Généralisations du Théorème d'Extension de MacWilliams

par Serhii Dyshko

Thèse de doctorat en Mathématiques

Sous la direction de Philippe Langevin.

Soutenue le 15-12-2016

à Toulon , dans le cadre de École doctorale Mer et Sciences (Toulon) , en partenariat avec Institut de mathématiques de Toulon et du Var (Toulon) (laboratoire) .

Le président du jury était Gilles Zémor.

Le jury était composé de Yves Aubry, Marcus Greferath, André Leroy, Hugues Randriambolona, Jay Wood.


  • Résumé

    Le fameux Théorème d’Extension de MacWilliams affirme que, pour les codes classiques, toute isométrie deHamming linéaire d'un code linéaire se prolonge en une application monomiale. Cependant, pour les codeslinéaires sur les alphabets de module, l'existence d'un analogue du théorème d'extension n'est pas garantie.Autrement dit, il existe des codes linéaires sur certains alphabets de module dont les isométries de Hammingne sont pas toujours extensibles. Il en est de même pour un contexte plus général d'un alphabet de module munid'une fonction de poids arbitraire. Dans la présente thèse, nous prouvons des analogues du théorèmed'extension pour des codes construits sur des alphabets et fonctions de poids arbitraires. La propriétéd'extension est analysée notamment pour les codes de petite longueur sur un alphabet de module de matrices,les codes MDS généraux, ou encore les codes sur un alphabet de module muni de la composition de poidssymétrisée. Indépendamment de ce sujet, une classification des deux groupes des isométries des codescombinatoires est donnée. Les techniques développées dans la thèse sont prolongées aux cas des codesstabilisateurs quantiques et aux codes de Gabidulin dans le cadre de la métrique rang.

  • Titre traduit

    Generalizations of the MacWilliams Extension Theorem


  • Résumé

    The famous MacWilliams Extension Theorem states that for classical codes each linear Hamming isometry ofa linear code extends to a monomial map. However, for linear codes over module alphabets an analogue of theextension theorem does not always exist. That is, there may exists a linear code over a module alphabet with anunextendable Hamming isometry. The same holds in a more general context of a module alphabet equippedwith a general weight function. Analogues of the extension theorem for different classes of codes, alphabetsand weights are proven in the present thesis. For instance, extension properties of the following codes arestudied: short codes over a matrix module alphabet, maximum distance separable codes, codes over a modulealphabet equipped with the symmetrized weight composition. As a separate result, a classification of twoisometry groups of combinatorial codes is given. The thesis also contains applications of the developedtechniques to quantum stabilizer codes and Gabidulin codes.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Toulon. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.