Nanostructures en ZnO pour l'électronique et la récupération d'énergie

par Abhishek Singh Dahiya

Thèse de doctorat en Electronique

Sous la direction de Daniel Alquier, Guylaine Poulin et de Nicolas Camara.

Soutenue le 13-07-2016

à Tours , dans le cadre de École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (Centre-Val de Loire) , en partenariat avec SST/12/UMR CNRS 7347 - GREMAN Matériaux, microélectronique, acoustique, nanotechnologies (équipe de recherche) et de Université François Rabelais (Tours). Ecole polytechnique universitaire (laboratoire) .

Le président du jury était Christian. Bergaud.

Le jury était composé de Yamin Leprince-Wang, Salvatore Mirabella.

Les rapporteurs étaient Skandar Basrour, Eva Monroy.


  • Résumé

    Les nanomatériaux et nanotechnologies sont devenus un élément incontournable dans l'électronique de faible puissance, la production énergétique / gestion et les réseaux sans fil, offrant la possibilité de construire une vision pour les capteurs autonomes. Cette thèse s’intéresse au concept de systèmes basse température utilisant des structures de matériaux hybrides organique/inorganique pour la réalisation de dispositifs électroniques faible coût, dont les transistors à effet de champ (FET) et les nanogénérateurs piézoélectriques (nommés PENGs) et ce, sur divers substrats en particulier plastiques. Pour atteindre ces objectifs, ce travail décrit d'abord la croissance contrôlée de nanostructures monocristallines de ZnO en utilisant des approches vapeur-liquide-solide (VLS) et hydrothermales à haute et basse température respectivement. Pour les dispositifs FET, les nanostructures ZnO obtenues par VLS sont utilisées en raison de leur haute qualité structurale et optique. Les sections suivantes présentent des différentes études menées pour optimiser les prototypes FET, comprenant (i) les contacts métal-semiconducteur, (ii) la qualité de l'interface semi-conducteur/isolant et (iii) l'épaisseur de diélectrique organique. La dernière section examine la possibilité de fabriquer des systèmes hybrides organiques/inorganiques pour PENGs utilisant l'approche hydrothermale. Certaines des questions clés, ce qui limitent les performances PENG sont abordés : (i) l'effet de porteurs libres et (ii) l'encapsulation polymère. Ce travail démontre le fort potentiel des ZnO nanostructures pour l'avenir de l'électronique.

  • Titre traduit

    Zno nanostructures for electronic and energy harvesting applications


  • Résumé

    Nanomaterials and nanotechnology has become a crucial feature in low-power electronics, energy generation/management and wireless networks, providing the opportunity to build a vision for autonomous sensors. The present thesis delivers the concept of low-temperature processable organic / inorganic hybrid systems for the realization of inexpensive electronic devices including field-effect transistors (FETs) and piezoelectric nanogenerators (PENGs) on various substrates including plastics. To achieve these objectives, this work first describes the controlled growth of single-crystalline ZnO nanostructures using high-temperature vapor-liquid-solid (VLS) and low-temperature hydrothermal approaches. For the FET devices, VLS grown ZnO nanostructures are used, owing to their high structural and optical quality. Later sections present different studies conducted to optimize the FET prototypes, includes: (i) metal-semiconductor contacts, (ii) semiconductor/insulator interface quality and (iii) organic dielectric thickness. The last section investigates the possibility to fabricate organic / inorganic hybrid systems for PENGs using hydrothermal approach. Some of the key issues, restricting the PENG performances are addressed: (i) screening effect from free charge carriers and (ii) polymer encapsulation. This work demonstrates the high potential of ZnO nanostructure for the future of electronics.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université François Rabelais. Service commun de la documentation. Bibliothèque de ressources en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.