Etudes des propriétés électriques des matériaux à transition de spin : vers des dispositifs pour la nano-électronique

par Constantin Lefter

Thèse de doctorat en Nano-physique, nano-composants, nano-mesures

Sous la direction de Gábor Molnár et de Adrian Graur.


  • Résumé

    L'objectif central de cette thèse est l'évaluation de la possibilité d'utilisation de complexes moléculaires à transitions de spin pour des applications en nano-électronique. Dans un premier temps, les propriétés électriques du complexe [Fe(Htrz)2(trz)](BF4) et de ces analogues [Fe1-xZnx(Htrz)2(trz)](BF4) ont été analysées sous forme de poudres au moyen de la spectroscopie diélectrique. Il a été montré que les conductivités AC et DC aussi bien que la constante diélectrique et que la fréquence de relaxation diélectrique subissent une baisse importante lors de la transition de l'état bas spin (BS) vers l'état haut spin (HS). Les molécules à base de cations de fer gardent leurs propriétés de transition de spin dans les échantillons dilués de Zn, mais les courbes de transition de spin sont considérablement altérées. La substitution par Zn des centres de fer actifs mène à une importante baisse de la conductivité électrique d'environ 6 ordres de grandeur (pour Zn/Fe = 0.75). Nous concluons de ces résultats que les ions Fe(II) participent directement au processus de transport des charges, qui a été analysé dans le cadre d'un modèle de conductivité par saut de porteurs de charge activé thermiquement. Des particules micrométriques de [Fe(Htrz)2(trz)](BF4) ont été alors intégrées par diélectrophorèse entre des électrodes d'or. Ainsi, nous avons obtenu un dispositif montrant un phénomène de bistabilité lors de la caractérisation I-V, T. La stabilité du matériau initial et le dispositif électronique ont été contrôlés avec précision et les effets concomitants de changements de températures, d'irradiation lumineuse et du champ électrique sur l'intensité du courant ont été analysés en détail. D'une part, nous avons montré que le dispositif peut être adressé de manière préférentielle par une irradiation lumineuse en fonction de son état de spin, et d'autre part, nous avons démontré la commutation de l'état métastable HS vers l'état stable BS par application d'un champ électrique à l'intérieur du cycle d'hystérésis. Les effets de champ ont été discutés dans le cadre de modèles de type Ising statiques et dynamiques, tandis que les phénomènes photo-induits étaient attribués à des effets de surface. Le complexe [Fe(H2B(pz)2)2(phen)] a également été caractérisé par spectroscopie diélectrique sous forme de poudre et ensuite intégré par évaporation thermique sous vide au sein d'un dispositif vertical entre les électrodes en Al et ITO. Cette approche nous a permis de sonder la commutation de l'état de spin dans la couche de [Fe(bpz)2(phen)] par des moyens optiques tout en détectant les changements de résistance associés, à la fois dans les régimes à effet tunnel (jonction de 10 nm) et dans les régimes à injection (jonctions de 30 et 100 nm). Le courant tunnel dans les jonctions à transition de spin diminue durant la commutation de l'état BS vers l'état HS, tandis que le comportement de rectification des jonctions " épaisses " ne révélait aucune dépendance significative à l'état de spin. L'ensemble de ces résultats ouvre la voie à de nouvelles perspectives pour la construction de dispositifs électroniques et spintroniques incorporant des matériaux à transition de spin.

  • Titre traduit

    Study of electrical properties of bistable molecular materials : towards nanoelectronic devices


  • Résumé

    The central theme of this thesis is the evaluation of potential interest and applicability of molecular spin crossover (SCO) complexes for nanoelectronic applications. The electrical properties of the [Fe(Htrz)2(trz)](BF4) complex and its Zn substituted analogues were analyzed first in the bulk powder form using broadband dielectric spectroscopy. It has been shown that the ac and dc conductivities as well as the dielectric constant and the dielectric relaxation frequency exhibit an important drop when going from the low spin (LS) to the high spin (HS) state. The iron ions kept their spin transition properties in the Zn diluted samples, but the SCO curves were significantly altered. The Zn substitution of active iron centers led to an important decrease of the electrical conductivity of ca. 6 orders of magnitude (for Zn/Fe = 0.75). We concluded from these results that the ferrous ions directly participate to the charge transport process, which was analyzed in the frame of an activated hopping conductivity model. Micrometric particles of [Fe(Htrz)2(trz)](BF4) were then integrated by dielectrophoresis between interdigitated gold electrodes leading to a device exhibiting bistability in the I-V,T characteristics. The stability of the starting material and the electronic device were carefully controlled and the concomitant effect of temperature changes, light irradiation and voltage bias on the current intensity were analyzed in detail. We showed that the device can be preferentially addressed by light stimulation according to its spin state and the switching from the metastable HS to the stable LS state was also demonstrated by applying an electric field step inside the hysteresis loop. The field effects were discussed in the frame of static and dynamic Ising-like models, while the photo-induced phenomena were tentatively attributed to surface phenomena. The [Fe(bpz)2(phen)] complex was also investigated by dielectric spectroscopy in the bulk powder form and then integrated by high vacuum thermal evaporation into a large-area vertical device with Al (top) and ITO (bottom) electrodes. This approach allowed us to probe the spin-state switching in the SCO layer by optical means while detecting the associated resistance changes both in the tunneling (10 nm junction) and injection-limited (30 and 100 nm junctions) regimes. The tunneling current in the thin SCO junctions showed a drop when going from the LS to the HS state, while the rectifying behavior of the 'thick' junctions did not reveal any significant spin-state dependence. The ensemble of these results provides guidance with new perspectives for the construction of electronic and spintronic devices incorporating SCO molecular materials.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (125 p.)

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2016 TOU3 0003
  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.