Elicitation and planning in Markov decision processes with unknown rewards

par Pegah Alizadeh

Thèse de doctorat en Informatique

Sous la direction de Yann Chevaleyre.

Soutenue le 09-12-2016

à Sorbonne Paris Cité , dans le cadre de École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) , en partenariat avec Université Paris 13 (établissement de préparation) et de Laboratoire informatique de Paris-Nord (Villetaneuse, Seine-Saint-Denis) (laboratoire) .

Le président du jury était Jérôme Lang.

Le jury était composé de Henry Soldano, Paolo Viappiani.

Les rapporteurs étaient Nicolas Maudet, Bruno Zanuttini.

  • Titre traduit

    Elicitation et planification dans les processus décisionnel de MARKOV avec récompenses inconnues


  • Résumé

    Les processus décisionnels de Markov (MDPs) modélisent des problèmes de décisionsséquentielles dans lesquels un utilisateur interagit avec l’environnement et adapte soncomportement en prenant en compte les signaux de récompense numérique reçus. La solutiond’unMDP se ramène à formuler le comportement de l’utilisateur dans l’environnementà l’aide d’une fonction de politique qui spécifie quelle action choisir dans chaque situation.Dans de nombreux problèmes de décision du monde réel, les utilisateurs ont despréférences différentes, donc, les gains de leurs actions sur les états sont différents et devraientêtre re-décodés pour chaque utilisateur. Dans cette thèse, nous nous intéressonsà la résolution des MDPs pour les utilisateurs ayant des préférences différentes.Nous utilisons un modèle nommé MDP à Valeur vectorielle (VMDP) avec des récompensesvectorielles. Nous proposons un algorithme de recherche-propagation qui permetd’attribuer une fonction de valeur vectorielle à chaque politique et de caractériser chaqueutilisateur par un vecteur de préférences sur l’ensemble des fonctions de valeur, où levecteur de préférence satisfait les priorités de l’utilisateur. Etant donné que le vecteurde préférences d’utilisateur n’est pas connu, nous présentons plusieurs méthodes pourrésoudre des MDP tout en approximant le vecteur de préférence de l’utilisateur.Nous introduisons deux algorithmes qui réduisent le nombre de requêtes nécessairespour trouver la politique optimale d’un utilisateur: 1) Un algorithme de recherchepropagation,où nous propageons un ensemble de politiques optimales possibles pourle MDP donné sans connaître les préférences de l’utilisateur. 2) Un algorithme interactifd’itération de la valeur (IVI) sur les MDPs, nommé algorithme d’itération de la valeurbasé sur les avantages (ABVI) qui utilise le clustering et le regroupement des avantages.Nous montrons également comment l’algorithme ABVI fonctionne correctement pourdeux types d’utilisateurs différents: confiant et incertain.Nous travaillons finalement sur une méthode d’approximation par critére de regret minimaxcomme méthode pour trouver la politique optimale tenant compte des informationslimitées sur les préférences de l’utilisateur. Dans ce système, tous les objectifs possiblessont simplement bornés entre deux limites supérieure et inférieure tandis que le systèmeine connaît pas les préférences de l’utilisateur parmi ceux-ci. Nous proposons une méthodeheuristique d’approximation par critère de regret minimax pour résoudre des MDPsavec des récompenses inconnues. Cette méthode est plus rapide et moins complexe queles méthodes existantes dans la littérature.


  • Résumé

    Markov decision processes (MDPs) are models for solving sequential decision problemswhere a user interacts with the environment and adapts her policy by taking numericalreward signals into account. The solution of an MDP reduces to formulate the userbehavior in the environment with a policy function that specifies which action to choose ineach situation. In many real world decision problems, the users have various preferences,and therefore, the gain of actions on states are different and should be re-decoded foreach user. In this dissertation, we are interested in solving MDPs for users with differentpreferences.We use a model named Vector-valued MDP (VMDP) with vector rewards. We propose apropagation-search algorithm that allows to assign a vector-value function to each policyand identify each user with a preference vector on the existing set of preferences wherethe preference vector satisfies the user priorities. Since the user preference vector is notknown we present several methods for solving VMDPs while approximating the user’spreference vector.We introduce two algorithms that reduce the number of queries needed to find the optimalpolicy of a user: 1) A propagation-search algorithm, where we propagate a setof possible optimal policies for the given MDP without knowing the user’s preferences.2) An interactive value iteration algorithm (IVI) on VMDPs, namely Advantage-basedValue Iteration (ABVI) algorithm that uses clustering and regrouping advantages. Wealso demonstrate how ABVI algorithm works properly for two different types of users:confident and uncertain.We finally work on a minimax regret approximation method as a method for findingthe optimal policy w.r.t the limited information about user’s preferences. All possibleobjectives in the system are just bounded between two higher and lower bounds while thesystem is not aware of user’s preferences among them. We propose an heuristic minimaxregret approximation method for solving MDPs with unknown rewards that is faster andless complex than the existing methods in the literature.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.