Hard and fuzzy block clustering algorithms for high dimensional data

par Charlotte Laclau

Thèse de doctorat en Informatique

Sous la direction de Mohamed Nadif.

Soutenue le 14-04-2016

à Sorbonne Paris Cité , dans le cadre de École doctorale Informatique, télécommunications et électronique (Paris) , en partenariat avec Université Paris Descartes (établissement de préparation) .


  • Résumé

    Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non supervisé un outil indispensable qui permet la découverte de structures et de modèles sous-jacents aux données, sans avoir à \étiqueter les individus manuellement. Parmi les différentes approches proposées pour aborder ce type de problème, le clustering est très certainement le plus répandu. Le clustering suppose que chaque groupe, également appelé cluster, est distribué autour d'un centre défini en fonction des valeurs qu'il prend pour l'ensemble des variables. Cependant, dans certaines applications du monde réel, et notamment dans le cas de données de dimension importante, cette hypothèse peut être invalidée. Aussi, les algorithmes de co-clustering ont-ils été proposés: ils décrivent les groupes d'individus par un ou plusieurs sous-ensembles de variables au regard de leur pertinence. La structure des données finalement obtenue est composée de blocs communément appelés co-clusters. Dans les deux premiers chapitres de cette thèse, nous présentons deux approches de co-clustering permettant de différencier les variables pertinentes du bruit en fonction de leur capacité \`a révéler la structure latente des données, dans un cadre probabiliste d'une part et basée sur la notion de métrique, d'autre part. L'approche probabiliste utilise le principe des modèles de mélanges, et suppose que les variables non pertinentes sont distribuées selon une loi de probabilité dont les paramètres sont indépendants de la partition des données en cluster. L'approche métrique est fondée sur l'utilisation d'une distance adaptative permettant d'affecter à chaque variable un poids définissant sa contribution au co-clustering. D'un point de vue théorique, nous démontrons la convergence des algorithmes proposés en nous appuyant sur le théorème de convergence de Zangwill. Dans les deux chapitres suivants, nous considérons un cas particulier de structure en co-clustering, qui suppose que chaque sous-ensemble d'individus et décrit par un unique sous-ensemble de variables. La réorganisation de la matrice originale selon les partitions obtenues sous cette hypothèse révèle alors une structure de blocks homogènes diagonaux. Comme pour les deux contributions précédentes, nous nous plaçons dans le cadre probabiliste et métrique. L'idée principale des méthodes proposées est d'imposer deux types de contraintes : (1) nous fixons le même nombre de cluster pour les individus et les variables; (2) nous cherchons une structure de la matrice de données d'origine qui possède les valeurs maximales sur sa diagonale (par exemple pour le cas des données binaires, on cherche des blocs diagonaux majoritairement composés de valeurs 1, et de 0 à l’extérieur de la diagonale). Les approches proposées bénéficient des garanties de convergence issues des résultats des chapitres précédents. Enfin, pour chaque chapitre, nous dérivons des algorithmes permettant d'obtenir des partitions dures et floues. Nous évaluons nos contributions sur un large éventail de données simulées et liées a des applications réelles telles que le text mining, dont les données peuvent être binaires ou continues. Ces expérimentations nous permettent également de mettre en avant les avantages et les inconvénients des différentes approches proposées. Pour conclure, nous pensons que cette thèse couvre explicitement une grande majorité des scénarios possibles découlant du co-clustering flou et dur, et peut être vu comme une généralisation de certaines approches de biclustering populaires.

  • Titre traduit

    Algorithmes de block-clustering dur et flou pour les données en grande dimension


  • Résumé

    With the increasing number of data available, unsupervised learning has become an important tool used to discover underlying patterns without the need to label instances manually. Among different approaches proposed to tackle this problem, clustering is arguably the most popular one. Clustering is usually based on the assumption that each group, also called cluster, is distributed around a center defined in terms of all features while in some real-world applications dealing with high-dimensional data, this assumption may be false. To this end, co-clustering algorithms were proposed to describe clusters by subsets of features that are the most relevant to them. The obtained latent structure of data is composed of blocks usually called co-clusters. In first two chapters, we describe two co-clustering methods that proceed by differentiating the relevance of features calculated with respect to their capability of revealing the latent structure of the data in both probabilistic and distance-based framework. The probabilistic approach uses the mixture model framework where the irrelevant features are assumed to have a different probability distribution that is independent of the co-clustering structure. On the other hand, the distance-based (also called metric-based) approach relied on the adaptive metric where each variable is assigned with its weight that defines its contribution in the resulting co-clustering. From the theoretical point of view, we show the global convergence of the proposed algorithms using Zangwill convergence theorem. In the last two chapters, we consider a special case of co-clustering where contrary to the original setting, each subset of instances is described by a unique subset of features resulting in a diagonal structure of the initial data matrix. Same as for the two first contributions, we consider both probabilistic and metric-based approaches. The main idea of the proposed contributions is to impose two different kinds of constraints: (1) we fix the number of row clusters to the number of column clusters; (2) we seek a structure of the original data matrix that has the maximum values on its diagonal (for instance for binary data, we look for diagonal blocks composed of ones with zeros outside the main diagonal). The proposed approaches enjoy the convergence guarantees derived from the results of the previous chapters. Finally, we present both hard and fuzzy versions of the proposed algorithms. We evaluate our contributions on a wide variety of synthetic and real-world benchmark binary and continuous data sets related to text mining applications and analyze advantages and inconvenients of each approach. To conclude, we believe that this thesis covers explicitly a vast majority of possible scenarios arising in hard and fuzzy co-clustering and can be seen as a generalization of some popular biclustering approaches.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Descartes-Bibliothèque électronique. Service commun de la documentation. Bibliothèque électronique.
  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.