Resource allocation optimization algorithms for infrastructure as a service in cloud computing

par Javier Salazar

Thèse de doctorat en Informatique et réseaux

Sous la direction de Ahmed Mehaoua.

Soutenue le 27-10-2016

à Sorbonne Paris Cité , dans le cadre de École doctorale Informatique, télécommunications et électronique de Paris , en partenariat avec Université Paris Descartes (1970-2019) (établissement de préparation) .

Le président du jury était Rami Langar.

Le jury était composé de Ahmed Mehaoua, Rami Langar, Toufik Ahmed, Vlady Ravelomanana, Jocelyne Elias, Ahmed Karmouch, Samir Tohmé.

Les rapporteurs étaient Toufik Ahmed, Vlady Ravelomanana.

  • Titre traduit

    Algorithmes d'optimisation du processus d'allocation de ressources pour l'infrastructure en tant que service en informatique en nuage


  • Résumé

    L’informatique, le stockage des données et les applications à la demande font partie des services offerts par l’architecture informatique en Nuage. Dans ce cadre, les fournisseurs de nuage (FN) agissent non seulement en tant qu’administrateurs des ressources d'infrastructure mais ils profitent aussi financièrement de la location de ces ressources. Dans cette thèse, nous proposons trois modèles d'optimisation du processus d'allocation des ressources dans le nuage dans le but de réduire les coûts générés et d’accroitre la qualité du service rendu. Cela peut être accompli en fournissant au FN les outils formels nécessaires pour réduire au minimum le prix des ressources dédiées à servir les requêtes des utilisateurs. Ainsi, la mise en œuvre des modèles proposés permettra non seulement l’augmentation des revenus du FN, mais aussi l’amélioration de la qualité des services offerts, ce qui enrichira l’ensemble des interactions qui se produisent dans le nuage. A cet effet, nous nous concentrons principalement sur les ressources de l’infrastructure en tant que service (IaaS), lesquels sont contenus dans des centres de données (DCs), et constituent l'infrastructure physique du nuage. Comme une alternative aux immenses DCs centralisés, la recherche dans ce domaine comprend l’installation de petits centres de données (Edge DCs) placés à proximité des utilisateurs finaux. Dans ce contexte nous adressons le problème d’allocation des ressources et pour ce faire nous utilisons la technique d'optimisation nommée génération de colonnes. Cette technique nous permet de traiter des modèles d'optimisation à grande échelle de manière efficace. La formulation proposée comprend à la fois, et dans une seule phase, les communications et les ressources informatiques à optimiser dans le but de servir les requêtes de service d'infrastructure. Sur la base de cette formulation, nous proposons également un deuxième modèle qui comprend des garanties de qualité de service toujours sous la même perspective d'allocation des ressources d’infrastructure en tant que service. Ceci nous permet de fournir plusieurs solutions applicables à divers aspects du même problème, tels que le coût et la réduction des délais, tout en offrant différents niveaux de service. En outre, nous introduisons le scénario informatique en nuage multimédia, qui, conjointement avec l'architecture des Edge DCs, résulte en l'architecture Multimédia Edge Cloud (MEC). Dans ce cadre, nous proposons une nouvelle approche pour l'allocation des ressources dans les architectures informatique en nuage multimédia lors du positionnement de ces DCs afin de réduire les problèmes liés à la communication, tels que la latence et la gigue. Dans cette formulation, nous proposons également de mettre en œuvre des technologies optiques de réseau de fibres pour améliorer les communications entre les DCs. Plusieurs travaux ont proposé de nouvelles méthodes pour améliorer la performance et la transmission de données. Dans nos travaux, nous avons décidé de mettre en œuvre le multiplexage en longueur d'onde (WDM) pour renforcer l'utilisation des liens et les chemins optiques dans le but de grouper différents signaux sur la même longueur d'onde. Un environnement de simulation réel est également présenté pour l’évaluation des performances et de l'efficacité des approches proposées. Pour ce faire, nous utilisons le scénario spécifié pour les DCs, et nous comparons par simulation nos modèles au moyen de différents critères de performances tel que l'impact de la formulation optique sur la performance du réseau. Les résultats numériques obtenus ont montré que, en utilisant nos modèles, le FN peut efficacement réduire les coûts d'allocation en maintenant toujours un niveau satisfaisant quant à l'acceptation de requêtes et la qualité du service.


  • Résumé

    The cloud architecture offers on-demand computing, storage and applications. Within this structure, Cloud Providers (CPs) not only administer infrastructure resources but also directly benefit from leasing them. In this thesis, we propose three optimization models to assist CPs reduce the costs incurred in the resource allocation process when serving users’ demands. Implementing the proposed models will not only increase the CP’s revenue but will also enhance the quality of the services offered, benefiting all parties. We focus on Infrastructure as a Service (IaaS) resources which constitute the physical infrastructure of the cloud and are contained in datacenters (DCs). Following existing research in DC design and cloud computing applications, we propose the implementation of smaller DCs (Edge DCs) be located close to end users as an alternative to large centralized DCs. Lastly, we use the Column Generation optimization technique to handle large scale optimization models efficiently. The proposed formulation optimizes both the communications and information technology resources in a single phase to serve IaaS requests. Based on this formulation, we also propose a second model that includes QoS guarantees under the same Infrastructure as a Service resource allocation perspective, to provide different solutions to diverse aspects of the resource allocation problem such as cost and delay reduction while providing different levels of service. Additionally, we consider the multimedia cloud computing scenario. When Edge DCs architecture is applied to this scenario it results in the creation of the Multimedia Edge Cloud (MEC) architecture. In this context we propose a resource allocation approach to help with the placement of these DCs to reduce communication related problems such as jitter and latency. We also propose the implementation of optical fiber network technologies to enhance communication between DCs. Several studies can be found proposing new methods to improve data transmission and performance. For this study, we decided to implement Wavelength Division Multiplexing (WDM) to strengthen the link usage and light-paths and, by doing so, group different signals over the same wavelength. Using a realistic simulation environment, we evaluate the efficiency of the approaches proposed in this thesis using a scenario specifically designed for the DCs, comparing them with different benchmarks and also simulating the effect of the optical formulation on the network performance. The numerical results obtained show that by using the proposed models, a CP can efficiently reduce allocation costs while maintaining satisfactory request acceptance and QoS ratios.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Descartes-Bibliothèque électronique. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.