Modèles statistiques pour la prédiction de cadres sémantiques

par Olivier Michalon

Thèse de doctorat en Informatique

Sous la direction de Alexis Nasr et de Benoît Favre.

Le président du jury était Matthieu Constant.

Le jury était composé de Benoît Favre, Marie-Hélène Candito.

Les rapporteurs étaient Nicholas Asher.


  • Résumé

    En traitement automatique de la langue, les différentes étapes d'analyse usuelles ont tour à tour amélioré la façon dont le langage peut être modélisé par les machines. Une étape d'analyse encore mal maîtrisée correspond à l'analyse sémantique. Ce type d'analyse permettrait de nombreuses avancées, telles que de meilleures interactions homme-machine ou des traductions plus fiables. Il existe plusieurs structures de représentation du sens telles que PropBank, les AMR et FrameNet. FrameNet correspond à la représentation en cadres sémantiques dont la théorie a été décrite par Charles Fillmore. Dans cette théorie, chaque situation prototypique et les différents éléments y intervenant sont représentés de telle sorte que deux situations similaires soient représentées par le même objet, appelé cadre sémantique. Le projet FrameNet est une application de cette théorie, dans laquelle plusieurs centaines de situations prototypiques sont définies. Le travail que nous décrirons ici s'inscrit dans la continuité des travaux déjà élaborés pour prédire automatiquement des cadres sémantiques. Nous présenterons quatre systèmes de prédiction, chacun ayant permis de valider une hypothèse sur les propriétés nécessaires à une prédiction efficace. Nous verrons également que notre analyse peut être améliorée en fournissant aux modèles de prédiction des informations raffinées au préalable, avec d'un côté une analyse syntaxique dont les liens profonds sont explicités et de l'autre des représentations vectorielles du vocabulaire apprises au préalable.

  • Titre traduit

    Statistical models for semantic frame prediction


  • Résumé

    In natural language processing, each analysis step has improved the way in which language can be modeled by machines. Another step of analysis still poorly mastered resides in semantic parsing. This type of analysis can provide information which would allow for many advances, such as better human-machine interactions or more reliable translations. There exist several types of meaning representation structures, such as PropBank, AMR and FrameNet. FrameNet corresponds to the frame semantic framework whose theory has been described by Charles Fillmore (1971). In this theory, each prototypical situation and each different elements involved are represented in such a way that two similar situations are represented by the same object, called a semantic frame. The work that we will describe here follows the work already developed for machine prediction of frame semantic representations. We will present four prediction systems, and each one of them allowed to validate another hypothesis on the necessary properties for effective prediction. We will show that semantic parsing can also be improved by providing prediction models with refined information as input of the system, with firstly a syntactic analysis where deep links are made explicit and secondly vectorial representations of the vocabulary learned beforehand.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.