Hydrodynamic effect on β-amyloid peptide aggregation

par Mara Chiricotto

Thèse de doctorat en Modélisation moléculaire. Chimie physique

Sous la direction de Philippe Derreumaux et de Fabio Sterpone.

Soutenue le 24-11-2016

à Sorbonne Paris Cité , dans le cadre de École doctorale Médicament, toxicologie, chimie, imageries (Paris) , en partenariat avec Laboratoire de biochimie théorique (Paris) (laboratoire) et de Université Paris Diderot - Paris 7 (1970-2019) (établissement de préparation) .

Le président du jury était Catherine Etchebest.

Le jury était composé de Yassmine Chebaro.

Les rapporteurs étaient Patrick Senet, Ralf Everaers.

  • Titre traduit

    Effet hydrodynamique sur l’agrégation des peptides β-amyloïde


  • Résumé

    Un fait marquant et essentiel de la maladie neurodégénérative d’Alzheimer est la formation de plaques amyloïdes dans le cerveau, résultat de l’agrégation des protéines amyloïde-β (Aβ1-40/1-42). Le développement de nouveaux médicaments requiert la compréhension des mécanismes de formation des fibres amyloïdes et la connaissance de la structure et dynamique des oligomères métastables qui sont les vecteurs principaux de la neurotoxicité. Parce que les simulations atomistiques en solvant explicite ne peuvent pas être réalisées sur de grands systèmes pour des temps très longs, nous avons opté pour un modèle protéique gros grain (CG) avec un solvant implicite. Nous nous sommes intéressés dans ces travaux de thèse à clarifier le rôle d’interactions hydrodynamiques(HI) dans la dynamique de formation des agrégats du peptide Aβ(16-22), connu pour former également des fibres amyloïdes. Ces interactions sont essentielles pour modéliser,dans un solvant implicite, les processus se produisant dans des environnements cellulaires très encombrés. Notre approche est basée sur une méthode multi-échelle et multi-physique qui couple les techniques Lattice Boltzmann et de dynamique moléculaire(LBMD). Dans notre système, les interactions médiées par le solvant aqueux sont incluses naturellement. Pour le système moléculaire, nous avons choisi le modèle gros grain à haute résolution OPEP (Optimized Potential for Efficient Protein structure prediction). Pour la première fois, nous avons effectué des simulations quasi tout-atome pour de très grands systèmes contenant des milliers de peptides Aβ ( 16-22). Après avoir correctement réglé le paramètre clé de notre couplage afin d’obtenir la diffusivité expérimentale des monomères et des oligomères du peptide Aβ ( 16-22), nous avons démontré que les HI accélèrent le processus d’agrégation pour des systèmes de taille moyenne (100 Aβ (16-22) peptides) et grande (1000 Aβ (16-22) peptides). Une caractérisation détaillée de la taille des clusters et de l’organisation structurelle des peptides est présentée. Enfin,nous avons examiné comment la concentration affecte la première phase d’agrégation des peptides et leurs structures.


  • Résumé

    The self-assembly of misfolded amyloid-β (Aβ 1-40/1-42) proteins into insoluble fibrils is strongly linked to the pathogenesis of Alzheimer’s disease (AD). The development of new drugs requires the understanding of the mechanisms leading to fibril formation, and the knowledge of the dynamics and structures of the early metastable oligomers which are the main neurotoxic species. Because atomistic simulations in explicit solvent cannot be performed on very large systems for a significant time scale, we resort to a coarse grained (CG) protein model with an implicit solvent. Our investigation enlightens the role of hydrodynamic interactions (HI) in the kinetics of β-amyloidogenesis, interactions which are essential, when an implicit solvent is used, to model processes occurring in highly crowded like-cell environments, among others.Our approach is based on a multi-scale and multi-physics method that couples Lattice Boltzmann and Molecular Dynamics (LBMD) techniques. In our scheme the solvent- mediated interactions are included naturally. As a first step, we focus on Aβ (16-22) peptide, known to form amyloid fibril alone, and we adopt the high resolution CG OPEP (Optimized Potential for Efficient Protein structure prediction) model, developed in our laboratory. For the first time, we have performed quasi-all-atom simulations for very large systems containing thousands of Aβ (16-22) peptides. After the correct tuning of the key parameters of our coupling in order to obtain the experimental diffusivity of Aβ (16-22) monomer and small oligomers, we have demonstrated that HI speed up the aggregation process of medium (100 peptides) and large (1000 peptides) systems. A detailed characterization of the fluctuating clusters along the trajectories is presented in terms of their sizes and the structural organization of the peptides. Finally, we have investigated how changes in the concentration affect the early aggregation phase of the peptides and their structures.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.