New inputs for synthetic biological systems

par Vincent Libis

Thèse de doctorat en Frontières du vivant

Sous la direction de Jean-Loup Faulon.

Le président du jury était Marcel Salanoubat.

Le jury était composé de David Bikard.

Les rapporteurs étaient Julia Frunzke.

  • Titre traduit

    Nouvelles stratégies d’induction pour systèmes biologiques synthétiques


  • Résumé

    Les chercheurs en biologie de synthèse programment l’ADN pour construire des systèmes biologiques capables de répondre à certaines conditions de manière prédéfinie. Cette capacité pourrait avoir un impact sur plusieurs domaines, de la médecine à la fermentation industrielle. Le traitement de signal par des circuits biologiques synthétiques est en train d’être démontré à large échelle, mais hélas la variété des signaux d’entrée capables de contrôler ces circuits est pour l’instant limitée. Ce manque de diversité est un obstacle majeur au développement de nouvelles applications car en général chaque application requiert une réponse à des signaux de nature particulière qui lui sont spécifiques. Cette thèse cherche à apporter des solutions au manque de signaux d’entrée appropriés contrôlant les circuits biologiques en développant deux nouvelles stratégies d’induction. La première stratégie vise à étendre la diversité chimique des signaux d’entrée. A l’inverse des approches existantes, qui reposent sur la modification des systèmes de détections naturels tels que les riboswitchs ou les facteurs de transcription allostériques, j’ai cherché ici à modifier directement des molécules préalablement non-détectables afin de les rendre détectables par les systèmes de détection actuels. Pour ce faire, la transformation chimique des molécules cibles est réalisée in situ grâce à l’expression de voies métaboliques synthétiques dans la cellule. Afin de pouvoir utiliser cette stratégie de manière systématique, j’ai employé la conception assistée par ordinateur et puisé dans l’ensemble des réactions biochimiques connues afin de prédire des voies de détections pour de nouvelles molécules. J’ai ensuite implémenté in vivo plusieurs prédictions qui ont permis à E. coli de détecter de nouveaux composés. Au-delà de l’intérêt de cette méthode en biotechnologie, cela montre que le métabolisme peut jouer un rôle dans le transfert d’information, en plus de son rôle dans le transfert de matière et d’énergie, ce qui soulève la question de l’utilisation potentielle de cette stratégie de détection par la nature. Un second axe présente une façon d’épargner l’utilisation d’inducteurs chimiques pour les programmes biologiques simples, et propose d’utiliser des inducteurs biologiques à la place. Lorsqu’une seule étape d’induction ou de répression de gènes est nécessaire, comme c’est le cas en fermentation industrielle, je propose de remplacer la coûteuse étape d’induction chimique par l’infection simultanée de toutes les cellules d’une population par des particules virales capables d’injecter en temps réel l’ensemble des informations nécessaires pour déclencher l’activité biologique recherchée. A des fins de fermentation, j’ai développé des particules virales modifiées qui reprogramment dynamiquement le métabolisme d’une large population de bactérie au moment opportun et les forcent à produire des molécules à haute valeur ajoutée.


  • Résumé

    Synthetic biologists program DNA with the aim of building biological systems that react under certain conditions in a predefined way. This ability could have impact in several fields, from medicine to industrial fermentation. While the scalability of synthetic biological circuits in terms of signal processing in now almost demonstrated, the variety of input signals for these circuits is limited. Because each application typically requires a circuit to react to case-specific molecules, the lack of input diversity is a major obstacle to the development of new applications. Two axis are developed over the course of this thesis to try to address input-related problems. The main axis consists in a new strategy aiming at systematically and immediately increasing the chemical diversity of inputs for synthetic circuits. Current approaches to expand the number of potential inputs focus on re-engineering sensing systems such as riboswitches or allosteric transcription factors to make them react to previously non-detectable molecules. On the contrary, here we developed a method to transform the non-detectable molecules themselves into molecules for which sensing systems already exist. These chemical transformations are realized in situ by expressing synthetic metabolic pathways in the cell. In order to systematize this strategy, we leveraged computer-aided design to predict ways of detecting new molecules by digging into all known biochemical reactions. We then implemented several predictions in vivo that successfully enabled E. coli to detect new chemicals. Aside from the interest of the method for biotechnological applications, this shows that in addition to transferring matter and energy, metabolism can also play a role in transferring information, raising the question of potential occurrences of this sensing strategy in nature. A second axis introduce a way to exempt simple programs from the need for a chemical input, and explore the use of a biological input instead. In situations where a single timely induction or repression of multiple genes is required, such as in industrial fermentation processes, we propose to replace expensive chemical induction by simultaneous infection of all the members of a growing population of cells with viral particles inputting in real-time all the necessary information for the task at hand. In the context of fermentation, we developed engineered viral particles that can dynamically reprogram the metabolism of a large population of bacteria at the optimal stage of growth and force them to produce value-added chemicals.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.