La fonction de densité au carrefour entre probabilités et analyse en terminale S : Etude de la conception et de la mise en oeuvre de tâches d'introduction articulant lois à densité et calcul intégral

par Charlotte Derouet

Thèse de doctorat en Sciences du langage - linguistique

Sous la direction de Alain Kuzniak et de Fabrice Vandebrouck.

Le président du jury était Jean-Claude Régnier.

Le jury était composé de Corinne Hahn, Giambattista Giacomin.

Les rapporteurs étaient Maria Alessandra Mariotti.


  • Résumé

    Cette thèse porte sur les articulations entre les probabilités et l’analyse en classe de terminale scientifique. Nous avons exploré comment se créent et sont exploités les liens entre les sous-domaines mathématiques des probabilités des lois à densité et du calcul intégral, à travers une recherche centrée sur la notion de fonction de densité. En adoptant le modèle des Espaces de Travail Mathématique et des éléments de la théorie de l’activité, nous nous sommes demandé quelles tâches permettent d’introduire cette notion et de construire la relation sémiotique reliant probabilité et intégrale. Pour aborder cette question, nous avons commencé parfaire une étude épistémologique et historique de la naissance de la notion de lois à densité, qui nous a notamment permis de dégager la place importante de la statistique dans cette genèse. Puis, nous avons effectué une analyse des documents institutionnels et des manuels. Cette analyse a montré que l’articulation entre probabilités à densité et calcul intégral est imposée aux élèves et peu exploitée dans les différentes tâches qui leur sont proposées. Enfin, nous avons étudié la conception et la mise en place de tâches d’introduction originales grâce à une méthodologie de recherche que nous qualifions d’ingénierie didactique collaborative. Ces tâches ont pour objectif de faire construire, par le « collectif » classe, la notion de fonction de densité et d’amener le besoin du calcul d’aire sous une courbe. Nous avons mis en évidence les activités de ce collectif classe, dans la construction de cette notion, en analysant les circulations entre trois sous-domaines : les probabilités à densité, la statistique descriptive et le calcul intégral.

  • Titre traduit

    The density function at the crossroads between probability and calculus in the scientific track of the Grade 12 : Studying of the design and implementation of introductory tasks articulating continuous probability distribution and integral calculus


  • Résumé

    This thesis focuses on the connections between probability and analysis (calculus) in the scientific track of Grade 12 (French baccalaureate program). We explored the ways in which links between the mathematics subfields of continuous probability and integral calculus are created and explored, through a research focused on the concept of density function. Using the Mathematical Working Space model and some elements of Activity Theory, we sought to identify tasks that would allow introducing this concept and building the semiotic relationship between probability and integral. In order to address this issue, we began with an epistemological and historical study of the birth of the concept of density function, which enabled us to identify the important role of statistics in this genesis. Then, an analysis of institutional documents and textbooks showed that the link between continuous probability and integral calculus is imposed on students and rarely exploited in the different tasks given to them. Finally, we studied the design and implementation of original introductory tasks through a research methodology that we call “collaborative didactic engineering”. The goal of these tasks is to get the class “collective” to construct the concept of density function and trigger the need for calculating areas under a curve. We highlighted the activities of the class “collective” in the construction of this notion by analyzing articulations between the three subfields: continuous probability, descriptive statistics and integral calculus.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire. Section Droit/Lettres.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.