Thèse soutenue

Vésicules lipidiques sous tension : des mésophases aux transitions de formes

FR  |  
EN
Auteur / Autrice : Guillaume Gueguen
Direction : Manoel ManghiNicolas Destainville
Type : Thèse de doctorat
Discipline(s) : Physique de la matière
Date : Soutenance le 14/10/2016
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Sciences de la Matière (Toulouse)

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

La membrane cellulaire est un objet jouant divers rôles en biologie. Elle sert en particulier de barrière sélective entre l'intérieur et l'extérieur d'une cellule. Une membrane est une bicouche majoritairement composée de lipides, particulièrement de phospholipides, entre lesquels des protéines peuvent s'insérer. Les membranes ont besoin de contrôler l'organisation des protéines pour répondre à différentes fonctions biologiques. En physique de la matière condensée une interface signifie généralement une frontière entre deux phases distinctes, les fluctuations de cette frontière pouvant être étudiées avec les outils de la physique statistique et ceux associés aux phénomènes critiques. C'est dans ce cadre que s'insèrent nos travaux. Dans une première partie, nous nous sommes intéressés à l'organisation bidimensionnelle des lipides dans la membrane. Nous avons développé un modèle analytique de vésicule, objet tridimensionnel constitué d'une membrane fermée, où les lipides sont modélisés comme un fluide binaire en proportions différentes dans les deux feuillets de la bicouche. Un hamiltonien de Landau, qui décrit les interactions entre les lipides dans un feuillet, est couplé à un hamiltonien d'Helfrich qui rend compte des propriétés élastiques du système via une courbure spontanée et un module de courbure élastique qui dépendent de la composition locale. Dans ce modèle, le système présente différentes phases thermodynamiques qui peuvent être associées à des domaines soit épais soit courbés. Les domaines épais sont de bons candidats pour modéliser les radeaux (ou "rafts") lipidiques, qui jouent supposément le rôle de plate-forme de signalisation pour les cellules. La seconde partie porte sur l'impact de ces différentes phases sur la forme globale des vésicules. Pour répondre à cette question nous avons développé un programme numérique qui simule des vésicules composées de différents lipides. Lors de la comparaison de nos premiers résultats avec les solutions du modèle analytique, nous nous sommes aperçus qu'il existe une différence importante entre les paramètres élastiques microscopiques et ceux associés aux spectres de fluctuations mesurés. En effet, deux paramètres sufisent pour décrire le modèle de Helfrich, la tension de surface et le module de courbure élastique. Bien que les variations du module de courbure soient faibles, celles de la tension de surface sont importantes. Nous avons obtenus une formule simple qui relie la tension microscopique à celle du spectre des fluctuations. A l'aide de simulations Monte Carlo extensives et précises nous avons vérifié l'accord de ces résultats. De plus, nous avons étudié la transition de la forme sphérique à la forme "érythrocyte" et montré qu'elle pouvait être associée à l'annulation de la tension de Laplace du système. Nous avons également re-exploré la renormalisation des paramètres du modèle d'Helfrich pour une membrane plane et fait une analogie avec le modèle delta non- linéaire, un modèle de spins bien connu en matière condensée.