Développement asymptotique des sommes harmoniques

par Văn Chiến Bùi

Thèse de doctorat en Informatique

Sous la direction de Gérard Duchamp et de Vincel Hoang Ngoc Minh.

Soutenue le 09-12-2016

à Sorbonne Paris Cité , dans le cadre de École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) , en partenariat avec Laboratoire informatique de Paris-Nord (Villetaneuse, Seine-Saint-Denis) (laboratoire) et de Université Paris 13 (établissement de préparation) .

Le président du jury était Daniel Barsky.

Le jury était composé de Sylvie Paycha, Christophe Tollu, Joris van der Hoeven.

Les rapporteurs étaient Jacky Cresson, Loïc Foissy.


  • Résumé

    En abordant les nombres spéciaux comme les sommes harmoniques ou les polyzêtassous leur aspect combinatoire, nous introduisons d’abord la définition d’un produitentre mots, dit produit de quasi-mélange q-déformé, une généralisation des produits demélange et de quasi-mélange, ce qui nous permet de construire des structures complètesd’algèbre de Hopf en dualité. En même temps, nous construisons des bases en dualité,contenant des bases de transcendance associées aux mots de Lyndon, et des formules explicitessur lesquelles les sommes harmoniques, les polyzêtas ou les polylogarithmes sontindexés et représentés par la factorisation de la série génératrice noncommutative diagonale.De cette façon, nous déterminons des développements asymptotiques des sommesharmoniques, indexées par ces bases, grâce à leur série génératrice et à la formule d’EulerMaclaurin. Nous établissons également une équation de liaison sur les polyzêtas, quiapparaissent comme les parties finies des développements asymptotiques des sommesharmoniques et des polylogarithmes, reliant entre elles deux structures algébriques. Enidentifiant les coordonnées locales de cette équation, nous trouvons des relations polynomialeshomogènes, en poids, entre les polyzêtas. Pour accompagner cette étude théorique,nous proposons des algorithmes et un package en Maple afin de calculer des bases, lastructure des polyzêtas et des développements asymptotiques des sommes harmoniques.

  • Titre traduit

    Asymptotic expansion of harmonic sums


  • Résumé

    Approaching special numbers as harmonic sums or polyzetas (multiple zetavalues) in the spirit of combinatorics, we first focus on the study of algebraic structureson words by introducing the definition of a product on words, called q-stuffle product, acommon generalisation of shuffle and quasi-shuffle products, which allows us to completelyconstruct Hopf algebras in duality. Simutaneously, we establish recurrent formulas inorder to compute bases in duality, containing transcendence bases tied to Lyndon wordson which harmonic sums, the polyzetas and polylogarithms are indexed. We use them torepresent the factorization of a diagonal noncommutative generating series. In this respect,we determine asymptotic expansions of harmonic sums thanks to their generatingseries and to Euler Maclaurin formula. We also establish a bridge equation of polyzetas,which appear as fini parts in asymptotic expansions of harmonic sums and of polylogarithms,linking two algebraic structures. Through identification of local coordinates of thisequation, we can deduce homogenous, in weight, polynomial relations among polyzetasindexed on the bases.We also give algorithms and a package in Maple which, in practice,allowed us to find results and examples within this thesis.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.