This is
achieved by using a predefined local ordering of the edges, most commonly
referred to as local port numbering. Moreover, under the visibility feature we
can consider the ability of the agents to see the positions of other agents in
the graph as well as the number of agents that are occupying the same node
(multiplicity detection).

· Time. There exist two main models to measure time in a distributed system.
The synchronous and the asynchronous settings. In the synchronous case,
there is a global clock available to all nodes that is being followed by the
agents as well. This global clock defines the rounds during which the agents
synchronously perform their tasks. In the asynchronous setting, there is no
central clock and each agent acts at its own pace. Even though the delays
may be arbitrarily long, it is guaranteed to be finite.

Several algorithms and techniques have been proposed to solve basic coordination
tasks for mobile agents such as making the agents meet in a single location
(rendezvous), or spreading them evenly (uniform dispersal), or making them form a
specific pattern, e.g. a circle or a line (pattern formation problem). The problems
of searching, monitoring or patrolling an area have also been studied for teams of
collaborating agents or robots. However, in all these basic studies, the fact that
agents may have limited energy resources is not considered. This assumption is
problematic since for a mobile robot, motion tends to consume energy, and if the
algorithms do not optimize the amount of movement of each robot and balance
these amounts well among the robots, it may so happen that several of the robots
run out of energy and become dysfunctional. Even though the problems studied
in this thesis are motivated by physical robots, we will be referring to them as
mobile agents. In this work we are interested in designing distributed algorithms
for mobile agents that are fully aware of the energy levels of the agents and plan
accordingly.
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1.1 Our Model

1.1 Our Model
Throughout this thesis we consider discrete environments. We will be using the
following setting to describe and analyze the problems visited in this work.
The network is modeled as an undirected graph G(V,E), containing n = |V |

nodes and m = |E| edges. The set of nodes describes the locations of the graph
that are capable of hosting an agent, whereas the set of edges describes the
communication links on which the agents can travel in any direction. We will also
be considering edge-weighted graphs, defined as a pair (G,w), where G is a graph
and w : E → N is the weight function. The weight function assigns to each edge a
non-negative value representing the length of the edge. Given any two nodes u and
v in G we denote by d(u, v) the length of the shortest path between u and v.
A group of k distinct and autonomous mobile agents is deployed in G. Each

agent has memory proportional to the size of the graph. Any node in V that
corresponds to the initial position of an agent is called a homebase node and we
denote by H the set containing all such nodes.
In this model, we consider that the nodes of the graph do not have any sort of

memory. Therefore, the agents cannot leave any messages on the nodes, nor use
any mechanism for marking the nodes. The communication of the agents is only
direct and we will be considering both the global and the local communication
scenarios.

Regarding the visibility of the agents, we study both the cases of global and local
visibility. Independently of their vision range, we always consider that the nodes
have local port numbering so that an agent arriving at a node can distinguish
among the incident edges. For every node v ∈ V , the local port numbering is
defined as the bijective function λv : {(v, w) ∈ E} → {0, . . . , deg(v) − 1}, where
deg(v) denotes the degree of node v. We also consider that the agents can detect
the presence of other agents at the nodes, as well as their multiplicity.

The agents move at synchronous rounds, respecting the global clock, at the same
speed. At each round an agent may choose to move to an adjacent node or remain
at its current position.
Last, we consider that the agents have an amount of initial energy denoted by

B. They use this energy to move in the graph. More precisely, the agents consume
energy when traversing an edge proportional to the distance covered, that is equal
to the weight of the edge, for the case of weighted graphs, and it is equal to 1 for
the case of unweighted graphs. The agents once they have depleted their energy,
they cannot perform any other task.

In the cases where the agents have only local visibility (online case), we measure
the efficiency of our solutions in terms of the competitive ratio. It is defined as the
worst case ratio of the cost of the online algorithm for some graph G over the cost
of the optimal offline algorithm for the same graph, where the offline case is when
the agents have global visibility.
This work is one of the first studies concerned with energy constrained agents.
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1.2 Problems Studied

In this work, we consider both the agents and the network to be fault free.

1.2 Problems Studied
In this manuscript we study and design algorithms for solving various well-known
problems in the field of mobile agent computing, with a view to optimizing the
energy consumption of the agents, instead of optimizing the time agents need for
solving such problems. Moreover, we consider agents with a hard constraint on
their available energy resources, in the sense that they are no longer functional
once they deplete their battery. A plethora of interesting problems arises when we
consider mobile agents with limited energy. The focus of this research is on the
following problems.

Graph Exploration
The graph exploration problem is a well studied problem in computer science with
a wide range of applications from searching the internet to navigation of robots
in unknown environments. Given a graph G(V,E) the objective is to visit all the
nodes of the graph starting from a given node. We will be considering the following
types of exploration.

· Online exploration. The agents have no initial knowledge about the topol-
ogy of the graph, apart from their homebase node.

· Offline exploration. The agents have full knowledge of the graph topology.

· Exploration with stop. Once every node of the graph has been visited by
at least one agent, we require that the agents consequently do not make any
further moves.

· Exploration with return. After every node of the graph has been visited
by at least one agent, we require that the agents return to their homebase
node.

In graph exploration the most common goal is to minimize the time needed
to perform the exploration. The energy-awareness of the agents considered in
this work, as we remarked previously, gives rise to other optimization goals. If
we consider that we are given a fixed number of available agents, the natural
optimization goal is to find the minimum amount of energy needed by the agents
to perform the exploration. On the other hand, if we consider that the agents have
a fixed amount of available energy, then the goal is to minimize the total number
of agents needed to fully explore the graph. Finally, if we consider that both the
number of the agents and the amount of their available energy are fixed then full
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1.2 Problems Studied

exploration of the graph may not be possible. The optimization goal in such a case,
is to maximize the total number of nodes explored.
Last, in this work we consider a variant of the exploration with return with a

single agent. In this setting, some nodes of the graph contain resources (prizes)
that the agent can collect and use as fuel to continue with the exploration. Hence
the agent can continue the exploration for a longer time without running out of
energy/fuel. This problem has possible applications for scavenger robots that look
for fuel sources while performing interplanetary exploration. On a more practical
level, the problem models variants of travelling salesperson problems where the
salesperson makes profits by visiting some towns and uses this profit to buy fuel
for his vehicle and continue the travel. We call this problem the sustainable
exploration problem and we define it formally using a weighted graph G where
weights on the nodes (called gain) represent the energy gained by the agent and the
weights on the edges (called cost) represents the energy consumed while traversing
the edge. The agent starts at a designated node r and its initial energy is the value
of the gain at r. At any point the agent may traverse an edge if its remaining
energy is more than the cost of the edge and during this traversal the value of its
energy is reduced by the cost of the edge traversed. On visiting a node v for the
first time, the agent collects energy equal to the gain at that node. The objective
is to maximize the remaining energy at the end of the traversal. Note that in
sustainable exploration it is not asked for all the nodes to be visited.

Gathering
The problem of Gathering (or rendezvous) is another important problem in mobile
agent computing, as it can be a basic subtask useful for solving other problems,
such as exchanging information, locating a fault, capturing an intruder etc. In this
problem, we are given a graph G(V,E) and a set of distinct homebase nodes, the
goal for the agents is to eventually meet at a single unspecified node.

Gathering has been studied under various settings concerning the network as well
as the agents (ring topologies, anonymous networks, faulty agents, etc.). For our
case, the gathering of energy constrained agents at a single node might not always
be possible. For this reason, we study the problem of near-gathering, where we
ask for the agents to relocate in such a way that their maximum or average pairwise
distance is minimized.

Collaborative Delivery
In collaborative delivery, given a graph G(V,E) and a set of distinct homebase
nodes, the problem consists of moving a single package from its source node to its
target node by one or more mobile agents. The package could be a sample collected
by a robotic sensor that needs to be delivered to a base station for analysis. One
can also imagine an automated postal delivery system where packages need to be
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1.3 Related Work

delivered between sources and destinations using teams of robots or drones.
The main issue with collaborative delivery is again the restricted supply of energy

the agents have and thus, an agent can move only a limited distance before running
out of power. However, if we allow the agents to share their energy, multiple agents
can cooperate to deliver a package from source to destination. An agent can gather
the unused energy of any other agent that it meets. The optimization goal for
collaborative delivery is to minimize the total amount of initial energy the agents
need to deliver the package.

1.3 Related Work
Graph Exploration
The first algorithm designed for the exploration of a graph by a finite automaton
dates back in 1951 and is credited to Shannon [Sha51]. Ever since graph exploration
has been extensively studied under a vast number of models. We will try to present
an overview of the related work.

Single Agent For the case of a single agent on unknown graphs a very natural
optimization goal is the aim of minimizing the exploration time or equivalently
the number of edges traversed. Under this setting, one of the most simple and
quite efficient algorithms is the Depth First Search (DFS). In the worst case a
DFS traversal of a graph needs 2m steps, whereas the optimal offline algorithm
would need m steps. Therefore, DFS admits a competitive ratio of 2. In [PP99],
Panaite and Pelc proposed an algorithm that requires m+ 3n steps, which is better
than the DFS, given that 3n < m. In [MMS11] the authors studied the case of
weighted graphs and presented a 2w-competitive algorithm for general graphs with
at most w distinct weights. Dessmark and Pelc in [DP04], studied how different
types of initial knowledge of the graph impact the efficiency of exploration. More
in particular, they showed that if the agent is given an unlabelled isomorphic copy
of the graph (unanchored map) the optimal competitive ratio for line topologies
is
√

3 and for tree topologies is less than 2. On the other hand, if the agent is
given an unlabelled isomorphic copy of the graph with the starting node marked
(anchored map) the optimal competitive ratio for lines is 7

5 and for trees is 3
2 . In

the same work, it was shown that the DFS is optimal for arbitrary graphs even
if the agent is given an anchored map of the graph. Fraigniaud et al. in [FIP08]
considered a more abstract concept of a map and they showed that O(log logD)
bits of information are sufficient to achieve competitive ratio smaller than 2 for
trees, where D is the diameter of the graph.
If we consider exploration of all edges of directed graphs the problem becomes

much harder, as the direction property of the edges allows the adversary to force
the agent in traversing multiple times parts of the graph only to explore a single
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1.3 Related Work

node each time. For this case, Deng and Papadimitriou in [DP99], presented an
algorithm with dO(d)m time complexity, where d denotes the deficiency of the
graph (the minimum number of edges that have to be added to make the graph
Eulerian), they also conjectured the existence of a poly(d)-competitive algorithm.
Later, Albers and Henzinger presented an improved algorithm with dO(log d)m time
complexity [AH00]. Finally, Fleischer and Trippen proved the conjecture of Deng
and Papadimitriou by presenting a O(d8)-competitive algorithm in [FT05]. For the
exploration of all nodes of a directed graph, matching lower and upper bounds for
the competitive ratio were obtained in [FW16].
From the perspective of minimizing the memory needed by the agent for ex-

ploration of anonymous graphs, in a work of Fraigniaud et al. [Fra+05] it was
shown that Ω(log n) bits of memory are necessary for exploring a graph of size
n. In the same work they showed that Θ(D log δ) memory bits are sufficient and
necessary for exploring graphs of diameter D and maximum degree δ. In [Dik+04],
the authors studied tree topologies and they showed that Ω(log log log n) memory
bits are required for exploration with stop of trees of size n and that Ω(log n) bits
are needed for exploration with return. In [Amb+11] Ambühl et al. proposed an
algorithm for exploration with return that matches the lower bound of Ω(log n).

For the exploration of anonymous networks, another direction is to consider that
the agent has pebbles to mark nodes in order to recognize them. The goal in that
case is to minimize the number of pebbles used. It is easy to show that with a
single pebble an agent can traverse an anonymous undirected graph in O(nm) steps.
Bender et al., in [Ben+02], showed that if the agent knows an upper bound on
the number of nodes, a single pebble is sufficient for exploring in polynomial time
O(n8δ2) directed graphs as well. In the same work they also showed that if the
agent does not know any upper bound on the size of the graph, then Θ(log log n)
pebbles are necessary and sufficient. In [BS94] the authors considered two agents
cooperating for the exploration of an unknown graph, where one of the agents acts
as a pebble by standing at a node while the other agent explores new nodes.

Multiple Agents For the exploration of graphs using multiple agents, the opti-
mization problem was proved to be NP-hard even for tree topologies in a work
of Fraigniaud et al. [Fra+06]. In the same work the authors presented an al-
gorithm for collaborative exploration with return for a team of k mobile agents
communicating through whiteboards. The running time of their algorithm is
O(D + n/ log k), where D is the height of the tree and its competitive ratio is
O(k/ log k). They also showed a lower bound of Ω(2−1/k) on the competitive ratio
for any collaborative exploration algorithm using k agents. In [Hig+14], the authors
showed that if we consider only greedy exploration algorithms, the lower bound
on the competitive ratio becomes Ω(k/ log k), that matches the competitiveness of
the greedy algorithm presented in [Fra+06]. Ortolf and Schindelhauer in [OS14]
adopted a recursive approach and improved the upper bound on the competitive
ratio to O(2O(

√
(logD)(log log k))(log k)(log k + log n)) for k ≥ 2ω(

√
logD log logD) and
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1.3 Related Work

n ≥ 2O(2
√

logD).
The lower bound on the competitive ratio of any deterministic algorithm using

global communication was improved by Dynia et al. in [DŁS07] to Ω(log k/ log log k)
for k <

√
n. Disser et al. in [Dis+17] showed that the same lower bound holds for

the extended range of k < n logc n, for every constant c ∈ N. In the same work they
showed that any collaborative exploration algorithm with k = Dn1+o(1) agents has
a competitive ratio of ω(1). This lower bound almost matches the upper bound of
Dereniowski et al. in [Der+15]. In that work the authors studied the case for large
values of k, i.e., k = Dn1+ε, for any ε > 0 and they presented a O(1)-competitive
algorithm. Their solution also works for general graphs where all nodes are within
distance D from the starting node.

For a more restricted class of graphs called sparse trees, Dynia et al. in [Dyn+06]
presented an algorithm with a competitive ratio of O(D1−1/p) for trees restricted
by parameter p, where p is the density of the tree as defined in that work.

Ortolf and Schindelhauer in [OS12] studied the case of grid graphs with obstacles.
They showed that the lower bound of Ω(log k/ log log k) of trees holds for the grid
graphs as well. They also showed that for randomized strategies the lower bound
for grid graphs changes to Ω(

√
log k/ log log k).

Energy Aware Agents Betke et al. [BRS95] considered for the first time energy
constrained agents in the context of exploration of grid graphs by an agent who
can return to its starting node s for refueling (piecemeal exploration). The agent
is given an upper bound l = (2 + α)r on the number of edge traversals it can
make before returning to its starting node, where α is some nonnegative constant
and r is the distance to the farthest node from s (radius). In their work they
showed that an agent can perform a piecemeal exploration of a grid graph with
rectangular obstacles in linear time. Awerbuch et al. [Awe+99] studied the same
problem for general graphs and they presented a nearly linear algorithm where
the agent traverses at most O(|E|+ |V |1+o(1)) edges. In [DKK06], Duncan et al.
presented an optimal time algorithm Θ(|E|) for exploration of weighted graphs
under the constraint where the agent is tied to the starting node with a string of
fixed length of l = (1 + α)r (tethered). In the same work the authors showed that
the two models, piecemeal and tethered exploration are equivalent within constant
factors.

In [DDU17], the authors considered the problem of decomposing a DFS traversal
of a weighted tree into a sequence of closed routes (starting and ending at the
designated root of the tree) of length at most B, with the goal of minimizing
the number of such routes. To this end, they proposed a strategy that achieves
asymptotically the minimum number of routes and minimizes the cost up to a
small constant, where the cost of a solution is defined as the sum of the lengths of
all routes.
When refuelling is not allowed, multiple agents may be needed to explore even

graphs of restricted diameter. Given a graph G, determining whether a team of k
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agents, each having an energy constraint of B can explore G is known to be an NP-
hard problem, even when the graph G is a tree [Fra+06]. Dynia et al. in [DKS06]
studied collaborative exploration with return for the case where the number of
agents is fixed and the goal is to optimize the amount of energy B required by
each agent. They presented an 8-competitive algorithm for trees under the local
communication scenario and showed a lower bound of 1.5 on the competitive ratio
for any deterministic algorithm. For the same model, the authors in [DŁS07]
improved the upper bound by presenting a (4− 2/k)-competitive algorithm.

Prize Collecting Agents In this type of offline exploration, there is a prize or
gain associated to each node and the goal is to maximize what the agent collects from
visiting the nodes of a graph (not necessarily all of them). Standard examples of
problems belonging in this variant of exploration are the Prize Collecting Travelling
Salesman Problem (TSP) and the Prize Collecting Steiner Tree (PCST).

In the prize collecting travelling salesman problem, as it was introduced by Balas
in [Bal89], we are given an edge-weighted graph G in which each node has an
associated prize and penalty, the goal is to collect a given quota of the prizes of the
nodes while minimizing the length of the tour plus the sum of penalties of nodes
not included in the tour. Bienstock et al. in [Bie+93] considered a version of the
problem in which there is no quota of the prizes to be collected. Inspired by the
metric TSP which can be approximated within a constant factor, they designed a
2.5-approximation algorithm for the case where the edge costs satisfy the triangle
inequality, using linear programming. This result was improved by Goemans and
Williamson in [GW95] by presenting a 2-approximation algorithm. Archer et al.
in [Arc+11], further improved the result by presenting a (2 − ε)-approximation
algorithm. The current best known result is by Goemans who presented a 1.91457-
approximation algorithm in [Goe09], by combining techniques used in the previous
works [Bie+93] and [GW95].

In the work of Bienstock et al. [Bie+93], was also introduced the problem of
PCST. In this problem the setting is similar to the prize collecting TSP with
the objective, however, of finding a Steiner tree that spans a subset of the nodes
such that its cost plus the sum of penalties of nodes not included in the tree is
minimized. They presented a 3-approximation algorithm, as an extension of their
algorithm for prize collecting TSP. Goemans and Williamson in [GW95], gave a
(2 − 1

n−1)-approximation algorithm using a primal-dual scheme with O(n3 log n)
time complexity, improving the previous result. Johnson et al. in [JMP00] proposed
an algorithm with the same approximation ratio of (2− 1

n−1), but with better time
complexity O(n2 log n). However, Feofiloff et al. in [Feo+07] gave a counterexample
for which the algorithm of Johnson et al. derives an approximation ratio of 2.
In addition, Feofiloff et al. presented a (2 − 2

n
)-approximation algorithm with

O(n2 log n) running time, which is the current best known approximation ratio for
PCST.
Johnson et al. in [JMP00] also introduced three variants of PCST, namely, the
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Net Worth Maximization problem, the Quota problem and the Budget problem. In
the net worth maximization problem the goal is to find a subtree that maximizes
the profit, where the profit is defined as the sum of the prizes of nodes included in
the solution minus the cost of the subtree. In [FPS01] it was proved that net worth
maximization is NP-hard to approximate within any constant factor. In the quota
problem the objective is to find a subtree that collects at least a given quota of the
prizes while minimizing its cost. The authors showed that any α-approximation
algorithm for k-MST can be extended to a pseudopolynomial-time α-approximation
algorithm for the quota problem (Garg in [Gar05] gave a 2-approximation algorithm
for k-MST, which is the best current known). Last, for the budget problem the
goal is to find a subtree that maximizes the prizes of nodes included in the solution
with a given bound cost. They showed that the budget problem can be solved by
the quota problem using binary search achieving a (5 + ε) approximation ratio.

Movement Problems
In movement problems, we are given a graph G(V,E) and the initial placement of
a group of k mobile agents on some nodes of G, the goal is to move the agents so as
to obtain a desired final configuration while minimizing the maximum or the total
movement of the agents. Movement problems have been widely studied in mobile
agent computing mainly for the distributed setting. In survey [PS06], the authors
describe the algorithmic capabilities and limitations of autonomous mobile agents
with respect to movement problems. For the centralized setting, the first work
was presented by Demaine et al. in [Dem+09]. They considered the problems of
connectivity, where the induced subgraph by the agents’ final locations is connected,
s-t connectivity, where the induced subgraph by the agents’ final locations contains
nodes s and t in one connected component, independence, where the final locations
of the agents should form an independent set and matching, where the pairwise
distance of the agents in the final configuration, is at most one. They proved several
approximation and inapproximability results for the considered problems, apart
from the matching problem, for which they showed that it admits a polynomial
time algorithm for both optimization goals. For the maximum movement version of
the connectivity and s-t connectivity problems they showed lower bounds of 2 and
upper bounds of O(1 +

√
k/OPT ), where OPT is the cost of an optimal solution.

Berman et al. in [BDZ11], improved these upper bounds by presenting constant
factor approximation algorithms for both problems.

In [Dem+09], the authors also suggested the facility-location movement problem
where there are two types of agents, namely clients and servers, and the target
property is that every client is located at a node that contains a server. They
presented a 2-approximation algorithm for the maximum movement version, but
they left open the total movement version. Friggstad and Salavatipour in [FS11]
proved a lower bound of 2 for the maximum movement facility location, proving
the algorithm of Demaine et al. tight, and they presented an 8-approximation
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algorithm, based on LP-rounding, for the total movement objective of facility
location. This upper bound was improved by Ahmadian et al. in [AFS13] by
presenting a (3 + ε)-approximate algorithm, where ε > 0.

Bilò et al. in [Bil+13] studied the gathering problem for the case of agents moving
in a vertex-to-vertex manner in the visibility graphs of simple polygons. They
showed that minimizing either the maximum or the total movement is polynomial
time solvable.
In [Bil+16], the authors studied the clique problem, in which we ask that the

induced graph by the agents’ final locations forms a clique in G. They showed
that minimizing the maximum or the total movement is NP-hard. Moreover, they
presented an approximation algorithm for the maximum movement version which
is optimal except for an additive term equal to 1 and a 2-approximation algorithm
for the total movement version.

In [DHM14] for the case of small number of agents (compared to the size of the
graph) the authors considered the fixed-parameter tractability. They showed that
the complexity of movement problems depends on the treewidth of their minimal
configurations (the configuration of a feasible solution where the deletion of an
edge destroys the solution).

Collaborative Delivery and Related Problems
Collaborative delivery by energy-aware mobile agents, is a problem that has been
considered in some recent works under various assumptions. In [Cha+13], the
authors proved that the problem of deciding whether delivery is feasible is NP-hard
even if the agents are initially collocated, and they provided a 2-approximation
algorithm for the optimization version of finding the minimum initial energy that
can be given to all agents so that delivery becomes feasible, as well as exact,
approximation, and resource-augmented algorithms for variants of the problem.
Chalopin et al. in [Cha+14], showed that the problem is weakly NP-hard even on
the line (with initially dispersed agents), and provided a quasi-, pseudo-polynomial
algorithm under the assumption of integer numerical values in the problem instance.

In [Bär+16], the authors considered the variant of the delivery problem in which
the agents have to return to their respective starting positions and they proved
that this problem is NP-hard for planar graphs but can be solved efficiently on
trees and lines, in contrast to the non-returning version which is NP-hard on lines.
They also gave resource-augmented algorithms for returning delivery in general
graphs and proved tight lower bounds on the resource augmentation for both the
returning and the non-returning variant.

Bärtschi et al. in [Bär+17], considered agents that do not have a limited energy
source, but instead they have different rates of energy consumption and the goal
is to find a delivery schedule that minimizes the total energy spent. Moreover,
there are several messages that need to be delivered from their respective source to
their respective target. The authors studied separately three subtasks that need
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to be solved in order to compute the optimal solution (collaboration of different
agents on the same message, planning for an agent that works on multiple messages,
and assignment of messages to agents) and they provided a polynomial-time (non-
constant) approximation algorithm for the problem. In this setting, the authors
in [BGP17] studied the design of truthful mechanisms in a game-theoretic model
where the rate of energy consumption is information private to each agent. Bärtschi
and Tschager in [BT17], considered the case where the agents have different rates of
energy consumption as well as different rates of travelling and they were interested
in finding a schedule that simultaneously minimizes the total energy consumption
E and the delivery time T . They showed that minimizing lexicographically the
tuple (E , T ) is polynomial time solvable.
Broadcast and convergecast are two closely related problems. In the broadcast

problem a specified agent has some piece of information that has to become available
to all other agents. In the convergecast problem each agent initially has some piece
of information and every piece of information needs to be collected by some agent.
Anaya et al. in [Ana+16] studied for both centralized and distributed settings
the broadcast and convergecast problems. They showed hardness results for tree
topologies and presented approximation algorithms for arbitrary graphs. Czyzowicz
et al. in [Czy+17] studied the variant of broadcast in which a piece of information
is initially stored at a node of a graph and it needs to be broadcasted to all other
nodes by mobile agents while minimizing the total energy used by all agents. In
their work they considered tree topologies and they presented an algorithm with
O(n log n) time complexity for solving the problem optimally.

The only previous work that considers energy sharing by mobile agents is [Czy+16],
where this feature is introduced in the context of the delivery and convergecast
problems. The authors showed that both problems can be solved efficiently in trees,
whereas they are NP-complete in general undirected and directed graphs. It is
important to note that, in the model of [Czy+16], an agent may store an unlimited
amount of energy as a result of receiving energy from other agents it encounters.
In other words, there is no battery capacity constraint for the agents.

1.4 Overview of the Thesis
This thesis is organized as follows.

In Chapter 2, we consider the exploration with no return of an unknown tree by a
team of energy constrained mobile agents. Each agent has a fixed amount of initial
energy and the optimization goal is to minimize the total number of agents used.
We study this problem under two communication models. First, we consider that
the agents have global communication, meaning that the agents communicate with
each other instantaneously and we provide an efficient algorithm for the problem.
Next, we consider the local communication model, in which the agents have to
be collocated in order to share information. We modify the previous algorithm in
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order to work under this model, achieving the same asymptotic cost with a small
multiplicative overhead. Finally, we give a lower bound for the local communication
model that matches the cost of our algorithm, proving that our result is tight.

In Chapter 3, we consider the exploration with no return of an unknown tree by
a fixed number of agents, where each agent has a fixed amount of initial energy.
Since the number of agents and their initial energy are fixed there is no guarantee
that we can explore the entire tree, for this reason, the optimization goal in this
case is to maximize the number of explored nodes. Here, we only consider the
global communication model. We present an efficient algorithm that is constant
competitive with respect to the offline optimal algorithm. We also prove a lower
bound on the competitive ratio for the problem.

In Chapter 4 we consider the exploration with return of known trees by a single
agent which can collect energy from the nodes that it visits, enabling it to continue
the exploration. We study the problem in weighted trees where the weight of an
edge represents the amount of energy the agent has to spend in order to traverse it
and the weight (gain) of each node represents the amount of energy that the agent
can collect upon visiting the node for the first time. The goal in this problem is
to maximize the amount of collected energy the agent brings back to the root at
the end of the exploration. The agent is not required to visit all the nodes of the
tree and indeed an optimal solution might not visit every node of the tree, in order
to maximize the collected gain. We prove that this problem is NP-hard even in
trees. Next, we show that if we provide the agent with sufficient initial energy we
can solve the problem efficiently and we present an algorithm for collecting the
maximum gain. Furthermore, we present an algorithm that computes the minimum
initial energy the agent needs in order to achieve the maximum collected gain.

In Chapter 5, we consider the problem of near-gathering where the optimization
goal is to relocate the agents, in such a way that the maximum or the average
distance between any two agents is minimized. We study the problem in general
graphs and prove that computing a strategy for minimizing their maximum pairwise
distance is NP-hard to approximate within a factor of 2− o(1) and we provide a
matching approximation algorithm. We also provide a constant factor approxima-
tion algorithm for the problem of minimizing the average pairwise distance between
agents.

In Chapter 6, we consider the collaborative delivery problem assuming the agents
can share their energy upon meeting, under two scenarios. In the first scenario,
we allow the agents to share their energy without any restrictions, while in the
second scenario, we assume each agent has restricted energy capacity, such that
at any moment, the amount of available energy an agent has, cannot be greater
than the amount of energy it started with. For the first scenario we prove that
the problem is NP-hard and we show that if we augment the initial energy of the
agents by a constant factor, then we can solve the problem optimally. For the
second scenario, we show that the problem is NP-hard even when the agents have
initial energy equal to 2 if the initial positions of the agents is given as part of the
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input of the problem. On the other hand, if the algorithm can choose the initial
placement of the agents from a given subset of starting nodes, then we show that
we can solve the problem efficiently and we provide a solution strategy using the
minimum number of agents.

Last, we finish this document with a chapter of conclusions, where we summarize
the results presented in this thesis and we also propose some perspectives for further
research in the topic of energy constrained mobile agents.

21



2 Online Exploration of Trees

Introduction
We consider the problem of exploration of an unknown tree T by a team of mobile
agents initially located at the root of the tree. Each agent is equipped with a
battery of size B which bounds the total number of edges the agent can traverse
during its lifetime. The agents do not have to return to the root. We assume
the height of the tree, i.e., the longest path between the root and a leaf, to be
at most B − 1, and our objective is to find an exploration strategy where every
node of the tree is visited by at least one agent, and we wish to minimize the total
number of agents used. If the height of T is greater than B, then T cannot be
fully explored, even by an unbounded number of agents. Moreover, if the tree has
height greater than B, this fact cannot be detected at the root of the tree. On the
other hand, if the height of the tree is exactly B then each leaf at depth B must
be visited by a separate agent. Once the tree is completely explored and known
up to depth B − 1 then we can send one additional agent to explore each leaf at
depth B. Observe that any optimal offline algorithm would also need to send one
agent per leaf at depth B. Thus, we can safely ignore these agents, as this would
not increase the cost of the algorithm by more than a factor of 2. So, we will be
considering algorithms for exploring trees of height at most B − 1.
We study this problem first assuming a global communication model (where

agents communicate to each other instantaneously) and provide an algorithm for
online exploration, that has a competitive ratio of O(logB). We then show how to
remove the assumption of global communication and achieve the same result in the
local communication model, with a constant overhead. Finally we provide a lower
bound of Ω(logB) on the competitive ratio of any online exploration algorithm
for energy constrained agents in the local communication model, showing that our
result is tight.
The results presented in this chapter are accepted for publication in [DDKar].

A preliminary version of these results has appeared in the conference publication
[DDK15].

The Model
The environment to be explored is a rooted tree T . The root r0 contains an infinite
supply of mobile agents, each of which has a limited energy B, allowing it to
traverse at most B edges during its lifetime. There is a total order among the
agents (i.e., they have distinct identities). The nodes of the tree may be assumed to
be anonymous (i.e., we do not require unique identifiers for the nodes of T ). Each
agent has unlimited memory. When two agents are at the same node, they can
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freely exchange information. However the agents may not write any information on
the nodes of the tree 1. We call this the local communication model. In contrast,
in a global communication model an agent can communicate instantaneously with
any other agent irrespective of their location in the tree.
All agents start at the same time, in the same state. The agents move syn-

chronously. At each time unit, any agent can move to an adjacent node or stay at
its current node. Each move costs one unit of time and one unit of energy, while
computation and communication between agents are instantaneous and do not
consume any energy. The agents cannot share their energy resources or recharge
their batteries.

The height of the tree (i.e., the distance to the furthest leaf from the designated
root r0) is at most B − 1 and this information is known to the agents. However,
the size (# nodes in the tree) and the structure of the tree is initially unknown
to the agents. The edges incident at each node are locally ordered with port
numbers, allowing the agents to choose edges to visit in a deterministic manner.
An exploration strategy for the team of agents is successful if each node of the tree
is visited by at least one agent. The cost of the exploration strategy is the number
of agents which made any non-null moves during the exploration. We denote by
OPT the cost of the optimal offline strategy that has complete knowledge of the
tree.
For any node r ∈ T we denote by Tr the subtree of T, rooted at r. Further for

any node v ∈ Tr, we define the depth of node v as the length of the path from r
to v. We denote by T δr the subtree rooted at r truncated to depth δ from r. We
denote by |T |, the number of edges in T .

2.1 Exploration with Global Communication
In this section we describe and analyze a recursive algorithm for tree exploration
under the global communication model. The algorithm is called Global Commu-
nication Tree Exploration (GCTEε). The main idea of the algorithm is to explore
the tree up until a certain depth and afterwards take advantage of the already
known part of the tree to continue the exploration. More specifically, this algorithm
proceeds by levels. Each level of the algorithm is a set of nodes which are located
at a certain depth of the tree. The first level consists of the root r0. At each level i,
agents having energy bi, expand the explored part of the tree further by increasing
its depth by dε· bie where ε is a parameter of the algorithm such that 0 < ε < 1

4 .
The new frontier of the explored part defines the next level of the algorithm. The
algorithm GCTEε is then recursively called at each node r of the newly created level
i. Whenever an agent is needed at a node r, one agent from the global root r0
arrives at r to execute GCTEε

1Note that the only way to store information at a node is by having an agent stay at the node
carrying this information
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r
di

di + dε · bie = di+1

di−1 + b( 12 + ε) · bi−1c

di + b( 12 + ε) · bic

. . .r′

di+1 + b( 12 + ε) · bi+1c

Figure 2.1: The explored subtrees for two consecutive calls to GCTEε: the first for node
r at level i and the next recursive call for r′ at level i + 1. The first shaded
region is the explored part of Tr and the second shaded region is the part
explored during level i.

Definition 1. For i = 1, level i of algorithm GCTEε consists of the root node r0;
the depth di of the level i is d1 = 0, the energy bi at this level is b1 = B. For i > 1,
level i of GCTEε consists of all nodes at depth di = di−1 + dε· bi−1e, and bi = B−di.

For any two nodes u and v at the same level, we would like the exploration of
the trees Tu and Tv to proceed independently, using disjoint sets of agents. To
this end, we allow some overlap between successive levels of the algorithm. More
precisely, at each level i, the exploration is extended to depth of

⌊
(1

2 + ε) · bi
⌋
,

although the next level still starts at depth dε· bie from the current level. This
additional extension at each level i allows the algorithm to look ahead at the start
of the next level (i+ 1). Thus, at the start of a recursive call to Algorithm GCTEε
at a node r at level i + 1, the subtree Tr has been already partially explored to
some depth. We show below (c.f. Lemma 3) that the exploration of this partially
explored subtree Tr can be done independently to any other subtree at the same
level.

Definition 2. Two partially explored subtrees Tu and Tv, rooted at nodes u and v
located at the same depth from r0, are said to be independent if no single agent
can visit nodes in the unexplored part of both subtrees.

Informally, this independence means that disjoint teams of agents can be used
for exploring such subtrees during the algorithm. See Figure 2.1, which illustrates
the ‘overlaps’ of explored parts of the subtrees for two consecutive calls to GCTEε.
We now formally describe our algorithm GCTEε.
For an execution of GCTEε with parameters r and b, we define x(ε) = 1

2(1
2 − ε)b.

Each agent saves dx(ε)e units of energy which is never used during GCTEε. This
energy will be used later as explained in the next section.
Procedure Uncover(r, δ) with input node r and an integer δ works as follows.

During this procedure, the agents explore the unexplored part of subtree Tr rooted
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Algorithm 1 GCTEε: An algorithm for tree exploration, 0 < ε < 1
4

Input: The root r of the tree and an integer b that equals the size of the available
energy the agents have.

1: Uncover(r,
⌊
(1

2 + ε)b
⌋
)

2: Let r1, r2, . . . be nodes at depth dε· be from r, such that Tri has some unex-
plored edges.

3: For each ri, call Algorithm GCTEε(ri, (b− dε· be)).

at r, using a Depth First Search (DFS) traversal restricted to a depth of δ from r.
This DFS traversal is defined as the walk followed by an agent of infinite energy
starting at node r and performing DFS on the tree T ′ that is obtained from T δr by
pruning all subtrees that have been already explored (before the call to Uncover).
An agent initially located at the root r0 arrives at the current root r, having b
units of energy and begins to explore the subtree T δr . First, this agent goes to the
unexplored node that is supposed to be visited next in the DFS traversal. From this
node, the agent follows the DFS traversal. Finally, when the agent has dx(ε)e units
of energy left, it interrupts the exploration. Note that in the global communication
model, at any point of the exploration, each agent possesses the full knowledge
of the part of the tree explored to date and the current locations of all agents.
Hence, another agent will arrive at r and continue the exploration by visiting the
unexplored node that is supposed to be visited next according to the DFS traversal.
This procedure ends when all nodes at depth δ or less have been visited.

Lemma 3. The subtrees that are created in step 2 of GCTEε are pairwise independent.
Moreover, for any such subtree Tr rooted at a node r any agent that explores any
edge in the unexplored part of Tr cannot return to node r.

Proof. Consider the subtree Tr rooted at r at the start of procedure Uncover(r, δ)
at some level i > 1 of the algorithm. Let E ′r denote the set of unexplored edges
of Tr. By construction, we have that subtree Tr is already explored until depth
d ≥

⌊
1
2 · bi−1

⌋
from r and thus any edge in E ′r is at distance at least d from r. Any

agent located at r has at most bi units of energy and d ≥
⌊

1
2 · bi−1

⌋
≥
⌊

1
2 · bi

⌋
. As

a result, the agent will use at least d + 1 units of its available energy to explore
any edge in E ′r, where d+ 1 > 1

2 · bi, thus, such an agent would not have sufficient
energy to return to the root r and subsequently to reach any other subtree rooted
at the same level.

Theorem 4. For any ε, 0 < ε < 1
4 , Algorithm GCTEε called with parameters r0

and B correctly explores the tree.

Proof. To prove the correctness of 1, we will first show that procedure Uncover(r, δ)
called for a subtree Tr rooted at r at some level i ≥ 1 with δ =

⌊
(1

2 + ε)bi
⌋
correctly

25



2.1 Exploration with Global Communication

explores the subtree Tr up to depth δ. In order to prove this, we will show that
each agent has enough energy to reach an unexplored edge. Note that by a simple
induction on the distance of r from r0, any agent that arrives at node r, to execute
Uncover(r, δ), has exactly bi units of energy. Further any such agent a has complete
knowledge of the part of subtree Tr already explored by previous agents and thus
agent a knows the path from r to the next unexplored node v in the DFS traversal
of T δr . This node v is at distance at most δ from r. According to the algorithm,
agent a has

l := bi − dx(ε)e = bbi − x(ε)c ≥ δ + bx(ε)c
units of energy available for the DFS traversal. Since l ≥ δ the agent does succeed
in reaching the node v. Hence, each agent used in Uncover visits at least one
previously unexplored node in T δr . As long as there are unexplored edges we keep
sending agents, where this implies that eventually all nodes within depth δ in Tr
are visited during the DFS exploration. This proves the correctness of procedure
Uncover.
In order to complete the proof of the correctness of GCTEε, we note that the

algorithm makes progress at each level i, that is, level i+ 1 is at strictly greater
depth than level i. Indeed, this follows from εbi > 0 for ε > 0, which gives
dεbie ≥ 1.
Lemma 5. The number of levels in Algorithm GCTEε is at most log( 1

1−ε ) B.

Proof. For the purpose of this proof introduce two variables d′i and b′i as follows:
d′1 = 0 and d′i = d′i−1 + ε· b′i−1 for i > 1, where b′i = B − d′i for i ≥ 1.

We first argue by induction on i that d′i = B − (1− ε)i−1B for i ≥ 1. This claim
trivially holds for i = 1 so take now some i ≥ 1 and assume that d′i = B−(1−ε)i−1B.
We obtain

d′i+1 = d′i + εb′i = d′i + ε(B − d′i) = (1− ε)d′i + εB

= (1− ε)
(
B − (1− ε)i−1B

)
+ εB = B − (1− ε)iB

as required.
Since di ≥ d′i for each i ≥ 1, we have proved that di+1 ≥ B − (1− ε)iB for each

i ≥ 1. Observe now, that if (1− ε)i ·B ≤ 1, then the i-th call is the last recursive
call to 1, i.e., the subtrees rooted at level i + 1 have no unexplored edges. This
holds due to the fact that the height of the tree is no more than B − 1. Therefore,
the inequality (1− ε)i ·B ≤ 1, gives us an upper bound on the maximum level
number i, which gives at most log( 1

1−ε ) B levels.

Before proceeding to calculating the cost of Algorithm GCTEε, let us make the
following useful remark. During the procedure Uncover, each participating agent
uses at most δ − 1 energy to reach the starting node for its DFS exploration and
uses at least b− (δ− 1)−dx(ε)e ≥

⌈
1
2(1

2 − ε)b
⌉
units of energy to contribute to the

DFS exploration of unexplored nodes.
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Lemma 6. Procedure Uncover(r,δ) for r = r0 and δ = b(1/2 + ε)Bc uses SOLr
agents where SOLr ≤ 4

( 1
2−ε)

·OPT.

Proof. In this case, T δr is completely unexplored at the start of the procedure.
By the properties of DFS exploration, the DFS walk of a tree T δr is of length
2 · |T δr |. Each agent (except possibly the last one) uses at least

⌈
1
2(1

2 − ε) ·B
⌉

of its available energy to traverse a part of this walk. Thus, we get the following
inequality: ⌈1

2

(1
2 − ε

)
·B

⌉
·SOLr ≤ 2 · |T δr | ≤ 2 · |T |

In addition, we have that |T | ≤ OPT·B, since the optimal algorithm must
visit all the edges of the tree T . Hence, we get⌈1

2

(1
2 − ε

)
·B

⌉
·SOLr ≤ 2 ·OPT·B

Finally, we have that 1
2

(
1
2 − ε

)
·B ≤

⌈
1
2

(
1
2 − ε

)
·B

⌉
, therefore

SOLr ≤
4

1
2 − ε

·OPT

Theorem 7. Algorithm GCTEε has a competitive ratio of at most 4
( 1

2−ε)
· log( 1

1−ε ) B.

Proof. Consider a call to GCTEε(r, bi) at some level i > 1, where r is at depth di > 0
from the global root. Let SOLr denote the number of agents used by the algorithm
to explore edges of the subtree Tr during level i. A DFS exploration walk of Tr
that starts and ends at r has length 2 · |Tr|. As explained before each of the SOLr
agents (except the last one) use at least

⌈
1
2(1

2 − ε)bi
⌉
of their available energy to

contribute to the DFS exploration. The last agent may have some available energy
after visiting the last unexplored edge in Tr but it does not have enough energy
to return to node r (by Lemma 3). Therefore, if we assume that the last agent
attempts to reach the root r with its remaining energy, we can say that the path
traversed in total by the agents is less than 2 · |Tr|. Thus,

1
2(1

2 − ε)bi ·SOLr ≤
⌈1

2(1
2 − ε)bi ·SOLr

⌉
≤ 2 · |Tr|

=⇒ SOLr ≤
4

bi(1
2 − ε)

|Tr|

Furthermore, due to Lemma 3, we know the subtrees at the same level are inde-
pendent so we can sum up over all subtrees at level i:

∑
r∈r1,r2,...

SOLr ≤
4

bi(1
2 − ε)

∑
r∈r1,r2,...

|Tr|
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2.2 Exploration with Local Communication

SOL(i) ≤ 4
bi(1

2 − ε)
|T \ T dir0 |

where SOL(i) denotes the number of agents used by the algorithm at level i. The
optimal algorithm uses OPT agents to explore the tree. Any agent that reaches to
depth di of T has bi units of energy remaining. Thus, each agent can traverse at
most bi edges below this depth. Hence

bi ·OPT ≥ |T \ T dir0 |

Combining the above two equations, we have

SOL(i) ≤ 4
1
2 − ε

OPT

The above bound holds for any level i > 1. Moreover, due to Lemma 6, we have
exactly the same bound for level i = 1 of the algorithm. Since there are at most
log( 1

1−ε ) B levels in the algorithm (due to Lemma 5), we obtain the total cost SOL
of the algorithm,

SOL ≤ 4
1
2 − ε

· log( 1
1−ε ) B·OPT

Note that on the termination of algorithm GCTEε, each agent that participated
in the exploration at level i has at least xi(ε) = 1

2(1
2 − ε) · bi units of unused

energy. This remaining energy would be used by the algorithm presented in the
next section.

2.2 Exploration with Local Communication
This section is devoted to adaptation of GCTEε for the model with local communi-
cation between agents. This is done in two steps. In the first step we introduce
an intermediate stage between two models of global and local communication. We
call this a semi-local communication model and we define it as follows: two agents
performing the DFS exploration in Step 1 of an instance of GCTEε can communicate
only locally, that is, they can communicate only when present at the same node;
on the other hand, whenever an agent is needed at a node r, one agent arrives
from the global root at r to execute the instance of GCTEε. Thus, in our semi-local
communication model this mechanism of calling for agents uses the global communi-
cation model. In Section 2.2.1 we adopt GCTEε so that it operates in the semi-local
communication model and we calculate the cost of this modification in terms of the
number of agents used. In particular, we prove that with respect to the original
algorithm, the total number of agents increases by a constant factor (depending
only on ε). Then, in Section 2.2.2, we add to our algorithm a mechanism for calling
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2.2 Exploration with Local Communication

for new agents at local roots so that this part is also done via local communication.

2.2.1 Semi-local communication model
We start this section by providing some intuition. We consider an arbitrary
execution of GCTEε(r, b) for an input node r and energy level b. Recall Step 1 of
GCTEε, where the agents, one by one, perform the DFS traversal up to a certain
depth of the subtree Tr. Suppose that the agents that perform this traversal are
a1, . . . , ak and that they are ordered according to the precedence of their movements,
i.e., ai traverses its path prior to ai+1 for each i ∈ {1, . . . , k− 1}. For each agent ai
we will add 5 additional agents denoted a1

i , . . . , a
5
i . To simplify some statements

we sometimes write a0
i in place of ai. The agents ai, a1

i , . . . , a
5
i are called the i-th

team for each i ∈ {1, . . . , k}. For the purposes of the analysis we introduce some
additional notation that allows us to describe the behavior of agents during this
DFS traversal in more details. As mentioned earlier, we denote

x(ε) = 1
2

(1
2 − ε

)
b (2.1)

We also say that an agent heads towards a node v if in each of the following
consecutive time units the agent makes a move that gets it closer to v until either v
is reached or the agent runs out of energy. It is said that the i-th team is successful
if: (i) the agent ai visited a superset of nodes with respect to its original behavior
in Step 1 of GCTEε, and (ii) the agent a1

i reaches the root r and possesses the
information about all moves performed by agents a1, . . . , ai.

We now describe the modification of the DFS traversal from Step 1 of GCTEε by
describing how ai and a1

i , . . . , a
5
i operate for each i ∈ {1, . . . , k}.

Behavior of ai. Recall that in Step 1 of GCTEε, each agent ai, i ∈ {1, . . . , k},
finishes its part of DFS traversal having at least dx(ε)e energy left. We now use
this energy as follows: the agent heads towards the root r in the next dx(ε)e time
units.
Behavior of aji ’s. For each i ∈ {1, . . . , k} and j ∈ {1, . . . , 5}, the agent aji follows
the movements of ai up to depth

dj(ε) = bj·x(ε)c

until the completion of the movement of ai. More precisely, the agent aji mimics
each move of ai from node u to node v if both u and v are within depth (from r) at
most dj(ε). If, on the other hand, either u or v is at depth greater than dj(ε), then
aji stays idle during any such move of agent ai. Finally, the agent aji heads towards
the root r; we will describe below in which time step this action is triggered.
Order of movements. Having described the movements of ai and aji for each
i ∈ {1, . . . , k} and j ∈ {1, . . . , 5}, we specify the order of their actions. The agent a1
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2.2 Exploration with Local Communication

starts its movement once all agents of the 1-st team are at r. For each i ∈ {2, . . . , k},
the agent ai starts its movement once a1

i−1 completed its movement by arriving
at r and once all agents of the i-th team are at r. (We will argue later that a1

i−1
indeed returns to the root r.) In other words, once a1

i−1 completes its movement, all
agents of the i-th team are called to appear at r. For each j ∈ {1, . . . , 5}, we only
need to describe how they operate once ai runs out of energy, as their preceding
movements are specified above. The agent aji heads towards the root r in time unit
in which he occupies the same node as aj+1

i and the latter agent is heading towards
r. Thus, it may happen that for some units of time both agents will head towards
r together.
In the following we prove that the above actions of agents are valid under the

assumption that they have to communicate locally. Considering the order of
movements of agents it suffices to argue that each team is successful. We refer to
all movements of the agents aji , i ∈ {1, . . . , k}, j ∈ {1, . . . , 5}, as the extended DFS
traversal of T .

Lemma 8. For each i ∈ {1, . . . , k}, the i-th team is successful.

Proof. We prove the lemma by induction on i. The argument is identical for i = 1
and i > 1 so take an arbitrary i ∈ {1, . . . , k} and inductively assume that the
(i− 1)-th team is successful whenever i > 1. If i = 1, then clearly the 1-st team
needs no additional information about the subtree. By assumption, when i > 1,
a1
i−1 completes its movement reaching the root r and this agent knows the entire

subtree explored by a1, . . . , ai−1. Thus, once ai is about to start its actions at r,
it learns the subtree explored to date: for i > 1 this information comes from a1

i−1
and for i = 1 it is known that the DFS traversal will be initiated by ai. Thus, ai
can indeed correctly resume in Step 1 of GCTEε the DFS traversal and can correctly
complete all its following actions as they do not depend on any extra knowledge.
Hence, it remains to analyze the behavior of the remaining agents of the i-th team.
Note that, by algorithm definition, all agents of the i-th team are present at the
root r once ai is about to start its movements. Thus, each agent aji can correctly
mimic the movements of ai till the depth predefined for aji .
Suppose that ai reaches a node v at depth l with its last move; the move that

ends the stage when it is heading towards r. According to the algorithm of the
extended DFS traversal, ai was heading towards r and the duration of this stage
was dx(ε)e. Thus, these movements of ai of heading towards r started at a node v′
at depth l + dx(ε)e, at time unit t′, ended at depth l and node v, and there exists
a node u at depth dj(ε) on the path traversed during these movements of heading
towards r. By construction, agent aji is at node u at time unit t′.

At time step t′, each agent aj
′

i , j′ ∈ {1, . . . , 5}, has at least dx(ε)e units of energy
available. Indeed, this follows from two observations: first, the available energy of
ai = a0

i is at least dx(ε)e at time step t′; second: the length of the path traversed
by aj

′−1
i till time step t′ is not greater than the length of the path traversed by aj

′

i
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till time step t′, for each j′ ∈ {1, . . . , 5}. Furthermore, at time step t′, the distance
between any two consecutive agents aj

′

i , a
j′+1
i for j ∈ {1, . . . , 4} is not greater

than dx(ε)e since b(j + 1) ·x(ε)c− bj·x(ε)c ≤ b(j + 1) ·x(ε)− j·x(ε)c+α =
bx(ε)c + α, where α < 1. Thus, in particular, each agent aj

′

i has enough energy
to reach the node occupied by aj

′−1
i for each j′ ∈ {2, . . . , 5}. Hence, by a simple

induction on j′ = j − 1, . . . , 1 we obtain that aj
′+1
i meets aj

′

i at some time step
and in this step aj

′

i has at least dx(ε)e units of energy and is present at depth
bj′·x(ε)c in T . Thus, we obtain that a1

i is able to reach r (at depth 0 of Tr)
carrying the required information.

As a consequence of the above, we obtain the following.

Lemma 9. The extended DFS traversal correctly explores Tr to a depth of (1
2 +ε)B

using 6k agents that communicate locally, where k is the number of agents used in
the DFS traversal performed in Step 1 of Algorithm GCTEε.

Proof. The fact that the k teams, each of size 6, explore the tree to the required
depth follows directly from Lemma 8.

2.2.2 Local communication between levels
We start this section with an informal description, also pointing out the obstacles
we need to overcome. The mechanism of communication between two consecutive
levels will be handled by special agents that we call managing agents (see below for
a formal definition). A managing agent arrives at a root r for which a call to GCTEε
is performed. This agent is not used for the extended DFS traversal of Tr but will
play a crucial role while conducting recursive calls for descendants r1, r2, . . .. More
precisely, this agent will keep track of which subtrees have been already explored
and for which one the recursive call is ‘in progress’. By a recursive call, made say
for ri, being in progress we mean that the exploration of Tri is in progress. Thus,
until the exploration of that subtree is completed, the managing agent for Tr is
responsible for redirecting all agents arriving at r to this subtree, Tri . Once the
exploration of Tri is completed, the managing agent for Tri will report this fact to
the managing agent for Tr and the latter one may initiate the process of exploration
of the next subtree Tri+1 . Once all subtrees Tr1 , Tr2 , . . . are explored the managing
agent for Tr returns ‘one level up’ to report this event to appropriate managing
agent.
Observe that the above scheme should be performed in such a way that each

subtree Tr ‘receives’ just enough agents needed for its exploration and not more.
This includes one managing agent for the subtree itself, the agents performing
the extended DFS traversal of Tr and the agents needed for recursive calls, if
any. This is regulated by introducing the agents slowly at the global root so
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that, within predefined time intervals new agents appear at the global root and are
directed gradually by managing agents precisely to the subtree for which the current
extended DFS traversal is performed. The time intervals are set up in such a way
that if an exploration of a particular subtree is completed then this information has
enough time to be carried by the managing agent to the one residing one level up.
In this way the flow of agents to a particular subtree is stopped and redirected to
the next one supplying the exact amount of agents needed for each of the subtrees.
Intuitively, the measurement of time is used indirectly as a communication tool:
if a managing agent does not receive for a given amount of time a signal that a
recursive call to a subtree is completed, then this means that the exploration of
that subtree is not completed and more agents are needed to finish it — hence
another agent will be sent to that subtree.

Now we give a detailed description of the modifications to the exploration strategy
described in Section 2.2.1 so that it is valid for agents communicating locally. At the
beginning of exploration (i.e., when GCTEε is called for a tree T ), one distinguished
agent is selected to be constantly present at the root r0 of the entire tree T . This
agent is called the managing agent for T . Similarly, whenever a recursive call of
GCTEε is made for any input node r, the first agent that arrives at r is the managing
agent for Tr and it stays at r until the entire subtree Tr is explored.
Extension of Step 1 of GCTEε. Once all 6 members of the i-th team are present
at the root r of a subtree for which the extended DFS traversal is performed, the
i-th team operates exactly as described in Section 2.2.1. Recall that the i-th team
finishes its work with one of its agents being at the root. The beginning of the
operation of the (i + 1)-th team is postponed until exactly 6 new agents, each
with energy b, appear at r. Then, the (i+ 1)-th team resumes the extended DFS
traversal. We note that the agents forming each team will arrive at r directly
from the global root of the tree and this will become clear after description of the
extension of Step 3 of GCTEε.
Extension of Step 3 of GCTEε. For this part we need to describe how a recursive
call is performed by an instance of GCTEε. This includes two actions: initiating
the call and receiving information that a recursive call is completed, i.e., that the
exploration of the subtree for which the call was conducted is finished. Suppose
that an instance of GCTEε with input r and b performs a call for a subtree rooted at
a node ri (see Figure 2.1). Recall that the managing agent for Tr, denoted by a(r)
is present at r during exploration of Tr. First, a(r) waits until a new agent, denoted
by a(ri), appears at r and after it arrives, agent a(ri) is sent to ri and it becomes
the managing agent for Tri . Then, the algorithm sends each agent arriving at r to
the node ri until the agent a(ri) returns to r. This completes the recursive call for
ri and a(ri) stays idle at r indefinitely (and will not play any role in the remaining
part of the exploration). Then, the next recursive call, if any, that needs to be
done is performed. The information about the current status of each recursive call
made by the instance of GCTEε(r, b), is maintained by a(r), the managing agent for
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Tr, and once all recursive calls are completed this managing agent returns to the
node that is the ancestor of r from which the instance of GCTEε(r, b) was called.
Distribution of agents at the global root. Note that the above description
defines the operation of agents for each instance of GCTEε except for the managing
agent at the global root r0 for the first call to GCTEε. The managing agent at the
global root has all agents at its disposal from the first step and does not need to
wait for the arrival of an agent. Therefore we introduce an artificial delay denoted
by d(ε) as defined below. The d(ε) is an integer and it will be understood that the
agents will appear at the global root r in time intervals of length d(ε). This time
interval is defined as

d(ε) = 8B (2.2)
We will prove later that this delay is sufficient for our strategy.

The exploration strategy modified as above is called LCTEε (Local Communi-
cation Tree Exploration). We now prove that LCTEε works correctly in the local
communication model.
Lemma 10. For 0 < ε < 1/4, Algorithm LCTEε correctly explores any tree T using
local communication between agents.
Proof. The correctness of the extension of Step 1 follows from Lemma 9. To ensure
that the extension of Step 3 is correct we need to argue that if an instance of
GCTEε called for a node r performs a recursive call for a descendant v, then the
information that the subtree Tv is explored (and hence that the corresponding call
for v is completed) eventually arrives at r. Let b be the available energy that is
part of the input for the call to LCTEε at r. By definition, B − b is the distance of
r from the global root and

b = bi =
⌊
(1− ε)i−1B

⌋
for some i ≥ 1. We calculate the total distance that the managing agent for Tv,
denoted by a(v), needs to traverse. The agent a(v) traverses the path from the
global root to v at distance B − b(1− ε)iBc and the path from v to the root r.
The latter path is of length(

B −
⌊
(1− ε)iB

⌋)
−
(
B −

⌊
(1− ε)i−1B

⌋)
=
⌊
(1− ε)i−1B

⌋
−
⌊
(1− ε)iB

⌋
Thus, the total distance traversed by a(v) is

B −
⌊
(1− ε)i−1B

⌋
+
⌊
(1− ε)i−1B

⌋
−
⌊
(1− ε)iB

⌋
≤ B

Theorem 11. Algorithm LCTEε explores T using at most O(logB) ·OPT agents.
Proof. By Lemma 10, the tree is correctly explored by LCTEε and hence it is enough
to count the number of agents used in this exploration strategy. Denote by m(ε)
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the overall number of managing agents used by the procedure and denote by e(ε)
the overall number of agents used to perform all extended DFS traversals. Also,
denote by f(ε) the number of remaining agents used by the algorithm.

As shown in Lemma 9, the algorithm uses 6 times the number of agents used by
algorithm GCTEε (see Theorem 7) for all extended DFS traversals. Therefore we
have

e(ε) ≤ 24(
1
2 − ε

) · log( 1
1−ε)B·OPT (2.3)

We now bound m(ε). Note that there exists exactly one managing agent for
each node for which LCTEε is called. Whenever two recursive calls to LCTEε are
performed for two nodes ri and rj at the same level, the subtrees Tri and Trj are
independent due to Lemma 3. Thus, any exploration strategy (offline or not) would
use at least two distinct agents for exploring Tri and Trj . This proves, that if an
instance of LCTEε performs recursive calls for nodes r1, . . . , rp, then at least p agents
need to be used in any exploration strategy for the subtrees Tr1 , . . . , Trp . Thus, the
overall number of managing agents for subtrees rooted at the same level is at most
OPT. Therefore, by Lemma 5,

m(ε) ≤ log( 1
1−ε)B·OPT (2.4)

We finally prove that
f(ε) = 0 (2.5)

To that end take two agents a and a′ that arrive at the global root of the tree
separated by time interval d(ε), i.e, a and a′ are two consecutive agents ‘deployed’
at the global root. We will show that a /∈ f(ε) =⇒ a′ /∈ f(ε). Suppose that a
becomes the managing agent for some subtree Tr or a = aji , where j < 5 or the
i-th team is not the last one used for the extended DFS traversal of Tr. In any
of these cases, each managing agent visited by a′ is present at the same node as
when visited by a, and hence a′ arrives at r and becomes a member of some team
performing the extended DFS traversal of Tr. Now let us consider the remaining
case when a = a5

k and k-th team is the last one used for the extended DFS traversal
of Tr. We need to consider two sub-cases depending on whether the subtree Tr is
big (requiring more than one level of recursion) or small (only a single level).

In the first sub-case, when Tr is big, a recursive call is performed for some node
r1 ∈ Tr during the execution of LCTEε(r, b) at the node r that we consider. Then,
a′ arrives at r and is directed to r1 and becomes the managing agent for Tr1 .
In the second sub-case, no recursive call is performed by the instance of LCTEε

called for r. Thus, there exists a sequence of nodes v0 = r, v1, . . . , vp such that
an instance of LCTEε was called for vi by an instance of LCTEε called for vi+1,
i ∈ {0, . . . , p− 1}, and the subtree Tvp−1 is explored, or equivalently, none of the
instances of LCTEε called for v0, . . . , vp−1 is going to perform another recursive call.
By the formulation of the algorithm, the managing agent for vi returns to vi+1 once
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k

r

B − 2

Figure 2.2: An example of a family of graphs for which any online exploration algorithm
has a competitive ratio of at least Ω(logB).

the managing agent for vi−1 returned to vi for each i ∈ {1, . . . , p− 1}. Moreover,
the exploration of Tr = Tv0 is completed and the managing agent for Tr recognizes
this fact and goes to v1. Thus, the information about completion of the extended
DFS traversal of Tvp−1 arrives at vp after a number of time units at most the depth
of Tvp , which is bounded by B. We bound the number of time units that elapsed
since a has been deployed at the global root till the time it reported completion
of the extended DFS traversal of Tr. This is at most B, which accounts the time
needed to reach r from the global root, plus the time of operation of the k-th team
of the extended DFS traversal, to which a belongs, which is at most

6b ≤ 6B
Therefore, by (2.2), the managing agent for Tvp learns about the completion of

the exploration of Tvp−1 prior to the event when a′ is deployed at the global root
and hence prior to the arrival of a′ at vp. In particular, if vp is the global root and
the exploration of the entire tree is completed, then this fact is known before a′ is
deployed at the global root. This proves (2.5).
Since the overall number of agents used by LCTEε is e(ε) +m(ε) +f(ε), the theorem
follows from (2.3), (2.4) and (2.5).

2.3 Competitive Ratio of Online Exploration
We now show a lower bound on the competitive ratio of any online exploration
algorithm in the local communication model. The following result implies that the
competitive ratio of algorithm LCTEε is asymptotically optimal.

Theorem 12. Any online exploration algorithm for exploring a tree of depth
D = B − 1 has a worst case competitive ratio of at least Ω(logB).

Proof. We consider the family of trees which consist of a line of length D − 1,
where one endpoint of the line is the root and the other endpoint is connected to
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the center of a star with p leaves. Thus all the p leaves of the tree are at distance
D = B − 1 from the root and there is only one node at distance D − 1 (cf. Figure
2.2). An offline algorithm would use exactly p agents for exploring this tree. An
online algorithm for exploring this tree can be of two types: We say an algorithm
is type-1 if during the algorithm there is no transfer of information from the node
at depth D − 1 to the root; All other algorithms are of type-2. First notice that
if an algorithm of type-1, uses k agents for exploration then k is independent of
p, since p remains unknown to the root. Thus, by taking p > k, we can make the
algorithm fail. So we need to consider only type-2 algorithms where information
from the node at depth D − 1 is transferred to the root. Any agent visiting this
node has at most B − (D− 1) = 2 units of energy remaining, so it can return back
to depth D− 3 = B − 4. Similarly, any agent visiting the node at depth B − 4 can
return back to depth B − 8, and so on. Thus, at least Ω(logB) agents are needed
to carry the information from the node at depth D − 1 back to the root. So any
type-2 algorithm would use at least Ω(logB) agents. By taking p = 1, we get a
competitive ratio of Ω(logB) for any such algorithm.

36



3 Partial Exploration of Trees

Introduction
In this chapter we consider the problem of tree exploration with a limited number
of mobile agents that start at the root of the tree. Each agent has limited energy
equal to B and cannot, as a result, traverse more than B edges. The agents do not
have to come back to the root. We consider the online version of the problem where
the tree is unknown to the agents. The goal is to maximize the number of nodes
collectively visited by all agents during the execution. We present an intuitive
algorithm based on depth-first search and we study its performance compared to
the optimal solution that we could obtain if we knew in advance the map of the tree.
We prove that this algorithm has a constant competitive ratio. We also provide a
lower bound on the competitive ratio of any algorithm.
The results included in this chapter were presented in [Bam+17a].

The Model
The agents operate in an undirected tree T . The edges at every vertex v in T have
locally distinct edge labels 0, . . . , deg(v)− 1, where deg(v) is the degree of v. These
edge labels are referred to as the local port numbers at v. Initially, a group of k
agents (numbered 1 to k) are placed at a node r of T . Each agent has limited
energy B and it consumes one unit of energy for every edge that it traverses.
The tree is initially unknown to the agents, but they learn the map of the tree

as they traverse new edges. Each time an agent arrives at a new node, it learns
the local port number of the edge through which it arrived, as well as the degree of
the node. We assume that agents can communicate at arbitrary distances, so the
updated map of the tree, including all agent positions, is instantaneously available
to all agents (global communication). Moreover, we will assume, without loss
of generality, that the local port number of the edge leading back to the root r
is deg(v)− 1 for any vertex v 6= r in T .
The goal is to design an algorithm A that maximizes the number of edges

collectively discovered by the agents. If I = 〈T, r, k, B〉 is an instance of the problem,
let A(I) denote the number of edges explored using algorithm A on I. We measure
the performance of an algorithm A by the competitive ratio ρA = supI OPT (I)

A(I) ,
where OPT (I) is the maximum number of edges that can be explored on instance I
with full initial knowledge of the instance.
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3.1 Exploration Algorithm
Given an instance I = 〈T, r, k, B〉 of the online tree exploration problem, for d ≥ 0
we let Td denote the induced subtree of T containing all vertices at distance at
most d from r. We propose an algorithm that works in phases. In each phase i,
the agents attempt to completely explore Tdi , for some di ≥ 0. The increasing
sequence (di)i≥1 depends only on B and is chosen appropriately, so as to optimize
the obtained competitive ratio.

In each phase i, the agents essentially perform a collaborative depth-first search
within Tdi (they ignore unexplored edges that lead to nodes at distance greater
than di from r). Agents are sent off sequentially, i.e., the next agent waits until the
current one has depleted its energy. Each agent always chooses the smallest local
port number that leads to an unexplored edge within Tdi . Formally, the algorithm
is as follows: (the computation of (di)i≥1 is explained in the proof of Theorem 13)

Algorithm 2 Tree exploration algorithm for energy constrained agents
Input: Tree T , root vertex r, number of agents k, energy budget B

1: for i← 1, 2, . . . do
2: while there is an agent a at r and Tdi is not fully explored do
3: a← the agent with the least positive remaining energy at r
4: while agent a has energy and Tdi is not fully explored do
5: agent a follows the smallest local port number that leads to an

unexplored edge in Tdi
6: end while
7: while agent a has energy and it is not at r do
8: agent a moves towards r
9: end while

10: end while
11: end for

Note that, if the current agent stops and leaves some unexplored edges in the
subtree rooted at its last position, then the next agent will move to the last position
of the current agent and will continue the depth-first search. On the other hand, if
the current agent has completely explored the subtree rooted at its last position,
the next agent will take a shortcut to the next node along the depth-first search
path of Tdi that has unexplored edges.

Theorem 13. The sequence (di)i≥1 can be chosen as a function of B so that the
proposed algorithm achieves a competitive ratio of 1 + 4ϕ < 7.473, where ϕ ≈ 1.618
is the golden ratio.

Proof. Consider the sequence (fi)i≥0 given by f0 = 0, f1 = 1, f2 = 2, and
fi = fi−1 + fi−2 for i ≥ 3. For i ≥ 0, let Si = ∑i

j=0 fj and let γ ≥ 1 be the smallest
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3.1 Exploration Algorithm

index such that Sγ+1 > B. Note that Si = fi+2 − 2 for all i ≥ 0 and, furthermore,
γ ≥ 2 if and only if B ≥ 3. Now, for i = 1, . . . , γ, we define di = B − Sγ−i. The
sequence (d1, . . . , dγ) is strictly increasing and, setting for convenience d0 = 0, it
satisfies di−1 − di−2 > B − di for i ≥ 2.

We will assume that the instance is such that the algorithm fails to explore the
whole tree T . We further assume for the moment that B ≥ 3, therefore γ ≥ 2, and
that the last phase to be executed by the algorithm is phase σ ≥ 2, i.e., Tdσ−1 is
completely explored and Tdσ only partially.
We first give an upper bound on the number of edges explored by an optimal

offline algorithm OPT . Any agent in the offline algorithm can explore at most
B − dσ−1 new edges that are not contained in Tdσ−1 , because it uses up at least
dσ−1 of its energy to reach the bottommost node of Tdσ−1 . We can therefore bound
the number of edges explored by OPT as

|OPT | ≤ |Tdσ−1|+ k(B − dσ−1) (3.1)

Next, we give a lower bound on the number of edges |SOL| explored by our
algorithm. For i = 1, . . . , σ, let ni be the number of newly explored edges in phase i
of the algorithm and ki be the number of fresh agents (not carried over from the
previous phase) used in this phase. For convenience, let also n0 = 0. Note that we
have ∑σ−1

i=1 ni = |Tdσ−1 |.
Consider the first phase of the algorithm. Let DFS1 be the closed walk visiting all

edges in Td1 in the same order as a depth-first search, which always follows the local
port with the smallest number first. The length of DFS1 satisfies |DFS1| ≤ 2n1.
The first agent used by the algorithm will spend all of its energy making a progress
of B steps on DFS1. The second agent either moves to where the first agent stopped
or shortcuts to a point in the path from r to where the first agent stopped, and
then makes progress on the closed walk DFS1. Note that if the previous agent
stopped at distance d1, then the next agent will always shortcut. In any case, the
second agent uses at most d1 − 1 of its energy before it starts making progress
on DFS1, so the progress is at least B − d1 + 1. Similarly, all other agents in
the first phase, except for the last agent, make a progress of at least B − d1 + 1
on DFS1, yielding a total progress of at least B + (k1 − 2)(B − d1 + 1) for the
first k1 − 1 agents. If p is the progress contributed by the k1-th agent, we have
B + (k1 − 2)(B − d1 + 1) + p ≤ 2n1.
The k1-th agent used at most d1 − 1 of its energy before it made progress p,

therefore at the end of phase 1 either its energy is exhausted (which implies
p ≥ B − d1 + 1, and the previous progress inequality gives k1(B − d1 + 1) ≤ 2n1),
or it is located at the root with at least B − d1 + 1 − p available energy. If its
remaining energy is positive, it will be the first agent to be activated in the second
phase.

Now assume that the algorithm has completed phase i−1 for i ≥ 2 and therefore
completely explored Tdi−1 . Let v

(i)
1 , v

(i)
2 , . . . , v

(i)
ti be all vertices of depth di−2 in T ,

39



3.1 Exploration Algorithm

T
(i)
j

r

v
(i)
j

di−2

di−1

di

B

Figure 3.1: Subtrees T (i)
j in tree T .

whose subtrees contain unexplored edges. Moreover, let T (i)
j be the induced subtree

of Tdi with root v(i)
j (Fig. 3.1) and n(i)

j be the number of edges of T (i)
j . The subtrees

T
(i)
j are completely explored up to the vertices at level di−1, but unexplored below.

As all vertices of the subtrees T (i)
j lie at a distance between di−2 and di from the

root, we have

ti∑
j=1

n
(i)
j ≤ ni−1 + ni (3.2)

Let k(i)
j be the number of agents that start in the i-th phase and reach the vertex

v
(i)
j with energy at least B − di−2. As the agents in every phase only move to
subtrees with unexplored edges, every agent used in phase i, will move to one of
the subtrees T (i)

j and therefore arrive at v(i)
j with energy B − di−2. We therefore

have ∑ti
j=1 k

(i)
j = ki.

We now want to bound the number of agents k(i)
j that we need to explore a

subtree T (i)
j in terms of n(i)

j as above. Let DFS(i)
j be a depth-first search tour of all

vertices in T (i)
j . Then |DFS(i)

j | ≤ 2n(i)
j and |DFS(i)

j | ≥ 2(di−1 − di−2) because T (i)
j

contains an unexplored leaf at distance at least di−1 − di−2 from v
(i)
j . Every agent

that enters T (i)
j with energy at least B − di−2, will either move to the previous

agent’s stopping position or shortcut, thus making at least B − di + 1 progress
on DFS(i)

j . This also holds for the last agent because at the time the last agent
enters T (i)

j there is still an unexplored leaf. Thus, the last agent, also, can make a
progress of at least B − di + 1 on DFS(i)

j , as the part of DFS(i)
j returning from the
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3.1 Exploration Algorithm

last unexplored leaf to v(i)
j is at least di−1 − di−2 > B − di. We get

k
(i)
j · (B − di + 1) ≤ 2n(i)

j

and hence by using Inequality 3.2 and assuming i ≥ 3:

ki · (B − di + 1) =
ti∑
j=1

k
(i)
j · (B − di + 1) ≤

ti∑
j=1

2n(i)
j ≤ 2ni−1 + 2ni

By considering the subtree T ′dσ of Tdσ containing all vertices explored by our
algorithm, we obtain the above inequality also for the last phase σ of the algorithm.
In particular for i = 2, we also take into account the contribution of the last
agent of phase 1 (assuming it reached r), which starts at v(2)

1 = r with at least
B − d1 + 1 − p available energy and, since it is the first agent to contribute to
DFS

(2)
1 , it contributes at least B − d1 + 1− p progress. The total progress during

the second phase is, therefore: B − d1 + 1− p+ k2 · (B − d2 + 1) ≤ 2n1 + 2n2. If,
however, the last agent of the first phase didn’t reach r, then for phase 2 we have
simply k2 · (B − d2 + 1) ≤ 2n1 + 2n2.

Summing the progress inequalities from each phase and using the monotonicity
of the di and the fact that ∑σ

i=1 ki = k, we obtain

k(B − dσ + 1) ≤
σ∑
i=1

ki(B − dσ + 1) ≤
σ∑
i=1

ki(B − di + 1)

≤
σ∑
i=1

2ni−1 + 2ni ≤ 4|SOL|

Combining the upper bound on OPT (inequality 3.1), the lower bound on SOL
above, and the inequality |Tdσ−1| ≤ |SOL|, we obtain

|OPT |
|SOL|

≤ |Tdσ−1|+ k(B − dσ−1)
|SOL|

≤ 1 + 4 B − dσ−1

B − dσ + 1 = 1 + 4 Sγ−σ+1

1 + Sγ−σ
= 1 + 4−2 + fγ−σ+3

−1 + fγ−σ+2

It can be verified that −2+fi+3
−1+fi+2

is strictly increasing in i for i ≥ 0 and it converges
to ϕ, therefore ρA ≤ 1 + 4ϕ.
Finally, if B ≤ 2, which implies γ = σ = 1, or if σ = 1 < γ, then the

algorithm finishes in the first phase and it follows from the above arguments
that |SOL| ≥ k(B−d1+1)

2 , while |OPT | ≤ kB. Therefore, ρA ≤ 2B
B−d1+1 = 2B

1+Sγ−1
.

However, recall that Sγ+1 > B, so we have

ρA ≤ 2−1 + Sγ+1

1 + Sγ−1
= 2−3 + fγ+3

−1 + fγ+1
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kB
2

k

1

B

r

Figure 3.2: An example of a family of graphs for which no algorithm can achieve a com-
petitive ratio of 2− o(1).

It can be verified that −3+fi+3
−1+fi+1

is strictly increasing in i for i ≥ 2 and it converges
to ϕ+ 1, therefore ρA ≤ 2 + 2ϕ < 1 + 4ϕ.

3.2 Lower Bound on the Competitive Ratio
Proposition 14. No algorithm achieves a competitive ratio of 2− o(1).

Proof. Given positive integers k and B, where B is even, consider the star consisting
of k rays of length B and kB

2 rays of length 1 (cf. Figure 3.2). A group of k agents,
each with energy B, start on r. For every algorithm, the adversary can ensure that
no agent ever enters a long ray: whenever an agent is at the center and decides
to follow an unexplored edge, the adversary directs it to a short ray. For every
edge that an agent explores, it needs to go back to the center in order to explore
other edges. Therefore, every agent can explore at most B

2 edges for a total of at
most kB

2 edges. On the other hand, the optimal solution is to send all agents in
the long rays and explore kB edges.
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4 Sustainable Exploration of Trees

Introduction
We consider the problem of sustainable exploration on any weighted tree T . We
believe this is the first study on these types of exploration problems where the
profits and costs are interchangeable, i.e., the profits can be used for paying the
costs. The main difficulty in the problem comes from the constraint that the agent
may not run out of energy at any point during the traversal, which puts constraints
on the order in which various parts of the tree are traversed.
We first show that the general version of the problem called CollectMax is

NP-hard on weighted trees. We then consider some easier versions of the problem.
We define CollectMaxBigBudget as the same problem with the assumption
that the agent initially starts with a sufficiently large budget B of energy (which
equals twice the sum of the weights of T ); in such case, the agent can perform a
traversal of the complete tree irrespective of the values of gains at the nodes. We
provide an algorithm for finding the optimal subtree of T that maximizes the final
gain. Finally, we show how the agent can obtain the maximum gain while using
the smallest starting budget B.

The Model
We consider an agent starting at the root r of a tree T = (V,E) endowed with an
edge weight function w : E → N and a node gain function g : V → N. The agent
has full knowledge of the graph. Whenever the agent traverses an edge e, it spends
energy equal to the weight of the edge w(e). Additionally, whenever the agent
visits a node v for the first time, it collects energy equal to the gain of the node
g(v). The agent stores the collected energy and it can also use it for traversing
edges. We are interested in computing a closed walk p = v0, e1, v1, . . . , e`, v`, where
v0 = vl = r, with the property that the available energy of the agent cannot become
negative at any moment of the execution.

We will be using the following notation. Let pj = v0, e1, v1, . . . ej, vj, where 0 ≤
j ≤ `, denote the walk that is included in walk p between its starting node v0 and
node vj , and Vp = {v ∈ V : v = vi, i ≤ `} denote the set of nodes that are included
in walk p.
Given a walk p on instance I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E〉, let

n-surplusi(p) =
∑
v∈Vpi

g(v)−
i∑

j=1
w(ej), 0 ≤ i ≤ `

be the function which calculates the amount of energy collected by the mobile
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4.1 Hardness of Sustainable Exploration

agent by traversing the walk p up until node vi. Moreover, let

e-surplusi(p) = n-surplusi−1(p)− w(ei), 1 ≤ i ≤ `

e-surplus0(p) = g(v0)

be the function which calculates the amount of available energy when the agent has
traversed the walk p up until the edge ei, i.e., before collecting any energy available
in node vi. Note that if p is a closed walk, it holds that n-surplus`(p) = e-surplus`(p).

We define sustainable walk, any walk p = v0, e1, v1, . . . , e`, v`, where v0 = vl = r,
such that e-surplusi(p) ≥ 0, ∀i ∈ {1, . . . , `}. Furthermore, we consider that a walk
p is of DFS-type, if every distinct edge in p is being traversed exactly twice. Given
an instance I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E〉, let I|Tv = 〈Tv, v, g|Tv , w|Tv〉, denote
the instance I restricted to the subtree Tv rooted at v, where v ∈ V . Finally, given
an edge-weighted tree T (V,E), we denote by W = ∑

∀e∈E w(e) the sum of weights
of the edges of the tree, by deg(v) the number of neighbours of node v, by parent(v)
the parent node of v and by ch(v) the set of child nodes of v.

4.1 Hardness of Sustainable Exploration
We can now proceed to the formal definition of CollectMax.

Definition 15 (CollectMax).
Instance: I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E〉, where T (V,E) is an undirected, weighted
tree rooted at r, g(v) ∈ N+ denotes the profit of energy of node v and w(e) ∈ N+

denotes the weight of the edge e.
Feasible solution: Any sustainable walk p = v0, e1, v1 . . . , e`, v`, where v0 = v` = r.
Goal: Maximize n-surplus`(p).

Theorem 16. CollectMax is NP-hard.

Proof. We consider the CollectMax decision problem:
CollectMax decision problem
Instance: I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E, G〉, where T (V,E) is an undirected,
weighted tree rooted at r, g(v) ∈ N+ denotes the profit of energy of node v,
w(e) ∈ N+ denotes the weight of the edge e and G is an integer.
Question: Is there a sustainable walk p = (v0, e1, v1 . . . , e`, v`), with v0 = v` = r,
such that n-surplus`(p) ≥ G?

We will reduce the following problem called Partition to CollectMax. Partition
is one of Karp’s 21 NP-complete problems, [Kar72].
Partition problem
Instance: A set W = {s1, s2, . . . , sm} of positive integers, where S = ∑m

i=1 si.
Question: Can {1, 2, . . . ,m} be partitioned into 2 disjoint subsetsA = {α1, α2, . . . , αm1}
and B = {β1, β2, . . . , βm2}, such that ∑αi∈A sαi = ∑

βi∈B sβi = S/2?
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4.1 Hardness of Sustainable Exploration

We construct an instance I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E, G〉 of the Collect-
Max decision problem from an instance of Partition as follows. The tree T has
a root r, a set U = {ui | 1 ≤ i ≤ m} of internal nodes adjacent to r, a set
V = {vi | 1 ≤ i ≤ m} of leaves, where ∀i ∈ {1, . . . ,m}, vi is adjacent to ui and
finally a leaf z adjacent to the root.
The gain function g is defined as follows:

• g(r) = S/2

• ∀1 ≤ i ≤ m, g(ui) = 3si

• ∀1 ≤ i ≤ m, g(vi) = 6S + 4si

• g(z) = 4S

The weight function w is defined as follows:

• w(r, z) = S

• ∀1 ≤ i ≤ m, w(r, ui) = si

• ∀1 ≤ i ≤ m, w(ui, vi) = 3S + si

Optimal gain G = 9S/2.
First, assume that there exists a solution A,B for the instance of the Partition

problem. In such a case, notice that ∀1 ≤ i ≤ m, si ≤ S/2. We show that
there exists a sustainable walk p of a certain length ` such that n-surplus`(p) = G.
In order to define the walk p, we define the following walks which we will then
concatenate. Let p1 be the closed walk starting from r in which the agent visits the
nodes uα1 , . . . , uαm1

, z in this order and let p2 be the closed walk starting from r in
which the agent visits the leaves vβ1 , . . . , vβm2

in this order. In both walks the agent
goes from r to the first node, from the first node to the next and from the last
node to r via the shortest path in the tree. Finally, the walk p is the concatenation
p1; p2.
Claim 1. p1 is sustainable and at the end the agent has 3S energy units.

Proof. First, we prove by a simple induction that the agent returns to r, after
visiting uαi , having collected S/2 + sα1 + . . .+ sαi units of energy, for 1 ≤ i ≤ m1.
For i = 1, the agent starts p1 with S/2 units of energy, which is sufficient to traverse
any edge incident to r, except for (r, z). After traversing (r, uα1) and collecting the
energy from uα1 , it has S/2 + 2sα1 units of energy. This is sufficient to return to r,
having S/2 + sα1 energy units.

Assume now that the agent is at r, having collected S/2 + sα1 + . . .+ sαi units of
energy from the previously visited nodes and is supposed to visit next uαi+1 , where
i < m. The agent’s energy is sufficient to visit uαi+1 , collect 3sαi+1 energy units
and then return to r having S/2 + sα1 + . . .+ sαi+1 units of energy.
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Therefore, after visiting node uαm1
and returning to r, the agent has collected

S/2 + sα1 + . . . + sαm1
= S/2 + S/2 = S energy units. This amount of energy is

sufficient to the agent to traverse (r, z), collect 4S and return to r with 3S energy
units.

Claim 2. p2 is sustainable and at the end the agent has 9S/2 energy units.

Proof. We prove by induction that the agent returns to r after visiting vβi , having
collected 3S + 3sβ1 + . . . + 3sβi units of energy, for 1 ≤ i ≤ m2. For i = 1, by
Claim 1 the agent starts p2 with 3S units of energy, which is sufficient to reach
node uβ1 . After traversing (r, uβ1) and collecting the energy from node uβ1 , the
agent has 3S + 2sβ1 units of energy. This is sufficient for the agent to reach the leaf
node vβ1 . After traversing (uβ1 , vβ1) and collecting the energy from vβ1 , the agent
has 6S + 5sβ1 units of energy. Therefore, the agent returns to r, having 3S + 3sβ1

energy units left.
Assume now that the agent is at r, having collected 3S+ 3sβ1 + . . .+ 3sβi units of

energy from the previously visited nodes and is supposed to visit next vβi+1 , where
i < m. The agent’s energy is sufficient to visit uβi+1 . After traversing (r, uβi+1)
and collecting the node’s energy, the agent has at its disposal 3S + 3sβ1 + . . . +
3sβi + 2sβi+1 units of energy. This is sufficient for the agent to reach leaf vβi+1 .
After traversing (uβi+1 , vβi+1) and collecting the energy from vβi+1 the agent has
6S + 3sβ1 + . . .+ 3sβi + 5sβi+1 energy units. This energy is sufficient for the agent
to return to r, having 3S + 3sβ1 + . . .+ 3sβi+1 energy units.
Therefore, after visiting leaf vβm2

and returning to r, the agent has collected
3S + 3sβ1 + . . .+ 3sβm2

= 3S + 3S/2 = 9S/2 energy units.

By Claim 2, the walk p is sustainable and at the end the agent has collected
9S/2 = G units of energy.
Now assume that there is a sustainable walk p which the agent concludes with

at least G energy units. We will show that there exists a partition for the original
Partition instance.
Let us start by noticing that the agent cannot visit any leaf vi during its walk

before visiting leaf node z, as the agent can collect at most S/2 + s1 + . . .+ sm =
S/2 + S = 3S/2 energy units from visiting the internal nodes ui. On the other
hand, the agent must visit at least a subset of the leaf nodes, otherwise it can
collect at most 3S/2 energy units from the internal nodes and 2S energy units from
z, thus a total of 7S/2 energy units. Therefore, the agent visits z at some point of
its walk p, before visiting any leaf node vi.

The agent in order to visit z, it must collect at least S/2 additional energy units
by visiting some subset of the internal nodes ui, we will denote this subset by
A′ ⊆ W . Suppose now, that the agent has collected S+x units of energy at r right
before visiting z, where x ≥ 0. This implies that the sum of integers in A′ is equal
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to S/2 + x and the sum of integers in W \A′ is equal to S/2− x. When the agent
returns to r, after visiting z, it has 3S + x energy units.
Let us now consider the remaining part of the agent’s walk, i.e, after visiting z.

If the agent visits a leaf node vi that its neighbouring node ui has been previously
visited then we distinguish the following two cases, x < 2si and x ≥ 2si. If x < 2si
then the walk is no longer sustainable, as the agent does not have sufficient energy
to reach vi. On the other hand, if x ≥ 2si then the agent returns to r after visiting
vi having 3S+x units of energy, therefore, the agent gains nothing additional. Thus,
we can consider that the agent, in the remaining part of p, only visits previously
unvisited branches whose internal nodes ui belong to W \ A′.

If the agent, now, visits an unvisited branch up to the internal node ui the agent
returns to r, having collected si additional energy units. If, on the other hand, the
agent visits the branch up to the leaf vi, then it returns to r, having collected 3si
additional energy units. Therefore, if the agent visits all the unvisited branches up to
the leaf nodes, the agent will have collected a total of 3S+x+3(S/2−x) = 9S/2−2x
units of energy at r. Thus, the optimal gain is achieved only when x = 0, which
implies the initial subset A′ corresponds to a solution to the original Partition
problem.

4.2 Sustainable Exploration with Energy Source
In this section, we modify the CollectMax problem by considering that we can
provide an amount of initial energy B to the agent. Under this assumption, the
definition of function e-surplus changes into:

e-surplusi(p) = n-surplusi−1(p)− w(ei), 1 ≤ i ≤ `

e-surplus0(p) = g(v0) +B

Note that, given a tree, if B ≥ 2W , the agent can traverse the complete tree. We
are now interested in studying two different optimization goals:

• Maximize the agent’s remaining energy at the end of the walk, assuming B is
sufficiently large.

• Find the minimum initial energy B, that is sufficient to collect the optimal
amount of energy at the root.

We will analyze these two goals in the following subsections.

4.2.1 Maximize Gain
Definition 17 (CollectMaxBigBudget).
Instance: I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E〉, where T (V,E) is an undirected, weighted
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tree rooted at r, g(v) ∈ N+ denotes the profit of energy of node v and w(e) ∈ N+

denotes the weight of the edge e.
Feasible solution: Any sustainable walk p = v0, e1, v1 . . . , e`, v`, with v0 = v` = r,
for an agent with initial energy B = 2W .
Goal: Maximize gmax(I) = n-surplus`(p).

We will be using the terms gmax(I) and OPTg(I) interchangeably, to denote the
maximum amount of energy we can collect at the root for instance I.
A closed walk on a tree T may include the total set of nodes of T , hence, the

total set of edges as well, or it may be limited to a subset of it. We call the induced
tree Tp(V ′, E ′) of p, the tree which consists of the set of nodes and the set of edges
that belong to the closed walk p.

Theorem 18. Any optimal solution for CollectMaxBigBudget is of DFS-type,
where the order of the traversals is not important.

Proof. We will prove it by contradiction. Assume that there exists an instance I
for CollectMaxBigBudget, for which an optimal solution is a non DFS-type
closed walk pOPT . Without loss of generality, consider that ei is an edge in pOPT
that is traversed more than 2 times, i.e. at least 4 times. Suppose now, that ei1,
ei2, ei3 and ei4 are the last appearances of ei in the sequence of edges of pOPT
and let w1 denote the part of the walk that is included between ei1 and ei2, and
w2 denote the part of pOPT that is included between ei3 and ei4, therefore, pOPT
is of the form v0, . . . , ei1, w1, ei2, . . . , ei3, w2, ei4, . . . , v`. We can construct a new
closed walk pnew which consists of the same sets of nodes and edges of pOPT , V ′
and E ′ respectively, but differs in the sequence of vertices and edges as follows.
We concatenate w1 and w2 between ei1 and ei2 and we remove the part ei3, w2, ei4.
Hence, pnew is of the form v0, . . . , ei1, w1, w2, ei2, . . . , v`. The total gain of pnew
is n-surplus`(pnew) = n-surplus`(pOPT ) − (−2 ·w(ei)) > n-surplus`(pOPT ) (the last
inequality holds since ∀e ∈ E,w(e) > 0), which contradicts the optimality of pOPT .

Considering the order of the traversals, given the fact that any optimal solution
for CollectMaxBigBudget is of DFS-type, we have that each edge included
in an optimal walk pOPT is traversed exactly 2 times. In the other direction, by
definition, we have that the agent has sufficient energy to traverse each edge of the
tree two times, since B = 2W . Therefore, these two observations, result in the
fact that the order in which the agent will choose to perform the DFS-traversal
is of no significance, since the agent will always have energy to continue the
DFS-traversal.

Lemma 19. For every instance I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E〉 of Collect-
MaxBigBudget it holds

OPTg(I) = g(r) +
∑

v∈ch(r):
OPTg(I|Tv )>2w(r,v)

(
OPTg(I|Tv)− 2w(r, v)

)
(4.1)
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where I|Tv = 〈Tv, v, g|Tv , w|Tv〉 and ch(r) denotes the set of children of r.

Proof. Consider an optimal solution pOPT for an instance I. By Theorem 18, we
have that pOPT is a sustainable walk of DFS-type. Therefore, we know that during
the walk each edge will be traversed exactly 2 times. Necessarily, the first traversed
edge of the walk, will be an edge adjacent to the root, leading to a child of the root,
say v. Consequently, this optimal walk will contain a DFS-traversal, not necessarily
a complete one, of the subtree hanging from node v, Tv. Upon return to node v,
the agent must have collected the optimal gain in Tv, OPTg(I |Tv), otherwise it
would contradict the optimality of the solution, and subsequently, traverse edge
(r, v) in order to return to the root and continue, possibly, the DFS-traversal on
another branch of T . For each edge (r, v), where v ∈ ch(r), included in pOPT , holds
the property OPTg(I |Tv) > 2w(r, v), otherwise the gain in r would be decreased
and the optimality of pOPT would be contradicted. As a result, OPTg(I) is equal
to the initial gain of the root, g(r), plus the gain of every subtree hanging from
a child node v of the root for which holds the property OPTg(I |Tv) > 2w(r, v),
minus the cost of reaching this subtree and returning from it. This is equal to the
righthand side of equation 4.1.

We will call a node v profitable if it has the following property, OPTg(I |Tv) >
2w(parent(v), v).

Before the formal definition of the algorithm for CollectMaxBigBudget, let
us briefly describe the algorithm. The basic idea of the algorithm is to check, in
a bottom-up manner, every node of the tree to see if it is a profitable node, i.e,
if we can have gain by visiting this node. The bottom-up manner means that we
start by checking the leaves of the given tree T and work our way towards the root.
Algorithm 3 is an iterative algorithm and at each iteration a leaf is picked to be
checked. Consider that in the i-th iteration, leaf l has been chosen. First, we check
if it is a profitable node and afterwards, we remove it from the tree, as a result, we
get a new tree Ti = Ti−1 \ {l}. If leaf l was a profitable node, then we update the
gain of its parent node, parent(l), by adding to the gain value of parent(l), the
gain value of l and subtracting the cost of reaching l and returning from it. If l is a
non profitable node, the gain of the parent node remains unchanged. Observe that,
during the execution of the algorithm, every node of the initial tree will become a
leaf at some moment of the execution. That is, once all of the children of a node v
have been checked, say at the j-th iteration the last child of v was checked, then
node v will be a leaf node in tree Tj.

We use 3 auxiliary sets of nodes V ′, V ′′ and X to help us distinguish the unvisited
nodes, the leaves and the profitable nodes. More precisely, at any moment of the
execution, V ′′ contains the set of nodes that remain to be checked, through which
we get the induced tree Ti at every iterative step i. V ′ contains the profitable nodes
and last, X contains the set of leaf nodes at each iterative step. Note that if a
node v, checked at some moment of the execution, is found to be non profitable
then we must remove v and all of its descendants from set V ′.
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Algorithm 3 returns the subtree of profitable nodes. Any DFS traversal of this
subtree would give us the optimal walk.

Algorithm 3 An algorithm for CollectMaxBigBudget.
Input: I = 〈T (V,E), r, (g(v))∀v∈V , (w(e))∀e∈E〉.

1: for all v ∈ V do
2: gain(v)← g(v);
3: end for
4: V ′ ← V ; V ′′ ← V ;
5: X ← {v ∈ V : deg(v) = 1};
6: while X 6= ∅ do
7: choose v ∈ X arbitrarily; u← parent(v);
8: if gain(v) > 2 ·w(u, v) then
9: gain(u)← gain(u) + gain(v)− 2 ·w(u, v);

10: else
11: remove v and all its children from V ′;
12: end if
13: V ′′ ← V ′′ \ {v};
14: if deg(u) = 1 in the tree induced by V ′′ then
15: X ← X ∪ {u};
16: end if
17: X ← X \ {v};
18: end while
19: Return V ′ and gain(r);

Theorem 20. Given an instance I for CollectMaxBigBudget problem, Al-
gorithm 3 correctly computes the optimal closed walk for I.

Proof. For any v ∈ V ′, let g?(v) denote the final value of gain(v), i.e., when v
becomes a leaf and its gain value cannot be further updated.
We will prove the correctness of the algorithm by induction. The induction

hypothesis is that at the end of each iteration i of the while loop at line 18, for any
node v ∈ X, where v is a leaf in the tree induced by V ′′, g?(v) is the optimal gain
in subtree Tv of T rooted at v.

For i = 0, it trivially holds, since X contains only the leaves of T and the optimal
gain of a leaf l is its initial gain g(l). Assume that the claim holds for i = k, we
will prove that it holds for i = k + 1. Let v be the leaf chosen at line 7 of the
algorithm in the k+ 1 iteration and let u be its parent node. For v and for any leaf
l ∈ X \ {u}, the claim holds from the induction hypothesis. It suffices to show that
if u becomes a leaf in iteration k + 1, hence, is inserted in X (line 15), g?(u) is the
optimal gain of Tu. We will introduce the indices k and k + 1 in gain function to
make the distinction of the values of the function between iteration k and k+1. We
want to prove that the equation g?(u) = gk+1(u) = g(u) +∑

v∈A(g?(v)− 2w(u, v)),
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where A is the set of the children nodes of u that caused an update of gainj(u), for
j ∈ {1, . . . , k + 1}, when removed from X, is the optimal gain in subtree Tu. From
the induction hypothesis we have that ∀v ∈ A : g?(v) = OPTg(I|Tv). We have

g?(u) = g(u) +
∑
v∈A

(g?(v)− 2w(u, v))

= g(u) +
∑

v∈ch(u):
g?(v)>2w(u,v)

(g?(v)− 2w(u, v)) (by Algorithm 3)

= g(u) +
∑

v∈ch(u):
OPTg(I|Tu )>2w(u,v)

(OPTg(I|Tv)− 2w(u, v)) (by induction hypothesis)

= OPTg(I|Tu) (by Lemma 19)

The last equality completes the induction.

4.2.2 Minimize Initial Energy
In the previous subsection we showed how to compute the maximum amount of
energy we can collect at the root, under the assumption that the agent has sufficient
energy (B = 2W ). We are now interested in minimizing the amount of initial
energy we need to provide to the agent in order to collect the maximum amount
of energy at the root. Notice now that two closed walks on the same set of nodes
but with different orders of edge traversals, may require different amounts of initial
energy of the agent. Therefore, the order of edge traversals in this problem is
important, as opposed to the previous case. For this reason, in this subsection, we
are considering sorted sets of nodes, where the order of the nodes denotes the order
in which the agent visits the nodes. The formal description of the problem follows.

Definition 21 (CollectMaxMinBudget).
Instance: I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E〉, where T (V,E) is an undirected, weighted
tree rooted at r, g(v) ∈ N+ denotes the profit of energy of node v and w(e) ∈ N+

denotes the weight of the edge e.
Feasible solution: (B, p) where B ≥ 0 and pB is any sustainable walk pB =
v0, e1, v1 . . . , e`, v`, with v0 = v` = r, for an agent with initial energy B.
Goal: Minimize B such that n-surplus`(pB) = gmax(I).

Given an instance I for CollectMaxMinBudget, let OPTd(I) denote the
minimum amount of energy we need to provide initially to the agent in order to
collect at the root OPTg(I) units of energy.

Lemma 22. Consider an instance I = 〈T, r, (g(v))∀v∈V , (w(e))∀e∈E〉 of Collect-
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MaxMinBudget and an optimal walk pOPT for I. For any v ∈ pOPT , we have

OPTd(I|Tv) = max
{
w(u, v), max

1≤j≤|ch(v)|
{w(u, v)−g(v)+OPTd(I|Tvj )−

j−1∑
i=1

OPTg(I|Tvi )}
}

(4.2)
where u = parent(v), w(parent(r), r) = 0 and ch(v) = {v1, v2, . . . , v|ch(v)|} is sorted
in non-decreasing order with respect to the values of OPTd(I|Tvi ).

Proof. First, we will prove that given any ordering of the children of a node v,
equation 4.2 computes the minimum amount of initial energy needed by the agent
to perform the traversal of the children nodes. Next, we will prove that, in order
to minimize the amount of initial energy required, the optimal order of visiting the
children of a node v is sorted in non-decreasing order with respect to the values
OPTd(I|Tvi ) of the children of v.

Given an ordering of the children of a node v, equation 4.2 calculates a set, where
the elements of this set correspond to the energy needed for the visit of v and of
its children. More in particular, first, it computes the amount of energy needed
to reach node v from its parent node. Next, for each visit of a child node vi, it
calculates the amount of energy that has already been collected before visiting vi,
and the amount of energy needed to visit vi (before collecting the energy of vi).
The difference between these two amounts denotes the amount of extra energy
needed by the agent to visit node vi. It returns the maximum value over all, which
is the minimum amount of energy needed to perform the given ordered traversal.
Notice that the difference between the energy collected and the energy spent can
be negative, such a case means that the agent can perform the traversal without
requiring any extra energy. If every subtree returns a negative value, OPTd(I|Tr)
will be equal to 0, since we have set the weight of the dummy edge connecting the
root with its parent node to be equal to 0.

For the second part of this proof, for the sake of contradiction, consider that there
exists an ordering ch(v) = {v1, v2, . . . , v|ch(v)|} of the children of a node v that is
not sorted in non-decreasing order with respect to the values of OPTd(I|Tvi ), which
returns OPTd(I|Tv). Without loss of generality, consider that ch(v) = {v1, v2}, for
which it holds

OPTd(I|Tv2
) < OPTd(I|Tv1

) (4.3)
The minimum energy required for visiting nodes v, v1 and v2 is calculated in
equation 4.2 by choosing the maximum over the following values

x = w(u, v)
y = w(u, v)− g(v) +OPTd(I|Tv1

)
z = w(u, v)− g(v) +OPTd(I|Tv2

)−OPTg(I|Tv1
)

Let us now consider the traversal of v1 and v2 where the non-decreasing ordering
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is preserved. In this case equation 4.2 calculates

x′ = w(u, v)
y′ = w(u, v)− g(v) +OPTd(I|Tv2

)
z′ = w(u, v)− g(v) +OPTd(I|Tv1

)−OPTg(I|Tv2
)

We are only interested for the case where w(u, v) is not greater than y, z, y′ and z′,
which is the case where OPTd(I|Tv1

) > g(v). Otherwise x would be the dominant
term and both ordered sets would result in the same cost. Therefore, we have that
y > x and y > x′. By inequality 4.3, we get that y > z, hence, OPTd(I|Tv) = y. By
inequality 4.3, we also get that y > y′ and y > z′, sinceOPTg(I|Tvi ) > 0, ∀vi ∈ pOPT .
As a result, y > max{x′, y′, z′}, which contradicts the optimality of OPTd(I|Tv).

Algorithm 4 computes the minimum amount of energy needed to achieve a
maximum gain of gmax(I) for an instance I and returns the optimal walk. At the
first step of Algorithm 4, Algorithm 3 is called with the initial input of Algorithm
4. The output of Algorithm 3 is the subset of nodes V ′ of T in which we can collect
at the root gmax(I) units of energy, therefore, we can restrict the calculations to the
subtree T ′ induced by V ′, ignoring the non-profitable nodes. As in the previous
algorithm it treats the nodes in a bottom-up manner, starting from the leaf nodes
of T ′ which are contained in the auxiliary set of leaf nodes X. Algorithm 4 is an
iterative algorithm and at each iteration i, it picks a node v from V ′ for which all
of its children are leaves in X and calculates the minimum energy needed by the
agent to visit v and its children. Next, it computes the maximum gain of energy
the agent collects by visiting v and its children. During step 14, it creates the
optimal walk of v and its children, which is in a non-decreasing order regarding
the energy cost of visiting each child. Last, it removes the children of v from X,
therefore, v becomes a leaf and is added in X. Once all the nodes of V ′ are checked,
it exits the while loop and it returns the minimum amount of energy the agent
needs in order to collect gmax(I) units of energy at the root and walk(r) which is
the optimal walk for I.

Theorem 23. Given an instance I for CollectMaxMinBudget problem, Al-
gorithm 4 correctly computes the minimum amount of initial energy B we need
to provide to the agent in order to collect a total gain of gmax(I) at the root and
returns the optimal walk for I.

Proof. For any v ∈ V ′, let g?(v) denote the final value of gain(v) and d?(v) denote
the final value of d(v). We will prove the correctness of the algorithm by induction.
The induction hypothesis is that at the end of each iteration i of the while loop at
line 17, for any node v ∈ X, g?(v) is the optimal gain in Tv, g?(v) = OPTg(I|Tv),
and d?(v) is the optimal amount of energy we need to provide to the agent initially
in order to collect g?(v) energy in Tv, d?(v) = OPTd(I|Tv).
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Algorithm 4 An algorithm for CollectMaxMinBudget.
Input: I = 〈T (V,E), r, (g(v))∀v∈V , (w(e))∀e∈E〉.

1: V ′ ← CollectMaxBigBudget(I);
2: gain(r)← g(r); d(r) = 0; walk(r) = {r};
3: for all v ∈ V ′ \ {r} do
4: gain(v)← g(v);
5: d(v)← w(parent(v), v);
6: walk(v)← {v};
7: end for
8: X ← {v ∈ V ′ : deg(v) = 1};
9: while X 6= {r} do

10: choose u ∈ V ′ s.t. ch(u) ⊆ X, breaking ties arbitrarily;
11: let v1, . . . , v|ch(u)| be the children of u in non-decreasing order w.r.t. d(vi)
12: d(u)← d(u) + max

{
0,−gain(u) + max1≤j≤|ch(u)|{d(vj)−

∑j−1
i=1 gain(vi)}

}
;

13: gain(u)← gain(u) +∑|ch(u)|
i=1

(
gain(vi)− 2 ·w(u, vi)

)
;

14: walk(u)← {u;walk(v1); . . . ;walk(v|ch(u)|);u};
15: X ← X \ ch(u);
16: X ← X ∪ {u};
17: end while
18: Return d(r) and walk(r);

For i = 0, it trivially holds, since X contains only the leaves of T ′ and the optimal
gain of any leaf l is its initial gain g(l) and the minimum amount of energy needed
to reach the leaf is equal to the weight of its edge w(parent(l), l). Assume that the
claim holds for i = k, we will prove that it holds for i = k + 1. Let v be the node
chosen at line 10 in the k + 1 iteration. By the induction hypothesis we have that
∀u ∈ ch(v) g?(u) = OPTg(I|Tu) and d?(u) = OPTd(I|Tu). By Lemma 19 it follows
directly that the final value of gain(v) calculated at line 13 of the algorithm is the
optimal gain of v, g?(v) = OPTg(I|Tv) and by Lemma 22 it follows directly that
the final value of d(v) calculated at line 12 of the algorithm is the optimal amount
of energy needed by the agent to collect g?(v) energy in Tv, d?(v) = OPTd(I|Tv),
which completes the induction.

Considering the optimality of walk(r), first, we get from step 1 of the algorithm
that walk(r) will contain all the profitable nodes of T . Next, by Lemma 22 we
know that the optimal order of traversals of the nodes is a non-decreasing one with
respect to the values of OPTd(I|Tv), this property is preserved in line 14 of the
algorithm, where the nodes are added in a non-decreasing order with respect to
the values of d(v). This completes the proof.
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5 Near-Gathering in Graphs

Introduction
In the problem of gathering a group of k agents is initially placed at the nodes
of a given graph and the goal for the agents is to meet at a single node of the
graph and stay there. The constraint on the energy levels of the agents that we are
considering in this manuscript, may render gathering at a single point impossible.
For this reason, we are considering the problem of near-gathering, where the goal
is to relocate the agents, respecting their energy constraints, in a way that the
maximum or the average distance between any two agents is minimized.
Unlike previous chapters, here, we consider a more general model. The agents

start from distinct nodes of an arbitrary graph, having, potentially, distinct energy
levels initially. For the objective of minimizing the maximum pairwise distance of
the agents, we show that the problem is NP-hard to approximate within a 2− o(1)
factor. As a positive result, we present a matching 2-approximation algorithm.
Furthermore, for the objective of minimizing the average pairwise distance of the
agents, we present a 2(1− 1

k
)-approximation algorithm.

The Model
A collection of k mobile agents is initially located at an arbitrary set of nodes
{h1, . . . , hk} of an undirected general graph G(V,E). The objective is to compute
a schedule of agents moves, so that the maximum or the average pairwise distance
of the agents is minimized. Each agent ai has an initial energy budget denoted
by bi. Traversing each edge consumes one unit of energy. Therefore, agent ai can
traverse at most bi edges. If an agent depletes its battery, then it cannot perform
any other action.
Let d(u, v) denote the length of the shortest path between nodes u and v. We

denote by N(hi) the set of all nodes that agent ai can reach from its initial position
hi, N(hi) = {v ∈ V | d(hi, v) ≤ bi}.

5.1 Minimizing the Diameter
In this subsection we describe and analyze a greedy algorithm for minimizing the
maximum distance between any pair of agents. The formal definition of the problem
is the following

Definition 24 (MinD).
Instance: I = 〈G, k, {hi}i∈1,...,k, {bi}i∈1,...,k〉, where G(V,E) is an undirected, general
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graph, k denotes the total number of agents, hi denotes the homebase node of
agent ai and bi denotes the initial energy of agent ai.
Feasible solution: Any configuration C = (c1, . . . , ck), where ∀i ∈ {1, . . . , k}, ci ∈ V
and d(hi, ci) ≤ bi.
Goal: Minimize Diam(C), where Diam(C) = maxi,j∈1,...,k d(ci, cj).

The main idea of Algorithm 5 is to fix a node in graph G as a gathering point
and compute, next, the minimum distance each agent can have to this fixed point
with respect to their energy constraints, breaking ties arbitrarily. Algorithm 5
greedily tests all nodes in G as possible gathering points and selects the node that
minimizes the maximum distance between any pair of agents.

Algorithm 5 An approximation algorithm for MinD.
Input: An instance 〈G, k, {hi}i∈1,...,k, {bi}i∈1,...,k〉.

1: for each v ∈ V do
2: We define Cv = (cv1, . . . , cvk), where cvi is a vertex in N(hi) that minimizes

the distance to v, breaking ties arbitrarily.
3: Compute Diam(Cv).
4: end for
5: Return argmin

Cv :v∈V
Diam(Cv).

Let OPTMinD = max1≤i,j≤k d(oi, oj) denote the value of the optimal solution for
MinD problem.

Theorem 25. Algorithm 5 is a 2-approximation algorithm for MinD.

Proof. Consider an instance I = 〈G, k, {hi}i∈1,...,k, {bi}i∈1,...,k〉 of MinD. Let Cv∗ =
(c1, . . . , ck) be the configuration Algorithm 5 returned for instance I and let COPT =
(o1, . . . , ok) be the configuration of an optimal solution for the same instance. There
exists an o∗ ∈ COPT for which it holds that

o∗ = argmin
oj∈COPT

max
1≤i≤k

d(oi, oj) (5.1)

Consider now the configuration Co∗ = (c′1, . . . , c′k) Algorithm 5 computed for node
o∗ in step 3. It holds that

Diam(Cv∗) = max
1≤i,j≤k

d(ci, cj) ≤ max
1≤i,j≤k

d(c′i, c′j) (5.2)

otherwise Algorithm 5 would have chosen o∗ as the gathering point and not v∗.
Next, we apply the triangle inequality to the right-hand side of inequality 5.2 and
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we get

max
1≤i,j≤k

d(c′i, c′j) ≤ max
1≤i≤k

d(c′i, o∗) + max
1≤j≤k

d(o∗, c′j)

≤ 2 · max
1≤i≤k

d(c′i, o∗) ≤ 2 · max
1≤i≤k

d(oi, o∗)

where the last inequality holds because of step 2 of Algorithm 5, i.e., for each agent
ai, the final position c′i has the minimum distance towards o∗. Last, by equality 5.1
we have

2 · max
1≤i≤k

d(oi, o∗) ≤ 2 · max
1≤i,j≤k

d(oi, oj)

Therefore, inequality 5.2 becomes

max
1≤i,j≤k

d(ci, cj) ≤ 2 · max
1≤i,j≤k

d(oi, oj) = 2 ·OPT

which completes the proof.

We will now show that this is the best approximation ratio possible for the
MinD problem.

Theorem 26. There exists no deterministic
(
2− o(1)

)
-approximation algorithm

for MinD, unless P = NP. This holds even if bi = B ∀i.

Proof. We will prove the theorem by a reduction from 3-SAT to MinD. 3-SAT is
one of Karp’s 21 NP-complete problems, [Kar72], and has the following definition:
Instance: A conjunctive normal form formula φ where each clause contains at most
3 different literals.
Question: Is φ satisfiable?
Initially, we want to construct an instance of MinD from an instance of 3-SAT. Let
x1, . . . , xn be the variables and C1, . . . , Cm be the clauses of a 3-SAT formula φ,
where m,n ∈ N. We can construct now a graph G(V,E) in the following manner.
Set of nodes V :
Let

• V1 = {vi | 1 ≤ i ≤ n} be the set of nodes that correspond to variables
x1, . . . , xn,

• V2 = {vT
i | 1 ≤ i ≤ n} be the set of nodes that correspond to the true-value

assignments of variables xi,

• V3 = {vF
i | 1 ≤ i ≤ n} be the set of nodes that correspond to the false-value

assignments of variables xi,

• V4 = {ci | 1 ≤ i ≤ m} be the set of nodes that correspond to clauses
C1, . . . , Cm,
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• L = {TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF} be the set of all pos-
sible truth assignments of a clause containing 3 literals and

• V5 = {c`i | 1 ≤ i ≤ m,∀` ∈ L} be the set of nodes that correspond to all
possible truth assignments of each clause Ci.

We can now define as the set of nodes of G, the following union of sets

V (G) = {V1} ∪ {V2} ∪ {V3} ∪ {V4} ∪ {V5}

Set of edges E:

For simplicity, we will consider weighted edges, where the weight of each edge
represents the length of the edge and is proportional to the amount of energy an
agent needs in order to traverse this edge. The weighted graph G can be easily
transformed into a graph with unweighted edges by replacing each weighted edge by
a node-disjoint simple path of length equal to the weight of the edge. Throughout
this proof, unless stated otherwise, we are assuming that the weight of the edges,
denoted by w(u, v), for u, v ∈ V , is uniform and equal to B.
Let

• E1 = {(vi, vT
i ) | ∀vi ∈ V1, ∀vT

i ∈ V2} be the set of weighted edges between
the set of nodes V1 and V2, where each variable is connected to the literal
that corresponds to its true-value assignment,

• E2 = {(vi, vF
i ) | ∀vi ∈ V1, ∀vF

i ∈ V3} be the set of weighted edges between
the set of nodes V1 and V3, where each variable is connected to the literal
that corresponds to its false-value assignment,

• E3 = {(vi, vj) | ∀vi ∈ V2, ∀vj ∈ V3} be the set of weighted edges between all
nodes representing literals,

• E4 = {(ci, c`i) | ∀ci ∈ V4, ∀c`i ∈ V5, c
`
i satisfies Ci, ∀` ∈ L} be the set of

weighted edges that connects each clause node with nodes representing all
possible satisfying assignments for this clause,

• E5 = {(c`i , c`
′
j ) | ∀c`i , c`

′
j ∈ V5, i 6= j, ∀`, `′ ∈ L} be the set of weighted edges

between all the possible satisfying assignments of the clauses,

• E6 = {(vi, c`j) | ∀vi ∈ V2 ∪ V3, ∀c`j ∈ V5, c
`
j satisfies Cj, xi appears in Cj}

be the set of weighted edges that connects each literal to all the satisfying
assignments of the clauses in which it appears, and,

• E7 = {(vT
i , c

`
j), (vF

i , c
`
j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m,∀` ∈ L, xi does not appear in Cj}

be the set of weighted edges that connects each literal to all the satisfying
assignments of the clauses in which the corresponding variable xi of the literal
does not appear.
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Figure 5.1: A part of an instance of MinD, constructed from 3-SAT instance C1 ∧
· · · ∧Cm with variables x1, . . . , xn, displaying the connections between nodes
v1, v2, vn, c1 and c2. Notice that nodes cFFT

1 and cFFF
m are not connected to

nodes c1 and cm, respectively. The rectangles denote the presence of mobile
agents.

We define as the set of edges of G, the following union of sets

E(G) = {E1} ∪ {E2} ∪ {E3} ∪ {E4} ∪ {E5} ∪ {E6} ∪ {E7}

Agents:

Finally, we consider that n + m agents are initially positioned at nodes {vi |
∀vi ∈ V1∪V4} and each agent has B units of available energy. If an agent is initially
placed on a node v, then we write a(v) to refer to this agent at any point of the
strategy.

Fig. 5.1 shows a part of an instance of MinD which is constructed from an
instance of 3-SAT as described above. Before continuing with our proof we need to
argue that no agent would stop in the middle of an edge. To prove this we state
the following lemma.
Lemma 27. For any solution Diam(C) of MinD, with C = (c1, . . . , ck), for
which ∃i ∈ {1, . . . , k} such that ci /∈ {V2 ∪ V3 ∪ V5}, there exists another solution
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v1

vT1

vF1

2n-clique

δ B − δ

B

B

Figure 5.2: An instance where agent a(v1), represented by the rectangle, stops at distance
δ from its starting node.

Diam(C′), with C′ = (c′1, . . . , c′k), for which ∀i ∈ {1, . . . , k}, c′i ∈ {V2 ∪ V3 ∪ V5}
and Diam(C′) < Diam(C).

Proof. Consider an agent a(vi) which corresponds to the variable xi and without
loss of generality, suppose that a(vi) chooses to move towards node uF

i . Assume now,
for the sake of contradiction, that agent a(vi) has stopped at distance 0 ≤ δ < B
on the edge (vi, vF

i ), therefore a(vi) has spent δ units of energy and has B− δ units
of energy remaining (Fig. 5.2). Agent a(vi) is connected with the rest of the agents
through two possible paths, the first one is through the segment (δ, vF

i ) of length
B − δ which we will call pF and the other one is through the path (δ, vi), (vi, vT

i )
of length δ +B, which we will call pT. It holds that, a(vi) has a total distance of
B− δ+B = 2B− δ towards the other agents through pF, where B− δ corresponds
to the distance of a(vi) to node vF

i and B corresponds to the distance between node
vF
i and any node vj ∈ {V2 ∪ V3 ∪ V5}, and a total distance of B + δ +B = 2B + δ
towards the rest of the agents through pT, where B + δ corresponds to the distance
of a(vi) to node vT

i (through vi) and B corresponds to the distance between node
vT
i and any node vj ∈ {V2 ∪ V3 ∪ V5}.
It is easy now to notice that if a(vi) moves to node vF

i (recall that it has B − δ
units of energy remaining) its distance to the rest of the agents can only be reduced,
more precisely, it will be equal to B through node vF

i and 2B through node vT
i ,

which contradicts the optimality of the solution. The same argument holds for the
agents that correspond to the clauses. Therefore, in any optimal solution no agent
stops in the middle of an edge.

Continuing with our proof, first, we prove that if φ is satisfiable then there exists
a solution to MinD of size less than or equal to B.
(=⇒)
Given the fact that φ is satisfiable we have a truth assignment to the variables
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which satisfies every clause of φ. For each i ∈ {1, . . . , n}, if variable xi := TRUE
then agent a(vi) moves to node vT

i , otherwise, it moves to node vF
i . Next, for each

i ∈ {1, . . . ,m}, agent a(ci) moves to node c`i , which corresponds to the unique
truth assignment to the variables that makes all the literals that are contained in
ci clause TRUE. Note that any agent initially located in either a variable node or
a clause node, has sufficient energy to reach any node in the union of sets of nodes
V2 ∪ V3, or in the set of nodes V5 respectively.

Let us examine the maximum distance of any two agents in this final configuration.
Notice that the agents {a(vi) | vi ∈ V1} moved to nodes that belong to V2 ∪ V3.
By construction, we have ∀vi,∀vj ∈ V2 ∪ V3, i 6= j, w(vi, vj) = B (refer to the
set of edges E3). Therefore, the maximum distance of any two agents that have
moved to the union of sets of nodes V2 ∪ V3 is equal to B. Similarly, the agents
{a(ci) | ci ∈ V4} have moved to nodes that belong to the set of nodes V5. Again,
by construction we have ∀ci, ∀cj ∈ V5, i 6= j, w(ci, cj) = B (refer to the set of edges
E5), as a result the maximum distance of any two agents in V5 is equal to B. It
remains to compute the distance between any agent that is located in a node in
the union of sets of nodes V2 ∪ V3 and any agent that is located in a node of V5.
Each agent a(ci), located in the set of nodes V5, by construction has distance equal
to B from the nodes that correspond to the truth assignment to the variables
contained in clause ci (refer to the set of edges E6). Moreover, each agent a(ci) has
distance B from the nodes that belong to the set V2 ∪ V3 and correspond to the
truth assignment to variables that are not contained in clause ci (refer to the set of
edges E7). Therefore, the maximum distance between any two agents is equal to
B.
For the other direction of the reduction, we need to prove that if φ is not satisfiable
then every solution to MinD is of size greater than or equal to 2B.
(⇐=)
We can assume now that no agent will stop in the middle of an edge, according to
Lemma 27.
If φ is not satisfiable then for every possible truth assignment to the variables,

there exists at least one clause in φ that is not satisfied. Let us note here that in
any solution to MinD, the final positions of the agents that are initially located in
variable nodes correspond to a truth assignment to the variables. Therefore, any
final configuration will correspond to a truth assignment to the variables which will
not satisfy φ. Consider now an arbitrary final configuration of an instance of MinD.
For the corresponding truth assignment to the variables, without loss of generality,
assume that the clause that is not satisfied is Cl = (xi ∨ xj ∨ xk). This implies that
agents a(vi), a(vj) and a(vk) are located in nodes vF

i , vT
j and vF

k , respectively.
Let us examine the maximum distance of any two agents in this final configuration.

Recall that the set of edges E4 connects each clause node to nodes corresponding
to all possible satisfying assignments for this clause, as a result, nodes cl and cFTF

l

are not connected by an edge. Moreover, the shortest path between nodes cl and
cFTF
l is equal to 2B (refer to the set of edges E5). Therefore, agent a(cl) cannot
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reach node cFTF
l . Any other node c`l , where ` ∈ L \ {FTF}, to which agent a(cl)

could relocate, corresponds to a truth assignment to xi, xj and xk where at least
one of the variables has the opposite value of its assignment. Say that a(cl) chooses
to move to node cTTF

l , then a(cl) will have a distance of 2B from agent a(vi) since
a(vi) has moved to node vF

i . Recall that node vF
i is not connected by an edge to

node cTTF
l since vF

i does not appear in it. Therefore, agents a(cl) and a(vi) will
have a distance of 2B. This completes the proof.

Notice that if B is very small, we can achieve an additive approximation of +2B,
by assigning to the agents to remain in their initial positions.

5.2 Minimizing the Average Distance
In this subsection we describe and analyze a greedy algorithm for minimizing the
average pairwise distance between agents. The formal definition of the problem is
the following

Definition 28 (MinSum).
Instance: I = 〈G, k, {hi}i∈1,...,k, {bi}i∈1,...,k〉, where G(V,E) is an undirected, general
graph, k denotes the total number of agents, hi denotes the homebase node of
agent ai and bi denotes the initial energy of agent ai.
Feasible solution: Any configuration C = (c1, . . . , ck), where ∀i ∈ {1, . . . , k}, ci ∈ V
and d(hi, ci) ≤ bi.
Goal: Minimize Sum(C), where Sum(C) = 1

2
∑

1≤i 6=j≤k d(ci, cj).

The main idea of Algorithm 6 is similar to the idea of Algorithm 5. We fix a node
in the graph G as a gathering point and we compute, next, the minimum distance
each agent can have to this fixed point with respect to their energy constraints,
breaking ties arbitrarily. Algorithm 6 greedily tests all nodes in G as possible
gathering points and selects the node that minimizes the average distance between
any pair of agents.

Algorithm 6 An approximation algorithm for MinSum.
Input: An instance 〈G, k, {hi}i∈1,...,k, {bi}i∈1,...,k〉.

1: for each v ∈ V do
2: We define Cv = (cv1, . . . , cvk), where cvi is a vertex in N(hi) that minimizes

the distance to v, breaking ties arbitrarily.
3: Compute Sum(Cv)
4: end for
5: return argmin

Cv :v∈V
Sum(Cv).
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Let OPTMinSum = 1
2
∑

1≤i 6=j≤k d(oi, oj) denote the value of the optimal solution
for MinSum problem.
Theorem 29. Algorithm 6 is a 2(1− 1

k
)-approximation algorithm.

Proof. Consider an instance I = 〈G, k, {hi}i∈1,...,k, {bi}i∈1,...,k〉 of MinSum. Let
Cv∗ = (c1, . . . , ck) be the configuration Algorithm 6 returned for I and let COPT =
(o1, . . . , ok) be the configuration of an optimal solution for the same instance. There
exists an o∗ ∈ COPT , which has the following property

OPTMinSum = 1
2

∑
1≤i 6=j≤k

d(oi, oj) ≥
1
2

∑
1≤i 6=j≤k

d(o∗, oj) = k

2
∑

1≤j≤k
d(o∗, oj)

hence, we have ∑
1≤j≤k

d(o∗, oj) ≤
2
k

·OPTMinSum (5.3)

Consider now the configuration Co∗ = (c′1, . . . , c′k) Algorithm 6 computed for
node o∗ in step 3. It holds that

Sum(Cv∗) = 1
2

∑
1≤i 6=j≤k

d(ci, cj) ≤
1
2

∑
1≤i 6=j≤k

d(c′i, c′j) (5.4)

since Algorithm 6 at step 5 rejected o∗ and chose v∗ as the gathering point. By
applying the triangle inequality to the right-hand side of inequality 5.4 we have

1
2

∑
1≤i 6=j≤k

d(c′i, c′j) ≤
1
2

∑
1≤i 6=j≤k

(
d(c′i, o∗) + d(o∗, c′j)

)
≤ (k − 1)

∑
1≤j≤k

d(o∗, c′j) ≤ (k − 1)
∑

1≤j≤k
d(o∗, oj)

where the last inequality holds because of step 2 of Algorithm 6, i.e., for each agent
ai, the final position c′i has the minimum distance towards o∗. We can apply now
inequality 5.3 to the right-hand side of the inequality above, we get

1
2

∑
1≤i 6=j≤k

d(c′i, c′j) ≤ (k − 1)2
k

·OPTMinSum

Therefore, inequality 5.4 becomes

Sum(Cv∗) ≤ 2 (1− 1
k

) ·OPTMinSum

which completes the proof.

We expect that our gap introducing reduction for MinD, can be modified to
provide inapproximability results for the MinSum problem as well.
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6 Delivery with Energy Sharing

Introduction
We consider the problem of delivering a package from a source node to a target
node in a graph. Since the agents have energy constraints, multiple agents need
to collaborate to move the package. As in the previous chapter, we consider
that the agents may start from distinct nodes of the graph. However, unlike the
previous chapters, we allow agents to share energy when they meet. We study the
collaborative delivery problem for two cases. In the first case, we assume that there
is no restriction on the amount of energy the agents can share (cf. section 6.1). In
the second case, we assume that the agents have restricted energy capacity, that is,
the amount of available energy the agents have, at any moment of the execution,
cannot be greater than the amount of their initial energy B (cf. section 6.2).

For the first scenario, it was shown that collaborative delivery is weakly NP-hard
in general graphs ([Czy+16]). In this work, we prove that the problem is strongly
NP-hard in general graphs by a reduction from the Steiner Tree problem and we
use this idea to get an algorithm for collaborative delivery. We prove, next, that
if we augment the initial energy of the agents by a constant factor, we can solve
collaborative delivery in polynomial time. For the second scenario, we completely
solve the problem of collaborative delivery for B = 2. We define two versions of
the problem. In the first version of the problem called CollaborativeDelivery
with Fixed Placement, the initial placement of agents, i.e., the energy distribution,
is given as part of the problem. In the second version of the problem called
CollaborativeDelivery with Chosen Placement, a set of homebase nodes is
given and the algorithm may choose the distribution of agents among the homebase
nodes. We show that the first version of the problem is strongly NP-hard, while the
second version of the problem admits a polynomial time solution and we present
such a solution strategy.
This chapter contains results that have appeared in conference publication

[Bam+17b].

The Model
Given a simple undirected graph G = (V,E), with two special nodes s (source)
and t (target), and a collection of k mobile agents located initially in specific nodes
of the graph, the objective is to decide whether there is schedule of agent moves
that can deliver a package from s to t. Each agent ai has an initial energy budget
and we denote its value by B. Traversing each edge consumes one unit of energy,
thus, a fully charged agent can move a distance of B before running out of energy.
When two agents are at the same node, one agent can transfer to the other agent,
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6.1 (Unlimited Capacity) Energy Sharing

any integral part of its energy. As we mentioned previously, in section 6.1, we
consider that there is no constraint on the amount of energy two agents can share,
as opposed to section 6.2, where we introduce the constraint that no agent can
have more than B units of energy at any time.
There is a unique package initially at node s that needs to be moved to node

t. To simplify the discussion, we will assume that the system is synchronous (any
synchronous strategy can also be implemented in an asynchronous system using
appropriate waits). An agent ai located at a node v at time t and having some
positive energy, can perform any subset of the following actions:

• Pick up the package, if the package is present at v at time t.

• Transfer a part of its energy to another agent aj that is located at v at time t.
For the constrained version, under the restriction that aj is not fully charged.

• Move to a neighboring node u, consuming one unit of energy and arriving at
u at time t+ 1.

A solution strategy is a sequence of steps as above, such that after the last step,
the package is located at node t.

6.1 (Unlimited Capacity) Energy Sharing
Let us start this section with the formal definition of the problem we will be
studying.

Definition 30 (CollaborativeDelivery with Unlimited Capacity). CDU
Instance: 〈G, s, t, k,H,B〉, where G = (V,E) is a simple undirected graph, s, t ∈ V
are, respectively, the source and target nodes, k ≥ 1 is the number of mobile agents,
H ⊂ V is the set of homebase nodes, where exactly 1 agent is initially located at
each homebase, and B ∈ Z+ is the initial energy of the agents.
Question: Does there exist a solution strategy for moving the package from s to t?

6.1.1 Hardness
Lemma 31. CDU is NP-hard in general graphs.

Proof. In order to prove the NP-hardness of CDU we will use the Steiner Tree
problem which is a known NP-complete problem by [GJ79].
Definition 32 (Steiner Tree). ST
Instance: 〈GST, R,Q〉, where GST = (VST, EST) is a simple undirected graph,
R ⊆ VST and Q is a positive integer with Q ≤ |VST| − 1.
Question: Does there exist a subtree T ′ST = (V ′ST, E

′
ST) of GST that includes all the

vertices of R and |E ′ST| ≤ Q?
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Given an instance IST = 〈GST, R,Q〉 of ST we can construct an instance ICDU =
〈GCDU, s, t, k,H,B〉 of CDU as follows. Initially, we set GCDU = GST, H = R,
k = |R| and B = 2|VST|. Next, we choose arbitrarily a node v that belongs to H
and we set it to be the source node, s = v. Last, we attach to s a node-disjoint
simple path of length kB −Q where the node on the other endpoint of this path
we set it to be the target node t.

For the next step of our proof, we need to show that if there exists a solution for
IST then there exists a solution for ICDU. By definition, if there exists a solution
S for IST, then there exists a subtree T ′ST of GST for which |E ′ST| ≤ Q. Subtree
T ′ST of GST corresponds to a subtree T ′CDU of GCDU, where every leaf node of T ′CDU
corresponds to a homebase node. Let us note here that by construction, the trees
T ′ST and T ′CDU have the same sets of nodes and edges, for this reason we can drop
the indices ST and CDU on T ′, V ′ and E ′ without causing ambiguity. Next, we
assign to each agent to move towards the source node s following a simple path
in T ′. We know that each agent has sufficient energy to reach s, since we have
set their energy to be equal to 2|VST| and by definition |V ′| ≤ |VST|. If in this
strategy, more than one agents are assigned to traverse the same edge, then one
agent collects the energy of all others, so that a single agent traverses the edge.
This way, every edge in T ′ is traversed exactly once. Following this strategy, in
the end, we gather at s, kB − |E ′| ≥ kB −Q units of energy. Next, if more than
one agents are located at s, one of the agents collects all the kB − |E ′| units of
energy, picks up the package and moves to t through the unique simple path of
length kB −Q in order to deliver the package. Hence, we get a solution for ICDU.
For the other direction of the reduction, we need to prove that if there exists

no feasible solution for ICDU then there exist no solution for IST. If there exist no
solution for ICDU, then it does not exist a schedule of moves of the agents to collect
kB −Q units of energy at the source. In other words, the total number of edge
traversals they perform to reach s, is greater than Q. Therefore, there exist no tree
T ′ of GCDU spanning all the nodes of H with total number of edges less than or
equal to Q. Which implies that there is no solution for IST.
Notice that the hardness of the problem does not come from the fact that we

have to choose a subset of the agents. Even if all the agents are to be used, we still
cannot solve the problem in polynomial time.

6.1.2 Solution
Since the problem is NP-hard, we will try to find a resource augmented solution
for the problem that can be computed in polynomial time. Given an instance I
of CollaborativeDelivery with Unlimited Capacity, we consider augmenting
the amount of initial energy of the agents by a constant factor of λ, we denote the
new instance by λI. We call a solution for such an instance, a resource augmented
solution. In addition, we say that an algorithm is λ-resource augmented if it
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correctly returns either that there is no feasible schedule for the original instance,
or a feasible schedule for the augmented instance λI.

For the problem of CollaborativeDelivery with Unlimited Capacity, consider
again an instance I for which there exists a feasible solution S. Without loss of
generality, we can assume that the package is carried from s to t by only one agent
on a simple path p. We can see that this claim holds, by noticing that there always
exists a solution in which the agent that picks up the package from the source,
say a0, also collects the energy each time it meets another agent along its path.
Therefore, a0 can eventually deliver the package to the target. All the other agents
which are part of S either give their energy to a0 directly (by meeting a0 on a node
of p) or indirectly, by transferring their energy to another agent ai located on a
node that does not belong to p. Such a path p we call it the data path of S.
Assume that ` + 1 agents, a0, . . . , a`, have been relocated to path p. More

precisely, consider that a0 has moved to the source s = v0 (if there was not any
agent initially located at the source) and the rest of the agents have relocated to
nodes v1, . . . , v` in order to meet a0 and share their energy (we will not consider any
agents that possibly meet agents a0, . . . , a` before they reach p). In this manner,
we have that along the data path p there are ` + 1 nodes, which we will denote
by s = v0, v1, . . . , v`, where ` + 1 agents are located and the available energy of
each one of these agents is denoted by b0, b1, . . . , b`, additionally, let v`+1 = t. Let
di denote the distance between nodes vi and vi+1, 0 ≤ i ≤ ` in p. If there exists
an agent that meets a0 at t then this agent does not contribute its energy for the
delivery of the package, thus, it is not part of S.

Remark 1. It is easy to see that, given that I has a solution S for CDU, for the
data path p of S it holds that ∀j ∈ {0, . . . , `}, ∑j

i=0 bi ≥
∑j
i=0 di.

The following lemma states that given that there exists a solution for an instance
of CDU, if we augment the initial energy of the agents, by a factor of 2, we can
collect sufficient energy at the source, such that an agent will be able to deliver the
data from s to t by following the data path p.

Lemma 33. Consider an instance I of CDU. If there exists a solution S for I,
then for the data path p of S, it holds that ∃w ∈ {1, . . . , `} such that

2
w∑
i=j

bi ≥
w∑
i=j

di−1, ∀j ∈ {1, . . . , w} (Cw,j)

and

2
w∑
i=0

bi−
w−1∑
i=0

di ≥
∑̀
i=0

di (Cw,0)

Proof. In order to prove Lemma 33 we will use the following two propositions.
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Proposition 34. If for some λ, ∧λw=0
∨w
j=0 ¬Cw,j, then ∀µ ∈ {0, . . . , λ} :

µ∑
i=0

bi <
1
2
∑̀
i=0

di + 1
2

µ−1∑
i=0

di

Proof. We will prove this proposition by induction.
For λ = 0, it has to hold that ¬C0,0 implies b0 <

1
2
∑`
i=0 di, which is true by the

definition of C0,0, C0,0 ≡ 2b0 ≥
∑`
i=0 di. For the induction step, assume that it is

true for λ = k. We will show that it is true for λ = k+ 1. Assume ∧k+1
w=0

∨w
j=0 ¬Cw,j ,

which is equivalent to
k∧

w=0

w∨
j=0
¬Cw,j ∧

k+1∨
j=0
¬Ck+1,j

which implies by the induction hypothesis

∀µ ∈ {0, . . . , k},
µ∑
i=0

bi <
1
2
∑̀
i=0

di + 1
2

µ−1∑
i=0

di

and
k+1∨
j=0
¬Ck+1,j

Hence, we need to prove that

∀µ ∈ {0, . . . , k + 1},
µ∑
i=0

bi <
1
2
∑̀
i=0

di + 1
2

µ−1∑
i=0

di

By the induction hypothesis we have that this inequality holds for all µ ∈ {0, . . . , k}.
It remains to show that ∑k+1

i=0 bi <
1
2
∑`
i=0 di + 1

2
∑k
i=0 di. Since we have that∨k+1

j=0 ¬Ck+1,j is true, we can distinguish two cases.
Case 1: If ¬Ck+1,ξ for some ξ ∈ {1, . . . , k + 1}, we have

k+1∑
i=0

bi =
ξ−1∑
i=0

bi +
k+1∑
i=ξ

bi
ind. hyp.
<

1
2
∑̀
i=0

di + 1
2

ξ−2∑
i=0

di +
k+1∑
i=ξ

bi
def. of ¬Ck+1,ξ

<

1
2
∑̀
i=0

di + 1
2

ξ−2∑
i=0

di + 1
2

k+1∑
i=ξ

di−1 ≤
1
2
∑̀
i=0

di + 1
2

k∑
i=0

di

Case 2: If ¬Ck+1,0, by definition

2
k+1∑
i=0

bi −
k∑
i=0

di <
∑̀
i=0

di
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which is equivalent to
k+1∑
i=0

bi <
1
2
∑̀
i=0

di + 1
2

k∑
i=0

di

.

Proposition 35. If ∧`−1
w=0

∨w
j=0 ¬Cw,j, then

∧`
j=0 C`,j.

Proof. First, we will prove ∀ξ ∈ {1, . . . , `}, C`,ξ which is equivalent to prove
2∑`

i=ξ bi ≥
∑`
i=ξ di−1. By remark 1, we have that ∑`

i=0 bi ≥
∑`
i=0 di which can be

written as ∑ξ−1
i=0 bi +∑`

i=ξ bi ≥
∑`
i=0 di. Thus, we have

∑̀
i=ξ

bi ≥
∑̀
i=0

di −
ξ−1∑
i=0

bi
Prop. 34
>

∑̀
i=0

di −
1
2
∑̀
i=0

di −
1
2

ξ−2∑
i=0

di =

1
2
∑̀
i=ξ−1

di ≥
1
2
∑̀
i=ξ

di−1

Finally, to prove C`,0 we need to prove that 2∑`
i=0 bi −

∑`−1
i=0 di ≥

∑`
i=0 di. Again,

by remark 1 we have

∑̀
i=0

bi ≥
∑̀
i=0

di ≥
∑̀
i=0

di −
d`
2 ≥

1
2
∑̀
i=0

di + 1
2

`−1∑
i=0

di ≥
∑̀
i=0

di

which completes the proof.

The proof of Lemma 33 follows directly from Proposition 35.

Due to Lemma 33, we know that for any solution using data path p there is a
node w on the path such that in the 2-resource augmented version of the problem,
the agent arriving at node w can move to the source s collecting the energy of
other agents along p and when it arrives at s it will have enough energy left to
traverse p. Therefore, it is possible to collect at s enough energy, sufficient to move
the package from s to t.
We now want to solve the problem of collecting sufficient energy at s. In order

to do so, we will reduce CDU to the rooted version of the K-Steiner tree problem,
which is defined as follows.
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Definition 36 (Rooted K-Steiner Tree). K-ST
Instance: 〈G, r, (c(e))∀e∈E, R,K〉, where G = (V,E) is a simple undirected graph,
r ∈ V is the root node, c(e) denotes the non-negative cost of edge e, R ⊆ V is the
set of required nodes (terminals) and K is an integer.
Feasible solution: A tree T = (V ′, E ′) in G, with V ′ ⊆ V , r ∈ V ′ and E ′ ⊆ E, that
spans at least K of the required nodes.
Goal: Minimize cost(T ) = ∑

e∈E′ c(e).

In a work of [BP89] it was proved that K-ST is an NP-hard problem. It is also
known that it admits constant factor approximation algorithms, the currently best
known approximation factor is 5 by [CRW04]. In this work, for simplicity we will
denote the approximation factor of K-ST by α.
Before proceeding to the formal definition of our algorithm for CDU, let us

describe informally its the main idea. As it was previously stated, we will make
a reduction to the K-ST problem. Given an instance ICDU = 〈G, s, t, k,H,B〉 of
the CDU problem and an integer K ≤ |H|, we can construct an instance IK-ST =
〈GK-ST, r, (c(e))∀e∈E, R,K〉 of K-ST by setting GK-ST = G, r = s, c(e) = 1, ∀e ∈ E
and R = H. A solution T for instance IK-ST corresponds to a schedule of agent
moves for instance ICDU. That is, if a terminal node is included in T , then the
agent initially located at the corresponding homebase node in ICDU moves towards
the source following the path in T , while it has sufficient energy. Note that, if
two or more, agents are assigned to traverse the same edge, one agent collects the
energy of all others, so that a single agent traverses the edge. On the other hand,
given that ICDU has a solution, then we know from Lemma 33 that if we augment
the initial energy of the agents by a factor of 2, we can collect enough energy at
the source node so that an agent can deliver the package to the target node. We
can, then, start calling the algorithm for K-ST for the constructed instance IK-ST
for different values of K (between 1 and k), until we get a corresponding schedule
of agent moves in ICDU, that collects at the source the desired amount of energy.
We denote by d(u, v) the shortest path between nodes u and v.

Algorithm 7 An algorithm for CDU.
Input: ICDU = 〈G, s, t, k,H,B〉.

1: D ← d(s, t)
2: for i = 1, . . . , k do
3: Construct IK-ST with K = i
4: if IK-ST has a solution Tα for which holds 2αiB − cost(Tα) ≥ D then
5: Return Tα
6: else Continue
7: end if
8: end for

Theorem 37. Algorithm 7 returns a 2α-resource augmented solution for CDU.
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Proof. Given an instance ICDU of CDU, by Lemma 33, if it is solvable this implies
that for the augmented instance 2ICDU we can collect d(s, t) units of energy at
source node s. The latter claim holds because the length of d(s, t) is less than
or equal to the length of the data path p of any solution. The schedule of agent
moves in such a solution correspond to a tree TCDU rooted at s, and j agents, where
j ∈ {1, . . . , k}. Such a tree TCDU corresponds to a solution for the IK-ST instance
with K = j of K-ST but not necessarily to an optimal solution. For TCDU holds

2jB − cost(TCDU) ≥ d(s, t) (6.1)

Let us consider now the optimal solution TOPT for the instance IK-ST with K = j.
Because of the optimality of TOPT , we have cost(TOPT ) ≤ cost(TCDU), therefore
inequality 6.1 can be written as

2jB − cost(TOPT ) ≥ d(s, t)

We now multiply both sides by α.

2αjB − αcost(TOPT ) ≥ αd(s, t)

Let Tα be the α-approximate solution for IK-ST with K = j. Therefore, it holds
that αcost(TOPT ) ≥ cost(Tα) and we get

2αjB − cost(Tα) ≥ αd(s, t) (6.2)

Algorithm 7 computes an α-approximate solution for IK-ST, for each possible value
of j in an increasing order, until inequality 6.2 is satisfied. By inequality 6.2, we can
conclude that using tree Tα, we can collect αd(s, t) units of energy at the source for
the instance 2αICDU, using j agents. This implies we have 2α-resource augmented
solution for CDU.

6.2 (Limited Capacity) Energy Sharing
In this section, we consider the limited capacity version of the problem. By limited
capacity, we mean that any agent cannot have more than B units of energy at any
moment of the execution. This version of the problem seems to be harder to solve.
In fact, we show this problem is NP-hard for small constant values of B. In this
section we assume B = 2, which is the smallest non-trivial constant.

In the general version of the problem described below, the position of the agents
is given by an adversary.

Definition 38 (CollaborativeDelivery with Fixed Placement). CDX
Instance: 〈G, s, t, k, h〉, where G = (V,E) is a simple undirected graph, s, t ∈ V
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are, respectively, the source and target nodes, h : {1, . . . , k} → V is the placement
function that specifies the initial positions of the k ≥ 1 agents.
Question: Does there exist a solution strategy for moving the package from s to t,
when each agent starts with B = 2 units of energy?

If the placement of agents among homebase nodes can be chosen by the algorithm,
then we have the following version of the problem:

Definition 39 (CollaborativeDelivery with Chosen Placement). CDC
Instance: 〈G, s, t, k,H〉, where G = (V,E) is a simple undirected graph, s, t ∈ V
are, respectively, the source and target nodes, k ≥ 1 is the number of mobile agents
and H ⊂ V is the set of homebase nodes.
Question: Does there exist a placement function p : {1, . . . , k} → H and a
corresponding solution strategy for moving the package from s to t, when the i-th
agent starts at node p(i) with B = 2 units of energy?

A path with nodes v1, . . . , vn and edges {vi, vi+1}, i ∈ {1, . . . , n− 1}, is denoted
by (v1, . . . , vn). The path graph with n vertices and n− 1 edges is denoted by Pn.
The length of the shortest path between two nodes u, v of a graph G is denoted
by dG(u, v), or simply d(u, v) when there is no potential for confusion. If an agent
is initially placed on a node v, then we write a(v) to refer to this agent at any point
of a strategy.

6.2.1 Collaborative Delivery with Fixed Placement
We prove that CDX is NP-complete. We start by recalling the following Bounded
3-SAT problem, which is known to be NP-complete [Tov84].

Definition 40 (Bounded 3-SAT).
Instance: A formula C = C1 ∧ · · · ∧ Cm with l variables denoted x1, . . . , xl, where
Ci = l1,i ∨ l2,i ∨ l3,i and lj,i is either a variable or the negation of a variable,
i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}. Additionally, the number of occurrences of each
variable is bounded by four.
Question: Does there exist a Boolean assignment to the variables that satisfies C?

We divide our NP-completeness proof into two parts. In the first part, we
prove that the problem of deciding whether there exists a restricted strategy for
a given CDX instance is NP-complete, where a strategy is said to be restricted
if, during the entire strategy, each edge is traversed by at most one agent. We
call this restricted problem RCDX and we prove its NP-completeness by reduction
from Bounded 3-SAT in Subsection 6.2.1.1. In the second part of the proof, we
argue that the edges can be replaced by a gadget that enforces the property of
being traversed by at most one agent, thus reducing RCDX to CDX. This gadget
is described in Subsection 6.2.1.2.
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6.2.1.1 The restricted delivery problem

Assume in the following that an instance of Bounded 3-SAT is given: C =
C1 ∧ · · · ∧ Cm on variables x1, . . . , xl. The maximum number of occurrences of a
variable in C is 4.

Let i ∈ {1, . . . , l}. For the variable xi we define a variable component denoted
by Gi = (V (Gi), E(Gi)), where

V (Gi) = {si, ti, t′i} ∪
{
t′j,i, tj,i, f

′
j,i, fj,i

∣∣∣ j ∈ {1, 2, 3, 4}} ,
and the edges of Gi are placed in such a way that (si, f1,i, f2,i, f3,i, f4,i, ti) and
(si, t1,i, t2,i, t3,i, t4,i, ti) are paths, {ti, t′i} ∈ E(Gi), the node tj,i is adjacent to t′j,i and
fj,i is adjacent to f ′j,i for each j ∈ {1, 2, 3, 4}. The node si is called a source-terminal,
the node t′i is a terminal and t′j,i, f ′j,i are called left- and right-terminals, respectively,
j ∈ {1, 2, 3, 4}; whenever the distinction is not necessary, all above-mentioned nodes
are simply called terminals. Figure 6.1 depicts the graph Gi.

si

f1,i f ′
1,it1,it′1,i

f2,i f ′
2,it2,it′2,i

f4,i f ′
4,it4,it′4,i

ti t′i

t3,it′3,i f3,i f ′
3,i

Figure 6.1: The variable component Gi. Dark nodes are the terminals (initial posi-
tions of agents).

Having constructed the variable components, we now define the graph GC =
(V (GC), E(GC)) that is the input to the RCDX problem. Let

V (GC) =
l⋃

i=1
V (Gi) ∪

{
ci, c

′
i

∣∣∣ ri ∈ {1, . . . ,m}} ∪ {v1, . . . , vl+m+1}

and

E(GC) = U ∪
l⋃

i=1
E(Gi) ∪

{
{cj, vl+j}, {cj, c′j}

∣∣∣ j ∈ {1, . . . ,m}}
∪
{
{vj, vj+1}

∣∣∣ j ∈ {1, . . . , l +m}
}
∪
{
{ti, vi}

∣∣∣ i ∈ {1, . . . , l}} ,
where U consists of the edges placed between left-terminals and right-terminals of
variable components and nodes c1, . . . , cm as follows: (i) if Ci contains a variable
xj (a negation of xj, respectively), then an edge between some left-terminal (right-
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terminal, respectively) of Gi and ci is added to G; (ii) these edges are added in
such a way that the degree of each left-terminal and right-terminal in GC is at most
two. The source of GC is v1 and the target of GC is vl+m+1. Figure 6.2 illustrates
an example of the graph GC .

s1 s2 s3 s4

v1 v2 v3 v4 v5 v6 v7 v8 v9

c1 c2 c3 c4

source target

c′1 c′2 c′3 c′4

Figure 6.2: The graph GC constructed for C = (x1∨¬x2∨x3)∧ (¬x1∨x2∨¬x3)∧
(¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x3 ∨ ¬x4) with variables x1, x2, x3, x4. Here,
l = 4 and m = 4.

When describing restricted strategies we will assume the following: if two agents
are located at the same node, each of them having one unit of energy, and a
restricted strategy dictates that one of them performs a subsequent move, then
without explicitly stating it, the energy sharing takes place so that the moving
agent holds two energy units.

Lemma 41. If C is satisfiable, then GC admits a restricted strategy.

Proof. Based on the Boolean assignment that satisfies C, we construct a restricted
strategy for GC as follows:

1. For each i ∈ {1, . . . , l}:
a) if xi = true, then for each j ∈ {1, 2, 3, 4}, a(t′j,i) moves to its neighbor

cj ∈ {c1, . . . , cm}, if such a neighbor exists, and a(f ′j,i) moves to fj,i,
b) if xi = false, then for each j ∈ {1, 2, 3, 4}, a(f ′j,i) moves to its neighbor

cj ∈ {c1, . . . , cm}, if such a neighbor exists, and a(t′j,i) moves to tj,i,
c) a(t′i) moves to ti.

2. For each i ∈ {1, . . . , l}, if xi = true, then a(si) follows the path (si, f1,i, f2,i, f3,i, f4,i, ti, vi)
and if xi = false, then a(si) follows the path (si, t1,i, t2,i, t3,i, t4,i, ti, vi).
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3. For each j ∈ {1, . . . ,m}, the agent a(c′j) moves to cj and then to vl+j.

4. For each i ∈ {1, . . . , l +m} (with increasing value of i), the agent present at
vi moves from vi to vi+1.

We will now prove that the above restricted strategy is feasible. Clearly, step 1 is
feasible due to the construction of the graph GC . The correctness of step 2 follows
from step 1: the agent a(si) follows its path (either (si, f1,i, f2,i, f3,i, f4,i, ti, vi) or
(si, t1,i, t2,i, t3,i, t4,i, ti, vi)) encountering at each node, except for the last node of the
path, an agent (either a(f ′j,i) or a(t′j,i), respectively) with one unit of energy and
hence a(si) by using this energy can reach vi having there one unit of energy left.
This also proves that a(si) is able to perform its move from vi to vi+1 in step 4. It
remains to argue that for each j ∈ {1, . . . ,m} there is an agent having at least one
unit of energy on cj at the end of step 2, which will prove that step 3 is valid. Since
C = C1∧· · ·∧Cm is satisfied by the chosen Boolean assignment, each Cj has a true
literal. If this literal is xi for some i ∈ {1, . . . , l}, then xi = true and according
to the construction of GC there exists j′ ∈ {1, 2, 3, 4} such that {t′j′,i, cj} ∈ E(G)
and a(tj′,i) moves from tj′,i to cj in step 1. An analogous argument holds when the
above literal is false, i.e., xi = false.

We will now prove, in a series of lemmas, that the existence of a feasible restricted
strategy for GC implies that C is satisfiable.

Lemma 42. If there exists a feasible restricted strategy for GC , then there exists a
feasible restricted strategy for GC in which no agent with no data and one unit of
energy performs a move.

Proof. The lemma follows from a straightforward observation that such a move,
since it ends with the agent having no energy, can be eliminated from a restricted
strategy without affecting the movements of other agents.

Lemma 43. In a feasible restricted strategy for GC , the path along which the data
moves from v1 to vl+m+1 is (v1, v2, . . . , vl+m+1).

Proof. Let S be a feasible restricted strategy for GC . We prove the lemma by
induction on i ∈ {0, 1, . . . , l + m} that the prefix of length i of the path along
which the data moves is Pi = (v1, . . . , vi+1) and the agent that brings the data
to vi+1 arrives at this node having no energy. The claim is trivial for i = 0 and
thus suppose that i > 0. Suppose first that i ≤ l − 1 and we argue that the claim
holds for i + 1. Suppose for a contradiction that the claim does not hold. By
induction hypothesis, the edge {vi−1, vi} has been traversed by an agent who has
no energy left when present at vi. That implies that the data moves along the edge
{vi, ti}. Since the edge {vi, ti} can be traversed once in S, this also implies that an
agent that moves the data along {vi, ti} arrives at vi along the edge {vi, vi+1}. By
construction of GC , and more precisely by the fact that each node in the path Pl+m
has exactly one neighbor in GC that does not belong to this path, we obtain that,
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at any point in S, there is no agent located on a node of Pl+m with two units of
energy, which gives a contradiction. The argument is analogous for i > l − 1.

Lemma 44. In each feasible restricted strategy for GC , for each node v ∈ {v1, . . . , vl+m},
an agent arrives at v having one unit of energy.

Proof. No node v ∈ X = {v1, . . . , vl+m} is initially occupied by an agent. Thus,
by Lemma 43, some agent arrives at v through the edge between v and a node in
V (G) \X, which completes the proof.

Lemma 45. If there exists a feasible restricted strategy for GC , then there exists a
feasible strategy for GC such that for each i ∈ {1, . . . , l} one of the two cases holds:

1. a(si) traverses the path (si, f1,i, f2,i, f3,i, f4,i, ti, vi) and a(f ′j,i) traverses the
edge {f ′j,i, fj,i} for each j ∈ {1, 2, 3, 4}, or

2. a(si) traverses the path (si, t1,i, t2,i, t3,i, t4,i, ti, vi) and a(t′j,i) traverses the edge
{t′j,i, tj,i} for each j ∈ {1, 2, 3, 4}.

Proof. Let S be a feasible restricted strategy for GC that satisfies Lemma 42.
Clearly, the only possible action for a(t′i) is to move to ti. Consider a node v
that is a left-terminal or a right-terminal of Gi. By the assumption that each
edge can be traversed at most once and v is of degree 2, we may assume without
loss of generality that no agent other than a(v) is present at v at any time point
in S. This implies that a(v) either stays idle or moves to a neighbor u. By
construction of GC , u ∈ {c1, . . . , cm} or u ∈ V (Gi); more precisely, in the latter
case u ∈ {f1,i, f2,i, f3,i, f4,i} if v is a right-terminal and u ∈ {t1,i, t2,i, t3,i, t4,i} if v is
a left-terminal. By Lemmas 42 and 43, a(v) performs no other move until meeting
another agent. Note that by Lemma 44, the edge {ti, vi} is traversed by an agent
moving from ti to vi. Thus, by a simple induction on the prefix length of the
path (si, f1,i, f2,i, f3,i, f4,i, v

′
i, vi) or (si, t1,i, t2,i, t3,i, t4,i, v′i, vi) one can prove that this

traversal may only happen if a(si) traverses exactly one of these paths. In the
former case all agents initially present at right-terminals have moved to the nodes
f1,i, f2,i, f3,i, f4,i and in the latter case all agents initially present at right-terminals
have moved to nodes t1,i, t2,i, t3,i, t4,i, as required by the lemma.

Lemma 46. If there exists a feasible restricted strategy for GC , then C is satisfiable.

Proof. Consider a feasible restricted strategy S for GC . According to Lemma 45,
for each i ∈ {1, . . . , l}, we have two possible cases for the agent a(si): it either
follows the path given in Lemma 45(1) in which case we set xi to be true, or the
agent follows the path from Lemma 45(2) in which case we set xi to be false. We
now argue that C = C1 ∧ · · · ∧ Cm is satisfied under this Boolean assignment. Let
j ∈ {1, . . . ,m} be selected arbitrarily and we need to prove that Cj contains a
literal that has the value true. By Lemma 44 and by the fact that cj is initially not
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occupied by an agent, two agents arrive at cj during the execution of S. One of these
two agents must be initially located at a node t′j′,i or f ′j′,i for some i ∈ {1, . . . , l} and
j′ ∈ {1, 2, 3, 4}. Since both cases are analogous we consider the first one, i.e., a(t′j′,i)
arrives at cj. Again by Lemma 45, a(si) traverses the path (si, f1,i, f2,i, f3,i, f4,i, ti)
and according to the definition, xi = true. Since {t′j′,i, si} ∈ E(G), by construction
of GC we have that Cj contains xj as a literal, which implies that Cj is satisfied.

We now conclude our NP-completeness results for two classes of graphs: bounded
degree graphs and bounded diameter graphs.
Theorem 47. RCDX is NP-complete in the class of graphs with degree bouded
by 5 and with each node being initially occupied by at most one agent.

Note that one may extend the graph GC in such a way that a path with two
edges is added between each pair of nodes in X = {v1, . . . , vl, c1, . . . , cm}. The
newly introduced nodes hold initially no agents. This allows us to use Lemma 44
to conclude that the newly added edges cannot be traversed by any agent in any
feasible restricted strategy. On the other hand, this extension turns GC into a
bounded diameter graph, which allows us to state the following.
Theorem 48. RCDX is NP-complete in the class of graphs with diameter at most
14 with each node being initially occupied by at most one agent.

6.2.1.2 The unrestricted delivery problem

We now introduce a gadget that we will use to modify the graph GC constructed
in Section 6.2.1.1. Replacing the edges of GC with this gadget will simulate the
“one-time traversal” property enforced in the RCDX problem. The gadget, denoted
as Ĝ = (V (Ĝ), E(Ĝ)), is a path on four nodes (z′1, z1, z2, z

′
2). Then, given a graph

GC constructed on the basis of a Boolean formula C, we obtain a graph ĜC by
replacing each edge {u, v} of GC by a copy of Ĝ and adding edges {u, z1} and
{v, z2} to ĜC . Additionally, the nodes z′1 and z′2 of each gadget in ĜC are initially
occupied by one agent. We make two observations regarding ĜC .
Lemma 49. Consider any two nodes u, v in ĜC such that {u, v} ∈ E(GC). At
most one agent, having two energy units when present at u can reach v in a feasible
strategy for ĜC , provided that no more than four units of energy are present at any
node of ĜC in total during the entire strategy for ĜC.
Proof. Clearly, each agent initially placed on a node of any gadget Ĝ in ĜC , in any
feasible strategy, moves from z′j to zj, j ∈ {1, 2}. Then, an agent that goes from
u to v in ĜC is able to traverse the path (u, z1, z2, v) with the use of the energy
of agents a(z′1) and a(z′2). This observation, together with the assumption that
in total at most 4 units of energy are present at u, allows us to say that another
traversal of this path in ĜC is not possible. Indeed, an agent with two units of
energy is not able to traverse the path and, by a simple case analysis, two agents
having four units of energy at u cannot reach v together.
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Lemma 50. At any point of a feasible strategy for ĜC, at most 4 units of energy
are present at any node of ĜC.

Proof. The claim follows by a simple induction on the number of steps of a strategy
for ĜC . Indeed, with the use of Lemma 49 and the fact that the degree of ĜC is
bounded by 5, we can conclude that at most four units of energy are present in
total at any node of ĜC .

Lemmas 49 and 50 give the following theorems.

Theorem 51. CDX is NP-complete in the class of graphs with degree bounded by
5 and with each node being initially occupied by at most one agent.

Theorem 52. CDX is NP-complete in the class of graphs with diameter at most
42 with each node being initially occupied by at most one agent.

6.2.2 Collaborative Delivery with Chosen Placement
Let I = 〈G, s, t,H〉 be an instance of CDC, with G = (V,E) and H ⊆ V . Recall
that a solution to I is a strategy that enables a group of energy-sharing agents
starting from some or all of the nodes in H with battery capacity B = 2 to transfer
the package from s to t. The cost of a solution is the total initial energy of the
agents that are placed on nodes in H. If u ∈ V , we denote by hu the node in H
that is closest to u, breaking ties arbitrarily, and we denote by z(u) the distance
from u to hu in G, i.e., z(u) = dG(hu, u). Let Ĝ be a weighted complete digraph
with vertex set V and arc set E ′, and let the weight of an arc e = (u, v) ∈ E ′ be
w(e) = 2z(u)+dG(u,v)−1. If P is a directed path in Ĝ, the weight of P is the sum of
the weights of the arcs in P . This section is devoted to the proof of the following
theorem:

Theorem 53. An optimal solution to I = 〈G, s, t,H〉 has cost dĜ(s, t).

It suffices to show that there exists a directed s-t path in Ĝ with weight smaller
than or equal to the cost of the optimal solution for I and, additionally, that every
directed s-t path in Ĝ corresponds to some solution for I with cost equal to the
weight of the path. The latter claim is given in the following lemma:

Lemma 54. For every directed s-t path in Ĝ, there exists a solution for I with
cost equal to the weight of the path.

Proof. For every arc (u, v) of the path, we send agents from hu to v in G along the
path hu  u  v, where hu  u is a shortest path from hu to u and u  v is
a shortest path from u to v. The agents pick up the package from u and release
it at v. The total length is z(u) + dG(u, v), and therefore 2z(u)+dG(u,v)−1 units of
energy suffice. Indeed, if, at any given point of the hu  u v path, we have 2k
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units of energy, we group these into k agents and we make them traverse the edge
leading to the next node. This wastes k units of energy and thus k units arrive at
the next node. This continues up to the penultimate node, where 1 unit of energy
arrives after z(u) + dG(u, v)− 1 edge traversals. The last remaining agent uses this
unit of energy to reach v with the package.

In the rest of this section, we derive some structural properties of optimal solutions
for I, which permit us to prove the former claim (cf. Lemma 67). In Section 6.2.2.1
we introduce our main tool in the analysis: an energy flow hypergraph that provides
a way of presenting solutions to CDC. Then, Sections 6.2.2.2 and 6.2.2.3 give a
series of properties of this hypergraph, allowing us to finish the proof of Theorem 53
in Section 6.2.2.4. We assume that s 6= t, otherwise Theorem 53 holds trivially.

6.2.2.1 The energy flow hypergraph

Given a solution S for I with cost X > 0, we represent S by a triple S = (V , E , Ẽ),
where (V , E) = H is a directed hypergraph that represents the flow and eventual
consumption of energy units (cf. Definition 55 below) and Ẽ ⊆ E corresponds to the
package moves under S (cf. Definition 56 below). The nodes of H are the energy
arrival and extinction events of S, as specified below.
We assume that the units of energy that are initially present at nodes in H

receive distinct identities from 1 to X. We distinguish two types of events during
the delivery under S. An arrival event occurs whenever an agent with two units of
energy i, j with i < j moves from some node u of G to a neighbor v at time step t.
We say that the unit of energy j is wasted by i during the event and that the unit
of energy i arrives at v at time t + 1. We denote this event as (i, t + 1, v). An
extinction event occurs whenever an agent with one unit of energy i moves from
some node u of G to a neighbor v at time step t. We say that the unit of energy i
wastes itself during the event. We denote this event as (⊥i, t+ 1, v).

We also consider as arrival events the appearance of the X units of energy at
the homebases at time 0, and we denote them as (i, 0, hi), for 1 ≤ i ≤ X, where
hi ∈ H is the homebase where energy unit i was placed.
We are now ready to define the energy flow hypergraph H = (V , E) in terms of

the arrival and extinction events as follows:

Definition 55 (Energy flow hypergraph). The vertex set V contains all of the
arrival and extinction events, as specified above. The hyperarc set E contains
({(i, t1, u), (j, t2, u)}, {(i, t, v)}) if t ≥ 1, the unit of energy i came from node u during
the event (i, t, v), j > i is the unit of energy consumed during the event (i, t, v),
and in addition t1 < t, t2 < t, and i (resp. j) is not involved in any other events
between times t1 (resp. t2) and t. Furthermore, E contains ({(i, t1, u)}, {(⊥i, t, v)})
if t1 < t and i is not involved in any other events between times t1 and t.
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Definition 56 (Item moves). The set Ẽ is defined as the subset of E that contains
all of the hyperarcs that correspond to package moves. More precisely, a hyperarc
({(i, t1, u), (j, t2, v)}, {(i, t, v)}) ∈ Ẽ if the agent that arrived with energy unit i at v
at time t was carrying the package. Similarly, a hyperarc ({(i, t1, u)}, {(⊥i, t, v)}) ∈
Ẽ if the agent that arrived with zero energy at v at time t (having wasted energy
unit i) was carrying the package.

We illustrate the energy flow hypergraph H corresponding to a simple solution
for an CDC instance in Figure 6.3. Note that the cost of S is given by the total
number of energy units that “arrive” at nodes in H at time 0, which corresponds
to the number of nodes of the form ( · , 0, · ) in H.

(1, 0, H) (2, 0, H) (3, 0, H) (4, 0, H)

(1, 1, s) (3, 1, s)

(1, 2, a)

(⊥1, 3, b)

(5, 0, H) (6, 0, H) (7, 0, H) (8, 0, H)

(5, 1, t) (7, 1, t)

(5, 2, b)

(⊥5, 4, t)

H

s t

a b

Figure 6.3: An energy flow hypergraph constructed for a graph G shown on the left.
The hypergraph consists of two components (the hyperarcs that corre-
spond to package moves are highlighted): the first component dictates
two agents to move from H to s and then one of those agents picks
up the package and travels along path (s, a, b); the second component
makes two agents to move from H to t and then one of them goes to
b, picks up the package and returns to t.

By construction, there is no cycle in H. Moreover, the head of every hyperarc
of H has size 1 and every node of H is contained in at most one hyperarc head and
in at most one hyperarc tail. Therefore, H consists of a number of independent
components H1, . . . ,Hσ, each of which has a tree-like structure, as in Figure 6.3.

Notation If e ∈ E , we denote by head(e) the unique node that is in the head of e.
If v ∈ V , we denote by g(v) the node of G that is involved in the event v. If e ∈ E ,
then we denote by gtail(e) the node of G that is involved in the events in the tail
of e (recall that, by definition of the hypergraph H, all events in the tail of e must
involve the same node of G), and by ghead(e) the node of G that is involved in the
unique event in the head of e (i.e., ghead(e) = g(head(e))).
If v ∈ V, let ∆v denote the subgraph of H induced by the ancestors of v and

v itself. Let height(v) denote the number of hyperarcs in the longest path that
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terminates at v. If e ∈ E , we abuse the notation slightly and we denote by height(e)
the height of head(e). If v, v′ ∈ V , we write v ≺ v′ if v is an ancestor of v′ and we
write v @ v′ if v precedes v′ temporally, i.e., v = (i, t, x) and v′ = (i′, t′, x′) with
t < t′. Note that v ≺ v′ implies v @ v′. As above, we extend the notation to arcs
and we write e ≺ e′ if head(e) ≺ head(e′) and e @ e′ if head(e) @ head(e′).

If ∆v contains x nodes of the form ( · , 0, · ), then we say that ∆v incurs a cost
of x. This represents the energy units used by the solution in order to generate the
event v. We also say that a component Hi incurs a cost equal to the cost incurred
by its maximal node (under ≺). The cost of S is the sum of the costs incurred by
the components of H.

6.2.2.2 Properties of optimal solutions

The goal of this section is to prove a property of optimal solutions that can be
informally stated as follows: every component of the hypergraph corresponding to
the solution contains exactly one chain of item moves and the last hyperarc of this
chain is an extinction event of the component.

Proposition 57. For every solution S = (V , E , Ẽ) in which there exist arcs f, g ∈ Ẽ
with f ≺ g, there exists a solution S ′ = (V , E , Ẽ ′) with Ẽ ′ = Ẽ \ {e : f @ e @ g} ∪
{e : f ≺ e ≺ g}.

Proof. Under S, the arcs in Ẽ ∩ {e : f @ e @ g} are responsible for taking the
package from node ghead(f) to node gtail(g) in G. Under S ′, we achieve the same
result by using the hyperarcs {e : f ≺ e ≺ g}.

f

g

f

g

Figure 6.4: Illustration of Proposition 57. Triangles represent components of the
solution hypergraph. The solution S is shown on the left (in which
some arcs of the path from f to g are not package moves — those
package moves can be possibly in different components; the dotted
arrows represent the time succession between package moves that take
the package from f to g) and the corresponding S ′ is shown on the
right.

By repeated application of Proposition 57, we obtain the following:
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Corollary 58. For every solution S = (V , E , Ẽ), there exists a solution S ′ =
(V , E , Ẽ ′) and a partition of Ẽ ′ into sets Ẽ ′1, . . . , Ẽ ′τ such that, for every i, the
hyperarcs of Ẽ ′i form a chain in H and, for every e ∈ Ẽ ′i and e′ ∈ Ẽ ′j with i < j, we
have e @ e′, e 6≺ e′, and e′ 6≺ e.

Note that Proposition 57 and Corollary 58 apply to any solution (not necessarily
an optimal one). Furthermore, in both statements, the obtained solution S ′ has
the same energy flow hypergraph as S, and therefore it has the same cost as S.

Lemma 59. For every optimal solution S = (V , E , Ẽ) and for every component Hi

of H = (V , E) with maximum (under ≺) hyperarc ri, we have ri ∈ Ẽ and head(ri)
is an extinction event.

Proof. For a contradiction, suppose that there exists an optimal solution S =
(V , E , Ẽ) that has a component Hi with maximum (under ≺) hyperarc ri such that
ri /∈ Ẽ or head(ri) is not an extinction event. Among those optimal solutions, we
choose a solution S with smallest |E|.
If ri /∈ Ẽ , then consider the solution S ′ = (V ′, E ′, Ẽ ′), where H′ = (V ′, E ′) is the

subgraph of H induced by the set of hyperarcs E \{ri}, and Ẽ ′ = Ẽ . By definition of
H′, the nodes that used to be in tail(ri) are clearly not extinction events (otherwise
they would not be in the tail of a hyperarc) and, if they exist in H′, they are now
maximum (under ≺) in their respective components in H′. Note that S ′ is optimal,
its energy flow hypergraph has one less hyperarc than that of S, and it contains at
least one component whose maximum node (under ≺) is not an extinction event.
Therefore, it contradicts our choice of S. On the other hand, if at least one of the
nodes from tail(ri) does not exist in H′, then this means that that node did not
have incoming hyperarcs in S, therefore it was of the form ( · , 0, · ) and, since
it does not exist in S ′, the cost of S ′ is strictly smaller than the cost of S. This
contradicts the optimality of S.
If ri ∈ Ẽ but head(ri) is not an extinction event, then let S ′ = (V , E , Ẽ ′) be the

solution obtained from S by applying Corollary 58. Note that S ′ has the same
energy flow hypergraph H as S, but a possibly different set of package moves Ẽ ′.
In particular, the cost of S ′ is the same as the cost of S. Let u be a node in the
tail of ri such that ∆u does not contain any hyperarc in Ẽ ′ (such a node must
exist by Corollary 58). Let u′ be the other node in the tail of ri. We construct
a new solution S ′′ = (V ′′, E ′′, Ẽ ′′) by eliminating ∆u from the hypergraph and by
replacing the hyperarc ri with a new hyperarc r′′i = ({u′}, {v′′}) that leads to an
extinction event v′′ with g(v′′) = ghead(ri) and which occurs at the same time step
as head(ri). We include r′′i in Ẽ ′′ if and only if ri ∈ Ẽ ′. The new solution S ′′ has
cost strictly smaller than that of S, therefore it contradicts the optimality of S.

By applying Corollary 58 to an arbitrary optimal solution, we obtain the following
corollary in view of Lemma 59:
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Corollary 60. There exists an optimal solution S = (V , E , Ẽ) such that every
component Hi of H = (V , E) with maximum (under ≺) hyperarc ri contains exactly
one chain of package moves whose last hyperarc is ri and, in addition, head(ri) is
an extinction event.

6.2.2.3 Canonical nodes

Given a solution S = (V , E , Ẽ) for I, let v ∈ V such that ∆v does not contain any
hyperarc in Ẽ . Intuitively, if v is not an extinction event, then the sole function
of ∆v in the solution is to bring one unit of energy to g(v). It thus makes sense
that, if S is optimal, then the energy units that participate in the events of ∆v
travel along shortest paths from their respective homebases to g(v). If v satisfies
these conditions, then we say that v is canonical. The following definition captures
this notion:

Definition 61 (Canonical nodes). Given a solution S = (V , E , Ẽ), a node v ∈ V
is called canonical if either height(v) = 0, or height(v) = h + 1 for some h ≥ 0
(in this case, v = head(e) for some e ∈ E) and all of the following hold: (i) for
every node u in the tail of e, u is canonical and height(u) = h, (ii) e /∈ Ẽ , and (iii)
z(g(v)) = 1 + z(gtail(e)).

The two propositions below follow easily by induction on the height of v. Recall
that, by definition of H, if height(v) = 0 then g(v) ∈ H.

Proposition 62. If v is canonical, then z(g(v)) = height(v).

Proof. If height(v) = 0, then g(v) ∈ H. Therefore, hg(v) = g(v) and z(g(v)) = 0.
If height(v) = h+1 and v = head(e), then let u be a node in the tail of e. Because

v is canonical and by the inductive hypothesis, u is canonical and z(g(u)) = h.
Therefore, z(g(v)) = 1 + z(g(u)) = h+ 1.

Proposition 63. If v is canonical and it is not an extinction event, then the cost
incurred by ∆v is 2height(v).

We can now prove that, in every optimal solution, every node v whose ∆v does
not contain any package move is canonical.

Lemma 64. For every optimal solution S = (V , E , Ẽ) and for every v ∈ V, v is
canonical or ∆v contains a hyperarc in Ẽ.

Proof. Fix an optimal solution S = (V , E , Ẽ). We prove the claim by induction
on height(v). If height(v) = 0, then v is canonical by definition. We assume that
the claim holds for all nodes with height at most h ≥ 0. Let v ∈ V be a node with
height(v) = h+ 1 and let e ∈ E be the hyperarc such that v = head(e).
If v is an extinction event, then e is maximal under ≺. By Lemma 59, we have

e ∈ Ẽ and therefore ∆v contains a hyperarc in Ẽ .
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If v is not an extinction event, then let u1, u2 ∈ V be the nodes in the tail of e and
assume without loss of generality that height(u1) = h and height(u2) ≤ h. We can
assume that ∆v does not contain any hyperarc in E , otherwise the claim is proved.
It follows that ∆u1 and ∆u2 do not contain any hyperarc in E , therefore u1 and u2
are both canonical by the inductive hypothesis. By Proposition 62 and the fact that
g(u1) = g(u2), we have height(u1) = height(u2) = h. In view of these observations,
the only reason why v would not be canonical is if z(g(v)) 6= 1 + z(g(u1)) = 1 + h.
However, note that we know z(g(v)) ≤ 1 + h, because height(v) = h + 1 and
therefore there exists a homebase at distance at most h + 1 from g(v). On the
other hand, u1 and u2 are both canonical with height h, which implies in view of
Proposition 63 that the cost incurred by ∆v is 2h + 2h = 2h+1. If z(g(v)) < h+ 1,
then we can construct a new solution in which we replace ∆v by a subgraph that
incurs a cost strictly smaller than 2h+1, which contradicts the optimality of S. We
conclude that z(g(v)) = h+ 1 and, consequently, v is canonical.

6.2.2.4 Completing the proof of Theorem 53

In the following, let S? = (V , E , Ẽ) be an optimal solution as guaranteed by
Corollary 60, with the maximum number σ of components of H = (V , E). Let
(Hi)i=1,...,σ be an enumeration of the components of H in temporal order of their
extinction events. For i ∈ {1, . . . , σ}, component Hi is responsible for moving the
package along a path Pi = (ui,0, ui,1, . . . , ui,ρi) in G, where u1,0 = s, uσ,ρσ = t, and
ui,ρi = ui+1,0 (for i < σ).
Lemma 65. For every i, j in the ranges 1 ≤ i ≤ σ and 0 ≤ j < ρi− 1, z(ui,j+1) =
1 + z(ui,j).
Proof. For a contradiction, let Hi be a component in which the claim is false and
let j be the smallest index such that z(ui,j+1) 6= 1 + z(ui,j). Since ui,j+1 and ui,j are
neighbors in G, the closest homebase to ui,j+1 is at a distance of at most 1 + z(ui,j),
so z(ui,j+1) ≤ 1 + z(ui,j). It follows, then, that z(ui,j+1) < 1 + z(ui,j).

Let ei,j+1 ∈ Ẽ be the (j+ 1)-st package move hyperarc in Hi, that corresponds to
the move of the package from ui,j to ui,j+1. Let v = head(ei,j+1). Since j < ρi − 1,
we have j+1 < ρi and therefore v is not an extinction event. Let v1, v2 be the nodes
in the tail of ei,j+1, of which at least one, say v2, must be canonical by Lemma 64.
We construct a new solution S ′ = (V ′, E ′, Ẽ ′) by modifying S? as follows: We

replace hyperarc ei,j+1 with a new hyperarc ({v1}, {v′}) that leads to an extinction
event with g(v′) = g(v) = ui,j+1. At the same time, we remove ∆v2 and we insert
new nodes and hyperarcs so as to make v canonical. The cost of S ′ is not greater
than that of S?, since we removed a subtree which incurred a cost of 2z(ui,j) and we
added a subtree which incurs a cost of 2z(ui,j+1) ≤ 2z(ui,j). Therefore, S ′ is optimal,
each of its components contains exactly one chain of package moves, and it has
one more component than S?, which contradicts our choice of S?.
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Corollary 66. The cost incurred by component Hi is 2z(ui,0)+ρi−1.

Proof. Let ei,1, . . . , ei,ρi be the package move hyperarcs in Hi. If head(ei,1) is an
extinction event, then ρi = 1 and the tail of ei,1 contains a single canonical node v
with g(v) = ui,0. The cost of Hi is equal to the cost incurred by ∆v, which is equal
to 2z(ui,0) by Propositions 62 and 63.
If head(ei,1) is not an extinction event, then ρi > 1 and the tail of ei,1 contains

two canonical nodes v0, v
′
0 with g(v0) = g(v′0) = ui,0. Moreover, for any j in the

range 1 < j < ρi, the tail of ei,j contains exactly one canonical node vj−1 with
g(vj−1) = ui,j−1. By Lemma 65, z(ui,j−1) = j − 1 + z(ui,0). The cost of Hi is equal
to the total cost incurred by ∆v′0 and ∆v0,∆v1, . . . ,∆vρi−2. By Propositions 62
and 63, this sum is equal to

2z(ui,0) +
ρi−2∑
j=0

2z(ui,j) = 2z(ui,0) +
ρi−2∑
j=0

2j+z(ui,0) = 2z(ui,0)+ρi−1

Let Q be the directed s-t path in Ĝ that consists of the arcs (u1,0, u1,ρ1),
(u2,0, u2,ρ2),. . . , (uσ,0, uσ,ρσ). By definition of Ĝ, the i-th arc of Q has weight
2z(ui,0)+dG(ui,0,ui,ρi )−1. However, Pi is a path in G from ui,0 to ui,ρi and its length
is ρi. Therefore, dG(ui,0, ui,ρi) ≤ ρi. In view of Corollary 66, we conclude that the
weight of the i-th arc of Q is at most equal to the cost of Hi and thus the total
weight of the arcs of Q is at most equal to the cost of S?. We have proved the
following lemma, which concludes the proof of Theorem 53:

Lemma 67. There exists a directed s-t path in Ĝ with weight at most equal to the
cost of an optimal solution to I.

6.2.3 Collaborative Delivery for B > 2
We conclude this section with some remarks in the case where the energy capacity
of the agents is strictly greater than 2.
While we expect that our NP-completeness reduction generalizes to B ≥ 3,

the situation is less clear when it comes to the question of computing the energy
allocation to the homebases as part of the solution. A straightforward adaptation
of our algorithm from Section 6.2.2 would be to reduce the problem to computing
the shortest s-t path in a directed graph Ĝ similar to the one we construct in
Section 6.2.2, except that the weight of an arc (u, v) would be equal to the
minimum amount of energy required by agents with capacity B to traverse the
path hu  u  v, where hu is the nearest homebase to u. Unfortunately, this
algorithm is no longer guaranteed to produce an optimal solution for B ≥ 3 (see
Figure 6.5).
The reason is that several nice properties of the optimal solutions for B = 2

no longer hold for B ≥ 3. In particular, since the hyperarcs in the energy flow
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h s tu v

Figure 6.5: An example of a graph in which the straightforward adaptation of our
algorithm from Section 6.2.2 to B = 3 does not give an optimal so-
lution. Here, H = {h} and the shortest s-t path in Ĝ is s → v → t,
with each arc having a weight of 41 for a total cost of 82. However,
the optimal solution has a cost of 81: 27 fully charged agents start
from h and they reach u with 16 remaining energy units in total. At u,
the agents split into two groups with 8 units of energy each. The first
group goes to s and then to v from the top branch, picking up the
package from s on the way. The second group goes to v from the
bottom branch, picks up the package, and continues until t.

hypergraph can now have up to two nodes in their heads, each component can now
have more than one bottommost nodes and it can contain more than one chains of
package moves. This is exactly the case in the example of Figure 6.5, where the
energy flow hypergraph of the optimal solution has only one component, which
contains two chains of package moves. Furthermore, it is no longer the case that
all of the nodes in the tail of a given hyperarc have the same height. This can be
seen even in cases where the optimal solution consists of only one component with
only one chain of package moves (see Figure 6.6).

h1

s tu

h2

h2

h1

s

u

t

Figure 6.6: An example of a graph (left, with H = {h1, h2}) in which the energy
flow hypergraph of the optimal solution (right) contains a hyperarc
with nodes of different heights in its tail.
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Conclusion
The results presented in this thesis cover a range of topics related to energy
constrained mobile agents. We investigated how this natural constraint on the
energy resources of the agents affect their performance capabilities in solving
important tasks in mobile agent computing.
For the online graph exploration in Chapter 2 we studied the case of tree

exploration with a team of agents, each of which can traverse at most B edges.
We gave matching lower and upper bounds of Θ(logB) on the competitive ratio of
the cost of tree exploration for the local communication model. Unlike previous
algorithms for energy constrained agents, the agents in our algorithm do not
necessarily return to the root after exploration. This fact allows us to explore trees
of larger depth (at least twice more compared to [Awe+99; BRS95]). However, our
algorithm can be still used, e.g., to collect information from the leaves of a tree,
or to search for a resource and bring it back to the root, since there is always a
transfer of information from the leaves to the root.

Following on from the tree exploration with the goal of minimizing the number
of agents, in Chapter 3, we studied the partial exploration of trees of arbitrary size
and structure, with a fixed number of agents with fixed energy resources. Since
exploring the complete tree is not always possible our objective was to to visit
as many nodes as possible. We presented an algorithm that achieves a constant
factor competitive ratio, particularly 1 + 4φ < 7.473, for the global communication
model and we also gave a lower bound of 2− o(1) on the competitive ratio of any
algorithm.

Next, in Chapter 4, we considered the sustainable exploration of trees where the
nodes contain resources that the agent can use as fuel to continue the exploration.
We showed, that it is NP-hard to maximize the remaining energy at the end of
the traversal. Next, we showed that if we supply the agent with a sufficiently
large energy budget, we can solve the problem optimally and last, we presented
an algorithm for collecting the maximum gain at the root while using the smallest
starting budget.
In Chapter 5 we studied the problem of near-gathering in general graphs. We

showed that the problem of minimizing the maximum pairwise distance of the
agents is NP-hard to approximate within a factor of 2− o(1) and on the positive
side, we presented a 2-approximation algorithm. Furthermore, we studied the
problem with the objective of minimizing the average pairwise distance of the
agents. To this end, we presented a 2(1− 1

k
)-approximation algorithm.

Finally, in Chapter 6 we considered the problem of collaborative delivery under
the assumption that the agents can share their energy. We showed that if the
agents can share their energy under no constraints, then collaborative delivery
is strongly NP-hard. Inspired by the construction we used for the reduction, we
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designed a constant factor resource augmented algorithm for solving the problem
in polynomial time. Moreover, we showed that for the case where the agents
have restricted energy capacity, the problem is NP-hard even when B = 2, if the
agent allocation to the homebase nodes is given as part of the input. However,
interestingly enough, we proved next that for B = 2, the delivery problem in which
one is given the total available energy and is asked if it is possible to distribute this
energy to agents at the homebase nodes in order to achieve delivery, is solvable
in polynomial time. In fact, what we proved is that the underlying optimization
problem, i.e., finding the minimum amount of energy that can be distributed to the
homebases so that delivery is feasible, is solvable in polynomial time by reduction
to a shortest path computation in a complete directed graph.

Future Work
The topic of energy-aware mobile agents is relatively new, as a result there are
many problems in the field of mobile agent computing that remain to be considered
under this model. Nevertheless, there are some interesting questions that have
arisen out of this work and future work perspectives which we would like to address.

For the online tree exploration, the lower bound of Ω(logB) on the competitive
ratio of exploration that we proved holds only in the local communication model.
An interesting question, therefore, is whether more efficient algorithms are possible
for tree exploration in the global communication model as well as if there exists a
non-trivial constant lower bound on the competitive ratio. Another open question
is the cost of exploring general graphs or other specific classes of graphs. Notice
that for classes of graphs other than trees, further assumptions for the model need
to be made, for example, we would require unique identifiers for the nodes so that
the agents would be able to distinguish between them.
In the partial exploration problem there exist a gap between the lower and

the upper bound that we showed in this work and we believe that both bounds
can be improved. Furthermore, we only considered the global communication
model, it would be interesting to try to develop algorithms to work under the local
communication model. Additionally, as for the previous problem, the case of partial
exploration in other classes of graphs remains open.

For the sustainable exploration, as in the previous cases, we considered only tree
topologies, therefore, the same question still holds, what happens in the case of
general graphs and other graph topologies? Another direction for this problem
would be to consider that the agent has limited energy capacity. In such a case
the goal would be to maximize the number of nodes the agent visits, instead of
maximizing the energy it collects.
In the near-gathering problem, for the objective of minimizing the average

pairwise distance of the agents, while we provided a constant factor approximation
algorithm, the lower bounds for the problem remain open. Moreover, near-gathering
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belongs to a bigger family of problems, namely the movement problems. Therefore,
the study of other problems belonging to this family would be a possible direction
for future work.
For the collaborative delivery, as we already discussed in subsection 6.2.3, if

B > 2, our algorithm no longer returns the optimal solution. As a result, a natural
question is how to handle greater battery capacities, i.e., B ≥ 3. Furthermore,
it would be interesting to investigate whether our NP-completeness reduction
generalizes for greater values of B.
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