i e YL ZEPetri X 7 BUBR 0 B B 1R BE DL A

{EE R {77 £
ESFmEE. Rk LK B
F_SHIN Alessandro GIUA #(#%
FRIFFEM AR T2+







Performance Optimization of a Class of
Deterministic Timed Petri Nets: Weighted
Marked Graphs

A Doctoral Dissertation
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in Mechatronic Engineering at
XIDIAN UNIVERSITY

and

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in Automatique at
AIX-MARSEILLE UNIVERSITY

By
Zhou HE
Supervisor: Zhiwu LI Professor

The Second Supervisor: Alessandro GIUA Professor
April 2017






e

R R HER, R Z AR IR S 7 R i o T U N A
KRIEB S, WERisW, RRFERRAR S S EEZ. Kb, B3hflig
ARG HTRERGT S AW AT R E & T EA I vEZ, DR EshHE R
Gl S HEIENUR. ARG, B TIE. Plds A AR DL RS &
GG T B RER T RS R Hl3& 7 R B AL A i 28 R PO /i
AL e HICER, IXe g EhHlE RgnT AR EERE R, RS
e BRI R SR, BT BEE KRG B A S ERIENE, £ RGEITIERE
AR AEAE — LA AROE e 1, B R I 2 0 B T T8 B P A R B A 48 P
XRME IR AEA SRR G R, k& L, A ReslE— R
ARG R ik, MERERAL A B shifiliE R 50 U 0B FE (1 ) 8

T —AN B shiliE &g, FHohn LA = A LS I B AN IR A DL R )
REMEA EENEF NG — BRI AHAEN IR, e RARamAE
FRRR, RESSEEANRGNFER, K, ST LRSS mS, WeEEs
BR BEUR RS oL T 4k — R s AT R R S I B R e KAk, AR RAE — 5 AR SRR
T FER—M RN BT AT AR /MU R E T, B L Petri AR Y N — K
JWEEFE TR, M THSERE @R, At e LU R 58T
RANIVERTENR, ARV SZIT BT 558 B K 02 R A LA FH 46 1] A

AR SCE T T IEPetri X AR 1) H 21l 18 2 G0 0 1 Re AR A 1) R, £ 5T
BRGNS :

LT — 20 € P I i Petri, I SETALFR T (TWMG) #¢) 2 BB a3
H3liE R EBLE 0. T RS8O FTWMGHIFR RO R &,
fAILELRIE R G077 T4 T TR — DGR AT BOAS B /M 2 ) 32 4k fr 2
Bz —. SR, DA 1 TAEARRe a8 32 (A U ke 7l /B (10 738 TEAR ST
PEH,  FRATT7E 70 T FH TWMGH 25 #5 PE DA R FL TG A SQ TR ZA T — ISR b5
W, JEEBRM T RET O RN B REE, BEEZB P IS E R
RN H. Ba, 46 UATAEMRA, BOIGIN T —F8 AR KT
A /NSA

2. MNSERR R H I fFE R, AR 55 2R SO BT — MR i AR b oR] A LS 2
Ho WRBIRTE D%, EILTTMGAE ST, F— RS2 A
PLER A PRAT . TAE PR IR S5 8515 SR T, R — B R RER H — G HLE:

I



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

PAT. AE RS AAE YR, AT 55 548 55 T TWMGHIFR AL ]
A, ARSCEREW T AR R A R UEEE P B . ANk, @&
MR GIAN— N EBAFEE B B EERT, IX PR 7 T DL 21 5 R 55 2%
B X TWMGHIFR R AL AL 7] 8

3. [FRF, 4TRSS 24E SR ITWMG, a0 76 4 BR IR 105 00 K 33— 40
GEFRIRAEAS R G0 e KA B ER I TR AL A ) L, AR SC R AT 1 A DR T
TRATE B 7 AERI UG FR IR A R0 1 OL T 7] DL TWMGH: (6 — R 51554 (1) I 4
PRICEI(TMG). BRI T-—ANTWMGSK i fe LT A6 F5 TR 1R [ AT DA 6 R0 —
RIITMGR R BRI GE R IR P 8. FRATER 7 — P TR A B A 28 PR AL R
(MILPP) [ 51 8% 925 K A LR AT B I [R] AR I e 3% 07 32 I A AU FE T RE 8 AR AIE
R Ba, DR R E RN R G B AN FE 558 /M b )
(IR Fie

4. fEBLEEAN b, FRATTER X TE 55 IR 55 2808 A5 S TWMGHIAE PR I 18] A1 44 7] 8 ik
TTHIR. B4, ATUER 7 X T TWMGHAL A — N TMG Y FE 3% 4
I H, BB TWMGHIARASZ EFEAT /32K, 1537 — RIMENTMG. HIL,
AR T — Pt 5 BT A SN TMGSR B AR AR IMILPP /5 3%, AT Bl BAAS 240
A i) e L. (H 2 TIRES 2 W) 2 SR B B 2B JR G0 B 5 (34 KT i
HIGIN, ZONETIG BRIV S A B I . R ERATT R R T PRI L
WG XA o RIEAT 5545, NI KR RIS 1 SRAFMILPPIS i 75 11 H 5 &

B o, FEREEECTARR S b, JATX B 3h#liE R Gk ge Pl 5 LR AL B
RARTARRAT T R,

KW BEFEMA RS, WEPetil, ABARIRE, PEREVEML, PEREDUIL

II



ABSTRACT

ABSTRACT

In the last decades, there has been a constant increase in the awareness of company manage-
ment about the importance of formal techniques in industrial settings to address problems
related to monitoring and reliability, fault diagnosis, and optimal use of resources, during the
management of plants. Of particular relevance in this setting are the so-called Automated
Manufacturing Systems (AMSs), which are characterized by complex technological cycles
that must adapt to changing demands. Modern AMSs are interconnected subsystems such
as numerically controlled machines, assembly stations, automated guided vehicles, robots,
conveyors and computer control systems. Manufacturers are using automated machines and
controls to produce quality products faster and more efficiently. Meanwhile, these automat-
ed systems can provide critical information to help managers make good business decisions.
However, due to the high flexibility of AMSs, failures such as a wrong assembly or a part
put in a wrong buffer may happen during the operation of the system. Such failures may de-
crease the productivity of the system which has an economical consequence and can cause
a series of disturbing issues. As a result, the performance optimization in AMSs are imper-

ative.

The quantity of products which have to be stored or moved and the number and type of
machines which operate the system have economical consequences. Once the resources are
not well assigned, the system may produce products with a low efficiency and even cause
a deadlock. Therefore, the main problem for engineers or designers is to find an optimal
mode of operations given a set of available resources or to find an optimal set of resources
capable of meeting the required production constraints. As a powerful mathematical tool,
timed Petri nets models have been extensively used to model, analyze, and control of AMSs.
They can be used for performance analysis, tasks scheduling in real-time, and optimizing

the use of resources.

This thesis focuses on the performance evaluation and performance optimization of automat-
ed manufacturing systems using timed Petri net models. The main results of this research

are as follows.

1. We consider a class of deterministic timed Petri nets called timed weighted marked
graphs (TWMGs), which are extensively used to model and analyze cyclic AMSs. The
marking optimization of deterministic TWMGs under single server semantics plays an
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important role in the manufacturing domain: it consists in finding an initial marking
to minimize the cost of resources while the system’s throughput is less than or equal
to a given value. The existing results fail to provide practically effective and compu-
tationally efficient methods to analyze and solve this problem in such systems. We
take the advantages of the net structural characteristics of a TWMG and utilize related
knowledge of liveness of a TWMG to select a proper initial marking. Next, based on
simulation a heuristic algorithm used to increase the system’s throughput by iterative-
ly adding tokens to some places is developed. Finally, a technique to reduce the cost

of the obtained solution by taking the advantages of the previous works is proposed.

. From a physical point of view, the server semantics can be interpreted as the number
of servers that can be used to execute an operation. Under single server semantics,
the same operation can only be executed once at a time, while the same operation can
be executed as many times as the number of available servers under infinite server se-
mantics. As an extension of single server semantics, this study proposes two efficient
heuristic methods for the marking optimization problem of deterministic TWMGs un-
der infinite server semantics. These proposed algorithms can provide a near optimal
solution step by step and also apply for the marking optimization of deterministic
TWMGs under £ server semantics by adding to each transition a self-loop place with

k token.

. The cycle time optimization of deterministic TWMGs under single server semantics
is originally studied in this research: it consists in finding an initial resource assign-
ment to maximize the system’s throughput while the cost of resources is less than or
equal to a given value. We prove that a TWMG under single server semantics can be
transformed into a series of equivalent timed marked graphs (TMGs) under the condi-
tion that the initial marking is not given. Hence the problem to determine an optimal
initial marking for a TWMG can be converted to determining an optimal initial mark-
ing for a series of equivalent TMGs. A practically efficient algorithm is developed to
solve the optimization problem based on solving a series of mixed integer linear pro-
gramming problems (MILPPs), which can guarantee the convergence to the optimum.
Finally, this approach is further extended to a generalized optimization problem which

maximizes the system’s throughput and minimizes the cost of the resources.

. Based on previous results, the cycle time optimization of deterministic TWMGs under
infinite server semantics is studied. We consider the transformation of a given TWMG

v
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into an equivalent TMG under infinite server semantics and prove that this transfor-
mation is periodical with regard to the initial marking. This allow us to transform a
TWMG into a finite family of equivalent TMGs, each one valid for a partition of set of
initial markings. Then, we present an MILPP to solve the optimization problem that
requires finding an optimal allocation for the equivalent TMG under the constraint
that the initial marking belongs to a particular partition. However, this procedure has
a high computational complexity due to the fact that the number of partitions can in-
crease exponentially with the number of places. In order to reduce the computational
complexity, two sub-optimal approaches are proposed without enumerating the entire

partitions.

Finally, conclusions and future studies on performance evaluation and optimization for

AMSs are prospected.

Keywords: Discrete event system, timed Petri net, weighted marked graph, performance

evaluation, performance optimization
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RESUME

Au cours des dernieres décennies, la complexité croissante des systemes de production et
de leur commande a rendu crucial le besoin d’utiliser les méthodes formelles pour faire face
aux problémes relatifs au contrdle, a la fiabilité, au diagnostic des fautes et a I’utilisation
optimale des ressources dans les installations de production. Cela concerne en particulier
les systemes automatisés de production (SAP), caractérisé€s par des cycles technologiques
complexes qui doivent s’adapter a des conditions changeantes. Les SAP modernes sont des
sous-systemes interconnectés tels que des machines a commande numérique, des stations
d’assemblage, des véhicules guidés automatisés (AGV), des cellules robotisées, des con-
voyeurs et des systemes de contrdle par ordinateur. Les fabricants utilisent des machines
automatisées et des contrdleurs pour assurer des produits de qualité plus rapidement et plus
efficacement. Aussi, ces systemes automatisé€s peuvent fournir des informations essentielles
pour aider les gestionnaires a prendre les bonnes décisions. Cependant, en raison de la
grande flexibilité des SAP, des défaillances telles qu’un mauvais assemblage ou le dépot
d’une piece dans un tampon inapproprié€ peuvent se produire lors du fonctionnement du sys-
teme. De tels dysfonctionnements diminuent la productivité du systeme générant ainsi des
pertes économiques et des effets perturbateurs sur le systeme. En conséquence, le probleme

de I’optimisation des performances des SAP est impératif.

La quantité de produits qui doivent étre stockés ou déplacés, le nombre et le type de machines
dans le systeme ont des conséquences économiques. Si les ressources ne sont pas bien
affectées, la production risque d’étre inefficace voire méme completement bloquée. Par
conséquent, un probleme principal pour les ingénieurs ou les concepteurs est de déterminer
un mode d’exploitation optimal compte tenu des ressources disponibles ou de déterminer un
ensemble optimal de ressources capable de satisfaire les contraintes de production requises.
En tant qu’outil mathématique puissant, le formalisme des réseaux de Petri temporisés a été
largement utilisé pour modéliser, analyser et contrdler les SAP. Il peut également étre utile
pour I’analyse des performances, la planification des taches en temps réel et I’optimisation

de I'utilisation des ressources.

Cette these se focalise sur I’évaluation et 1I’optimisation des performances des systémes de

production automatisés via le modele des réseaux de Petri temporisés.

Les principaux résultats obtenus dans cette recherche sont les suivants:
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1. Les Graphes d’Evénements Temporisés généralisés (TWMG) forment une classe de
réseaux de Petri temporisés largement utilisés pour modéliser et analyser les SAP cy-
cliques (i.e. a production répétitive). Sous I’hypothese que la politique de service soit
celle du serveur unique (single serveur), le probleme de 1’optimisation du marquage
des TWMG déterministes est important dans le domaine de la production. Il consiste
a déterminer un marquage initial qui minimise le colit des ressources tout en assur-
ant au systeme un débit donné. Les méthodes existantes pour analyser et résoudre ce
probleme ne sont efficaces ni en pratique ni en termes en terme de complexité algorith-
mique. En tirant avantage des caractéristiques structurelles des TWMG et des résultas
connexes a la propriété de vivacité, nous sé€lectionnons un marquage initial approprié
puis via une heuristique basée sur la simulation, on augmente le débit du systeme
en ajoutant de maniere itérative des jetons dans certaines places appropriées. Enfin,
nous proposons une technique permettant de réduire le coiit de la solution obtenue en

exploitant les avantages des travaux précédents.

2. D’un point de vue physique, la sémantique de service peut étre interprétée comme le
nombre de serveurs pouvant €tre utilisés simultanément pour exécuter une opération
(i.e. franchissement d’une transition). Sous la sémantique du serveur-unique, la méme
opération ne peut étre exécutée qu’'une seule fois (degré de franchissabilité égal a 1),
alors que la méme opération peut étre exécutée autant de fois que ’on veut sous
la sémantique de serveurs-infinis (infinite-servers). Dans notre étude, on propose
deux méthodes heuristiques efficaces pour le probleme d’optimisation du marquage
des TWMGs déterministes sous la sémantique serveurs-infinis. Ces algorithmes pro-
posés peuvent fournir une solution presque optimale en procédant étape par étape et
s’appliquent également pour I’optimisation du marquage des TWMG déterministes
sous la sémantique du serveur-unique en ajoutant a chaque transition une boucle de

réentrance (self-loop) avec un jeton.

3. L’optimisation du temps de cycle des TWMGs déterministes sous la sémantique du
serveur unique a été traitée dans cette recherche. Le probleme consistant a trouver une
affectation de ressources maximisant le débit du systeme tout en maintenant le cofit
des ressources inférieur ou €gal a une valeur donnée. Nous prouvons qu'un TWMG
sous une sémantique de serveur unique peut étre ramené a une série de graphes d’événe-
ments temporisés (TMG) équivalents pour lesquels le marquage initial n’est pas don-
né. Par conséquent, le probleme de détermination d’un marquage initial optimal pour
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un TWMG peut €tre traduit au probleme de détermination d’un marquage initial op-
timal pour une série de TMG équivalents. Un algorithme efficace en pratique est
développé pour résoudre ce probleme d’optimisation, il est basé sur la résolution d’une
série de problemes de programmation linéaire en nombres entiers mixtes (MILPP)
garantissant ainsi la convergence a I’optimum. Enfin, cette approche est étendue au
probleme d’optimisation généralisé ou I’on cherche a maximiser le débit du systeme

et a minimiser le colt des ressources.

4. Sur la base des résultats précédents, I’optimisation du temps de cycle des TWMG
déterministes sous la sémantique de serveurs-infinis est étudiée. Nous considérons
la transformation d’un TWMG donné en un TMG équivalent sous la sémantique de
serveurs-infinis et nous prouvons que cette transformation est périodique par rapport
au marquage initial. Cela nous autorise de transformer un TWMG en une famille
finie de TMG équivalents, chacun étant valable pour une partition de 1’ensemble des
marques initiaux. Ensuite, nous présentons un MILPP pour résoudre le probleme
d’optimisation qui exige la détermination d’une allocation optimale pour le TMG
équivalent sous la contrainte que le marquage initial appartient a une partition par-
ticuliere. Cependant, cette procédure présente une complexité en temps de calcul tres
de calcul élevée en raison du fait que le nombre de partitions croit exponentiellement
avec le nombre de places. Afin de réduire cette complexité, deux approches sous-

optimales ne nécessitant pas I’énumération entiere des partitions sont proposées.

Mots-clés: Systemes a événements discrets, Réseau de Petri temporisé, Graphes d’événements

valués, Evaluation de performance, Optimisation de performance.
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Chapter 1  Introduction

Chapter 1 Introduction

The increasing global market competition has made manufacturing industries focus
their attention on critical issues such as productivity and quality. Of particular relevance
in this setting are the so-called Automated Manufacturing Systems (AMSs) whose impor-
tance is greatly recognized in both academic and industrial fields. Massive AMSs have been
deployed in industrial companies to handle complex and hazardous operations instead of
workers. As a result, both the quality and the efficiency of manufacturing system are im-
proved, which make higher profits for the company. The performance analysis and control
of such systems have became a hot topic in the field of academic and industrial.

An AMS consists of a set of workstations (each one capable of processing parts of
different kind according to a prescribe sequence of operations) and interconnect subsystem-
s that are composed by a large quantity of production lines, assembly stations, automated
guided vehicles (AGVs), robots, conveyors, and other material-handling devices. Due to
their high degree flexibility, it is necessary to reconfigure them on-line to find an optimal
mode of operations given a set of available resources or to find an optimal set of resources
capable of meeting the required production constraints. Disturbances, together with diagno-
sis and reconfigurations, constitute basic phenomena that we need to model for computing
the real performance of an AMS [1]. The quantity of products which have to be stored
or moved and the number and type of machines which operate the AMS have economical
consequences. As a result, the main problem for designers is to find a trade-off between
minimizing the cost of the resources and maximizing the system’s throughput.

Petri nets [2] are a graph-based mathematical formalism for modeling and analyzing of
discrete event systems (DESs) in a wide variety of applications [3]. As an efficient tool for
describing and analyzing manufacturing systems, Petri nets have found their extensive ap-
plications to the supervisory control [4-20], analysis [21-29], deadlock prevention of AMSs
[30—40], and fault diagnosis [41-54]. However, in real manufacturing systems, activities do
not take place instantaneously. Every activity in a manufacturing system has a time duration
which is different from zero. As a result, three types of Petri nets with timing information
are proposed in the literature: Petri nets with interpretation of time in the transitions [23],
Petri nets with interpretation of time in the places [55], and Petri nets with time-dependent
arcs [29]. As an extension formalism of Petri nets, time Petri nets are a discrete event mod-
els that associate with the time instants in which events occur and find wide applications
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in manufacturing systems and embedded systems [56—65]. They can be used for perfor-
mance analysis of a system, 1.e., speeds of a process, tasks scheduling, optimizing the use of

resources, and so on.

1.1 Performance Estimation

Performance estimation of batch processes or high throughput manufacturing system-
s poses difficult problems since their representation deals with discrete models. Based on
time Petri nets, researchers have developed many policies to study the performance estima-
tion problems in AMSs [1, 23, 66-70]. Generally, there mainly exit two analysis techniques
to deal with the performance evaluation in AMSs: simulation approach [66, 71-76], analyt-
ical approach based on linear programming problem (LPP) technique [67-69, 77-79] and
based on tropical algebra like (max,+) or (min,+) [80—86]. The former one is usually s-
traightforward and effective to study the evolution and dynamic behaviors of the system and
can provide an exact value of performance. However, due to the state explosion problem,
this method cannot be applied to large scaled manufacturing systems, where the number
of states grows exponentially with respect to the size of the system. For the analytical ap-
proaches based on both LPP technique and tropical algebra, structural properties of Petri
nets are fully utilized and the state explosion problems are avoided. As a result, these ap-
proaches can reduce the computational cost significantly and provide bounds or an exact
value of performance. However, it is difficult to evaluate the accuracy of the obtained bound
with respect to the real system performance.

Simulation of time Petri nets has been demonstrated to be useful for analyzing transient
and permanent behavior of DESs in performance evaluation. Based on this technique, an
efficient algorithm for the execution of time Petri net is proposed in [72]. Several friendly
user interface tools are developed for analysis of time Petri nets [87—89]. The study in [90]
deals with the analysis of timed discrete, continuous and hybrid Petri nets. By contrast to
time Petri net where each transition or place is associated with a time interval, in timed
Petri net each transition or place is associated with a time duration, i.e., a single value. As
a conclusion, most of the performance estimation studies based on simulation focus on the
analysis of steady states and the average firing rate of transitions.

Analytical method-based performance estimation policy is a typical application of struc-
ture analysis techniques of Petri nets. Performance bounds are evaluated which can avoid
the necessity of enumerating the whole state space in a Petri net. In [91, 92], the authors
present an approach for the analysis of dynamic behavior and performance based on the

2
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computation of a state class graph. In the work of Ramchandani [23] manufacturing sys-
tems are modeled by deterministic timed marked grpahs (TMGs) and an analytical method
based on solving LPP is firstly proposed which provides a bound of the performance. Based
on the same techniques, properties and performance bounds of timed and stochastic marked
graphs are studied in [67, 68, 78] and these bounds depend on both the initial marking and
the average values of the delays of transitions [69]. Nevertheless, these approaches fail to
provide a bound that is close to the real value. To fulfill this goal, Rodriguez et al. [93]
propose an iterative strategy to obtain an upper bound which closer to the real performance
than previous works. In each iteration step, the bottleneck circuit is searched by solving an
LPP and the parts which may constrain the current bottleneck circuit are added to calculate

a new upper bound.

However, TMGs cannot model important features that may be present in manufactur-
ing systems such as the processing of parts in batches whose size may change during dif-
ferent processing steps. For this reason, a more general model called timed weight marked
graphs (TWMGs) is studied in [27]: this model is characterized by weighted arcs. The s-
tudies of performance estimation for manufacturing systems modelled by timed weighted
marked graphs (TWMGs) are discussed in several works. By transforming a TWMG into
an equivalent TMG, Munier [94] proposes a pseudo-polynomial algorithm to compute the
performance of a TWMG under single server semantics. Nakamura and Silva [95] discuss
the same problem under the infinite server semantics and a similar transformation technique
is developed. However, the disadvantage of the approaches in [94, 95] is that the transfor-

mation can lead to a model of significant size.

Tropical algebras have been broadly used to describe the behavior and analyse the per-
formance. The behaviors and performance of TMGs are described by recurrent linear equa-
tions in (min,+) algebra [80, 81, 96] or in (max, +) algebra [85, 86]. However, the weights
on the arcs of a TWMG lead to non-linear models in tropical algebra. Thus, a linearization
method is proposed in [97] when each elementary circuit contains at least one unitary transi-
tion (i.e., a transition for which its corresponding elementary T-semiflow component is equal
to one). This method increases the number of transitions. Inspired by this work, some lin-
earization methods without increasing the number of transitions are proposed in [98—104].

The obtained (min,+) linear model allows to evaluate the performance of TWMGs.

Other works provide bounds for embedded data flow systems by using synchronous
data flow graphs are investigated in [105-108]. Performance estimation of such systems is
a critical step to verify throughput requirements of concurrent real-time applications. These
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studies requires transformation to another kind of data flow graph, which can lead to a model
of significant size with respect to the original graph. In the work of Ghamarian ez al. [109]
a method without transformation is proposed. This method generates and analyzes the dy-
namic state space of the graphs by executing it. In [110] a class of closed queueing networks

is studied and performance upper and lower bounds are estimated by using LPPs.

1.2 Performance Optimization

Performance optimization of manufacturing systems in time Petri nets have been exten-
sively studied in the literature. The optimization problem is solved by heuristic algorithms
such as genetic algorithms, simulated annealing and threshold accepting, and analytical ap-
proaches based on integer linear programming problem (ILPP).

Based on time Petri nets, researchers have provided many policies to deal with the
performance optimization in manufacturing systems. Rodriguez et al. [93] deal with the
resources optimization in process Petri nets and presents a heuristic strategy to gauge in the
best possible way the number of resources needed so that the overall system throughput is
maximized. In order to avoid the state explosion problem, the proposed techniques take the
full advantage of the structural property. The considered process Petri nets are assumed to be
live by pre-assigning tokens to resource places and deadlock-free problem is not addressed.
Stochastic approximation algorithms are provided to solve the performance optimization
problem of stochastic Petri nets [111, 112]. Chen et al. [113] develop a new model, called
batch deterministic and stochastic PNs, to model batch features in supply chains and study
the performance optimization problem.

Due to the competition for limited number of resources among concurrently executed
production lines, it may result in a deadlock situation. Thus, the scheduling problems in
manufacturing systems where resources are shared by multiple processes are very importan-
t. Abdallah et al. [114] present a deadlock-free scheduling algorithm for a class of systems
called systems of sequential systems with shared resources in timed Petri nets. The algo-
rithm generates a partial reachability graph to find the optimal or near optimal deadlock-free
schedule. Wu and Zhou [115] solve the real-time deadlock-free scheduling problem for
semiconductor track systems based on colored timed Petri nets in a hierarchical way. A
deadlock avoidance policy is developed for the system as a lower-layer controller and then
heuristic rules are proposed to schedule the system in real-time. Based on genetic algorithm,
Xing et al. [116] develop a deadlock-free genetic scheduling algorithm to avoid the dead-
lock situation and minimize the makespan. By using the one-step look-ahead method in the
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optimal deadlock control policy, the feasibility of a chromosome is checked and infeasible
chromosomes are amended into feasible ones, which can be easily decoded into a feasible

deadlock-free schedule.

By contrast to the aforementioned works, several works are dedicated to the perfor-
mance optimization for TMGs and TWMGs which are conflict free nets, i.e., there exist no
shared resources [73, 74, 117-120]. These problems of Petri nets are very important for
the design of many exemplified discrete event dynamic systems in the real world. In par-
ticular, two classical performance optimization problems are commonly considered in the
literature: marking optimization problem (also called the minimum cost initial distributed
state problem) and cycle time optimization problem (also called the maximum throughput
initial state assignment problem). The marking optimization problem aims to find a prop-
er schedule which minimizes the cost of resources under the constraint that the system’s
throughput should not smaller than a given value, while the cycle time optimization problem
aims to find a proper schedule which maximizes the system’s throughput under the con-
straint that the cost of resources should not exceed a given bound. Meanwhile, both single
server semantics and infinite server semantics are investigated for the performance optimiza-
tion problems. From a physical point of view, the server semantics can be interpreted as the
number of times that an operation can be executed concurrently. Under single server seman-
tics, the same operation can only be executed once at a time, while the same operation can be

executed as many times as the number of available servers under infinite server semantics.

Laftit et al. study the marking optimization problem for TMGs under infinite server
semantics [63, 121] and provides a heuristic algorithm and an exact algorithm to find a near
optimal solution. Gaubert addresses the same problem by using min-max algebra [122, 123].
Giua et al. deal with the cycle time optimization problem for TMGs under infinite server
semantics [120] and proposes three different approaches to find an optimal solution. How-
ever, in the literature, few works deal with the optimization problem of TWMGs. Benazouz
et al. [58] develop an algorithm to minimize the overall buffer capacities with throughput
constraint for TWMGs. Sauer proposes a heuristic solution based on an iterative process to
solve the marking optimization problem of TWMGs under single server semantics [73]. N-
evertheless, the presented solutions are heuristic and the optimality is not ensured. Thus, the
problem of finding an optimal solution for marking optimization and cycle time optimization

of TWMG:s is still open.
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1.3 Thesis Organization

This thesis focuses on the performance optimization of AMSs in the DES model of

timed Petri nets.

Chapter 2 provides the basics of timed Petri nets and some notations used in the rest of
the thesis. In particular, two subclasses of timed Petri nets (TMGs and TWMGs) as well as

their dynamic evolutions and the concepts of cycle time are introduced.

In Chapter 3, we focus on the marking optimization of deterministic TWMGs under
single server semantics. The problem consists in finding an initial marking to minimize the
cost of resources while the system’s throughput is less than or equal to a given value. The
existing results fail to provide practically effective and computationally efficient methods to
analyze and solve the problem in such systems. We take the advantages of the net structure
characteristics of a TWMG and utilize related knowledge of liveness of a TWMG to select
a proper initial marking. Next, based on simulation a heuristic algorithm used to increase
the system’s throughput by iteratively adding tokens to some places is developed. Finally, a
technique to reduce the cost of the obtained solution by taking the advantages of the previous
works is proposed. Numerical simulation studies show that the proposed method requires

less iteration steps and thus is much faster than the previous approach.

As an extension problem of the one in Chapter 3, Chapter 4 investigates the marking
optimization of deterministic TWMGs under infinite server semantics. From a physical
point of view, the server semantics can be interpreted as the number of servers that can be
used to execute an operation. Under single server semantics, the same operation can only
be executed once at a time, while the same operation can be executed as many times as the
number of available servers under infinite server semantics. Two efficient heuristic methods
are proposed to obtain a near optimal solution step by step. The proposed methods also
apply for the problem in Chapter 3 by adding to each transition a self-loop place with one

token.

In Chapter 5, the cycle time optimization of deterministic TWMGs under single server
semantics is originally studied. We aim to find an initial marking which maximizes the sys-
tem’s throughput, while the cost of resources is less than or equal to a given value. We prove
that a TWMG under single server semantics can be transformed into a series of equivalent
TMGs under the condition that the initial marking is not given. Hence the problem to de-
termine an optimal initial marking for a TWMG can be converted to determine an optimal
initial marking for a series of equivalent TMGs. A practically efficient algorithm is devel-
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oped to deal with the optimization problem based on solving a series of MILPPs. Finally
this approach is further extended to a generalized optimization problem which maximizes
the system’s throughput and minimizes the cost of the resources.

Based on previous results, the cycle time optimization of deterministic TWMGs under
infinite server semantics is studied in Chapter 6. We consider the transformation of a given
TWMBG into an equivalent TMG under infinite server semantics and prove that this transfor-
mation is periodical with regard to the initial marking. This allow us to transform a TWMG
into a finite family of equivalent TMGs, each one valid for a partition of set of initial mark-
ings. Then, we present an MILPP to solve the optimization problem that requires finding an
optimal allocation for the equivalent TMG under the constraint that the initial marking be-
longs to a particular partition. However, this procedure has a high computational complexity
due to the fact that the number of partitions can increase exponentially with the number of
places. In order to reduce the computational complexity, two sub-optimal approaches are
proposed without enumerating the entire partitions.

Finally, Chapter 7 concludes this dissertation and provides some future directions of

the work.
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Chapter 2 Preliminary

Chapter 2 Preliminary

The concept of Petri nets originates from Carl Adam Petri’s doctoral dissertation. As
an extension formalism of Petri nets, timed Petri nets are firstly introduced in Chander Ram-
chandani’s doctoral dissertation. In this chapter, the basic concepts, definitions, dynamic

behaviors of timed Petri nets used in this thesis are given.

2.1 Petri Nets

Definition 2.1. A Petri net is a four-tuple N = (P, T, Pre, Post), where P is a set of n
places; T is a set of m transitions; Pre : P x T' — N and Post : P x T — N are the
pre- and post-incidence functions that specify the arcs in the net; C' = Post — Pre is the

incidence matrix. O

Definition 2.2. A Petri net N = (P, T, Pre, Post) is said to be ordinary when all its arc

weights are unitary. U

Definition 2.3. A marked graph (MG) is an ordinary Petri net such that each place has only
one input transition and one output transition. A weighted marked graph (WMG) is a net
such that each place has only one input transition and one output transition but may not be

ordinary, i.e., the weight associated with each arc is a positive integer number. O

Definition 2.4. A marking M : P — N of a Petri net is a mapping that assigns a non-
negative integer of tokens to each place; M (p) denotes the marking of place p. A Petri net
system (N, My) is a net N with an initial marking M. O

Graphically, places and transitions are denoted by circles and bars, respectively. Each
directed arc is labeled by positive integers to represent their weights. An arc without a label
indicates that its weight is unitary. Tokens in a place is denoted by black dots or a positive
integer representing their quantity. From the physical point of view, a place represents an
operation or a state of a resource while a transition represents the start or end of an operation.

A token in a place means the fulfilment of a condition or the availability of a resource.

Example 2.1. Consider the Petri net system (N, M) in Fig. 2.1. In this net, P = {py, p2, ps,
9
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D—
D3

D7

Ps
O

Fig. 2.1 A marked graph system (N, M).

D1y D5, Pes D7, Ps s T = {t1,t2,t3, 4,5},

00100 1 00 0O
00100 01 000
1 00 0O 00010
00010 00100
Pre=1yo9 1000 P=10001 0
0 0001 00010
1 00 0O 00001
_0 1 00 0_ _O 00O L]
Its incidence matrix is:
1 0 -1 0 0 ]
0 1 -1 0 0
-1 0 0 1 0
0 0 1 -1 0
C = Post — Pre = 0 -1 0 1 0
0 0 0 1 -1
-1 0 0 0 1
i 0O -1 0 0 1 |
The initial marking of this net is
My =(0,0,1,0,1,0,4,2)".
It is easy to verify that the net is ordinary. o

Definition 2.5. A vector x = (11, 79,...,2,)" € N7l is called a T-semiflow iff + # 0
and C -2 = 0. A vector y = (y1,%2,...,yn)" € NI¥lis called a P-semiflow iff yy # 0 and
yT-C = 0. The supports of a T-semiflow and a P-semiflow are defined by ||z||={t; € T'|z; >
0} and ||y||={p:; € Ply; > 0}, respectively. A minimal T-semiflow ' (resp., P-semiflow) is

IThis is also called a minimal and minimal support semiflow in some references. For the sake of simplicity, we call it a

10
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a T-semiflow ||z|| (resp., P-semiflow ||y||) whose support is not a superset of the support of

any other T-semiflow (resp., P-semiflow), and whose components are mutually prime. [

Definition 2.6. Given a net N = (P, T, Pre, Post) and a marking M, a transition ¢ is
enabled at M if M > Pre(-,t) and is denoted as M|t). An enabled transition ¢ may fire

yielding a new marking M’ with
M =M+ C(-,t), (2-1)

where Pre(-,t) (resp., C(-,t)) denotes the column of the matrix Pre (resp., C') associated
with transition ¢. Marking M" is said to be reachable from M if there exists a sequence of
transitions o = tot; .. .t, and markings My, My, ..., and M, such that M [to) M;[t1) M . ..
M, [t,) M" holds. The set of markings reachable from M, in (N, M) is called the reacha-
bility set of the Petri net system (N, M) and denoted as R (N, My). O

Definition 2.7. Given a Petri net system (N, M), t € T is live under M, iff VM €
R(N, My), IM' € R(N, My), M'[t). (N, Mp) is live iff V¢ € T is live under M,. 0

Example 2.2. In the net (N, M) shown in Fig. 2.1, there are four minimal P-semiflows:
v = (1,0,1,1,0,0,0,0)7, y» = (1,0,0,1,0,1,1,0)7, y3 = (0,1,0,1,1,0,0,0)7, and
ys = (0,1,0,1,0,1,0,1)T, since Vi € {1,2,3,4}, y/ - C = 0, and a unique minimal
T-semiflow z; = (1,1,1,1,1)7 since C' - x; = 0.

Transitions ¢; and ¢, are enabled at the initial marking M. By firing ¢, at My =
(0,0,1,0,1,0,4,2)T, we obtain a new marking M; = (0,1,1,0,0,0,4,1)T, i.e., Mo[ts) M,
which can be verified by Eq. (2-1) as follows:

0 0 0
0 1 1
1 0 1
0 0 0
MO+O('7t2) = 1 + -1 - 0 :Ml
0 0 0
4 0 4
2] | -t] [t

From M, by firing a sequence o = tot;t3, it yields a marking M3 = (0,0,0,1,0,0,3,1)T

which is denoted as My[to) M [t1) Ms[ts) M. The net is live since all transitions are live. ©

minimal semiflow.

11
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o A
i o O+ touy

Fig. 2.2 A place p with a single input transition ¢;,(,) and a single output transition . (;).

Definition 2.8. Given a net N = (P, T, Pre, Post), the set of input places (resp., set of
output places ) for a transition ¢t € T is defined as °t = {p € P | Pre(p,t) > 0} (resp.,
t* = {p € P | Post(p,t) > 0}). For a place p € P, the set of its input transitions
(resp., set of its output transitions) is defined as °p = {t € T | Post(p,t) > 0} (resp.,
p* = {t € T'| Pre(p,t) > 0}). O

Example 2.3. Consider a place p in Fig. 2.2 with single input transition ¢;,,) and single
output transition ¢,,(,). Let w(p) and v(p) be the weights of its input arc and output arc, i.e.,

w(p) = Post(p,t), v(p) = Pre(p,t). We denote the greatest common divisor of w(p) and
v(p) by ged,. o

Definition 2.9. A Petri net is said to be strongly connected if there exists a directed path
from any node in P U 7' to every other node. An elementary circuit of a Petri net is a
directed path that goes from one node back to the same node without passing twice on the

same node and is denoted as . The set of elementary circuits is denoted as I'. U

In a strongly connected Petri net, it is easy to show that each node belongs to an elementary

circuit, and thus the name cyclic nets is also used to denote this class.

2.2 Weighted Marked Graphs

Definition 2.10. A marked graph (MG) is an ordinary Petri net such that each place has

only one input transition and one output transition. 0

Definition 2.11. A weighted marked graph (WMG) is a net such that each place has on-
ly one input transition and one output transition but may not be ordinary, i.e., the weight

associated with each arc is a positive integer number. 0

Definition 2.12. An elementary circuit v of a WMG is said to be neutral if the following

condition holds:
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D3 <p>7 2

Fig. 2.3 A weighted marked graph N = (P, T, Pre, Post).

In other words, in a neutral circuit the product of the weights of all pre-arcs is equal to that
of all post-arcs. This means that if the circuit initially contains enough tokens, it is possible

to fire all transitions along the path returning to the same initial marking.
Definition 2.13. A WMG is neutral iff all its elementary circuits are neutral. 0

Proposition 2.1. A strongly connected and neutral WMG is bounded, i.e., there exists an
integer B € N such that the marking of any place p is not greater than B at any reachable

marking.

Property 2.1. A strongly connected and neutral WMG has a unique minimal T-semiflow x

which contains all transitions in its support. U

In the rest of the thesis, we will consider strongly connected and neutral WMGs.

Example 2.4. Consider the WMG net N = (P, T, Pre, Post) in Fig. 2.3 which is strongly
connected and consists of four elementary circuits v; = p1tspstapetsprti, Y2 = DatspataPetspsta,
Y3 = pitspatapsty, and 4 = potspatypsts. For circuit 4, the product of the weights of all
post-arcs is equal to

w(p1) - w(ps) - w(ps) - w(pr) = 2,

while the product of the weights of all pre-arcs is equal to

v(p1) - v(pa) - v(ps) - v(p7) = 2.

Thus, circuit v, is neutral. Similarly, circuits 7, 73, and 4 are also neutral. The WMG is
neutral since all its elementary circuits are neutral. As a result, it has a unique T-semiflow

13
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r = (2,2,2,2,1)T. There are four P-semiflows corresponding to the four elementary cir-

cuits:
1,0,0,1,0,1,1,0)7,

y1 = ( )

v = (0,1,0,1,0,1,0,1)7,
s yz = (1,0,1,1,0,0,0,0)7,

ya = (0,1,0,1,1,0,0,0).

2.3 Timed Weighted Marked Graphs

The timing structure of a net can be deterministic when the delays are known a priori, or
stochastic when the delays are random variables. There mainly exist two ways of introducing
the timing structure in Petri net models, i.e., associating the timing structure with either
transitions or places®. It has been proved that the two models are equivalent and can be

easily transformed with each other [55].

Definition 2.14. A deterministic transition timed Petri net is a pair N° = (N, §), where
N = (P, T, Pre, Post) is a standard Petri net, and § : T — N, called delay time?, assigns
a non-negative integer fixed duration (¢;) to each transition ¢;. In terms of a deterministic
place timed Petri net, each place p; is assigned a non-negative integer number §(p;) which
represents the sojourn time that a token must spend in place p; before it becomes available

for its output transition. U

In the rest of this thesis, we will consider weighted marked graphs that are deterministic
transition timed and call them TWMGs. When a transition ¢; becomes enabled, it cannot
fire before the time J(¢;) has elapsed. Under the As Soon As Possible (ASAP) execution
policy, a transition ¢; will fire exactly after t; is enabled for a time 6(¢;). The logical enabling
condition for transitions must hold consecutively, i.e., transitions have only memory of the

current enabling.

Definition 2.15. The enabling degree of transition ¢; enabled at a marking )/, denoted by
a;(j), is the biggest integer number & such that

Mj ZkPre(,tl) 0

2Few works discuss the timing structure associated with arcs [29].
31f the delays are rational numbers everything in this thesis works the same by changing the time unit.
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Another fundamental notion that should to be specified when defining a deterministic

timed Petri net is the so-called server semantics.

e Single server semantics: each transition represents an operation that can be executed

by a single operation unit.

e Infinite server semantics: each transition represents an operation that can be executed

by an infinite number of operation units that work in parallel.

e k-server semantics: each transition represents an operation that can be executed by a

finite number £ of operation units.

In the case of timed Petri nets under single server semantics, services in a transition
are provided sequentially. On the contrary, under infinite server semantics the number of
concurrent servers is equal to the enabling degree of the transition. Note that infinite server
semantics is more general than single server (or in general k-server) semantics. In fact,
single (resp., k) server semantics can be simulated by infinite server semantics adding to
each transition a self-loop place with one (resp., k) tokens.

A clock o; associated with an enabled transition ¢; at marking M represents the residual
time to fire ¢;. The server semantics specifies as many clocks are associated with an enabled

transition:
e Single server semantics: one clock.
e [nfinite server semantics: as many clocks as its enabling degree.
e k-server semantics: a number of clocks equal to min (k, a;(j)).

Under infinite server semantics, at each time instant 7; the number of clocks o; associated
with a transition ¢; is equal to its current enabling degree, i.e., 0; = {01, ..., Oi,ai(j)}Q this
number changes with the enabling degree, thus it can change each time the net evolving
from one marking to another one, namely, each time a transition fires. If transition ¢; is not

enabled at marking M, its clock is an empty set. Assume that

.
0; =min{0;1,...,0ia,G)}

and let

0" = min {0}

i=1,....m

15
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Fig. 2.4 A timed weighted marked graph system (N°, M;).

be the minimum among the values of the clocks o]. At the time instant
Tj+1 = Tj + O*a

transitions whose clocks are equal to o* fire, yielding a new marking as in Eq. (2-1).
If the minimal value of the clock o at marking )/, holds for more than one clock, as an
example k, in the set {0;1,. .., 0;4,(;)}, implying that if the transition will be the next one

to fire, it will fire k£ times simultaneously under infinite server semantics.

Definition 2.16. The state of a timed Petri net [M; O] is defined not only by the marking

M., as for Petri nets, but also by the clocks O = (o1, ..., 0,) associated with transitions. [

Example 2.5. Consider a TWMG system (N°, My) shown in Fig. 2.4. The net structure
is N = (P, T, Pre, Post) and the initial marking is M, = (10,0)”. The delay times are
d(t1) = 2and 0(ty) = 5.

Under single server semantics, ¢, is enabled once at marking M, at initial time instant
70 = 0 and its clock is Oy = (01, 02) = (0, 5) . After five time instants, i.e., at 71=79 + d(t2),
transition ¢, will fires yielding a new marking M; = (6, 4)7 with clock O; = (0, 5).

Under infinite server semantics, the enabling degree of transition ¢, at marking M is
a3(0) = 2, i.e., it has two active clocks 05 and 0y5. The clock of marking M, is Oy =
(0,{5,5}). After five time instants, i.e., at ;=79 + d(2), transition ¢ fires twice yielding a
new marking M; = (2, 8)7 with clock O; = (2,0). o

2.4 Cycle Time of Timed Weighted Marked Graphs

Definition 2.17. The cycle time x(M) of a TWMG system (N° M) is the average time to

fire once the minimal T-semiflow under the ASAP operational model. We denote the cycle

time of an elementary circuit -y by x.,(M). O
16
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For deterministic TWMGs, the following limit exists:

—

. Or —
lim — =¢7
T—>00 T

T < 00,

where the vector ¢, represents the firing vector from time O to time 7 and the constant vector
&* is called the limit firing vector. 6*(;) represents the average number of firing ¢; per time

unit.

Definition 2.18. The cycle time of transition t; of a TWMG is the average time between two

consecutive firings of ¢;, which is equal to

O

Definition 2.19. Let t; € T be an arbitrary transition of a TWMG with the minimal T-
semiflow x. The cycle time of the TWMG is equal to

O

The value of the cycle time does not depend on the considered transition. It is proved
that the ASAP execution of a live and strongly connected timed marked graphs (TMG) with
integer delays is ultimately repetitive following a periodical pattern of period W [124, 125].
In the case of TWMGs, the ASAP execution is also ultimately periodic. Fig. 2.5 shows
the evolution of an arbitrary live and strongly connected TWMG, where M is the initial
marking and the arrows correspond to ASAP execution steps. From M, the system will
enter a cycle whose period is

V=7, — T,

and the number of firings of transition ¢; € T" within the steady period is f;. This value is not
identical for each transition but the proportion is equal to the minimal T-semiflow z. Thus,
the cycle time of the TWMG system (N°, M) is equal to

Tu — Tq

fi

- 2-2)
Example 2.6. Consider the TWMG N° = (P, T, Pre, Post,§) whose net structure, initial
marking, and timing structure are shown in Fig. 2.4, where x = (2,3), M, = (10,0)7,
d(t1) = 2, and §(t2) = 5.
The evolution of the TWMG under single server semantics is presented in Fig. 2.6 (a).
States [M1; O] and [Ms; Og| are the same, implying that from state [Mg; Og] the system
17
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Y=T,-Tq

v

[]MO; OO] - [Ml; 0, ] —» . [Mq; Oq] _— o [Mu; Ou]
T():O T1 Tq Tu

Fig. 2.5 Evolution of an arbitrary live and strongly connected TWMG.

[My=(10,0)"; Oy=(2, 5); 1=0]

t

[M=(6,4)"; \01=(®, 5); 11=5] [My=(10,0)"; O=(2, {5, 5}); 16=0]
'[2\ 2t2 L

[M=(2, 8)"; O:=(2, @); 1=10] [M=(2, 8)"; O=(2, 2); 1,=5]
t 4|

[M—(8,2)"; O—(@, 5% 1:=12] [M=(8,2)"; O=(2, {5, 5}); 1:=T]
tr 2t

[Mi~(4, 6)'; 02, 5); ©,=17] [M;=(0, 10)T; \03=(2, o); 1=12]
t, tll

[Ms=(10, 0)"; Os=(2, 3); 15=19] [Mi=(6,4)"; O=(2, 5); 1:=14]
ty tzl

[Me=(6.4)"; O=(2, 5); 1=22] [Ms=(2, 8)"; Os=(2, ©); 15=19]
(a) (b)

Fig. 2.6 (a) Evolution of the TWMG model for Example 2.6 under single server semantics; (b)Evolution
of the TWMG model for Example 2.6 under infinite server semantics.

will enter a cycle which includes five states and the repetitive firing sequence is tot1tot 1.
The period of the cycle is ¥ = 74 — 74 = 17 and the number of firings of transition t;
(resp., t2) within the steady period is 2 (resp., 3). Thus, the cycle time of the TWMG system
(N°, M) under single server semantics is equal to 17 by solving Eq. (2-2).

The evolution of the TWMG under infinite server semantics is shown in Fig. 2.6 (b).
States [My; O] and [Ms; Os] are the same, implying that from state [M5; Os] the system
will enter a cycle which includes four states and the repetitive firing sequence is t,2t5t;t5.
Note that the enabling degree of transition ¢, at marking M5 is equal to two, which means
that ¢, will fire twice simultaneously yielding marking M3. The period of the cycle is ¥ =
Ts — 71 = 14 and the number of firings of transition ¢; (resp., t2) within the steady period
is 2 (resp., 3). Thus, the cycle time of the TWMG system (N°, M,) under infinite server

18
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semantics is equal to 14 by solving Eq. (2-2). o

The cycle time of a TWMG depends on the cycle time of its circuits. Let x*(M) =
max,er X~ (M) be a critical time. Any y € T such that x.,(M) = x*(M) is a critical circuit
that is denoted as +*. It is well known that the cycle time of a TMG is equal to the critical
time, 1.e.,

X(M) = x*(M). (2-3)

However, this result does not apply to a TWMG as we will show in this thesis.

19
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Chapter 3 Marking Optimization of TWMGs Under Single Server
Semantics

This chapter copes with the marking optimization problem (also called the minimum
cost initial distributed state problem) of deterministic TWMG which consists in finding an
initial marking to minimize the weighted sum of tokens in places while the cycle time is less
than or equal to a given value. In addition, the server semantics considered in this chapter
is single server semantics. We propose an iterative heuristic algorithm to solve the marking
optimization problem. At each step, we select places from some circuits to which useful
tokens are added until the cycle time is less than or equal to the desired value. Numerical
simulation studies show that the proposed method requires less iteration steps and thus is

much faster than the approach in [73].

3.1 Introduction

Petri nets have found their extensive applications to the supervisory control [4, 5, 19,
20], analysis [22, 24, 26-29], deadlock prevention of AMSs [31-33, 35, 36, 40], and fault
diagnosis [41, 44, 45, 48, 49]. However, in real manufacturing systems, activities do not
take place instantaneously. Every activity in a manufacturing system has a time duration
which is different from zero. Timed Petri nets are well known as efficient tools for modeling
discrete event systems and representing their dynamic behaviors. They can be used for
performance analysis of a system, i.e., speeds of a process, tasks scheduling, optimizing the

use of resources, and so on.

Timed weighted marked graphs and timed marked graphs (TMGs) are two important
subclasses of timed Petri net that find wide applications in manufacturing. They can model
complex assembly lines and solve cyclic scheduling problems. Workshop operations and
products are usually modeled by transitions and tokens, respectively. Between two succes-
sive transformations, semi-finished products have to be stored or moved from a workshop to
another. The quantity of products which have to be stored or moved and the number and type
of machines which operate the system have economical consequences. Therefore, the main
problems for designers is to find a optimal set of resources capable of meeting the required

production constraints. This problem is also well known as marking optimization problem.

For TMGs, marking optimization problem has been extensively studied in the past
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decades. Panayiotou and Cassandras [126] develop two incremental optimization algorithms
to maximize a given performance index by assigning a set of resources step by step. Laftit
et al. study the marking optimization problem for TMGs under infinite server semantics
[63, 121] which provides a heuristic algorithm and an exact algorithm to find a near optimal
solution. Gaubert addresses the same problem by using min-max algebra [122, 123]. Proth
et al. propose a branch and bound method to obtain a near optimal solution [62]. However,
in the literature, few studies are found to consider the marking optimization problem for
TWMGs. Sauer [73] deals with the problem of finding an initial marking to minimize the
weighted sum of tokens in places while the cycle time is less than or equal to a given value,
and proposed a heuristic solution based on an iterative process. Touris and Sauer [74] present
an approach based on the branch and bound to solve the same problem. Nevertheless, the
existing results fail to provide practically effective and computationally efficient methods to

analyze and solve the problems in such systems.

The rest of this chapter is structured as follows. Chapter 3.2 presents the problem state-
ment and recall a previous approach proposed in [73]. Chapter 3.3 introduces some liveness
conditions for TWMGs. In Chapter 3.4, we propose a heuristic solution for the marking
optimization problem under single server semantics based on a live marking. Following the
algorithm, an illustrate example is given. Chapter 3.5 proposes a detailed comparison be-
tween the proposed approach and a previous one. Conclusions are finally drawn in Chapter
3.6.

3.2 Problem Formulation and Existing Approaches

3.2.1 Problem Formulation

In this chapter, the marking optimization problem of a TWMG under single server
semantics is considered. The problem consists in finding an initial marking M, such that
minimizes a weighted function of the initial marking while the cycle time is less than or
equal to a given value. We consider a non-negative cost vector y € NI*'I that is a P-semiflow
since the value of y” - M at every reachable marking M’ € R(N, M) is an invariant. In
particular, if I' denotes the set of elementary circuits of the net, we can write the cost vector

y as the weighted sum of all minimal P-semiflows, i.e.,

y= A (3-1)

vyerl
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where y., denotes the minimal P-semiflow of circuit v and A, represents the cost of the
resources modeled by tokens in the support of ..

The type of resources considered in this thesis are renewable, i.e., the resources are not
consumed by the operations and become available again after they have been released, such
as machines, tools, and equipments. In addition, we do not necessary consider homogeneous
resources. In terms of manufacturing systems, the cost of the resources will remains constant

as the production process proceeds.

Problem 3.1. Let N = (P, T, Pre, Post) be a TWMG with a set of the elementary circuits
I" and y € NI”! be a non-negative cost vector as defined in Eq. (3-1). Given a positive real
number b that represents the upper bound of the cycle time, we look for an initial marking
M, which minimizes the weighted sum of tokens:

min f(Mo) =y" - My

s.t. (3-2)

Proposition 3.1. [73] Under single server semantics, Problem (3-2) has a solution iff
b> X' =max{x; §(t;),t; € T} (3-3)
where z is the minimal T-semiflow and §(¢;) is the delay time of transition ¢;

3.2.2 A Previous Approach

In this subchapter, we will briefly recall an approach dealing with the marking opti-
mization problem of TWMGs presented by Sauer in [73].

The proposed iterative heuristic algorithm starts with an initial marking M, such that
My(p) = xpe - Pre(p,p®), Vp € P.

Obviously, under the condition imposed by Proposition 3.1 this marking is feasible for Eq.
(3-2), i.e., it satisfies x(My) < b.

The approach requires to evaluate the cycle time and the corresponding average mark-
ing by simulation. The cycle time is estimated when its value has converged to a preassigned
precision.

At each iteration step, one place p* € P is selected to remove a token from ), as long
as the cycle time is less than or equal to the upper bound b. The selected place p* € P should
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maximize the following criterion:
L(p, ) - Yp,

where L(p, x) denotes the number of tokens in the average marking that cannot be used to
enable transition p®. If My(p*) = 0, a marking reachable from M, containing at least one
token in p* is computed.

Before removing one token from the selected place p, it is necessary to verify that the
WMG is going to stay live. If the net is not live after removing one token from p* € P, they
select another place which belongs to P\{p*}. The algorithm stops when there is no place
that can be selected to remove tokens.

When the net size becomes larger, this approach usually requires a huge number of

iteration steps to remove the redundant tokens.

3.3 Liveness of TWMGs

Theorem 3.1. [27] A TWMG system (N°, M) is live iff each elementary circuit is live.

In the case of a TMG, an elementary circuit is live if there exists at least one token
in the circuit. The liveness decision problem of a TMG is polynomial solved in [23, 127].
A weighted circuit of a TWMG is live if each transition can be fired infinitely. However,
determining the liveness of a weighted circuit is not so easy. Up to now, no polynomial
algorithm for liveness checking has been found, for example, the algorithms developed in
[94] to answer this question are not polynomial. Next, we review some sufficient conditions
for the liveness of weighted circuits existing in the literature. Later, these conditions will be
used in the proposed optimization approach.

Teruel et al. [27] and Chrzastowski-Wachtel and Raczunas [24] propose a few methods
to verify the liveness of weighted circuits. First they define a weighted function with respect
to a marking, i.e.,

W(M)=y"- M, (3-4)

where y is a minimal P-semiflow. Furthermore, they define a greatest dead marking M, as:
Mp = (v(p1) = Lu(p) = 1,...,0(pa) = 7. (3-5)
The following result provides a sufficient, albeit restrictive, condition for liveness.

Proposition 3.2. [27] If W (M) > W (Mp), then the weighted circuit is live.
24
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Less restrictive conditions for liveness also exist. Let R™ be a set of positive real numbers
and M(w) = {M|W (M) = w,w € R*}. The least live weight is the minimal w such that
VM € M(w), M is a live marking. In [24] the least live weight of a weighted circuit with a

minimal P-semiflow y was defined as

WL :W(MD) _g(ylay27"' 7yn)7 (3'6)

where g is the Frobenius number.! Note that a Frobenius number only exists if all its argu-
ments are greater than one and coprime. The first condition is always verified in our case
since we consider minimal P-semiflows. The second condition may not always be verified:
when it is, the least live weight in Eq. (3-6) can be computed and the following proposition
holds.

Proposition 3.3. [24]If g(y1, 2, - - - , Y») has no non-negative integer solution and the mark-

ing M, satisfies W (M) = Wi, then the weighted circuit is live.

In the case that there exists a unitary component in a minimal P-semiflow, then a least live

weight cannot be computed by Eq. (3-6).

Example 3.1. Consider a weighted circuit v in Fig. 3.1, we have y = (3,4,3)T, Mp =
(3,2, 2)T, r = (4,3,3)T, and WL = W(MD) - g(y17y2,y3) = 23—9(3, 4, 3) =23-5=18.
We can conclude that any marking M with weight W (M) > 23 or W(M) = 18 is a live

marking. o

It can be checked that every marking with a weight equal to 18 is live. For instance (6,
0, 0)T as well as (0, 3, 2)7 is live. We use the two approaches above to select a live initial

marking.

3.4 Marking Optimization Under Single Server Semantics

We propose here a fast and efficient heuristic solution based on an iterative process to
solve the problem of marking optimization for TWMGs. It starts with a live marking that
has a small weighted sum, and then we compute the cycle time of the TWMG. If the cycle
time is greater than the upper bound of the cycle time, we add tokens to some circuits until

the cycle time is less than or equal to the upper bound of the cycle time. We select the places

!Given positive integers y1, y2, - - -, Yn such that gcd(y1,y2, - -+ , yn)=1, the Frobenius number g(y1, y2, - - -, Yn) is
the largest integer that cannot be expressed as an integer linear combination of these numbers, i.e., as a sum a1y1 + a2y2 +
-+ 4+ anyn, Where a1, ag, - - -, and a,, are non-negative integers.
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Fig. 3.1 A weighted circuit .

to which tokens should be added so as to increase the performance index f(M;) as small as

possible.

3.4.1 Useful tokens

The initial marking My (p) of any place p can be replaced by M (p) tokens without any
influence on the precedence constraints induced by p (see [25] and [26]), where

M,
o(p)J -ecd
ged, b

M) = | (37)

As a result, we can deduce that the cycle time at M, and M are the same. However,

the value of f (M) is less than or equal to f(M,).

Example 3.2. Consider a TWMG system (N°, M) shown in Fig. (3.2). The initial marking
of the TWMG is My = (11,1)" and ged,, = ged,, =2.

M () = {Mo(m)J cged, = L%J .2 =10

ged,,
M()(pQ) 1
M* — . d = — . 1 = 0
0<p2) \‘ ngp2 &c D2 9

Then Mg = (10,0)” and we can check that (M) = 10 < f(M,) = 12 and the cycle
time at M, and M are identical, i.e., x (M) = x (M) = 17. o
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Fig. 3.2 Useful tokens for a TWMG system (N°, M).

3.4.2 Selection of a Proper Initial Marking

For each circuit, there exist some markings that satisfy the least live weight condition.

We choose the one that makes the net live while satisfies the following condition:

min f(M)=y" - M

(3-8)
st. C(M,v) VyeTl
where
C(M,7):yl - M =W, (3-9)
or
C(M,~) 1yl - M > W(M}) (3-10)

For each circuit v, we consider its minimal P-semiflow. If it contains no unitary compo-
nent, the least live weight W of the circuit can be determined and we use Eq. (3-9) for v, as
this provides a sufficient condition for liveness with minimal cost. If the minimal P-semiflow

of the circuit contains unitary components, we use Eq. (3-10).

We point out that it may happen that IPP (3-8) has no feasible solution due to the
presence of the equality constraints given by Eq. (3-9) that may not be compatible. Should
this situation occur, we use for all circuits the inequality constraints given by Eq. (3-10),

thus ensuring that a feasible solution exists.

When there exists more than one optimal solution for the marking M, we choose one.
Then the initial marking M, can be computed using Eq. (3-7), i.e., My = M™*. If we start
the iteration from a marking that satisfies the condition above, we can ensure that the net is
live and the value of performance index f(M,) is small. If the cycle time of M is greater
than the upper bound of the cycle time, we add tokens to the net until the requirement on
the cycle time is satisfied. Otherwise, the initial marking M, is a heuristically good solution
(although possibly not optimal).
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3.4.3 Selection of the Places to Add Tokens

After we select an initial marking M,, we can compute the cycle time x (M) of the
TWMG and x,(M,) for every elementary circuit. If the cycle time satisfies the condition
X(Mp) < b, no more tokens should be added and the marking 1/ is chosen as a solution.

If the cycle time does not satisfy the condition x(M,) < b, two situations are pos-
sible. If there exist circuits ’s that have cycle time greater than b, i.e., x,(M,) > b,
tokens should be added to all these circuits. The set of selected circuits is denoted as
I'. = {y € I'|xy(My) > b}. However, it may also happen that for any circuit v € T,
X~(Mp) < b holds, even if the cycle time of the net is (M) > b. In this case we choose
to add tokens to all critical circuits v*, i.e., the set of circuits selected for adding tokens is
e ={y eT|xy(My) = x*(My)}, where x* (M) is the critical time.

For each of these circuits, we select one place p, and add ged,, tokens to this place. We
choose the one that increases f (M) as small as possible, i.e., the increment of the criterion
value f(Mp) should be the least after adding gcd,, tokens. We define an n-dimensional
vector [ of zeros and ones.

"= (1,,1,, - ,1,) (3-11)
where
(3-12)

pr

)1, add ged, tokens to place p,
0, add 0 token to place p,

In other words, we add tokens to the places with the coefficient I, = 1. Let P, be the
set of these places

P, ={p |1, =1} (3-13)

and
g4 = (ged, -yr,ged, -y, ged, )T,

where y is a P-semiflow of the net and ged, - y, represents the increment of f (My) after

adding gcd,, tokens to place p,. We denote by A f(M) the total increment of f (M), where
Af(Mo) =1"" g4 (3-14)

Then, we can select the places by solving the following problem:

min A f(My)

st e Ip=1,Vy €T,

(3-15)

The constrains in Eq. (6-24) will ensure that only one place should be selected for each
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circuit.

3.4.4 Heuristic Solution

We can summarize the proposed procedure in Algorithm 1. In step 6 of Algorithm 1,
the cycle time needs to be computed. In this chapter, we use the Petri net tool HYPENS [90]

to compute the cycle time via simulation.

Algorithm 1: Marking optimization under single server semantics

Input: A cyclic TWMG N° with a set of elementary circuits I', an upper bound on its
cycle time b, and a P-semiflow y = Z’yEF Ay Ynye
Output: An initial marking M, such that the cycle time of the net satisfies x (M) < b.
Compute the marking Mp,.
For every elementary circuit vy € I', compute W (M},) =y - M},
For every elementary circuit v € T', compute W, = yff - M} — g if possible.
Compute a marking M that satisfies Eq. (3-8).
Compute an initial marking My = M™.
Compute the cycle time (M) and x (M), Vy € I.
If x (M) < b, stop and My is a solution.
While (M) > b
{
If 3y, X (Mo) > b,
tokens should be added to all these circuits in I'. = {y € I'|x., (M) > b}
Else
Ie ={y € I'lxy(Mo) = x*(Mo) }
Compute [ and P,;
Add tokens to P, and update M;
}

9: Output an initial marking M.

A A T T

3.4.5 Case Study

Example 3.3. We consider the TWMG model N° in Fig. 3.3. There are four weighted
circuits in the TWMG:

Y1 = pilapaty

Yo = P3t3patapsta

V3 = DPet3pataprts

Y4 = PstePols
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Fig. 3.3 The TWMG model N for Example 3.3.

The minimal T-semiflows of 7, v2, 3, and 4 are

r1 = (2,3,0,0,0,0)T
xy = (0,2,1,1,0,0)T
r3 = (0,0,3,3,4,0)"
x4 = (0,0,0,0,1,2)T

while the minimal P-semiflows of 1, 2, 73, and -y, are

y = (1,1,0,0,0,0,0,0,0)7
ys = (0,0,3,12,2,0,0,0,0)7
ys = (0,0,0,4,0,1,1,0,0)7
ys = (0,0,0,0,0,0,0,1,1)T

The cost of v, and 3 is twice the cost of v, and vy, i.e., Ay, = A\, = 2 and A\, =
Ay, = 1. Therefore, the P-semiflow used in the criterion f(My) is y = 2y; + yo + 2y3 + ya=
(2,2,3,20,2,2,2, 1, DT, and the minimal T-semiflow of the net is z=(4, 6, 3, 3, 4, 8)"..

yyrsinceyy =1, W(MP)=1x1+1x2=3

Yo : Wi =W(MPE) — g(ys, ya,y5) = 13 — 1 =12
vsisinceyg =1, W(MEF)=4x0+1x2+1x3=5
yaisinceys =1, W(MY)=1x0+1x1=1

We have gcdp1 =1, gcdm =1, gcdp3 =2, gcdp4 =1, gcdp5 =3, gcdp6 =1, gcdp7 =1,
gcdp8 =1, gcdp9 =1, and
gd = (27 27 67 207 67 27 27 17 1>T

min f(M) =2M (p1) + 2M (p2) + 3M (p3) + 20M (p4) + 2M (ps) + 2M (pg) + 2M (p7) +
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M (ps) + M (po)

M(p1) + M(p2) >3

3M (p3) + 12M (py) + 2M (ps) = 12
4M (ps) + M(ps) + M(p7) > 5
M(ps) + M(py) > 1

s.t

We obtain a marking M = (4,0,4,0,0,0,6,2,0)7 and the initial marking My = M* =
M. From Table 3.1, we can find that the cycle time of v, and -, are greater than the upper
bound of the cycle time b at the initial marking M,. Then, we compute I and P, to add

tokens.

min Af(My) = 21, + 21, + 61, + 201, + 61, + 21, + 2L, + L, + I,

s.t ]pl + ]pz =1
]p3 + ]p4 + Ips =1

Table 3.1 The iteration process for Example 3.3.

My, [(4,0,4,0,0,0,6,2,07[(5,0,4,0,3,0,6,2,07](6,0,4,0,3,0,6,2,07
X (M) 38 34 30
Xoa (Mo) 39 30 30
X3 (Mo) 21 21 21
Xa (M) 20 20 20
Y (Mp) 43 34 30
b 30 30 30
f(My) 34 42 44
L. {7,72} {11}
P, {p1,p5} {p1}

We can find that I7 = (1, 0,0, 0, 1, 0, 0, 0, 0) and P, = {p1, ps}. Then, we add one
token and three tokens to places p; and ps, respectively. We can observe from Table 3.1 that
after the first iteration step, x., (M) > b holds. Then, we only need to add tokens to 7,
to decrease the cycle time. The optimal marking is M = (6, 0, 4, 0, 3, 0, 6, 2, 0)” and the
weight sum of tokens is f(M) = 44. o

Example 3.4. Consider the TWMG model N° in Fig. 3.4. The marking obtained by Eq.
(3-8)is M = (3,3,0,1,1)". We have

M (pr) = LMJ ged, = H 2=9

ged,, P 2
M) = [ M) oeq 2] 120
ged,, pe 2
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P1 (1) D4

Fig. 3.4 The TWMG model N° for Example 3.4.

Then the initial marking is M, = M* = (2,3,0,1,0)T. The iteration process is shown
in Table 3.2 and the optimal marking is (2, 3,4, 1,0)7. o

By enumerating all the possible markings for Examples 3.3 and 3.4, we found that the solu-

tions obtained by our proposed approach are optimal.

Table 3.2 The iteration process for Example 3.4.

My (230,107 [(23.2,1,007 | (2.3,4, 1,00
o (M) 29 25 21
o (M) 26 26 21
(Do) 30 26 21
b 21 21 21
F(My) 20 2% 28
L. {m,72} {1, 72}
P, {ps} {ps}

3.5 Comparison with Previous Approaches

As we know, the previous approach dealing with the marking optimization problem of
TWMBG is the one presented by Sauer in [73]. We review this iterative heuristic approach in
Chapter 3.2.2 and mention that it requires a large number of iterations since it starts from a
very large feasible marking.

Adopting the heuristic solution proposed in this subchapter, one starts with a live mark-
ing that has a small weighted sum. We focus our attention on the low speed circuits whose
cycle times are greater than the desired value. To a certain extend, these circuits blind the
speed of the system. We never add tokens to circuits whose cycle time is lower than the
desired value, i.e., high speed circuits. At every iteration step, we choose one place for
each selected circuit by using Eq. (17) and add tokens to it simultaneously. This procedure
ensures that the cycle time of the system will decrease to the desired value rapidly. The
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simulation stops when the system enters a cycle, i.e., we obtain a new state which already
exits before, and the cycle time of the system is computed as in Eq. (2-2).

In order to compare the approach of Sauer and the proposed approach, we have tested
a large number of examples with different net sizes, and for each case we consider a sample
of ten nets. All the samples are randomly generated under the assumption that each circuit
has at least two places and at most six places. Meanwhile, for each tested example, we
initialize b = max{x; - §(t;),t; € T}. In the proposed approach, the solution of steps 4
and 8 in Algorithm 1 is computed using Lingo, which takes a negligible time. The highest
computational effort is spent in step 6 of Algorithm 1, where we need to determine the cycle
time. Similarly, in Sauer’s approach, the highest computational effort is due to the repeated
computation of the cycle time. Both cases use the Petri net tool HYPENS [90] to compute
the cycle time via simulation. The simulation test is executed on a laptop equipped with a
1.8GHZ Core 15 Processor.

The results of a first series of tests are proposed in Tables 3.3 and 3.4 that shows the
comparison between the proposed approach (i.e., He) and that of Sauer. For all cases, we
consider the average net size, the average number of iteration steps, the average CPU time,
and the average value of obtained objective function. The cardinalities of P and 7" are ap-
proximated to the nearest integer. Note that “0.0.t” in Table 3.3 means that the computation
cannot be finished within a reasonable time. As shown in Table 3.4, we can see that the
proposed method is much faster than that by Sauer [73] with the increase of the net size,
while the obtained objective function is slightly worse than that of Sauer (i.e., the value of
weighted sum y? - M, is greater). The main reason that the proposed approach produces a
worse result is that the initial marking computed by Eqs. (3-8) and (3-7) does not have the
least weighted sum to ensure the liveness. Up to now, it is an interesting yet open problem to
determine the least live weighted sum of a TWMG. Although we do not allocate any tokens

to high speed circuits, the tokens of these circuits may still be too high.

Table 3.3 Simulation results for the approach of Sauer and the approach proposed in this chapter (He).

Sauer [ave] He [ave]
Nb. of | Nb.of | |P| | |T| | Iteration | CPU | Obj. | Iteration | CPU | Obj.
cycles | nets | [ave] | [ave] steps time [s] | fun. steps time [s] | fun.
1 10 4 4 36.5 168 29.5 3.6 18 29.7
2 10 9 8 64.7 615 34.3 1.9 44 38.5
4 10 15 12 279.7 3676 80.2 3.6 155 85.8
6 10 22 17 387.5 8890 | 100.8 4 358 114.1
10 10 40 31 0.0.t 0.0.t 0.0.t 43 753 191.5
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Table 3.4 A comparison between the approach of Sauer and the approach proposed in this chapter (He).

He/Sauer [ave]

Iteration steps | CPU times [s] | Objective function
26.4% 29.2% 101.0%
9.4% 26.8% 111.3%
2.2% 9.4% 106.7%
1.5% 6.0% 114.1%

4.3/0.0.t 753/0.0.t 191.5/0.0.t

Looking for a better and fast solution, we combine the approach proposed in this chap-
ter with that of Sauer [73], namely He+Sauer, as seen in Table 3.5. First, a candidate marking
M is computed by the proposed approach. Then we use the approach of Sauer to remove
tokens if possible. The simulation results in Tables 3.5 and 3.6 present the comparison be-
tween the combined approach and the method of Sauer, and also the comparison between
the combined approach and the approach proposed in this chapter. Comparing the combined
approach (He+Sauer) with the approach of Sauer, we always reach the same objective value

while the computational costs are significantly reduced.

Table 3.5 Simulation results for the combined approach (He+Sauer).
He+Sauer [ave]

Nb. of | Nb. of | |P| | |T| | Iteration | CPU | Obj.
cycles | nets | [ave] | [ave] steps time [s] | fun.

1 10 4 4 4.7 23 29.5
2 10 9 8 4.1 63 34.3
4 10 15 12 6.5 193 80.2
6 10 22 17 8.5 472 100.8

10 10 40 31 11.1 973 167.3

Table 3.6 A comparison between the approach of Sauer and the combined approach (He+Sauer).

He+Sauer/Sauer [ave] He+Sauer/He [ave]
Iteration CpU Ob;. Iteration | CPU Ob;.
steps time [s] fun. steps time [s] | fun.

38.9% 40.9% 100.0% 157.9% | 155.6% | 99.1%
18.6% 35.6% 100.0% | 215.0% | 140.7% | 91.4%
3.9% 11.0% 100.0% 189.1% | 138.9% | 94.1%
2.9% 7.6% 100.0% | 293.7% | 137.2% | 87.9%
11.1/0.0.t | 973/0.0.t | 167.3/0.0.t | 282.0% | 131.0% | 87.0%

As one can see, the proposed method needs to find all the elementary circuits and
corresponding cycle times at the first iteration step. Then, we keep track of these slow
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circuits to allocate tokens. Although in practical examples, the number of circuits in a net is
quite reasonable, it is well known that one may define families of nets where the number of
circuits can grow exponentially as the net size increases. A case suffering from the circuit
explosion is shown in Fig. 3.5, where Z; (i = 1,--- ,n) is an arbitrary integer. The set of

circuits of this net is

I = {pitaphts...pht1 | (Vi=1,...,n) p; € {pai—1,p2:} }

and their number is equal to 2" (n > 2). The minimal P-semiflow of each circuit is the
characteristic vector of the places along the circuit. Therefore, the sum of all minimal P-
semiflows is y = y; + Yo + ... ygn = 271 15,, and we can choose the corresponding
P-semiflow y = I,, in the criterion f (My). Table 3.7 shows the simulation results with
different number of n and Z; is a random integer number picked up from the interval [1, 6.
As we can see, in the case of n > 6, the method by Sauer will be more efficient than the

proposed method.

p2n

Fig. 3.5 A TWMG model N? with a large number of circuits.

Table 3.7 Simulation results for Example 3.5.

He/Sauer
Iteration CPU Ob;.
steps time [s] Fun.
3/40 29/106 22/22

5/66 696/1169 30/30
5/104 4916/4399 44/44
0.0.t/128 | 0.0.t/7320 0.0.t/50
0.0.t/140 | 0.0.t/12194 | 0.0.t/60
o.0.t/0.0.t | o0.0.t/0.0.t | 0.0.t/0.0.t

O| 0| |\ R~

Nevertheless, we point out this example is rather academic. In fact, an optimal solution
to this problem could be found by studying the equivalent net where places ps, p4, - - -, Don
are removed. The equivalent net contains only one circuit, hence can be efficiently studied
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by the proposed approach. A corresponding optimal solution for the net in Fig. 3.5 consists

in assigning the same number of tokens to the places py; as in place po;_;.

3.6 Conclusion

This chapter addresses the problem of marking optimization of a TWMG under sin-
gle server semantics. The problem consists in finding an initial marking to minimize the
weighted sum of tokens in places while the cycle time is less than or equal to a given value.

We propose an iterative heuristic algorithm to solve the marking optimization problem.
At each step, we select places from some circuits to which useful tokens are added until
the cycle time is less than or equal to the desired value. Numerical simulation studies show
that the proposed method requires less iteration steps and thus is much more efficient than
the approach in [73]. In some special cases the objective function obtained may be worse
than the one found by Sauer. However, we show that by combining the two approaches,
we always reach the same objective function by Sauer [73] with a significant reduction of

computational costs.

The results presented in this chapter have also been published in:
Z. He, Z. W. Li, and A. Giua, “Optimization of deterministic timed weighted marked

graphs,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 2, pp.
1084-1095, 2017.
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Chapter 4 Marking Optimization of TWMGs Under Infinite Server
Semantics

In this chapter we study the marking optimization problem of deterministic TWMG
(Problem (3-2) in Chapter 3) under infinite server semantics, which is a more general case.
We show some important properties about the stationary behavior of TWMGs under infinite
server semantics. Based on these properties, we develop two heuristic approaches to obtain

a near optimal solution. Several examples are presented to illustrate the approach.

4.1 Motivation

Performance optimization of manufacturing systems using time Petri nets have been
extensively studied in the literature. The optimization problem is solved by heuristic algo-
rithms such as genetic algorithms, simulated annealing and threshold accepting, and analyt-

ical approaches based on solving ILPP.

Wang and Zeng [128] study a time PN model of workflows constrained by resources
which are conflict-free nets. They propose a method to verify the risks and found the best
implementation case by assuming that all required resources have been prepared well before
the start of the activity. However, the proposed method suffers scalability problems when
handling large scale systems. By transforming a TWMG into an equivalent TMG, Nakamu-
ra and Silva [95] develop an algorithm to compute the cycle time of TWMGs under infinite
server semantics. The marking optimization problem of TMGs under infinite server seman-
tics 1s studied by the same author and a tabu search approach is proposed to obtain a near
optimal solution [118]. In [96], the behavior of a TWMG is studied by using (min,+) algebra
and a linearisation method is proposed to determine the initial marking of a TWMG under

restrictive conditions.

As we discussed in Chapter 2, services in a transition are provided sequentially under
single server semantics. While under infinite server semantics the number of concurrent
servers is equal to the enabling degree of the transition. In fact, single server semantics can
be simulated by infinite server semantics adding to each transition a self-loop place with
one tokens. For this reason we adopt this more general semantics in this chapter. However,
the approach proposed for single server semantics in Chapter 3 fails to tackle this problem
under infinite server semantics. From theoretical point of view, there does not exist a lower
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bound of the cycle time under infinite server semantics, i.e., the cycle time can be as small
as possible if we put enough tokes in the system. As a result, Proposition 3.1 dose not hold
for TWMGs under infinite server semantics. In addition, the number of iteration steps of
Algorithm 1 will be large when the desired value of cycle time is small. Thus, we propose
some new heuristic algorithms to solve Problem (3-2) under infinite server semantics.

This chapter is organized in five subchapters. Chapter 4.2 discusses the stationary be-
havior of TWMGs under infinite server semantics and presents some important properties. In
Chapter 4.3, two heuristic approaches are developed to solve the marking optimization prob-
lem of TWMGs under single server semantics. Chapter 4.4 presents an illustrative example
to show the effectiveness of the proposed approaches. Finally, conclusions are reached in
Chapter 4.5.

4.2 Stationary Behavior of TWMGs Under Infinite Server
Semantics

This subchapter is devoted to illustrate how the initial distribution of tokens affects the
stationary behavior of a TWMG under infinite server semantics. We will show that some

important results that hold in the case of TMGs may not hold for this class of nets.

Property 4.1. The cycle time of a cyclic TWMG system (N°, M) is greater than or equal

to the maximal cycle time among all circuits, i.e.,
X(Mo) > max x, (Mo). 41
vel’

It is obvious that the cycle time of a cyclic manufacturing system can not be smaller than the
slowest cycle time among all circuits and at most is equal to the slowest one. The following
example shows that the cycle time of the system can be greater than that of the slowest

circuit.

Example 4.1. Let us consider a cyclic painting process. Machine MA, takes one unit of raw
material and produces six semi-finished products PR; which needs to be painted. Machine
MA, takes four liters of raw pigment and produces three bags of paint PR, (the volume
of each is 4/3 liters). Then, Machine MAj takes one bag of paint PR, and four items of
semi-finished product PR; and executes the painting process. Finally, a batch transportation
device removes six painted product from the workshop and brings one unit of raw material
to machine MA; and two liters of raw pigment to machine MA,, respectively.
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Pi t,(1) 2

Fig. 4.1 A cyclic painting process.

Table 4.1 Physical meaning of each transition for Example 4.1.

Transition t1 ts t3 ts
physical meaning | MA; | MA, | MAj | transport
Execution times 1 2 7 3

Table 4.2 Physical meaning of each place for Example 4.1.

Places Physical meaning
P1 semi-finished product PR,
j 2 paint PR,
D3 product PR,
Dy raw material of product PR,
Ds raw pigment

This automated cyclic painting process is modelled by a net with four timed transitions:
each transition corresponds to a different operation. The TWMG model is shown in Fig. 4.1
and Tables 4.1 and 4.2 present the physical meanings of transitions and places.

There are two elementary circuits v; = pyti1pitspsts and 3 = pstapatspsty, corre-
sponding to the manufacturing process of PR; and PRs, respectively. The minimal P-
semiflow of v, is 1 = (1,0,1,6,0)7 and while the minimal P-semiflow of v, is y, =
(0,4,1,0,3)T. Thus, we consider a weight vector y = y; + y» = (1,4,2,6,3). The phys-
ical meaning of the weighted vector y is that six items of semi-finished product in p; are
produced from one item of raw material in p, and three packaged paints in p; are produced
from four items of raw dyestuff in p5, while four items of painted products in ps are manu-
factured by using four items from p; and one item from p,. Thus, the resources used ratio
for each place is equal to y.

Assuming the initial marking of the TWMG is M, = (2, 1,22, 0,0)7, the cycle time of
the system is shown in Table 4.3. The cost of resources used for v, and 5 are 24 and 26 and
the cycle time of the two circuits are 5.5 and 6. Nevertheless, we find that the cycle time of
the system is equal to 7.7 which is greater than the minimal one among the two circuits, i.e.,
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Table 4.3 Cycle time analysis for Example 4.2.

Marking X | X | X |yl M |yg M| y"-M
My =(2,1,22,0,007 [ 55| 6 | 77| 24 26 50
M, =(0,0,24,0,007 55| 6 | 6 | 24 24 43
7.7 > max{5.5,6}. o

Property 4.2. The cycle time of two TWMG systems (N°, M) and (N°, M;) with same
net structure can be different even all the cycle time of their circuits are identical, i.e.,

(M) # x(0),
(M) = v, (M), oy €T @)

We prove this property by showing the following example.

Example 4.2. Consider the net in Fig. 4.1 and assume that the initial marking is M; =
(0,0,24,0,0)T. Table 4.3 shows the cycle time analysis of marking M;. One may find that
for marking M; the cycle time of each circuit is identical with marking M, while the cycle

time of the system is greater than that of M. o

From Example 4.2, we find that the cost of resources used for M is 48 which is smaller
than that of M), while the cycle time of system is greater than that of M. This has practical
significance for the cycle time optimization problem which consists in finding an initial
marking to maximize the cycle time of the system with a bounded resources. It means that
marking M is better than M, because it has a smaller resources used. In the following, we
will further discuss this problem.

We study the TWMG systems (N?, M) and (N?, M;) by analyzing the two circuits.
Figs. 4.2 and Fig. 4.3 show the marking distribution of v; and +, associate to M, and M;.
We have M;* = (0,0,24,0,0), My* = (0,0,24,0,0), M]" = (2,0,22,0,0), and M;” =
(1,0,22,0,0).

For M{", we can firing transitions ¢,¢1¢3t3 in order and obtain a new marking (0, 0, 24,
0,0)” which is identical to marking M7", namely, M;* € R(N, M"). For M?, transition
t3 can be fired which results in a new marking (0, 0, 26, 0, 0) and this new marking has more
tokens in p3 than marking M. Thus, it seems that the cycle time of marking M, should not
be smaller than that of marking M, which is contrary to the result shown in Table 4.3. The
fact is that for the TWMG system ¢3 is not enabled because My(p;) < Pre(py,t1). Thus,
two tokens in p; and one token in py will be trapped, i.e., cannot be used for the system
at marking My, while no tokens are trapped at marking M;". This is mainly due to the
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1(1
L 1) P 50 P 4O)

(a) Marking of v, (b) Marking of v,

Fig. 4.2 The marking of each circuit under M, for Example 4.2.

pPi ) p (1) P4

(a) Marking of v, (b) Marking of vy,

Fig. 4.3 The marking of each circuit under M/, for Example 4.2.

synchronization of the two circuits. Each of them becomes mutually constrained and results

in a lower cycle time of the system.

4.3 Marking Optimization Under Infinite Server Semantics

We propose here two different heuristic solutions to solve the marking optimization
problem of a TWMG under infinite server semantics. A candidate live initial marking is
firstly computed by an analytical method. The cycle time of this selected marking is usually
greater than the desired value b. Thus, more tokens should be added to decrease the cycle
time until it satisfies the constraint y (M) < b. In the following, an MILLP method to com-
pute a candidate live initial marking is proposed. Finally, two different heuristic approaches

are presented to solve the optimization problem.

4.3.1 Selection of a Candidate Marking

Useful tokens: First, we recall some notations on useful tokens. For a TWMG, the initial

marking M (p;) of any place p; can be replaced by M*(p;) = L%J - ged,,, tokens without

any influence on the precedence constraints induced by p;.
If M(p;) is not a multiple of ged, , there will always be M (p;) — M*(p;) tokens re-
maining in place p; that will never be used in the firing of the output transition of place p;.
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As a result, we can deduce that the cycle time at M and M* are the same.
Selection of a live initial marking: It was shown in [120] and [69] that a lower bound for
the cycle time of a live and bounded TWMG system (N°, M) can be computed by solving

following LPP:
min v
S.t. (4-3)
C-z4+v-M > Pre-6

where § € N™ is the vector containing all firing delays of timed transitions (recall that
m = |T'|). Note that for a TMG whose minimal T-semiflow is equal to 1, thus the element

0; of vector @ is simple equal to the delay time of corresponding transition ¢;, i.e.,
0 = (0(t1),5(ts),...,0(tm))".
Nevertheless, the vector 8 of a TWMG should be modified as follows:
0 = (z1-6(t), z9-6(ta), ..., 2m - 6(twm))7?,

where z is the minimal T-semiflow.
The decision variables are v € R* and z € R™: the optimal value of v is a lower bound

of the cycle time of the TWMG system (N°, M), i.e.,
X(M) > v. (4-4)

To start our heuristic solution, we present an analytical method to select a live initial mark-
ing M based on Eq. (6-29). The cycle time of this marking usually satisfy y (M) < b.
Nevertheless, we find that in practical examples, the cycle time x (M) is very close to the
desired value b. Let us first recall some basic results regarding liveness of a WMG. Note that

Propositions 1 and 2 are valid for both infinite server semantics and single server semantics.

Proposition 4.1. Let M be a marking which satisfies the following condition:

min v
S.t.
C-z+v-M>Pre-0, (a
v =1, b (4-5)

)

(b)
yy M >W(Mp),Vy €T, (c)
M (pi)
gcd—é))i)EN,VpZ‘EP. (d)
Then, the TWMG system (N°, M) will be live and b is a lower bound of the cycle time
X(M).
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Proof: Constraint (a) is adopted from Eq. (6-29) and can provide a marking M whose
lower bound of the cycle time is equal to b if C', Pre, 6, and b are given. The constraint (b)
specifies that the lower bound of the cycle time should equal to b, i.e., (M) > b.

As we discussed in Proposition 3.2, constraint (¢) ensures that the TWMG system
(N°, M) will be live. The number of tokens in each place p; should be a multiple of ged,,
which is guaranteed by constraint (d). O

As it is stated in Proposition 4.1, the cycle time of M is usually greater than or equal
to the upper bound b. Thus, tokens should be added to the net until the requirement on the

cycle time is satisfied.

4.3.2 Heuristic Approach 1

The main idea underlying this heuristic approach is the following: at each iteration
step, we add tokens to some circuits until the cycle time is less than or equal to the upper
bound of the cycle time.

After we obtain a candidate initial marking M, we can compute the cycle time x (M)
of the TWMG and x., (M) for every elementary circuit. Tokens should be added to the

circuits which satisfy the following condition:
I'.={yeTlx, > b} (4-6)

And for each circuit 7y belongs to I'., we select one place p, and add ged,, tokens to it. We
choose the one that increases f (M) as little as possible, i.e., the increment of the criteria
value f(My) should be the least after adding ged,, tokens.
Then, we can select places by solving the following problem:
min A f(My)
s.t. (4-7)
Yoy =1,y €T,
where [ is an n-dimensional vector as defined in Eq. (3-11) and A f( M) represents the total
increment of f(M;) in Eq. (3-14). The set of selected places P, is defined in Eq. (3-13).
The constrains in Eq. (4-7) ensures that only one place should be selected for each circuit

that belongs to I'...

4.3.3 Heuristic Approach 2

We propose here another heuristic approach to solve the optimization problem. The
basic idea of the heuristic process is to allocate tokens, which reduces the cycle time x (M)
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as much as possible while increases the objective function f(M) (i.e., weighted sum of
tokens) as less as possible. At each step, we choose one circuit which has the maximal cycle
time (also called critical circuit) among all circuits and add tokens to this circuit. Thus, the

selected circuit in Eq. (4-6) should be redefined as follows.

Fe={y € x,(M) = x"(M)}, (4-8)
where
X*(M) = max x,(M). (4-9)
~yel'

If there exists more than one critical circuit, we choose one. After we choose a critical
circuit, we select one place p and add k tokens to it. The number £ is a multiple of ged,
which represents the minimal number of tokens that we should add to decrease the cycle
time of the critical circuit. It can be computed by using simulation. We denote the decrease

in the cycle time by A, x (M) after allocating & tokens to place p. We have
Axy (M) = x4 (M') = x7 (M), (4-10)

where M’ is the marking such that M'(p) = M(p) + k and M'(p') = M(p') if p’ # p. Let

Af(M) be the gain in criterion value, i.e., the resources that we add, where

Af(M) =y, - k.

We introduce a criterion A, in which p takes into account both the decreasing of the

cycle time and the gain in criterion value, i.e.,

Af(M)
A, = ——F. (4-11)
TAxL(M)
Tokens will be allocated to the place such that
P, ={p*|A,» = min A,}. (4-12)
pele

Note that, the computation of A, is simple: the amount of computation is proportional to
the number of places which belong to the critical circuit. At each iteration step, if there is
more than one place with minimal value of A, we keep all the optimal allocations to next
iteration step.
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Fig. 4.4 An assembly line.

4.4 Case Study

Example 4.3. Let us illustrate the proposed approaches through an example taken from the
literature. It combines cyclic assembly process, buffers, WIP, and batch operations. Two par-
allel machines (machine one and machine two) are working on items. Machine three loads
two parts produced by machine one and three parts produced by machine two and assembles
them to get one product. The assembly process is finished by machine four. The batch-
ing transportation device removes three finished products from the workshop and brings six
items to machine one and nine items to machine two, respectively. The TWMG model of the
assembly process is depicted by Fig. 4.4. Transitions 1, ¢, t3, t4, and ¢5 represent machine

one , machine two, machine three, machine four, and transportation device, respectively.

The minimal T-semiflow of the TWMG is z; = (6,9,3,3,1) and the minimal P-
semiflows are y; = (1,0,0,2,0,2,1,0)7, y» = (0,1,0,3,0,3,0,1)T, y5 = (1,0,1,2,
0,0,0,0)T, and y; = (0,1,0,3,1,0,0,0)T. Thus, the weighted elementary circuits cor-
responding to all minimal P-semiflows are v; = p1tspstapstsprti, Y2 = DatspatsPetspsto,

v3 = pitspatapsti, and 4 = patzpatapsts.

The number of tokens in ~; and -, represent the number of items proceed (i.e., WIP)
by machines one and two, respectively. Thus, we initialize the cost of the tokens in these
circuits to two, and that of circuits three and four to one, i.e., A\; = 2, Ay = 2, A3 = 1, and

A4 = 1. Thus the P-semiflow we used in the criteria is

y=> Ay, =(3,31,151,10,2,2)"

vyerl
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Table 4.4 Heuristic process of approach 1 for Example 4.3.

step M b | X(M) | Xy (M) | X3 (M) | X5 (M) | X4 (M)
0 (0,0,0,10,0,0,0, O)T 8 8.7 8.7 8.7 4.2 4.2
1 (0,0,0,10,0,0,1, 1)T 8 8.7 8.7 8.7 4.2 4.2
2 (0,0,0,10,0,0,2, Z)T 8 8.7 8.7 8.7 4.2 4.2
3 (0,0,0,10,0,0,3, 3)T 8 8.7 8.7 8.7 4.2 4.2
4 1(0,0,0,10,0,0,4,4)" | 8| 8.7 6.5 8.7 4.2 4.2
5 (0,0,0,10,0,0,4, 5)T 8 8.7 6.5 8.7 4.2 4.2
6 (0,0,0,10,0,0,4, 6)T 8 6.5 6.5 6.5 4.2 4.2
Table 4.5 Heuristic process of approach 2 for Example 4.3.
Step M b | X(M) | Xy (M) | X0 (M) | X33 (M) | Xs(M)
0 (0,0,0,10,0,0,0, O)T 8 8.7 8.7 8.7 4.2 4.2
1 (0,0,0,10,0,0,4, O)T 8 8.7 6.5 8.7 4.2 4.2
2 (0,0,0,10,0,0,4, 6)T 8 6.5 6.5 6.5 4.2 4.2

Let us consider the following optimization problem

min y? - M
S.t.
X(M) <8
By using the technique introduced in Eq. (4-5), we can obtain an initial marking M, =
(0,0,0,10,0,0,0,0)T. This marking has a cycle time which is very close to the desired
value. Thus, the optimization problem can be efficiently solved by the proposed heuristic
approaches. We use HYPENS [90] to implement the heuristic algorithms 1 and 2 and the
simulation results are shown in Tables 4.4, 4.6 and 4.5, 4.7 respectively. As one can see, it
takes six iteration steps for approach 1 and two iteration steps for approach 2. Note that at
each iteration step, heuristic approach 2 needs compute more information than heuristic 1.
Both the solutions of approaches 1 and 2 have the same value of objective function f (M),

i.e., the total cost of the resources of the assembly line is 170. o

To better verify the effectiveness of the two heuristic approaches, we test the example
for different value of b and the simulation results are shown in Table 4.8. We can observe
that in all the test cases, heuristic approach 1 is slightly faster than heuristic approach 2,
while the obtained objective functions f(A/) are the same. Note that in the case that b = 2,
the marking M obtained by the MILPP (4-5) is a heuristically good solution, i.e., x (M) < b.
Thus, we do not need to add more tokens to the system. The simulation studies show that
the two approaches produce comparable results. They always find the same optimal solution
and the execution time is very similar. While the presented results which approach 1 are
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Table 4.6 Selection places of heuristic approach 1 for Example 4.3.
step I P, f(M) | CPU time [s]
0 {71 72} | {prs ps} 150 -
{y1. 72} | {pr.ps} | 154 -
{1, 72} | {pr. ps} | 158 -
{71, 72} | {p7: ps} 162 -
{12} {ps} 166 -

{2} | {ps} | 168 -
- 170 92.7

NN KW=

Table 4.7 Selection places of heuristic approach 2 for Example 4.3.

Step | I'. | P, | Number of tokens k& | f(A) | CPU time [s]
0 Y1 | Pr 4 150 -
I | 7| ps 6 158 —
2 - - — 170 156.5

always faster than approach 2 may depend on the particular example considered.

4.5 Conclusion

In this chapter the marking optimization of a TWMG under infinite server semantics
is studied. We provide some properties for cycle time analysis of TWMGs under infinite
server semantics. Based on these properties, we develop two heuristic approaches to obtain
a near optimal solution. These proposed algorithmes can provide a near optimal solution
step by step and also apply for the marking optimization of deterministic TWMGs under

single server semantics by adding to each transition a self-loop place with one token.

The results presented in this chapter have also been published in:
Z. He, Z. W. Li, I. Demongodin, A. Giua. “Marking optimization of deterministic

timed weighted marked graphs under infinite server semantics”, In Proceedings of the 3rd

Table 4.8 Simulation results for Example 4.3 with different value of b.

Heuristic approach 1 Heuristic approach 2
Iteration Objective CPU | Iteration Objective CpU
b steps | function f(M) | time [s] | steps | function f(M) | time [s]
2 0 585 12.1 0 585 12.1
5 6 261 101.4 2 261 127.6
12 6 125 94.5 2 125 107.4
18 3 86 42.4 2 86 81.3
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International Conference on Control, Decision and Information Technologies, (CoDIT’16),

2016: 1-6.
Z.He, Z. W. Li, A. Giua. “Stationary behavior of manufacturing systems modeled by

timed weighted marked graphs”, In Proceedings of the IEEE Region 10 Conference (TEN-
CON’16), 2016: 3374-3377.
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Chapter 5 Cycle time Optimization of TWMGs Under Single
Server Semantics

In this chapter, the cycle time optimization of deterministic TWMG under single server
semantics is studied, which is a dual problem of marking optimization problem. The prob-
lem consists in finding an initial marking to minimize the weighted sum of tokens in places
while the cycle time is less than or equal to a given value. In addition, we consider single
server semantics. To the best of our knowledge, this problem has not been addressed in
the literature. We transform a TWMG into several equivalent TMGs and formulate a mixed
integer linear programming model to solve this problem. Moreover, several techniques are
proposed to reduce the complexity of the proposed method. We show that the proposed

method can always find an optimal solution.

5.1 Motivation

Optimization problems are common in the setting of concurrent systems, where a finite
set of shared resources must be properly assigned so as to optimize the system performance,
1.e., maximize throughput of a manufacturing system, maximize the number of final adopters
of a new product. However, these systems are usually large and complex such that it pos-
es difficult problems to find an optimal resource allocation policy to reach their maximal

throughput.

Manufacturing systems such as flexible manufacturing systems and automated manu-
facturing systems can be naturally modeled by Petri nets. The resource optimization problem
based on Petri nets has been extensively studied in the literature. For instance, Hee et al.
[112] and Li and Reveliotis [111] present some methods to compute optimal resource alloca-
tion in stochastic PNs. Chen et al. [70] develop a new PN model called resource assignment
PN to compute the time needed to execute each project under the described scenarios. Ro-
driguez et al. [93] propose a heuristic method to solve the resources optimization problem
for process systems with shared resources under the assumption that the considered PNs are
live.

By contrast to the aforementioned works, we are interested in resource optimization
for TWMGs which are conflict free nets, i.e., there exist no shared resources. This class of
Petri nets has usually been used for modeling and analyzing manufacturing systems. More-

49



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

over, the TWMGs are not initially assumed to be live, i.e., we need to find a live resources

assignment policy which maximizes the throughput of the system.

This chapter is structured as follows. In Chapter 5.2, we present the problem statement.
Chapter 5.3 gives an algorithm to transform a TWMG to an equivalent TMG under single
server semantics. In Chapter 5.4, we propose an analytical method to solve the optimization
problem. Several measures are taken to improve the algorithm to reduce the computational
cost in Chapter 5.5. Moreover, we study a more general optimization problem. Some ex-
perimental results are presented in Chapter 5.6. Conclusions are finally drawn in Chapter
5.7.

5.2 Problem Formulation

In this chapter, the cycle time optimization (also called the maximum throughput initial
state assignment problem) of a TWMG under single server semantics is studied. We aim
to find an initial marking M such that the weighted sum of tokens in places is less than or
equal to a given value. Among all feasible solutions, we look for those that minimize the

cycle time, i.e., maximize the throughput.

We consider a non-negative cost vector y € NI as defined in Eq. (3-1) that is a P-

y=> MYy

yer

semiflow, i.e.,

where y., denotes the minimal P-semiflow of circuit v and A, represents the cost of the
resources modeled by tokens in the support of y.. The value of y* - M at every reachable

marking M’ € R(N, M)) is an invariant.

Problem 5.1. Let N° be a TWMG with a set of the elementary circuits I' and y € NI”!
be a non-negative cost vector as defined in Eq. (3-1). Given a positive real number R that
represents the upper bound on the cost of resources, we look for an initial marking M, which
minimizes the cycle time x(M)):

min x(Mp)

s.t. (5-1)
y" - My < R.
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5.3 Transformation from a TWMG to an equivalent TMG Under
Single Server Semantics

One way to analytically compute the cycle time of a TWMG is to convert it into an
equivalent TMG. In fact, Munier [94] shows that a TWMG system (N° M) can be trans-
formed into an equivalent TMG system (N o M ) which describes the same precedence con-
straints on the firing of transitions. This implies that the cycle time! of the two systems is

identical, i.e.,

This equivalent TMG system depends on the initial marking M and the minimal T-
semiflow = of the TWMG. Since it is necessary for us to use this transformation method,
we present it in Algorithm 1. All notations in the algorithm are from previous definitions
and oy (p,) in Eq. (5-3) (resp., Tin(p,) in Eq. (5-5)) represents the elementary T-semiflow
component corresponding to transition ¢, (p,) (r€sp., tin(p;))- Note that Egs. (5-3) and (5-5)

admit only one solution (ag, bs and c,, ds) for each value of s.

Example 5.1. Consider a TWMG model N° in Fig. 5.1. We assume that the initial marking
is My = (0,0,4)T.

Transformation of transitions: The minimal T-semiflow is z = (1,2,1)?. Then the
transitions t1, t, and t5 are replaced by one transition, two transitions and one transition,
respectively. Moreover, places ¢’s to connect these transitions are added. The nets drawn by
dotted lines in Fig. 5.2 correspond to the intra transition sequential systems.

Transformation of places: Since place p; satisfies the condition w(p;) > v(py), it is
replaced by place p} according to Algorithm 2. We compute a; and b; to determine the
marking and structure of place p}. Places p, and ps satisfy the condition w(p;) < v(p;)
(i = 2,3), and then places p, and p3 are replaced by pj and p3, respectively. Markings and
structures of pj and p} are computed by Eq. (5-5).

Fig. 5.2 shows the equivalent TMG with the initial marking M = (0,0, 4)”. There are

totally four transitions and seven places. o

The structure of the equivalent TMG (i.e., the arcs connecting places and transitions)
depends on the marking M of the TWMG. However, this dependence is periodic as shown

in the following proposition.

'In the following, we will denote by x (M) the cycle time of a TWMG system (N 8. M) and by x(M) the cycle time

of the equivalent TMG system (N°, ).
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Algorithm 2: Transformation of a TWMG into a TMG under single server semantics

Input: A TWMG system (N°, M).
Output: An equivalent TMG system (N?, M) such that y (M) = y(M).

1: Compute the minimal T-semiflow x = (21, ..., 7,,)T of net N.

2 (Transformation of transitions). Replace each transition ¢; € T by z; transitions, t}, 2,
..., t;*, with the same firing delay of ;. These transitions are connected by an
elementary circuit with all weights equal to 1. Add z; places ¢}, ¢2, . . ., ¢, where ¢,
a=1,...,2; — 1, is a place connecting transition ¢¢ to transition t*** and ¢} is a place
connecting transition ¢;" to ¢}. Only place ¢’ contains one token and the other places
are empty, i.e.,

. (5-2)

M) =0,Vi=1,...,m,Ya=1,... x;—1,
M(g")=1,Vi=1,...,m,

Thus there exist m mono-marked circuits that are called intra transition sequential
systems. They do not depend on the initial marking.

3. (Transformation of places: case 1). Replace each place p; € P such that w(p;) > v(p;)
by n; = Tin(p,) places p;, where for s = 1,...,n;:

M (pi)+w(psi)-(s—1
G - Touttpy) + b = { CAEAT >J +1,

bs € {1,..., Tou(py) }+ (5-3)
a, € N.

s .. s .. bs . .
Place p; connects transition tm(pi) to transition tout(pi) and contains a, tokens, i.e.,

~

M(p;) = as. (5-4)

4. (Transformation of places: case 2). Replace each place p; € P such that w(p;) < v(p;)
by n; = Tout(p,) Places p;, where for s = 1,...,n;:

_ | svpi)=M(pi)
Cs * Tin(p;) T ds = [pw(—l?z‘)(p—‘ ’

ds € {1, e ,Zl?m(pi)}, (5-5)
Cs € ZSO-

to transition t°

out(p;) and contains —c, tokens, i.e.,

Place p; connects transition tij(pi)

~

M(p;) = —cs. (5-6)
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Fig. 5.2 TMG equivalent to the TWMG in Fig. 5.1 for Example 5.1.

Proposition 5.1. Consider a TWMG N? with minimal T-semiflow z = (z1,7,...,2,)7

and two possible initial markings M; and M,. Let (N®, M) (resp., (NS, Ms,)) be the equiv-
alent TMG obtained by Algorithm 1 with input (N°, M) (resp., (N°, Ms)).
If for a place p; € P

MQ(pz) = Ml(pz) + 5 : U(pl) * Lout(p;) thhg € N7

then the structure corresponding to p; in Nf and ]\AféS is the same and the markings of the

transformed places p; corresponding to p; in Egs. (5-4) and (5-6) satisfy

My(p;) = My(p) + €. (5-7)

Proof: Since M1 (p;)+Zin(p:) W(Di) = Tour(p,) 0 (0i) = Mi(pi), we have ;) - w(pi) =
Tout(ps) - V(Di). Ew(pi) > v(0s)s Tin(py) < Tout(ps) AN S = 1, ..., Tin(p,), for marking M; (p;)
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of place p;, it holds that:

{CLS . gjout(pi) + bs — LMl(pl)+w(pl)(S—1)J + 1’

v(pi)
bs € {17 s 7xout(pi)}a as € Na

and for marking M, (p;) of place p;,

y * Tout(p,) + Uy =
{M1(pi)+§'$out(m>‘U(Pi)-i-w(m)'(s—l)J 1,

v(pi)
bls € {1, N axOUt(pi)}7

a, € N,
M (pi) +w(pi) - (s — 1)
- out(p; b/ = * Lout(p; ]-7
Qs * Lout(p;) + 0 \‘ U(pz) +§ Lout(p;) +
then
CL; * Tout(p;) + b; - (as + g) : l’out(pi) + b57
and
a; =as+ ga
{b’ ., (5-8)
If wp) < v(Pi)s Tings) = Toutpy) a0d k = 1,..., Zou(p)» We can obtain the following
equation
Cls = Cs — 57
{d’ B (5-9)

where a, and —c, represent the number of tokens in equivalent places and b, and d represent
the structure (input arc or output arc) of equivalent places. According to Egs. (6-16) and

(5-9), it follows that the equivalent structures of M;(p;) and Ms(p;) are identical while

M2(pf) = Ml(pf) +&.

O

The previous result implies that the structure corresponding to place p; in the equiva-

lent TMG is periodic with regard to M (p;) and the period ¢; is equal to v(p;) - Tout(p,) (OF
equivalently w(p;) - Tin(p,))-

Example 5.2. Consider a TWMG model N? in Fig. 5.3 whose minimal T-semiflow is 2=(2,
3)T. Fig. 5.4 shows the equivalent TMG systems (]\7 ’ M ) corresponding to different initial
markings.

Transitions ¢, and ¢, are replaced by two transitions (¢} and ¢?) and three transitions (t3,
13, 13), respectively. Places ¢’s to connect these transitions are added. For place p; (resp.,
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p2), it is replaced by two (resp., two) places p} and p? (resp., p; and p2). For different initial
markings, the structures of equivalent transitions (gray blocks) are always the same, while
the structures and markings of equivalent places (blue blocks) may change.

From Proposition 5.1, we can compute the period of each place ¢; = 2, and ¢, = 6.
The equivalent TMG structures corresponding to M, Ms, and M, are the same as shown in
Figs. 5.4(a), 5.4(c), and 5.4(d). For the marking M’ = (6&;,6&,)7, one can easily check that
the structure of the equivalent TMG is identical to that of the net in Fig. 5.4(a) while the
markings of equivalent places are M’ (pl) = M'(p?) = &, and M'(ph) = M'(p2) = &.  ©

216

Fig. 5.3 The TWMG net N° for Example 5.2.

The size of the equivalent TMG is* O(|x|;). More precisely the number of transitions
n

is m = |z|; and that of places is 7 = ) n; + |x|; which is less than or equal to 2|z|;.
i=1

Theoretically |z|; can grow exponentially with respect to the net size. However, one finds

that in practical examples, this is a quite reasonable number.

5.4 Cycle Time Optimization Under Single Server Semantics

We propose here an MILPP to solve the cycle time optimization problem for TWMGs.
We first give some conditions under which the optimization problem admits a finite solution.
Then, we show the general idea on which our approach is based. Some techniques are intro-
duced in subchapter 5.4.3 to reduce the equivalent TMGs structures. Finally, we formulate

the proposed approach in subchapter 5.4.4.

5.4.1 Ecxistence of Finite Solutions

For a TWMG, the complexity of checking liveness and determining the minimal num-
ber of tokens that ensures the liveness remains open. Based on Proposition 3.2 and Theorem
3.1, we present a sufficient condition concerning the existence of a finite solution to the

considered optimization problem.

*Here |x|; denotes the 1-norm of T-semiflow .
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,,,,,, 7 — =

(c) Ms= 6,0)T (d) M= 6,6)T

Fig. 5.4 The equivalent TMG systems corresponding to different initial markings for Example 5.2.

Proposition 5.2. Let M be a marking of a TWMG, y = > A, - y, be a cost vector as
vyer

defined in Eq. (3-1), Mf be the greatest dead marking of circuit v as defined in Eq. (3-5),

and R be a positive real number that represents the upper bound on the cost of resources.

Problem (5-1) has a finite solution if R > R*, where R* is a positive real number such that:
R* = min y' - M,

S.t.
yl oM >yl - MP (vyel).

Proof: 1If forany vy € T, y! - M > yI - M holds, we conclude that each circuit of the
TWMBG is live according to Proposition 3.2. Then, the TWMG is necessarily live according
to Theorem 3.1 and its cycle time will be finite. 0

In [73], the author proves that the lower bound of the cycle time under single server
semantics is

X' = max{z; - 6(t;),t; € T}, (5-10)

where x is the minimal T-semiflow and §(t;) is the delay time of transition ¢;.
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5.4.2 General Idea

Giua et al. [120] present that for a TMG the solution® of Problem (5-1) can be computed
by solving the following MILPP:

max 3

S.t.
C-a—Pre-6-+M>0 (-11)
yI' - M <R

with variables M € N", 3 € R" and o« € R™. It provides the optimal solution M and the
corresponding maximal throughput /3 (i.e., the inverse of cycle time 1/x(M)), and « has no
obvious physical meaning.

For TWMGs one way to find the optimal solution of Problem (5-1) is to enumerate all
possible equivalent TMGs and solve an MILPP (5-11) for each of them to find a marking

which has the maximal throughput. However, there are two main problems.

e The number of TMG structures equivalent to a TWMG may be very large. This issue
is addressed in Chapter 5.4.3.

e We have to add in Eq. (5-11) a series of constraints to ensure the marking M that
we find for a given net structure N is consistent with the marking M of the original

TWMG. We discuss this issue in Chapter 5.4.4.

5.4.3 Reduction of Equivalent TMG structures

According to Proposition 5.1, for each place p; € P of a TWMG system (N° M), the
structure corresponding to place p; in the equivalent TMG is periodic with respect to M (p;)
and the period is ¢;. Thus, we should compute the equivalent structures for initial marking
M(p;)=0,1,...,¢; — 1.

We note that the set of possible markings of place p; can be partitioned into ¢; subsets

such that
¢;—1

|J M =N, where {k; + ¢ - ¢:]¢ € N} = M, (5-12)

ki=0
and all makings of p; in the same partition M ';7 correspond to the same equivalent structure.

For each place p; € P, we define N; = {0,...,¢; — 1}. Then the set of markings of a

3The MILPP in Eq. (5-11) provides a solution under infinite server semantics while here we consider single server.
However, the equivalent TMGs constructed by Algorithm 2 are such that the enabling degree of transitions is at most equal
to one: this means that their behavior is the same under both infinite and single server semantics.
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TWMG can be partitioned into several subsets

U ME s ME2 e MEn = N, (5-13)

(kl ..... kn)Ele--~X/\fn
For each vector k = (ky,...,k,) € N1 x --- x N, corresponding to partition M’;i X
/\/l’;; X oo X Mﬁz, the equivalent TMGs for all markings in this partition are the same. The

total number of such structures (i.e., partitions) is

o =]] o (5-14)

p;EP

Note that the number of equivalent structures given by Eq. (5-14) is usually large. We
look for more efficient solutions that only require to consider a subset of these structures

(i.e., partitions). To reach this goal, the following result is useful.

Lemma 5.1. [25] For a WMG, the initial marking M (p;) of any place p; can be replaced

by M*(p;) = L%J - ged,,, tokens without any influence on the precedence constraints

induced by p;.

In fact, if M (p;) is not a multiple of ged,,, there will always be M (p;) — M*(p;) tokens
remaining in place p; that will never be used in the firing of the output transition of place p;.

As a result, we can deduce that the cycle time at M, and M are the same.

Example 5.3. Consider the TWMG model N° in Fig. 5.1. We assume the initial marking

My = (0,0, 11)7.
Mo(pg) 11
M* — . d = _— . 4 —=
0 (p3) \‘ gcdp3 gC p3 4 8

Then My = (0,0,8)” and we can check that the equivalent TMGs of M, and M are
the same, which implies that the cycle times of system (N, M) and system (N, M) are
identical, i.e., x (M) = x(M). o

From Lemma 5.1, when looking for an optimal solution for Problem (5-1), we may
restrict our analysis to the markings that belong to a restricted number of partitions where
the token content of each place p; is a multiple of gcd,,,. Hence the number of meaningful

subsets in Eq. (5-12) can be reduced as follows:

Pi
gc(ipi

~ ks
U Mpi g N’ (5_15)
k;=0

Myi = {ki - ged,, + € 6,l¢ € N}
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We define N; = {0,..., -2 — 1} and the set of markings of a TWMG in Eq. (5-13)

) gedp,

can be redefined as

Mo = U ME s MR s ME C N (5-16)

where the number of partitions is reduced to

i

P = .
gedy,

piEP

(5-17)

In the following, for the sake of simplicity, we rename the partitions defined in Eq.
(5-16) and write

(I>/
Moy = [ M; (5-18)
j=1
where
M = MEx M2 o Mo (5-19)
i.e., partition j is characterized by the n-tuple (k;1,...,k;,).

Consider the example in Fig. 5.1. We have gcd,, = 1, gcd,, = 1, ged,, = 4, ¢1 = 2,
¢ = 2, and ¢3 = 4. The number of partitions is ® = 16, while the number of meaningful

partitions is ' = 4, which is significantly smaller.

5.4.4 Optimal Approaches

We now show how it is possible to solve Problem (5-1) by assuming that the unknown
initial marking M of the TWMG belongs to a generic partition M shown in Eq. (5-19).
In this case, due to the special equivalent structure of a marking M € M in Eq. (5-15),
Problem (5-1) can be rewritten as
min x (M)
S.t.
y"-M <R,
M(pi) = kji - gedy, + & i, Vpi € P,
i €N,

We define the vector &; = (&1, ...,&;.,)" and for each place p; with an initial marking

i
M(pz) = k’jﬂ' . ngPi? ]{Zjﬂ' = O, ey gcdpi - 1, (5-20)
we compute
e the equivalent structure of place p;, i.e., places p}, . .., pl",
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e the initial markings correspond to Eq. (5-20), i.e., j1;(p}) = M(p)), ..., pu;(pl) =
M(p}").

Thus for each partition M given in Eq. (5-19), we can compute the equivalent net

structure N}, incidence matrix C; and pre-incidence Pre;.

Proposition 5.3. For each partition M in Eq. (5-19), we consider the following MILPP

max [3;

s.t.

’CA'J — Pre; - 0; - 8+ M; >0, (a)
y" - M <R, (b)
M;(pi) = ki - gedp, + &ji - di, Vpi € P, () (5-21)
M;(p) = pi(p}) + & s = 1, (d)
M(q“)—O, Vi=1,....m,Ya=1,...,2; — 1, (e)
M;(¢¥)=1,Yi=1,...,m (f)

| &ii €N, (9)

with variables* 3; € R>q, M; € N, Mj e N, &; € R™ and ; € N™. Let (B, M, M* 5, £%)
be an optimal solution of Eq. (5-21). Thus M 3 is also an optimal solution of Problem (5—1)

restricted to partition M.

Proof: The constraint (a) adopted from Eq. (5-11) can provide an optimal solution
if C’j , P?A"ej and 5} are given. The constraint (b) specifies that the weighted sum of tokens
in places cannot exceed the upper bound on the cost of resources, and the constraint (c)
specifies that feasible markings should be restricted to partition M.

As shown in Egs. (6-1) and (6-12), the marking Mj of the equivalent TMG should be
consistent with the marking M; of the TWMG; this is ensured by constraints (d), (e) and
(f).

In [120] the authors prove that the MILPP can obtain an optimal solution for the cycle
time optimization problem. Thus, (587, M M 7,3, &%) is an optimal solution of Problem
(5-1) restricted to partition M. O

Note that the MILPP in Eq. (5-21) has |z|; +n + 1 variables and at most 6|z|; +n + 1

constrains, where n denotes the number of places of a TWMG.

Property 5.1. Any marking M that produces a cycle time x (M) = Y’ as defined in Eq.
(5-10) and satisfies y* - M < Ris an optimal solution.

“Recall that 71 (resp., 772) is the number of places (resp., transitions) of the equivalent TMG.
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Proof: According to Eq. (5-10), once we obtain a marking M/ which has the cycle time
X (M) = x’, no more reduction can be obtained no matter how many resources we increase.
Obviously, the throughput is maximal and M is an optimal initial marking. U

We can summarize the proposed procedure in Algorithm 3.

Algorithm 3: An MILPP method for the cycle time optimization of a TWMG

Input: A cyclic TWMG N?, an upper bound R of its weighted sum of tokens and a
P-semiflow y.

Output: An optimal marking M with throughput 3 such that the weighted sum of

tokens satisfies y* - M < R.

1. Compute the meaningful partitions of each place in Eq. (5-15).

2. Compute the partitions M, of initial marking in Eq. (5-16).

3.7:=1,0 :=1/x,and g := 0.

4. while j < 9" & 5 < ' do

Transform the TWMG system (N;, M;) into the equivalent TMG system

(N;, M;) as shown in Algorithm 2;

Compute an optimal marking M} and the corresponding throughput /37 for
(N;, M;) as in Eq. (5-21);
if 55 > [ then

Lﬁ:ﬁﬁ
M = M};

L=+
5. Output an optimal marking M and the corresponding throughput /3.

Proposition 5.4. The output of Algorithm 3 provides an optimal solution for Problem (5-1).

Proof: Itis obvious that if we solve Eq. (5-21) for each partition, among all the optimal

solutions, we can obtain the maximal throughput

b= max [},
j=1,...,8"" 7

and the corresponding marking M. The global optimal solutions of Problem (5-1) are M
and x (M) =1/p. O

The mechanism of Algorithm 3 can be explained by Fig. 5.5. From a theoretical point
of view, we should compute the solutions for all &’ partitions. However, in practical if we
find a marking M whose cycle time converges to the lower bound, there is no need to do
more computations. According to Property 5.1, we can conclude that marking M is an

optimal solution.
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M*e{M ,M;,M;,...M}
s

Fig. 5.6 The TWMG model N for Example 5.4.

Example 5.4. Consider the TWMG model N in Fig. 5.6. The minimal T-semiflows is 7 =
(1,3,1,1)7, while the minimal P-semiflows are y; = (1,0,6,1,0)” and y» = (0,2,2,0,1)7.
Therefore, we choose the P-semiflow y =y, + 1> = (1,2,8,1,1)T. We have ¢, = 6, ¢ = 1,
O3 =1, ¢4 = 6, o5 = 2, gcd,,, = 2, gedp, = 1, ged,,, = 1, gedy,, = 2, and ged,,; = 2. The
number of variables is equal to 12 and the number of constrains is equal to 28. The markings

of the TWMG are partitioned into &’ = 9 subsets.

(M = (6611,&12,613,660 4,261 5)T
My = (24 681,622, €23, 6604, 260 5)
Mz = (44 6851,832, 33,6654, 2835)"
My = (6841,842,E43,2 + 6E44,2845)7
Ms = (681,852,653, 4+ 6654, 2855)"
Mg = (2 + 681,692,863, 2 + 6864, 2865) "
My = (2+ 681,809,873, 4+ 6874,2875)T
Mg = ( )

(M = ( )

44 681,882, 83,2 + 6854, 2855)T

44 691,802, 0,3,4 + 6894, 2805)T
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1(4)

Fig. 5.7 The equivalent TMG system (N 5 M ) for Example 5.4.

Let R = 20 be the upper bound on the cost of resources and problems of the form

(5-21) can be immediately formulated for each partition M; (z = 1,...,9). In the following

equation, we will show the MILPP for partition M.

max [

S.t.
(Cy -6y — Prey -6y - By + My >0,
y" - My <20,

pa) = 6&1.4, Mi(ps) = 215,

= 51,4, M1(pé) = 51,57

AAAQAA

&,e€N i=1,..,0.

p1) = 6811, Mi(p2) = &2, Mi(ps) = &3,
Ps)

)
) = 51,1, M1(p§) = 51,27 M1(P§) = 51,3,
)
)

~— ~— — ~——

(5-22)

The solutions of Eq. (5-22) are 3; = 0.083 and M; = (6,1,1,0,0) and the equivalent
TMG is depicted in Fig. 5.7. We can observe from Table 5.1 that the cycle time x (M)

is equal to the lower bound y’. According to Property 5.1, this solution is also globally

optimal.
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Table 5.1 Optimal solution for Example 5.4.
M, B X(My) [ X' |y"-M, | R
(6,1,1,0, O)T 0.083 12 12 16 20

5.5 Extension of the Basic Approach

The aim of this subchapter is to further improve the basic approach presented in Chapter
5.4 by reducing the computation complexity of Algorithm 3 and by considering a slightly
more general cycle time optimization problem. We first prove that the number of equivalent
TMG structures to be analysed can be further reduced by exploring the net structure. Then,

we discuss the more general optimization problem.

5.5.1 Further Reduction of Equivalent TMG Structures

In this subsection, we will study the possibility to further reduce the number of equiv-
alent TMG structures in Eq. (5-17).

Example 5.5. Consider the TWMG model N° in Fig. 5.3. The periods of places p; and
po are ¢; = 6 and ¢ = 6, respectively. Thus, the number of equivalent TMG structures is
®’ = 36. However, if the number of tokens in place p; satisfies the condition M (p;) > 2, we
can always fire ¢, as many times as possible. Then, we can restrict our attention to partitions
satisfying M (p,) < 2, i.e., M(p1) = 0 or M(p;) = 1. As a result, to find the optimal
solution, we need only study 12 equivalent TMG structures rather than 36. In the following,

some propositions are given to reduce the partition as much as possible. o

Proposition 5.5. Let N° be a TWMG consisting of only one circuit and described by the

following sequence: p; v(p1)> t1 wie) Do U(p2)> L) t, wipy) p1. The number of

partitions can be reduced to

n—1
o — Oy I1 v(p:) (5-23)
gedy, -7 ged

Proof: For any live marking M, we fire at M the transition ¢; as many times as we
can. Next we fire £, as many times as we can, and so on, until we fire the transition ¢,_;
leaving on the place p,, the maximal number of tokens that can be put without firing ¢,,.

Then, we obtain a new marking M’ such that the number of tokens in each place is

M'(pi) <v(p;) G=1,...,n—1),ie,

M'(p;) € {0,gcd,,, ..., v(p;) — gedy, }, i=1,...,n—1, (5-24)
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and M'(p,) € N.

As a consequence, the number of equivalent TMG structures can be reduced to Eq.
(5-23). By comparing Eq. (5-23) with Eq. (5-17), we can conclude that ®” < @' is true due
to v(pi) < ¢ = V(D) * Tout(py)- O

Now we will discuss how to reduce the partitions of a TWMG which consists of more

than one single circuit. In the following, these notations are used.
e T™: the set of transitions of N which have only one input place.
e P*: the set of pre-places of T™.

Proposition 5.6. Let N° be a TWMG with n places and m transitions. The number of
partitions of N? in Eq. (5-17) can be reduced to

"= ] 2NNV § g (5-25)

cd,, cd,,
ijP\P*g P peps 0P

Proof:  Let place p; belong to P* and transition ;) be the output transition of p;.
Thus, p; is the decisive place of transition ¢, i.e., the firing of #,,(p,) 18 only decided by p;.
We fire ¢,,¢(p,) as many times as possible and the final marking of place p; will satisfy the

condition M (p;) < v(p;). The number of meaningful subsets in Eq. (5-15) will be

v(p4)

gcdpi

) MECN vpep (5-26)
k;=0
/\;l];z = k; - gedy, .
O

As a result, the number of partitions to be considered when searching for an optimal
solution is reduced from &’ in Eq. (5-17) to " in Eq. (5-25).

5.5.2 A More General Optimization Problem

In many cases, it may be useful to introduce an additional criterion for Problem (5-1)
so as to select, among all the solutions that provide the same optimal value of cycle time
X(M), those that also minimize the total weighted sum of tokens in the net. This problem
has practical significance: under a given upper bound on the resources we aim to maximize

the throughput and achieve this goal with a minimal cost.

Problem 5.2. Let N° be a TWMG and y € NIl be a cost vector as defined in Eq. (3-1).
Given a positive real number R that represents the upper bound on the cost of resources
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and a small positive number w € R™, we look for an initial marking M, which satisfies the

following condition:
min x (M) +w - y* - My
s.t. (5-27)
y" My <R

O

Note that w € R™ should be sufficiently small so as to maintain the minimization of
X (M) as the prior requirement.

By substituting the objective function in Eq. (5-21) with the following function:
max 3; —w - y! - M; (5-28)

the optimal solution of Problem (5-27) can be found. Note that to solve Problem (5-27), we
need to compute all the local optimal solutions and compare both the throughput and the

cost of resources.

5.6 Experimental Study and Discussion

In this subchapter, two types of experimental results are provided. First, we test the
proposed approach on a model of flexible manufacturing system (FMS) taken from the lit-
erature [73]. Second, a series of randomly generated nets are explored and the numerical
results are given in Chapter 5.6.2. For the application of Algorithm 3, MATLAB has been
used with the MILPP toolbox YALMIP [129] on a PC with Pentium Dual-Core CPU 3.0
GHz and 2 GB memory.

5.6.1 Optimization of a Flexible Manufacturing System

The TWMG model N° of an FMS is shown in Fig. 5.8. This system is composed of
three machines U/, U, and Us. The manufacturing system is cyclic and can manufacture
two products, denoted by R, and Rs. The production mix is 60% and 40% for R, and R,

respectively. The production processes of these products are:

Ry : (Z/{I; Uz, U3)
RQ . (Z/{Q, Z/{1>

In this model, there are three types of elementary circuits:

e Process circuits: model the manufacturing process. The tokens belonging to these
circuits represent transportation resources.
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Ps3

O

L3) P ot;2)

u(l) pi

PSSD P

Fig. 5.8 A flexible manufacturing system.

e Command circuits: Model the control of the system. One command circuit is asso-
ciated with each machine /; and U, to specify that they are cyclically used in both

processes.

e Mixed circuits: these circuits are partially composed of parts of the command circuits

and parts of the process circuits.

The Petri model N° in Fig. 5.8 is a strongly connected TWMG with n = |P| = 13 and

m = |T| = 9. There are six elementary circuits :

(1 = pitapatspsty

V2 = Palspsly

V3 = Protspritapratopiste

Y4 = PetePrlsPslzpoty

V5 = P2lapsliPelePrtspstapratopists
(Y6 = P1rotsPr1tapalspstrpolipits

where ~; and v, are process circuits, 3 and -y, are command circuits, and 5 and - are
mixed circuits.

The command circuits that model the control of the system must prevent two transitions
corresponding to the same machine from being fired simultaneously. Then, for the command
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circuit 3 in Fig. 5.8, we assume that M (p19) = 0, M (p11) = 0, M (p12) = 0, and M (p13) =
3 and this command circuit cannot be allocated tokens any more.

The number of tokens in process circuits 7, and -, represents that of available pallets
for products, i.e., work in process. Thus, the cost of the resources in these circuits are the
main economic consumption of the FMS. Tokens belonging to command circuits 73 and 74
represent information. We have \; = 10, Ay =10, A3 =1, A\, =1, A5 = 1, and \g = 1.

The P-semiflow is y = ZvEF Ay = (12,12,12,13,13,4,6,6,4,4,6,6,4)” and the
minimal T-semiflow is z=(3, 3, 3,2,2, 1,1, 1, 1)". We have ¢; = 3, oo = 3, o3 = 3, ¢4 = 2,
G5 = 2,06 = 3, 07 = 2, 08 = 2, 99 = 3, P10 = 3, P11 = 2, P12 = 2, 13 = 3, gedpy, = 1
(t=1,...,13) and P* = {ps, ps, Ps, P10, P12}- Let us consider the following optimization

problem:

min xy(M) +w-y* - M
s.t.

yT - M < 100

M(pi3) = 3,

M(p;) =0, i = 10,11, 12

Now, the form represented by Eq. (5-21) can be immediately formulated. The number
of variables is equal to 31 and the number of constrains is equal to 90. The markings of
the TWMG are partitioned into &’ = 3888 subsets. According to Proposition 9 proposed in
Section 5.5, the number of partitions can be reduced to " = 1296.

We assume that the upper bound on the cost of resource is 2 = 100 and choose w =
1078. By using Algorithm 3, we find an optimal solution M = (2,0,0,1,1,0,1,1,0,0,0,0,3)T
and x (M) = 11 by considering the number of reduced partition ®””. Tt implies that the actual

usage of money is 74 and the cost of pallets is 50.

5.6.2 Test of Random Nets

We present some numerical results for Problems (5-1) and (5-27) in Table 5.2 and
Table 5.3, respectively. All the tested nets are randomly generated under the assumption
that each circuit has at least two places and at most six places and the weight of each arc
(resp., delay of each transition) is a random integer number picked up from the interval [1, 6]
(resp., [1,10]). For each of them we initialize the upper bound on the cost of resource R
to a positive number which is much bigger than R*. We mention that if R is a number that
closes to R*, the complexity of Problem (5-1) will be the same of Problem (5-27). Using
the number of reduced partitions "/, we obtain the optimal solutions for Problems (5-1)
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Table 5.2 Computation results for Problem (5-1) in terms of different input nets.

Problem (5-1)

Throughput | Cost of resources | CPU
N | |P| | |T| o’ o Ié] y' - M time
1|5 | 4 128 32 0.0476 24 4s
21 8 |7 4,608 384 0.0278 104 7s
311319 3,888 1296 0.0909 212 15s
4117 | 14 73,728 1536 0.0139 128 20s
5127 | 22 | 10,077,696 | 20736 0.025 134 30s
6 | 35|29 | S54e+ll | 65536 0.0069 196 42s

Table 5.3 Computation results for Problem (5-27) in terms of different input nets.

Problem (5-27)

Throughput | Cost of resources | CPU
N | |P|||T]| o’ " B yT - M time
1|5 4 128 32 0.0476 16 41s
2| 8 7 4,608 384 0.0278 26 20 min
31139 3,888 1296 0.0909 74 lh
4117 | 14 73,728 1536 0.0139 42 1.9h
S| 27 | 22 | 10,077,696 | 20736 0.025 46 27h
6 | 35|29 | S54e+ll | 65536 0.0.t. 0.0.t. 0.0.t.

and (5-27). For all the cases in Tables 5.2 and 5.3, we consider the cardinalities of P and T’
(net size), the number of partition ®’, the number of reduced partition ", the throughput
f3, the cost of resources y” - M, and the CPU time for Problems (5-1) and (5-27). Note that
“0.0.t” (out of time) in Table 5.3 means that the solution of net 6 for Problem (5-27) cannot

be found within 48 hours.

As one can see, the solutions for Problem (5-1) can be obtained within a very short
time. Once we compute an initial marking which makes the system reach its upper bound of
the throughput, the algorithm will stop. Nevertheless, for Problem (5-27) which maximizes
the throughput and minimizes the cost of resources, we need to explore all the local optimal
solutions and compare both the throughput and the cost of resources. Among all the solu-
tions that provide the same optimal value of throughput, we also want to reduce the cost of
resources as much as possible. As a consequence, the computational time will be significant-
ly longer than that of Problem (5-1). When the net size becomes larger, we cannot obtain a
solution of Problem (5-27) within a reasonable time. However, the model represented by a
TWMG is much smaller than that generated with a TMG. In practical examples, the net size
of a TWMG is quite reasonable thanks to the weight.
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5.7 Conclusion

This chapter deals with the cycle time optimization problem of deterministic TWMGs
under single server semantics. The problem consists in finding an initial marking to min-
imize the cycle time while the weighted sum of tokens in places is less than or equal to
a given value. To the best of our knowledge, this problem has not been addressed in the
literature. We transform a TWMG into several equivalent TMGs and formulate a mixed
integer linear programming problem solution from the study in [120] to compute an optimal
initial marking. The conversion of the obtained marking for the equivalent TMG to a mark-
ing associated with the TWMG is presented. Some techniques are introduced to reduce the
computational burden of computing the solution. It is shown that, in some cases, we do not
need to enumerate all the possible structures to find the optimal solution.

More general allocation problems are studied in the second part of this chapter: among
all the solutions that provide the same optimal value of throughput, we aim to obtain the
one that also minimizes the cost of resources. The proposed method can also guarantee the

convergence to the optimum.

The results presented in this chapter have also been published in:
Z.He,Z. W.Li, and A. Giua, “Cycle time optimization of deterministic timed weighted
marked graphs by transformation,” IEEE Transactions on Control Systems Technology, vol.

25, no. 4, pp. 1318-1330, 2017.
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Chapter 6 Cycle time Optimization of TWMGs Under Infinite
Server Semantics

In this chapter, we discuss the cycle time optimization problem of deterministic TWMG
(Problem (5-1) in Chapter 5) under infinite server semantics, which is a more general case
than the one we discussed in Chapter 5. We consider the transformation of a given TWMG
into an equivalent place timed marked graph (PTMG) proposed by Nakamura and Silva [95]
and prove that this transformation is periodical with regard to the initial marking. This allow
us to transform a TWMG into a finite family of equivalent PTMGs, each one valid for a
partition of set of initial markings. Then, we present an MILPP to solve the optimization
problem that requires finding an optimal allocation for the equivalent PTMG under the con-
straint that the initial marking belongs to a particular partition. In addition, two sub-optimal

approaches are proposed in order to reduce the computational complexity.

6.1 Motivation

The cycle time optimization problem of TMGs under infinite server semantics is con-
sidered in [120]. Three different approaches which take the full advantage of MILPP are
developed to find an optimal schedule. Nakamura and Silva [95] study the cycle time com-
putation of a TWMG under infinite server semantics. While in Chapter 5, we consider the
cycle time optimization of TWMGs under single server semantics, in this chapter we study
the same problem under infinite server semantics, i.e., the degree of self-concurrency of each
transition is infinite. From a physical point of view, the server semantics can be interpreted
as the number of times that an operation can be executed concurrently. Under single server
semantics, the same operation can only be executed once at a time, while the same opera-
tion can be executed as many times as the number of available servers under infinite server

semantics.

Inspired by the works in [95], we show that the TWMG can be transform into a finite
family of equivalent PTMGs and present an MILPP to solve the optimization problem that
requires finding an optimal allocation for the equivalent PTMG under the constraint that the
initial marking belongs to a particular partition. Nevertheless, the computational complexity
of this approach is very high. Then, a sub-optimal approach called place subset allocation
(PSA) is proposed which assigns tokens to a subset of places instead of taking all the places
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into consideration. Finally, we develop another sub-optimal approach called throughput
upper bound (TUB) which does not need to transformation a TWMG into a finite family of
equivalent PTMGs. In some practical instances, reduction of the computational cost is very
important and necessary. Thus, the presented sub-optimal approaches try to cope with this
requirement.

This chapter is organized as follows. Chapter 6.2 recalls a method that transform a
TWMG into an equivalent PTMG under infinite server semantics [95]. Chapter 6.3 intro-
duces an MILPP to solve Problem (5-1) under infinite server semantics. Chapter 6.4 presents
two sub-optimal solutions to reduce the computational cost. In Chapter 6.5, applications of
the proposed approaches and numerical studies are investigated. Conclusions are finally

reached in Chapter 6.6.

6.2 Transformation From a TWMG to an Equivalent PTMG
Under Infinite Server Semantics

Nakamura and Silva [95] proved that a transition timed WMG system (N°, M) under
infinite server semantics can be transformed into an equivalent place timed marked graph
(PTMGQG) system (N g M ). The Petri net language of the PTMG system is the same as that
of the TWMG system. This means that the cycle time of the two systems are identical, i.e.,
X(M) = x(M).

Note that the equivalent PTMG system (N°®, M) depends on the initial marking M and
the minimal T-semiflow x of the TWMG. All notations in Algorithm 4 are defined in pre-
vious definitions and oy (p,) (T€SP., Tin(p,)) denotes the elementary T-semiflow component
corresponding to Zgys(p;) (T€SP-, Lin(p:))-

The transformation of transitions does not depend on the initial marking of the TWMG.
The structure of the equivalent PTMG (i.e., the input and output arcs of equivalent places)
depends on the initial marking M of the TWMG. Let n; be the number of equivalent places
corresponding to place p;. The number of equivalent transitions is 7 = |x|; and that of

n
placesisn = > n; + |zl;.
i=1

Example 6.1. Consider the TWMG system (N° M) in Fig. 6.1 whose initial marking is
My = (4,2,0)”. The minimal T-semiflow of the TWMG is z = (2,2,3)” and its corre-
sponding equivalent PTMG system (N°, M) is shown in Fig. 6.2 according to Algorithm
4.

First, each transition ¢; (z = 1,2, 3) is replaced by a circuit contains x; transitions
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Algorithm 4: Transformation of a TWMG into a PTMG under infinite server se-
mantics

Input: A TWMG system (N°, M) o )
Output: An equivalent PTMG system (N°, M) such that x(M) = y(M).

1: Calculate the minimal T-semiflow z = (z, ..., 2,,)" of net N°.
2: for each transition ¢; € 7" begin
3: Replace each transition ¢; by x; transitions, t%, t?, RN e
4: Place ¢ is added which connects transition ¢{ to transition ¢} mod i1 (g — 1,...,2).
5:
M(q) =1, 6(¢f") == 0. (a = ;) 1)
M(g?) =0, 6(¢?) := 0. (otherwise)

6: end for; // Transformation of transitions //

7. for each place p; € P begin

8 tinpy) =P/l |*pi| =11/

9 tour(p =053/ |p| =111

10: remove place p; and its corresponding arcs;

11: a:=0;
122 s:=1;
13:  Repeat
14: u
v(pi)
15: b M
a = ’VU(pi) v (pl)-‘ (6—3)
w(p:)
16: if a < x;,,(p,) then begin
17: Place p; is added which connects transition t7, ., , to transition tiz(z;l od outtpir +L,
18:
- b—1
M(p7) = { J (6-4)
Lout(p;)
19:
6(pf) = (5<tin(pi)) (6'5)
20: s =s+1
21: end if

22: Until a > Tin(p;)-
23: end for; // Transformation of places //
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Fig. 6.1 The TWMG system (N°, M) for Example 6.1.

Fig. 6.2 The equivalent PTMG system (N°, M) for Example 6.1.

(til,. .., tihand x; places (qil,. . q;1). As aresult, we replace transitions t1, 5, and t3 by
circuits t]qit3q? t}, t3qataqs, and tiqitigitsqs, respectively. The markings of these places
are specified in step 5.

Second, for each place p; (j = 1,2, 3), we replace it with a set of equivalent places.
In particular, we replace place p;, pe, and p3 by places pi and p?, pi, and p3, and pi and
p3, respectively. The input and output arcs, the sojourn times, and the markings of these

equivalent places are specified in steps 17-19. o

6.3 Cycle Time Optimization Under Infinite Server Semantics: an
Optimal Approach

In this subchapter, we present a formal approach to solve Problem (5-1) under infinite
server semantics. First, we show that the cycle time optimization problem for PTMGs can
be framed as an MILPP by modifying a known result to compute the cycle time of a PTMG
whose initial marking is given. Second, we expose the conversion procedure from TWMGs
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to PTMGs. Although the exact structure of the equivalent PTMG depends on the initial
marking of the TWMG (which is unknown when solving an optimization problem), we
show that the number of possible equivalent structures is finite and periodic with the initial
making on the TWMG. This means that in fact only a finite number of equivalent PTMG
structures have to be considered. Finally, we propose an MILPP to solve the optimization

problem for all the possible equivalent PTMGs.

6.3.1 Cycle Time Optimization of PTMGs

The cycle time optimization problem for a PTMG net N? can be formulated as follows:

~

min y (M)
s.t. (6-6)
§T- M <R

Proposition 6.1. Let (M * B*, a*) be an optimal solution of the MILPP:

max [
S.t.

é-a+M2Dp-P53t-v-ﬁ, (6-7)
j§*- M <R,
M eN' o€ R™ BcRT,
where v is the visit ratio vector which is equal to Iﬁx]_ and D, is a . X © matrix such that
D,(i,j) = d(pi), when i = j and otherwise D, (i, j) = 0.
Then M* is an optimal solution for problem (6-6) with an optimal cycle time x (M*) =

1/5*.

Proof: In [95] it is shown that the cycle time of a PTMG system (N°, M) can be
directly obtained by solving the following LPP:

max ol - D, - Post - v

S.t.
o -C =0, (6-8)
ol .M = 1,
o >0,
The dual problem of LPP (6-8) is
min y (M)
s.t. (6-9)

C-z+x(M)-M > D, Post-v
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where the decision variables are X(M ) € RT and z € R™. Now let us consider problem
(6-9). This problem can be easily converted into the problem of determining the maximal
throughput (i.e., the inverse of cycle time) of the PTMG system, given the initial marking.

To this end, we only need to replace y (M) with its inverse 3 = 1/x(M) and obtain the

following LPP:
max [3

st A A (6-10)
C-(Bz)+M > D, Post-v-f,

where 8 € R*, and Bz € R™, i.e.,
max f3
s.t. (6-11)
C-a+M>D,-Post-v-f3,
where o € R™ and 3 € R™ are the new decision variables. Finally, assuming that M is

unknown but under a given constraint on the cost of resources, we have Eq. (6-7).

Now, we will prove that the optimal solution of Eq. (6-7) provides an optimal marking
and the corresponding optimal throughput for problem (6-6) by contradiction. Let us assume
that the optimal solution of Eq. (6-7) is (Mopt, Bopts Clopt) and (M *, 5*) is the optimal solution
of Eq. (6-6) with 5* > f,,,. By solving Eq. (6-11) with M = M, it is ensured that we can
obtain an optimal throughput that is equal to 5*. Let o* be the optimal value of vector «.
This implies that (M *, 8%, ) satisfies all constraints in Eq. (6-7) by assumption 5* > B,;.
This contradicts the assumption that (Mopt, Bopts Qlopt) 18 an optimal solution.

O

6.3.2 Transformation of the Cycle Time Optimization Problem of
TWMGs into PTMGs

According to Algorithm 4, the net structure of the equivalent PTMG (i.e., the input
and output arcs of equivalent places) is decided by the initial marking M, of the TWMG.

Nevertheless, we will prove that this dependence is periodic in the following proposition.

Proposition 6.2. Given a TWMG N° with the minimal T-semiflow z = (21,7, ..., Zn)T
and two different initial markings M, and M. Let (N, M) (resp., (Ng, M,)) be the equiv-
alent PTMG system obtained by Algorithm 4 with input (N°, M) (resp., (N°, M5)).

For a place p; € P, if it satisfies

MQ(pz) = Ml(pz) + g : ’U(pz) * Lout(p;) wlthg e N.
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We deduce that the net structure corresponding to p; in Nf and Ng is identical and the

markings of the equivalent places p; corresponding to p; in Eq. (6-4) satisfy
My(p;) = Mi(p}) + €. (6-12)

Proof: Ttis obvious that M;(p;) + Zin(p,) - W(Pi) — Tour(p,) - v(pi) = Mi(p;), and thus
we have Zin(p,) - W(Pi) = ZTout(p,) - V(pi). For marking M; (p;) of place p;, it holds that:

by = M (pi)tw(pi)-ax + 1J

v(ps)
ay = MW (6-13)
b w(pi)
and for marking M (p;) of place p;,
bg = w + 1J
vPi
o MW (6-14)
2 w(pi)
since Mo (p;) = Mi(pi) + € - (i) * Tout(o)
o(pe)ba— My () (6-15)
o = [ =g

According to Algorithm 4, a; and a are initialized to zero and after simplifying Eq. (6-15),

we can obtain the following equation

by = by + f * Lout(p;)»
ag = aq, (6-16)
(bz - 1) mod Tout(p;) T 1= (b1 — 1) mod Tout(p;) T 1

Regarding to Eq. (6-16), it follows that the equivalent structures of M (p;) and M, (p;) are

identical while

y s b2 —1 9 s

Ma(p;) = { J = M (p;) + &
Lout(p;)

OJ

Proposition 6.2 indicates that the equivalent structure corresponding to place p; is peri-

odic with respect to M (p;) and the period ¢; is equal to v(p;) - Zout(p,)-

Example 6.2. Let us consider a simple TWMG model N° in Fig. 5.3 whose minimal T-
semiflow is 2=(2, 3). Fig. 6.3 shows the equivalent PTMG systems <N g M ) corresponding
to different initial markings.

Transitions ¢; and ¢, are replaced by circuits t{git?¢? and tiqit3gat3qs, respectively.
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%

(M= (€, 0)7 (M=, )T

Fig. 6.3 The equivalent PTMG systems corresponding to different initial markings for Example 6.2.

Place p, (resp., p») is replaced by n;=2 (resp., no=2) places p; and p? (resp., p3 and p3). For
different initial markings, the structures of equivalent transitions (gray blocks) are always

the same, while the structures and markings of equivalent places (blue blocks) may change.

Considering the equivalent PTMG system (NQ, M2> in Fig. 6.3(b), we denote the initial
markings of equivalent places by u(p!) = M(pl) = 0, u(p?) = M(p?) = 1, u(pl) =
M (p3) = 0, and ju(p3) = M (p3) = 0.

The period of place p; (resp., p2) is ¢1 = 6 (resp., 2 = 6). We can observe that the
equivalent PTMG structures corresponding to M;, M3, and M, are the same as shown in
Figs. 6.3(a), 6.3(c), and 6.3(d). o

The number of possible equivalent PTMG structures is very big. Following the tech-
nique in Chapter 5 for single server semantics, we restrict our attention to the markings that
belong to a restricted number of partitions which are guaranteed to find an optimal solution.
In fact, to rule out the presence of useless tokens that do not contribute to the cycle time, we
can assume that token content of each place p; is a multiple of gcd,,.. Thus the set of possible
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markings of place p; can be partitioned into g%& subsets such that

7

i
" ged,,

ME = {k; - gedy, +€- ¢il€ €N, k=0, ... 1 (6-17)

and all makings of p; in the same partition M’;g correspond to the same equivalent structure.

Thus the set of possible markings of a TWMG is divided into ® partitions:

M = MEx M2 o Mo (6-18)
where
o= [] &
TG (6-19)

According to Proposition 5.6, the number of partitions in Eq. (6-19) can be further

reduced to

o= ]] I vp:) (6-20)

p;EP\P* gedy, pi€P* gedy,
6.3.3 Optimal Approaches

According to Proposition 6.2, the equivalent structure of each place p; is finite. We can
compute the optimal solution of Problem (5-1) under infinite server semantics by considering
all the possible equivalent PTMGs and solving MILPP (6-7) for each of them. However,

there exist two critical issues that should be emphasized:

e The constraint on the cost of resources for a TWMG should be transformed into a new

constraint for each equivalent PTMG.

e We have to add in Eq. (6-7) a series of constraints to guarantee the marking M that we
find for a given net structure N is consistent with the marking M of N° that produces

the structure N°.

For each place p; with an initial marking

i
M(pz) = k’jﬂ' . ngpi7 l{jﬂ' = 0, Ceey ngpi — 1, (6-21)
we compute
e the equivalent structure of place p;, i.e., places p}, . .., pl",

e the initial markings corresponding to Eq. (6-21), i.e., i1 (p}) = M(p)), ..., ;(p}) =

M (p}").
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Thus for each partition M, (j = 1,...,P), we can compute the equivalent PTMG system
(N ;?Mj>.

Proposition 6.3. For each partition M (j = 1,...,®")in Eq. (6-18), let (3}, M, M]’-k, a3, &5)
be an optimal solution of Eq. (6-22)

max f3;

s.1.

(C.-a;— D, Post;-v-B;+ M, >0, (a)
y" - M; <R, (b)
M;(pi) = kji - ged,,, + & - by Vpi € P, () (6-22)
M;(07) = 13 () + & s = 1oy, (d)
M;i(¢})=0,i=1,....m,a=1,...,2;, — 1, (e)
M;(¢")=1,i=1,...,m, (f)

ké“]i € Na (g)

where 3; € R>o, M; € N", ]\ij e N”, Q; € R™. Thus MJ’-‘ is an optimal solution of Problem

(5-1) under infinite server semantics that restricted to partition M.

Proof: The constraint (a) adopted from (6-11) can provide an optimal solution if
C*j , P(fstj and D, are given. The constraint (b) specifies that the weighted sum of tokens
in places cannot exceed the upper bound on the cost of resources, and the constraint (c)
specifies that feasible markings should be restricted to partition M ;. The equivalent marking
M, is consistent with the marking M; as ensured by constraints (d), (e) and (f). Thus
(B;, M7, M 7, a5, &) 1s an optimal solution of Problem (5-1) under infinite server semantics

that restricted to partition M. O

Remark 6.1. Among all the ®” optimal solutions associated with each partition, we can
obtain the maximal throughput and its corresponding marking, i.e., optimal solutions of

Problem (5-1) under infinite server semantics. ]

6.4 Cycle Time Optimization Under Infinite Server Semantics:
Sub-optimal Approaches

The techniques introduced in Proposition 5.6 can significantly reduce the number of
partitions of equivalent PTMGs. Nevertheless, we find that the number of partitions of
equivalent structures still increases exponentially with the number of places. When this
number becomes large, the efficiency of the optimal approach will be low and sometime it
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may not be possible to obtain an optimal solution because of the high computational cost.

In this Section, we aim to reduce this cost while obtaining a near optimal solution.

6.4.1 Place Subset Allocation

From a theoretical point of view, it may be interesting to consider a subset of places
to which resources are allocated instead of taking all the places into consideration, and we
believe that in many cases this initial assignment may has a physical meaning that can lead

to an optimal solution. As a result, the number of partitions of marking space can be sig-

bi
gedp,

single partition for other places which are set to be empty. In the following, we will present

nificantly reduced since we consider partitions only for a subset of places p; and one

an algorithm to select a subset of places to which resources should be allocated.

According to Theorem 3.1, a necessary condition to ensure the liveness of a TWMG is
that all its elementary circuit are marked. In addition, if the weighted sum of tokens of each
elementary circuit is greater than a constant value, then Proposition 3.2 provides a sufficient
condition to ensure the liveness of a TWMG. Combining these two conditions, we select
at least one place for each elementary circuit to which tokens are allocated.We assume the
upper bound on the weighted sum of tokens is large enough such that the liveness of each

elementary circuit can be guaranteed by putting enough tokens into the selected places.

We define a binary vector Z € {0, 1}", i.e.,

Tokens are initially allocated to the places p; such that Z(j) = 1 and we denote by the set of

selected places as

By = {p;|Z(j) = 1}.

To fulfill the requirement that each elementary circuit should be marked, we enforce

the following constraint:
> I(j) =1, vyer. (6-23)

pPi€Y
In addition, in order to reduce the number of partitions, we present three different approaches

to compute the place subset P, based on different objective functions.

PSAI: In this approach, we aim to minimize the number of places to which tokens
should be added. Thus, the place subset P, can be computed by solving the following
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problem:
min Ig -z
PSAL: (st (6-24)
>, Z() = 1, Yy €.
PSA2: In this approach, we aim to select the places which use the minimal cost of

resources. First we define an n-dimensional vector
T
gd = (ngp1 ’ yl? ngp2 ’ y27 U 7ngpn ’ yn) ’

where y is the weight vector used in the criterion that represents the cost of the resources.
Note that the number of useful tokens in place p; should be a multiple of gcdpj. Therefore,
the cost of resources used for place p; should be a multiple of gcdpj - y;. Among all the
places, we aim to choose the one whose value of gcdp]_ - y; 1s the minimal. As a result, the

place subset P, can be computed by solving the following problem:

ming? -7
PSA2 : s.t. (6-25)
ije'y:z:(j) Z ]-7 vry e F

PSA3: In this approach, we aim to minimize the number of partitions and reduce the
computational cost of optimal approach as much as possible. Thus, the place subset P, can

be computed by solving the following problem:

. Z(i
min ], ., 62

PSA3 : s.t. (6-26)
ijefyz(j) 2 17 v,-)/ € F

Note that the objective function of PSA3 is equivalent to min Hpi cp, ¢i- It may be unsolv-
able when the number of variables is large due to the fact that it is non-linear.

After we obtain the place subset P, by solving the aforementioned approaches, we can
look for possible suboptimal but computationally more efficient solutions of Problem (5-1)

under infinite server semantics, as formalized in the following proposition.

Proposition 6.4. Let (M, 3) be the optimal solution of the MILPP (6-22) by replacing con-

straint (c¢) with following constraints:

{Mj (pi) = kyi - ged, + &~ &r, Vpi € By, (cl) (6-27)

M;(p;) =0, Vp; ¢ P (c2)

where P, is the place subset computed by any of the PSA approaches proposed above, i.e.,
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PSA1, PSA2, or PSA3. If § > 0, then M is a (possibly sub-optimal) live solution for

Problem (5-1) under infinite server semantics.

Proof: Constraint cl is the same as constraint c in Eq. (6-22) and is only valid for the
selected places. Constraint c2 ensures that the number of tokens in places that do not belong
to the subset P, should be zero which is used to reduce the number of partitions.

Thus, by solving Eq. (6-22) with new constraints c1 and ¢2 in Eq. (6-27), we obtain a
live marking M if 5 > 0. U

As a result, the number of partitions for the PSA approaches is reduced to

4 ¢j _
ot = H —gcdpj. (6-28)

ijPr

According to the results in Proposition 6.2, for a place p; with zero token there may exist
several markings that belong to the same partition. Thus, the solution obtained by MILPP
(6-22) with new constraints in Eq. (6-27) may be improved by the following proposition.

Proposition 6.5. In MILPP (6-22), constraint c2 from Eq. (6-27) may be relaxed in
M;(pi) = & - b &5 €N, Vpy € P (c2))

The relaxed MILPP has a solution (3 greater than or equal to the original MILPP (6-22) and

the same number of partitions ®*.

Proof: Given constraint c2 in Eq. (6-27), only one partition may correspond to places
pi ¢ P, since they are marked with zero token. On the basis of Proposition 6.2, M;(p;) = 0
and M;(p;) = &;; - ¢; belong to the same partition, while M;(p;) = 0 is a special case of
M;(p;) = & - ¢; when &;; = 0. As a consequence, the number of admissible markings
is increased and the obtained throughput 5 of the PSA approaches may be improved by
replacing constraint ¢2 in Eq. (6-27) with the more general constraint ¢2’, while the number

of partitions ®* remains the same. U

6.4.2 Throughput Upper Bound

It is shown in [79] that an upper bound of the throughput of a TWMG system (N°, M)
under infinite server semantics can be obtained by solving the following LPP:
max 3

s.t. (6-29)
C-z+M—Pre-60-5>0
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where 0 = (x1-5(t1), 22 - 6(t2), ..., Ty - 6(t,))T (recall z is the minimal T-semiflow of the
TWMG and §(¢;) is the delay time of ¢;). The decision variables are ' € R* and z € R™,

and the optimal value of ' provides an upper bound of the throughput, i.e.,
8> p. (6-30)

As we discussed in the remark following Proposition 6.2, we can further refine the
admissible domain by considering only markings whose number of tokens in any place p; is

a multiple of ged,, .

Additionally, it may also happen that the marking obtained by Eq. (6-29) is a dead
marking. Combining these results with Proposition 3.2, we present the following proposi-

tion.

Proposition 6.6. Let (M, 3') be the optimal solution of the MILPP

max
S.t.

yy - M >W(Mp), ¥y €T,
C-z4+M—Pre-6-35'>0,
M(p;) mod ged, =0,i=1,...,n,
y!' - M < R.

(6-31)

where ., denotes the P-semiflow associated with the elementary circuit . The decision
variables are 3’ € R>g, M € N", and z € R™. Then M is a sub-optimal live solution for
Problem (5-1) under infinite server semantics and (3’ is an upper bound of the throughput

that it produces.

Proof:  According to Theorem 3.1, a TWMG is live iff each elementary circuit is
live. The first constraint is a sufficient condition that ensures the liveness of a weighted
elementary circuit according to Proposition 3.2. Thus, the marking M that we obtain by Eq.
(6-31) will be a live marking. The second condition ensures that marking ) is a sub-optimal
solution with an upper bound of throughput 5’. The number of tokens in place p; should be a
multiple of ged, , which is guaranteed by the third constraint. The fourth constraint is added

to limit the cost of resources.

Summing up the above details, Eq. (6-31) gives a sub-optimal solution for Problem
(5-1) under infinite server semantics. ]
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6.4.3 Computational Complexity Discussion

It is well known that ILPPs are NP-hard and it is common to characterize the compu-
tational burden by the number of variables and constraints [130]. The comparison of the
number of variables and constraints for the proposed approaches is shown in Table 6.1. The
three columns represent the numbers of variables, constraints, and MILPPs to solve, respec-
JANIA
of the PTMG, equivalent transitions of the PTMG, selected places for the PSA approach, the

tively. Note that in Table 6.1 n, 1,

, and x represent the numbers of equivalent places

B

total elementary circuits, and the minimal T-semiflow of the TWMG, respectively.

For the optimal approach, the MILPP in Eq. (6-22) has 2n+n+m+1 (8;, M;, Mj, &,
and §; ;) variables and 27 + n + 1 -2+ 1 constraints totally. The optimal approach requires
solving ®” MILPPs in Eq. (6-22).

For the PSA approaches, the MILPP in Eq. (6-28) has n+ | P,|+n+m+1 (5;, M;, Mj,
&, and &;;) variables and 271 +n + 1 -+ 1 constraints totally. The PSA approach requires
solving ®* MILPPs in Eq. (6-28). We observe that the number of variables in Eq. (6-28) is
smaller than that of Eq. (6-22) and the number of partition ®* is also smaller than that of Eq.
(6-22). In the worst case, | P,| = n and ®* = &”, i.e., the solution obtained from Eq. (6-24)
contains all places. Then, the computational burden of the PSA approaches is the same with
the optimal approach. However, in practical example, we find that the computational burden

of the PSA approach is much smaller than that of the optimal approach.

For the Throughput Upper Bound (TUB) approach, the MILPP in Eq. (6-31) has
m +n + 1 (M, z, and f’) variables and n + m + |I'| + 1 constraints totally. From a
theoretical point of view, the total number of elementary circuits |T'| can grow exponential-
ly with respect to the net size. However, we find that this number is quite reasonable in
practice. In contrast to the optimal approach and the PSA approaches, the TUB approach
requires to solve the MILPP (6-31) only once. In practical examples, the computational
burden of the TUP approach is significantly smaller than both the optimal approach and the
PSA approaches.

Table 6.1 Number of variables and constraints for the proposed approaches.

Variables Constraints Number of ILPPs
Optimal approach 2n+n+m+1 on+n+1-z+1 "
PSA approach | n+ |P|+n+m+1|2a+n+1-2+1 o1
TUB approach m+n+1 n+m+ || +1 1
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Fig. 6.4 The TWMG model N° for Example 6.3.

6.5 Experimental Study and Discussion

6.5.1 Application to a Flexible Manufacturing Systems

Example 6.3. The FMS combines cyclic assembly process, buffers, work in process, and
batch operations. This system is composed of three machines U/, Us and Us. It is cyclic and
can manufacture two products, denoted by R and R,. The production ratios are 3/5 and

2/5 for R, and R, respectively. The production processes of these products are:

Ry : (Ul, Uz, U3)
RQ . (Z/{Q, Z/{1>

The TWMG model N° of the FMS is shown in Fig. 6.4 which is strongly connected and
consist of seven elementary circuits: v, = pitopatspsti, Yo = patspsta, ¥3 = ProtsPiitaPio
topista , V4 = PetePrtspstipoti, Vs = Prals, Y6 = p2tspstiPeteprtspstapiatopists, and 7 =
Protspiitapats pstrpotipits, where 1 and v, are process circuits, 3, 74, and 75 are command
circuits, and 4 and ~; are mixed circuits. The tokens in command circuits 3, 74, and
vs and process circuits y; and v, represent the servers and available pallets for products,
respectively.
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The minimal P-semiflows of 71, 2, ¥3, V4, V5, V6, and 7 are:

y = (1,1,1,0,0,0,0,0,0,0,0,0,0,0)7,
y» = (0,0,0,1,1,0,0,0,0,0,0,0,0,0)7,
ys = (0,0,0,0,0,0,0,0,0,2,3,3,2,0)7,
ys = (0,0,0,0,0,2,3,3,2,0,0,0,0,0)7,
(0,0,0,0,0,0,0,0,0,0,0,0,0,1)7,
(0,2,2,0,3,2,3,0,0,0,0,3,2,0)7,
(2,0,0,3,0,0,0,3,2,2,3,0,0,0)7,

and the minimal T-semiflow is z=(3, 3, 3, 2, 2, 1, 1, 1, 1)’ For each circuit we assume that
A\, = 1 and the weight vector used in the criteria is y = (3,3,3,4,4,4,6,6,4,4,6,6,4,1)".
Assuming that the upper bound on the cost of resource R is equal to 100, Problem (5-1)

under infinite server semantics can be immediately formulated as follows:

min x (M)

S.t.

y! - M < 100,
{ =(3,3,3,4,4,4,6,6,4,4,6,6,4,1)T.

For the optimal approach, we have ¢y = 3, ¢ = 3, @3 = 3, ¢4 = 2, ¢5 = 2, ¢ = 3,
O = 2,08 = 2,9 = 3, 10 = 3, p11 = 2, 12 = 2, ¢13 = 3, 914 = 3, and ngpi =1
(2 =1,...,14). Thus, the markings of the TWMG are partitioned into & = 139968 subsets.
For the PSA approaches, we solve Egs. (6-24), (6-25), and (6-26) by using Lingo and
obtain the place subset P, and the total number of partitions of equivalent PTMGs as shown
in the following.
PSAL: P, ={p1,ps, p7,p11,p1a}, ® =72,
PSA2: P, = {p2,ps,p9, P13, P14}, ¥ =162,
PSA3: P, = {p2,ps, ps, p11,p1a}, ®' =T72.
For the TUB approach, we can obtain a sub-optimal solution by solving the following
problem:
max [
S.t.
M(1)+ M(2) + M(3) >0,
M(4)+ M(5) >0,
2M(10) +3M(11) + 3M (12) + 2M(13) > 7,
2M(6) + 3M(7) +3M(8) +2M(9) > 7,
)
2M(2) +2M(3) +3M(5) +2M (6) + 3M(7) + 3M(12) +2M (13) > 7,
)
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Table 6.2 Simulation results for Example 6.3.

Approach | Nb. of Obtained CPU
X partitions marking M Bx 5 Gx G’y | time [s]
Optimal | 139968 | (6,0,0,0,2,3,0, | 0.31 0% | 13.9% | 57840
4,0,0,0,6,0,2)"
PSA1 7 (0,0,6,0,2,0,0 | 0.31 0% | 13.9% | 23
6,0,0,2,4,0,2)7
PSA2 162 | (0,6,0,0,2,0,0 | 0.31]036| 0% |13.9% | 48
6,0,0,2,4,0,2)7
PSA3 7 (0,0,6,0,2,0,0 | 0.31 0% | 13.9% | 23
6,0,0,2,4,0,2)7
TUB N/A | (0,0,7,3,0,5,1, | 0.17 452% | 52.8% | 4
0,1,8,0,0,1,1)7

C-z4+M—Pre-0-5 >0,
M (p;) mod ged, =0, i=1,...,n,
yT - M < 100.

The experiment results are carried out on a PC with a Pentium Dual-Core CPU 3.0
GHz using MATLAB with YALMIP [129]. For a given approach X (where X € {Optimal,
PSAL, PSA2, PSA3, TUB }), we define the optimality gap

GX = (ﬁopt - 6X)/ﬁ0pt (6'32)

the difference in % between the optimal throughput 3,,; and the throughput computed with
approach X, and the optimality gap upper bound

Gy = (6" — Bx)/0 (6-33)

the difference in % between the upper bound on the throughput 5’ computed with the TUB
approach and the throughput computed with approach X.

In Table 6.2, we show the tested approach, the number of partitions ®’ (resp., ®”) that
must be considered for the optimal approach (resp., PSA approaches), the obtained marking
M, the throughput Sx computed with approach X, the throughput upper bound 3’ obtained
with the TUB approach, the optimality gap Gy, the optimality gap upper bound G’y, and
the CPU time for each approach.

In this example, we solve PSA1, PSA2, and PSA3 approaches by MILPP (6-22) with
new constraints ¢l in Eq. (6-27) and ¢2' in Proposition 6.5 and the obtained solutions are
optimal. Nevertheless, this result does not hold in general, i.e., the PSA approaches cannot
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Table 6.3 Used resources for the obtained solutions.

Cost for pallets | Cost for servers
Optimal 26 74
PSA1 26 74
PSA2 26 74
PSA3 26 74
TUB 33 67

always provide an optimal solution. The number of partitions of PSA1 and PSA3 are smaller
than that of PSA2. Due to the reduced number of partitions, the CPU times required by the
PSA approaches are much smaller than that of the optimal approach. The solutions obtained
by TUB are good candidates and the CPU time is the minimal one. The cost for pallets
and servers of solutions obtained by the proposed approaches are reported in Table 6.3. It
is shown that the resource distributions for the solutions obtained by the optimal approach
and the PSA approaches are identical, while that of the TUB approach spends more cost of
resources on pallets and less cost of resources on servers.

We mention that the computational cost of the optimal approach and the PSA approach
can be influenced by the arcs of the TWMG model tremendously. For example, if we
change the production ratios for R; and Rs to 2/3 and 1/3, the arcs of the command cir-
cuits will be changed accordingly, i.e., Pre(pg, ts) = 2, Post(pr,t) = 1, Pre(ps,t7) = 1,
Post(pe,t7) = 2, Pre(pio, ts) = 2, Post(p11,ts) = 1, Pre(pia, tg) = 1, and Post(p13, te) =
2. Thus, the number of partitions for optimal approach and PSA approach are 64 and 8, re-
spectively. Nevertheless, if we change the production ratios for R; and R, to 7/10 and

3/10, these numbers will increase to 6.004e+9 and 7203, respectively.

6.5.2 More Cases Study

To better investigate the efficiency of the proposed approaches and the sub-optimality
gap for solutions obtained by the PSA and the TUB approaches, we analyzed some examples
taken from literature. Case 1 is an assembly line taken from [64]. Case 2 is a jobshop taken
from [95] that contains four process circuits. Case 3 is a slight modification of the jobshop
in [95] with the addition of one process circuit.

In Table 6.4, we show for each considered instance the number of places and transitions,
the upper bound on the cost of resources R, the tested approach, the number of partitions ¢’
(resp., ®*) for the optimal approach (resp., PSA approaches), the throughput Sy computed
with approach X, the throughput upper bound 3’ obtained with the TUB approach, the
optimality gap Gx as defined in Eq. (6-32), the optimality gap upper bound G’y as defined
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Table 6.4 Simulation results for different instances.

Approach | Nb. of CPU
|P| | |T]| R X partitions | Ox | B | Gx v | time [s]
Optimal 216 0.23 0% 0% 70

PSA1 1 0.23 0% 0% 4

Casel | 8 | 5 | 1000 | PSA2 36 023 1023 | 0% 0% 12
PSA3 1 0.23 0% 0% 4

TUB N/A 0.21 87% | 8.7% 3

Optimal | 1.00e+11 | o.0.t N/A | N/A 0.0.t

PSALl 3456 0.31 N/A | 18.4% | 1096

Case2 | 24 | 12 | 1000 | PSA2 10368 | 0.27 | 0.38 | N/A | 28.9% | 4981
PSA3 3456 0.22 N/A | 42.1% | 1104

TUB N/A 0.36 N/A | 5.3% 7

Optimal | 8.67e+15 | o.0.t N/A | N/A 0.0.t

PSAI 6912 0.17 N/A | 46.9% | 3219
Case3 | 30 | 15 | 1000 | PSA2 62208 | 0.24 | 0.32 | N/A | 25% | 123057
PSA3 6912 0.2 N/A | 37.5% | 3132

TUB N/A 0.29 N/A | 9.4% 7

in Eq. (6-33), and the CPU time for each approach.

The simulation results show the tradeoff between computational cost and quality of the
solution. Note that “o0.0.t” (out of time) in Table 6.4 means that the solution cannot be found
within 48 hours. The computational cost of the optimal solution can grow exponentially as
the net size increases. For Case 1, the PSA approaches can provide an optimal throughput
which in this case coincides with the upper bound on the throughput. Actually, if we find
a solution whose throughput is equal to the upper bound on the throughput by using PSA
approaches, we can deduce that this solution is also optimal. For Cases 2 and 3, the number
of partitions required by the optimal approach is so large that we cannot obtain a solution
within a reasonable computation time. The solutions obtained by the TUB approach for
Cases 2 and 3 are better than those of the PSA approach. It is not obvious that which
approach is the best among the three PSA approaches, i.e., PSA1, PSA2, and PSA3. We
observe that the upper bound gap of solutions obtained by the TUB approach for Cases 1, 2,

and 3 are quite small, which means that these solutions are very close to be optimal.

As an advancement, we can say, from the set of examples optimized, that the sub-
optimal approaches can obtain high quality approximate solutions within quite reasonable
computational effort. Moreover, with respect to the optimal approach, the computational
time of the sub-optimal approaches is quite small. In practice, reduction of the computational
cost is very important and necessary. Thus, the presented sub-optimal approaches try to cope
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with this requirement.

6.6 Conclusion

In this chapter, we address the cycle time optimization for TWMGs under infinite server
semantics, which is a more general case than the one we discussed in Chapter 5. We aim
to find a proper schedule such that the weighted sum of tokens in places is less than or
equal to a given value and the cycle time is minimized. We show that the performance
optimization for a TWMG can be transformed into the performance optimization for a finite
family of PTMGs under the condition that the initial marking of the TWMG is not given.
An optimal approach is developed to solve the optimization problem. Nevertheless, the
computational cost of the optimal approach can grow exponentially as the net size increases.
Then, we propose three sub-optimal solutions to reduce the computational burden which
considers a subset of places. Finally, an MILPP based on the upper bound of the throughput

is formulated, which is practically efficient.

The results presented in this chapter have also been published in:

Z.He,Z. W. Li, and A. Giua, “Cycle time optimization for deterministic timed weight-
ed marked graphs under infinite server semantics,” In Proceedings of the 55th iEEE Inter-
national Conference on Decision and Control, (CDC’16), 2016: 3942-3947.
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Chapter 7 Conclusions and Future Research

This dissertation deals with performance optimization of automated manufacturing sys-
tems in the framework of timed Petri nets. This chapter summarizes the main contribution

of this dissertation and introduces future research on timed Petri nets.

7.1 Contributions

e In Chapter 3, we study the marking optimization of deterministic TWMGs under s-
ingle server semantics, which consists in finding an initial resource assignment to
minimize the cost of resources while the system’s throughput is less than or equal to
a given value. The existing results fail to provide practically effective and computa-
tionally efficient methods to analyze and solve the problems in such systems. To this
end, an efficient heuristic method is proposed to reduce the computational cost. We
take the advantages of the net structure characteristics of a TWMG and utilize related
knowledge of liveness of a TWMG to select a proper initial marking. Next, based on
simulation a heuristic algorithm used to increase the system’s throughput by adding
tokens to some places is developed. Finally, a technique to improve the quality of the
obtained solution by taking the advantages of the previous works is proposed. Several
simulation studies show that the effectiveness of the proposed approach is significantly

faster than existing ones.

e In Chapter 4, we investigate the marking optimization problem of deterministic TWMGs
under infinite server semantic, which is more general than the one in Chapter 3. We
propose two new heuristic approaches to obtain a near optimal solution. The proposed
algorithms can also be applied to the marking optimization for deterministic TWMGs
under single server semantics by adding to each transition a self-loop place with one

token.

e In Chapter 5, the cycle time optimization of deterministic TWMGs under single serv-
er semantics is originally proposed, which is a dual problem of marking optimization
problem. It consists in finding an initial resource assignment to maximize the system’s
throughput while the cost of resources is less than or equal to a given value. Period-
icity of transformation of TWMGs into equivalent TMGs is formalized and the initial
marking of a TWMG is partitioned into several subsets with regard to the periodicity.
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By this transformation method a practically efficient algorithm is proposed to solve
the optimization problem based on solving a series of MILPP. Finally this approach is
further extended to a generalized optimization problem which maximizes the system’s

throughput and minimizes the cost of the resources.

e In Chapter 6, we study the cycle time optimization of deterministic TWMGs under
infinite server semantic, which is more general than the one in Chapter 5. We consider
the transformation of a given TWMG into an equivalent TMG proposed by Nakamura
and Silva [95] and prove that this transformation is periodical with regard to the initial
marking. This allow us to transform a TWMG into a finite family of equivalent TMGs,
each one valid for a partition of set of initial markings. Then, we present an MILPP
to solve the optimization problem that requires finding an optimal allocation for the
equivalent TMG under the constraint that the initial marking belongs to a particular
partition. This procedure, that can guarantee the convergence to the optimum, has a
high computational complexity due to the fact that the number of partitions can in-
crease exponentially with the number of places. Finally, two sub-optimal approaches
without enumerating the entire partitions are proposed in order to reduce the compu-

tational complexity.

7.2 Future Work

Despite some heuristic algorithms are proposed to solve the marking optimization of
TWMG models in this thesis, these heuristic approaches can only provide near optimal
solutions. The problem of finding an optimal solution for this problem is still open. Our
future works aim to develop an analytical method to solve this problem and find an optimal
solution. The second perspective is to extend these results to continuous WMGs. To the best
of our knowledge, the optimization problems of continuous WMG has not been addressed
in the literature.

Considering the cycle time optimization problem of TWMGs studied in this disserta-
tion, the proposed MILPP approach can guarantee the convergence to the optimum based
on transforming a TWMG into a set of equivalent TMGs. Nevertheless, this transformation
technique can lead to a huge number of equivalent TMGs in general. As a consequence, the
time consumption for solving the MILPPs is very high. Our future work includes providing
an optimal approach that is directly applicable to TWMGs, i.e., without the transformation
procedure.
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Another restriction of both TMGs and TWMGs is the fact that they cannot describe
systems with choice, i.e., a condition where several future evolutions are possible but in
conflict among them. For this reason, we plan to extend the considered modelling framework
by assuming that choices are possible and must be resolved with a stationary routing, that
assigns resources to conflicting processes with a preassigned ratio. The routing parameters

will be additional decision variable of our optimization problem.

95



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

96



Reference

[1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Reference

VISWANADHAM N, NARAHARI Y. Performance modeling of automated manufacturing sys-

tems[M]. [S.1.] : Prentice Hall Englewood Cliffs, NJ, 1992.

MURATA G T. Petri nets: properties, analysis and applications[J]. Proceedings of the IEEE, 1989,

77(4): 541 -580.

MAGOTT J. Performance evaluation of concurrent systems using Petri nets[J]. Information Pro-

cessing Letters, 1984, 18(1): 7—-13.

CASSANDRAS C G, LAFORTUNE S. Introduction to discrete event systems[M]. [S.L.]:

Springer, 2008.

GIUA A, DICESARE F. Blocking and controllability of Petri nets in supervisory control[J]. IEEE

Transactions on Automatic Control, 1994, 39(4) : 818 —823.

CHEN Y F, LI Z W, BARKAOUI K, et al. On the enforcement of a class of nonlinear constraints

on Petri nets[J]. Automatica, 2015, 55: 116—-124.

IORDACHE M V, ANTSAKLIS P J. Supervision based on place invariants: A survey[J]. Discrete

Event Dynamic Systems, 2006, 16(4) : 4451 —492.

IORDACHE M V, ANTSAKLIS P J. Petri net supervisors for disjunctive constraints[C] // In Pro-

ceedings of the 26th American Control Conference. 2007 : 4951 —4956.

IORDACHE M V, ANTSAKLIS P J. Decentralized control of Petri nets with constraint transfor-

mation[J]. IEEE Transactions on Automatic Control, 2006, 51(2): 376 —-381.

IORDACHE M V, WU P, ZHU F, et al. Efficient design of Petri net supervisors with disjunctive

specifications[C] //In Proceedings of the IEEE International Conference on Automation Science

and Engineering. 2013 : 936-941.

LUOJL, WUW M, SUHY, et al. Supervisor synthesis for enforcing GMECs on a controlled

Petri net[C] // In Proceedings of the 25th American Control Conference. 2006 : 4165—-4170.

LUO J L, WANG S G. Supervisor synthesis for enforcing a disjunction of GMECs on controlled

Petri nets[C] // In Proceedings of the IEEE International Conference on Mechatronics and Automa-

tion. 2007 : 294 —-298.

BRANDIN B A, WONHAM W M. Supervisory control of timed discrete-event systems[J]. [IEEE

Transactions on Automatic Control, 1994, 39(2) : 329 —342.

MOODY J, ANTSAKLIS P J. Supervisory control of discrete event systems using Petri nets[M].

[S.L]: Springer Science & Business Media, 2012.

LUOJ L, NONAMI K. Approach for transforming linear constraints on Petri nets[J]. IEEE Trans-
97



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

actions on Automatic Control, 2011, 56(12): 2751 -2765.

LUOJL, SHAO H, NONAMI K, et al. Maximally permissive supervisor synthesis based on a new
constraint transformation method[J]. Automatica, 2012, 48(6): 1097 —-1101.

BASILE F, GIUA A, SEATZU C. Some new results on supervisory control of Petri nets with
decentralized monitor places[C] //In Proceedings of the 17th IFAC World Congress. 2008 : 531 —
536.

BASILE F, CORDONE R, PIRODDI L. Integrated design of optimal supervisors for the enforce-
ment of static and behavioral specifications in Petri net models[J]. Automatica, 2013, 49(11):
3432-3439.

BASILE F, CORDONE R, PIRODDI L. A branch and bound approach for the design of decen-
tralized supervisors in Petri net models[J]. Automatica, 2015, 52: 322 -333.

BARKAOUI K, CHAOUI A, ZOUARI B. Supervisory control of discrete event systems based
on structure theory of Petri nets[C] //In Proceedings of the International Conference on Systems,
Man, and Cybernetics. 1997 : 3750 -3755.

POCCI M, DEMONGODIN I, GIAMBIASI N, et al. Synchronizing sequences on a class of un-
bounded systems using synchronized Petri nets[J]. Discrete Event Dynamic Systems, 2016, 26(1) :
85-108.

SCHUPPEN J H V, SILVA M, SEATZU C. Control of discrete-event systems-automata and Petri
net perspectives[J]. Lecture Notes in Control and Information Science, 2012 : 319 —340.
RAMCHANDANI C. Analysis of asynchronous concurrent systems by timed Petri nets[J], 1974.
CHRZASTOWSKI-WACHTEL P, RACZUNAS M. Liveness of weighted circuits and the Dio-
phantine problem of Frobenius[C] //In Proceedings of the International Symposium on Funda-
mentals of Computation Theory. 1993 : 171 —180.

MARCHETTI O, MUNIER-KORDON A. A sufficient condition for the liveness of weighted event
graphs[J]. European Journal of Operational Research, 2009, 197(2) : 532 —540.

MARCHETTI O, MUNIER-KORDON A. Complexity results for weighted timed event graphs[J].
Discrete Optimization, 2010, 7(3) : 166 —180.

TERUEL E, CHRZASTOWSKI-WACHTEL P, COLOM J M, et al. On weighted T-systems[C]
// In Proceedings of the International Conference on Application and Theory of Petri Nets. 1992 :
348 -367.

CHRZASTOWSKI-WACHTEL P, RACZUNAS M. Orbits, half-frozen tokens and the liveness of
weighted circuits[J], 1995: 116—128.

POPOVA-ZEUGMANN L. Time and Petri nets[M]. [S.1.] : Springer, 2013 : 31-137.

LIZ W, ZHOU M C. Elementary siphons of Petri nets and their application to deadlock prevention

98



Reference

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

in flexible manufacturing systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part
A, 2004, 34(1): 38-51.

EZPELETA J, COLOM J M, MARTINEZ J. A Petri net based deadlock prevention policy for
flexible manufacturing systems[J]. IEEE Transactions on Robotics and Automation, 1995, 11(2):
173 -184.

LIZ W, ZHOU M C. Clarifications on the definitions of elementary siphons in Petri nets[J]. [EEE
Transactions on Systems, Man and Cybernetics, Part A, 2006, 36(6) : 1227 —1229.

ZHAO M, HOU Y. An iterative method for synthesizing non-blocking supervisors for a class
of generalized Petri nets using mathematical programming[J]. Discrete Event Dynamic Systems,
2011, 23(1): 3-26.

LIZ W, ZHAO M. On controllability of dependent siphons for deadlock prevention in generalized
Petri nets[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 2008, 38(2): 369 —
384.

ZHOU M C. Petri nets in flexible and agile automation[M]. [S.1.] : Springer, 1995.

LIZ W, ZHOU M C. On siphon computation for deadlock control in a class of Petri nets[J]. IEEE
Transactions on Systems, Man, and Cybernetics, Part A, 2008, 38(3) : 667 —679.

LIZ W, ZHOU M C. Control of elementary and dependent siphons in Petri nets and their applica-
tion[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 2008, 38(1): 133 -148.
CORDONE R, NAZEEM A, PIRODDI L, et al. Designing optimal deadlock avoidance policies
for sequential resource allocation systems through classification theory: existence results and cus-
tomized algorithms[J]. IEEE Transactions on Automatic Control, 2013, 58(11): 2772 -2787.
LIZ W, ZHOU M C. Deadlock resolution in automated manufacturing systems: A novel Petri net
approach[M]. London : Springer, 2009.

LIZ W, WU N Q, ZHOU M C. Deadlock control of automated manufacturing systems based on
Petri nets — A literature review[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
2012, 42(4) : 437-462.

CABASINO M, GIUA A, SEATZU. C. Fault detection for discrete event systems using Petri nets
with unobservable transitions[J]. Automatica, 2010, 46(9): 1531 -1539.

CABASINO M, GIUA A, POCCI M, et al. Discrete event diagnosis using labeled Petri nets: An
application to manufacturing systems[J]. Control Engineering Practice, 2011, 19(9) : 989 -1001.
BOEL R K, JIROVEANU G. Distributed contextual diagnosis for very large systems[C] // In Pro-
ceedings of the 7th International Workshop on Discrete Event Systems. 2004 : 333 —344.
BASILE F, CHIACCHIO P, De Tommasi G. An efficient approach for online diagnosis of discrete
event systems[J]. IEEE Transactions on Automatic Control, 2009, 54(4) : 748 —759.

99



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

BOEL R K, Van Schuppen J H. Decentralized failure diagnosis for discrete-event systems with
costly communication between diagnosers[C] // In Proceedings of the 6th International Workshop
on Discrete Event Systems. 2002 : 175—-181.

RAMIREZ-TREVINO A, RUIZ-BELTRAN E, RIVERA-RANGEL I, et al. Online fault diagno-
sis of discrete event systems: A Petri net-based approach[J]. IEEE Transactions on Automation
Science and Engineering, 2007, 4(1) : 31-39.

LEFEBVRE D, DELHERM C. Diagnosis of DES with Petri net models[J]. IEEE Transactions on
Automation Science and Engineering, 2007, 4(1): 114-118.

BASILE F. Overview of fault diagnosis methods based on petri net models[C] // In Proceedings of
the European Control Conference. 2014 : 2636 —2642.

USHIO T, ONISHI I, OKUDA K. Fault detection based on Petri net models with faulty behav-
iors[C] // In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics.
1998: 113 -118.

BASILE F, CABASINO M P, SEATZU C. State estimation and fault diagnosis of labeled time
petri net systems with unobservable transitions[J]. IEEE Transactions on Automatic Control, 2015,
60(4) : 997 -1009.

WANG X, MAHULEA C, SILVA M. Diagnosis of time Petri nets using fault diagnosis graph[J].
IEEE Transactions on Automatic Control, 2015, 60(9) : 2321 -2335.

MAHULEA C, SEATZU C, CABASINO M P, et al. Fault diagnosis of discrete-event systems using
continuous Petri nets[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, 2012, 42(4): 970-984.

DOTOLI M, FANTI M P, MANGINI A M, et al. On-line fault detection in discrete event systems
by Petri nets and integer linear programming[J]. Automatica, 2009, 45(11) : 2665 -2672.

FANTI M P, MANGINI A M, UKOVICH W. Fault detection by labeled Petri nets and time con-
straints[C] // In Proceedings of the 3rd International Workshop on the Dependable Control of Dis-
crete Systems. 2011: 168—-173.

SIFAKIS J. Performance evaluation of systems using nets[C] //In Proceedings of the Advanced
Course on General Net Theory of Processes and Systems. 1980 : 307 -319.

GU Z, SHIN K G. An integrated approach to modeling and analysis of embedded real-time systems
based on timed petri nets[C] // In Proceedings of the 23rd International Conference on Distributed
Computing Systems. 2003 : 350 —359.

BENAZOUZ M, MARCHETTI O, MUNIER-KORDON A, et al. A polynomial algorithm for
the computation of buffer capacities with throughput constraint for embedded system design[C]

// In Proceedings of the International Conference on Computers and Industrial Engineering. 2009 :

100



Reference

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

690 —695.

BENAZOUZ M, MARCHETTI O, MUNIER-KORDON A, et al. A new approach for minimizing
buffer capacities with throughput constraint for embedded system design[C] //In Proceedings of
the International Conference on Computer Systems and Applications. 2010: 1-8.

HUIJSA T, DELOSME J-M, MUNIER-KORDON A. Polynomial sufficient conditions of well-
behavedness and home markings in subclasses of weighted Petri nets[J]. ACM Transactions on
Embedded Computing Systems, 2014, 13(4): 141.

AMORIM L, BARRETO R, MACIEL P, et al. A methodology for software synthesis of embedded
real-time systems based on TPN and LSC[C] //In Proceedings of the International Conference on
Embedded Software and Systems. 2005 : 50—-62.

HOU G, CHANG J, SHOU K, et al. Embedded system modeling and verification based on deter-
ministic and stochastic Petri net[J]. Journal of Computational Information Systems, 2014, 10(12):
5051-5058.

PROTH J M, SAUER N, XIE X L. Optimization of the number of transportation devices in a
flexible manufacturing system using event graphs[J]. IEEE Transactions on Industrial Electronics,
1997, 44(3) : 298 —306.

LAFTIT S, PROTH J M, XIE X L. Optimisation of invariant criteria for event graphs[J]. IEEE
Transactions on Automatic Control, 1992, 37(5) : 547 —555.

BENABID-NAJJAR A, HANEN C, MARCHETTI O, et al. Periodic schedules for bounded timed
weighted event graphs[J]. IEEE Transactions on Automatic Control, 2012, 57(5) : 1222 -1232.
MERLIN P. A methodology for the design and implementation of communication protocols[J].
IEEE Transactions on Communications, 1976, 24(6) : 614 -621.

LOPEZ-MELLADO E. Simulation of timed Petri net models[C] //In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics. 1995 : 2270 —-2273.

CAMPOS J, COLOM J M, JUNGNITZ H, et al. Approximate throughput computation of stochas-
tic marked graphs[J]. IEEE Transactions on Software Engineering, 1994, 20(7) : 526 —535.
CHIOLA G, ANGLANO C, CAMPOS J, et al. Operational analysis of timed Petri nets and ap-
plication to the computation of performance bounds[C] //In Proceedings of the 5th International
Workshop on Petri Nets and Performance Models. 1993 : 128 —137.

CAMPOS J, CHIOLA G, COLOM ] M, et al. Properties and performance bounds for timed marked
graphs[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
1992, 39(5) : 386—-401.

CHEN Y L, HSU P Y, CHANG Y B. A Petri net approach to support resource assignment in

project management[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems

101



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

and Humans, 2008, 38(3): 564 -574.

LOPEZ-MELLADO E. Analysis of discrete event systems by simulation of timed Petri net mod-
els[J]. Mathematics and Computers in Simulation, 2002, 61(1) : 53 —59.

ZHANG H, LIU F, YANG M, et al. Simulation of time Petri nets[C] //In Proceedings of the 4th
International Conference on System Science, Engineering Design and Manufacturing Informatiza-
tion. 2013 : 3-6.

SAUER N. Marking optimization of weighted marked graphs[J]. Discrete Event Dynamic System-
s, 2003, 13(3) : 245-262.

TOURSI L, SAUER N. Branch and bound approach for marking optimization problem of weighted
marked graphs[C] //In Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics. 2004 : 1777 -1782.

HUANG Z, WU Z. A deadlock-free scheduling method for automated manufacturing systems
using dynamic-edge graph with tokens[C] //In Proceedings of the IEEE International Conference
on Control Applications. 2004 : 1398 —1403.

ZUBEREK W. Event-driven simulation of timed Petri net models[C] // In Proceedings of the 33rd
Annual Simulation Symposium. 2000 : 91 -98.

MARSAN M A, BALBO G, CONTE G, et al. Modelling with generalized stochastic Petri nets[M].
[S.1.]: John Wiley & Sons, Inc., 1994.

HILLION H P, PROTH J M. Performance evaluation of job-shop systems using timed event-
graphs[J]. IEEE Transactions on Automatic Control, 1989, 34(1): 3-9.

CAMPOS J, CHIOLA G, SILVA M. Ergodicity and throughput bounds of Petri nets with unique
consistent firing count vector[J]. IEEE Transactions on Software Engineering, 1991, 17(2): 117 -
125.

BACCELLIF, COHEN G, OLSDER G, et al. Synchronization and linearity: an algebra for discrete
event systems[J]. Journalof the operational Research Society, 1994, 45(1): 118 -119.

COHEN G, GAUBERT S, QUADRAT J P. Timed-event graphs with multipliers and homogeneous
min-plus systems[J]. IEEE Transactions on Automatic Control, 1998, 43(9): 1296 — 1302.
KOMENDA J, LAHAYE S, BOIMOND J-L. Determinization of timed Petri nets behaviors[J].
Discrete Event Dynamic Systems, 2016, 26(3) : 413 -437.

DECLERCK P. Compromise approach for predictive control of Timed Event Graphs with specifi-
cations defined by P-time Event Graphs[J]. Discrete Event Dynamic Systems, 2016, 26(4): 611 -
632.

BOUSSAHEL W M, AMARI S, KARA R. Analytic evaluation of the cycle time on networked

conflicting timed event graphs in the (max,+) algebra[J]. Discrete Event Dynamic Systems, 2016,

102



Reference

[85]

[86]

(87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

26(4): 561 —581.

COTTENCEAU B, LAHAYE S, HARDOUIN L. Modeling of time-varying (max,+) systems by
means of weighted timed event graphs[C] // In Proceedings of the 12th International Workshop on
Discrete Event Systems. 2014 : 465 —-470.

COTTENCEAU B, HARDOUIN L, BOIMOND J L. Modeling and control of weight-balanced
timed event graphs in dioids[J]. IEEE Transactions on Automatic Control, 2014, 59(5): 1219-
1231.

BERTHOMIEU B, VERNADAT F. Time Petri nets analysis with tina[C] //In Proceedings of the
3rd International Conference on Quantitative Evaluation of Systems. 2006 : 123 —124.

BONET P, LLADO C M, PUIJANER R, et al. PIPE v2. 5: A Petri net tool for performance mod-
elling[C] //In Proceedings of the 23rd Latin American Conference on Informatics (CLEI 2007).
2007.

JULVEZ J, MAHULEA C, VAZQUEZ C-R. SimHPN: A MATLAB toolbox for simulation, anal-
ysis and design with hybrid Petri nets[J]. Nonlinear Analysis: Hybrid Systems, 2012, 6(2): 806 —
817.

SESSEGO F, GIUA A, SEATZU C. HYPENS: A Matlab tool for timed discrete, continuous and
hybrid Petri nets[C] // In Proceedings of the International Conference on Applications and Theory
of Petri Nets. 2008 : 419 -428.

BERTHOMIEU B, MENASCHE M. An enumerative approach for analyzing time Petri nets[C]
/I Proceedings IFIP. 1983.

BERTHOMIEU B, DIAZ M. Modeling and verification of time dependent systems using time
Petri nets[J]. IEEE Transactions on Software Engineering, 1991, 17(3) : 259 -273.
RODRIGUEZR J, JULVEZ J, MERSEGUER J. On the performance estimation and resource opti-
mization in process Petri nets[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2013, 43(6): 1385-1398.

MUNIER A. Régime asymptotique optimal d’un graphe d’évenement temporisé généralisé: appli-
cation a un probléme d’assemblage[M]. [S.1.] : Université Paris-Sud, Centre d’Orsay, Laboratoire
de recherche en Informatique, 1992.

NAKAMURA M, SILVA M. Cycle time computation in deterministically timed weighted marked
graphs[C] //In Proceedings of the 7th IEEE International Conference on Emerging Technologies
and Factory Automation. 1999 : 1037 —1046.

BENFEKIR A, HAMACI S, DARCHERIF M. Allocating resources of weighted T-system for
adaptive behaviour[J]. International Journal of Operational Research, 2012, 14(1) : 31-49.
TROUILLET B, BENASSER A, GENTINA J C. On the linearization of weighted T-systems[J].

103



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]
[108]

[109]

[110]

[111]

International Journal of Production Research, 2008, 46(19) : 5417 —5426.

HAMACI S, BOIMOND J L, LAHAYE S, et al. On the linearizability of discrete timed event
graphs with multipliers using (min,+) algebra[C] //In Proceedings of the 7th International Work-
shop on Discrete Event Systems. 2004 : 367 —372.

HAMACI S, BOIMOND J-L, LAHAYE S. Performance analysis of timed event graphs with mul-
tipliers using (min,+) algebra[G] //Informatics in Control, Automation and Robotics II. [S.1.]:
Springer, 2007 : 185-190.

HAMACI S, DARCHERIF A M, LABADI K. Performance evaluation of timed Petri nets in dioid
algebra[M]. [S.1.]: INTECH Open Access Publisher, 2012.

BENFEKIR A, HAMACI S, BOIMOND J-L, et al. Performance evaluation of nonlinear weighted
T-system[J]. International Journal of Systems Science, 2013, 44(10): 1948 — 1955.

BENFEKIR A, HAMACI S, DARCHERIF A-M, et al. On the nonlinear dynamic behavior of
unrelaxed timed Petri nets in idempotent semirings[C] // In Proceedings of the 18th International
Conference on Methods and Models in Automation and Robotics. 2013 : 771 -776.
KAHOUADIJI H, HAMACI S, LABADI K, et al. A new upper bound of cycle time in weight-
ed marked graphs[C] //In Proceedings of the International Conference on Control, Decision and
Information Technologies. 2013 : 137 —142.

TROUILLET B, BENASSER A, GENTINA J-C. Transformation of the cyclic scheduling problem
of a large class of fms into the search of an optimized initial marking of a linearizable weighted
t-system[C] // In Proceedings of the 6th International Workshop on Discrete Event Systems. 2002 :
83-90.

DASDAN A. Experimental analysis of the fastest optimum cycle ratio and mean algorithms[J].
ACM Transactions on Design Automation of Electronic Systems, 2004, 9(4) : 385 -418.

KARP R M. A characterization of the minimum cycle mean in a digraph[J]. Discrete mathematics,
1978, 23(3) : 309-311.

REITER R. Scheduling parallel computations[J]. Journal of the ACM, 1968, 15(4): 590—599.
YOUNG N E, TARJANT R E, ORLIN J B. Faster parametric shortest path and minimum-balance
algorithms[J]. Networks, 1991, 21(2) : 205-221.

GHAMARIAN A H, GEILEN M, STUIJK S, et al. Throughput analysis of synchronous data flow
graphs[C] // In Proceedings of the 6th International Conference on Application of Concurrency to
System Design. 2006 : 25 -36.

CASALE G, MI N, SMIRNI E. Bound analysis of closed queueing networks with workload bursti-
ness[C] // ACM SIGMETRICS Performance Evaluation Review. 2008 : 13 —-24.

LIR, REVELIOTIS S. Performance optimization for a class of generalized stochastic Petri nets[J].

104



Reference

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Discrete Event Dynamic Systems, 2015, 25(3) : 387 -417.

HEE K, REIJERS H, VERBEEK E, et al. On the optimal allocation of resources in stochastic
workflow nets[C] //In Proceedings of the 7th UK Performance Engineering Workshop. 2001 :
23-34.

CHEN H, AMODEO L, CHU F, et al. Performance evaluation and optimization of supply chains
modelled by batch deterministic and stochastic Petri net[J]. IEEE Transactions on Automation
Science and Engineering, 2005, 2(2) : 132 —-144.

ABDALLAH I B, ELMARAGHY H A, ELMEKKAWY T. Deadlock-free scheduling in flexi-
ble manufacturing systems using Petri nets[J]. International Journal of production research, 2002,
40(12) : 2733 -2756.

WU N, ZHOU M. Real-time deadlock-free scheduling for semiconductor track systems based on
colored timed Petri nets[J]. OR Spectrum, 2007, 29(3) : 421 —443.

XING K, HAN L, ZHOU M, et al. Deadlock-free genetic scheduling algorithm for automated
manufacturing systems based on deadlock control policy[J]. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, 2012, 42(3) : 603 -615.

RODRIGUEZ-BELTRAN J, RAMFREZ-TREVINO A. Minimum initial marking in timed marked
graphs[C] //In Proceedings of the IEEE International Conference on Systems, Man, and Cyber-
netics. 2000 : 3004 —3008.

NAKAMURA M, SILVA M. An iterative linear relaxation and tabu search approach to minimum
initial marking problems of timed marked graphs[C] //In Proceedings of the European Control
Conference. 1999 : 985—990.

GIUA A, PICCALUGA A, SEATZU C. Incremental optimization of cyclic timed event graphs[C]
// In Proceedings of the IEEE International Conference on Robotics and Automation. 2000 : 2211 —
2216.

GIUA A, PICCALUGA A, SEATZU C. Firing rate optimization of cyclic timed event graphs by
token allocations[J]. Automatica, 2002, 38(1): 91 -103.

LAFTIT S, PROTH J M, XIE X L. Marking optimization in timed event graphs[C] // In Proceed-
ings of the International Conference on Application and Theory of Petri Nets. 1991 : 281 —300.
GAUBERT S. An algebraic method for optimizing resources in timed event graphs[G] // Analysis
and Optimization of Systes. [S.1.] : Springer, 1990 : 957 —966.

GAUBERT S. Resource optimization and (min,+) spectral theory[J]. IEEE Transactions on Auto-
matic Control, 1995, 40(11): 1931-1934.

CHRETIENNE J C P, CARLIER J. Probleme d’ordonnancement: modélisation, complexité, al-
gorithmes[M]. [S.1.] : Masson, Paris, 1988.

105



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

[125]

[126]

[127]

[128]

[129]

[130]

MILLOJ V, SIMONE R D. Periodic scheduling of marked graphs using balanced binary words[J].
Theoretical Computer Science, 2012, 458 : 113 -130.

PANAYIOTOU C G, CASSANDRAS C G. Optimization of kanban-based manufacturing system-
s[J]. Automatica, 1999, 35(9): 1521 -1533.

RAMAMOORTHY C V, HO G S. Performance evaluation of asynchronous concurrent systems
using Petri nets[J]. IEEE Transactions on Software Engineering, 1980, 6(5) : 440 —449.

WANG H, ZENG Q. Modeling and analysis for workflow constrained by resources and nonde-
termined time: An approach based on Petri nets[J]. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 2008, 38(4) : 802—-817.

LOFBERG J. YALMIP: a toolbox for modeling and optimization in MATLAB[C] // In Proceedings
of the IEEE International Conference on Robotics and Automation. 2004 : 284 —289.

GAREY M R, JOHNSON D. Computers and intractability: A guide to the theory of NP-
completeness[M]. [S.l.]: WH Freeman and Company, New York, 1979.

106



Acknowledgement

Acknowledgement

First and foremost, I am greatly indebted to my two supervisors, Prof. Zhiwu Li and
Prof. Alessandro Giua, for their constant encouragement, patient guidance, instructive sug-
gestions, and financial support. Frankly speaking, without their encouragement, I can hardly
start my Ph.D study at the beginning. They dedicated me a lot of time and taught me to pay
attention to details in doing research and writing papers. I felt so lucky to work with them
in these five years, not only for their vast knowledge and skills, but also for their respectable
attitude towards research.

Except for my supervisors, I would like to show my special thanks to Mr. Guanghui
Zhu, Ms. Yin Tong, and Dr. Ziyue Ma, for their thoughtful suggestions and helpful dis-
cussions in our regular seminars. I appreciate their persistence in pursing perfect works.
I will always remember the time we spent together to discuss technical and programming
problems.

I extend my special thanks to other professors for their help, concern, and friendship.
Among them are Prof. Carla Seatzu, Prof. Kamel Barkaoui, Prof. Francesco Basile, Prof.
W. M. Wonham, and Prof. Lei Feng.

I would like to express my gratitude to Prof. Isabel Demongodin, Ms. Béatrice Alcala,
Dr. Maimar el-amine Hamri, Dr. Nesrine Driouche from Aix-Marseille University, and
Mr. Ning Ran from Zhejiang University. They provided me a lot of help during my stay in
Marseille. Special thanks to Mr. Aiwen Lai, Mr. Changshun Wu, and Ms. Wenjing Yang. |
spent a pleasure time with them in Marseille in France.

My sincere thanks also goes to my lab mates in Xidian University. It is my pleasure to
conduct research with them for more than five years. Particularly among them are Dr. Ding
Liu, Dr. Yifan Hou, Dr. Gaiyun Liu, Dr. Xubin Ping, Dr. Anrong Wang, Dr. Meng Qin, Dr.
Jiafeng Zhang, Dr. Xiaoliang Chen, Dr. Xi Wang, Dr. Zhongyuan Jiang, Mr. Changming
Shao, Mr. Jingyang Fan, Mr. Chao Gu, Mr. Chao Wang, Mr. Pei Li, Mr. Hang Xu, Mr.
Kaijie Xu, Mr. Kuangze Wang, and Mr. Xuya Cong. I want to thank, especially, Dr. Miao
Liu, Dr. Xiuyan Zhang, Mr. Xiang Gao, Mr. Wei Chen, Mr. Deguang Wang, Ms. Chan Gu,
Ms. Lan Yang, Mr. Liang Li, Mr. Dongdong Guan, Mr. Haibo Wang, Mr. Chao Sun, Ms.
Siyan Chen, Mr. Bing Hui, Mr. Chengzong Li, and Mr. Wenlong He.

I would like to thank all my friends in Xidian University. Particularly among them are
Mr. Yan Ma, Mr. Jiyong Meng, Mr. Xiaodong Shang, Mr. Wentao Zhao, Mr. Naigang Hu,

107



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

Mr. Xing Quan, and Mr. Gangshan Jing. They are always full of enthusiasm.

I am truly grateful to my beloved grandparents, parents, and my sister, for their constant
encouragement, love, and caring through my life. My dear grandmother always comforts me
when I feel frustrated. My love for her means more than I can ever express. Finally, I would
like to express appreciation to my beloved girl friend Ms. Huiru Yang. She always supported
me during this period and gave me the right strength to live in happiness for last six years. I

will spend all of my lifetime to love and protect her.

Xidian University, China Zhou He
March 22, 2017

108



Biography

Biography

1. Basics

Zhou He (male) was born in Ankang, Shaanxi province, China, in January 1990. He re-
ceived Bachelor Degree in College of Mechanical and Electrical Engineering from Shaanxi
University of Science and Technology, Xi’an, China, in 2012. From September 2012 to July
2013 he has been a master candidate of School of Electro-Mechanical Engineering of Xid-
1an University and is majored in Electro-Mechanical Engineering, co-tutored by Prof. Dr.
Zhiwu Li and Prof. Dr. Alessandro Giua. Since September 2013 he has been a Ph.D can-
didate of School of Electro-Mechanical Engineering of Xidian University and is majored in
Electro-Mechanical Engineering, co-tutored by Prof. Dr. Zhiwu Li and Prof. Dr. Alessandro

Giua.

2. Education Background

2008.09 ~ 2012.07, Shaanxi University of Science and Technology, B.A. in Mechani-
cal Engineering

2012.09 ~ 2013.07, Xidian University, M.A. student in Electro-Mechanical Engineer-
ing (Master-doctor postgraduate student program)

2013.09 ~ present, Xidian University, Ph.D student in Electro-Mechanical Engineering
(Master-doctor postgraduate student program)

2014.09 ~ present, Aix-Marseille University, Ph.D student in Automatique

3. Academic Publications

3.1 Journal Publications

[1] Z.He,Z. W. Li, A. Giua. “Optimization of Deterministic Timed Weighted Marked
Graphs”, IEEE Transactions on Automation Science and Engineering, vol. 14, no.
2, pp- 1084-1095, 2017. (SCI Journal, JCR Q1)

[2] Z.He, Z. W. Li, A. Giua. “Cycle time optimization of deterministic timed weight-
ed marked graphs by transformation”, IEEE Transactions on Control Systems

Technology, vol. 25, no. 4, pp. 1318-1330, 2017. (SCI Journal, JCR Q1)

109



Doctoral Dissertation of XIDIAN UNIVERSITY & AIX-MARSEILLE UNIVERSITY

3.2 Conference Publications

[1] Z.He, Z. W. Li, A. Giua. “Marking Optimization of Deterministic Timed Weight-
ed Marked Graphs”, In Proceedings of the 10th IEEE International Conference on
Automation Science and Engineering, 2014: 413-418. (EI: 20153501210506)

[2] Z. He, Z. W. L1, A. Giua. “Cycle Time Optimization of Deterministic Timed
Weighted Marked Graphs”, In Proceedings of the 11th IEEE International Con-
ference on Automation Science and Engineering (CASE’15), 2015: 274-279. (EI:
20160101765651)

[3] Z.He, Z. W. Li, I. Demongodin, A. Giua. “Marking optimization of deterministic
timed weighted marked graphs under infinite server semantics”, In Proceedings of
the 3rd International Conference on Control, Decision and Information Technolo-
gies, (CoDIT’16), 2016: 1-6. (EI: 20164703033928)

[4] Z. He, Z. W. Li, A. Giua. “Stationary behavior of manufacturing systems mod-
eled by timed weighted marked graphs”, In Proceedings of the IEEE Region 10
Conference (TENCON’16), 2016: 3374-3377 (EI: 20171203467721).

[S] Z. He, Z. W. Li, A. Giua. “Cycle time optimization for deterministic timed
weighted marked graphs under infinite server semantics”, In Proceedings of the
55th IEEE Conference on Decision and Control (CDC’16), 2016: 3942-3947 (EI:
20170503304865).

3.3 Participation in Academic Programs

[1] General project of National Natural Science Foundation of China under Grant No.
61374068 entitled “Optimal liveness-enforcing Petri net supervisors for automated
manufacturing systems based on structural analysis”, 2014.1-2017.12, Ongoing.

[2] General project of National Natural Science Foundation of China under Grant No.
61472295 entitled “Supervision and Reconfiguration in Discrete Event Systems”,

2015.1-2018.12, Ongoing.

110



	摘要
	ABSTRACT
	RÉSUMÉ
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Chapter 1 Introduction
	1.1Performance Estimation
	1.2Performance Optimization
	1.3Thesis Organization

	Chapter 2 Preliminary
	2.1Petri Nets
	2.2Weighted Marked Graphs
	2.3Timed Weighted Marked Graphs
	2.4Cycle Time of Timed Weighted Marked Graphs

	Chapter 3 Marking Optimization of TWMGs Under Single Server Semantics
	3.1Introduction
	3.2Problem Formulation and Existing Approaches
	3.2.1Problem Formulation
	3.2.2A Previous Approach

	3.3Liveness of TWMGs
	3.4Marking Optimization Under Single Server Semantics
	3.4.1Useful tokens
	3.4.2Selection of a Proper Initial Marking
	3.4.3Selection of the Places to Add Tokens
	3.4.4Heuristic Solution
	3.4.5Case Study

	3.5Comparison with Previous Approaches
	3.6Conclusion

	Chapter 4 Marking Optimization of TWMGs Under Infinite Server Semantics
	4.1Motivation
	4.2Stationary Behavior of TWMGs Under Infinite Server Semantics
	4.3Marking Optimization Under Infinite Server Semantics
	4.3.1Selection of a Candidate Marking
	4.3.2Heuristic Approach 1
	4.3.3Heuristic Approach 2

	4.4Case Study
	4.5Conclusion

	Chapter 5 Cycle time Optimization of TWMGs Under Single Server Semantics
	5.1Motivation
	5.2Problem Formulation
	5.3Transformation from a TWMG to an equivalent TMG Under Single Server Semantics
	5.4Cycle Time Optimization Under Single Server Semantics
	5.4.1Existence of Finite Solutions
	5.4.2General Idea
	5.4.3Reduction of Equivalent TMG structures
	5.4.4Optimal Approaches

	5.5Extension of the Basic Approach
	5.5.1Further Reduction of Equivalent TMG Structures
	5.5.2A More General Optimization Problem

	5.6Experimental Study and Discussion
	5.6.1Optimization of a Flexible Manufacturing System
	5.6.2Test of Random Nets

	5.7Conclusion

	Chapter 6 Cycle time Optimization of TWMGs Under Infinite Server Semantics
	6.1Motivation
	6.2Transformation From a TWMG to an Equivalent PTMG Under Infinite Server Semantics
	6.3Cycle Time Optimization Under Infinite Server Semantics: an Optimal Approach
	6.3.1Cycle Time Optimization of PTMGs
	6.3.2Transformation of the Cycle Time Optimization Problem of TWMGs into PTMGs
	6.3.3Optimal Approaches

	6.4Cycle Time Optimization Under Infinite Server Semantics: Sub-optimal Approaches
	6.4.1Place Subset Allocation
	6.4.2Throughput Upper Bound
	6.4.3Computational Complexity Discussion

	6.5Experimental Study and Discussion
	6.5.1Application to a Flexible Manufacturing Systems
	6.5.2More Cases Study

	6.6Conclusion

	Chapter 7 Conclusions and Future Research
	7.1Contributions
	7.2Future Work

	Reference
	Acknowledgement
	Biography

