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Summary (English)  

 

 

 

Recognition networks in RNA and RNA/protein systems are modulated by numerous non-covalent 

interactions. While hydrogen bonds are well described, less common and often overlooked 

non-covalent interactions coexist with them. During my thesis, I focused on the structural and 

functional implications of several of these non-covalent interactions in nucleic acids. To that end, I 

used computational techniques such as quantum mechanical calculations, molecular dynamics (MD) 

simulations, as well as screening of chemical structural databases of small molecules (CSD: 

Cambridge Structural Database) and larger biomolecular structures (PDB). 

The main topic of my research is related to the study of a general class of these non-covalent 

interactions within RNAs, namely the stacking of backbone oxygen atoms with nucleobases to form 

“oxygen-” contacts. This stacking occurs in two forms where a nucleobase stacks with: (i) an anionic 

phosphate oxygen atom; (ii) a ribose O4’ atom. Through a survey of PDB crystallographic structures, 

I verified that the former contacts, belonging to the family of “anion-” interactions, are recurrently 

part of the signature of GNRA tetraloops and tRNA anticodon loops. These contacts are of a “capping” 

type and result from the sharp turn inherent to these loops, incidentally protecting a nucleobase from 

solvent. I showed by MD simulations that strongly bound (long-lived) water molecules belonging to 

phosphate first solvation shell are present in these loops. I further established that anion- interactions 

do not occur in proteins, while cation- do occur only in proteins but not in nucleic acids and linked 

these observations to the electrostatic potentials of their aromatic groups, which differ in proteins and 

nucleic acids. This finding has fundamental implications on how we perceive stacking interactions in 

biomolecular systems. 

The alternative oxygen- stacking, involving O4’ atoms, occurs in the UNCG tetraloops family 

and caps a nucleobase in a similar manner. This led us to reconsider the global structural signature of 

all tetraloops by integrating these two rare non-covalent interaction types. Hence, we suggest that it is 

possible to categorize all tetraloops in two basic families of turns instead of more than ten as deduced 

in the literature. Additionally, the widely established correlation between a loop sequence and its 

structure is not always straightforward, as we highlighted with several ribosomal loops that adopt 
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unexpected folds, displaying that our capabilities of predicting 3D folds from sequences are still far 

from perfection. In parallel we discovered that two UNCG-fold tetraloops inside the ribosome are 

involved in specific long-range RNA interactions, which prompted us to describe UNCG receptors 

that result from the assembly of several distant structural motifs in opposition to the well-known 

GNRA receptors that are double strand motifs. As an outcome, UNCG receptors can probably only 

occur in very large structures of the rRNA size and can give insights on ribosome biogenesis. We also 

showed that UNCG tetraloops contain a CpG step where a C2’-endo pucker (for the cytosine) and a 

syn guanine coexist. This step adopts a “Z-like” conformation that is similar to the CpG dinucleotide 

steps found in Z-DNA. Although rare, these motifs are present at key locations in RNA riboswitches, 

ribozymes, aptamers and ribosomes and are relevant for folding, protein binding and immune 

response. This finding led to the conclusion that Z-conformations are not only specific to DNA but 

are present at various locations in RNA with functions yet to discover. 

Besides non-covalent interactions, biomolecular systems need the assistance of solvent to form and 

maintain their active folds. Nucleic acids are no exception to that. We wrote two reviews to 

complement our knowledge of the intricate relationship nucleic acid structures entertain with the 

solvent. The first addresses the roles monovalent cations play in nucleic acid systems and emphasizes 

that the hardly biologically relevant Na+ ion that is predominantly used in in vitro experiments often 

overshadows the more biologically relevant K+ ion. The second review establishes that anions, 

frequently used in crystallographic buffers, can interact with nucleotides and that some of them 

(sulphates, carboxylate containing anions, …) can adopt unexpected protonation states. Therefore, 

their incidence has to be more carefully considered in solvent attribution procedures. Indeed, we found 

that Asp and Glu amino acid side chains are sometimes in close contact to phosphate groups and are 

consequently protonated. In order to better understand these interactions, we surveyed the CSD and 

classified all interaction types of carboxyl(ate) groups with themselves. We found that “carboxyl” 

groups can participate in very short hydrogen bonds (≈ 2.5 Ǻ) while “carboxylate” groups show 

standard hydrogen bond lengths (≈ 2.8 Ǻ). Such short hydrogen bonds involving carboxyl-carboxylate 

pairs are frequent in proteins. I participated also in the analysis of Mg2+ interactions with nucleic acids 

through a PDB survey. Mg2+ ions are essential for nucleic acid structure and function, but their 

identification in databases is often not reliable. We first analyzed the binding of Mg2+ ions to 

nucleobase imine atoms to infer a set of rules that can promote a more reliable identification of these 

important ions and other solvent molecules.  

The structure and properties of solvent surrounding RNA were also studied by MD simulations at 

different temperatures. The rationale behind this study are related to gaining a better understanding on 

how RNA systems are affected by temperature changes at the level of their interactions with the 

solvent at a pre-melting stage. These solvent interactions and their variation in temperatures are 

probably highly sequence dependent as shown by preliminary results on RNA duplexes. We developed 
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this methodology to investigate the stability of tetraloops when their sequence is altered and 

consequently, the stability of the oxygen-stacking interactions. 

To summarize, the results of my PhD work complement our knowledge of several uncommon non 

covalent interactions in RNA and RNA/protein systems. They are significant for RNA structure and 

function as well as for improving our understanding of biomolecular recognition networks. As a 

perspective, my work aims to help structural determination with techniques such as x-ray 

crystallography and computational methods, as well as elucidating biologically relevant mechanisms 

related to immune response and RNA folding. 
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Resumé (Français) 

 

 

 

Les réseaux de reconnaissance biomoléculaire dans les systèmes ARN et ARN/protéines sont 

modulés par de nombreuses interactions non-covalentes. Alors que les liaisons hydrogène sont bien 

décrites, des interactions non-covalentes rares et souvent négligées coexistent avec elles. Au cours 

de ma thèse, je me suis concentré sur les implications structurales et fonctionnelles de plusieurs de 

ces interactions non-covalentes dans les acides nucléiques. À cette fin, j'ai utilisé des techniques 

informatiques telles que des calculs de mécanique quantique, de simulations de dynamique 

moléculaire (DM), ainsi que l’analyse de bases de données structurales de petites molécules (CSD: 

Cambridge Structural Database) et des structures biomoléculaires (PDB). 

Le sujet principal de ma recherche est lié à l'étude d'une classe particulière de ces interactions 

non-covalentes au sein des ARN, le « stacking » ou empilement des atomes d'oxygène du squelette 

phosphaté avec des nucléobases format des interactions « oxygen- ». Cet empilement se présente 

sous deux formes, un empilement de nucléobases avec : (i) un atome anionique d'oxygène d’un 

groupement phosphate ; (ii) un atome O4’ du ribose. Par une analyse des structures 

cristallographiques de la PDB, j’ai vérifié que les premières interactions, du type « anion- », font 

partie de la signature des tétraboucles de type GNRA et de la boucle anticodon dans les ARN de 

transfert. Ces interactions sont de type « capping » et résultent du tournant du squelette phosphaté 

inhérent à ces boucles. Par ailleurs, elles protégeant une nucléobase du solvant. J’ai montré par des 

simulations de DM que des molécules d’eau présentes dans la première couche d’hydratation des 

phosphates de ces boucles sont fortement liées et montrent temps de résidence élevés. J’ai aussi établi 

que les interactions anion- ne se produisent pas dans les protéines. D’un autre côté, les interactions 

cations- peuvent apparaitre dans les protéines mais pas dans les acides nucléiques. J’ai lié ces 

observations aux potentiels électrostatiques des groupes aromatiques qui diffèrent dans les protéines 

et les acides nucléiques. Cette constatation a des implications fondamentales sur la façon dont nous 

percevons les interactions d’empilement dans les systèmes biomoléculaires. 

L’empilement « oxygen- » impliquant des atomes O4' apparait dans les tétraboucles UNCG et 

protège une nucléobase d'une manière similaire aux interactions « anion- » décrites plus haut. Cela 
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nous a conduits à reconsidérer la signature structurale globale de toutes les tétraboucles en intégrant 

ces deux types d'interactions non-covalentes rares. Nous suggérons qu'il est possible de classer tous 

les tétraboucles en seulement deux familles au lieu de plus de dix comme décrit dans la littérature. 

En outre, la corrélation établie entre une séquence et sa structure de boucle n’est pas toujours simple, 

comme nous l'avons souligné pour plusieurs boucles ribosomiques qui adoptent des structures 

inattendues, montrant que nos capacités de prédiction de structures 3D sont encore perfectibles. En 

parallèle, nous avons découvert que deux tétraboucles adoptant des repliements de type UNCG au 

sein du ribosome sont impliquées dans des interactions spécifiques d'ARN à longue distance, ce qui 

nous a permis de décrire les récepteurs UNCG qui résultent de l'assemblage de plusieurs motifs 

structuraux éloignés en opposition aux récepteurs GNRA qui impliquent des motifs en double brin. 

Ainsi, les récepteurs UNCG peuvent apparaître dans de très grandes structures de la taille des ARN 

ribosomaux et peuvent nous donner des indications sur la biogenèse du ribosome. Nous avons 

également montré que les tétraboucles UNCG contiennent un pas CpG où un plissement de type 

C2'-endo et une guanine en syn coexistent. Ce pas adopte une conformation « Z-like » qui est 

semblable à ceux formant des doubles hélices d’ADN de forme Z. Bien que rares, ces motifs sont 

présents à des endroits clés dans les riboswitches, ribozymes, aptamères et ribosomes et sont 

importants pour le repliement, la reconnaissance des protéines, et la réponse immunitaire. Cette 

constatation a conduit à la conclusion que les « conformations-Z » ne sont pas seulement spécifique 

à l'ADN, mais sont présents à divers endroits dans l'ARN avec des fonctions encore à découvrir. 

Outre que les interactions non-covalentes, les systèmes biomoléculaires ont besoin du solvant 

pour former et maintenir leurs plis actifs. Les acides nucléiques ne font pas exception. Nous avons 

écrit deux articles de revues pour compléter nos connaissances sur la relation complexe des structures 

d'acide nucléique avec le solvant. La première adresse les rôles que les cations monovalents jouent 

dans les systèmes d'acides nucléiques et souligne que l’ion Na+, peu relevant au niveau intracellulaire, 

est principalement utilisé dans les expériences in vitro en remplacement l’ion K+ qui est dominant 

dans les milieux intracellulaires. Le deuxième article de revue établit que les anions, fréquemment 

utilisés dans les solutions cristallographiques, peuvent interagir avec les nucléotides et que certains 

d'entre eux (sulfates, anions contenant des groupements carboxylate, ...) peuvent adopter des états de 

protonation inattendus. Par conséquent, leur incidence doit être considérée avec plus d’attention dans 

les procédures d'attribution du solvant. En effet, nous avons constaté que les chaînes latérales d'acides 

aminés Asp et Glu sont parfois en contact avec des groupes phosphate et sont par conséquent 

protonées. Afin de mieux comprendre ces interactions, nous avons exploré la CSD et classé tous les 

types d'interaction des groupes carboxyl(ates) avec eux-mêmes. Nous avons constaté que les groupes 

« carboxyle » peuvent participer à des liaisons hydrogène très courtes (≈ 2,5 Å) tandis que les groupes 

« carboxylate » montrent des longueurs de liaison hydrogène standard (≈ 2,8 Å). Ces liaisons courtes 

impliquent des paires carboxyle-carboxylate et sont fréquents dans les protéines. J'ai également 
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participé à l'analyse des interactions entre ions Mg2+ et acides nucléiques. Les ions Mg2+ sont 

essentiels pour la structure et la fonction des acides nucléiques, mais leur caractérisation dans les 

bases de données est souvent problématique. Nous avons analysé d'abord les interactions des ions 

Mg2+ avec azotes de type « imine » des nucléobases pour déduire un ensemble de règles qui peuvent 

favoriser une identification plus fiable de ces ions dans les structures cristallographiques de manière 

à mieux cerner leur rôle biologique et éviter les erreurs d’interprétations encore trop fréquentes. 

La structure et les propriétés du solvant entourant l'ARN ont également été étudiées par des 

simulations de DM à différentes températures. Cette étude a visé à une meilleure compréhension de 

la façon dont les systèmes d'ARN sont affectés par les changements de température au niveau de 

leurs interactions avec le solvant à un stade de « pré-melting ». Ces interactions du solvant et leur 

variation avec la température sont probablement très dépendantes de la séquence comme le montrent 

les résultats préliminaires sur des duplexes d'ARN. Nous avons développé cette méthode afin 

d’étudier la stabilité des tétraboucles lorsque leur séquence est modifiée et donc la stabilité des 

interactions « oxygen- ».  

Pour résumer, les résultats de mon travail de thèse complètent notre connaissance de plusieurs 

interactions non-covalentes rares dans les systèmes ARN et ARN/protéines. Ils sont importants pour 

mieux comprendre la structure et la fonction des différents ARN présents dans les systèmes 

cellulaires du vivant, ainsi que pour améliorer notre compréhension des réseaux de reconnaissance 

biomoléculaire. Comme perspective, mon travail a produit des données qui aideront à la 

détermination structurale de systèmes ARN avec des techniques telles que la cristallographie aux 

rayons X et les méthodes informatiques, ainsi que l’étude des mécanismes liés à la réponse 

immunitaire et le folding d’ARN. 
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Thesis overview 

 

 

 

This manuscript contains a detailed overview of the work conducted during my thesis between 

September 2013 and September 2016. I worked under the supervision of Dr Pascal Auffinger at the 

IBMC – Strasbourg (France), within the UPR 9002 “Architecture et réactivité de l’ARN” directed by 

Prof. Eric Westhof. The first part of the manuscript contains introductory notions on RNA function 

and structure, as well as non-covalent interactions and environmental effects that participate in 

maintaining biomolecular recognition networks. In the following part, I detail some of the procedures 

and methods utilized for the purpose of studying RNA and RNA-protein systems at the atomic scale. 

The body of the thesis is split into several sections, with published and unpublished results presented 

in a logical rather than chronological order. 

The first topic is the study of “uncommon” non-covalent interactions in RNA, namely oxygen- 

stacking between backbone oxygen atoms and nucleobases. Anion- and cation- interactions in 

nucleic acids and proteins are analyzed in the Paper 1: 

 D’Ascenzo L., Leonarski F. and Auffinger P. Cation- versus anion- interactions — 

biomolecules can’t have both. In preparation. 

The stacking between O4’ ribose atoms and nucleobases follows, with an emphasis on its occurrence 

in “Z-DNA like” fragments within RNA. This topic is discussed in the Paper 2: 

 D’Ascenzo L., Leonarski F., Vicens Q. and Auffinger P. “Z-DNA like” fragments in RNA: a 

recurring structural motif with implications for folding, RNA/protein recognition and immune 

response. Nucleic Acid Res. 2016, 44, 5944-56 (PubMed). 

In the following section tetraloop motifs are analyzed in respect of their structural signature and the 

tertiary interactions in which they take part. A novel perspective in defining tetraloop folds is presented 

in Paper 3: 

 D’Ascenzo L., Leonarski F., Vicens Q. and Auffinger P. Revisiting GNRA and UNCG 

folds: U-turns versus Z-turns in RNA hairpin loops. In press in RNA (pdf). 

The section is closed by a discussion on the novel UNCG tetraloop receptors found inside the 

ribosome.  

https://www.ncbi.nlm.nih.gov/pubmed/27151194
https://drive.google.com/open?id=0B3qM_8JaOSWGaHh1eE5mQ2xIcFk
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Environmental effects are the argument of the next section, mostly studied via the binding of ionic 

species to nucleic acids and MD simulation with variable temperatures. The interactions of 

monovalent sodium and potassium ions with nucleic acids is the argument of Review 1: 

 Auffinger P., D'Ascenzo L. and Ennifar E. Sodium and potassium interactions with nucleic 

acids. Met. Ions Life Sci. 2016, 16, 167-201 (PubMed). 

The binding of magnesium to nucleic acids and the issues encountered in its structural analysis are 

discussed in Paper 4 and Paper 5: 

 Leonarski F., D’Ascenzo L. and Auffinger P. Binding of metals to purine N7 nitrogen 

atoms and implications for nucleic acids: a CSD survey. Inorg. Chim. Acta 2016, 452, 82-9 

(Link). 

 Leonarski F., D’Ascenzo L. and Auffinger, P. Mg2+ ions: do they bind to nucleobase nitrogens? 

In press in Nucleic Acid Res (Link). 

Conversely, the binding of anions to nucleic acids and their usage in crystallography are discussed in 

Review 2: 

 D’Ascenzo L. and Auffinger P. Anions in nucleic acid crystallography. Methods Mol. Biol. 

2016, 1320, 337-51 (PubMed). 

The following chapters are devoted to aspartate and glutamate interactions with nucleic acids. A 

broader perspective on carboxyl-carboxylate interactions is presented in Paper 6: 

 D’Ascenzo L. and Auffinger P. A comprehensive classification and nomenclature of 

carboxyl-carboxyl(ate) supramolecular motifs and related catemers: implications for 

biomolecular systems. Acta Cryst. 2015, B71, 164-75. (PubMed) 

The section concludes with preliminary data of MD simulations on RNA to assess temperature effects 

on its structure. The manuscript is closed by conclusive remarks, with a perspective on forthcoming 

MD studies on environmental effects in crowding conditions. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1007%2F978-3-319-21756-7_6
http://ac.els-cdn.com/S0020169316301578/1-s2.0-S0020169316301578-main.pdf?_tid=c8acf7ea-2c9d-11e6-8ca3-00000aacb35d&acdnat=1465296867_0532159c132b49568496dfc3ccbc6726
http://nar.oxfordjournals.org/content/early/2016/12/06/nar.gkw1175.full.pdf+html
https://www.ncbi.nlm.nih.gov/pubmed/26227054
https://www.ncbi.nlm.nih.gov/pubmed/25827369
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1.1 Structure-function relationship in biology  

Our understanding of living entities is associated with the intimate correlation between structure 

and function, common to all levels of biological organization. The thin and hollow bones of the birds 

skeleton lighten their weight, making flying easier, as the unique and still puzzling structure of 

biological membranes allow cells to exist as we know them. Since the beginning of natural philosophy, 

early investigators and scientists were fascinated by the concept that the behavioral repertoire of 

biological beings was orchestrated from within (Fernald 2011). This inner force is directly rooted in 

their structure, a notion expressed in a sublime way by D. A. Spalding in 1873 (Spalding 1873). 

When, as by a miracle, the lovely butterfly bursts from the chrysalis full-winged and 

perfect, and flutters off a thing of soft and gorgeous beauty, it but wakes to a higher 

life, to a new mode of existence, in which, strange though it may sound, it has, for the 

most part, nothing to learn; because its little life flows from its organization like melody 

from a music box. 

- Douglas A. Spalding, 1873 - 

We can expand this concept stating that at every level of organization of life functions and 

properties of biological entities flow from their organization like melody from a music box. The same 

notion applies to biological macromolecules, and among them ribonucleic acids (RNA), which 

structures embed from their synthesis the potential to achieve very specific and unique functions. This 

emphasizes the importance of structural studies on biomolecules. In the past decades the structural 

investigations have been focused on the heterogeneity of biomolecules (especially RNA), showing 

that they can be considered “modular” systems (Wagner et al. 2007). This concept is associated with 

the partitioning of macromolecular structures into distinct subunits (or motifs), which contribute to 

maintain equilibrium states in thermodynamic environments, genetic context and folding kinetics. 

Even the simplest of those motifs has the potential to combine with others to form large units and to 

play a specific role within the final biomolecular architecture. However, a less obvious consideration 

is that many of these structural motifs can behave differently when embedded in large and complex 

systems compared to when they are isolated. This characteristic can be exploited to generate a great 

diversity of dynamic building blocks with novel ensembles of biochemical functions. Under this 

perspective, RNA is structurally and functionally more similar to proteins than to the chemically 

related DNA. Although RNA structural motifs have been extensively studied and described (Hendrix 

et al. 2005; Holbrook 2005; Leontis et al. 2006; Butcher and Pyle 2011), there are still overlooked but 

remarkable characteristics embedded inside their structural signatures (Sections I and II).  
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Besides, biomacromolecules operate and interact inside complex cellular environments, in 

particular physico-chemical conditions that make cells more than a collection of unconnected 

molecules. Thus, all the structural information are limited without explicit considerations of the 

context where they are observed, especially for biomolecular recognition. Environmental effects are 

the master of biomolecular structures and interaction networks, generating complex but fascinating 

biological entities obedient to thermodynamic laws. Overall, the study of these dynamic systems and 

their fundamental principles is a highly intriguing and rewarding endeavor, as will be shown in Section 

III.  

1.2 RNA 

1.2.1 An essential biological actor 

RNA is, with DNA and proteins, one of the essential component of all known forms of life. It is a 

common principle of molecular biology that genetic information coded in DNA is transferred through 

RNA to the final steps of protein synthesis. This central dogma was first proposed by Francis Crick 

in 1956 (“Ideas on protein synthesis”) and was subsequently summarized as “DNA makes RNA and 

RNA makes proteins”. It was believed that RNA could accomplish only three major roles in the cell: 

(i) embody a copy of part of the DNA, able to leave the nucleus effectively acting as a messenger, 

from which the name of messenger RNA (mRNA) was derived; (ii) act as a decoder of the genetic 

code transcribed in mRNA and amino acids, in the form of transfer RNA (tRNA); (iii) be a structural 

component of ribosomes (rRNA), playing a fundamental role in the machinery responsible for protein 

synthesis. However, since 1960 this monochromatic picture has been complemented with more colors. 

In fact, RNA can achieve in the cell a much more interesting ensemble of functions than initially 

thought (Cech and Steitz 2014). The discoveries made in this fields have been so relevant for biology 

that numerous authors were awarded with Nobel prizes. 

Early RNA molecular and structural biologists focused their investigations on tRNA, because of 

its importance in decoding, small size (73-93 nucleotides) and availability (Clark 2006). Therefore, it 

is not surprising that the first breakthrough in the RNA field was the primary structural determination 

of a tRNA, by R. Holley’s group in 1965 (Holley et al. 1965). Later on, at the beginning of 1970s, the 

tRNA structure was solved by X-ray crystallography by both A. Rich and A. Klug groups (Kim et al. 

1973a; Ladner et al. 1975). Concomitantly, in 1970 H. Temin and D. Baltimore independently showed 

that several RNA tumour viruses contain an enzyme, named reverse transcriptase, that reverse-

transcribes the viral RNA genome into DNA, which is then integrated into the host genome and 

replicated along with it (Baltimore 1970; Temin and Mizutani 1970). The discovery of reverse 

transcription was the first step of a revision of the classical concept of genetic information flow that 

happened in the decades following 1960.  

https://en.wikipedia.org/wiki/_History_of_RNA_biology#Nobel_Laureates_in_RNA_biology
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Several years later, R. J. Roberts and P. A. Sharp groups showed that genes of higher organisms 

are mosaics of coding and non-coding sequences, all of which are transcribed to mRNA (Chow et al. 

1977; Berget et al. 2000); the non-coding sections of freshly transcribed RNA, called introns, are 

removed from the transcript and the remaining sequences, called exons, are joined together in the final 

mature RNA, during a process called RNA splicing. Another major breakthrough in RNA biology 

happened during 1980s, when T. Cech and S. Altman groups showed that RNAs can also act as 

enzymes (called ribozymes) for specific biochemical reactions (Kruger et al. 1982; Guerrier-Takada 

et al. 1983), such as reactions at the core of RNA splicing (Fica et al. 2013) and in the ribosome (that 

is itself a ribozyme (Steitz and Moore 2003)). It became clear that the so-called non-coding RNAs are 

more than genetic debris as firstly thought for introns, and can have multiple regulatory roles on many 

levels from genetic expression to cellular functions (Morris and Mattick 2014). The first regulatory 

RNA to be identified and sequences has been the E. coli 6S RNA in 1971, by G. Brownlee (Brownlee 

1971). Following this seminal work, many other regulatory RNAs have been identified, in particular 

a family of short (~22 nucleotides) fragments, called microRNA (miRNA; (Lee et al. 1993; Reinhart 

et al. 2000). miRNAs control the expression of numerous genes by base pairing with their mRNA 

target sequences and are involved in the mechanism of gene silencing through sense-antisense RNA 

pairing known as RNA interference (RNAi; Fire et al. 1998; Waterhouse et al. 1998). More recently, 

a new family of regulatory non-coding RNA was found inside the large eukaryotic introns, 

characterized by elements of more than 200 nucleotide in length called long non-coding RNA 

(lncRNA) (Mercer et al. 2009). lncRNAs have been involved in the regulation of differentiation, 

development, epigenetic processes, suspected to participate in aging and play roles in various diseases, 

thus becoming a very hot research topic (Morris and Mattick 2014). Fig. 1.1 shows a schematic view 

of the “central dogma” complemented with discoveries on non-coding RNAs.  
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More surprising examples of regulatory RNAs come from bacteria, where they are involved in the 

adaptive response to environmental factors. Riboswitches are mRNA segments that act in cis by 

binding metabolites in order to regulate gene expression thus functioning as “environmental sensors” 

(Tucker and Breaker 2005; Garst et al. 2011). Particularly interesting is the T-box riboswitch, that 

regulates intracellular availability of amino acids through binding aminoacylated or free tRNAs 

(Henkin 2014; Zhang and Ferre-D'Amare 2015). Other small guide RNA are transcribed and 

processed from virus-derived DNA sequences incorporated in the bacterial genome, termed Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR); the guide RNAs are complexed with 

effectors such as Cas proteins to specifically target and cleave viral DNA or RNA (Hale et al. 2009; 

Marraffini and Sontheimer 2010). This system is the base of the CRISPR/Cas9 genome engineering 

technique (Kapral et al. 2014).  

As showed by this synthetic historical perspective, many new RNA biological functions have 

emerged since the central dogma. In parallel, structural analysis have made significant steps forward 

since the tRNA structures to elucidate more complex RNA architectures, such as ribosomes. In 

particular, biochemical and biophysical investigations allow us to appreciate the landscape of 

structural features connected to the versatility, dynamicity and plasticity of RNA molecules.  

Figure 1.1. ‘Central dogma’ in the context of regulatory non-coding RNAs. The concept of 

the “central dogma” has been complemented with aspects of ncRNAs functions.  

From: (Wahlestedt 2013). 
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1.2.2 A complex architecture made by simple building blocks 

Our current structural knowledge of RNA is due to advances in structure determination using X-ray 

crystallography, nuclear magnetic resonance (NMR) and more recently cryo-electron microscopy 

(cryo-EM). However, these techniques have limitations for elucidating the dynamics and convey little 

information about the folding steps between a linear sequence and a complex tertiary architecture 

(Cruz and Westhof 2009). These gaps are beginning to be filled with several experimental and 

theoretical biophysical tools, including single-molecule optical traps, time-resolved fluorescence 

resonance energy transfer (FRET), hydroxyl radical footprinting and molecular dynamics simulations 

(MD). Although based on approximate models, these techniques enrich our understanding of the 

remarkable dynamicity shown by biomolecules. 

RNA structure, analogously to proteins, can be described at different level of organization, which 

combined together yield the complex architectures of molecules such as tRNAs and ribosomes (Fig. 

1.2). At the primary sequence level, RNA is composed of nucleotides made of a backbone of 

phosphate groups linking ribose units by phosphodiester bonds. Each ribose has a nucleobase attached 

at the 1’ carbon (glycosidic bond). The four RNA nucleobases are adenine (A), cytosine (C), guanine 

(G) and uracil (U). From a chemical point of view, adenine and guanine are purines, while cytosine 

and uracil are pyrimidines. There are local variations to this basic scheme, with more than one hundred 

characterized modified nucleobases (Sun et al. 2016), ranging from isomers such as pseudouridine (Ψ 

or PSU) to extensively substituted nucleobases such as wybutosine (Motorin and Grosjean 2005). The 

RNA backbone is rotameric and can be characterized by six main torsion angles (named from 5’ to 3’ 

with lower-case Greek letters from alpha, α, to zeta, ζ) around the covalent bonds, the χ angle of the 

Figure 1.2. Examples of RNA structure. (a) tRNAPhe (PDB: 1EHZ; res.: 1.9 Å; Shi and Moore 

2000) (b) 70S ribosome from E. coli complexed with ribosomal proteins (PDB: 4YBB; res.: 2.1 

Å; Noeske et al. 2015). 
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glycosidic bond and the sugar pucker (Fig. 1.3; Saenger 1984); these parameters generate a great 

number of accessible stable conformations (Murray et al. 2003). In an attempt to define a consensus 

classification and nomenclature, 46 discrete clusters of RNA backbone conformers have been 

identified within RNA structures (Richardson et al. 2008).  

The second organization level of RNA is constituted by the Watson-Crick base-paired helical 

regions, which together define the secondary structure. The scaffold for this structure is provided by 

non-covalent interactions, mostly base-base stacking and inter-nucleotide hydrogen bonds. Canonical 

Watson-Crick base pairs, known to promote helical structures, exist together with non-canonical base 

pairs and hydrogen bonds between nucleobases and the backbone, which promote single strands and 

other structural motifs (Westhof and Auffinger 2000). N. B. Leontis and E. Westhof proposed a 

scheme to classify all the possible base pairs, based on the definition of three distinct interacting edges 

for nucleobases: the Watson-Crick edge (WC), the Hoogsteen edge (H) and the Sugar edge (S, Fig. 

1.4). This, together with the cis or trans orientation of glycosidic bonds, originates 12 basic geometric 

types with at least two hydrogen bonds connecting the bases (Leontis and Westhof 2001; Leontis et 

al. 2002).  

Figure 1.3. RNA nucleobases and backbone conformations. (a) RNA strand fragment, with 

5’ to 3’ direction shown by an arrow and explicit base atom numbering (b) Backbone torsion 

angles of a nucleotide. Adapted from: (Saenger 1984). 
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Appropriate conditions can induce structured RNA molecules to undergo a transition from an 

unfolded state to a unique 3D fold in which the helices and the unpaired regions are precisely organized 

in space. This RNA tertiary structure is constituted by secondary elements associated through 

numerous van der Waals contacts and specific hydrogen bonds (Butcher and Pyle 2011). The 

formation of additional unusual pairs allows to generate many diverse structural motifs such as hairpin 

loops. These motifs can be considered as building blocks and at the same time as modules of a higher 

organization level, which confer to RNA the nature of a modular biomolecule. 

Figure 1.4. Fundamentals of the Leontis-Westhof base pair classification (Leontis and 

Westhof 2001). (a) Edges for purine and pyrimidine bases (b) G=C cWW base pair (c) G•U tWS 

base pair.  
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1.2.3 A modular biomolecule 

During recent decades, the original connotation of “sequence motifs” has extended to structural 

and tertiary motifs, which have been defined variously as “directed and ordered stacked arrays of non 

Watson-Crick base pairs forming distinctive foldings of the phosphodiester backbone of the 

interacting RNA strands” (Leontis and Westhof 2003) and “a discrete sequence or combination of 

base juxtapositions found in naturally occurring RNAs in unexpectedly high abundance” (Moore 

1999). These descriptions variously capture the nature of RNA structural motifs. They have interested 

and fascinated structural scientists since the determination of the first RNA structures, namely tRNAs, 

obtained by X-ray crystallography (Kim et al. 1973b; Ladner et al. 1975). In this structure, the 

similarity between the anticodon and the TΨC hairpin loop prompted the authors to name them uridine 

turn or “U-turn”, defining a new family of structural motifs (Quigley and Rich 1976). This family has 

been expanding since, with the inclusion of GNRA tetraloops among others (Jucker and Pardi 1995a). 

The characteristic geometry of U-turns allows the last three bases of the loop to be stacked and made 

available for tertiary interactions (Fig. 1.5a), as observed in the codon-anticodon recognition and for 

the long range interactions involved in GNRA receptors (Jaeger et al. 1994; Geary et al. 2008; Fiore 

and Nesbitt 2013). U-turns constitute stable structural motifs by themselves, but they are 

simultaneously structural modules or sub-motifs for more complex architectures. Many RNA 

structural motifs show this multidimensional relevance, providing stability to local structure on one 

side and maintaining the global fold on the other. 

Other examples of RNA structural motifs or sub-motifs (that need to be part of larger assemblies 

to exist) with multidimensional relevance are: base triples, helices, hairpin loops (other than U-turns), 

internal loops, bulges, kink-turns, pseudoknots (Fig. 1.5). Further instances, such as A-minor and 

ribose zippers, are only involved in tertiary long range interactions and therefore found especially in 

larger RNA structures (Cate et al. 1996; Nissen et al. 2001). Altogether, these families constitutes 

some instances of the still expanding repertoire of motifs found in RNA structures (Hendrix et al. 

2005; Holbrook 2005; Leontis et al. 2006; Butcher and Pyle 2011).  

The structural modules are the nails and screws (sub-motifs), but also the hinges and locks (motifs) 

around which RNA fold in spectacular and complex architectures such as ribosomes (Noller 2005). 

Among the RNA structural motifs, the main focus of my work has been on tetraloops, which are 

widely spread inside RNA and embed particularly relevant intermolecular stacking interactions. 
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1.2.3.1 Tetraloops 

Tetraloops are ubiquitous RNA hairpin loops of four nucleotides that cap helical stems and are 

closed by at least one canonical Watson-Crick base pair (Cheong et al. 2015). Furthermore, they 

contribute to long-range 3D interactions (Fiore and Nesbitt 2013) and nucleic acid-protein interactions 

(Thapar et al. 2014). They are composed of just four nucleobases because a loop of three or less 

nucleotides is usually not long enough to connect antiparallel base paired strands, whereas increasing 

the loop size to more than 4 nucleotides may be accompanied by a loss in compactness. Although any 

combination of four nucleotides could in principle form a tetraloop, some sequences are preferred, 

mostly due to favorable thermodynamic stability and/or a potential for forming long-range 

interactions. The most extensively studied tetraloops, identified by their sequences, are GNRA, UNCG 

(YNMG) and CUYG, where N is any base, R is a purine, Y is a pyrimidine and M is either adenine or 

cytosine (Moore 1999; Klosterman et al. 2004; Butcher and Pyle 2011; Hall 2015). These loops were 

Figure 1.5. Examples of RNA structural motifs. (a) Kink-turn (b) T-loop (c) C-loop (d) U-turn 

(e) Hexaloop (f) Hook turn (g) Loop E (h) G-ribo (i) Family A and family B three way junctions. 

Adapted from: (Masquida et al. 2010). 
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also found to be thermodynamically very stable (Antao and Tinoco 1992). This stability stems from 

specific 3D folds associated with their sequence, which involve extensive networks of hydrogen bonds 

and stacking interactions (Cheong et al. 1990; Jucker and Pardi 1995b; Jucker et al. 1996; Ennifar et 

al. 2000; Nozinovic et al. 2010). A notable addition to the classical tetraloop families is the tRNA 

anticodon loop, which is a tetraloop shaped inside a larger seven membered loop, and as such not 

closed by a Watson-Crick base pair (Auffinger and Westhof 2001a). Other tetraloop families have 

been characterized by X-ray crystallography and NMR studies, but in contrast to the previously 

described motifs, several of them have never been observed as independent motifs. This is for instance 

the case of GANC tetraloops observed in group IIC introns (Keating et al. 2008). Hitherto, no 

evidences of the dualistic role for local and global structure exist for these tetraloops. An overview of 

the most relevant proposed tetraloop families can be found in Table 1.1. 

It is a common practice to associate a given tetranucleotides sequence (especially belonging to one 

of the main families) with a known specific tertiary fold. However, this assumption can sometimes be 

incorrect, affecting the prediction of structures such as long non-coding RNA, which quite the opposite 

seem to be mostly devoid of defined 3D structures (Rivas et al. 2016). To avoid these issues, it is better 

to refer to tetraloops associating a structure-based classification such as for U-turns. In fact, U-turn 

motifs are frequently associated with tetraloop and tetraloop-like structures. Yet, the U-turn motif 

poses a classical semantic issue. This motif was defined as a U(ridine)-turn, since the best known 

U-turn is found in tRNA anticodon loops where the universally conserved U in position 33 initiates 

Table 1.1. Tetraloop families based on sequence classification. For each family, identified by 

its sequence, it is reported if the tetraloop has been characterized by X-ray crystallography and/or 

NMR. 

 Family Methoda Reference(s) 

GNRA  X, N (Michel and Westhof 1990; Heus 

and Pardi 1991; Pley et al. 1994)  

UNCG 

(YNMG) 

 X, N (Tuerk et al. 1988; Cheong et al. 

1990; Ennifar et al. 2000) 

CUYG   Xb, N (Woese et al. 1990; Jucker and Pardi 

1995b) 

GYYA  N (Melchers et al. 2006) 

GANC   X (Keating et al. 2008) 

UNAC  X, N (Zhao et al. 2012) 

UGAA  N (Butcher et al. 1997) 

UYUM  N (Zanier et al. 2002; Thapar et al. 

2014)  

UUUU   N (Deng and Cieplak 2007) 

AGNN  N (Wu et al. 2004) 

AUYG  N (Duszczyk et al. 2011) 

AAGU  N (Gaudin et al. 2006) 

AUYA  X (Valegård et al. 1997) 

 aStructural method of characterization. X = X-ray crystallography, N = NMR   
bOnly embedded in larger hairpin motif 
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the turn. Thus, it has the double meaning of a turn starting by a U and also fits the classical U-turn 

definition that implies for an automobile driver to perform a 180° inversion to face the opposite 

direction. However, it later became obvious that the U-turn term can also efficiently describe the turns 

in GNRA loops that are initiated by the 1st residue, a G. Moreover, U-turns starting by an 

N3-protonated cytosine (C+) were described (Gottstein-Schmidtke et al. 2014). Even the stacking 

between three last loop residues that form a three-nucleotide long mini-helix is sometimes not 

conserved. Actually, in related structures this stack is disrupted and the tetraloop becomes a T-loop 

motif, where the canonical base stacking is replaced by long-range intercalations.  

Besides their involvement in RNA interaction networks, tetraloops were generally thought to be 

initiation sites for RNA structure folding (Uhlenbeck 1990). As such, they are ideal targets for 

simulation studies on RNA structure and folding, especially based on MD simulations (Deng and 

Cieplak 2010; Chen and Garcia 2013). These studies gave useful insights into the dynamical steps 

followed by the RNA structure from an extended conformation to the final tetraloop fold (Haldar et 

al. 2015; Bottaro et al. 2016). However, they still suffer from issues related to MD parametrization 

concerning balance of forces and incomplete sampling of the whole conformational space. Although 

numerous studies are addressing these problems (Bergonzo et al. 2015; Kuhrova et al. 2016), we are 

still far from being able to systematically simulate the ab initio folding of all tetraloop motifs. 

All things considered, even relatively simple RNA motifs such as tetraloops still hide surprises in 

their structure and thus their functions, despite having been studied for decades. The possibility of 

shedding light on some of these remarkable but often overlooked aspects motivated us to study 

tetraloops. In particular, we focused on the non-covalent interactions that constitute their structural 

signature and describe their involvement in more complex interaction networks. 

1.3 “Uncommon” non-covalent interactions in biomolecules 

The structural and functional variability of RNA molecules, reflected in the diversity of structural 

motifs, originates from non-covalent interactions outside canonical double helix contexts. Base 

stacking and hydrogen bonds are the most appreciated of these interactions. Hydrophobicity-driven 

base stacking is considered a primary promoter of RNA folding, much like the hydrophobic effect that 

drives protein folding (Butcher and Pyle 2011). On the other hand, besides hydrogen bonds responsible 

of base pairing, interactions between nucleobases and backbone atoms are diverse, as shown for 

instance in a classification of nucleobase-phosphate interactions (Zirbel et al. 2009). However, a 

plethora of less common non-covalent interactions coexist with these two and orchestrate the 

structures of biomolecules. A systematic characterization of all relevant interactions is currently 

missing, limiting our complete understanding of important biological phenomena and hampering the 

parametrization of these interactions in simulation experiments.  
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Considering the aromatic character of each nucleobase, non-covalent interactions involving the  

systems are particularly remarkable for both nucleic acid structures and more generally for 

(bio)molecular recognition (Krygowski et al. 2014; Persch et al. 2015). Capping interactions, 

characterized by nucleobase planar faces “capped” by diverse atomic or molecular species, are 

particularly interesting. This family includes O/NH-π, CH-π, cation-π, anion- and lone pair- 

interactions (Fig. 1.6; Salonen et al. 2011).  

Cation- interactions have been found in protein systems and have been extensively described as 

electrostatic interactions between a cationic species and the negatively polarized aromatic -system 

(Dougherty 1996; Ma and Dougherty 1997). Surprisingly, no occurrences of cation- interactions 

involving free cations have been reported in nucleic acids so far. Compared to cation- anion- 

interactions are less intuitive. They are formed by a negative species interacting with an electron 

deficient (sometimes referred to as “acidic”) -system belonging to a ring substituted with 

electron-withdrawing groups (de Hoog et al. 2004; Schottel et al. 2008; Wang and Wang 2013). The 

physico-chemical nature of anion- interactions in biomolecules has been studied with quantum 

mechanical calculations by S. E. Wheeler, who showed that exocyclic substituents do not significantly 

modify -electron densities (Wheeler and Houk 2010). Rather, the interactions of the ion with the 

local substituent and heteroatoms induced dipoles (“through-space effects”) that more accurately 

describe the physico-chemical phenomena underlying anion- interactions (Wheeler and Bloom 

2014a; Wheeler and Bloom 2014b). Still, there are ongoing questions in the chemical world about the 

nature of anion- interactions (Giese et al. 2015). Computational studies, crystallographic results and 

gas-phase experiments support the attractive nature of anion- interactions (Arranz-Mascaros et al. 

2013; Estarellas et al. 2013), but other investigations suggest that anion- may be too weak to compete 

with other non-covalent interactions (Hay and Custelcean 2009; Giese et al. 2012).  

Figure 1.6. Examples of interactions. (a) - stacking (b) CH- (c) OH- (d) NH- (e) 

Cation- (f) Anion-. The dashed lines represent an interaction with the whole system rather 

than a specific position. 
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The so-called lone pair- interactions in nucleic acids have also been investigated to determine 

their stabilization or destabilization character (Egli and Sarkhel 2007). They are formed by an electron 

rich atom from a neutral molecule that caps an aromatic nucleobase face. The stacking of O4’ ribose 

oxygen atoms with nucleobases, participating in the architecture of both DNA and RNA, has been 

included in the family of lone-pair- interactions (Egli and Gessner 1995). This O4’- capping contact 

is characteristic of Z-DNA CpG dinucleotide steps, where specific “slide” values of the 

purine-pyrimidine arrangement cause the cytosine ribose to be stacked under the guanine plane 

adopting the less common syn glycosidic bond conformation (Wang et al. 1981). During my PhD 

work, we identified the same interaction pattern in RNA and specifically in UNCG tetraloops (Paper 

2).  

All these interactions coexist in systems that are constantly affected by the context in which 

biomolecules function. Considerations about environmental effects are therefore fundamental to better 

comprehend the local interaction properties.  

1.4 Relation between biomolecules and the environment 

Biomolecules inside living cells fold into stable functional forms in a complex crowded 

environment composed of many small and large solutes, all solvated in water medium. These unique 

conditions are different from the environments commonly reproduced in vitro or in cristallo 

experiments and have been shown to affect structures and functions of biomolecules in still largely 

unknown ways (Nakano et al. 2014; Sharp 2016). For instance, studies conducted on ribozymes 

showed that the presence of crowding agents affects folding, activity and limit the number of cations 

required for catalysis compared to the higher ion requirement in diluted in vitro experiments (Desai et 

al. 2014; Paudel and Rueda 2014).  

Biomolecules are always solvated and physical parameters such as temperature modulate their 

structure and thus their functions. The polyanionic nature of nucleic acids is responsible for the 

interaction of a large number of diverse charged species, together with water molecules. The solvation 

layer of water molecules plays a crucial role for nucleic acid function, both indirectly, by stabilizing 

native conformations, and directly by actively participating in biological processes (Ball 2008). In 

fact, well-ordered water molecules in the first hydration shell of nucleic acids showing long residency 

times (up to nanoseconds) in MD simulations (Auffinger and Westhof 2000; Auffinger and Westhof 

2001b; Kürova et al. 2014) can be considered an integral part of nucleic acid structure (Westhof 1988). 

On the solute side, charged species interacting with nucleic acids are for a large part metal ions, with 

Mg2+ recognized as the most relevant cation for RNA folding, structure and function (Woodson 2005; 

Auffinger et al. 2011; Erat et al. 2012). The relevance of metal ions and their distribution in cellular 

compartments was pioneered by R. J. P. Williams, who coined the term “metallome” during his studies 

on the evolution of life’s chemistry (Williams 2001).  
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The metallome must be recognized as fundamental feature of a cellular compartment 

which is linked but not quantitatively to the proteome and the genome since it is related 

also to environmental availabilities and to energy supply. 

- Robert J. P. Williams, 2001 - 

Several inorganic anionic species have also been found to interact with the first hydration shell of 

nucleic acids, through interactions with the electropositive regions of nucleobases (Auffinger et al. 

2004). The structural data available on binding of charged solute molecules to nucleic acids come 

mostly from crystallographic structures. However, as discussed in Paper 5 and Paper 6 for Mg2+ ions, 

there are several issues with identification and attribution procedures for small solute atoms. A critical 

and educated eye reveals many likely errors hidden inside structural data.  

The involvement of RNA in complex biomolecular interaction networks extend the considerations 

on solute interactions to protein recognition. Theoretically, all 22 amino acids can interact with 

multiple RNA binding sites to form classical hydrogen bonds or “uncommon” non-covalent 

interactions of other types. However, statistical approaches have provided some insights on these 

interactions and revealed that the positively charged Arg and Lys amino acids display the strongest 

preference for interacting with nucleotides and especially with the negatively charged phosphate 

groups (Treger and Westhof 2001; Coulocheri et al. 2007). Hydrophobic Leu, Ala, Ile and Val amino 

acids interact less frequently than Arg or Lys with nucleotides, by forming van der Waals contacts 

with the bases or sugar moieties rather than phosphates type or engaging the peptide carbonyl and 

imino groups. Interestingly enough, negatively charged Asp and Glu residues are quite frequent at the 

interface between nucleic acids and proteins. These amino acids form pseudo-base pairs with 

H-bonding groups on the edges of nucleobases, with some surprising occurrences where the 

carboxylate group appears to be protonated (Kondo and Westhof 2011). In fact, the local chemical 

environment in a biomolecular system can significantly change the microscopic pKa values of 

ionizable groups (Pace et al. 2009). Interestingly, the occurrence of neutral Asp and Glu side chains 

has already been shown in proteins (Wohlfahrt 2005; Fisher et al. 2012). Considering their diffusion, 

studies on carboxyl(ate) groups and their assembly properties are particularly relevant for crystal 

engineering (Desiraju 2013). 

All things considered, studying the complex effects of environment on biomolecular systems is a 

daunting task. Information on solvent binding and molecular recognition can be gathered by structural 

studies, but to grasp the dynamicity of biological systems techniques such as MD simulations are 

needed. MD allows also to implement a certain degree of control on physical parameters such as 

temperature, giving approximated results on a model of how complex systems are modulated by 

environmental effects. As a final remark, it is always important to keep in mind the truth that the Gibbs 

free energy formula tells us. This universally known equation goes as 

𝐺 = 𝐻 − 𝑇𝑆, where G is the free energy, H the enthalpy, T the temperature and S the entropy, all 
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parameters usually expressed as differences between a starting and a final state of a process. In other 

terms, the local energetic aspect of interactions in Nature (H) is meaningless if taken alone as driving 

force, since it always coexists with factors determined by contextual conditions (TS). Thus, a holistic 

vision of biomolecular interaction networks is bound to include environmental effects.  

 





 

 

 

 

 

 

 

2. Methods 
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Most of my thesis work has been devoted on analyzing biomolecular structural data available in 

online structural databases. In this section the general steps of database surveys are presented, followed 

by information on how structural data have been elaborated during my investigations. Further details 

on the format of structural files, redundancy criteria and the procedures adopted for very large 

ribosomal structures are also presented. Altogether, the information contained in this section will 

complement the methodological details presented within published material.  

2.1 Database surveys 

Structural data on nucleic acids, proteins and smaller molecules were extracted from two online 

databases: the Protein Data Bank (PDB; Berman et al. 2012) and the Cambridge Structural Database 

(CSD; Allen 2002; Groom et al. 2016). The PDB is a worldwide known repository of biological 

macromolecular structures, born from a project of X-ray diffraction data deposition in 1970s. As of 

August 2016, it contains ~120,000 structures of proteins, nucleic acids and protein/nucleic acid 

complexes, obtained by X-ray diffraction, NMR, cryo-EM and other techniques. ~110,000 are 

structures obtained by X-ray diffraction and among them ~7000 structures contain nucleic acids. The 

CSD is a repository for small-molecule organic and metal-organic crystal structures, containing over 

800,000 entries from X-ray and neutron diffraction analyses. Structures deposited in this database are 

of a significant smaller scale than PDB structures, thus being solved at generally higher resolution. 

The characteristics of the surveys run on these two databases follow.  

2.1.1 CSD survey 

Searches in the CSD have been performed with the ConQuest software (Bruno et al. 2002), setting 

filters in order to exclude disordered and error-containing structures. A remarkable feature of the 

ConQuest search engine is the possibility to draw atoms, bonds and distances to find chemical 

fragments inside molecules. Therefore, it is very handy to isolate precise interaction motifs. When 

needed, explicit hydrogen atom positions have been used. As a general quality control, the searches 

were restricted to structures with crystallographic R-factor values ≤ 0.05, with the exception of 

remarkable examples. Unfortunately, even high resolution structures deposited in the CSD are not free 

of errors (Spek 2009). To assess this issue, the Mercury visualization software (Macrae et al. 2008) 

has been used for structural analyses and some of the structures associated with unreasonable 

geometrical parameters were eliminated after visual inspection.  

2.1.2 PDB survey: retrieving and processing structural data 

A general resolution cutoff of 3.0 Å was applied in retrieving PDB X-ray diffraction structures. 

This value is chosen as a compromise between having the best resolution structures available and 

including biologically relevant ribosomes that diffract at lower resolution than smaller RNAs. As of 
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August 2016, in the PDB there are ~5800 structures containing nucleic acids at resolution ≤ 3.0 Å, 

which contain ~635,000 nucleotides. The structural data are stored on the PDB servers inside textual 

PDB files of a defined format. A more in-depth analysis of PDB file format and their issues is 

presented in the following part, while the special case of ribosome structures is analyzed later. This 

data has been retrieved and parsed using Perl scripts, which integrate DSSR (Dissecting the Spatial 

Structure of RNA; Lu et al. 2015) part of the 3DNA analysis tools package (Lu and Olson 2003). These 

tools allow to obtain structural information at the nucleotide level, including for instance glycosidic 

angle values, backbone torsion angles and sugar puckers. Furthermore, DSSR dissects the tertiary 

structure of nucleic acids, identifying canonical and non-canonical base pairs (including those with 

modified nucleotides), nucleobase-backbone hydrogen bonds, nucleobase stacking and also structural 

motifs such as hairpin loops, internal loops and pseudoknots. A general distance cutoff of 3.5 Å has 

been used for hydrogen bonds. All the data obtained for each nucleotide, together with information 

present in the PDB file such as crystallographic B-factors and occupancy, have been stored in MySQL 

tables. A single row contains all the structural information on each nucleotide and is identified by a 

univocal IDnucleo. This 10 character primary key is composed by the PDB identifier of the structure 

bearing the nucleotide, together with the residue number and chain identifier of the nucleotide 

retrieved from the PDB file.  

Concomitantly, PyMOL (Schrödinger, L.L.C) scripts have been used to obtain: (i) 

symmetry-generated molecules with symmetry information stored inside PDB files; (ii) files 

containing nucleotides together with their solvation sphere; (iii) files containing nucleotides and the 

proximity environment; (iv) many other files with isolated nucleobase, backbone phosphates, base 

pairs, capping molecules and so on. These files are connected with the information inside the database 

by sharing the same 10 character IDnucleo. 

2.1.2.1 PDB File Format vs mmCIF File Format 

Most of the PDB entries are distributed in the PDB File Format (file extension .pdb) following the 

specification described in the Contents Guide Version 3.30 (2012). The PDB File Format was created 

in 1976 to be human-readable, allowing international researchers to exchange protein coordinates 

through a common database system. Its original format was limited to 80 columns, based on the width 

of the computer punch cards that were used at the time to exchange the coordinates (Berman 2008). 

Nowadays, it is no longer being modified or extended to support new content. A limitation of the PDB 

File Format is that large structures containing more than 62 chains and/or 99,999 ATOM records 

cannot be fully represented, so these structures were split among multiple PDB files identified with 

the label SPLIT. For this and other limitations, in 2014 the standard PDB archive format became 

PDBx/mmCIF, which can contain even the largest entries in a single file. The mmCIF File Format 

(file extension .cif), developed under the auspices of the International Union of Crystallography 

(IUCr), was created to extend the Crystallographic Information File (CIF) data representation used for 

http://www.wwpdb.org/documentation/file‑format


 
23 

    

describing small molecule structures and associated diffraction experiments (Brown and McMahon 

2002). A dictionary for mmCIF files (identified from now on as “CIF files” for short) is available at 

http://mmcif.wwpdb.org. CIF files have no limitations for the number of atoms, residues or chains that 

can be represented in a single PDB entry. They consist in category of information represented as tables 

and keyboard value pairs with explicit relationship with one another, making the data content fully 

software accessible. All of the data items in the PDB format have corresponding items data in CIF 

files. 

Analyzing the file format, a PDB file consists of a series of records each identified by a keyword 

(e.g. HEADER) of up to 6 characters. The format and content of fields within a given record is 

dependent on the record type. A CIF file, on the other hand, is composed by a series of _name 

value pairs. The name is distinguished from the value by a leading underscore. For instance, the 

COMPND record, describing the macromolecular content of an entry, of the PDB entry 1CBN would 

be represented as follows: 

        HEADER    PLANT SEED PROTEIN                    11-OCT-91   1CBN 

 

That in the analogous CIF file becomes: 

                _struct.entry_id                '1CBN' 

                _struct.title                   'PLANT SEED PROTEIN' 

 

                _struct_keywords.entry_id       '1CBN' 

                _struct_keywords.text           'plant seed protein' 

 

                _database_2.database_id          PDB 

                _database_2.database_code        1CBN 

 

                _database_PDB_rev.num                   1 

                _database_PDB_rev.date_original 1991-10-11 

 

This is not very efficient if for each data name there are multiple values, for example in PDB ATOM 

records, where the coordinates and information on every atom of the structure are stored within a line. 

This issue is dealt in CIF files with using a loop_ construct. An example of the PDB ATOM records 

follows: 

ATOM      1  OP3   G A   1      50.193  51.190  50.534  1.00 99.85           O   

ATOM      2  P     G A   1      50.626  49.730  50.573  1.00100.19           P   

ATOM      3  OP1   G A   1      49.854  48.893  49.562  1.00100.19           O   

 

That in the analogous CIF file becomes: 

loop_ 

    _atom_site.group_PDB 

    _atom_site.id 

    _atom_site.type_symbol 

    _atom_site.label_atom_id 

http://mmcif.wwpdb.org/
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    _atom_site.label_comp_id 

    _atom_site.label_asym_id 

    _atom_site.label_seq_id 

    _atom_site.label_alt_id 

    _atom_site.cartn_x 

    _atom_site.cartn_y 

    _atom_site.cartn_z 

    _atom_site.occupancy 

    _atom_site.B_iso_or_equiv_esd 

    _atom_site.auth_asym_id 

    _atom_site.auth_atom_id 

    _atom_site.pdbx_PDB_model_num 

  ATOM  1  O  OP3 G   A  11 . 50.193  51.190  50.534  1.00  99.85 A OP3 1 

  ATOM  2  P  P   G   A  11 . 50.626  49.730  50.573  1.00 100.19 A P   1 

  ATOM  3  O  OP1 G   A  11 . 49.854  48.893  49.562  1.00 100.19 A OP1 1 

#               (data omitted) 

 

The structure of the _name is on the form _category.extension, where a category contains a natural 

grouping of data items intuitive to a crystallographer. There is no restriction on the length or contents 

of _name (compared to the 6 character limit of a PDB keyword), but special characters are not allowed. 

While there is no formal specification in _name beyond the category and extension, the extension is 

usually represented as an informal hierarchy of parts, with each part separated by an underscore. 

Although CIF files are unpractical for visual line-by-line analysis, their structure makes automatic 

parsing a lot easier compared to the more “reading-friendly” PDB files. 

2.1.2.2 Dealing with large ribosomal structures 

CIF files are particularly useful to describe ribosomes, because they allow to contain all the 

information on the subunits and the proteins in just one file, making data editing and visualization 

easier. As of August 2016, the PDB contains 138 ribosome structures with resolution ≤ 3.0 Å, obtained 

with X-ray (135) or cryo-EM (3). These structures can contain solely the large or small subunit, or the 

whole 70S/80S ribosome. The majority of these ribosomes come from prokaryotic organisms such as 

E. coli (15), T. thermophilus (51) and H. marismortui (57), while the only eukaryotic organism with 

7 ribosomal structures at resolution ≤ 3.0 Å is yeast (S. cerevisiae). Table S1 of Paper 6 contains a 

list with all ribosomal structures at resolution ≤ 3.0 Å in the PDB, along with further useful 

crystallographic information.  

The large number of residues of ribosome structures requires specific criteria in order to include 

their nucleotides inside the MySQL database. Sixty-four over the mentioned 138 ribosome structures 

have only CIF files available, and during the data elaboration showed issues related to residue chain 

identification and numbering. To assess these issues, the chain identifiers of the structure have been 

renamed and numerated with a conserved arbitrary system based on the nature of the subunit. 

Moreover, many ribosomal structures are composed by up to four biological assemblies in the 

asymmetric unit. The asymmetric unit contains the unique part of a crystal structure, thus the smallest 

portion of a crystal structure from which the complete unit cell can be generated by applying symmetry 
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operations. From this unit cell, by copy and translation the whole crystal is generated. Conversely, a 

biological assembly is the structure that is believed to be the functional form of the macromolecule 

and is generally the unit of interest, in the case of ribosomes the 70S/80S complex. This means that 

many ribosomal 70S/80S assemblies can be present simultaneously in the same asymmetric unit, so 

in the same PDB structure described by a CIF file. To assess the issue, only one biological assembly 

was kept for these structures, the choice of which was based on the lowest all-atom average B-factor. 

Moreover, when numbering discrepancies emerged, we chose the structures with numbering 

consistent with the 2D structures found at http://apollo.chemistry.gatech.edu/RibosomeGallery 

(Petrov et al. 2013).  

The previous criteria allowed to identify the “best” ribosomal structure for every organism. Further, 

to expand the description to all ribosomal structures, analogous criteria were applied on all ribosomal 

structures deposited in the PDB, without limitation on resolution or structural method. Also 

mitochondrial ribosomes have been included in this analysis. The resulting list of the best resolution 

ribosomal structures (and their subunit with lower average B-factor) sorted by organism is presented 

in Table 2.1. When only one ribosomal subunit is available, the structure is considered different from 

the one with the whole ribosome. 

Table 2.1. List of the “best” PDB ribosomal structures sorted by organism. Entries are ordered 

by increasing biological assembly molecular weight. For each structure is reported: PDB identifier, 

deposition date, resolution (Å), number of residues, “best” subunit for our criteria, structural method 

(X for X-ray, C for cryo-EM) and reference. (Last update: 20/07/2016) 

PDB code Deposition Reso. N° res. Best sub. Method Reference 

T. thermophilus (30S) 

2VQE 13/03/2008 2.50 4086 -/A X (Kurata et al. 2008) 

T. thermophila (40S) 

4BTS 17/07/2013 3.70 30568 -/AA X (Weisser et al. 2013) 

D. radiodurans (50S) 

5DM6 08/09/2015 2.90 6490 X/- X (Kaminishi et al. 2015) 

H. marismortui (50S) 

4V9F 02/11/2012 2.40 7583 0/- X (Gabdulkhakov et al. 2013) 

T. thermophila (60S) 

4V8P 14/09/2011 3.52 43352 A1/- X (Klinge et al. 2011) 

S. aureus (50S) 

4WFA 14/09/2014 3.39 6252 X/- X (Eyal et al. 2015) 

S. cerevisiae (60S) 

5APO 17/09/2015 3.41 11657 5/- C (Greber et al. 2016) 

L. donovani (60S) 

3JCS 21/01/2016 2.80 11330 1-8/- C (Shalev-Benami et al. 2016) 

T. thermophilus (70S) 

4Y4O 10/02/2015 2.30 21468 2A/2a X (Polikanov et al. 2015) 

E. coli (70S) 

4YBB 18/02/2015 2.10 20744 DA/BA X (Noeske et al. 2015) 

T. thermophilus (70S) 

http://apollo.chemistry.gatech.edu/RibosomeGallery
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5A9Z 23/07/2015 4.70 11326 AA/BA C (Kumar et al. 2015) 

B. subtilis (70S) 

3J9W 16/03/2015 3.90 10618 BA/AA C (Sohmen et al. 2015) 

E. coli (70S) 

5AFI 22/01/2015 2.90 11418 A/a C (Fischer et al. 2015) 

S. cerevisiae (80S) 

4U4R 24/07/2014 2.80 35344 6/5 X (Garreau de Loubresse et al. 2014) 

S. cerevisiae (80S) 

3J6X 16/04/2014 6.10 17770 2S/1S C (Koh et al. 2014) 

H. sapiens (80S) 

4UG0 20/03/2015 3.60 20197 L5/S2 C (Khatter et al. 2015) 

O. cuniculus (80S) 

3JAH 10/06/2015 3.45 18529 5/9 C (Brown et al. 2015) 

S. scrofa (80S) 

3J7P 01/08/2014 3.50 19429 5/S2 C (Voorhees et al. 2014) 

P. falciparum (80S) 

3J79 (60S) 02/06/2014 3.20 11190 A/- C (Wong et al. 2014) 

3J7A (40S) 02/06/2014 3.20 7121 -/A C (Wong et al. 2014) 

T. aestivum (80S) 

4V7E 22/11/2013 5.50 19110 Aa/Ad C (Gogala et al. 2014) 

K. lactis (80S) 

4V91 (60S) 21/03/2014 3.70 10675 1/- C (Fernandez et al. 2014) 

4V92 (40S) 21/03/2014 3.70 6733 -/A2 C (Fernandez et al. 2014) 

D. melanogaster (80S) 

4V6W 27/02/2013 6.00 20752 A5/B2 C (Anger et al. 2013) 

T. brucei (80S) 

4V8M 09/12/2012 5.57 19735 BA-B/AA C (Hashem et al. 2013) 

Mitochondrial ribosomes 

S. cerevisiae (LSU) 

3J6B 22/01/2014 3.20 11821 A/- C (Amunts et al. 2014) 

H. sapiens (LSU) 

3J7Y 26/08/2014 3.40 12106 A/- C (Brown et al. 2014) 

H. sapiens (55S, class I) 

3J9M 08/02/2015 3.50 20405 A/AA C (Amunts et al. 2015) 

S. scrofa (55S) 

5AJ4 20/02/2015 3.80 19413 BA/AA C (Greber et al. 2015) 

  

 

In the following sections, the examples from ribosome structures will be selected from structures 

present in this list.  

2.2 Data elaboration 

The structural data available in MySQL tables and textual files generated by DSSR and PyMOL has 

been processed via Python, Shell and MySQL scripts, together with statistical analysis tools. In order 
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to isolate the best examples for each structure and to avoid statistical bias we defined a general 

ensemble of criteria to assess nucleotide redundancy, based on local structural parameters. 

2.2.1 Redundancy 

A structural analysis of biomolecules with indiscriminate usage of the entire set of structures would 

be biased towards the most represented structures, which, by size and number, are the ribosomes. The 

application of redundancy criteria would therefore help to identify the best resolved and modeled 

representative of each structure class. Sequence-based redundancy criteria for nucleic acids have been 

used to create widely used non-redundant set such as RefSeq (Pruitt et al. 2005). More in-depth 

redundancy criteria involving also 3D comparison have been proposed (Leontis and Zirbel 2012) and 

are routinely used in annotation, classification and 3D motif-searching tools such as FR3D (Sarver et 

al. 2008).  

We adopted a similar approach, considering the structural parameters of single nucleotides and the 

solvent molecules in their environment. Non-redundant nucleotides inside PDB structures were tagged 

as follows. If two nucleotides from different structures share a same residue numbers, chain codes, 

trinucleotide sequences, ribose puckers, backbone dihedral angle sequences (using the g+, g-, t 

categorization) and syn/anti conformations, they are considered as similar and the one with the best 

resolution is marked as non-redundant. In case of matching resolutions, the nucleotide with the lowest 

B-factor is selected. Alike, if in a same structure two nucleotides share the same residue numbers and 

trinucleotide sequences (with different chain codes) as well as ribose puckers, backbone dihedral angle 

sequences and syn/anti conformations, they are considered as similar and the one corresponding to the 

first biological unit is marked as non-redundant. The former criteria are used to filter similar structures 

and the latter for filtering structures with multiple related biological assemblies. To note that it is 

impossible to completely eliminate redundancy from a dataset without eliminating at the same time 

significant data. These criteria provide an upper limit of a truly “non-redundant” set that marks already 

close to 3/4 of all ~635,000 nucleotides as redundant.  

For specific searches, such as those related to metal ion coordinating to nucleic acids, specific 

redundancy criteria have been used. These criteria take into account also the redundancy of the ion 

and are detailed in the Methods part of the respective Paper.  

2.3 Structure visualization and modelling 

Structures were visualized and analyzed with PyMol and UCSF Chimera (Pettersen et al. 2004), 

the latter also used in association with Assemble2 for 3D modeling of RNA structures (Jossinet et al. 

2010). The general visual inspection of structural features was conducted with a careful evaluation of 

the most relevant or unusual aspects by eye, integrating structural crystallographic information with 

electron density maps. 
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2.3.1 Electron density maps 

Electron density maps are a three-dimensional description of the electron density in a crystal 

structure. They are calculated as function of the xyz coordinates by the Fourier transform of the 

structure factors (Fhkl), which are the description of the diffracted waves from the electron “clouds” of 

atoms in the crystal lattice. Different electron density maps can be calculated and provided for various 

purposes, such as direct, difference or composite maps. During the structure evaluation I mostly used 

2Fo-Fc (Fo = observed structure factors, Fc = calculated structure factors) composite maps and Fo-Fc 

difference maps. 2Fo-Fc composite maps are used to evaluate the fitting of the electron density for the 

structure, while Fo-Fc difference maps are used to find differences between the true structure and the 

available model. The Fo-Fc  and 2Fo-Fc electron density maps were retrieved from the Electron Density 

Server (EDS) at Uppsala University (Kleywegt et al. 2004). When these maps were not available, 

typically for large ribosomal structures or novel depositions, we calculated them with phenix.maps 

(Adams et al. 2010) using the structure factors deposed in the PDB. During structural evaluation, a 

general rule of thumb was applied regarding the σ level of electron density maps. A local 

structure/interaction has been found trustworthy when the densities of residues are defined beyond 2.0 

σ on the 2Fo-Fc map. Density maps for cryo-EM structures were obtained from the EMDataBank 

(Lawson et al. 2016). These maps are obtained with different procedures compared to X-ray 

diffraction, but convey analogous structural information. 

2.4 Quantum mechanical calculations 

Electrostatic potential (ESP) maps, also known as electrostatic potential energy maps, have been 

widely used to provide a representation of the charge distributions of molecular systems (Naray-szabo 

and Ferenczy 1995; Ma and Dougherty 1997; Wheeler and Houk 2009). They illustrate with color 

scales the charge of molecules three-dimensionally, allowing a rapid evaluation of variably charged 

regions. Knowledge of the charge distributions can be used to determine the most likely/unlikely way 

for molecules to interact. ESP calculations are accomplished in two steps: (i) definition of isodensity 

surfaces composed of points with the same electron density contouring a molecule; (ii) calculation of 

the electrostatic potential energy between an imaginary positive charge (+1) located on every single 

point of the isodensity surface and the molecule. If the imaginary charge is attracted to the molecule 

then the calculated potential is negative and if the same charge is repelled, the calculated potential is 

positive. Electron-rich regions usually display negative potentials and electron-poor or depleted 

regions display positive ones. To accurately analyze the charge distribution of a molecule, a very large 

quantity of electrostatic potential energy values must be calculated. A software then imposes the 

calculated data onto an electron density model of the molecule derived from the Schrödinger equation. 

Calculations on aromatic groups of proteins and nucleic acids point out some of their physico-chemical 
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properties. For instance, ESP maps were shown to be very useful in the characterization at a 

quantitative level of interactions involving aromatic molecules, such as cation- interactions 

(Mecozzi et al. 1996). 

To assess cation- and anion- interactions in biomolecules, we designed molecular models of the 

three aromatic Phe, Tyr and Trp amino-acid side chains and the A, G, C, T/U/ nucleobases. Their 

geometries were optimized by solving the Schrödinger equation using the Hartree-Fock method with 

the 6-31G** basis set. Electrostatic potential surfaces were generated by mapping the 6-31G** 

electrostatic potentials onto surfaces of constant molecular electron density (0.002 e-/Å3) using the 

SPARTAN software (Wavefunction, Irwine, CA). 

2.5 Molecular dynamics simulations 

Molecular dynamics (MD) is a computer technique that allows to model the time evolution of the 

chosen molecular system. First developed in late 70s (McCammon et al. 1977), has advanced to 

become a method that can be used effectively to understand macromolecular structure-to-function 

relationship (Levitt 2001; Hospital et al. 2015). The trajectories of atoms and molecules are calculated 

by integrating equations of motion over a predefined ensemble of time steps. In particular, the force 

acting on a specific atom is calculated iteratively by taking the derivative of the potential energy 

function with respect to its position. In Fig. 2.1 is represented a form of the empirical potential energy 

function. 

 

Figure 2.1. Total empirical potential energy function for a molecule. Many structural 

properties of biomolecules can be simulated with such an empirical energy function. From 

(Levitt 2001) 
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The function U(r) describes the potential energy as a function of the position r for N particles and 

is generated by a sum of terms. The first term represents the bond stretching energy between covalently 

bonded atoms, in a harmonic (ideal spring) force approximation. The second term represents the bond 

angle bending energy due to the geometry of electron orbitals involved in covalent bonding. The third 

term represents the energy of dihedral bending of a bond. The fourth and final term represents the 

non-bonded energy between all atom pairs, decomposed into van der Waals and electrostatic 

Coulombic energies. The functional form and parameter sets used to calculate the potential energy of 

a system of atoms constitutes a force field. These parameters of the energy function can be derived 

from quantum mechanical calculations and improved/tuned by simulations iteratively.  

A classical explicit-solvent MD simulation is conducted in a box containing solute and solvent 

atoms. Periodic boundary conditions are used to mimic an infinite solution and to avoid problems with 

the molecules reaching the edges of the box. Thus, if a molecule crosses the boundary of the box, it 

reappears on its opposite side (Fig. 2.2). 

 

Figure 2.2. Periodic boundary conditions in MD simulations. The box in the middle contains 

the RNA with solvent in the initial conditions. The box surrounding are exact copies of the 

system, mimicking an infinite solution. 
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To treat long-range electrostatic interactions in periodic boundary conditions, the particle mesh 

Ewald (PME) summation method is routinely used (Cheatham et al. 1995). 

For MD simulations performed during my PhD we chose Amber ff14SB force field (Cornell et al. 

1995). From the 1999 edition the force field was improved numerous times in the description of RNA, 

with corrections such as bsc0 to better represent / torsional angles in the nucleotide backbone (Perez 

et al. 2007) and χOL3 for the glycosidic angle χ (Zgarbova et al. 2011). In the Amber force field to each 

atom is assigned a particular type, based on the element, but also its hybridization and chemical 

context. Parameters for each interaction are based on the atom types participating in each interaction. 

Although this description is functional for the method, it does not include parameters for atom 

polarization in the potential energy function. In addition, the effect of the local environment on a single 

atom are included in the atom types, but they are not dynamically changing during a simulation as 

would appear for water and solute atoms inside a real system when their local context changes. 

Another limitation of MD simulations is that only non-covalent interactions are allowed to break and 

form, but covalent bonds cannot be broken. This makes MD a method not suited to analyze reactions 

that involve breaking-making covalent bonds. 

All things considered, MD simulations can give information about the dynamics on an atomic level, 

not only in terms of RNA dynamics but also in terms of the behavior of hydration shell surrounding 

RNA. MD is a mathematical attempt to reflect physics and chemistry on the atomic level, thus is 

approximated and never completely accurate. Also, MD trajectories of the investigated molecule and 

its solvent environment are highly depending on the starting structure, the parameters of choice and 

the simulation setup. Nevertheless, a critical and careful eye would be able to use MD simulations in 

order to gain information on both biomolecular structure and environmental factors. 

2.5.1 MD protocol 

The structure of RNA duplexes were modeled with Nucleic Acids Builder, part of Amber Tools. 

This molecule was then visually inspected for structural issues, which is relevant especially when 

using X-ray crystallographic structures as starting point (Hashem and Auffinger 2009). Then, the 

molecule was placed into a box together with SPC/E water molecules (Berendsen et al. 1987) and 

ions; K+ was added as counterion and KCl as salt. Periodic boundary conditions and Particle Mesh 

Ewald have been used. After several equilibration phases, simulations were ran for 50 ns in conditions 

of constant temperature (with a Berendsen temperature coupling scheme (Berendsen et al. 1984)) and 

pressure. Trajectories were visualized by VMD (Humphrey et al. 1996) and analyzed with Python 

scripts and CPPTRAJ software (Roe and Cheatham 2013). 

 





 

 

 

 

 

 

 

3. Section I.  

Stacking contacts between 

nucleic acid backbone oxygens 

and nucleobases 
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3.1 Essential considerations on stacking interactions  

The aromatic nature of nucleobases favors hydrophobicity-driven stacking interactions such as the 

base-base stacking observed in DNA and RNA double helices. Further, other charged or uncharged 

species can interact with base faces, generating a family of stacking or capping contacts. Among those, 

I focused on the study of nucleobase capping by backbone oxygen atoms, which generate two types 

oxygen-of stacking: (i) phosphate- when it involves a phosphate oxygen; (ii) O4’-when it 

involves a neutral ribose O4’ atom. Both capping contacts are characterized by short (< 3.1 Å) 

oxygen-to-plane distances and are assisted by other contextual interactions. In fact, one of the central 

points emerging in this thesis is connected with a concept expressed by J. Dunitz on intermolecular 

interactions, namely that short contacts do not necessarily correspond to specific bonding interactions 

between the atoms involved (Dunitz and Gavezzotti 2009; Dunitz 2015). Capping contacts between 

oxygen backbone atoms and nucleobases can be considered as weak bonding or slightly repulsive 

interactions and do not constitute the leading force for biomolecular folds, but are nonetheless 

fundamental to obtain the final biomolecular tertiary structure. This would explain why both 

capping contact families exist assisted by hydrogen bonds or other non-covalent interactions and the 

fact that they appear to be more “tolerated” than actually determinant for the biomolecular structure. 

Thus, backbone oxygen atoms stacking with nucleobases constitute a secondary interaction, with the 

assistance of stronger constraints, and the term interactions to describe them has to be considered in 

this perspective more as a synonym of intermolecular proximity. Anyhow, they are not strongly 

repulsive interactions, otherwise we would observe a complete different biomolecular structural 

landscape. In addition, the quasi-absence of reference to energy values for the interactions analyzed 

during my work is a choice made to avoid the pitfalls of determining local energy values for systems 

embedded in complex environments, which we cannot precisely describe from the energetic point of 

view. 

Both families of capping interactions have been found ubiquitously in RNA. Phosphate oxygen 

stacking with nucleobases have been found in the signature of tetraloop motifs. On the other hand, 

O4’ stacking with nucleobases in dinucleotide steps are a “conserved” interaction between RNA and 

DNA (more specifically Z-DNA), and represent a Z-DNA fragment conserved in RNA with many 

structural and functional implications. 

3.2 Anion- interactions in nucleic acids 

Anion- interactions in nucleic acids take essentially the form of phosphate- stacking, between a 

backbone phosphate and a nucleobase, and is found in biologically relevant tetraloop motifs such as 

the anticodon loop (Quigley and Rich 1976). Although rarely, this interaction exists also outside 
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tetraloops, in both short- and long-range contacts. See for instance the 46 phosphate- stacking 

examples in the H. marismortui 50S ribosomal subunit (Fig 3.1).  

Except for adenines, all nucleobases have been found to start tetraloops. In this tetraloop 

sub-family, the 1st nucleobase stacks with the phosphate group of the 3rd nucleotide (generally the 

Pro-R oxygen atom, identified as OP2 in PDB format), as observed for instance in anticodon loops 

(Fig 3.2a), tRNA T-loops (Fig. 3.2b), GNRAs (Fig. 3.2c) and also loops starting with a protonated 

cytosine (Fig. 3.2d). In the latter surprising example, a cytosine bearing a proton on its N3 imine 

nitrogen takes the place of U in a loop with the anticodon topology. 

All these tetraloops adopt a fold characteristic of U-turns. The phosphate- stacking, although 

sometimes mentioned, was never included up to now in the structural signature of these motifs. A 

more in-depth analysis of these motifs along with an analysis of ion- interactions in biomolecules 

constitutes the core of the Paper 1. 

Although found ubiquitously in RNAs, phosphate- stacking has been found to be “assisted” by 

distinctive hydrogen bonds present in the context, such as the hydrogen bond between the cytosine N3 

and the phosphate oxygen in Fig. 3.2d (Paper 1). More generally, within U-turns the 

phosphate-stacking is assisted by a hydrogen bond between a nitrogen on the Watson-Crick edge of 

the 1st base and the OP2 oxygen of the phosphate group belonging to the 4th nucleotide. The need of a 

hydrogen-bond donor on the 1st nucleobase explains why guanine and uridine, bearing imino groups 

Figure 3.1. Phosphate- interactions in the 50S subunit of H. marismortui. Of 46 total 

contacts 38 are found within tetraloops (cyan) and 8 in long range contacts (green; PDB: 4V9F 

res.:2.4 Å; (Gabdulkhakov et al. 2013). 
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on their WC edge (N1 for guanine and N3 for uridine), are almost exclusively favored over cytosine 

and adenine. In particular, the latter have to be protonated in order to form the base-phosphate 

hydrogen bond.  

 

 

Figure 3.2. Phosphate- stacking within tetraloops. (a,b) tRNA anticodon and TYC loops 

(PDB: 1EHZ res.: 1.9 Å; Shi and Moore 2000) (c) GAAA tetraloop in the signal recognition 

particle (PDB: 1HQ1 res.:1.5 Å; Batey et al. 2001) (d) Ribosome C+AAC tetraloop (PDB: 1VQ8 

res.:2.2 Å; Schmeing et al. 2005). Interatomic distances shorter than 3.5 Å are represented by 

dashed lines. 
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3.2.1 Paper 1. Cation- versus anion- interactions — biomolecules can’t 

have both (in preparation) 

Graphical abstract 

 

Cation- interactions are recurrent in proteins but have not been observed in the highly aromatic 

nucleic acid systems. We show that this stems from fundamental electrostatic differences between 

nucleic acid and protein aromatic groups. In fact, electrostatic potential (ESP) map calculations reveal 

that nucleic acid aromatic groups bear positive potentials, while protein aromatic groups are 

characterized by rather negative ones. These features are confirmed by an extensive PDB survey based 

on the interactions with positive and negative species and the aromatic  systems of nucleic acids and 

proteins. Anion- interactions have been found abundantly in RNA (and rarely in DNA), as 

phosphate- interactions. These interactions are significant for motifs such as GNRA tetraloops, being 

part of their structural signature, and are almost exclusively of an “assisted” nature, coexisting with 

hydrogen bonds involving nucleobases and backbone atoms. We also analyzed by MD the 

involvement of phosphate- interactions in stable hydration patterns in tetraloop motifs, showing long 

residence time (> 1ns) water molecules bound to the stacked phosphate group. In parallel, we strove 

to find free anions and Asp/Glu side chains stacked over nucleobases, obtaining rare occurrences of 

“face-to-face” (parallel) stacking contacts and only a few dubious cases of perpendicular ones that do 

not support the existence of orthogonal anion- interactions in nucleic acids. Analogous results were 

obtained searching for cation- interactions in nucleic acids, with the most abundant occurrences being 

“face-to-face” arginine-nucleobase stacking interactions and only few ambiguous orthogonal 

interactions. These parallel interactions with Arg should be considered of hydrophobic nature and do 

not support the existence of cation- interactions in nucleic acids. The final step of our survey 

highlights how the claim that anion- interactions would exist in protein systems is often related to 

different types of imprecisions like structural misinterpretations or questionable searching criteria; to 

confirm this, our search for anion- interactions in protein did not yield any clear positive result.  

Altogether, these data suggest that the expression “ interactions” should be carefully applied, 

considering how relevant are environmental context factors in their occurrence. These factors are hard 
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to assess. Nonetheless, in hydrated biological systems hydrophobic effects have clearly to be 

considered as key elements in understanding the right balance of interatomic forces at play in motifs 

characterized not only by “ interactions”. Progresses in their understanding will surely benefit our 

comprehension of biomolecular recognition phenomena and will allow their exploitation in drug 

design and molecular engineering. 
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ABSTRACT 

While cation- interactions are recurrent in proteins, they have not been identified in the 

highly aromatic nucleic acid systems. Herein, based on electrostatic potential calculations, we 

suggest that the origin of this effect relates to the hitherto largely unnoticed electrostatic 

dissimilarity between the aromatic rings of both biomolecular groups that result in inverted 

cation/anion- binding profiles. A detailed PDB survey revealed that anion- interactions take 

dominantly the form of phosphate- interactions in RNA, which rarely occur in DNA. They are 

mostly observed in sharp turns where they are essential for the folding, architecture and function 

of key structural elements. Further, this survey established that cation- and anion- interactions 

do not occur in nucleic acids and proteins, respectively. The involvement of phosphate- 

interactions in capping of otherwise solvent exposed nucleotides is discussed to understand the 

possible implications of ion- interactions in biomolecular recognition phenomena and drug 

development. 

Graphical Abstract 
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INTRODUCTION 

Aromatic rings are ubiquitous in biomolecular systems where they are involved, besides 

classical - stacking interactions, in unusual non-covalent interaction types1. Among those, 

cation- interactions (Fig. 1a) have well been characterized1-3. Intriguingly, these interactions are 

almost never observed in nucleic acids where they should abound given the aromatic character of 

nucleobases4. 

Instead, rare stacking interactions between anionic species such as negatively charged 

phosphate groups and nucleobases were observed. They are commonly called anion- 

interactions and were addressed in structures as significant as the first crystallized tRNA 

molecule5,6 where they were described as van der Waals contacts stabilized through ion-induced 

dipole interactions (Fig. 1b). Such anion- interactions are nowadays perceived as important 

supramolecular bonds in chemistry7-10. Yet, despite their ubiquity in major RNA molecules, a 

thorough structural survey of these interactions and an understanding of their physico-chemical 

characteristics in biomolecules are both not currently available. 

In order to rationalize the anion- interaction potential of aromatic groups, it is often 

stated that electro-attractive substituents induce electron-depleted -orbitals, called “-acidic”, 

that create a positive quadrupole moment inducing favorable interactions with anionic 

species7,9,10. Wheeler and Bloom11 challenged this view by demonstrating that exocyclic 

substituents do not significantly modify -electron densities and suggested that these aromatic 

rings should no longer be considered as electron-depleted. Instead, these authors showed that the 

interactions of the ion with the local substituent induced dipoles (“through-space effects”) 

describe more accurately the physical phenomena underlying anion- interactions. In other 
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words, the repulsive anion-to--cloud interactions are overcome by favorable charge dipole 

interactions. This insight was later extended to nitrogen containing heterocycles12.  

In this respect, the -stacking terminology has been questioned1,11,13. Using model 

systems, Wheeler and Bloom established that aromatic -electron delocalization hinders - 

stacking14. Similarly, although the direct contact of a cation with -orbitals is stabilizing, the 

direct contact of an anion with -orbitals is unfavorable. Consequently, the generic “ion- 

interaction” expression might sound misleading as it inclines to consider that the contribution of 

the delocalized -electrons drives the association. As a result, the term “stacking” should 

merely be regarded as a geometrical descriptor for specific interaction modes in unsaturated 

molecules1. Henceforth, we use the widely accepted “anion-“ term by stressing that it refers to 

anionic species stacking with the planar aromatic system of nucleobases in a purely geometrical 

manner without reference to electronic effects. Conversely, the “cation-“ term is used here for 

cationic species stacking with the planar aromatic system of the Phe, Tyr and Thr amino acids. 

From a practical point of view, it has repeatedly been emphasized that electrostatic 

potential (ESP) maps that reflect both electron and nuclear charge distribution provide major 

insight in the ability of aromatic rings to engage in specific ion- interactions2,11. Here we 

calculate ESP maps to unambiguously establish that the ion- binding properties of aromatic 

amino acid side chains and nucleobases are opposite, therefore suggesting a different ion- 

binding potential for proteins and nucleic acid systems. In line with those findings, rigorous PDB 

surveys assess that cation- and anion- interactions cannot occur within nucleic acids and 

proteins, respectively. We further discuss the implications of the formation of very specific 

anion- interactions in nucleic acids in terms of hydrophobic effects and consequently 

interrogate the physico-chemical origin of these interactions. 
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RESULTS 

Nucleobases and aromatic amino acid rings have opposite polarities 

To emphasize their differences, ESP maps were calculated for the Phe/Tyr/Trp amino 

acid and nucleobase rings. As shown elsewhere2,15, the negative regions of the ESP maps 

correlate well with the potential of amino acid aromatic rings to engage in attractive cation- 

interactions (Fig. 2). On the contrary, nucleobase ESP maps suggest the presence of neutral to 

electro-positive regions over the rings. These polarity changes result from the combined effects 

of the nucleobase heterocyclic nitrogen atoms and exocyclic substituents. The highest positive 

potentials are calculated for the U//T nucleobases where ESP maxima are located over the 

C2/C4 atoms that are part of the strongly electron-withdrawing carbonyl groups. Comparatively, 

the adenine ESP profile is rather “neutral” since this nucleobase has only one amino substituent 

that induces a much smaller dipole than carbonyl groups. Consequently, these maps imply that, 

in opposition to amino acid rings, nucleobases would favor anion- over cation- interactions. 

They further suggest that U//T nucleobases share the strongest tendency to form anion- 

interactions, followed by G>C≈A nucleobases. 

Phosphate- contacts are recurrent in RNA systems … 

The PDB was searched for stacking of anionic species with nucleobases. We first 

identified ≈4800 anion- contacts involving the anionic backbone phosphate groups (hereafter 

called phosphate- interactions; Fig. 1b). Most of them are found in the structurally highly 

complex RNA systems (≈97%); the remainders are spotted in double helically dominated DNA 

structures and are mostly associated with lattice contacts (Table 1). Noteworthy, phosphate- 

contacts involving OP2 atoms in RNA are significantly more frequent (≈82%) than those 

associated with OP1 atoms. Overall, the 1054 non-redundant (see Method section) phosphate- 
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contacts comprise for the largest part U and G nucleotides (≈86%). For uridines, stacked OP2 

atoms cluster over a limited region of the ring in the vicinity of C2 atoms. For guanines, the OP2 

distribution spans over the two rings and seems bimodal (Fig. 3). Note that 94 % of the 

phosphate- contacts occur on the 3’ side of the nucleobases. 

Interestingly, the histograms of the stacked OP1/2 to nucleobase plane distances suggest 

a bonding character for these contacts (Fig. 3). The mean ≈3.1 Å distance (Table 1) is below the 

estimated 3.2 Å sum of the van der Waals radii for carbon/oxygen atoms (note that the average 

distance between stacked nucleobases is ≈3.4 Å and corresponds roughly to the sum of van der 

Waals radii of two carbon atoms). These aspects underscore the importance of 

phosphate-interactions in RNA systems and hints at their critical role in contributing to 

supporting the fold of complex structural systems. 

… and are of an “assisted” nature … 

In order to better apprehend the stacking characteristics of these phosphate- contacts, we 

undertook a more precise examination of the associated structural motifs. In most instances 

(≈73%, Table 2), the stacked OP2 (nucleotide n) is part of a dinucleotide motif where the 

(n+1)OP2 atom forms also a hydrogen bond with the pyrimidine N3 or guanine N1/N2 Watson-

Crick edge atoms of the stacked nucleobase (Fig. 4a). In other less frequent motifs (≈8%) the 

sugar associated with the stacked nucleobase adopts a C2’-endo rather than the more common 

C3’-endo pucker allowing the formation of an O2’…OP2 hydrogen bond with the stacked OP2 

(Fig. 4b). A further and smaller subset (≈6%) is associated with structures where PO4 and O2’ 

assisted contacts occur simultaneously. A last subset (≈5%) involves contacts between the 

stacked phosphate and amino acids, nucleobases, or rare instances of intranucleotide stacking. In 

total, over 93% of phosphate- contacts occur in combination with other interactions (Table 2). 
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As such, our data suggest that most of these contacts must be considered as “assisted 

interactions”. In other words, phosphate- contacts would probably not form without the above-

mentioned “assisting” interactions. 

Hereafter, we call the two most frequent “assisted interactions” involving OP2 atoms 

“PO4 assisted” (≈73%) and “O2’ assisted” (≈8%) and describe in more details the former. It 

occurs in tetraloop like motifs such as those found in the anticodon and TC loops of tRNA 

structures (U/ starting loops; Fig. 4c) as well as in the highly recurrent GNRA tetraloops (G 

starting loops; Fig. 4d)5,6,16,17. These tetraloops have in common an imino group on the Watson-

Crick edge of the first nucleotide that is key to the formation of “PO4 assisted” interactions. In 

rare instances, when a loop starts with a protonated cytosine (C+) and consequently bears an 

imino group on its Watson-Crick edge, its structure is similar to U starting loops18 stressing even 

more the importance of this imino group in the formation of these sharp turns (Supplementary 

Fig. S1). 

… which might involve stable hydration patterns in tetraloop motifs 

In many instances and especially in tetraloop motifs, the stacked OP2 atom is linked to 

the (n-1)OP2 atom through a single water molecule bridge (pyrimidine starting loops; Fig. 4c) or 

a more complex solvation pattern involving sometimes a double water molecule bridge (purine 

starting loops; Fig. 4d). Thus, the stacked OP2 loses only two water molecules out of the three 

that form its hydration cone when fully exposed to the solvent as in regular RNA helices19. 

To check the stability of the contacts structuring these loops, we performed molecular 

dynamics (MD) simulations of a tRNAPhe and a sarcin-ricin loop structure, the latter containing a 

GNRA tetraloop17. In these simulations, the stacking of the phosphate group was maintained in 

the tRNA anticodon and TC loops as well as in the GNRA tetraloop with average distances of 
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≈3.1±0.2 Å over a total of 60 ns of simulations. Surprisingly, the average hydrogen bonded (HB; 

see supplementary material) time of the water molecules attached to the stacked OP2 atom 

(Fig. 4c/d) were in the ≈1-2 ns range for the anticodon and TC loops and around ≈1.0 ns for 

the GNRA tetraloop (Fig. 4e/f) with maximum HB times in the ≈3-6 ns range. Such residency 

times are at least two orders of magnitude larger than those estimated for solvent exposed OP1 

atoms derived from the same simulations (≈20 ps). In “O2’ assisted” contacts, the hydroxyl 

group replaces a first shell water molecule of the stacked OP1/2 atom. In most instances a second 

water molecule forms additional contacts with this oxygen atom. Hence, in the latter 

configuration, the OP1/2 atom loses only a single water molecule from its hydration shell. 

Anion- contacts involving anionic amino acids or “free” anions are rare in nucleic acids 

To better explore the characteristics of anion- interactions in nucleic acids, we searched 

for nucleobase contacts involving the negatively charged Asp/Glu side chains. These residues 

can either interact with nucleobase edges by forming regular hydrogen bonds20,21 or contact the 

nucleobase planes through “face-to-face stacking” and “orthogonal interactions”22. Our search 

indicates that stacking contacts of Asp/Glu side-chains to nucleobase rings are rare (17 non-

redundant events, 9 of them being of the “face-to-face” type). In some instances, these Asp/Glu 

residues form pseudo-pairs with nucleobases21 or salt-bridges with positively charged amino 

acids. Yet, the binding geometry observed in these examples along with their poor statistical 

significance does not support the occurrence of “orthogonal” anion- interactions involving 

Asp/Glu side chains and nucleobases (see Discussion section), especially if these numbers are 

compared with the ≈1200 non-redundant Asp/Glu side chains directly hydrogen bonded to 

nucleobase edges. 
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Non-redundant contacts between nucleobase rings and free anions are rare and limited to 

two sulfates, one sulfonate, two nitrates, one citrate and one acetate anion contact. In these few 

occurrences, anionic molecules establish strong hydrogen bond contacts with other “assisting” 

partners leading to incidental stacking interactions. Again, the statistical significance of contacts 

involving Asp/Glu carboxylate groups and free anions is too small to support the occurrence of 

anion- (other than phosphate-) interactions, in nucleic acid systems and their participation in 

nucleic acid/protein recognition phenomena. 

Do cation- interactions exist in nucleic acid systems? 

To check the occurrence of cation- contacts involving nucleobases (Fig. 2), we strived 

to isolate them in PDB structures. A limited number of possible non-redundant cation- contacts 

were identified such as 3 K+, one Na+ and 18 Lys ammonium groups. Some of the contacts 

involving K+ or Na+ ions were inferred from low-resolution structures where the ion attribution 

is at best ambiguous. For example, in the structure with PDB code 3CUL, an ion marked as K+ is 

at 3.4 Å from a (C)N4 amino group and is more likely a water molecule or a Cl- ion20 

(Supplementary Figure S4). 

Forty-one “non-parallel” Arg-nucleobase contacts were also identified. They are 

characterized by an Arg-to-nucleobase plane angle > 30° and are further subdivided into 34 

“oblique” contacts (30° < angle < 60°) and 7 “orthogonal” (angle > 60°) ones. However, among 

these few, no unambiguous “orthogonal” contact associated with N-H…bonds could be 

observed. In total, 535 non-redundant Arg nucleobase contacts were identified and 95% of them 

are close to an ideal face-to-face geometry. These numbers are small when compared to the 

≈2900 (Arg) and ≈1500 (Lys) non-redundant side chains hydrogen bonded to nucleobase edges. 

Consequently, if we exclude face-to-face contacts involving the highly hydrophobic Arg side 
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chains (see Discussion section), the PDB searches confirm that cation- contacts are not present 

in nucleic acids. 

Anion- interactions in proteins, do they exist? 

As a final step of our exploration of all potential interactions involving aromatic rings and 

ionic species in biomolecules, we examined the possible occurrence of anion- contacts in 

proteins. We searched for chloride, sulfate, phosphate and Asp/Glu carboxylate groups 

contacting amino acid aromatic planes at a distance ≤ 3.5 Å. Like for cation- interactions in 

nucleic acids, we found only a few borderline anion- contacts in the PDB. Hence, we were 

unable to identify a convincing set of anion- interactions in proteins. 

We also checked the literature where a few reports evaluated the ability of amino acids to 

engage into anion- interactions9,23-25. The most significant of these studies gathered only a 

handful of anion- examples, used too permissive criteria to identify them and, more 

importantly, misinterpreted a locally wrong contact in a PDB crystal structure (Supplementary 

Discussion S1 & Fig. S3)23. Such misfortune related to PDB structures is indeed possible since 

even high-resolution crystal structures can embed local inaccuracies or much worse26. Based on 

these observations and our PDB searches, we safely conclude that anion- interactions are not 

present in proteins. 
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DISCUSSION 

The key result of this study is the uncovering of the previously largely unnoticed 

difference in electrostatic potential between protein and nucleic acid aromatic groups. As a 

consequence of this difference, the ion- interaction profiles are opposite in these two 

biomolecular systems accounting thus for the intriguing absence of cation- interactions in 

nucleic acids. Furthermore, this finding helps to understand conflicting reports in the literature 

related to anion- interactions described in proteins9,23-25. Finally, the occurrence of recurrent 

anion- interactions in nucleic acids is brought to light and is shown to take exclusively the form 

of intramolecular phosphate- contacts. 

Most of these phosphate- interactions are similar to those occurring in the sharp turns 

found in tRNA anticodon and TC tetraloop-like motifs5,6,17 starting with U or more rarely C/C+ 

nucleotides18 or in GNRA tetraloops16,17 (Fig. 4 & Supplementary Fig. S1). They are 

consequently also found in large RNA structures such as ribosomes. For example, 44 

phosphate- interactions are found in the 50S ribosomal subunit of Haloarcula marismortui 

(PDB code: 4V9F, resolution 2.4 Å), 30 being associated with tetraloops and 14 with larger 

loops and other long-range contacts. Hence, the widespread occurrence of phosphate- 

interactions in decisive RNA molecules leaves no doubt about their significance in nucleic acid 

systems. 

Interestingly, the largest proportion of these phosphate- interactions is part of two well-

conserved interaction modules (Fig. 4a/b). The most represented involves two successive 

phosphate groups, the first forming the stacking contact and the second a hydrogen bond with the 

Watson-Crick edge of the stacked nucleobase. These “PO4 assisted” motifs appear essentially in 

association with imino group bearing nucleobases such as U//C+/G and only parenthetically 
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with A/C nucleobases. As an outcome, the small reported percentage of phosphate- interactions 

involving A/C nucleobases seems unrelated to a specific electronic configuration of the stacked 

nucleobase reflected by a more neutral ESP profile (Fig. 2), but rather to the absence of an imino 

hydrogen-bonding group. In that respect, putting into regard the observed clustering of OP2 

atoms and the most electropositive regions of the U/G nucleobases (Supplementary Fig. S2) 

could have enticed us to wrongfully suggest that a strong attractive force associated with the U/G 

nucleobase type would govern the clustering of the phosphate groups.  

Consequently, the latter observation and the fact that “assisted” interactions embedded in 

tetraloop motifs largely dominate the pool of phosphate- contacts prompt us to suggest that 

these interactions are not driving the formation of these particular loops. This is further 

corroborated by their accumulation on the 3’ nucleobase side (Fig. 3b) and the absence of 

additional anionic groups engaging in ion- interactions. 

 These conclusions are in line with those of a former study suggesting that, in the absence 

of polarization effects induced by base protonation or metal binding, direct phosphate- 

interactions are quite weak and tolerated rather than significantly stabilizing17. Indeed, in all 

surveyed structures, we failed to identify recurrent polarization effects that could strengthen the 

phosphate- interactions. It is also worth noting that for tetraloops starting with a charged C+ 

nucleobase18, the direct phosphate- interaction is significantly reinforced17. However, this 

charge difference does not affect the structure of the loop that is comparable to those starting 

with a neutral U nucleobase18 suggesting that even strong phosphate- interactions are not 

instrumental in the formation of these motifs (Supplementary Fig. S1). 

Estimating the strength of anion- interactions is indeed a difficult exercise since the 

characterization of such interactions in the liquid or crystal phase is complicated by the co-
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existence of multiple binding motifs involving the solvent as well. From a purely structural point 

of view, Dunitz and Gavezzotti advocated persistently that short interatomic distances in crystal 

do not necessarily reflect attractive interactions but could also be associated with an increase in 

potential energy resulting eventually in a repulsive force27. Surely, we cannot associate the 

estimated average OP2 to nucleobase plane distance (≈3.1±0.2 Å) to an energetically strong 

phosphate- interaction (Fig. 3). However, we can certainly exclude both a direct strong 

repulsive contribution that would impede the formation of these important motifs and a strong 

attractive component that would compete with the formation of regular hydrogen bonds.  

Yet, besides the classically invoked dispersion forces or electrostatic substituent effects, 

other forces promoting the formation of anion- interactions in RNA may need to be considered. 

For model systems, it has been shown that the driving force for aromatic association derives 

essentially from solvation/desolvation effects that are especially strong in polar solvents. In other 

words, the hydrophobic effect is a key player in biomolecular systems13. As such, nucleobases in 

water tend to stack in order to minimize their solvent exposure while forming simultaneously 

various types of hydrogen-bonded interactions. In sharp turns (tetraloop-like motifs), the 

phosphate group “caps” the nucleobase5,28 and minimizes its solvent exposure. Such nucleobase 

capping should contribute positively to the global free-energy balance. 

Concomitantly, the formation of this capping motif implies a partial dehydration of the 

intervening OP2 atom that loses at least two out of three of its hydrogen bonded water 

molecules. Such desolvation contributions tend to be unfavorable to the entire folding process. 

However, through MD simulations, we found that the water molecules bound to the stacked 

phosphate in the three analyzed loop motifs are strongly bound as suggested by their 

significantly longer residency times. Thus it can be hypothesized that these water molecules 
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minimize the desolvation contribution of the phosphate OP2 atom. Further investigations are 

needed to estimate the free energy contribution of these complex hydration patterns.  

Indeed, binding energies are strongly dependent on environmental conditions. Although 

in the gas phase, anion- binding strengths are considerable (≈130 kJ mol-1)29, measurements in 

non-aqueous solvent established that the interaction of anions with single aromatic systems are 

very weak (binding free energies < 4 kJ mol-1)30. In hydrated biological systems, even weaker 

binding free energies can be anticipated. Hence, hydrophobic effects have clearly to be 

considered as key elements in understanding the right balance of interatomic forces at play in 

motifs comprising phosphate- interactions.  

Interestingly, capping interactions are not taken over by other charged groups like those 

from negatively charged Asp/Glu or positively charged Lys side chains that display a strong 

preference for forming salt bridges or interacting with nucleobase edges21. But the relatively 

frequent stacking of Arg side chains (or guanidinium groups) with aromatic rings deserves closer 

attention. For nucleic acids, the Arg to nucleobase stacking is often considered as belonging to 

the cation- type and as such described as important for the stabilization of protein nucleic acid 

complexes31-36 or the binding of nucleoside di/triphosphates3. Yet, the Arg side chains also 

frequently stack with the aromatic rings of the Phe, Tyr and Thr amino acids37,38. Further and 

despite the apparent electrostatic repulsion between them, guanidinium groups are known to 

form counter intuitive ion pair stacks37,38.   

 Nucleobases are also involved in a large variety of stacking interactions. In addition to 

their above mentioned face-to-face contacts with neutral or charged nucleobases or aromatic 

amino acids, negatively charged phosphate groups and positively charged Arg side chains, non-

planar sugar rings like those found in aminoglycoside antibiotics do stack over nucleobases39. 
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This diversity of contacts supports the assumption that, as for the poorly hydrated Arg groups40, 

that the stacking of these planar systems is dominated by hydrophobic effects rather than direct 

and strong cation- interactions. 

All these data support our introductory comment that “ interaction” terms have to be 

considered with caution. Indeed, these expressions can be quite misleading if they induce one to 

think that dispersion or other direct forces involving -orbitals are driving the association 

process as often inferred from in vacuum experiments or quantum mechanical calculations 

neglecting solvent effects. Recently, through the use of molecular torsional balances, it has been 

demonstrated that the dispersion term is a small component of the aromatic stacking interaction 

in opposition to their dominant role in vacuo41. We suggest that the anion- interactions we 

described are not directly related to the aromatic character of a given nucleobase but rather to its 

large hydrophobic surface. Anion- interactions that should certainly be distinguished from 

cation- interactions correspond thus to another component of the large array of hydrophobic 

forces at play in biomolecular systems42. 

Finally and given the current broad interest in “anion-“ interactions, we wondered about 

their possible use in the design of biomolecular systems, drugs and drug binding sites. Since 

anions have no stacking affinity for aromatic amino acid rings as emphasized by our data, sulfate 

and phosphate receptors43,44 were found to adopt different anion binding strategies that obey 

complex rules going beyond simple charge compensation considerations. Indeed, in proteins, 

about one third of all phosphate binding sites where found lacking metal ions or protonated 

amino acids at hydrogen bonding distance44. Such observations led to the development of new 

classes of neutral phosphate and sulfate receptors relying on optimizing their hydrogen-bonding 

abilities43,44. In order to develop new anion binding strategies, amino acids grafted with 
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appropriate substituents (e.g. fluorinated rings) could be incorporated in the design of anion 

receptors to create suitable hydrophobic cavities45. 

Similarly, since nucleobases seem tolerant towards anions, RNA molecules could be 

designed for binding anionic or zwitterionic drugs embedding sulfate or phosphate groups. 

Although anions would generally prefer to bind to the Watson-Crick edge of nucleobases20, two 

examples of biomolecular systems showing anion- interactions with pyrimidine like fragments 

have been described. Flavin receptors were found to accommodate various anion types over their 

uridine-like pyrimidinedione ring46 and anions like CN- were even shown to act as efficient 

inhibitors of urate oxidase systems47. Synthetic receptors are currently also integrating anion- 

interactions. A cationic SO4
2- binding host molecule was characterized48 where the sulfate 

establishes anion- contacts with diazine rings. There, the trapped SO4
2- retained a water 

molecule from its hydration shell that contributes to reducing its desolvation penalty as seen in 

the tetraloop systems described here (Fig. 4c-f) pointing towards more general binding schemes.  
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METHODS 

Electrostatic potential map calculations. The geometries of the methylated Phe/Tyr/Thr 

aromatic rings and nucleobases were optimized using the Hartree-Fock method with the 6-31G** 

basis set. Based on these, electrostatic potential (ESP) maps2,15 of three aromatic amino acid 

rings and six nucleobases (Fig. 2) were generated by mapping the 6-31G** electrostatic 

potentials onto surfaces of constant molecular electron density (0.002 e-/Å3) using the program 

SPARTAN (Wavefunction, Irwine, CA).  stands for pseudouridine, a naturally modified 

uridine frequently occurring in RNA systems and especially in the conserved TC loops of 

tRNAs5.

PDB survey. The Protein Data Bank (PDB) was searched for all nucleic acid x-ray diffraction 

structures (at resolutions ≤ 3.0 Å) displaying a nucleobase stacked with: (i) a negatively charged 

phosphate group; (ii) a negatively charged Asp or Glu side-chain; or (iii) free anions such as 

halides, nitrates, carbonates, acetates, phosphates or sulfates (we included in our survey forty-

eight large ribosomal RNAs whose atom count overrides the limit imposed by the PDB format; 

given size considerations, only the first biological unit was considered). As of August 2015, the 

PDB contains ≈5,000 nucleic acid crystal structures including complexes with proteins over a 

total of ≈90,000 biomolecular structures at resolutions ≤ 3.0 Å. 

Anion- contacts in nucleic acids, as identified by the DSSR analysis tool28, involve at 

least one atom belonging to a negatively charged group at less than 3.5 Å above or below a 

nucleobase area defined by the ring atoms. This 3.5 Å contact distance contrasts with the more 

permissive 4.5 Å distance used elsewhere23 (see Supplementary Discussion S1). However, 

since we showed that the OP2 to nucleobase plane distance reaches a minimum around 3.5 Å 

(Fig. 3c), we believe that a 3.5 Å cut-off is sufficient for defining anion- interactions involving 
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oxyanions. Next to anion- contacts, we similarly searched for all possible contacts involving 

nucleobases and monoatomic cations, ammonium (Lys) and guanidinium (Arg) groups. For 

characterizing amino acid to nucleobase stacking contacts, we used the SNAP analysis tool that 

is part of the 3DNA package28. In order to assess their correctness, all interactions involving 

positively charged as well as all rare interaction types involving negatively charged groups were 

visualized along with their electron densities (when available from the PDB). The Relibase+ 

tool49 was used to search the PDB for anion- contacts in proteins. When available, the electron 

densities associated with these contacts were visualized. 

Residues having at least one atom with a B-factor exceeding 79 Å2 were excluded from the 

search that, nonetheless, takes into account ≈370,000 nucleotides. The search includes also 

residues generated by applying crystallographic symmetry operations. Non-redundant 

nucleotides displaying phosphate- contacts were tagged as follows. If two nucleotides from 

different structures share a same residue number, chain code and trinucleotide sequence as well 

as sugar puckers, backbone dihedral and  angle codes, they are considered as similar and the 

one with the best resolution is marked as non-redundant. Alike, if in a same structure two 

nucleotides share a same residue number and trinucleotide sequence (with different chain codes) 

as well as sugar puckers, backbone dihedral and  angle codes, they are considered as similar 

and the first is marked as non-redundant. The former criteria are used to filter similar structures 

and the later for filtering structures with multiple related biological units. Note that it is 

impossible to completely eliminate redundancy from a dataset without eliminating at the same 

time significant data. Here, we provide an upper limit of a truly “non-redundant” set that marks 

already close to 3/4 of all nucleotides as redundant.  
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Molecular dynamics (MD) simulations. A total of 60 ns of MD simulations were 

performed for a tRNAPhe structure (PDB code: 1EHZ; resolution: 1.9 Å) and a sarcin-ricin 

ribosomal fragment containing a GNRA tetraloop (PDB code: 4NLF; resolution: 1.0 Å). More 

information on the simulation protocols is provided in the supplementary material. 
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Table 1 | Occurrences of non-redundant phosphate- contacts and average OP1/2 to 

nucleobase plane distances (August 2015 PDB survey). All analyzed structures 

have resolutions ≤ 3.0 Å. Occurrences associated with the entire structural set are 

given in parenthesis (see Method section). The average OP1/2 to nucleobase plane 

distances are estimated from the non-redundant data sets and are given along with 

standard deviations. 

Nucleobase DNA RNA Total Dist. (Å) 

OP1 OP2 OP1 OP2 

A 4 (4) / 31 (65) 49 (97) 84 (166) 3.13 ± 0.17 

C/C+ 4 (4) 1 (1) 23 (91) 37 (182) 65 (278) 3.07 ± 0.23 

G 3 (3) 1 (1) 58 (172) 417 (2232) 479 (2408) 3.13 ± 0.17 

T/U 11 (12) 1 (1) 73 (311) 318 (1418) 403 (1742) 3.09 ± 0.19 

 / / / 15 (23) 15 (23) 2.94 ± 0.17 

Total 22 (23) 3 (3) 185 (639) 836 (3952) 1046 (4617) 3.11 ± 0.18 

The chosen contact criteria states that the OP1/2 to nucleobase plane distance has to be ≤ 3.5 Å. When both OP1 

and OP2 atoms of the same PO4 group are at contact distance, only the OP atom with the shortest contact 

distance is counted. 
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Table 2 | Occurrence of non-redundant “assisted” phosphate- contacts involving OP2 

atoms in RNA (August 2015 PDB survey). All analyzed structures have resolutions 

≤ 3.0 Å. The OP2 to nucleobase plane distance is, as in Table 1, ≤ 3.5 Å. 

Occurrences associated with the complete structural set are given in parenthesis (see 

Method section). 

Nucleo

-base

PO4 assisted 

contactsa 

O2’ assisted 

contactsb 

PO4 & O2’ 

assisted contactsc 

Other 

assisted contactsd 

Non-assisted 

contactse

Total 

A 27 (48) 19 (46) 19 (46) 10 (16) 7 (11) 82 (167) 

C/C+ 39 (177) 7 (17) 2 (42) 3 (7) 9 (37) 60 (280) 

G 412 (2182) 1 (1) 17 (88) 24 (58) 20 (65) 474 (2394) 

T/U/ 271 (1234) 54 (268) 29 (146) 19 (45) 32 (57) 405 (1750) 

Total 749 (3641) 81 (332) 67 (322) 56 (126) 68 (170) 1021 (4591) 
a Involve a single PO4 “assisted” phosphate- contact (Fig. 4a) of intra- or intermolecular type. 
b Involve a single O2’ “assisted” phosphate- contact (Fig. 4b) of intra- or intermolecular type. 
c Involve a PO4 and a O2’ “assisted” phosphate- contact of intra- or intermolecular type. 
d The stacked PO4 group is hydrogen bonded to a distant amino-acid and/or a nucleobase or involved in a rare 

intranucleotide stacking. 
e The stacked PO4 group is not involved in any additional contacts involving nucleotides and/or amino acids. 
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Figure 1 | Cation- versus anion- interactions. (a) Schematic of a cation- interaction 

involving a benzene ring and a Na+ ion. (b) Schematic of an anion- interaction taking the form 

of a “capping” phosphate- contact as seen in tRNA anticodon and TC loops6,17.  
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Figure 2 | Phe/Tyr/Trp amino acid versus C/U/T/A/G/ nucleobase Ab initio electrostatic 

potential (ESP) maps. The potential energy values are limited to the ±120 kJ mol-1 range to 

emphasize the variation in ESP associated with substituent effects (note that some regions of the 

ESP maps, especially those associated with the heterocyclic nitrogen atoms and the heterocyclic 

substituents, lie beyond the ±120 kJ mol-1 range). Arrows mark the location of the highest 

(nucleobase) and lowest (amino acid) ESP values atop each of the five and six membered rings. 
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Figure 3 | Phosphate OP2 contacts to U and G nucleobases. (a) Top view (3’ side) of the U 

and G nucleobases showing the positions of OP2 atoms above and below the nucleobase plane 

with a contact distance ≤ 3.5 Å (data are extracted from a non-redundant set). (b) 90° rotation of 

(a); the 3.5 Å boundaries are marked by arrows and dashed lines. (c) Histogram of the OP2 to 

nucleobase plane distances drawn from a set including all redundant (blue) and non-redundant 

contacts (grey; see Method section). The histograms cumulate the 3’ and 5’ side contacts. 
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Figure 4 | Schematic representation of “assisted” phosphate- contacts and MD simulation 

data related to PO4 hydration. (a) Phosphate- interaction of the “PO4 assisted” type. The 

ribose adopts a C3’-endo pucker. The phosphate interaction module is drawn in orange (OP1/2 in 

red). Black dashed separators indicate that it is found in tetraloop-like but also in longer intra- 

and intermolecular motifs. The starting nucleobase is a U and can be replaced by a /C+/G 

nucleobase, all bearing an imino group on their Watson-Crick edge. (b) Phosphate- interaction 

of the “O2’ assisted” type. The ribose adopts a C2’-endo pucker. The stacked phosphate 

interaction module is drawn in orange (OP1/2 in red). Black dashed separators indicate that it can 

be found in intra- and intermolecular motifs. The starting nucleobase is a . (c) 55-OP2(G57) 

contact in the TC loop of a tRNAPhe system (OP2-to-plane distance: 2.90 Å). A water molecule 

(in blue) bridges the OP2 atoms of nucleotides C56 and G57. (d) G-OP2(G2661) contact in 

the GNRA tetraloop of a sarcin-ricin system (OP2-to-plane distance: 3.11 Å). Two water 

molecules (in blue) bridge the OP2 atoms of nucleotides A2660 and G2661. In (c) and (d), all 

anionic oxygen to nucleobase atom distances ≤ 3.5 Å are materialized by dashed yellow lines. 
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Other hydrogen bonds are drawn in cyan. (e) Superimposition of 1000 structures extracted from 

a 20 ns MD trajectory of the tRNA TC loop. The water molecules hydrogen bonded to the 

stacked OP2 atom with d(Ow…OP2) ≤ 2.9 Å and (Ow-H…OP2) angle ≤ 135° are shown in 

blue. For clarity, a representation similar to (a) that hides the three last sugars and nucleobases of 

the loop has been used. The solvent exposed (C56)OP1 is drawn in wheat color. (f) Histogram of 

average hydrogen bond (HB) times for a sample of water molecules accounting for 80% of the 

hydration of the stacked (n)OP2 and solvent exposed (n-1)OP1 atoms (see supplementary 

material). The markers correspond to the average lifetime of the six longest bound waters; the 

longest and shortest lived waters are indicated by the top and bottom thin lines. The data are 

collected over three 20 ns MD trajectories of the anticodon, TC and GNRA loops. 
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Methods S1 | Molecular Dynamics (MD) simulation 

1) Molecular dynamics protocols

Molecular dynamics (MD) simulations were performed using the Amber 14 simulation package1 

and the Amber ff14SB force field (ff99+bsc0+chiOL)2-4 with refined van der Waals parameters for 

phosphate oxygen atoms5. Parameters for tRNA modified nucleotides6 were adapted for consistency 

with ff14SB and the grafted van der Waals parameters of the phosphate oxygen atoms. In order to 

prevent non-physical ion clustering, we used the Smith and Dang parameters for K+ and Cl- ions7,8. 

For the tRNAPhe simulations, the 1EHZ X-ray crystal structure solved at 1.93 Å resolution 

was used9. Wybutosine 37 was changed to 1-methylguanine; other modified bases were kept as in 

the original structure. The Mg2+, Mn2+ and water molecules present in the crystallographic structure 

were ignored. The tRNA was put in a SPC/E water box, with box edges being at least 12 Å apart 

from the solute. The final simulation box contains one tRNA molecule, 17698 water molecules, 149 

K+ and 76 Cl- ions to provide a ≈0.25 M ionic strength. The ion positions were randomized by using 

the CPPTRAJ program10. 

For the sarcin-ricin loop simulations, the 4NLF X-ray crystal structure solved at 1.00 Å 

resolution was used11. The 2'-trifluoromethylthio-2'-deoxycytosine residue 2667 was changed to 

cytosine. The SO4
2- and water molecules present in the crystallographic structure were ignored. The 

sarcin-ricin loop was put in a SPC/E water box, with box edges being at least 15 Å apart from the 

solute. The final simulation box contains one sarcin-ricin loop, 7862 water molecules, 57 K+ and 31 

Cl- ions to provide a ≈0.20 M ionic strength. The ion positions were randomized by using the 

CPPTRAJ program10. 

After equilibration, three 20 ns MD simulations were calculated for each RNA molecule 

with a 2 fs time step in a NPT ensemble. Berendsen thermostat12 was used to keep temperature 

constant at 300 K.  

2) Estimation of water hydrogen bonded (HB) times

Hydrogen bonded (HB) times of water molecules attached to specific OP1/2 atoms were

calculated for each simulation13-16. They correspond to the total time a given water molecule is 

hydrogen bonded to the same solute atom over the entire simulation. Hydrogen bonding criteria are 

taken as d(A...D) ≤ 2.9 Å and (A...H-D) ≥ 135°; where A and D represent hydrogen bond acceptor 

and donor atoms, respectively. A stricter than usual distance criterion (2.9 Å instead of 3.2 or 3.5 Å) 

has been used with the intention to reduce the number of contacts established by transient (short HB 

times) water molecules.  
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To get to meaningful conclusions, these HB times require however filtering as their 

distributions are not homogenous. For the waters with long HB times attached to the stacked OP2 

atoms, we removed 20% of waters with the shortest HB times (see Fig. 4f) to calculate the average 

values. On the other hand, for the waters with short HB times attached to the (n-1)OP1 atoms, we 

removed the 20% of waters with the longest HB times (see Fig. 4f) to calculate average values. As 

an example, including these outliers in the calculation of average HB times for the (n-1)OP1 atoms 

result in a doubling of the calculated values (from ≈20 to ≈40 ps). Although relatively short, present 

simulations demonstrate clearly that the water molecules bound to the stacked OP2 have residency 

times at least two orders of magnitude greater than those bound to a solvent exposed OP1 atoms. 

Extending the length of the simulations would result in better sampling and more accurate average 

HB times for the longest bound water molecules, but would not change present conclusions. 
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Discussion S1 | Misidentification of ion- interactions in protein and nucleic acid systems 

1) Electron density map visualization is required to assess “rare” non-covalent interactions

Crystallographic structures retrieved from the PDB correspond to a modeled view of

crystallographic data. For a more complete evaluation of a crystallographic structure and for 

avoiding interpretation errors, it is recommended to visualize the associated electron density maps 

that are deposited in specialized databases such as the Electron Density Server (EDS)17. This should 

be mandatory for assessing the existence of non-covalent interactions for which various error types 

are recurrently identified in crystallographic structures18-21.  

Here, we highlight one of those. A paper discussing the occurrence of anion- interactions in 

biological systems took as supportive example a perpendicular interaction involving a tyrosine ring 

and a glutamate residue (see Fig. 1b of Chakravarty et al.22; associated PDB code: 2R8O23). Yet, an 

examination of the 2Fo-Fc EDS maps reveals that the densities associated with the Tyr residue are 

no longer visible at 1.5  (Fig. S3a/b) while the densities of the surrounding residues including 

water molecules are still visible at 3.0 . Hence, this solvent exposed tyrosine is poorly defined 

with respect to neighboring residues. In addition, this Tyr residue is defined as an outlier by the 

PDB validation report. Consequently, these electron density maps do not support the existence of an 

anion- interaction. An examination of associated B-factors would not have been conclusive since 

the authors of the crystal structure report similar values for all the residues in this region that do not 

exceed 25 Å2. As a comparison, we show an example of a well defined cation- interaction were 

the densities of both the Lys and Tyr residues are clearly visible at 2.0  (Fig. S3c/d) 

In a second example from an RNA system (PDB code: 3CUL24), an “ion” marked as K+ is at 

3.4 Å from a (C)N4 amino group and is much more likely a Cl- ion or a water molecule (Fig. S4). 

These two examples illustrate how cautiously structural studies should be conducted when dealing 

with rare occurrences of “new” non-covalent interactions since even high-resolution crystal 

structures are not void of major local data over-interpretations. 

2) Use of “abnormally” large anion-to-ring cutoffs and/or insufficient geometrical

characterization of the formed contacts 

The use of large cutoffs (≤ 4.5 Å) for defining ion- contacts has been often reported. These 

cutoffs go beyond already large cutoffs based on anion to carbon atom distances below the sum of 

van der Waals radii + 0.8 Å that are consequently in the 4.0 Å range for oxyanions25,26. In this 

report we show that the oxygen to ring distance reaches a minimum around 3.5 Å. Therefore, a 

3.5 Å cut-off should be sufficient for oxyanions. The use of cutoffs exceeding 3.5 Å leads to the 
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characterization of contacts that are generally not of the anion- type as exemplified in following 

examples (note that cutoffs for F-, Cl-, Br- or I- have to be scaled appropriately): 

• Large cutoffs were used to assess the contribution of cation- interactions to the stability of

protein-DNA complexes27. Since the authors based their analysis on calculated interaction energies, 

no binding distances were reported and consequently, this study difficulty supports the existence of 

cation- interactions in protein-DNA complexes (interaction energies were calculated without 

taking into account solvation effects). 

• In a related study by Gromiha et al., the criteria used by the authors prompted them to define

cation- interactions between an Arg residue and a G nucleobase that do not overlap in the crystal 

structure (see Fig. 1 of Gromiha et al.28). In line with our conclusions, these authors stressed the 

absence of cation- contacts between Arg and nucleobases below 3.5 Å. Thus Arg residues are at 

best only stacked over nucleobases. With such large cutoffs, there is no evidence for bonding 

interactions. 

• In a study by Robertazzi et al.29, a cutoff of 5 Å between aromatic ring centroids and anions is

used. These authors rationalized their choice by referring to the weaker resolutions of biomolecular 

structures compared to small chemical systems and advocate a large tolerance in cutoff choices. We 

believe that those criteria are too broad to be associated with anion- interactions. 

• Charkrabarty et al.22 referred to a study30 using a 4.5 Å cutoff between anions and aromatic ring

centers where the authors stated that a 4.5 Å distance corresponds to “the upper end of those 

observed in organic salt crystal structures”. Breberina et al.31 used even larger cutoffs (≤ 7.0 Å) to 

evaluate anion- interactions in a specific protein family. 

• Wetmore et al. used an amino acid to nucleobase cutoff below 5 Å32. This resulted in the

consideration of twice the number of pairs they would have analyzed with a cutoff of 3.5 Å (as 

estimated from their Figs. S9 and S1032). 

It should also be noted that many authors analyzing biomolecular as well as smaller 

chemical systems use cutoffs based on the distance of the ion to the center of the aromatic ring22. 

We prefer using a more appropriate atom-to-nucleobase plane distance criterion. These distances 

are easily and accurately calculated for any nucleobase by the DSSR analysis tool33. 

3) Poor statistical significance for alleged anion- interactions in proteins

Although the occurrence of interactions termed anion- in supramolecular systems is no

longer under debate, it seems bold, given current knowledge, to extrapolate them to protein systems. 

The few examples (≈5) highlighted in the study by Chakravarty et al.22 (see Fig. 1b of the latter 
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reference and Fig. S3) are really not convincing enough to support the existence of such 

interactions. However, these authors identified correctly anion- interactions in nucleic acids. 

A survey of contacts between aromatic amino acids and free anions such as Cl-, Br-, F-, NO3
-

, ClO4
- and PO4

n- identified few “anion-” contacts29. These contacts involved 22 “strong 

interactions” with Cl- and six with phosphate groups, a number not large enough (in our opinion) to 

build a case given the hundreds of thousands of aromatic amino acids present in PDB structures. 

Moreover, the possibility that phosphate groups appear as HPO4
2- or H2PO4

- species and could form 

O-H… interactions is not taken into consideration by the authors. Thus, these studies that identify

only a few contacts are not supportive for the occurrence of anion- interactions in proteins (see 

also the study by Gamez34). 
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Figure S1 | Anticodon loop like structures starting with a neutral (U) and a charged (C+) 

nucleobase are comparable. (a) U33-OP2(A36) contact in the anticodon loop of a tRNAPhe system 

(OP2-to-plane distance: 2.85 Å). (b) C+1469-OP2(A1471) contact in an anticodon loop like 

structure extracted from the large subunit of the Haloarcula marismortui ribosomal system 

(OP2-to-plane distance: 2.97 Å). In (a) and (b), all anionic oxygen to nucleobase atom distances 

≤ 3.5 Å are represented by dashed yellow lines. Hydrogen bonds are drawn in cyan. The phosphate 

interacting module is shown in orange (OP1/2 in red). 
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Figure S2 | Incidental correlation between the nucleobase electrostatic potential and the 

cluster of OP2 positions. (a) The U and G electrostatic potential surfaces are plotted with a ±50 kJ 

mol-1 scale (band spread of 10 kJ mol-1). (b - similar to Fig. 3b). Top view (3’ side) of the U and G 

nucleobases showing the positions of OP2 atoms positioned above and below the nucleobase plane 

with a ≤ 3.5 Å contact distance (data are extracted from a non-redundant set). 
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Figure S3 | Example of an anion- misidentification and a correct identification of a cation- 

interaction in protein X-ray crystal structures. Anionic oxygen and nitrogen to Tyr atom 

distances ≤ 3.5 Å are represented by dashed yellow lines. (a) This example has been extracted from 

a crystal structure23 that is cited in a publication by Chakravarty et al.22 emphasizing the existence 

of anion- interactions in proteins. (b) The 2Fo-Fc map demonstrates clearly that this Tyr residue is 

not associated with a strong electron density and consequently that the it is not forming an anion- 

interaction. The Tyr residue is solvent exposed and probably adopting multiple conformations in the 

crystal. (c) In this example35, the Tyr residue is involved in a cation- interaction. (d) The 2Fo-Fc 

map clearly shows that the Tyr and Lys residues are nicely fitted into appropriate densities in 

opposition to what is seen in (b). 
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Figure S4 | Example of cation- misidentification in a nucleic acid X-ray crystal structure. 

Hydrogen bonds and K+ to nucleobase contacts ≤ 3.5 Å are represented by dashed yellow lines. (a) 

This example as been extracted from a crystal structure with PDB code 3CUL24. (b) The 2Fo-Fc 

map demonstrates clearly that this K+ ion occupies an anion36,37 or water binding site associated 

with the amino group of C19. Three other dubious monovalent cation- contacts are found in the 

PDB: (i) K+: 703 (PDB code: 1DUL); (ii) K+: 1246 (PDB code: 2UUB); (iii) Na+: 403 (PDB code: 

3OPI). 
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3.2.2 Further remarks and outlook 

There are two issues that need to be solved before the paper would be finished and ready for 

submission. Both are related to features observed in protein systems that are commonly accepted, but 

based on questionable data. Firstly, we showed numerous examples of claims of anion- interactions 

in protein that do not seem convincing for diverse methodological or structural reasons (Discussion 

S1 – Paper 1). Moreover, there are emerging studies on how theoretical models implicating important 

roles for dispersion forces in biomolecular systems should be interpreted with caution in 

solvent-accessible systems (Yang et al. 2013; Hwang et al. 2015). The debate on the relevance of 

anion- interactions is still open and as stated in a recent review on the subject: “There is still a gap 

between theoretical studies and experimental evidence for those weak intermolecular interactions. 

Although computational studies, gas-phase experiments, and crystallographic results support the 

attractive nature of anion−π interactions, numerous investigations suggest that anion−π bonding very 

often is too weak to compete against other noncovalent interactions such as hydrogen bonding, 

electrostatic attraction, solvent effects, or dipole interactions in solution” (Giese et al. 2015).  

The second issue is related with the stacking of Arg guanidine groups with nucleobases, commonly 

considered as cation-interaction. As discussed in the paper, the tendency of guanidine to stack with 

other aromatic cycles and to form even stacked Gua-Gua parallel pairs (Kubickova et al. 2011; Vazdar 

et al. 2011) infer that its cationic nature is not relevant for the stacking. Therefore, the usage of cation- 

to refer to Arg-nucleobase stacking should be avoided.  
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3.3 O4’- interactions in nucleic acids 

The ribose O4’ atom is, after the OP2 phosphate atom, the second relevant backbone oxygen atom 

involved in stacking (or capping) interactions with nucleobases. Analogously to phosphate-, O4’ 

atoms cap solvent exposed hydrophobic aromatic sides, participating in hydrophobicity-driven 

interactions. However, contrary to the phosphate oxygen, O4’ ribose oxygen is not charged and instead 

of anion- it is involved in an oxygen- interactions (identified as O4’-). From an extensive PDB 

survey of O4’- interactions in nucleic acids, more than 6,000 non-redundant (~16,000 total) O4’- 

stacking have been identified. A stacking contact has been tagged as redundant when at least one of 

the two involved nucleotides is tagged as redundant (for redundancy criteria see Methods). The 

average O4’-plane distance for these occurrences is 3.1 ± 0.2 Å, a value similar to OP2-plane distance, 

but with a larger deviation due to the high heterogeneity of O4’- contacts (Fig.3.3). 

A remarkable observation is the relatively large number of O4’- stacking contact with a distance 

~ 2.9 Å, shorter than almost all phosphate- stacking contacts. This surprising observation is probably 

related to the occurrence of numerous O4’ stacking within dinucleotide steps, where the local 

geometry constraints the ribose-nucleobase distance, but could also have further reasons connected to 

Figure 3.3. Histogram of O4’-nucleobase stacking distances. The values are more scattered 

compared to phosphate-nucleobase distances (Fig. 3 in Paper 1), but a cutoff of 3.5 Å was still 

applied in order to avoid borderline or ill-defined stacking interactions. The mean distance value 

is 3.1 ± 0.2 Å. 
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the neutral state of the ribose versus the charged phosphate. Overall, the distribution of distances on 

the histogram and the large deviation infers that a diverse ensemble of families exist and that they are 

heterogeneous.  

To define these families and characterize them, two criteria have been used. The first is based on 

the glycosidic bond χ of stacked nucleobase defining a base conformation; anti is largely preferred in 

nucleic acids, but locally it is possible to find rare syn conformations. Although rare, syn 

conformations have been found in active sites of functional RNAs (Sokoloski et al. 2011). The second 

criterion is the number of residues of distance between the nucleotides bearing the O4’ and the stacked 

aromatic plane; four groups of contacts are defined when the distance is d = 0 (consecutive), 1 ≤ d ≤ 

3 (short), d > 3 (long) or when one of the two nucleotides belongs to a symmetry-generated molecule 

(lattice). An overview of the results found with these criteria can be found in Table 3.1 and Table 3.2. 

 

 

Table 3.1. O4’- stacking interactions in nucleic acids, organized by category. Data from PDB 

structures of RNA and DNA at resolution ≤ 3.0 Å, July 2016 survey. Non-redundant total for each 

category are presented together with numbers without redundancy considerations (given in 

parenthesis). 

Category 
DNA RNA 

syn anti syn anti 

Consecutive 439 (686) 75 (114) 465 (1090) 945 (2762) 

Short 6 (7) 54 (70) 66 (149) 786 (2613) 

Long 7 (7) 84 (124) 133 (336) 2172 (6806) 

Lattice 3 (3) 284 (496) 9 (12) 395 (765) 

Total  455 (703) 497 (804) 673 (1587) 4298 (12946) 

Table 3.2. O4’- stacking interactions in nucleic acids, organized by stacked nucleobase. Data 

from PDB structures of RNA and DNA at resolution ≤ 3.0 Å, July 2016 survey. Non-redundant total 

for each category are presented together with numbers without redundancy considerations (given in 

parenthesis). 

Nucleobase 
DNA RNA 

syn anti syn anti 

A 52 (68) 88 (149) 372 (911) 2395 (7857) 

G 395 (627) 225 (378) 240 (587) 814 (2217) 

C 1 (1) 77 (111) 19 (22) 609 (1524) 

U/T 7 (7) 104 (166) 42 (67) 480 (1348) 

Total 455 (703) 497 (804) 673 (1587) 4298 (12946) 
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In DNA consecutive contacts involving purines in syn are the most abundant occurrence, due to 

the O4’- stacking present in CpG steps of Z-DNA helices (Wang et al. 1981). Lattice contact are also 

numerous, almost equally distributed among all four nucleobases in anti, due to their involvement in 

helical fragments. The RNA:DNA ratio of occurrence of O4’- interactions is ~ 10:1 and RNA 

stacking contacts are much more diverse. The large number of long range contacts involving adenines 

is a clear indication of the participation of O4’- contacts in long-range interactions such as A-minor 

motifs, abundant in large ribosomal structures (Nissen et al. 2001). In fact, adenines in syn or anti 

conformer cap O4’ atoms more than all the other bases combined. Regarding syn stacked nucleobases, 

a clear abundance of consecutive occurrences is reminiscent of the Z-DNA among DNA structures 

and is in fact related with the remarkable occurrence of Z-DNA dinucleotide steps in RNA structures. 

More details on the O4’- stacking families identified in RNA and DNA follow. 

3.3.1 Lattice O4’- in DNA and RNA 

The lattice O4’- interactions involve the capping of a nucleobase by the ribose of a 

symmetry-generated molecule, or vice versa. No clear preference for a particular nucleotide emerged 

from the survey and the stacked nucleobase is almost exclusively in anti. These contacts are ubiquitous 

in all types of DNA structures and are often found to cap otherwise exposed nucleobases on the helix 

edges. Their abundance infers remarkable structural roles, such as to protect exposed hydrophobic 

nucleobase sides and doing so promoting crystal packing. A stabilization effect promoted by crystal 

packing could be especially useful during the crystallization of short nucleic acids or otherwise 

unstable fragments. O4’- contact of the lattice type are mainly found in helical 3’ ends, probably due 

to the presence of an additional phosphate group on the 5’ end that can hinder the approach of 

symmetric molecules (Fig 3.4).  

Figure 3.4. A lattice O4’- stacking interaction in DNA. The stacking contact involves the 

ribose sugar of a symmetry-generated molecule, represented in cyan. Interatomic distances  

< 3.5 Å are represented by dashed lines. The atom-based colored guanine is residue 12 of chain 

B in PDB: 5CL8 res.: 1.4 Å; (Mullins et al. 2015).  
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3.3.2 O4’-stacking in DNA 

Among the ~1500 occurrences of O4’ stacking in DNA, the ratio between syn and anti is close to 

1:1, contrary to RNA where anti prevails ~10:1 over syn. In DNA, syn nucleobases are mostly involved 

in consecutive stacking, while anti residues tend to cap with symmetry-generated molecules. Guanines 

are most recurrent in DNA interactions, while adenines are most frequent in RNA. These two 

characteristic of DNA O4’- stacking are the result of their involvement in the left-handed Z-DNA 

structures, where the large slide value between C=G stacked pairs has been already reported to induce 

the capping of guanine by cytosine riboses (Wang et al. 1981). The stacking is possible because the 

guanine of Z-DNA CpG steps assumes the rare syn conformer (Fig. 3.5; Rich 2004).  

However, dinucleotide steps adopting a Z-DNA conformation are not limited to CpG but can also 

include TpA steps, with A in syn and the same local topology (Fig 3.6; (Wang et al. 1984).  

 

Figure 3.5. O4’- stacking in a Z-DNA CpG step. (a) A CpG step (red) in the context of a 

Z-DNA helix (PDB: 1ICK res.: 0.95 Å; Dauter and Adamiak 2001) (b) Close-up showing the 

stacking between the cytosine ribose and the guanine in syn. Interatomic distances < 3.5 Å are 

represented by dashed lines. The atom-based colored guanine is residue 14 of chain B.  
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3.3.3 O4’-stacking in RNA 

The most remarkable group among the ~14,000 O4’- contacts in RNA has been found in 

dinucleotide steps (consecutive) analogous to Z-DNA steps, involving a syn stacked nucleobase. These 

~1000 contacts have been identified firstly as part of the CpG steps characterizing the 3’ end of UNCG 

tetraloops (Fig. 3.7), then found ubiquitously inside double and single stranded RNAs. 

We named these steps collectively “Z-DNA like” or “Z-like” fragments and highlighted their 

implication in RNA folding, RNA/protein recognition and immune response (Paper 2). 

Figure 3.6. O4’- stacking in a Z-DNA TpA step. Adenine adopts, analogously to G in CpG 

steps, a syn conformation. Interatomic distances < 3.5 Å are represented by dashed lines. The 

atom-based colored adenine is residue 4 of chain A in PDB: 1VTW res.: 1.2 Å; (Wang et al. 

1984). 

Figure 3.7. O4’- stacking in a UUCG tetraloop. The dinucleotide step highlighted in wheat 

is analogous to Z-DNA CpG steps. Interatomic distances < 3.5 Å are represented by dashed lines. 

The atom-based colored guanine is residue 19 of chain B in PDB: 2HW8 res.: 2.1 Å; (Tishchenko 

et al. 2006). 
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However, the largest amount of O4’- contacts in RNA are part of long or – less frequently – short 

interactions, where a nucleobase (often adenine) interacts with its Watson-Crick side with a O2’ atom 

of a residue n and is stacked with O4’ ribose of residue n-1, forming an “assisted” O4’ stacking (Fig. 

3.8). 

Among these assisted stacking contacts there are contacts where the adenine participates in class I 

A-minor motifs (Nissen et al. 2001), thus binding the O2’ in the minor groove of a G=C pair, while 

being stacked over the ribose of the nucleotide preceding the pair within the helix (Fig. 3.9).  

Figure 3.8. Long range O4’- assisted stacking in the ribosome. The stacked adenine interacts 

with the O2’ hydroxyl of a base n and is stacked with the ribose of base n-1. Interatomic distances 

< 3.5 Å are represented by dashed lines. The atom-based colored adenine is residue 498 of chain 

BA in PDB: 4YBB; res.: 2.1 Å; (Noeske et al. 2015). 

Figure 3.9. O4’- stacking involved in type I A-minor contact inside the ribosome. (a) 

Perpendicular and (b) side view of the O4’- stacking, assisted by hydrogen bonds between the 

adenine and the minor groove of the G=C pair (light blue). Interatomic distances < 3.5 Å are 

represented by dashed lines. The atom-based colored adenine is residue 574 of chain BA in PDB: 

4YBB; res.: 2.1 Å; (Noeske et al. 2015). 
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The adenine residues involved in A-minor motifs do not systematically show O4’-contacts and 

sometimes the capping interaction is present even in other A-minor classes. Overall, their abundance 

in ribosomal structures and their relevance for their architecture is a strong link to the fact that adenines 

are by far the most common nucleobase stacked with O4’ atoms in RNA.  

A final family of O4’- interactions include consecutive contacts where a guanine in anti is stacked 

over the ribose of the previous nucleotide and simultaneously makes a long range Watson-Crick base 

pair with a cytosine (Fig. 3.10). The local structure of this dinucleotide step is reminiscent of the UpG 

step belonging to CUUG tetraloops especially found in ribosomes, among the most relevant RNA 

tetraloop families (Jucker and Pardi 1995b).  

Data on phosphate- stacking inside GNRA tetraloops and O4’- stacking involved in both UNCG 

and CUUG tetraloops infer that the stacking of backbone oxygen with nucleobase is a determinant 

structural feature of tetraloops. Even if these capping interactions do not determine the fold by 

themselves, they are significant to modulate it. This secondary structural role for O4’- stacking is 

even more important for long range interactions such as lattice contacts or A-minor motifs.  

3.3.4 Future outlook of O4’- stacking interactions in RNA  

The results presented here on O4’- interactions in nucleic acids are a starting point for future more 

in-depth analysis and classifications. Although several other families could emerge using different or 

more precise structural criteria, I am confident that the group presented here are the most significant 

for the structure and functions of nucleic acids. One of the most intriguing questions that stay 

unanswered is the occurrence of O4’-plane distances around 2.9 Å, a very short value for stacking 

contacts. This feature alone could prompt novel speculations about the strength and the role of stacking 

interactions in biomolecules and can help to define an “interaction hierarchy” that would describe also 

in vivo conditions. Nevertheless, O4’- contact constitute a member of the rare non-covalent 

Figure 3.10. O4’- stacking in in a UpG step. The guanine in anti is stacked with the uridine 

ribose and making a long-range base pair with a cytosine. Interatomic distances < 3.5 Å are 

represented by dashed lines. The atom-based colored guanine is residue 757 of chain DA in PDB 

4YBB; res.: 2.1 Å (Noeske et al. 2015).  
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interactions structuring biomolecules that needs to be better rationalized to be described in MD force 

fields and other theoretical techniques. 

3.4 “Z-DNA like” motifs in RNA 

The occurrence of CpG steps within UNCG tetraloops analogous to Z-DNA is just a starting point 

of a more interesting consideration. In fact, these steps are ubiquitous in RNA, can take the form of 

NpN dinucleotide steps and are found in remarkable structural and functional locations. 
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3.4.1 Paper 2. “Z-DNA like” fragments in RNA: a novel structural motif 

with implications for folding and RNA/protein recognition and immunology 

(Nucleic Acid Res, 2016) 

Graphical abstract 

 

The occurrence of d(CpG) dinucleotide steps in left-handed DNA helices is familiar to us since the 

pioneering work of Alexander Rich who solved the first Z-DNA crystal structure. However, it is 

largely unrecognized that almost all dinucleotide sequences can adopt “left-handed” conformations in 

DNA and RNA in double as well as single stranded contexts. As such, we found that “Z-like” steps 

(Z-steps) are part of UNCG tetraloops but also of small and large RNAs including riboswitches, 

ribozymes and ribosomes. They are also occasionally involved in long-range base pairs significant to 

maintain functional folds, such as in a viral tRNA-like structure. The Z-steps involve the coexistence 

of several rare conformational features: (i) a C2’-endo ribose pucker, (ii) a syn nucleotide and (iii) a 

O4’- stacking between the nucleobase in syn and a ribose O4’ atom. We characterized this O4’- 

stacking interaction and obtained oxygen-base plane distances ~2.9 Å, which infer a bonding 

character. This stacking, together with the other unusual structural features, is individually known to 

induce a conformational stress in the RNA backbone that is associated with a slow kinetic of 

formation. With the characteristics combined, the stress imposed to the backbone might be 

significantly larger and account for the low occurrence of the Z-steps (≈0.1% of all dinucleotide steps). 

As an outcome, Z-steps are probably associated with slow kinetics and once formed could lock specific 

folds through unique backbone kinks and turns or long-range contacts. Besides their structural role, 

we found that several regulatory proteins recognize and bind Z-steps in single stranded RNA in a 

sequence-specific fashion. Even more interestingly, various interferon-induced proteins involved in 

immunology response recognize these steps through non-sequence specific contacts with the 

backbone, either in double stranded Z-RNA but also in single stranded Z-steps. Altogether, Z-like 

steps are rare but specific multifunctional motifs that are significant for RNA/DNA structure and 

function, are key to some immunologic response mechanisms and represent a further unforeseen 

example of the stunning diversity of motifs present in the assembly of RNA systems.  
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ABSTRACT

Since the work of Alexander Rich, who solved the
first Z-DNA crystal structure, we have known that
d(CpG) steps can adopt a particular structure that
leads to forming left-handed helices. However, it is
still largely unrecognized that other sequences can
adopt ‘left-handed’ conformations in DNA and RNA,
in double as well as single stranded contexts. These
‘Z-like’ steps involve the coexistence of several rare
structural features: a C2’-endo puckering, a syn nu-
cleotide and a lone pair–� stacking between a ri-
bose O4’ atom and a nucleobase. This particular ar-
rangement induces a conformational stress in the
RNA backbone, which limits the occurrence of Z-like
steps to ≈0.1% of all dinucleotide steps in the PDB.
Here, we report over 600 instances of Z-like steps,
which are located within r(UNCG) tetraloops but also
in small and large RNAs including riboswitches, ri-
bozymes and ribosomes. Given their complexity, Z-
like steps are probably associated with slow folding
kinetics and once formed could lock a fold through
the formation of unique long-range contacts. Pro-
teins involved in immunologic response also specif-
ically recognize/induce these peculiar folds. Thus,
characterizing the conformational features of these
motifs could be a key to understanding the immune
response at a structural level.

INTRODUCTION

Diversity in shape between RNA and DNA is striking. Al-
though DNA can adopt A and B helical forms, RNA double
strands are never of the B-form, due to the ribose preference
for a C3’-endo over a C2’-endo pucker. Yet, both DNA and
RNA can adopt a left-handed Z-form in which C2’-endo
and C3’-endo alternate along a CpG sequence (1).

Historically, Z-DNA was crystallized before A-DNA, B-
DNA and Z-RNA (2–4). Its structural properties and in
particular the repeated 5′-pyrimidine-purine-3′ dinucleotide
step along the helix with a purine in syn (Figure 1), were de-
scribed in detail (1,2,5–9). The most frequently crystallized
Z-DNA dinucleotide step is CpG, but other Z-DNA steps
have been described (1,10,11). However, because the in vitro
formation of both Z-DNA and Z-RNA usually requires a
high ionic strength or specific nucleotide modifications, it
was assumed for a long time that Z-forms were mere struc-
tural artifacts (3,4).

Although both Z-DNA and Z-RNA have been known
to be immunogenic since the 1980s, their biological role
was questioned (4). We now know of four families of Z-
DNA binding proteins that are all involved in the innate im-
mune response such as the interferon induced form of the
RNA editing enzyme ADAR1, the innate immune system
receptor DLM-1, the fish kinase PKZ and the pox-virus in-
hibitor of interferon response EL3 (12,13). These proteins
were found to recognize Z-DNA in a conformation-specific
manner since most of the contacts with the protein involve
backbone atoms (13,14). Moreover, evidence that some of
these protein domains interact with Z-RNA in vitro have
been gathered, which raised issues related to the in vivo role
of this RNA form (12,15–17).

Here, we report the unanticipated occurrence of Z-like
dinucleotide steps at key locations in single stranded RNA
regions following a first identification in CUG-regulator
binding proteins (18). We also highlight how r(U/ApA)
steps are found more frequently than r(CpG) steps. Since
our goal is to better characterize rare conformational fea-
tures in RNA, we examine in detail the structure of what
we refer to as a ‘Z-like’ motif, in particular within the con-
text of r(UNCG) tetraloops where it has never been de-
scribed although it is an essential component of this fold.
We find that the Z-like motif contains a ribose-base or lone
pair–� (lp–�) stacking that consists in the close contact of
the 5′-ribose O4’ atom with the six-membered 3′-guanine
ring as observed in Z-DNA (Figure 1). This ribose-base
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Figure 1. Structural features of Z-DNA and B-DNA CpG steps (similar rules apply for all d/r(NpN) steps). 3′- and 5′-nucleotides are coloured in white
and wheat, respectively; O4’ atoms are shown as yellow spheres. (A) d(CpG) step extracted from a Z-DNA crystal structure (PDB: 3P4J; res: 0.55 Å). Note
the characteristic antiparallel orientation of the ribose rings marked by red and black arrows. (B) Orthogonal view of (A) emphasizing the syn orientation
of the the 3′-residue. In (A) and (B), the dashed cyan lines correspond to interatomic contact distances (≤3.5 Å) involving the 5′-O4’ atom and the 3′-six-
membered ring atoms. These contacts define a ‘capping’ or ‘lp–�’ interaction. (C) d(CpG) step extracted from a B-DNA crystal structure (PDB: 1EN3;
res: 0.99 Å). Two red arrows mark the parallel orientation of the ribose rings. (D) Orthogonal view of (C) emphasizing the 3′-residue anti orientation. In
(B) and (D), 3′-glycosidic ‘syn/anti’ bonds marked by circular arrows are similarly oriented and all atoms except the N/O atoms on the Watson–Crick
edges and the O4’ atoms are in white or wheat colours.

stacking has been mentioned in the first studies of Z-DNA
crystallographic structures (2,6,7) but its implications were
only investigated several years later (19–21) and never ad-
dressed in RNA systems. More generally, such lp–� inter-
actions are currently subject to strong interest in the chem-
ical field where they are considered as a significant and
largely unexplored non-covalent interaction type (22–24).
Finally, we describe double and single strand Z-like confor-
mations in RNA/protein systems and, among those, in vi-
ral RNA that are specifically recognized in a conformation-
dependent manner by specialized proteins from the immune
system.

MATERIALS AND METHODS

The Protein Data Bank (PDB) was searched for ‘Z-DNA
like’ dinucleotide steps (hereafter named ‘Z-like’ steps) in
DNA and RNA crystallographic structures with resolu-
tions ≤3.0 Å. Z-like steps were characterized using the fol-

lowing criteria: (i) the 3′- and 5′-nucleotide adopt a syn and
anti orientation, respectively; (ii) the 5′-O4’ ribose atom is at
≤3.5 Å from the 3′-nucleobase plane with its projection on
the base plane circumscribed in the polygon defined by the
ring atoms (Figure 1A and B); these criteria define a lone
pair–� interaction that is associated with an atypical an-
tiparallel orientation of the ribose rings with facing 3′- and
5′-O4’ atoms (6). In order to exclude a few borderline cases,
we explicitly imposed antiparallel orientation of the ribose
rings in this survey.

Since some Z-like steps have ribose puckers in the north,
east or south quadrant, we did not rely for their identifica-
tion on the classical and more restrictive Z-DNA C2’-endo
to C3’-endo ribose pucker sequence. Thus, we avoid issues
related to the difficulty to resolve precisely ribose puckers in
experimental structures (25,26). The 3DNA/DSSR analysis
tool was used to identify ‘lp–�’ capping contacts (Figure 1A
and B) as well as to calculate backbone torsion angles, hy-
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drogen bond contacts, ribose puckers and to characterize
syn/anti conformations (27).

Z-like steps having atoms with B-factors ≥79 Å2 were ex-
cluded from our statistics as well as disordered or terminal
steps found at the 3′- or 5′-end of the structures unless other-
wise specified. Crystallographic structures with resolutions
>3.0 Å as well as some cryo-EM and NMR structures were
also inspected, although they were not considered for statis-
tics. As of February 2016, the PDB contains ≈5100 nucleic
acid crystal structures including complexes with proteins
over a total of ≈96 000 biomolecular structures (resolution
≤ 3.0 Å). Images of 3D structures were generated with Py-
MOL (Schrödinger, L.L.C.; http://www.pymol.org).

Non-redundant Z-like steps were tagged as follows. If two
steps from different structures share identical residue num-
bers, chain codes and tetranucleotide sequences (including
a residue before and after the dinucleotide step) as well
as ribose puckers, backbone dihedral angle sequences (fol-
lowing a g+, g-, t categorization) and syn/anti conforma-
tions, they are considered as similar and the one with the
best resolution is marked as non-redundant. Alike, if in a
same structure two Z-like steps share same residue num-
bers and tetranucleotide sequences (with different chain
codes) as well as ribose puckers, backbone dihedral angle
sequences and syn/anti conformations, they are considered
as similar and the one corresponding to the first biological
unit is marked as non-redundant. The former criteria are
used to filter similar PDB structures and the latter to fil-
ter structures with multiple related biological units. Note
that it is impossible to completely eliminate redundancy
from a dataset without eliminating at the same time signifi-
cant data. Here, we provide an upper limit for a truly ‘non-
redundant’ set.

RESULTS

Z-like steps are found in both DNA and RNA and are not
limited to CpG steps

CpG steps are highly represented in Z-DNA left-handed
duplexes (Table 1). Besides, a few Z-like TpG/ApA, CpA
and GpG/ApC/TpT steps were identified in quadruplex
loops, in a rare DNA tetraloop (28) and in single stranded
DNA. Also some telomere end-binding proteins recognize
Z-like GpG steps (29).

In RNA, over 600 Z-like steps are found in the PDB.
Compared with the total number of dinucleotide steps in
the database (>600 000), they correspond to rare events, but
their presence at key locations in a limited number of RNA
families, including ribosomal RNA (see below) makes them
noteworthy. Their sequence variety is much greater than in
DNA (Table 1). All steps containing a 3′-purine are repre-
sented and ApA steps are more frequent than CpG steps
contrasting with the dominance of the latter in DNA. Strik-
ingly, in both nucleic acids, 5′-pyrimidine steps remain un-
common. Up to now, as only one crystal structure of a Z-
RNA helix has been solved (16), most of the identified Z-
like steps are located within non-helical regions. However,
since a large diversity of sequences are found in Z-DNA he-
lices, the crystallization of further Z-RNA duplexes might
reveal a similar sequence diversity.

Ribose-base stacking or ‘lp–�’ (lone pair–�) interactions de-
fine the structure of Z-like steps

A striking characteristic of Z-like steps in DNA relates to
the stacking of the O4’ atom of the 5′-deoxyribose ring
with the six-membered ring of the 3′-residue, a contact that
was to the best of our knowledge never described in NMR
or crystallographic structures of RNA systems (Figure 1A
and B). This contact is promoted by the large slide of the
two bases and by a specific sequence of backbone dihedral
angles that leads to an antiparallel arrangement of the ri-
bose rings with facing O4’ atoms (6). This arrangement con-
trasts with the same strand parallel ribose alignment in B-
and A-DNA helical structures (Figure 1C). In addition, this
stacking interaction is similar to the stacking of phosphate
groups over uridines observed in tRNA anticodon loops
(30). Such ribose-base stacking interactions are sometimes
called ‘lp–�’ (lone pair–�) stacking (19–22) and where as-
sociated with a rare shift of proton signals in Z-DNA NMR
spectra (31).

In order to better characterize these stacking interactions,
we calculated the O4’ to base plane contact distance (Figure
2). A strong decay towards 3.5 Å in the associated histogram
suggests that the O4’ atoms are clustered close to the aro-
matic nucleobase, and that contacts above this limit should
no longer be considered as stacking interactions. The aver-
age contact distance for Z-DNA and RNA is 2.9 ± 0.1 and
3.0 ± 0.2 Å, respectively. Interestingly, in these histograms
the Z-DNA peak is much sharper than the RNA peak. This
might be linked to two factors: (i) Z-DNA structures are
generally of a much better resolution (average 1.8 Å for
DNA versus 2.6 Å for RNA), and (ii) the structural context
of Z-like steps is more diverse in RNA than in DNA, lead-
ing to more dispersed positions of the O4’ atoms over the
purine rings (Figure 2B and C). Furthermore, the r(NpG)
step histogram displays two peaks. The first is associated
with UNCG loops (≈2.9 Å) for which the CpG step is very
similar to that in Z-DNA (see below). The second is asso-
ciated with more diverse RNA turns (≈3.1 Å). For r(NpA)
steps, the distance distribution is broader as it is associated
with a much larger structural diversity in small and large
RNAs. The r(NpA) step distance distribution is like that of
the second r(NpG) peak, further stressing that both are as-
sociated with a broad structural context extending that of
Z-helices and UNCG tetraloops.

Next to ‘lp–�’ interactions, ribose puckers are very spe-
cific in Z-like steps with much stronger constraints on the
5′- than on the 3′-nucleotide (Table 2). The former puck-
ers are mainly in the south quadrant (≈91%) while north
dominates for the latter (≈62%) followed by south and east.
Puckers in the west quadrant remain exceptional. Overall,
the N-S (or C3’-endo-C2’-endo) pucker configuration pre-
vails in both DNA and RNA.

Z-like steps in r(UNCG) loops are similar to those found in
left-handed helices

As stated above, Z-like CpG steps are constitutive of
r(UNCG) tetraloops and structurally similar to those found
in Z-DNA and Z-RNA (Figure 3) (32). Despite their high
thermodynamic stability (33,34), these tetraloops are rare
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Figure 2. Ribose O4’ stacking (‘lp–�’) to dG, rG and rA nucleobases. (A) Top view (5′-side) of the dG, rG and rA nucleobases showing the positions of
all O4’ atoms above the nucleobase plane with a contact distance ≤ 3.5 Å. For rG, the O4’ atoms belonging to r(UNCG) loops are in cyan instead of red.
(B) 90◦ rotation of (A); the 2.5-3.5 Å boundaries are marked by arrows and dashed lines. (C) Histogram of the O4’ to nucleobase plane distances drawn
from structural sets including all contacts. For rG, O4’ positions and related distances belonging to r(UNCG) loops are in cyan instead of red.

Figure 3. Z-like step in a r(UUCG) tetraloop. In all panels and subsequent figures, r(CpG) steps are shown in red; the ribose O4’ atoms are shown in
yellow; the cyan dashed lines are defined in Figure 1. In this figure, r(UpU) steps are shown in wheat. (A) 2D structure of a r(UUCG) tetraloop. The Z-like
r(CpG) step is boxed. (B) 3D structure of a r(UUCG) tetraloop (PDB: 1F7Y; res: 2.8 Å). (C) 90◦ rotation of (B).
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Table 1. Number of non-redundant Z-like steps found in PDB crystallographic RNA and DNA structures (resolution ≤ 3.0 Å; atomic B-factors ≤ 79 Å2;
February 2016 PDB survey) over a total >600 000 nucleotide steps

Dinucleotide steps DNAa RNAa

3′-guanine
CpG 124 (187) 42 (125)
(T/U)pG 9 (9) 13 (21)
ApG – 14 (57)
GpG 8 (11) 1 (6)
3′-adenine
CpA 3 (4) 18 (25)
(T/U)pA 13 (15) 42 (127)
ApA 1 (1) 75 (279)
GpA – 13 (13)
3′-cytosine
CpCb – 1 (1)
(T/U)pC – 5 (5)
ApC – 1 (1)
GpC – –
3′-thymine/uridine
Cp(T/U) – 2 (2)
(T/U)p(T/U) 1 (1) 1 (1)
Ap(T/U) – 3 (4)
Gp(T/U) – –
Total: 159 (228) 231 (667)

aThe total number of Z-like steps found in the PDB and with no redundancy considerations is given in parenthesis.
bThe 3′-cytosine of this CpC step displays a 50% syn and anti occupancy (70).
Steps with disordered backbones, usually found in high-resolution Z-DNA structures, were not taken into account. However, modified nucleotides in
Z-DNA were considered. Note that these statistics reflect only the step distribution in structures deposited to the PDB and not the in vivo distribution
of these steps. The high number of non-redundant CpG steps in Z-DNA is partly related to the incorporation of modified nucleotides in our structural
sample and should be considered with caution.

Table 2. Ribose puckers for the 3′- and 5′-nucleotides in non-redundant Z-like steps found in PDB crystallographic RNA and DNA structures (resolution
≤ 3.0 Å; B-factors ≤ 79 Å2)

Pucker DNAa RNAa

3′-nucleotide
North [C3’-endo] 87 (132) [82 (127)] 132 (419) [131 (418)]
South [C2’-endo] 27 (34) [21 (27)] 34 (87) [34 (87)]
West 1 (1) –
East 44 (61) 63 (160)
5′-nucleotide
North [C3’-endo] – [–] 12 (13) [8 (9)]
South [C2’-endo] 137 (202) [130 (193)] 198 (611) [190 (599)]
West 2 (2) 1 (1)
East 20 (24) 18 (41)

aThe total number of ribose puckers in each category with no redundancy considerations is given in parenthesis.
Steps with disordered backbones, usually found in high-resolution Z-DNA structures, were not taken into account. Modified nucleotides were considered.

in natural RNA systems where almost all known occur-
rences are gathered in ribosomal structures (see below).
r(UNCG) loops were also artificially grafted to RNA struc-
tures to serve as stem capping motifs for stabilization and
crystallographic purposes, e.g. the r(UUCG) tetraloops in
an RNA-protein complex (32), the group II intron (35)
and the RNaseP structure (36). All these structures ex-
hibit tetraloop CpG steps whose structure is consistent with
those reported in high-resolution NMR structures (37).
The lp–� stacking interaction over more than hundred
r(UNCG) instances is associated with an average distance
of ≈2.9 ± 0.1 Å that is, as mentioned above, very similar to
that calculated for Z-DNA CpG steps (Figure 2A and B).
Despite the fact that UNCG loops can have any nucleotide
at the second position, we could only identify cUUCGg and
cUACGg loops in our PDB set of structures.

Z-like steps appear at key locations in small RNAs. . .

Z-like steps were also identified in a variety of small
RNA structures, including: (i) purine riboswitches (38),
(ii) classI/II preQ1 riboswitches (39,40), (iii) thiamine
pyrophosphate (TPP) riboswitches (41), (iv) lysine ri-
boswitches (42), (v) streptomycin aptamers (43) and (vi)
hepatitis delta virus (HDV) ribozymes (44–48) but are ab-
sent in other structures like tRNA or group I introns (Fig-
ure 4). The diversity of dinucleotide sequences involved in
these Z-like steps is unexpected. Contrary to what could be
inferred from the dominance of CpG steps in Z-DNA, Z-
like steps in RNA form in a large variety of contexts and
in the absence of high salt conditions. For instance, >30
purine riboswitches associated with ≈18 different ligands
were crystallized, all of them displaying a conserved UpA,
ApA or CpA Z-like step (38). In these riboswitches, the 3′-
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Figure 4. Z-like steps observed in crystallographic structures of small RNA systems. When present, ligands are shown in magenta. (A) Purine riboswitch
(PDB: 4FE5; res: 1.3 Å); (B) class I preQ1 riboswitch (PDB: 3K1V; res: 2.2 Å); (C) class II preQ1 riboswitch (PDB: 4JF2; res: 2.3 Å); (D) TPP riboswitch
(PDB: 2GDI; res: 2.1 Å); (E) lysine riboswitch (PDB: 3D0U; res: 2.8 Å); (F) streptomycin aptamer (PDB: 1NTA; res: 2.9 Å); and (G) HDV ribozyme
(PDB: 3NKB; res: 1.9 Å).

nucleotide stacks with the ligand (Figure 4A), while the con-
served 5′-adenine participates in an important base triple.
If base triple disrupting mutations of this adenine are detri-
mental to the structure and activity of the riboswitch, it has
been shown that mutations of the 3′-U to C or A are tol-
erated and preserve the Z-like step structure that is con-
sequently partly sequence independent (49). As such, Z-
like steps must shape in a very specific manner the ligand-
binding pocket of purine riboswitches.

In other RNA systems, Z-like steps occur in turns simi-
lar to those found in UNCG tetraloops (Figure 3B), where
the bottom 5′-nucleobase often has a solvent-exposed face.
There, Z-like steps are involved in junctions or joining re-
gions where at least one of the nucleotides is pairing with
distant residues (e.g. the A53•AZERAZRZ84 base pair in the
TPP riboswitch). Together, these observations suggest that
Z-like steps occur at key locations where they promote spe-

cific turns that are strategic for creating precise and not oth-
erwise possible RNA folds (see Discussion).

. . . are involved in long-range contacts . . .

An important long-range interaction involving a Z-like step
but no specific turn occurs in a viral tRNA-like struc-
ture (TLS; Figure 5A) (50,51). In this RNA, a previously
unidentified Z-like ApG step is embedded within a terminal
5′-UUAG sequence, which was historically not recognized
as part of the minimal TLS (the two uridines are not visible
in the crystallographic structure). However, the presence of
this nucleotide sequence has been proven important to sta-
bilize the global tRNA-like TLS fold via a long-range in-
teraction and is required for aminoacylation. The involved
base pair is a cis-WC G2=C74 pair with a G in syn. The ex-
istence of this single base pair to hold the global fold allows
TLS to have a structural and functional flexibility exploited
for viral activity, a functional plasticity present in almost all
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Figure 5. Z-like steps establishing long-range contacts in a tRNA like system (TLS) and a fluoride riboswitch (symmetry contact). The nucleotides forming
a Watson–Crick pair with the 5′-nucleotide of the Z-like step are shown in wheat. (A) TLS structure (PDB: 4P5J; res: 2.0 Å). (B) Fluoride riboswitch (PDB:
4ENC; res: 2.3 ). The symmetry related molecule is shown in light blue; asterisks mark annotations for this molecule.

tRNA and tRNA related systems (52). It has been proposed
that a loss of this interaction is what enables TLS to more
readily unfold to allow viral replication. Indeed, a loss of the
TLS structure is observed when the 5′-fragment containing
the Z-like step is truncated. A similar Z-like step associated
with a cis-WC G=C pair is present in the crystal structure
of a fluoride riboswitch (53). There, it involves a symmetry-
related molecule, suggesting that such long-range interac-
tions, although uncommon, are modular elements that are
of importance in the fold of specialized RNA molecules
(Figure 5B).

. . . and are also present in ribosomal structures

In addition to being found in small RNA systems, Z-like
steps are also present in all available ribosome structures,
an indication that they might occur in ribosomal RNA of
all organisms. Several of them are clustered in the conserved
core of the ribosomal large subunit (LSU; Figure 6), while
others are found in non-conserved peripheral regions of
the large and small subunits (SSU). Given the complexity
of these ribosomal structures, we report only a few con-
served occurrences of Z-like steps in the LSU of E. coli
(54), S. cerevisiae (55) and H. sapiens (56), as deduced from
their 3D structure and from sequence conservation data
based on phylogeny (57). Other Z-like steps found in non-
conserved regions including those in the SSU are poorly re-
solved in available crystallographic and cryo-EM structures
and therefore will not be discussed here.

Overall, these ribosomal Z-like steps are similar to those
found in small RNAs where they allow for distant pairing
between nucleobases. Some of them, like the ones within
conserved UUCG tetraloops, are additionally contacting
proteins that interact specifically with their Z-like CpG step,
pointing out that Z-like steps can be part of RNA-protein
recognition schemes.

Specific recognition of Z-like steps by regulatory and RNA
modification proteins

Single stranded segments integrate Z-like steps that are
directly recognized by specialized RNA binding proteins
such as the iron regulatory protein 1 (IRP1) (58,59), CUG-
binding proteins (18) and proteins associated with H/ACA
box snoRNA (60–62). Hereafter, we will briefly address the
variety of recognition patterns in which they are involved
(Figure 7).

Iron-responsive elements (IREs) are short mRNA stem-
loops recognized by the iron regulatory protein 1 (IRP1) at
two sites separated by ≈30 Å. One of these sites involves a
conserved ApGpU triloop where ApG forms a Z-like step
(Figure 7A) (58). These bulged-out A and G nucleotides
point toward the protein and are associated with a sharp
turn in the RNA backbone. This step contacts five different
amino-acids and is specifically sandwiched by two leucine
side chains that provide van der Waals contacts to the ex-
posed aromatic surfaces of the A and G residues. Although
a subsequent crystal structure with a different IRE element
displays the same 2D motif (59), the available NMR struc-
tures of this element are not showing a Z-like step. There-
fore, this conformation might be protein-induced and/or
protein-stabilized (63).

CUG-binding proteins regulate multiple aspects of nu-
clear and cytosplamic mRNA processing. They are known
to preferentially target UGU-rich mRNA elements to ac-
complish their mRNA processing functions. The UpG step
adopts a left-handed Z-RNA conformation (Figure 7B)
where the syn guanine is recognized through specific Hoog-
steen edge-protein backbone interactions (18). The similari-
ties between UpG steps as found in this complexes and CpG
steps in structures of a complex of Z-RNA with the ADAR1
Z� protein were described. Interestingly, the U3-G4 and U8-
G9 steps in the GUUGUUUUGUUU sequence in complex
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Figure 6. Conserved Z-like steps in 2D structures of three large (LSU)
ribosomal subunits from E. coli, S. cerevisiae and H. sapiens. The 2D
representations (derived from 3D structures) were adapted from images
stored at http://apollo.chemistry.gatech.edu/RibosomeGallery (57). The
Z-like steps were inferred from the X-ray E. coli (4YBB; res: 2.1 ; chain:
DA) (54), S. cerevisiae (4U4R, res: 2.8 ; chain: 1) (55) and cryo-EM H.
sapiens (4UG0, res: 3.6 ; chain: L5) (56) structures. Note that in yeast, for
step ‘2’, the O4’ atom is shifted by 0.1 Å and therefore not exactly stacked
over the adenine ring, illustrating the difficulties to work with large struc-
tures of medium to low resolution that often embed local inaccuracies.

with two RNA recognition motifs (bound RRM1 and tan-
dem RRM1/2) share the same Z-like step structural fea-
tures.

H/ACA ribonucleoprotein particles are a family of pseu-
douridine synthases that use guide RNAs to specific modi-
fication sites (60–62,64). They also participate in eukaryotic
ribosomal RNA processing and are a component of ver-
tebrate telomerases. H/ACA RNAs fold into repeats of a
consensus hairpin structure that comprise an internal loop
and an ACA signature that harbours a 3′-tail. This three
single stranded A58pC59pA60 signature forms two consecu-
tive CpA Z-like steps when including the terminal C57 stem
nucleotide (Figure 7C). The PUA (PseudoUridine synthase
and Archaeosine transglycosylase) domain of Cbf5 recog-
nizes very specifically this Z-like step repeat. Although the
two Z-like steps are easily characterized by visual inspec-
tion, it appears that they represent also borderline steps re-
garding their lp–� geometry; the C57 ribose is almost par-
allel to the A58 nucleobase and the lp–� contact distance of
the C59pA60 step exceeds 4.0 Å. Although borderline, these
consecutive Z-like steps seem stable since they are recur-
rently observed in H/ACA box systems.

A further occurrence of Z-like steps in RNA/protein
complexes involves a bacteria-to-phage ‘immune response’,
i.e. the bacterial phage-resistance system ToxIN involving
the protein ToxN that is inhibited in vivo by a specific ToxI
antitoxin RNA (65). A crystal structure of the complex
shows a Z-like ‘ApG’ step shortly upwards the ToxI 3′-end
that binds to the ToxN groove 1 (Figure 7D). The backbone
turn associated to the Z-like step allows the two follow-
ing adenines to directly point towards the protein recogni-
tion pocket and establish several specific interactions. There,
amino acid side chains interact with the Watson–Crick
edges of the Z-like nucleotides like those in the RNA junc-
tions and turns described above.

Z-like steps in immunology-related viral RNAs

The last and most intriguing aspect of Z-like steps, al-
ready mentioned for the bacteriophage system, is related
to their role in the immune response. Adenosine deaminase
(ADAR1) proteins embed a Z� domain able to recognize
Z-DNA as well as Z-RNA duplexes (12,16,66,67). The two
available crystal structures of a Z� domain in complex with
Z-DNA and Z-RNA CpG hexamers display similar char-
acteristics. In these complexes, the central CpG step is es-
sentially recognized through specific amino acid-phosphate
group contacts. Additionally, in the Z-DNA complex, a sin-
gle weak van der Waals contact of the CH. . . � type be-
tween Tyr177 and a guanine is observed. When the RNA
replaces the DNA substrate, this contact disappears, sug-
gesting that the Z� domain could recognize any Z-RNA
motif (the authors did however not exclude that crystal-
packing effects may have slightly altered the structure of
this RNA complex). Indeed, three other d(CACGTG)2,
d(CGTACG)2 and d(CGGCCG)2, Z-DNA substrates were
co-crystalized with the Z� domain, stressing that a Z-like
TpA step can be recognized similarly to a CpG step (11).
Hence, these protein domains and their analogs (68) could
recognize Z-DNA as well as Z-RNA in a non-sequence spe-
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Figure 7. Examples of Z-like steps recognized by proteins. (A) IREs mRNA in complex with IRP1 (PDB: 3SNP; res: 2.8 Å). (B) CUG-binding protein
in complex with UGU-rich mRNA (PDB: 3NMR; res: 1.9 Å). (C) H/ACA ribonucleoprotein particle (PDB: 3HAX; res: 2.1 Å). This structure displays
two consecutive and borderline Z-like steps. The C59pA60 step that displays a lp–� ‘contact’ > 4.0 Å is shown in grey with O4’ atoms in yellow. (D) ToxI
RNA-ToxN protein complex (PDB: 2XDB; res: 2.6 ).

cific manner, a process that may be associated with the im-
mune response (69).

Z-like steps were further identified in single stranded
RNA 5′-triphosphate groups (5′-PPP-RNA), a signature of
viral RNA, when recognized by interferon-induced proteins
with tetratricopeptide repeats of the IFIT5 family. Three
crystal structures of the human IFIT5 protein in complex
with 5‘-PPP-N1N2N3N4 (N = C, U or A) ligands (Fig-
ure 8) (70–72) reveal that the ligand is recognized in a
non-sequence- but conformation- and modification-specific
manner. Indeed, no nucleobase-to-protein contacts are ob-
served in these structures but only contacts to the ribose-
phosphate backbone and the binding pocket of this protein
does not seem large enough to accommodate the usual cap-
ping modifications found in eukaryotic RNAs.

In each of these ligands, the N1pN2 step adopts a Z-
like conformation inducing the formation of important con-
tacts between the protein and the RNA backbone. The N1
and N2 bases do not establish specific hydrogen bonds with
protein residues, and there is ample space adjacent to the
pyrimidine edges, suggesting that the binding pocket can
easily accommodate the larger purine nucleobases as seen
in the oligo-A complex. Interestingly, the position of the
RNA backbone in the oligo-A complex favors the forma-
tion of a lp–� interaction involving the five- instead of the
more usual six membered ring (Figure 8B). This particular
Z-like step arrangement allows the accommodation of all-
purine as well as rare all-pyrimidine sequences and eventu-
ally combinations of them without the need to adjust back-
bone conformation. As such, it allows the incorporation of
an all–C sequence for which it was difficult to precisely iden-

tify the syn/anti nucleobase conformation (Figure 8C and
D). Given available structures, it seems very likely that the
C2 base is in syn. Yet, these data also imply that it is much
more difficult to identify syn pyrimidines than syn purines
in crystallographic structures. Consequently, their number
might be slightly underestimated in the PDB (26). Indeed,
evidence was given very early that pyrimidines could adopt
syn conformations in solution and be associated with Z-
steps (4,10).

DISCUSSION

In both DNA and RNA, we observe that not only CpG
steps but also almost any dinucleotide sequence can adopt
similar Z-like structures, with a preference for those with
purines on the 3′-side. A difference between Z-like steps
in RNA and DNA is that in RNA these steps are usually
found in single-stranded regions such as loops and junc-
tions, where they contribute to creating specific backbone
kinks and turns. However, we were unable to identify re-
curring interaction patterns, which point to a great diver-
sity of Z-like step usages. In Z-dinucleotides, we noted that
the Watson-Crick sites of the two nucleobases point in the
same direction. Hence, in most instances the two nucle-
obases are alternatively or simultaneously forming hydro-
gen bonds with distant residues. Significantly, a Z-like step
has remained unnoticed in the UNCG tetraloop family, al-
though the similarity between Z-DNA and UNCG back-
bones was mentioned elsewhere (73). This observation high-
lights the difficulties of circumventing the complex interac-
tion patterns present in even simple and well-studied RNA
motifs.
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Figure 8. Z-like conformations adopted by the N1pN2 step of a 5′-PPP-N1N2N3N4 viral RNA primer in complex with the human interferon induced
IFIT5 protein. The 5′-PPP group and the N3pN4 residues are shown in wheat and the protein backbone in aquamarine. (A) 5′-PPP-UUUU (PDB: 4HOS;
res: 2.0 Å). (B) 5′-PPP-AAAA (PDB: 4HOT; res: 2.5 Å). Note the rare lp–� stacking involving the five membered ring of A2. (C) 5′-PPP-CCCC (PDB:
4HOR; res: 1.9 Å). (D) 90◦ rotation of (C). In (C) and (D), the nucleobase C2 adopts a syn (A; red) and an anti (B; green) alternate conformation illustrating
the difficulty of unambiguously assigning syn conformations for pyrimidines.

Dissecting the unusual structure of a Z-like step reveals
that it is the result of several uncommon events. Both nu-
cleotides are required to adopt specific conformations (C2’-
endo on the 5′-side, syn on the 3′-side) that each occurs at a
2% and 12% frequency, respectively (as estimated from PDB
crystal structures). In that respect, the frequency of Z-like
steps that combines both conformational features drops to
a low ≈0.1%. Moreover, the syn nucleobase is fully flipped
over the ribose of the anti nucleobase, which among most
but not all Z-like steps results in a specific stacking inter-
action involving the O4’ of the first ribose where the dis-
tance between that O4’ atom and the nucleobase ring is
shorter than the average stacking interaction distances be-
tween aromatic rings (2.9 Å versus 3.4 Å), due to electro-
static and dispersion effects probably dominated by solvent
induced-forces (74). This interaction of the lp–� type has
been shown through quantum mechanical calculations to
be rather weak and is probably an incidental event rather
than a potential folding driver (19,21). If this interaction
had been promoting folding, it would have been observed
much more frequently. In short, although a Z-like step is
made of rare and energetically costly conformations, its
structure is induced and stabilized by its surrounding dur-
ing folding.

We wish to posit that the low frequency and the incidental
nature of Z-like steps are compatible with a precise struc-
tural function. Since syn and C2’-endo conformations are
linked with slow dynamics, they probably need assistance
from other elements to overcome the structural stress im-
posed to the backbone (26,75). We therefore propose that

the combination of rare conformations within a Z-like step
would create regions that retain their fold once formed. Like
other structural elements involved in long-range 3D con-
tacts such as GNRA loops interacting with their receptors
(76), Z-like steps could act as conformational locks at strate-
gic locations in RNAs, with the particularity of involving
rare nucleotide conformations that need specific structural
contexts for their formation. Here, the case of the purine
riboswitch is particularly interesting, as the Z-like UpA is
part of the ligand-binding site (U22 is directly contacted by
the ligand). The Z-like motif is part of the junction J1/2. It
stabilizes the final bound structure through long-range in-
teractions with J2/3––J3/1 and is next to the the entry site
of the ligand (77,78). Additionally, the preorganized state
of the binding pocket that is known to involve J1/2 and
precede ligand binding (79) could be in part attributed to
the presence of this ‘Z-lock’. We hope that these consider-
ations will encourage studies of the dynamics of formation
of Z-like steps, as those may reveal cues to understanding
the ligand binding process.

Among all the intramolecular RNA motifs that were de-
scribed here, the one found in the TLS structure seems the
most peculiar since the active fold of the structure requires
the formation of a single long-range Watson-Crick base pair
involving a Z-like step (50). The study of other folds such as
those associated with the purine riboswitch ligand binding
pocket or the ion sensitivity reported for the HDV ribozyme
(44–48,80–82) and the lysine riboswitch (42) systems may
also offer insights about the structural role of these Z-like
steps. Exploring Z-like steps may thus suggest how other

102



5954 Nucleic Acids Research, 2016, Vol. 44, No. 12

motifs may turn out to exert their main function through
locking 3D folds. It might also be worthwhile to understand
how these rare motifs form in the perspective of using them
to create specific folds in synthetic biological systems (83).

Regarding interactions with proteins, Z-like steps are
found in Z-RNA and Z-DNA duplexes and the viral 5′-
PPP-RNA recognition system (70) that are recognized
specifically through conformation-dependent interactions.
These interactions involve solely backbone atoms, allow-
ing various sequences to be accommodated (11). For exam-
ple, a family of proteins recognize double stranded Z-DNA
and Z-RNA via a common winged helix-turn-helix do-
main called Z�. In other instances, like the IRE-RNA sys-
tem (58,59), the CUG binding complexes (18), the H/ACA
(62) or the bacteria-to-phage ‘immune response’ system
(65), different recognition patterns implicating the nucle-
obases and the backbone atoms are at play, which sug-
gest sequence-dependent recognition patterns. For these
systems however, no unique RNA/protein recognition pat-
tern could be found and it appears certain that proteins are
able to induce Z-conformations in single stranded RNA by
using various mechanisms.

As noted by Alexander Rich et al., both Z-RNA and Z-
DNA are highly antigenic and are stimulated by a partic-
ular structural context. The first Z-DNA binding protein
was found to be a Z-RNA binding protein called double
stranded RNA adenosine deaminase (or ADAR1) (4) and
numerous Z-DNA specific antibodies are found in human
autoimmune diseases such as systemic lupus erythematosus
(3,84). These proteins recognize short double stranded Z-
RNA steps by essentially binding in a non-sequence specific
manner to the sugar-phosphate backbone. Our exploration
of Z-RNA motifs therefore also uncovers strong ties to the
immune response. Deeper investigations of the structural
characteristics, occurrence, and associated RNA/protein
recognition features of Z-like steps could represent a path-
way to further our understanding of the immune response.

In particular, elevation of CpG but also UpA frequen-
cies in influenza A viruses used as an RNA genome model
system have been recently involved in the attenuation of the
viral pathogenicity and in the simultaneous increase in host
response to infection (85). We hypothesize here that some
of the involved mechanisms could be related to a certain
tendency of these pyrimidine-purine sequences to promote
Z-conformations.

CONCLUDING REMARKS

Classical sequence and structure analysis of this new RNA
Z-motif is limited due to the low number of RNA crys-
tal structures in the PDB. In that respect, we expect that
the current upsurge of medium and high resolution RNA
and RNP structures will increase the number and signifi-
cance of Z-dinucleotide motifs in structural databases, so
that a more advanced characterization of their structural
and recognition properties will be within reach. With re-
spect to the comments of one referee that wondered about
the significance of these rare motifs, we stand by Alexan-
der Rich, who worked hard to convince fellow researchers
that Z-DNA was of biological significance and we share
his view that Z-DNA and by extension Z-motifs had to be

present in cellulo since evolution is opportunistic (4). Af-
ter all, as demonstrated by this survey, Z-conformations
are readily accessible to most dinucleotide sequences, when
placed in the appropriate environment. Interestingly, some
of these Z-steps are recognized by pattern recognition re-
ceptors (PRRs) to distinguish between self and non-self.
Thus, the ability of some single or double stranded RNA
sequences to be twisted into Z-form steps might be a struc-
tural key in some immune system diseases (72). Hence, al-
though Z-steps may currently appear as a ‘black swan’ (86)
in the RNA world, we trust that this new motif will find its
place in the still incomplete RNA motif library.
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3.4.2 Further remarks and outlook 

The most biologically intriguing aspect of Z-steps is their involvement in the immune response, 

with the recognition of their unique backbone configurations by proteins participating in the 

interferon-induced immunology pathway. The immunogenicity of Z-DNA and Z-RNA is very well 

documented (Rich and Zhang 2003), however in the case of Z-steps it may imply that single-stranded 

RNA adopting Z-conformations could be significant for the discrimination between self and non-self. 

Further studies on the binding and recognition of Z-steps such as those found in UNCG tetraloops and 

immunology-related proteins have the potential to shed light on a still unknown structural aspect of 

antigen recognition. If Z-steps were immunogenic, we would have an interpretation for the observation 

that UNCG tetraloops, although thermodynamically very stable, are rare in PDB structures 

(GNRA:UNCG occurrence ratio among all RNAs is ~10:1). 

Considering the protein recognition of Z-steps, it would be interesting to determine whether the 

event of protein binding happens after the RNA adopts a Z-conformation, or if the protein itself 

induces the conformation upon binding. In the Z-RNA structure (PDB: 2GXB; res.: 2.3 Å) a protein 

known to bind and stabilize Z-DNA, ADAR1 (dsRNA adenosine deaminase), was used to induce the 

conformational shift from A-RNA to Z-RNA of a duplex (Placido et al. 2007). This consideration 

opens perspectives on the role of Z-steps as transient and induced conformations, needed to 

accomplish specific functions upon induction by specific proteins. 

As stated in the paper, we did not manage to find conserved structural patterns associated with 

Z-steps, except a general tendency to occur in junction regions and induce RNA backbone kinks and 

turns. These characteristics are conserved despite the diversity of RNA molecules, but a future 

expansion of available PDB structures could lead to the identification of general patterns of occurrence 

of Z-steps in RNAs. On their role as nucleation sites for RNA folding, further studies on assemblies 

of complex macromolecules such as ribosomes (Shajani et al. 2011) can highlight the importance of 

Z-conformations as local hinges formed in the first phases of ribosomal biogenesis.  
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4.1 Essential considerations on tetraloops 

The phosphate- and O4’- interactions described in Section I have been found to participate in 

the structural signature of the most relevant tetraloop families, namely GNRA, UNCG and CUUG. 

Phosphate- stacking occurs on the 5’ side of the loop and is part of the U-turn signature, allowing the 

remaining three bases to be stacked with Watson-Crick edges exposed for tertiary interactions. On the 

other hand, O4’- stacking occurs on 3’ side of the loop, leaving only the 2nd residue to be exposed 

and limiting the possibility of base-base stacking inside the loop. This difference, generally overlooked 

by the numerous structural studies on tetraloops, yields structural fold elements that can be used to 

propose a classification scheme for tetraloops, based on tertiary interactions instead of the actual 

sequence-based method. Through an extensive PDB survey of hairpin loops, two major “turn” families 

have been identified, based on the U-turn and Z-turn. They can be used to describe almost all types of 

RNA tetraloop motifs. Moreover, several loop instances have sequences expected to belong to another 

family. These unexpected results show that the expectation of “one sequence-one fold” is not always 

respected and that structural descriptors based on backbone oxygen stacking interactions better grasp 

the plasticity of tetraloops.  

Another surprising outcome is that UNCG tetraloops can be involved in long range interactions 

inside complex architectures such as ribosomes. Up to now, they were thought to be isolated motifs 

in respect to long-range RNA-RNA interactions (Hall 2015). 

4.2 U-turns and Z-turns: only two folds for tetraloops  

The complex available ensemble of tetraloops families (Table 1.1) can be reduced to just two basic 

folds with two variants, based on stacking interactions involving backbone oxygen: U-turn and Z-turn. 

U-turns are sub-motifs found in anticodon loops and GNRAs, while Z-turns are found in UNCG and 

CUUG loops, among others.  
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4.2.1 Paper 3. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in 

RNA hairpin loops (RNA, 2016) 

Graphical abstract 

 

GNRA and UNCG tetraloops are among the most common studied RNA structural motifs and have 

been characterized in terms of sequence preference, fold and interacting protein/RNA partners. We 

show here that they are the most relevant examples of a global classification scheme, based on 

structural considerations, that is dominated by just two folds: U-turns and Z-turns. In making this, we 

integrate the classical definition of the structural signature of U-turns with the stacking between the 

1st nucleobase and the 3rd phosphate within the loop. Conversely, a Z-turn constitutes a novel definition 

for tetranucleotide folds, which is characterized by the stacking between the ribose of the 3rd residue 

and the 4th nucleobase involved in an O4’- interaction.  

Intriguingly, this binary classification indicated also that some sequences expected to fold into 

U-turns are instead shaped as Z-turns, and vice versa. Thus, the correlation between a given 

tetranucleotide sequence and a fold does is not always correct. We highlight this concept with selected 

examples of GNRA and UNCG dimorphism taken from structural data, considering tretraloops and 

tetranucleotide sequences embedded in larger loops (≤ 8 nts). A noteworthy example is the anticodon 

loop, which has to adopt a U-turn for its function, but can hold a UNCG sequence. NMR data pointed 

out the adoption of a Z-turn by an isolated anticodon loop, in which nucleotide modifications could 

play a role in dimorphism. Another widely known family of tetraloops, CUUG, adopt a variant of 

Z-turn, which we called Zanti-turn. 

Overall, the existence of only two turns for tetranucleotide folds in RNA hairpins and of their 

interconversion offers insights into how complex RNAs such as lncRNA may adopt discrete but 

transient and therefore hard-to-predict structures, not systematically deducible by their sequence. 
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ABSTRACT 

When thinking about RNA three-dimensional structures, coming across GNRA and UNCG tetraloops 

is perceived as a boon since their folds have been extensively described. Nevertheless, analyzing 

loop conformations within RNA and RNP structures led us to uncover several instances of GNRA and 

UNCG loops that do not fold as expected. We noticed that when a GNRA does not assume its 

“natural” fold, it adopts the one we typically associate with a UNCG sequence. The same folding 

interconversion may occur for loops with UNCG sequences, for instance within tRNA anticodon loops. 

Hence, we show that some structured tetranucleotide sequences starting with G or U can adopt either 

of these folds. The underlying structural basis that defines these two fold types is the mutually 

exclusive stacking of a backbone oxygen on either the first (in GNRA) or the last nucleobase (in 

UNCG), generating an oxygen- contact. We thereby propose to refrain from using sequences to 

distinguish between loop conformations. Instead, we suggest to use descriptors such as U-turn (for 

‘GNRA-type’ folds) and a newly described Z-turn (for ‘UNCG-type’ folds). Because tetraloops adopt 

for the largest part only two (inter)convertible turns, we are better able to interpret from a structural 

perspective loop interchangeability occurring in ribosomes and viral RNA. In this respect, we propose 

a general view on the inclination for a given sequence to adopt (or not) a specific fold. We also 

suggest how long non-coding RNAs may adopt discrete but transient structures, which are therefore 

hard to predict. 
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RNA architecture is modular and hierarchical, which implies that secondary structural elements such 

as double stranded helices, hairpins and single stranded loops are linked by tertiary interactions that 

guide the assembly process (Hendrix et al. 2005; Cruz and Westhof 2009; Butcher and Pyle 2011). 

The majority of hairpin stems are capped by GNRA or UNCG tetranucleotide sequences —where N is 

any base and R is a purine (Cheong et al. 2015; Hall 2015). These tetranucleotide loops adopt 

distinctive folds that involve extensive and well-described networks of hydrogen bonds and stacking 

interactions (Cheong et al. 1990; Heus and Pardi 1991; Allain and Varani 1995; Jucker and Pardi 

1995a; Jucker et al. 1996; Ennifar et al. 2000; Correll and Swinger 2003; Nozinovic et al. 2010). For 

GNRA and UNCG loops, it is generally assumed that the sequence commands a unique fold. Hence, 

upon considering sequence alignments and secondary structures of RNA families for which no 3D 

structures are available, we presume that we understand how these tetraloops will fold. 

Here, we present structural evidence that challenges these expectations by identifying GNRA 

sequences that adopt a UNCG fold and vice-versa, both in tetraloops closed by a Watson-Crick base 

pair and in tetraloop-like motifs embedded in larger ribosomal and tRNA loops (Auffinger and Westhof 

2001). Although this loop dimorphism remains rare within the pool of RNAs for which we currently 

possess 3D data, it led us to question some basic assumptions we make about RNA folding and 

structure prediction.  

To better characterize these interconversions, we propose a more general structure-based 

tetraloop and tetraloop-like identification scheme that involves on one side the classical and well-

described U-turn (Gutell et al. 2000) and, on the other, a newly defined “Z-turn”, which is based on the 

UNCG tetraloop fold and the Z-RNA CpG step it encompasses (D'Ascenzo et al. 2016). We establish 

that these two turns and variants thereof are key to the tetraloop and tetraloop-like folding landscape, 

but also to most turns in RNAs. Atypical and infrequent tetranucleotide folds that do not conform to 

these rules will be described in more details elsewhere. Here, before pursuing, we need first to 

(re)define U-turns and Z-turns as they appear in structured tetranucleotide folds in hairpins (see also 

method section). 

U-turn and USH-turn signatures

A U-turn is a tetranucleotide motif that was first identified in tRNA anticodon and T-loops (Quigley and 

Rich 1976; Gutell et al. 2000; Auffinger and Westhof 2001; Klosterman et al. 2004) and has since 

been characterized in a large variety of structural motifs starting with a uridine or a pseudo-uridine. In 

that respect, U-turns were sometimes called uridine-turns or -turns (Kim and Sussman 1976; Jucker 

and Pardi 1995a). U-turns were also associated with “G-starting” motifs such as GNRA tetraloops 

(Figure 1A), or more recently in tetranucleotide motifs involving a protonated cytosine like a uC+UAAu 

loop (Gottstein-Schmidtke et al. 2014). In short, a U-turn involves a hydrogen bond between the 1st 

nucleobase —generally with a U/G/C+ imino or amino nitrogen atom— and an OP atom of the 4th 

nucleotide. This base-phosphate hydrogen bond is of the “5/4/3BPh” type according to a recent 

classification (Zirbel et al. 2009). It ensues that the 1-4 G•A trans-Sugar/Watson-Crick pair (t-SW) 

occurring in GNRA loops should not be considered as a U-turn determinant although it is essential for 

interactions with GNRA receptors (Fiore and Nesbitt 2013).  
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As an important outcome, the characteristic 1-4 nucleobase-phosphate (or nucleobase-OP) 

hydrogen bond imposes the formation of an oxygen- or phosphate- stacking contact between the 

1st nucleobase and an OP atom of the 3rd nucleotide. A PDB survey led to an average 1-3 OP- 

stacking distance of 3.0±0.2 Å, with a maximum distance of 3.5 Å. This oxygen- contact, which is a 

further characteristic of U-turns, has rarely been described (Egli and Sarkhel 2007). 

It emerges that these two features, namely the 1-4 nucleobase-OP hydrogen bond and the 1-3 

OP- stacking contacts, are sufficient to unambiguously characterize a U-turn. The latter criterion 

allows to further distinguish between regular and partially degenerated or unfolded U-turns, which 

correspond to loops with no oxygen- stacking contact and are most often found at RNA-protein 

interfaces. However, such occurrences are rare (see next section). 

A U-turn variant has been identified for UNAC sequences (Figure 1B). These loops were found to 

mimic GNRA tetraloops since their backbone conformations are similar (Zhao et al. 2012). The 1-4 

interaction involves a U•C trans-Sugar/Hoogsteen (t-SH) pair instead of a hydrogen bond involving 

the OP atom of the 4th nucleotide as in more typical U-turns. Yet, in the examples we collected, the 

OP- contact between the 1st nucleobase and an OP atom of the 3rd nucleotide is conserved. In the 

following, we call this U-turn variant a “USH-turn” because of the consistent presence of a 1-4 t-SH pair.  

Note that the cGANCg tetraloop in group IIC introns has a backbone that is similar to that of a 

U-turn and a 1-4 G•A t-SW pair (Keating et al. 2008). Although rare, these GANC loops are examples 

of structured tetraloops with no oxygen- contact. For all U-turns, it is important to note that the last 

three nucleobases are stacked in a manner that their exposed Watson-Crick edges can establish 

specific tertiary contacts such as for example within anticodon-codon associations or with cognate 

receptors (Fiore and Nesbitt 2013; Tanaka et al. 2013). 

Z-turn and Zanti-turn signatures 

UNCG tetraloops are not based on a U-turn but on a newly defined “Z-turn”: they embed a trans-

Sugar/Watson-Crick (t-SW) interaction between the 1st and 4th nucleobase, associated with a 

C2’-endo pucker of the 3rd residue, and a syn conformation of the 4th residue. In addition, the 3rd and 

4th ribose rings adopt an uncommon head-to-tail orientation (Figure 1C). This particular combination 

of rare structural features is characteristic of Z-DNA/RNA motifs and implies an O4’- stacking contact 

(Egli and Sarkhel 2007; D'Ascenzo et al. 2016). The 3-4 oxygen- stacking contact in Z-turns is 

comparable with the 1-3 oxygen- stacking contact in U-turns. Furthermore, the average stacking 

distance (3.1±0.2 Å) and the maximum distance (3.5 Å) are similar in both turns. Thus, we can 

assume that to define a Z-turn as found in UNCG loops, we can rely on both the 1-4 base pair 

essentially of the t-SW type as described below, and the 3-4 O4’- stacking contact.  

Such a definition is not based on the syn conformation of the 4th nucleotide and therefore allows to 

consider rare motifs where the O4’ stacking involves bases in anti, such as found in some CUUG 

folds (Figure 1D) (Jucker and Pardi 1995b). Hence, as for U-turns, we can define two Z-turn 

subcategories: the main Z-turn or Zsyn-turn —with the 4th nucleobase in syn— and the less frequent 

“Zanti-turn” variant —with the 4th nucleobase in anti. Most Zanti-turns are not associated with a t-SW 1-4 

pair but with a cis-Watson-Crick/Watson-Crick (c-WW) pair. As such, these Zanti-turns are also known 
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as di-loops. Interestingly, the characteristic C2’-endo sugar pucker of UNCG tetraloops seems to be 

conserved in all Z-turn types. 

U-turns and Z-turns dominate the tetranucleotide folding landscape in RNA hairpins 

In our unified definition of the two central U-turns and Z-turns in RNA hairpins, each turn is 

distinguished by the presence of either a 1-3 or a 3-4 oxygen- contact (Egli and Sarkhel 2007). With 

the above-defined criteria, we searched the PDB for occurrences of these two turns and their variants 

in crystal and NMR structures, among tetranucleotide sequences embedded in RNA hairpin loops 

(Table 1). As expected, U-turns in tetranucleotide sequences starting with G, U or C+ are the most 

frequent, followed by Z-turns in UNCG tetraloops. USH-turns are less frequent and are associated with 

UNAC sequences. Zanti-turns are slightly more frequent and diverse, and comprise essentially CNNG 

sequences. The “Uncategorized” motifs are of the partially unfolded U-turn type —where the 1-4 

interaction is present, but not the OP- stacking contact. They correspond also to folds that are too 

rare and/or disordered to allow for their assignment to any clearly-defined category, or to partially 

unfolded conformations induced by proteins. The rare GANC tetranucleotide loop has only been 

identified in group IIC introns based on structural and phylogenetic evidence and has only been 

reported when bound to its cognate receptor (Keating et al. 2008). Thus, our early assumption that 

the largest part of tetranucleotide folds in hairpins is based on a U-turn or a Z-turn comprising an 

oxygen- stacking contact is supported by this survey. Consequently, we can assume that most 

GNRA and UNCG tetranucleotide fold predictions based on sequence alignments are correct 

(Table 1). 

However, these data also indicate that some sequences expected to form a U-turn are associated 

with a Z-turn and vice-versa. Thus, the sequence of a tetraloop does not systematically dictate its fold. 

For instance, we identified a GCAAu sequence that adopts a Zanti-turn (Figure 2). Further, one GUGA 

sequence of the GNRA type adopting a Z-turn was observed in a RNA-protein complex (Figure 3A). 

NMR structures of anticodon loops containing the U33NCG sequence were found to adopt a Z-turn 

under specific conditions, in agreement with their sequence but not with the expected anticodon-

codon binding scheme (see below). These examples are more thoroughly described in the following 

sections. A detailed report describing the structural features of tetranucleotide folds will be provided 

elsewhere, the main purpose of this account being to establish the interchangeability between U-turns 

and Z-turns. 

GNRA and GNYA dimorphism 

Loop dimorphism came upon us serendipitously. We found that it deserved special attention, as we 

realized that it impacted our ability to derive three-dimensional structures from secondary structures. 

Upon looking at GNRA and GNYA loops, we noted that the phylogenetically conserved cGUGAg loop 

that caps helix 93 in domain V of all large ribosomal subunits adopts the expected U-turn. However, 

the same cGUGAg loop located within a 21 nucleotide long ribosomal fragment in complex with a 

pseudouridine synthase adopts an unexpected Z-turn, which is made possible through the formation 

of a 1-4 G•A t-SW pair (Czudnochowski et al. 2014) (Figure 3A). Whether the Z-turn is induced by the 

pseudouridine synthase or by crystal constraints is unclear. However, it is tempting to speculate that 
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some RNA binding proteins and modification enzymes could recognize and/or induce Z-turns in 

GNRA sequences. 

Loop dimorphism was also observed in larger motifs containing GNRA sequences, such as the 

phylogenetically conserved seven-nucleotide uGAAAgg loop that caps helix 35a in the domain II of 

large ribosomal subunits (Hsiao et al. 2006; Nasalean et al. 2009; D'Ascenzo et al. 2016). In every 

X-ray and cryo-EM structure of a ribosome available to date (including mitochondrial ribosomes), this 

uGAAAgg —or uGACAgg in Homo sapiens mitochondrial ribosomes (PDB code: 4WT8; resolution: 

3.4 Å) (Amunts et al. 2015)— adopts a Z-turn (Figure 3B). Although it is imaginable that this GAAA 

sequence would not be folding like a regular GAAA tetraloop due to the larger size of the loop, we 

would probably have had difficulties in anticipating its Z-turn fold. However, to us, the most surprising 

example of a GNRA Z-turn —more precisely a Zanti-turn— is a GCAAu pentaloop observed in X-ray 

structures of Haloarcula marismortui large subunits where it caps helix 12 within domain I. This GCAA 

Zanti-turn shares a 1-4 t-SH G•A pair with a GNRA U-turn (see Figures 1A and 2).  

Further evidence of an exchange between U-turns and Z-turns originates from a combination of 

crystallographic and NMR data, which revealed that GNYA tetraloops —where Y is any pyrimidine— 

could fold like GNRA and adopt a U-turn since they can potentially form a 1-4 G•A t-SH pair (Melchers 

et al. 2006). But such loops are rare in X-ray structures. Up to now, besides the uGACAg located in 

the above-mentioned 4WT8 cryo-EM Homo sapiens mitochondrial ribosome, only one X-ray 

occurrence of a uGACAc in Deinoccocus radiodurans (Figure 3C) has been reported, where the 

tetranucleotide sequence adopts a U-turn (Table 1). Yet, NMR experiments illustrated that a cGUUAg 

loop (Ihle et al. 2005) and a uGCUAg loop (Melchers et al. 2006) can adopt a Z-turn rather than the 

anticipated U-turn (PDB codes: 1Z30 and 2EVY). 

Overall, although such dimorphism is not frequent among structured RNAs (Table 1), it might be 

relevant when deriving the structures of non-coding RNA that may adopt several transient folds in 

order to achieve their functions within a large diversity of environments (Cech and Steitz 2014). It 

would therefore be interesting to explore how such conformational changes occur in vivo, especially 

since an anti to syn conversion could not easily be fathomed without stem unwinding. 

UNCG dimorphism: U-turns or Z-turns in tRNA anticodon loops? 

It is generally well appreciated that longer loops —from pentaloops to larger motifs— can embed 

tetranucleotide sequences that adopt U-turns (Hsiao et al. 2006). One of the most biologically relevant 

systems to incorporate this fold is the seven-nucleotide long tRNA anticodon loop. In the context of 

protein synthesis, any U33NNN sequence will adopt a U-turn (Auffinger and Westhof 2001) so that the 

three anticodon bases are able to associate with the three complementary bases of the codon on the 

messenger RNA (mRNA). But would a U33NCG anticodon sequence naturally adopt that classical 

U-turn conformation required for translation instead of the more cogent Z-turn? Do such anticodon 

loops manage to switch from U-turns to Z-turns and, if yes, which environmental context would direct 

such a structural transition, or impose one over the other fold? 

In that respect, it could be envisaged that nucleotide modifications play a role in facilitating or 

preventing U33NCG anticodon loops from adopting a Z-turn. NMR experiments were performed on 

four variants of tRNAArg1,2 stem-loops possessing a U33ACG sequence and containing diverse 
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combinations of RNA modifications such as A34/I and C32/S2C —PDB codes: 2KRP/Q/V/W (Cantara et 

al. 2012). This study revealed that all modified and non-modified anticodon loops adopt a Z-turn, 

although the absence of a natural m2A37 post-transcriptional modification could have biased the 

outcome. In any case, it seems fair to state that the extent of nucleotide modifications modulates the 

conformational plasticity of the tRNAArg1,2 anticodon loop in order to secure the essential U-turn 

conformation (Sundaram et al. 2000). But, in its unmodified state, the loop could also adopt a Z-turn 

and be recognized by specific proteins, as in the above-mentioned 4LGT pseudouridine synthase 

complex (Figure 3A).  

To summarize, these U33ACG anticodon sequences can successively adopt at least three distinct 

folds. They journey from a Z-turn in their free state, through a “degenerated” fold when bound to their 

cognate tRNA synthetases —see for example tRNAArg with a U33ICG anticodon; PDB code: 1F7U 

(Delagoutte et al. 2000)— to end with a classical U-turn when interacting with mRNA codons. RNA 

modifications —or their absence— may determine how anticodon loops fold, thereby altering or 

suppressing the tRNA codon-reading capacity. 

Could Z-turns of U33NCG anticodon loop sequences be associated with a specific biological 

function? Would a Z-turn be necessary for the recognition of modification sites by tRNA synthases? In 

that case, could Z-turns within anticodon loops also occur when other NpG steps replace CpG within 

the U33NCG sequence? After all, it has been established that almost all dinucleotide sequences can 

adopt Z-RNA conformations (see Figures 3A/B for GpA and ApA Z-steps) and therefore be part of 

Z-turns (D'Ascenzo et al. 2016). Indeed, a NMR structure of a UCAGu pantaloop with an ApG Z-step 

has been reported —PDB code: 1Q75 (Theimer et al. 2003). If that hypothesis holds true, 16 out of 

the 64 anticodon sequences ending with a G —thereby comprising the four U33NCG sequences— 

could potentially adopt a Z-turn. Our understanding of translation regulation, of decoding rules and of 

the role of modified bases in tRNAs could be expanded by these findings (Grosjean and Westhof 

2016).  

Are other folds possible for U33NNN sequences? A different UGAA fold has been reported in the 

NMR structure of an RNA hairpin —PDB code: 1AFX (Butcher et al. 1997). However, we did not 

consider this fold since no 1-4 interaction was present and since this loop has not been reported 

elsewhere. We already described UNAC sequences (Zhao et al. 2012) that can adopt the alternative 

USH-turn variant, where the fold is made possible by the presence of a C36 nucleotide forming a 1-4 

U•C t-SH pair (Figure 1B). We also identified a UUUAa pentanucleotide sequence in a ribosome 

structure that adopts the Zanti-turn variant and that is closed by a 1-4 U-A c-WW pair (Figure 3D). 

Thus, U33NNN anticodon loops can theoretically adopt any of the four folds we described, depending 

on the nature of nucleotide 36 and the associated structural context. Although most of these folds are 

rarely found in experimental structures, they can transiently appear in the folding pathways of these 

loops depending on sequence and modification levels.  

Which turns for CNNN and ANNN sequences? 

Similarly, we wondered whether CNNN sequences adopt a unique fold specific to their sequence or 

multiple conformations. When the C nucleotide is protonated, typical U-turns can be formed as shown 

by NMR and in ribosomes —see C1469AACu in Haloarcula marismortui (Gottstein-Schmidtke et al. 
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2014). It was inferred from NMR and thermodynamic measurements (Proctor et al. 2002) as well as 

X-ray crystallography (Figure 3E) that CNNG sequences can form either Z-turns —PDB code: 

1ROQ— (Du et al. 2003; Oberstrass et al. 2006; Schwalbe et al. 2008), or Zanti-turns. For the latter, 

the 1-4 C=G c-WW pair was significantly buckled, probably due to constraints imposed by the “di-

loop” fold —PDB code: 1RNG (Jucker and Pardi 1995b). Interestingly, the cCAAGg loop that caps 

helix 14 of the small subunits of eukaryotic ribosomes (Figure 3E) takes the place of a UACG loop in 

bacterial ribosomes, both forming a Z-turn. Besides UNNC, CNNC sequences could potentially form 

USH-turns, although the latter have not yet been observed (Figure 3F). Again, these loops starting 

with a C residue display an unanticipated plasticity, suggesting that the fold they adopt is largely 

context-dependent. 

Tetranucleotide sequences starting with an adenine are almost non-existent, at least in 

crystallographic structures (Table 1). If they exist, they do not seem to display a significant and/or 

stable 1-4 contact as reported for the other loops described here. Hence, especially when the loop 

interacts with a protein, it is difficult to refer to these tetranucleotides as being “structured”. However, 

we do not exclude the possibility that additional motifs might emerge in newly deposited crystal or 

NMR structures. For instance, since a UUUAa pentaloop with a Zanti-turn implying a 1-4 U-A c-WW 

pair was observed, an ANNUn pentaloop with a similar turn and a 1-4 A-U pair cannot be dismissed. 

Such possibilities have been reported by NMR for uGUUC and CUUGu pentaloops adopting 

Zanti-turns with a 1-4 G=C or C=G c-WW pair —PDB code: 2L6I (Lee et al. 2011). 

Phylogenetic considerations on tetranucleotide loops in RNA 

Phylogenetic data on 16S rRNA suggested early on that helix 6 (positions 83-86 in Escherichia coli 

16S rRNA) is capped either by a CUUG (45%), a UUCG (36%) or a GCAA (13%) tetraloop (Woese et 

al. 1990; Konings and Gutell 1995). Thus, it could be concluded that this stem can be capped either 

by a Z-turn or by a U-turn. According to our present study, these three sequences can also adopt a 

Z-turn. Such loop polymorphism might complicate the interpretation of biochemical data, for example 

when highly conserved GAAA tetraloops in 16S rRNA are substituted by a UACG sequence (Sahu et 

al. 2012). In addition, the fact that this loop is unstructured in the 4YBB Escherichia coli crystal 

structure (resolution: 2.1 Å) might interrogate classical phylogenetic data interpretations. Indeed, in 

the seven UNCG tetranucleotide sequences deduced from the 16S Escherichia coli 2D structure, only 

three adopt a canonical Z-turn and the other sequences appear in disordered regions with, however, 

a G nucleotide in syn for four of them. The reasons as to why these loops appear as disordered are 

not yet understood. 

Thus, sequence interchangeability might be hiding structural similarity. As noted above, the Z-turn 

GAAA loop capping helix 35a in the 50S of Haloarcula marismortui could exchange with YNMG 

sequences. Further, convincing evidence of sequence exchange that lead to similar folds have been 

reported in studies of viral RNA hairpins (Melchers et al. 2006; Liu et al. 2009; Zoll et al. 2011; 

Clabbers et al. 2014; Prostova et al. 2015). 
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Sequence-Structure relationships 

It is our hope that the data we gathered (summarized in Figure 4) will help to interpret 

tetranucleotide sequence variations from a structural perspective, as they inform on the prevalence of 

a sequence to adopt (or not) a given fold. For example, GNNA sequences with a 1-4 G•A base pair 

can adopt a classical GNRA U-turn fold but also a Z-turn and even a Zanti-turn, but not a USH-turn. 

Similarly, UNNG sequences can adopt U-turns and Z-turns, but not the two other less frequent 

variants. Finally, the GNNG and GNNU sequences are only found in the U-turn category. This 

classification reflects our current understanding of tetranucleotide turns and might be completed or 

refined with the advent of new non-coding RNA structures. 

Final thoughts about folds and structure prediction 

We report that tetraloop and tetranucleotide folds are not systematically determined by their 

sequence, possibly because of subtle changes in their environment and in the sequence of connected 

residues. A logical implication of this observation is that, for any given RNA sequence for which the 

3D structure is not available, we are unable to ascertain with 100% confidence how the hairpins it 

contains will fold. With prior knowledge acquired on ribozymes (Schultes and Bartel 2000; Woodson 

2015) and riboswitches (Garst et al. 2011; Batey 2015), we became aware that the same RNA 

sequence can adopt distinct folds in order to carry out specific functions. The structural analysis we 

present here reveals that only two folds dominate the tetranucleotide landscape. Consequently, 

predicting whether GNRA, UNCG or related sequences within any non-coding RNA will adopt a 

U-turn involving a phosphate- stacking contact or a Z-turn with a O4’- stacking ceases to be a 

straightforward exercise. Without additional stereochemical rules, the structure adopted by such 

tetranucleotide sequences might remain complex to predict and more structural information on these 

essential folds needs to be accumulated. It could therefore be informative to see how current 3D 

structure prediction methods would perform when confronted to such non-compliant pieces of the 

RNA puzzle (Miao et al. 2015).  

Efforts to fold these tetranucleotide sequences by molecular dynamics simulations are currently 

only partially successful, although significant progress has been made into that direction (Kührova et 

al. 2013; Haldar et al. 2015; Miner et al. 2016). Such modelling attempts have now to face new 

challenges: finding not only one, but two or more folds, while grasping their relationship with the 

environment. Recently, some simple procedures based on diffusion maps and Markov models found 

the alternative Z-turn fold of a GAAA loop (Bottaro et al. 2016). Such methods are however currently 

limited to small fragments —four nucleotides and no closing base pair in that instance. Although this 

represents an essential first step in assessing folding pathways, it will certainly be much more 

challenging to predict the occurrence of such folds or turns embedded in the core of complex RNP 

particles like ribosomes.  

Tetraloop fold variability probably only makes for the tip of the iceberg in the folding adaptability 

that characterizes regulatory RNAs. Regardless of how daunting they may seem, scenarios of folding 

plasticity at the local level are both attractive and relevant for molecules that comprise several 

thousands of nucleotides and that are thought to be mostly devoid of well-defined 3D structures 

(Gardini and Shiekhattar 2015; Rivas et al. 2016). We could envision how this plasticity of the most 
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basic RNA folds would be well-suited to regulatory RNAs that are obligatory opportunists, by nature. 

The race is on toward “overturning more rules” about RNA structure and folding (Cech and Steitz 

2014). 

 

Methods 

We searched the PDB (October 2016; X-ray data; resolution ≤ 3.0 Å) for tetranucleotide sequences in 

RNA hairpins that involve a 1-4 nucleobase-nucleotide interaction and an oxygen- contact as defined 

below. For that purpose, we used the DSSR program (Lu et al. 2015). DSSR was also used to isolate 

tetranucleotide sequences embedded in loops comprising not more than 8 residues. For 

characterizing 1-3 and 3-4 oxygen- contact, we specified in DSSR a 3.5 Å cutoff between the OP/O4’ 

oxygen atom and the nucleobase plane. In addition, the projection of the OP/O4’ oxygen on the base 

plane had to lie within the surface of the nucleobase aromatic cycles. A polygon-offset of 0.5 Å was 

used to take into account crystallographic inaccuracies. We also specified an interbase-angle ≤ 45° to 

discard severely distorted 1-4 base pairs. Finally, we specified that no atom belonging to the 

tetranucleotide sequence should have a B-factor above 79 Å2. We visualized most of the structures, 

with a focus on those that appeared as borderline. In the insets of Figures 1A/C, the d(OP/O4’…) 

histograms were calculated based on all oxygen- contacts identified in RNA structures from the PDB 

and, therefore, not only on those found in tetraloop folds. To check for tetranucleotides with 1-4 

interactions in NMR structures, we used the RNA FRABASE 2.0 database (Popenda et al. 2010). 

For Table 1, we specified a redundancy criteria based on sequence and structural parameters 

(D'Ascenzo et al. 2016). If residues from two different tetranucleotide sequences (including the 

residues before and after the sequence) shared the same residue numbers, chain codes, ribose 

puckers, backbone dihedral angle sequences (we used the g+, g-, t categorization) and syn/anti 

conformations, they were considered as similar and the one with the best resolution was labelled as 

non-redundant. In case of matching resolutions, the nucleotide sequence with the lowest average 

B-factor was selected. Alike, if in a same structure two sequences shared the same residue numbers 

(with different chain codes) as well as ribose puckers, backbone dihedral angle sequences and 

syn/anti conformations, they were considered as similar and the one corresponding to the first 

biological unit was marked as non-redundant. To further limit redundancy in the largest ribosomal 

structures, we restricted our analysis to a single biological assembly. For more details, see reference 

(Leonarski et al. 2016). Note that it is impossible to eliminate redundancy from such a complex 

structural ensemble without eliminating at the same time significant data. Here, we provide an upper 

limit for a truly “non-redundant” tetranucleotide fold set. 
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Table 1. Number of U-turns, Z-turns and their variants (as defined in the text and in Figure 1) 

associated with tetranucleotide sequences involving a 1-4 nucleobase-nucleotide contact and 

occurring in RNA hairpin loops not longer than eight residues. These data were derived from a survey 

of X-ray structures from the PDB (October 2016; resolution ≤ 3.0 Å). The estimated number of non-

redundant occurrences is given in brackets. Tetranucleotide sequences having at least one atom with 

a B-factor > 79 Å2 were excluded. “NMR” in the table refers to folds for which only NMR structures are 

available; the corresponding PDB codes are given in parenthesis. These structures are not included 

in the total. 

Sequence U-turn USH-turn Z-turn Zanti-turn Uncategorized 

GNRA      

    in tetraloops 1353 [416] — 2 [2] — 38 [21] a 

    in larger hairpins 515 [151] — 93 [20]  68 [29] d 45 [29] a 

GNRG       

    in tetraloops 47 [17] — — — — 

    in larger hairpins 106 [29] — — — 5 [4] a 

GNNY      

    in tetraloops 1 [1] — — 1 [1] 4 [3] b 

    in larger hairpins 18 [11] — — 3 [3] 75 [29] c 

GNYA      

    in tetraloops — — NMR (1Z30) — — 

    in larger hairpins 1 [1] — NMR (2EVY) — 1 [1] c 

GNYG      

    in tetraloops — — — — — 

    in larger hairpins 12 [7] — — — 1 [1] c 

UNCG      

    in tetraloops —  — 147 [43] — 5 [4] a 

    in larger hairpins 6 [4] — NMR (1TXS) — — 

UNNN (not UNCG)      

    in tetraloops —  46 [13] NMR (2MQT/V) — — 

    in larger hairpins 706 [252] — — 2 [1] 55 [24] d 

C(+)AAC      

    in tetraloops — — — — — 

    in larger hairpins 57 [2] — — — — 

CNNG      

    in tetraloops — — 6 [4] NMR (1RNG) — 

    in larger hairpins — — NMR (1ROQ/2L6I) 74 [52] — 

CNN(notG)      

    in tetraloops — — — — 3 [2] a 

    in larger hairpins — — — — 24 [9] d 

ANNN      

    in tetraloops — — — — 12 [6] d 

    in larger hairpins — — — — 111 [51] d 

Total 2822 [891] 46 [13] 248 [69] 148 [86] 379 [184] 

a Mostly U/Z-turn-like, but with non-standard geometry (oxygen-stacking or hydrogen bond distances above 3.5 Å); 
b GANC loops in group IIC introns; 
c Mostly tetraloop folds in hairpins that are not inducing turns (will be discussed elsewhere); 
d Mostly unstructured; 
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Figure 1. Examples of a GNRA “U-turn” and a UNCG “Z-turn” along with their USH-turn and Zanti-turn 

variants (1-4 base pairs and relevant nucleobase-phosphate hydrogen bonds are shown in the insets). 

In all panels, the cyan lines mark contact distances between the OP/O4’ atoms —emphasized as 

yellow spheres— and the stacked nucleobase that are associated with oxygen- contacts ≤ 3.5 Å 

(see method section and insets of panels A/C). For clarity, all non-relevant OP atoms were hidden. 

The C=G closing base pairs are shown in white. For all secondary structures, symbols according to 

the Leontis and Westhof nomenclature were used (Leontis and Westhof 2001; Nasalean et al. 2009). 

(A) G2659AAA tetraloop (chain A) adopting a classical U-turn (symbolized by a circled “U”). The 1st G 

and the phosphate of the 3rd nucleotide involved in an OP- contact are marked in red as well as the 

oxygen atoms of the phosphate involved in the 1-4 base-phosphate hydrogen bond. The three 

stacked A nucleotides are colored in wheat. 
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(B) U253CAC tetraloop (chain 0) adopting the rare USH-turn variant (symbolized by a circled “U”). The 

1st U and the phosphate of the 3rd nucleotide are marked in red. The three stacked CAC nucleobases 

and part of their backbone are colored in wheat. 

(C) U2144CCG tetraloop (chain B) adopting a Z-turn (symbolized by a circled “Z”). The CpG step 

forming a Z-RNA motif is shown in red. The two ribose O4’ atoms of the CpG step are shown in yellow 

to mark the characteristic head-to-tail orientation of the sugars. The 4th nucleotide adopts a syn 

conformation. The UpC step is colored in wheat. 

(D) C3194UUGu pentaloop (chain 1) adopting a rare Zanti-turn variant (symbolized by a circled “Z”). The 

UpG step forming a Z-RNA motif, with the G adopting an anti instead of a syn conformation, is shown 

in red. The two ribose O4’ atoms of the CpG step are shown in yellow to mark the characteristic head-

to-tail orientation of the sugars. The CpU step is colored in wheat and the bulged “u” in blue.  
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Figure 2. G196CAAu sequence (chain 0) adopting a rare Zanti-turn variant.  

(A) The ApA step forming a Z-RNA motif, with the A adopting an anti instead of a syn conformation, is 

shown in red. The two ribose O4’ atoms of the CpG step are shown in yellow to mark the 

characteristic head-to-tail orientation of the sugars. The GpC step is colored in wheat, the bulged U in 

blue and the closing base pair in white.  

(B) Comparison of the secondary structures and of the associated 1-4 G•A t-SH pairs for the Zanti- and 

the U-turns, to emphasize their differences. See also Figure 1A for the GAAA U-turn. 
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Figure 3. Examples of tetranucleotide sequences adopting unanticipated folds (1-4 base pairs are 

shown in the insets). In all panels, the cyan lines mark contact distances between the OP/O4’ atoms 

—in yellow— and the stacked nucleobase that are associated with oxygen- contacts ≤ 3.5 Å (see 

method). For clarity, all non-essential OP atoms were hidden. All closing base pairs are shown in 

white. All turns are symbolized by a circled “U” or “Z” as in Figure 1.  

(A) G2595UGA sequence (chain E) adopting a Z-turn. The Z-RNA GpA step is shown in red. The O4’ 

atoms of the two GpA ribose’s are shown in yellow to mark the characteristic head-to-tail orientation 

of the sugars. The GpU step is colored in wheat.  

(B) G873AAAg sequence (chain 0) embedded in a seven-nucleotide loop and adopting a Z-turn. The 

ApA step that forms a Z-RNA motif is shown in red. The O4’ atoms of the two ApA ribose’s are shown 

in yellow to mark the characteristic head-to-tail orientation of the sugars. The GpA step is colored in 

wheat; the bulged “g” nucleotide is shown in blue. 

(C) G2796ACA sequence (chain X) adopting a classical U-turn. The 1st G and the phosphate of the 3rd 

nucleotide involved in an OP- contact are marked in red as well as the oxygen atoms of the 

phosphate involved in the 1-4 base-phosphate contact. The stacked ACA nucleotides are colored in 

wheat.  

(D) U2595UUAa sequence (chain DA) adopting a Zanti-turn. The UpA step that forms a Z-RNA motif is 

shown in red. The O4’ atoms of the two UpA ribose’s are shown in yellow to mark the characteristic 

head-to-tail orientation of the sugars. The UpU step is colored in wheat; the bulged “a” nucleotide is 

shown in blue. 

(E) C415AAG sequence (chain 2) adopting a Z-turn. The ApG step that forms a Z-RNA motif is shown 

in red. The O4’ atoms of the two ApG ribose’s are shown in yellow to mark the characteristic head-to-

tail orientation of the sugars. The CpA step is colored in wheat. 

(F) Model structure of a CCAC sequence adopting a USH-turn. The 1st C and the phosphate of the 3rd 

nucleotide involved in an OP- contact are marked in red. The three stacked CAC nucleotides are 

colored in wheat.  
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Figure 4. Graphical representation of the sequence-structure relationships for the four —two main 

and two minor— tetranucleotide turns that we characterized in RNA hairpins. The nucleobase in red is 

associated with a 1-3 or 3-4 oxygen- stacking contact. The folds associated with sequences marked 

by an asterisk are theoretically possible but have not yet been observed in experimental structures. 

Here, we consider only the 1st and 4th nucleotides. Sequence-structure relationships associated with 

the 2nd and 3rd nucleotides will be discussed elsewhere. 
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4.3 UNCG receptors in ribosomes 

In opposition to GNRA tetraloops, UNCG have always been considered as “loners” and not 

involved in specific RNA/protein or RNA/RNA interactions (Hall 2015). It was therefore unexpected 

to find during the surveys on tetraloops occurrences of UNCG receptors in the conserved ribosomal 

core. In particular, the Z-turn characteristic of these loops allows the 2nd loop residue to be exposed 

and pointing towards the helix minor groove; this base undergoes in specific cases long-range tertiary 

interactions with a tetraloop receptor. These receptors show the general characteristic to be composed 

by a complex assembly of helices and/or strands, again in opposition to the “simpler” GNRA receptors 

(Fiore and Nesbitt 2013). Thus, the occurrence of UNCG receptors can be observed only in highly 

complex RNA architectures, such as the two occurrences observed inside prokaryotic and eukaryotic 

ribosomes with loops capping helices 62 and 35a (Fig 4.1). 
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4.3.1 Receptor I involves the UUCG capping helix 62 

The UUCG tetraloop capping helix 62 is the only UNCG conserved among all species of the 

ribosomal structures deposed in the PDB (except for mitochondrial ribosomes, Table 4.1). Helix 62 

Figure 4.1. UNCG receptors in E. coli LSU. A UUCG loop capping helix 62 (yellow) and a 

GAAA loop capping helix 35a (yellow) both adopt a Z-turn. The 2nd loop base (highlighted with 

a circle) in both cases interacts with a receptor formed by the assembly of multiple helices 

(highlighted with colors). Dashed lines represent long-range interactions. 
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is located in the subdomain IV of the LSU and makes tertiary interactions with helix 67. It is situated 

on the interface between subunits, being close to helix 44 of the SSU and part of the intersubunit 

bridge B5 (Liu and Fredrick 2016). The 2nd residue of the UUCG makes a canonical Watson-Crick 

base pair with a bulged adenine localized in the junction between helices 66 and 67 (Fig. 4.2).   

The Watson-Crick U-A pair is part of a second order pseudoknot (Antczak et al. 2014), which 

complicates the local topology of the receptor complex. The interaction network is completed by a 

hydrogen bond between the loop uridine O4 and the hydroxyl O2’ of a residue belonging to another 

region of helix 67. In addition, there are several interactions involving atoms from the minor groove 

of helix 62 and the backbone of the helix 67. Based on phylogenetic data (Petrov et al. 2013) the 

residues of UUCG and the bulged adenine making the U-A pair are highly conserved in the ribosomes 

of more than 120 species. Conversely, the residue to which the O2’ belongs appears less conserved.  

Several amino acids of the ribosomal L2 protein interact with the UUCG loop, such in the case of E. 

coli ribosome where an Arg makes a hydrogen bond with the N7 of the 4th loop residue. It is possible 

Figure 4.2. 3D representation of a UUCG receptor in E. coli LSU. Helix 62 (yellow) is capped 

by a UUCG loop in which the 2nd residue (uridine, red) makes long-range interactions with two 

nucleotides of helix 67 (light blue and orange). One of the contacts involves a U-A canonical 

Watson-Crick base pair. Ribosomal L2 protein (green) is also found in the vicinity of the 

receptor. Interatomic contacts with distances <3.5 Å are shown with dashed lines. Color codes 

for strands are consistent with Fig. 4.1. 
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to speculate on the fact that during the ribosome assembly helix 67 adopts its final fold first, then the 

helix 62 carrying the loop docks over its surface being locked by a strong network of interactions. 

Finally, L2 protein locks in place the helical segments forming the tetraloop receptor. An interesting 

observation in this perspective is that helix 62 is missing in the porcine mitochondrial ribosome 

(Greber et al. 2015), while helix 67 is similarly at the surface of the ribosome. However, the adenine 

involved in the U-A pair is replaced by a uridine and it is not bulged from the helix. 

4.3.2 Receptor II involves the GAAA capping helix 35a 

Helix 35a within the domain I of the LSU is capped in prokaryotic and eukaryotic species by a 

GAAA loop, adopting an uncharacteristic Z-turn (Paper 3). Helix 35a is situated in the vicinity of the 

ribosomal peptidyl transferase center, thus being highly phylogenetically conserved (Petrov et al. 

2013) also in the mitochondrial ribosomes (Table 4.1). Typical of the fold adopted by the loop, the 

2nd loop residue (A) points towards the loop minor groove, participating in a type I A-minor motif 

with a canonical C=G Watson-Crick pair located on helix 65 (Fig. 4.3). 

  

Figure 4.3. 3D representation of a GAAA (UNCG-fold) receptor in E. coli LSU. Helix 35a 

(yellow) is capped by a GAAA loop in which the 2nd residue (adenine, red) is involved in a class 

I A-minor motif with a C=G Watson-Crick pair on helix 65 (light blues). A stacking interactions 

between the loop adenine and an adenine from helix 35 (orange) is also observed. Ribosomal L2 

protein (green) is found in the vicinity of the receptor. Interatomic contacts with distances <3.5 

Å are shown with dashed lines. Color codes for strands are consistent with Fig. 4.1. 
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Table 4.1 Data of UNCG receptors among different species ribosomes. Data on ribosomal 

structure are sorted by species and present information extracted from the indicated PDB file. The 

observed sequences for tetraloops interacting with receptor I (UNCG capping helix 62) and Receptor 

II (GNNN capping helix 35a) are reported, together with number of residue/chain of the loop residues 

and of the receptor. 

PDB 

code 

Res 

(Å) 

h62 UNCG 

seq. 
Resi./chain Receptor I 

h35a GNNN  

seq. 
Resi./chain Receptor II 

H. marismortui (50S) 

4V9F 2.4 UUCG 1770-73/0 A(1885/0) GAAA 873-876/0 C(1844/0)=G(1832/0) 

E. coli (50S) 

4YBB 2.1 UUCG 1692-95/DA A(1829/DA) GAAA 780-783/DA C(1788/DA)=G(1776/DA) 

T. termophilus (50S) 

4Y4O 2.3 UUCG 1692-95/2A A(1829/2A) GAAA 780-783/2A C(1788/2A)=G(1776/2A) 

S. cerevisiae (60S) 

4U4R 2.8 UUCG 1924-27/1 A(2188/1) GAAA 912-915/1 C(2146/1)=G(2134/1) 

H sapiens (60S) 

4UG0 3.6 UUCG 2873-76/L5 A(3692/L5) GAAA 1629-1632/L5 C(3650/L5)=G(3638/L5) 

O. cuniculus (60S) 

3JAH 3.4 UUCG 2873-76/5 A(3692/5) GAAA 1629-1632/5 C(3650/5)=G(3638/5) 

S. scrofa (60S) 

3J7P 3.5 UUCG 2873-76/5 A(3692/5) GAAA 1629-1632/5 C(3650/5)=G(3638/5) 

P. falciparum (60S) 

3J79 3.2 UUCG 2192-95/A A(2481/A) GAAA 1031-1034/A C(2439/A)=G(2427/A) 

T. aestivum (60S) 

4V7E 5.5 UUCG 1920-23/Aa A(2183/Aa) GAAA 915-918/Aa C(2140/Aa)=G(2128/Aa) 

K. lactis (60S) 

4V91 3.7 UUCG 1924-27/1 A(2188/1) GAAA 912-915/1 C(2146/1)=G(2134/1) 

D. melanogaster (60S) 

4V6W 6 UUCG 2240-43/A5 A(2566/A5) GAAA 1112-1115/A5 C(2513/A5)=G(2525/A5) 

T. brucei (60S) 

4V8M 5.6 UUCG 109-12/BB A(456/BB) GAAA 1011-1014/BA C(414/BB)=G(402/BB) 

Mitochondrial S. cerevisiae  

3J6B 3.2 No h62 - A(1736/A) GAAA 671-674/A C(1695/A)=G(1683/A) 

Mitochondrial S. scrofa  

5AJ4 3.8 No h62 - A(969/BA) GAAA 326-329/BA C(838/BA)=G(826/BA) 

Mitochondrial H. sapiens  

3J7Y 3.4 No h62 - - GACA 1990-1994/A C(2508/A)=G(2496/A) 

 

 

The receptor topology is completed by other accessory interactions. An adenine from helix 35 is 

stacked with the loop adenine, while various hydrogen bond contacts are observed between atoms on 

the helix 35a minor groove and helix 65. Analogously with the previous receptor, L2 protein is found 

in the vicinity. A similar folding scheme can be proposed, with helix 65 “docking” helix 35a and the 

L2 protein coming last to lock the final RNA architecture. 

4.3.3 What are the features of a UNCG receptor? 

It is remarkable to notice that in both cases the UNCG receptors are constituted by a complex 

ensemble of strands, coming from different ribosomal regions. It appears that this architectural 

complexity proper of UNCG receptors can be found only in highly structured RNA, such as ribosomes. 

At the same time, the specificity of these receptors involve a larger amount of elements than for a 

simpler GNRA receptor, making the description of UNCG receptor less general and bound to local 
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topology characteristics. Anyhow, the concept that UNCG tetraloop as isolated motif not involved in 

specific RNA-RNA interactions should be rectified to include the possibilities presented here. With 

forthcoming structural data on complex RNA systems it would be hopefully possible to systematically 

define the nature of UNCG receptors. 

4.3.4 More on complex tetraloops assemblies inside the ribosome 

During the research of tetraloop motifs interacting in the ribosomes, a remarkable example of loop 

assembly emerged. It is found in the domain I of prokaryotic and eukaryotic LSU and is formed by 

three U-turns and an unstructured U-turn, forming two facing pairs with bottom residues stacked (Fig. 

4.4). 

The interaction between pairs of loops is reminiscent of the D- and T-loop interdigitation found in 

tRNA structure, which forms the characteristic elbow. The elbow allows the tRNA to be docked by 

recognizing another exposed base pair found on the docking platform of various RNAs. This universal 

RNA structural motif (Lehmann et al. 2013) is involved in the docking of tRNA by T-box riboswitch 

Figure 4.4. An assembly of four tetraloops inside the H. marismortui ribosome. The 

highlighted tetraloops belong to helix 19 (magenta), helix 18 (blue), helix 23 (orange and cyan). 

Ribosomal L24 protein is showed with green cartoons. The information on residue numbers are 

from H. marismortui LSU (PDB: 4V9F; res.:2.4 Å; (Gabdulkhakov et al. 2013).  
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(Zhang and Ferre-D'Amare 2013), RNAseP (Reiter et al. 2010) and the L1 Stalk of the ribosomal LSU 

(Tishchenko et al. 2012). This occurrence of four loops in contact with one another inside the ribosome 

therefore constitutes a fourth example of this general RNA-RNA recognition based on intermolecular 

base–base stacking. In this particular example, the close proximity of the L24 protein could suggest a 

direct role of this protein in the formation and stabilization of this unique arrangement during ribosome 

biogenesis.  
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5.1 Essential considerations on environmental effects on RNA 

The intrinsic plasticity of biomolecules, required for their structure and functions, makes them 

particularly sensible to modulation by environmental factors. Knowing how solvent atoms and 

physical conditions influence nucleic acids is on the same importance level of knowing biomolecular 

structure, in the perspective of understanding their biological roles. I worked on the interaction patterns 

between solvent molecules and biomolecules, with a focus on charged species interacting with nucleic 

acids. The polyanionic nature of nucleic acids makes them very good binder of cationic molecules, 

but locally also anionic species can enter the first hydration shells. Among anionic species, also Asp 

and Glu side chains have to be considered; surprisingly, they show in various contexts to assume an 

unexpected neutral state, both in pairing with nucleobases or in forming carboxyl(ate) pairs. These 

rare contacts are significant for protein structures and involve characteristic very short hydrogen bond 

distances (~2.6 Å).  

Analysing X-ray structural data from PDB and CSD databases, it is possible to characterize the 

binding of diverse solvent molecules with nucleic acid. However, one of the major issues of X-ray 

crystallography is the identification and assignation of solvent density to the correct species, due to 

the general high mobility of solvent paired with the relative small number of electrons of ionic species 

(especially metal ions such as Mg2+ or Na+). In fact, during our database surveys, a large number of 

solvent misattributions or local issues appeared, especially for Mg2+ ions putatively binding purine 

imine nitrogen atoms. In order to assess these problems and to augment the reliability of structural 

data, we identified the main issues and proposed solutions to avoid such pitfalls in future endeavours. 

Further, MD simulations were performed to study the dynamics of RNA first solvent shell under 

different temperature conditions. The goal has been to study RNA structure temperature effect on 

motifs such as tetraloops, by analysing the properties of solvent molecules that are part of nucleic acid 

structure. I will detail some preliminary results on this still ongoing project. 

5.2 Metal ions interacting with nucleic acids 

The most relevant metal ion interacting with nucleic acids, and specifically RNA, is Mg2+. In 

addition, monovalent cations such as Na+ and K+ also have been showed to possess remarkable 

structural and functional roles for proteins and nucleic acids (Page and Di Cera 2006; Lambert et al. 

2009; Pechlaner and Sigel 2012). I will detail in the first place the result of a review on Na+ and K+ 

binding to nucleic acids and then present our results on Mg2+ binding to nucleic acids. The subject 

about Mg2+ is so broad that its binding modes to different atoms (imine nitrogens, phosphate oxygens, 

carbonyl oxygens…) have to be analyzed in different studies, converging to a final comprehensive set 

of data for Mg2+ binding to nucleotides. 
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5.2.1 Review 1. Sodium and potassium interactions with nucleic acids (Met. 

Ions Life Sci., 2016) 

In comparison to Mg2+, it is less appreciated that monovalent cations (specifically Na+ and K+) are 

important for nucleic acid structure and functions. In particular, results on the involvement of 

monovalent cations in folding and catalytic activity are still emerging. We review the current state of 

detection techniques for K+ and Na+ ions in nucleic acid structures ranging from X-ray crystallography 

to nuclear magnetic resonance and MD simulations. Moreover, we raise awareness on the common 

pitfalls encountered while dealing with monovalent cations with all these methods. Subsequently, we 

present an analysis on specific and non-specific cation binding to nucleic acids, discussed through 

various relevant examples. Together with phosphate contacts, monovalent cations are often found to 

bind nucleic acid grooves forming specific coordination patterns with nucleobases. A well-known 

example of monovalent binding to nucleobases are quadruplexes, which structure changes if a smaller 

Na+ or a larger K+ is coordinated by guanine quartets. The same differences are exploited by a protein 

K+ channel, suggesting the existence of a universal recognition motif for dehydrated K+ ions. The same 

recognition could be also involved in RNA cation-induced conformational switches observed in 

fluorescent aptamers such as spinach-based sensors. Additionally, Na+ and K+ bind complex RNA 

folds and are associated with functional modulation in introns, riboswitches, ribozymes and 

ribosomes, which activity is altered or even inhibited by Na+ ions. Overall, we stress that the nature of 

buffers used in biophysical or biochemical experiments too often contains Na+ instead of the more 

biologically relevant K+, yielding results that are sometimes misleading when compared to more 

physiological conditions.
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5.2.2 Paper 4. Binding of metals to purine N7 nitrogen atoms and 

implications for nucleic acids: a CSD survey (Inorg. Chim. Acta, 2016) 

Graphical abstract 

 

Purine N7 atoms are considered to be the best nucleobase metal binding sites, but the properties of 

this binding are still not well formalized. We describe the occurrences and coordination geometry of 

alkali, alkaline earth and biologically relevant transition metals to purine N7 atoms, with an exhaustive 

survey of the Cambridge Structural Database. Three metal binding geometries to purine N7 were 

identified: (i) a tetracoordinated metal interacting with both N7 and N6/O6, specific to Cu or Zn; (ii) 

a hexacoordinated metal with direct N7 interaction and water mediated with N6, specific to Ni or Co 

and with an adaptable water coordination sphere; (iii) a hexacoordinated metal interacting with two 

purine N7 atoms. The occurrences of Mg2+ binding with N7 atoms are rare, being limited to 2 

examples, inferring a weak affinity for this site. This suggests a low relevance for Mg2+ purine N7 

binding sites in most RNA and DNA contexts. Consequently, the search was extended to small 

molecules imine sites and water molecules, in order to characterize the binding properties of metal 

ions and extract data to help with the current issues in the assignment of ions in large biomolecular 

systems. In particular, imidazolates were found to be valuable mimic of 6-oxopurines, but with a 

shorter distance between the imino nitrogen and the carbonyl oxygen that would allow metal ions to 

simultaneously bind them. This allowed us to use imidazolates as “affinity balance”, based on the 

coordination distance difference between metal-Nimino and metal-Ocarboxyl coordination. Again, Mg2+ 

have been found a clear preference for oxygen, supporting the hypotheses that their binding to N7 

purine atoms in biomolecules should not be considered of primary importance.  
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Understanding the structure and function of RNA and DNA systems depends partly on our comprehen-
sion of the binding features of metal ions to nucleobases. Such knowledge is important for an unambigu-
ous assignment of ionic species to solvent electronic densities in crystallographic structures. Since the
purine N7 atom is considered to be the best nucleobase metal binding site, we focus herein on describing
the occurrence and coordination geometries of direct binding of alkali, alkaline earth and biologically
relevant transition metals to this site. Further, we compare binding of such metals to purine N7 atoms,
as well as imine sites occurring in small molecules such as imidazolates and water molecules. We analyze
also the structure of the coordination shell of penta- and tetrahydrated metal ions bound to one or two
purine N7 atoms. These structures can be used to validate proposed Mg2+ and other metal binding sites in
large PDB structures where such assignments are often difficult to make. This survey suggests that Mg2+

ions bind with weak affinities to nucleobase N7 atoms. Although Mg2+ ions are essential to nucleic acid
systems, purine N7 binding sites are, in most contexts, probably not of primary importance in RNA and
DNA.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The binding of metal ions to nucleic acids and proteins, despite
the large number of studies and books devoted to the subject, is
still a very active and important field of research [1,2]. It is well
appreciated that nucleotides and amino acids interact with all
biologically relevant alkali, alkaline earth and transition metals
participating in the metallome [3,4] through nucleobases, sugar-
phosphate backbones, amino acid side chains and peptide back-
bones. Their binding affinities depend on the type of the involved
metals and binding site atoms that are sometimes categorized as
hard and soft [5,6]. It has been proposed to separate metal ions into
oxygen seeking, sulfur/nitrogen seeking and borderline or interme-
diate classes [7]. As such, it is assumed that hard metals such as
alkaline and alkaline earth ions (including Mg2+) are likely to asso-
ciate with the anionic oxygen atoms from phosphate (nucleic
acids) or carboxylate groups (proteins) while softer metals (Mn2+,
Ni2+, Cu2+, Zn2+ or Cd2+ as well as Ag+ and Tl+) prefer to interact
with histidine/nucleobase imine nitrogen atoms [8]. Accordingly,
it has been suggested to group Na+, Mg2+, K+ and Ca2+ as an oxygen
class, Mn2+, Fe2+ and Co2+ as an imidazole class and Cu2+, Ni2+ and
Zn2+ as a sulfur class [9]. Although useful, such classifications have
to be considered with caution. Indeed, the hard Mg2+ ion is found
in chlorophyll where it interacts in a pentacoordinated manner
with exactly five nitrogen atoms, four belonging to the chlorin
group and one to an additional histidine ring, instead of its ordi-
nary oxygen atom ligands. However, such an ‘‘out-law” complex
requires assistance of chelatase enzymes for its formation [3].

In the general case, the stabilities of complexes formed by
divalent metal ions in biologically relevant conditions has been
predicted to follow the order [3,10]:
Mg2þ < Mn2þ < Fe2þ < Co2þ < Ni2þ < Cu2þ > Zn2þ
That is similar to the covalent contribution of metals [8]:

Kþ <Naþ <Ca2þ <Mg2þ <Mn2þ < Fe2þ <Co2þ �Ni2þ �Cu2þ >Zn2þ

In this respect, it can be recalled that the concentrations of
unbound metal ions in the cytosol range from millimolar (Na+,
K+, Mg2+) to micro- (Mn2+, Fe2+, Ca2+), nano- (Co2+, Ni2+), femto-
(Zn2+) and attomolar (Cu+/Cu2+) [11]. While proteins are exposed
to almost all kinds of biogenic metal ions including those
considered as toxic in higher organisms (such as Cd2+, [12]), nucleic

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ica.2016.04.005&domain=pdf
http://dx.doi.org/10.1016/j.ica.2016.04.005
mailto:p.auffinger@ibmc-cnrs.unistra.fr
http://dx.doi.org/10.1016/j.ica.2016.04.005
http://www.sciencedirect.com/science/journal/00201693
http://www.elsevier.com/locate/ica


Fig. 1. CSD search fragments used for characterizing metal binding to various
purine (I), imidazole ring (II), imine like fragments (III) and water (IV). The black
dashed lines indicate that any bond type, as defined by the CSD, can be considered.
The red dashed lines indicate that we searched for a direct coordination between
the metal and the N/O atoms as defined in the CSD structures. The ‘‘*” next to a
nitrogen indicates that only sp2 atoms are taken into account. All fragments are
planar. Water hydrogen atoms where explicitly included in fragment IV. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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acids are in vivo almost exclusively surrounded by K+ and Mg2+ and
possibly by Na+ and Ca2+ ions [13,14]. When other ions are found in
the vicinity of nucleic acids, they are usually chelated like Zn2+ in
zinc finger motifs.

For nucleobases, it has become common knowledge that the
best direct metal binding site is the purine N7 nitrogen [15,16]
and that direct binding to imine N1/N3 nitrogen atoms is much less
frequent and occurs only under specific conditions. The stabilities
of single nucleoside/metal complexes, determined in solution by
the affinity of N7 atoms, are the weakest for Mg2+ and Ca2+ and
highest for ions such as Mn2+, Zn2+, Cd2+ and Cu2+ in that order.
Further, adenine has weaker affinities for these metals than gua-
nine and even negative affinities for Ca2+ and Mg2+. The same order
of affinities is reported for nucleotide macrochelate formation and
all other possible mono-, di- and triphosphate combinations as
well as for some dinucleotides [1]. It has also been reported that
the binding affinities of Mg2+ and Mn2+ to thiophosphates is not
very different and much weaker than that of Zn2+ and Cd2+.

In crystallographic structures deposited in the PDB, numerous
examples of direct binding of transition metals to N7 atoms have
been reported [13,14] next to a very large number of N7-Mg2+

binding events. The latter are supposed to play a role, for instance,
in the catalytic mechanism of the hammerhead ribozyme [17,18].
Yet, these N7-Mg2+ binding events are rather surprising given the
above mentioned preference of these ions for anionic oxygen
atoms belonging to phosphate groups [7,8]. To get a better view
on the solvent structure of these large systems in experimental
studies, various metal ions are used as substitutes in the identifica-
tion of biologically relevant binding sites. For example, Tl+, Rb+ and
Cs+ have been used as heavy atom replacements for detecting Na+

and K+ binding sites, while Mn2+, Zn2+ or Cd2+ are used as
substitutes for Mg2+ ions [19]. Some other metals, like Cd2+, are
also used as probes to study the effect of metal ions on nucleic
acids [20–23].

Hence, to clarify issues related to the structural characterization
and the role of metal ions in nucleic acid structures from the PDB, it
is important to gather reliable data and statistics on the preferred
coordination modes of these metals to nucleobases and especially
the purine N7 sites. For that purpose, we surveyed the Cambridge
Structural Database (CSD) for metal binding to similar sites. We
concentrated on the binding of hexacoordinated metal ions that
are probably the most biologically relevant. Present data comple-
ment those already reported for protein systems [8,9,24–26] and
represent an addition to existing web services providing access
to structural databases for metal binding sites [27,28].
2. Material and methods

The Cambridge Structural Database (CSD Version 5.37, February
2016) [29–31] was searched to characterize metal to nitrogen
atom coordination distances. We considered purine nucleobase-
like fragments and an imidazole ring fragment as found in both
purines or histidine amino acid side chains (Fig. 1). Note that for
imidazole and more specifically histidine rings, the two nitrogen
atoms are often reported as equivalent [8]. We considered also
an imine fragment common to the above-mentioned motifs where
the nitrogen is strictly bound to two carbon atoms. Besides, we
extracted metal–water coordination distances from the CSD. We
integrated in our search the following transition metals from the
first and second row (Mn, Fe, Co, Ni, Cu, Zn, Cd) as well as alkali
and alkaline earth metals. We further included Tl that is sometimes
used as a K+ ion substitute [13,14]. However, we did not consider
beryllium (Be) since it is not present in its ionic forms in the
PDB. A metal to nitrogen coordination distance was selected based
on the existence of a coordination bond defined by the CSD. To
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eliminate non-specific coordination, we excluded metals that are
located at more than ±1.0 Å from the plane defined by the
nitrogen-containing fragment. All searches were performed with
the ConQuest [32] software using filters so that disordered and
error-containing structures were excluded. The searches were
restricted to structures with R-factor values 60.05 unless
otherwise stated. The Mercury program was used for analyses
and visualization of all these structures [33].

Unfortunately structures deposited to the CSD, even those of
very high resolution, are not free of errors that persist despite sig-
nificant structure validation efforts [8,24,34]. Such structures are
difficult to eliminate from a search ensemble. Some of those, asso-
ciated with unreasonably short or long coordination distances
were eliminated after visual inspection that unavoidably includes
a certain level of arbitrariness. On the other hand, differences in
coordination lengths might be attributable to specific solid-state
interactions involving particular ligands. It can be noted that some
of the metal to nitrogen coordination distance histograms show
more than one peak that are most probably associated with
different metal oxidation states or Jahn–Teller effects as in the
case of Cu2+, low-spin Co2+, Ni3+, high-spin Cr2+ and Mn3+ [35].
Moreover, CSD oxidation states of transition metals are sometimes
ill-defined presumably due to typographical or other mistakes
[36,37]. Thus, associating an oxidation state with a given metal is
generally not straightforward. When possible, we present for each
element arguments that could lead to such an assignment.
As always, a critical eye is required even when working with
high-resolution crystallographic data.
3. Results and discussion

3.1. Statistical and structural overview of metal binding to imine
nitrogen atoms and water

As expected, among all metals the coordination distances with
N/O atoms vary the most for the alkali and alkaline earth ions
indicating that these distances can be used as a part of the ion
identification process (Table 1). The differences appear less signif-
icant for the investigated transition metals. Cd is the largest metal
ion with distances around �2.3 Å followed by Mn with distances
around �2.2 Å and Mg with coordination distances below �2.1 Å.
As such, the Mn coordination distances exceed systematically
those of Mg by �0.1 Å.

There is no significant difference in coordination distances of
investigated metals to N/O atoms associated with fragments III
and IV, respectively. Those differences lie within statistical uncer-
tainties. Thus, given the precision of the collected data associated



Table 1
Average metal to nitrogen coordination distances derived from the CSD (version 5.37, update February 2016), obtained by analyzing biologically relevant fragments (Fig. 1). The
number of hits is given in brackets. Standard deviations are provided when the number of hits is above ten. For some elements, more than one peak could be identified in distance
histograms and average values with standard deviations are given for each of them. The searches were restricted to structures with R-factor values 60.05 unless otherwise stated.
Disordered, error containing, polymeric and powder structures were excluded from the search.

Metalsa Fragment I Fragment II Fragment III Fragment IV
Purine: N7b Imidazole Nc All imine Nd Watere

Alkali metals and thalliumf

Li-Lithium (Li+) 2.10 [3]g 2.09 ± 0.03 [20] 2.05 ± 0.07 [682] 1.96 ± 0.06 [562]
Na-Sodium (Na+) 2.60 [3]g 2.44 [3] 2.45 ± 0.05 [135] 2.41 ± 0.08 [3342]
K-Potassium (K+) –g 2.82 [68]g 2.85 ± 0.06 [81] 2.86 ± 0.13 [2222]
Rb-Rubidium (Rb+) –g 2.94 [1]g 3.04 ± 0.12 [10] 3.04 ± 0.17 [107]
Cs-Cesium (Cs+) –g –g 3.11 [2] 3.24 ± 0.14 [326]
Tl-Thallium (I,III) –g 2.49 [8] 2.42 ± 0.23 [221] 2.88 ± 0.38 [31]
(Thallium peaks) –g (2.32, 2.78) (2.27 ± 0.08, 2.68 ± 0.14)

Alkali earth metals
Mg-Magnesium (Mg2+) 2.23 [2] 2.19 ± 0.02 [37] 2.10 ± 0.07 [825] 2.06 ± 0.03 [1362]
Ca-Calcium (Ca2+) –g 2.52 ± 0.07 [29] 2.48 ± 0.11 [328] 2.41 ± 0.06 [855]
Sr-Strontium (Sr2+) –g 2.66 [9] 2.65 ± 0.11 [141] 2.61 ± 0.06 [293]
Ba-Barium (Ba2+) 2.85 [1]g 2.9 [5] 2.89 ± 0.09 [134] 2.83 ± 0.09 [553]

Transition metals
Mn-Manganese (I–V) 2.32 [2]g 2.23 ± 0.04 [345] 2.19 ± 0.11 [6294] 2.19 ± 0.05 [2524]
(Manganese peaks) (2.03 ± 0.05, 2.27 ± 0.05)

Fe-Iron (I–V) 2.16 [3] 2.09 ± 0.09 [749] 2.07 ± 0.11 [9337] 2.10 ± 0.05 [995]
(Iron peaks) (1.98 ± 0.03, 2.15 ± 0.05) (1.97 ± 0.04, 2.15 ± 0.07)

Co-Cobalt (I–IV) 2.05 ± 0.09 [11] 2.05 ± 0.08 [1317] 2.05 ± 0.11 [9710] 2.10 ± 0.03 [3946]
(Cobalt peaks) (1.96, 2.10) (1.93 ± 0.02, 2.13 ± 0.04) (1.94 ± 0.04, 2.13 ± 0.05)

Ni-Nickel (I–IV) 2.10 ± 0.05 [10] 2.07 ± 0.07 [1122] 2.01 ± 0.10 [12198] 2.08 ± 0.04 [4199]
(Nickel peaks) (1.91 ± 0.02, 2.07 ± 0.07) (1.89 ± 0.04, 2.07 ± 0.05)

Cu-Copper (I–III) 2.00 ± 0.03 [43] 1.99 ± 0.03 [2238] 2.00 ± 0.05 [26031] 2.24 ± 0.23 [5315]
(Copper peaks) (1.97 ± 0.02, 2.37 ± 0.17)

Zn-Zinc (I, II) 2.05 ± 0.5 [27] 2.05 ± 0.06 [927] 2.08 ± 0.07 [11509] 2.09 ± 0.05 [2715]
Cd-Cadmium (Cd2+) 2.33 ± 0.05 [25] 2.29 ± 0.05 [780] 2.34 ± 0.06 [4666] 2.31 ± 0.04 [1458]

a When appropriate, oxidation states as mentioned in the CSD are given in parenthesis.
b Statistics for the imine purine N7 atoms of fragment I.
c Cumulated statistics for the two imidazole nitrogen atoms found in fragment II. These statistics include those related to fragment I.
d Cumulated statistics for the imine atom found in fragment III. These statistics include those related to fragments I and II.
e Statistics for fragment IV.
f Thallium in its Tl+ form is often considered as a K+ substitute and as such has been added to this table.
g No restrictions were applied to these searches.
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with the large diversity of structural fragments considered here, it
is difficult to infer simple rules regarding N/O coordination
distances.

Non-biologically-relevant contexts or environments occurring
frequently in the CSD may affect our statistics as well. Even very
precise quantum mechanical calculations provide context depen-
dent coordination distances. For instance, the Mg2+...Ow coordina-
tion distance of a single water molecule has been calculated by
quantum mechanical techniques to be in the 1.92–1.96 Å range
while for Mg[H2O]62+ the same distance lie in the 2.08–2.10 Å range
and therefore closer to crystallographic derived values [38].

Some metals display more than one optimal coordination
distance. Thallium, which is considered as a good mimic for K+ in
crystallographic investigations [39], displays a �2.7 Å coordination
distance towater and a�2.5 Å coordination distance to imine nitro-
gen atoms. Yet, Tl binds poorly to oxygen atoms, therefore the
statistics for Tl–O are not very reliable. Two coordination peaks
appear in the Tl–N histograms that could have as origin a different
thallium oxidation state (�2.3 Å for Tl3+ and�2.7 Å for Tl+). For Mn,
two peaks at �2.0 and �2.2 Å are distinguishable in the imine
nitrogen histograms. The short coordination distance could be
related toMn atoms in a rare +3 oxidation state and associated with
a Jahn–Teller effect [35]. The +2 oxidation state is certainly related
to the more common 2.2–2.3 Å coordination distances. Note that
the Mn2+–water coordination distance (�2.19 Å) is larger that the
Mg2+–water coordination distance (�2.06 Å). For Fe, Co and Ni,
the two peaks related to the imine containing fragments are
separated by 0.1–0.2 Å. We assume that the shortest and longest
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coordination distances can be attributed to the +3 and +2 oxidation
states, respectively. For Zn, two peaks associated with a large
spread are also observed. All transition metal to water coordination
distance histograms are single peaked except the one related to Cu
that is the result of a well-documented Jahn–Teller effect [24]. This
effect is not observed when nitrogen ligands are involved.

3.2. Low Mg2+ binding occurrence to N7 atoms correlates with
nitrogen metal affinities

The occurrence of Mg2+ binding events to imine nitrogen atoms
is relatively low in the CSD, especially for nucleobases. Only one
instance of a Mg2+ ion bound to the N7 atoms of two in-plane
theophylline like purines [40] and another showing a Mg2+ binding
to two stacked guanine N7 atoms (high R-factor) have been
reported [41]. This observation correlates with the low binding
level of Mg2+ ions to histidines in proteins [8] and has to be
compared with the higher occurrence of other transition metals
next to N7 atoms (Table 1). Only one occurrence of Mn2+ binding
to N7 (high R-factor) has been reported [42] along with two
pentahydrated Mn2+ ion containing structures for which no
coordinates were deposited [43]. These examples will be described
below. It has to be noted that the apparent low occurrence of com-
plexes with Mg2+ and Mn2+ should be viewed with caution since it
may perhaps only reflect the fact that these compounds crystallize
less easily.

Regarding other transition metals, their higher affinity for nitro-
gen ligands correlates with a much larger number of contacts to

1



Table 2
CSD structures of pentahydrated ions bound to a purine N7 atom (Fig. 3).

Purine Ion d1a d2b Hydrogens R-factor [%] CSD code

Pentahydrated metal
G Cd 2.37 3.83 No 6.0 AGOPCD
Inosine Ni 2.11 3.74 Yes 7.5 ANIMPH01
G Co 2.13 3.71 Yes 3.4 BIPVIF01
Inosine Co 2.15 3.70 Yes 4.3 DIDSOY
Inosine Co 2.12 3.68 Yes 2.8 FIZHUR
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fragment III compared to fragment IV (water). The reverse is
observed for alkali and alkali-earth metals including Mg2+ where
the more frequent binder is oxygen. In that respect, it has been
reported from quantum mechanical investigations that for Mg2+

the O6 inner shell binding mode is favored over the N7 binding
mode [44]. It is worth mentioning that Tl+ shows an opposite trend
and is, like transition metals, more frequently bound to nitrogen
atoms (Table 1).
Inosine Ni 2.06 3.64 Yes 3.2 FIZJAZ10
Inosine Co 2.16 3.79 Yes 5.1 IMPCOH
A Ni 2.07 3.74 Yes 2.4 ZZZAAF01
Gc Mn FAMNIQ01
Gc Mn QQQGLY
Gc Ni GUOSNI
Gc Fe FAMNEM

a Distance between the metal ion and the N7 atom (Fig. 2).
b Distance between the N7 and the N6/O6 atoms (Fig. 2).
c No coordinates were deposited to the CSD.
3.3. Binding characteristics of metals and water to purine N7 atoms

The CSD embeds a large diversity of chemical compounds
where tetra- and pentacoordinated metals coordinate to various
atoms such as sulfur, chloride, other metals,. . . Since such coordi-
nation patterns are rare in nucleic acids, we restrict our survey to
the more biologically relevant hexacoordinated metals. We found
that, when binding to purine N7 atoms, metal ions are mostly in
plane with the base and at a 3.7 ± 0.1 Å distance from the purine
N6/O6 atoms (Fig. 2). This distance along with the coordination
distance to the N7 atom could be used to distinguish these metals
from water molecules or NH4

+ ions in lower resolution structures
from the PDB.

Indeed, the hydrogen bond distance for water molecules to N7
atoms is, as expected, close to 2.8 ± 0.1 Å. For 6-aminopurines, a
water molecule hydrogen bonded to both N6/N7 can be observed
with N6...Ow distances of 3.1 ± 0.1 Å. Besides, other in plane water
molecules are observed with N6...Ow distances in the 3.5–4.5 Å
range. For 6-oxopurines, the average O6...Ow distance histogram
has a first peak at �3.6 Å and a second close to 4.0 Å. No ‘‘in plane”
water molecules at hydrogen bond distance of both N7/O6 atoms
are observed.

Metal–N6/O6 distances around 3.0 Å were only observed for
tetracoordinated transition metals such as Cu or Zn and might only
be observed in structures of the PDB under specific crystallization
conditions. Such coordination schemes seem unlikely for Mg2+ or
Mn2+ ions for which direct coordination to both N7/O6 atoms has
not been reported (see below).

Metals can also bind to theN7 atomof 6-aminopurineswith sim-
ilar distances as in 6-oxopurines. It is probable that this N7 purine
site will more difficultly accommodate larger ions such as Ca2+,
Sr2+ or evenK+. Thus, this 6-aminopurine site is probablymore selec-
tive for smaller ions and it has even been argued if small ions can
bind to it. Gas phase quantum mechanical calculations (performed
in the absence of water) suggest that Mg2+ might not bind to the
N7 atom of adenine [45]. Calculations taking into account first-shell
water molecules reach opposite conclusions [16,46].
3.4. Pentahydrated metal ions binding to purine N7 atoms

Eight structures of pentahydrated metals (Co, Ni and Cd) bound
to the N7 atom of purine like fragments were deposited to the CSD
Fig. 2. Definition of two characteristic distances for metal binding to purine N7
atoms. (Left) The average d2 distance is derived from an ensemble of hexacoor-
dinated metal ions binding to the N7 atom. (Right) d1 and d2 distances for water
molecules hydrogen bonded to both N6/N7 atoms of 6-aminopurines.
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as well as four other fragments (with Mn, Ni and Fe) for which no
coordinates were archived (Table 2). Seven of these metals are
bound to guanine or inosine fragments and one to adenine. The
metal ion positions are consistent with the ion coordination dis-
tances noted in Table 1. In all instances, the metal–N6/O6 distance
is 3.7 ± 0.1 Å (Fig. 2). Thus, from this limited set of examples, diva-
lent transition metals appear to bind similarly to 6-aminopurines
and 6-oxopurines. Hence, this metal–N6/O6 distance can be
considered as a reliable criterion for characterizing metal binding
to N7 atoms in the lower resolution structures of the PDB.

The placement of the five coordinated water molecules is simi-
lar in all structures suggesting a regular hydration pattern for ions
bound to purine N7 atoms (Fig. 3). Overall, the five water mole-
cules form along with the N7 atom an octahedral coordination
scheme. The closest water molecule to the N6/O6 atoms is at a
2.8 ± 0.1 Å hydrogen bond distance. The second closest water
molecule to the N6/O6 atoms is at a 3.4 ± 0.2 Å non-hydrogen
bonding distance indicating an asymmetrical arrangement with
respect to the purine plane. Both these distances are in agreement
with N6–Ow distances close to 2.8 and 3.3 Å derived from quan-
tum mechanical calculations [16] The water closest to the N6/O6
atoms is either a hydrogen bond acceptor or donor. Hence, in this
case also, these two N6/O6-water distances can be considered as
useful criteria for validating metal binding to N7 atoms in PDB
structures.
3.5. Water orientation in the metal coordination sphere is adaptable

The positions of the hydrogen atoms belonging to coordinated
water molecules are also in agreement with quantum mechanical
calculations [16,38] and first principle molecular dynamics calcula-
tions of the hydration of Mg2+ ions in aqueous solution [47–49].
These calculations as well as high-resolution CSD data, suggest that
water molecules tend to asymmetrically coordinate Mg2+ ions
through one of the oxygen atom lone pairs, an outcome that could
probably not have been derived from simple electrostatic gas phase
considerations. In the pentahydratedmetal bound purines (Table 2),
the angle associated with themetal ion and the bisector of the coor-
dinated water molecules is 146 ± 17�. These angles are 152 ± 14�
(CSD code: YOHJAI) and 171 ± 2� (CSD code: CIRVAA01) in two
neutron diffraction structures of hexahydratedMg2+ ions. However,
in DFT calculations of hexahydrated Mg2+ gas phase clusters, the
water molecules coordinate rather symmetrically to Mg2+

[19,38,48]. These differences suggest a strong influence of the
environment on the orientation of the water molecules. Such an
unexpected adaptability of the water molecule orientation seems



Fig. 3. CSD structures of pentahydrated metals binding to purine N7 atoms and N6/O6–Ow distances. For clarity, the sugar carbon bound hydrogens are not shown. (a)
Structure derived from a complex showing a Ni ion bound to an adenine (CSD code: ZZZAAF01). (b) Structure derived from a complex showing a Co ion bound to a guanine
(CSD code: BIPVIF01). The average distances are derived from the structures listed in Table 2.

Table 3
CSD structures of tetrahydrated ions bound to two N7 atoms in a planar purine
arrangement (Fig. 4a).

Purine Ion d1a d3b Hydrogens R-factor [%] CSD code

Tetrahydrated metal – planar arrangement
A Cu 2.0/2.0 4.0 Yes 3.1 AMADCU
G Cu 2.0/2.1 4.1 Yes 4.8 BAHMAY
Theophylline Mg 2.2/2.2 4.6 Yes 4.9 CUCZEH
Theophylline Cd 2.3/2.3 4.6 Yes 4.4 DIFRAL
G Ni 2.2/2.2 4.3 Yes 3.8 HOPBOD
2-Amino purine Co 2.1/2.1 4.3 Yes 9.5 HOZBEF
Xanthine Zn 2.2/2.2 4.4 No 5.6 JIXFEB
Xanthine Ni 2.2/2.2 4.3 Yes 3.0 LIZMOW
G Cd 2.3/2.3 4.6 No 3.5 NARREE
G Cd 2.3/2.3 4.6 No 4.7 NARRII
Inosine Cu 2.0/2.0 4.5 Yes 4.0 TAHYPC

a Distance between the metal ion and the N7 atoms (Fig. 2).
b Distance between the two N7 atoms.
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required to accommodate metal binding to both 6-aminopurines
and 6-oxopurines.

In the adenine/Ni complex, the purine amino group remains
essentially planar despite the presence of the hydrated metal ion,
in opposition to quantum mechanical calculations that advocate
its strong pyramidalisation [16]. Yet, one has to exert caution
regarding the hydrogen positions inferred from crystallographic
structures that might be sometimes affected by refinement options
and might not always be reliable [34]. In this respect, it can be
noted that guanine amino groups that are distant from metal ions
are sometimes non planar in CSD structures. Such hydrogen atom
positions are certainly also very sensitive to their environment.

As a word of caution, it should be considered that in biomolec-
ular systems metals could bear other ligands than water to com-
plete their solvation shell such as for example Cl coordinated to
Zn as observed in a Z-DNA structure [50]. This is also important
for metals like Pt, Pd or Ag. Ligands like OH� are also probable
and were considered as bridging compounds in bimetallic com-
plexes [51,52].

3.6. Hydrated metal ions coordinated to two purine N7 atoms

Besides the above-mentioned pentahydrated metal ions coordi-
nating to a single N7 atom, we found only two binding patterns in
the CSD that involve tetrahydrated metals and two purine N7
atoms. The first comprises a planar and the second a stacked
arrangement of the two purines (Fig. 4). In one instance, an amino
group is found in position 6 (Table 3). All these structures are sim-
ilar and the purines are organized in a head-to-tail manner. In
biomolecular systems, such arrangements would correspond to
Fig. 4. CSD structures of tetrahydrated metals binding to two purine N7 atoms. (a) This st
a planar arrangement (CSD code: CUCZEH). (b) This structure is derived from a complex
SUKHUB).
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metal mediated base pairs. As for pentahydrated metals (Fig. 2),
the orientation of the metal-bound water molecules differs. Metal
coordinated water molecule close to position 6 are involved in a
hydrogen bond with O6 but not N6 atoms. In the latter, the closest
hydrogen atoms of water are pointing away from the amino group.

The second pattern involves stacked head-to-tail purines that
occur in the CSD structure of the cyclic diguanylic acid or cyclic
d-GMP complex with Mg2+ [41], a molecule that is recognized as
a second messenger used in signal transduction in a wide variety
of bacteria [42]. In these patterns, the two purines are highly tilted
(37 ± 5�; Table 4). They display large R-factor values (8.8 ± 1.9) that
ructure is derived from a complex showing a Mg2+ ion bound to two theophyllines in
showing a Mg2+ ion bound to two guanines in a stacked arrangement (CSD code:

3



Table 4
CSD structures of tetrahydrated ions bound to two N7 atoms in a stacked purine
arrangement (Fig. 4b).

Purine Ion d1a d3b Anglec Hydrogens R-factor [%] CSD code

Tetrahydrated metal – stacked arrangement
Inosine Co 2.2/2.2 2.9 41 No 9.0 BEXRAX10
G Co 2.2/2.2 2.9 42 No 10.0 BEXREB10
G Zn 2.2/2.2 3.0 36 No 6.7 DAZTED
G Zn 2.1/2.1 3.0 33 No 6.1 DAZTIH
G Cu 2.0/2.0 2.8 44 Yes 4.7 ESIWOT
Inosine Cu 2.0/2.0 2.8 42 No 9.3 GANXOI
G Ni 2.1/2.1 2.9 39 No 13.1 GAVDIQ
G Na 2.4/2.6 3.3 36 Yes 7.9 GUOPNA12
G Mn 2.3/2.4 3.0 30 No 9.6 QOCVIP
G Co 2.2/2.3 2.9 35 No 11.2 SIWWIE10
G Mg 2.3/2.3 2.9 33 No 9.4 SUKHUB

a Distance between the metal ion and the N7 atoms (Fig. 2).
b Distance between the two N7 atoms.
c Tilt angle between the two purine planes.
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suggest the occurrence of structural stress in the crystals. As
expected, the two metal–N7 distances are close. Besides, short
N7–N7 distances (2.9 ± 0.1 Å) are observed (the latter are similar
to the distance between nearby water molecules in the first metal
hydration shell). These distances are also much shorter than the
stacking distance between two nucleobases (�3.4 Å). Such
distances and angles should be regarded as characteristic for metal
coordination to two N7 atoms belonging to stacked purines.
Indeed, such tilts are rare in biomolecular structures and might
be characteristic of metal binding if they are associated with a
short N7–N7 distance. In these parallel and stacked arrangements
as well as in the binding of pentahydrated ions to N7 atoms, all
metals occupy the same binding spots and suggest their ability
to replace each other in larger structures.

Interestingly, for the stacked arrangement (Fig. 4b), the N7
binding site can also be occupied by a Na+ ion (CSD code:
GUOPNA12) [53]. The tilt of the two purines (36�) is similar to
those observed in other complexes (Table 4). All other features of
this arrangement are similar too, with the exception of the dissym-
metric Na+–N7 distances (2.4 and 2.6 Å). The N7–N7 distance is
also larger (3.3 Å) and closer to normal stacking distances. This
represents an example where a monovalent ion can occupy a site
that is generally attributed to divalent ions in biomolecular sys-
tems, a feature that should be kept in mind during the refinement
Fig. 5. Difference between 6-oxopurine and imidazolate like fragments. (a and b) Comp
(CSD code: FIZHUR) and imidazolate (CSD code: DEZNIG). (c) Complex between an imid
hexahydrated Mg2+ complex (CSD code: YOHJAI).
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and analysis of the solvent structure of the large nucleic acid
systems deposited to the PDB.
3.7. Simultaneous metal binding to N6/O6 and N7 atoms – the case of
(imid)azolates

The simultaneous binding of Mg2+ or a transition metal to
purine O6/N7 atoms is sometimes considered in quantummechan-
ical calculations [54] and it has marginally been inferred that bind-
ing to O6 over N7 atoms is preferred [44,55,56]. In the CSD, such
events are not observed for purines but only for the closely related
imidazolate and azolate compounds (over 500 occurrences with 13
different metals including Na+, Ca2+, Sr2+ and Ba2+). The main dif-
ference between purines and (imid)azolates relates to the presence
of a carboxylate group in the latter and a slightly different binding
site geometry that leads to a �0.4 Å change between the N/O coor-
dinating atoms (Fig. 5). In (imid)azolates, the two N/O atoms are at
the appropriate �2.7 Å distance for completing the coordination
sphere of a transition metal ion such as Mg2+ whereas purines with
a �3.1 Å distance and a different orientation of the coordinating
groups are not. This 2.7 Å distance correlates with the coordination
distance d(Ow...Ow) of water molecules in the first hydration shell
of first row transition metals that is around �2.9 Å (Table 5).
However, this (imid)azolate site can also accommodate larger ions
such as Na+, Ca2+ and Cd2+ for which the d(Ow...Ow) distance
extends to �3.2 Å for Cd2+ and even �3.5 for Na+. Thus, another
plausible explanation is related to the fact that the carboxyl group
has a higher affinity than the carbonyl group for these metals. Very
likely, we observe here a combination of both effects.

Larger ions such as Ca2+ [57] and Ba2+ [58] were found to
coordinate simultaneously to N7/O6 atoms in PDB structures.
Therefore, it is also likely that ions such as Na+ or K+ (that has, like
Ba2+, a �2.8 Å coordination distance) could bind to the N7/O6
atoms of a guanine in large nucleic acid structures. Yet, it seems
that O6 atoms are better binding sites for alkali ions as they are
involved in maintaining guanine quartet structures occurring for
instance in telomeres. Alkali ions were also reported to interact
with thymine O2 atoms in a structure of d(ApT) minihelix [59].
Note that for 6-aminopurines, no tautomeric forms involving the
deprotonation of the adenine and associated with a direct metal–
N6 contact, as reported elsewhere for metals such as platinum
[15,60], were observed.
arison between the imide nitrogen and carbonyl oxygen atom distances in inosine
azolate and a Mg2+ ion (CSD code: DEZNIG). (d) Neutron diffraction structure of a



Table 5
Distance d(Ow� � �Ow) between two close water molecules in the
first hydration shell of hexahydrated metal ions derived from a
CSD search (Fig. 5d). The number of hits is given in brackets.
Standard deviations are provided when the number of hits is
above ten. The searches were restricted to structures with R-factor
values 60.05. Disordered, error containing, polymeric and powder
structures were excluded from the search.

Metals d(Ow� � �Ow)

Na 3.47 [2]
Mg 2.92 ± 0.06 [132]
Ca 3.22 [5]
Mn 3.08 ± 0.08 [53]
Fe 2.99 ± 0.06 [29]
Co 2.95 ± 0.06 [138]
Ni 2.91 ± 0.06 [130]
Cu 2.87 [3]
Zn 2.95 ± 0.07 [61]
Cd 3.21 ± 0.10 [21]
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3.8. Are (imid)azolates a reliable N/O metal affinity balance?

As described above, imidazolates and the related azolates are
specific classes of molecular fragments where an imine nitrogen
and an anionic carboxylate oxygen atom bind simultaneously to
a metal ion in a close to perfect geometry. Thus, we thought that
these compounds could reflect the difference in affinity of a metal
for the N versus O atoms [61] and could provide information sim-
ilar to those provided by a large family of ‘‘molecular balances”
that involve, among others, the use of rotameric folding molecules
to quantify non-covalent interactions [62]. We are calling this
tentatively a ‘‘metal affinity balance”. Hence, we compared the
metal–N to metal–O coordination distances in these compounds
(Table 6). Despite the shortage of data leading to poor statistics,
the hard alkaline earth metals including Mg2+ seem to prefer bind-
ing to oxygen over nitrogen. On the other hand, the softer cations
such as Cu, Zn or Cd are associated with shorter metal–N distances
reflecting a higher affinity for nitrogen. This last result is somewhat
surprising since the imine nitrogen atom is in competition with an
‘‘anionic” carboxylate oxygen atom. The apparent preference of
Mg2+ for oxygen atoms is probably also at play in large nucleic acid
systems suggesting that N7 atoms are at best secondary interaction
sites populated only under specific conditions and that contact
distances of Mg2+ to imine nitrogen atoms can be stretched from
the optimal 2.1 Å coordination distance to a less frequent 2.2 Å
or even larger coordination distance in specific contexts.
Table 6
Metal–N and metal–O coordination distances in imidazolate (Fig. 5) and azolate
compounds. A negative and positive ‘‘delta” value suggest a higher affinity of the
metal for oxygen and nitrogen, respectively. The number of hits is given in brackets.
Standard deviations are provided when the number of hits is above ten. No
restrictions were applied to this search.

Metals d(metal...N) d(metal...O) Delta

Alkali earth metals
Mg 2.20 [2] 2.09 [2] �0.11
Ca 2.54 [2] 2.44 [2] �0.10
Sr 2.74 ± 0.05 [15] 2.66 ± 0.06 [15] �0.08
Ba 2.97 ± 0.13 [18] 2.86 ± 0.09 [18] �0.11

Transition metals
Mn 2.23 ± 0.08 [63] 2.21 ± 0.08 [63] �0.02
Fe 2.16 ± 0.06 [22] 2.15 ± 0.07 [22] �0.01
Co 2.03 ± 0.12 [190] 2.02 ± 0.11 [190] �0.01
Ni 2.06 ± 0.05 [196] 2.10 ± 0.06 [196] +0.04
Cu 1.98 ± 0.08 [87] 2.12 ± 0.21 [87] +0.14
Zn 2.08 ± 0.06 [130] 2.18 ± 0.08 [130] +0.10
Cd 2.27 ± 0.04 [263] 2.40 ± 0.07 [263] +0.13
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3.9. Metal ion substitutions in small and large structures

We described here several metal binding patterns associated
with a large diversity of metals. These binding patterns suggest that
transition metal ions, that produce easily recognizable electron
densities, can be used as a probe for inferring the binding of ions
such as Mg2+, Na+ or K+ that display weak and/or non-characteristic
electron densities. However, such an assertion should be takenwith
some caution especially regarding their relevance for in vitro as well
as crystallographic studies. For instance, the crystal structures of
the Mg2+ and Mn2+ cyclic d-GMP complexes exhibit both the same
arrangement of stacked purines linked to the metal through their
N7 atoms [42]. However, their spectroscopic properties were found
to be very different in solution. While the Mg2+ ion did not produce
any signal change with respect to the metal free conditions, the
Mn2+ ion affected significantly the spectroscopic properties of this
molecule. Similarly, very small spectroscopic effects of Mg2+ ions
over Zn2+ or Cd2+ ions on the hammerhead ribozyme were reported
[63]. On the crystallographic side, a systematic study conducted on
the binding of metals to a RNA duplex, revealed strong differences
in the association of elevenmonoatomic ions and two hexamines to
the structure. This study raised interrogations related to the use of
metal substitutions in large structures [64]. Indeed, a conforma-
tional change induced by the presence of a Mn2+ ion was also
reported for a signal recognition particle (SRP) where Mg2+ was
substituted by Mn2+ [65]. In these structures, Mn2+ changed the
conformation of a nucleotide by binding to a site that allowed to
form inner sphere coordination with a N7 atom and a non bridging
phosphate oxygen atom from a neighboring residue. Here also, the
exact position of a metal is strongly dependent upon the nature of
the metal and its environment.
4. Summary and perspectives

Present data extracted from the CSD should help warrant
correct identification of metal binding sites in nucleic acids and
other biopolymers, a process that is often complicated by the lower
resolution of the structures deposited to the PDB. This is especially
true for ions like Mg2+ that are isoelectronic with Na+/NH4

+ ions and
water molecules [66]. For instance, we showed that N7–ion dis-
tances could be used for preliminary metal identification but also
for distinguishing metals from water molecules or hydrogen bond-
ing ions such as NH4

+. The N6/O6–ion distances around 3.7 Å and
the metal bound water molecule orientation are likewise charac-
teristic of metal binding to purine N7 atoms. Although simultane-
ous binding of transition metals and Mg2+ ions to N7/O6 atoms can
be excluded, larger ions such as K+ or Ba2+ are able to coordinate to
both atoms. However in 6-aminopurines, only the smaller divalent
metals seem to be able to bind to N7 atoms.

Such data should also help to better conduct and understand
biochemical substitution experimentswhose results are sometimes
difficult to interpret. Besides, this survey provides data allowing to
improve parameterization of classical and polarizable molecular
dynamics force fields, the accuracy of which being essential for
providing a good understanding of structure–dynamics–function
relationships of biomolecular systems. Designing a correct parame-
terization for these force fields is still very challenging and depends
largely on our ability to interpret experimental data [18,67].
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5.2.3 Paper 5. Mg2+ ions: do they bind to nucleobase nitrogens? (Nucleic 

Acid Res., 2016) 

Graphical abstract 

 

An extensive survey of PDB nucleic acid structures was performed to analyze the binding of Mg2+ 

(and other metal ions) to nucleic acid N1/N3/N7 imine nitrogen atoms. A significant number of PDB 

structures at resolution > 3 Å contains mono- and/or divalent ions, which are associated with a risk for 

misinterpretation embedded in the lower experimental definition of the structural data. As such, Mg2+ 

is found mostly within low-resolution ribosomal structures and binds only rarely to purine imine 

nitrogen atoms. In fact, nucleic acid N1/N3/N7 atoms constitute secondary coordination sites, while 

anionic oxygen are primary binding sites. The rare occurrences of Mg2+ binding to N7 atoms at 

resolution ≤ 3 Å are often characterized by unrealistically long coordination distances or odd 

geometries, which suggests a misinterpretation with other ions such as Na+ or K+, or even water 

molecules. On the other hand, the binding of Mg2+ with N1/N3 imine nitrogen atoms is not reliably 

observed. Almost all direct bindings of Mg2+ to N7 with distances < 2.4 Å are suspicious, especially 

for the low-affinity site on the Hoogsteen edge of adenine. Similarly, Mg2+ coordination to two N7 of 

head-to-tail pairs of stacked guanines has been found in various prokaryotic ribosomes, but the low 

B-factors associated with significant electron density excess of the ions suggest they would be more 

realistically modeled as larger Zn2+ ions. Another double binding motif, not identified in the previous 

CSD survey, involves both N7 and O6 of two stacked guanines; in this case the putative Mg2+ ion is 

coordinated in a way reminiscent of the DNA/RNA quadruplexes and is likely a monovalent or 

transition metal ion, possibly Na+. Magnesium ions binding to imine nitrogen atoms at distances 

between 2.6 and 3.2 Å lie in the Mg2+…N distance exclusion zone. These distances implicate Na+ (~ 

2.4 Å) or K+/H2O/NH4
+ (~ 2.8 Å) coordination; considering that these ions are misattributed to Mg2+, 

the challenge becomes to discern between K+, H2O and NH4
+. 



 
198 

    

Further, we call attention on the sometimes excessive application of crystallographic distance 

restraints to build hydration spheres during structural refinement. This practice, although useful to 

correctly position octahedral coordination spheres, has been found to suffer from incorrect 

coordination distances (2.18 Å) which can conceal the presence of Na+ ions. Similarly, ion 

replacement strategies have to be handled with great care and especially the temptation to propose 

new coordination topologies should be resisted, considering the structural and physico-chemical 

modifications associated with a different ion nature.  

Comparing the data from the present study with MgRNA, a repository of classified Mg2+ binding 

sites in RNAs (Zheng et al. 2015), we notice that this database provides the false impression of 

relevance of Mg2+ to N7 contacts, a conclusion that our data do not support. In that respect, we discuss 

some of the issues we identified in the protocols that were used that might have led to an 

overestimation of the number of Mg2+ binding sites to RNA.  

Lastly, we propose several rules to facilitate ion assignment procedures, regarding the placement 

of ions next to N7 atoms. These rules can easily be adapted to the binding of ions to other nucleic acid 

sites.
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ABSTRACT

Given the many roles proposed for Mg2+ in nucleic
acids, it is essential to accurately determine their
binding modes. Here, we surveyed the PDB to clas-
sify Mg2+ inner-sphere binding patterns to nucle-
obase imine N1/N3/N7 atoms. Among those, purine
N7 atoms are considered to be the best nucleobase
binding sites for divalent metals. Further, Mg2+ coor-
dination to N7 has been implied in several ribozyme
catalytic mechanisms. We report that Mg2+ assigned
near imine nitrogens derive mostly from poor in-
terpretations of electron density patterns and are
most often misidentified Na+, K+, NH4

+ ions, water
molecules or spurious density peaks. Consequently,
apart from few documented exceptions, Mg2+ ions
do not bind to N7 atoms. Without much of a surprise,
Mn2+, Zn2+ and Cd2+, which have a higher affinity for
nitrogens, may contact N7 atoms when present in
crystallization buffers. In this respect, we describe
for the first time a potential Zn2+ ribosomal binding
site involving two purine N7 atoms. Further, we pro-
vide a set of guidelines to help in the assignment of
Mg2+ in crystallographic, cryo-EM, NMR and model
building practices and discuss implications of our
findings related to ion substitution experiments.

INTRODUCTION

Magnesium has unique physicochemical properties (1,2)
and is recognized as the most important divalent ion for
RNA folding, structure and function (3–8). Next to mono-
valent cations and polyamines (9–11), the main Mg2+ func-
tion is to counterbalance the high concentration of charged
phosphate groups present in nucleic acids, but also to as-
sist folding and function through specific binding modes.
As such, it is critical to precisely characterize these binding
modes.

A recent PDB survey, available through the MgRNA
web site (12), which followed earlier efforts to understand
Mg2+ binding to RNA (13–16), established a classification
of these binding sites. Based on these data, for inner-sphere

binding, it was found that Mg2+ coordination to phosphate
and carbonyl groups dominate followed by a still signifi-
cant number of coordination patterns to imine sites com-
prising principally purine N7 and less often N1/N3 atoms.
Likewise, other studies relay the opinion that N7 positions
make for significant nucleobase metal binding sites (17–
19). These views contrast with the understanding, based
on the pioneering work of RPJ Williams, that alkali earth
metals––including Mg2+––poorly bind to imine atoms, un-
like transition metals such as Mn2+, Zn2+ or Cd2+ (8,20–
25). These facts cast doubt on the involvement of nitrogen-
bound Mg2+ ions in catalytic mechanisms, as previously
proposed for hammerhead and pistol ribozymes (18,26–33).

In general, the assignment of ions and other solvent
molecules in crystallographic structures is a complex un-
dertaking which seems to lead to harmless attribution er-
rors. After all, ion-binding sites are often believed to play
a mere structural role. However, Mg2+ are sometimes also
identified at key locations where misidentifications can dra-
matically alter our perception of how biomolecular systems
perform their tasks. Many of these errors have been de-
scribed and are related to the fact that Mg2+ is isoelectronic
with water and Na+ (34–37). Yet, despite this awareness and
other studies reporting recurrent crystallographic misinter-
pretations (23,35,38–45), errors are still present in many re-
cently deposited PDB structures while older ones are rarely
amended (40,46–51).

Identifying errors in structures is a difficult, tedious, but
essential undertaking since, if not corrected, these errors
will persist in databases and silently affect the outcome of
later studies. Further, they can contaminate the results of
database surveys (43,52). For example, an RNA polymerase
structure with 485 Mg2+ and 5 476 waters (PDB code:
1IW7; resolution: 2.6 Å) was released by the PDB in 2002
(cited by (38)) and a T. thermophilus 70S ribosome struc-
ture, with ≈1 330 Mg2+ per assembly, was released in 2014
(PDB code: 4V83; resolution: 3.5 Å). Given their medium to
low-resolution range, these structures contain an excessive
number of Mg2+ and water molecules, since it was suggested
that ions assigned to solvent electron densities at resolutions
lower than 2.5 Å are not particularly reliable (23,53).

Here, we critically re-examine inner-sphere binding of
Mg2+ to imine N1/N3/N7 atoms in RNA, DNA and
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purine containing metabolites (PDB; May 2016; resolution 
≤ 3.0 Å). We limited our investigations to a small subset 
of all potential Mg2+ binding sites in nucleic acids, since 
analyzing with the same level of details all potential Mg2+ 

binding modes would have been too lengthy. For the same 
reasons, we did not analyze outer-sphere binding involving 
water mediated Mg2+ to N7 contacts, which is often consid-
ered as significant (12,14,54).

Based on our survey, we established that reliable inner-
sphere binding occurrences to imine nitrogen atoms are 
much less frequent than assumed up to now. We notably 
reduced the number of Mg2+ to nitrogen binding types 
described in earlier classifications (12). Concomitantly, we 
characterized a large array of misattribution errors and 
identified some of the underlying reasons that led to them. 
Not the least of those is a tendency of experimentalists 
to want to see ions in their density patterns. This causes 
an overall bias in the database, because experimentalists 
have systematically interpreted ambiguous information in 
a given direction, that is toward unjustified or weakly jus-
tified identification of  solvent peaks as  ions and especially 
Mg2+. These findings c all for a  m ore t horough examina-
tion of all ion binding sites found in newly deposited crystal 
structures, and for a re-examination of the Mg2+ assignment 
process for nucleic acid structures. They also advocate for 
the more systematic use of anomalous diffraction data to 
identify heavy ions. Such comprehensive and detailed stud-
ies are required to move forward on a subject that received 
already so much attention. As recently claimed (8), we are 
still at the beginning of understanding the complex interre-
lationships that link metals to nucleic acid systems.

We conclude this study by providing a set of rules to fa-
cilitate ion binding pattern identification. For example, par-
ticular care should be taken to respect the octahedral coor-
dination of Mg2+ ions and to avoid the overuse of crystal-
lographic restraints that may lead to a confusion between 
Mg2+ and Na+ since the main criterion allowing to distin-
guish them, namely their respectively 2.07 and 2.40 Å co-
ordination distances, is altered. Therefore, we suggest that 
a significant n umber o f t he e lectron d ensity p atterns at-
tributed to Mg2+ are generated by other solvent species such 
as Na+, K+, NH4

+, polyamines or water. In support to these 
considerations, we present examples where it is indeed the 
case and stress the necessity to critically examine solvent 
density maps with a thorough knowledge of all the types of 
solvent particles present in purification and crystallization 
buffers (55,56).

MATERIALS AND METHODS

PDB survey

All 5 500 nucleic acid crystal structures deposited to the 

Pr 
≈

otein Data Bank (PDB; May 2016; resolution ≤ 3.0 Å) were searched for Mg2+ binding to purine and pyrimidine 
imine N1/N3/N7 atoms (or Nb atoms as defined i n ref-
erence (12)). To determine cut-off distances for the iden-
tification o f M g2+ b ound t o i mine n itrogens, w e relied 
on a histogram derived from a CSD search (CSD: Cam-
bridge Structural Database, Version 5.37, February 2016) 
that identified precise Mg2+ to water coordination distances 
as well as ion exclusion zones (Figure 1). Note that the

CSD (57) is a repository for small molecule crystallographic
structure that were solved with much better accuracy and,
in general, at much higher resolution than those from the
PDB. These data parallel those derived from quantum me-
chanical calculations (58), other PDB surveys (23,59) and
first principles molecular dynamics simulations of Mg2+

in aqueous solution (60–62) that all suggest that: (i) the
Mg2+. . .OH2 coordination distance is slightly below 2.1 Å;
(ii) no water oxygens are found within a d(Mg2+. . .Ow)
≈2.2–3.8 Å ‘exclusion zone’; (iii) the second coordination
shell starts at a 3.8 Å distance from Mg2+ and peaks at
4.2 Å. However, since we mostly deal with medium to low-
resolution crystallographic structures (3.0 Å ≥ resolution
≥ 2.0 Å), we used more relaxed criteria to identify solvent
species around imine nitrogens. Further, we need to con-
sider that, although the most appropriate Mg2+. . .O coordi-
nation distance is in the 2.06–2.08 Å range, the default value
in the libraries used by the PHENIX (63) and REFMAC
(64) refinement programs for d(Mg2+. . .Ow) is 2.18 Å. In
some instances, this overestimated coordination distance in-
duces serious stereochemical approximations (see below).
Bearing in mind that we focus on Mg2+ to nitrogen dis-
tances, we have also to consider that some authors esti-
mate that the Mg2+. . .N distance is slightly longer (≈2.2 Å)
than the Mg2+. . .O distance in agreement with quantum
mechanical calculations and PDB/CSD surveys (12,2125).
Thus, to a first approximation, our procedures place Mg2+

with d(Mg2+. . .N) ≤ 2.4 Å in the pool of possible direct
binders, while those with distances in the 2.4–3.8 Å exclu-
sion zone were inspected for misidentification.

Since CSD surveys established that divalent ions directly
interacting with a purine or imidazole nitrogen lone pair are
located in the C–N=C plane (25,65), we applied a 1.0 Å
cut-off on the distance between the ion and the nucleobase
plane. This criterion applies to divalent ions and not to the
less strongly bound alkali (Na+, K+) and the larger alkali
earth ions (Ca2+, Sr2+) that display a greater propensity to
lie out-of-plane. The searches included also contacts gener-
ated by applying crystallographic symmetry operations.

In the ≤ 3.0 Å resolution range, ions with B-factors ≥
79 Å2 were excluded from our statistics since such high
B-factors do not warrant unequivocal binding site char-
acterizations. Further, we excluded ions with B-factors ≤
1.0 Å2 that are definitely not reliable for Mg2+ and hint
to the presence of a more electron rich atom (see below).
Only Mg2+ with occupancy of 1.0 were considered un-
less otherwise specified. Finally, for all Mg2+ ions close to
imine nitrogens that we identified as suspect, the Fo−Fc
and 2Fo−Fc electron density maps deposited to the Uppsala
Electron Density Server (EDS) were visualized (66). When
these maps were not available––typically for large ribosomal
structures––we calculated them with phenix.maps by using
the structure factors retrieved from the PDB (63).

Non-redundant Mg2+ binding sites were identified as fol-
lows. If two nucleotides from different structures involved
in a similar Mg2+ binding event shared the same residue
numbers, chain codes, trinucleotide sequences, ribose puck-
ers, backbone dihedral angle sequences (we used the g+,
g−, t categorization) and syn/anti conformations, they were
considered as similar and the one with the best resolution
was marked as non-redundant. In case of matching resolu-
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Figure 1. The Mg2+ first hydration shell is strictly defined as deduced from high-resolution crystal structures. (A) d(Mg2+. . . Ow) histogram derived from
the CSD (version 5.37, update February 2016; R-factors ≤ 5%). No disordered, error containing, polymeric or powder structures were included. Standard
deviations for the average Mg2+. . . Ow coordination distances are given in parenthesis. The water exclusion zone and the second Mg2+ coordination shell
are marked by a grey and a light blue rectangle, respectively. (B) An ultra high-resolution Mg[H2O]62+ CSD x-ray structure examplifyes the strict octahedral
water arrangement around Mg2+(125).

tions, the nucleotide with the lowest B-factor was selected.
Likewise, if in the same structure two nucleotides involved
in a similar Mg2+ binding event shared the same residue
numbers and trinucleotide sequences (with different chain
codes) as well as ribose puckers, backbone dihedral angle se-
quences and syn/anti conformations, they were considered
as similar and the one corresponding to the first biological
unit was marked as non-redundant. To further limit redun-
dancy in the largest ribosomal structures, we restricted our
analysis to a single biological assembly when more than one
was present (see Supplementary Material for selection cri-
teria).

Two non-redundant sets were calculated with a 2.4 and
a 3.5 Å d(Mg2+. . .N1/N3/N7) distance cutoff, respectively
(Table 1). Note that it is impossible to completely eliminate
redundancy from such a complex structural ensemble with-
out eliminating at the same time relevant data. Here, we
provide an upper limit for a truly ‘non-redundant’ set. Re-
dundancy issues are further complicated by some system-
atic assignment errors such as the nucleotide misidentifica-
tion identified in the first H. marismortui 50S structures that
leads to the characterization of two distinct structural en-
sembles (Supplementary Table S1 and Figure S1).

RESULTS AND DISCUSSION

Mg2+ to imine N1/N3/N7 contacts are rare

As of May 2016, ≈56 000 Mg2+ ions are assigned in ≈1 000
nucleic acid crystallographic structures from the PDB (res-
olution ≤ 3.0 Å). This corresponds to a ratio of roughly
one Mg2+ per eight nucleotides. Comparatively, under the
same resolution threshold, ≈25 000 Mg2+ are found in
≈8 500 proteins. With no resolution limit, the number of
Mg2+ rises to ≈100 000 in nucleic acids and only ≈30 000 in
proteins. In nucleic acids, the largest number of ions comes

from low-resolution ribosomal structures that do not allow
reliable identification of light solvent particles.

Out of the ≈56 000 Mg2+ found in nucleic acid struc-
tures, ≈1 000 (≈1.8%) display partial occupancies, 59 are
associated with occupancies above 1.0, ≈4 100 (≈7%) dis-
play B-factors ≥ 79 Å2 and ≈480 (< 1%) display B-factors
≤ 1.0 Å2. We excluded these ions from statistics in Table
1. In the remaining pool, around 3 900 (≈7%) ions display
d(Mg2+. . .N) ≤ 3.5 Å. If we consider the more stringent
d(Mg2+. . .N) ≤ 2.4 Å criterion that is more in line with
the coordination distance derived from the CSD (Figure
1), only 293 (≈0.5%) Mg2+ are contacting imine nitrogens.
Most of these Mg2+ are close to 108 adenine and 69 guanine
N7 atoms, with only 20 close to N1/N3 positions. This num-
ber drops to 126 (≈0.3%) if we consider only non-redundant
Mg2+ binding sites. These values are to be compared with
the ≈8 500 (≈15%) Mg2+ in direct contact (≤ 2.4 Å) with
phosphate oxygens that are considered to be the primary
nucleic acid binding sites for Mg2+.

d(Mg2+. . .N) histograms reveal unrealistic coordination dis-
tances

As stated in the Methods section, the coordination geom-
etry of Mg2+ to water and other ligands is strictly defined.
Ideally, the d(Mg2+. . .N) and the d(Mg2+. . .Ow) PDB and
CSD histograms should display a similar profile. However,
in the former (Figure 2), we could not identify a clear peak
around 2.1 Å. Furthermore, the exclusion zone identified
in Figure 1 is significantly populated in the PDB data,
suggesting ion misidentifications. Mg2+ assignments with
coordination distances in the 2.4–2.6 Å range may corre-
spond to Na+ that are frequently present in crystallization
buffers––for example as sodium cacodylate––and have co-
ordination distances to water around 2.4 Å, as shown in a
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Table 1. Number of non-redundant Mg2+. . . N1/N3/N7 contacts in structures from the PDB (resolution ≤ 3.0 Å)

d(Mg2+. . . N1) d(Mg2+. . . N3) d(Mg2+. . . N7)

≤ 3.5 Å ≤ 2.4 Å ≤ 3.5 Å ≤ 2.4 Å ≤ 3.5 Å ≤ 2.4 Å

DNA
DA –– –– –– –– 3 (3) ––
DG NR NR 1 (1) –– 23 (23) 8 (8)
DC NR NR 1 (1) –– NR NR
RNA
A 116 (243) 5 (5) 131 (198) 2 (6) 245 (783) 24 (108)
G NR NR 84 (121) 5 (6) 1324 (2386) 84 (191)
C NR NR 122 (192) 3 (3) NR NR
Total: 116 (243) 5 (5) 339 (513) 10 (15) 1595 (3195) 116 (307)

The total number of occurrences is given in parenthesis (‘NR’ stands for ‘Non-Relevant’). Ions with B-factors ≤ 1.0 Å2 and ≥ 79 Å2 were not counted.

Figure 2. Mg2+ coordination to purine N7 atoms derived from PDB structures. (A) d(Mg2+. . . N7) histogram (derived from the PDB; May 2016; resolution
≤ 3.0 Å). Ions with B-factors ≤ 1.0 Å2 and ≥ 79 Å2 were excluded. The different ion binding zones are colored according to Figures 1 and 2B. (B) Scheme
showing the different ion binding zones in front of the purine N7 atom (the oxygen and nitrogen atoms able to associate with a cation are shown in red
and blue, respectively). The d(Mn+. . . N6/O6) expected distance range is also indicated. Note that these cutoff distances are indicative and simply suggest
that the potential ion assignments close to the mentioned limits should be considered with greater care.

hammerhead ribozyme structure (PDB code: 3ZP8; resolu-
tion: 1.55 Å) (67). Note that Ca2+ with similar coordination
distances are mentioned in the crystallization conditions
of some T. thermophilus 30S structures (see Supplementary
Material). Mg2+ assignments with coordination distances
in the 2.6–3.2 Å range may correspond to K+, NH4

+ or
water, all with coordination distances around 2.8 Å. Mg2+

assignments in the 3.2–3.8 Å range may be related to the
presence of anions (68,69), solvent molecules pertaining to
the purification and crystallization buffers, contaminants or
may be related to crystallographic artifacts (40,70). In ac-
cordance with CSD data, the broad peak around 4.2 Å is
attributable to Mg2+ interacting with imine sites through
their first hydration shell. Interestingly, the abnormalities in
the d(Mg2+. . .N7) histogram become more apparent when
compared to the d(Mn2+. . .N7) histograms that show a
clear first shell peak in the 2.1–2.6 Å range (Figure 2 and
Supplementary Figure S2).

A second binding criterion, derived from CSD searches
(25), specifies that when a transition metal or Mg2+ binds
to a purine N7 atom, the allowed d(M2+. . .N6/O6) should
be in the 3.5–3.9 Å range (Figure 2B). Out of 111 non-
redundant ions with d(Mg2+. . .N7) ≤ 2.4 Å, only 62 ions
satisfy this criterion. Thus, we infer that the majority of

Mg2+ close to imine nitrogens are misidentified (Supple-
mentary Figure S3).

With a few exceptions, all direct binding occurrences with
d(Mg2+. . .N7) ≤ 2.4 Å are suspect

Mg2+ singly bound to adenine N7 atoms is not observed. Di-
rect ion binding to the N7 position of adenine is compli-
cated by the presence of the nucleobase amino group that
imposes steric and electrostatic constraints (25). Although
pentahydrated ion-to-N7 binding has been observed at
high-resolution in an adenine/nickel complex (CSD code:
ZZZAAF01; Supplementary Figure S4), only few partially
hydrated and no Mg(H2O)5

2+ were located close to (A)N7
in the PDB. In a hammerhead ribozyme (29), the confor-
mation of a nucleobase that involves a d(Mg2+. . .N6/N7) ≤
2.0 Å coordination was probably incorrectly modeled (71)
(Figure 3A). Elsewhere in the same structure, completing
the hydration sphere of an adenine-bound Mg2+ resulted
in severe clashes with adjacent nucleotides (Supplementary
Figure S5). In a glmS ribozyme (PDB code: 2GCV; resolu-
tion: 2.1 Å), the B-factor is higher for the metal ion than for
the attached nucleobase and waters, which hints at refine-
ment issues combined to ion misidentification (Figure 3B).
Moreover, a Mg2+ has been placed at 3.1 Å from a cytosine
N4 atom (most probably a Cl− ion (68,69); Supplementary
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Figure 3. Unrealistic binding of Mg2+ to adenine N7 atoms. Mg2+ to N6
coordination distances are shown in cyan. The red cross is used to mark
misidentified Mg2+ ions. (A) Ill-placed Mg2+ according to electron density
patterns and coordination distances. (B) The Mg2+ hydration sphere is in-
complete with erratic coordination distances. Fixing the hydration sphere
of this ion with a proper hexacoordinated geometry would result in clashes
similar to those shown in Supplementary Figure S5.

Figure S6A), suggesting to critically reexamine all other
solvent assignments proposed for this glmS ribozyme. Fi-
nally, a suspicious Mg2+ bound to a N7 atom––more prob-
ably Na+––is found in a ribosome where d(Mg2+. . .N7) and
d(Mg2+. . .Ow) are ≈2.4 and ≈2.6 Å, respectively (Supple-
mentary Figure S6B).

This quasi-absence of reliable Mg(H2O)5
2+ to (A)N7 con-

tacts suggests a low Mg2+ affinity for this site (25). However,
in rare instances, secondary Mg2+ contacts to N7 atoms
complemented by primary contacts to anionic phosphate or
amino acid oxygens may be associated with the formation
of appropriate but rare Mg2+ binding pockets (see below).

Mg2+ singly bound to guanine N7 atoms: is it more proba-
ble? Binding of divalent metals to (G)N7 atoms has been
reported more frequently in both the CSD and the PDB
as a probable result of the larger electronegativity of gua-
nine versus adenine Hoogsteen edges (25). In the PDB, 41
non-redundant Mg2+ bind solely to (G)N7 atoms (no other
direct contact to DNA/RNA atoms). Out of those, only
20 Mg2+ comprising three Mg(H2O)5

2+ satisfy the 3.5 ≤
d(M2+. . .O6) ≤ 3.9 Å criterion (Figure 2). Two of these
Mg(H2O)5

2+ are present in the same synthase/tRNA struc-
ture (PDB code: 4YCO; resolution: 2.1 Å) and have been
modeled based on octahedral densities displaying merged
water peaks. d(Mg2+. . .Ow) = 2.18 Å restraints were used
during refinement (Figure 4A). As a result, Na+ can be fitted
with a similar level of confidence into these density patterns
(see below).

The remaining 21 ions with outlier d(Mg2+. . .O6) dis-
tances were assigned without proper care for stereochem-
istry and hydration patterns. In a few instances, a com-
plete hydration shell was modeled. However, without well-
defined solvent density patterns, these hydration shells dis-
play poor geometry. In a twister ribozyme structure (PDB
code: 5DUN; resolution: 2.6 Å), five waters were fitted in a
density pattern lacking octahedral symmetry and the Mg2+

B-factor is larger than that of the bound nucleobase (Fig-

ure 4B). In a group II intron (PDB code: 4E8N; resolution:
3.0 Å), a Mg2+ is placed in front of an N7 atom and displays
a non-octahedral coordination (Figure 4C).

Mg2+ binding to (G)N7 in DNA is rare. Ion coordina-
tion to the N7 of a terminal guanine was identified in five
Z-DNA hexamers with resolution ≈1.0 Å (Figure 4D) while
in a few structures (PDB codes: 4HIG, 4HIF, 1D39), Mn2+,
Zn2+ and Cu2+ replace Mg2+ (72,73). All these structures
belong to the P212121, space group. However, these hexam-
ers crystallize in the P212121 space group in both a Mg2+

and a spermine form (74–76) suggesting that Mg2+ is not
specifically required to stabilize the crystal. Further, under
high MgCl2 and CaCl2 concentrations (500 mM), this hex-
amer crystallizes in a P32 space group and, surprisingly, no
direct ion binding to N7 was reported (77) as in another
Z-DNA structure with much lower divalent ion concentra-
tions (30 mM), stressing the difficulty to predict such ion
binding patterns (78).

Pentahydrated Mg2+ coordination to (G)N7 was re-
ported in only one B-DNA structure (PDB code: 1DCR;
resolution: 1.6 Å). It shows clearly identifiable solvent den-
sity peaks as well as coordination distances and geometry
consistent with Mg2+ binding. Similarly, Co2+ and Zn2+

bind to a terminal guanine of two DNA hexamers (PDB
codes: 1FD5, 1P26; resolutions: 1.10, 2.92 Å) (79). Again,
the terminal position is favored since steric hindrance pre-
vents pentahydrated metals to bind to N7 within a B-DNA
helical context (79,80) (Supplementary Figure S4). It is sur-
prising that Mg(H2O)5

2+ binds to terminal Z- and B-DNA
but not to RNA nucleobases.

Mn+ bound to two N7 atoms of stacked purines: Mg2+, Zn2+

or a monovalent cation? Next to pentahydrated ion bind-
ing sites, we searched for an atypical pattern involving the
coordination of a divalent cation to two N7 atoms belong-
ing to purines arranged in a stacked head-to-tail manner
(Figure 5A), a pattern that we identified earlier in the CSD
(25) and was also described by others (8,12,14,81). We iden-
tified 45 cases with d(Mg2+. . .N7) ≤ 2.4 Å, all associated
with four prokaryotic ribosome sites (Table 2 and Figure
5B). Sites I, III and IV were observed in important struc-
tural elements––three-way junction for site I and bulges for
sites III and IV–– while site II is constitutive of riboso-
mal helix 52. Hence, we analyzed more systematically the
289 potential binding sites in the 126 prokaryotic ribosomes
we surveyed (Supplementary Table S1). We excluded 18 in-
stances where both purine B-factors are larger than 79 Å2

leading thus to a total of 271 binding sites. Among them,
Mg2+ was assigned in 243 instances and Sr2+ in 28 instances
since this ion was used in crystallization buffers of H. maris-
mortui large ribosomal subunits (see below).

However, for the largest number of sites, Mg2+ attribu-
tion is inappropriate since only less than one out of every
six ion satisfies the d(Mg2+. . .N7) ≤ 2.4 Å criterion (Table 2
and Figure 5B). Therefore, these sites appear to be occupied
by waters or non-Mg2+ ions for which the coordination dis-
tance to N7 is > 2.4 Å. These data illustrate the difficulty of
thoroughly analyzing the current pool of ribosomal struc-
tures for which we do not only have to deal with various res-
olution levels but also with a large gamut of crystallization
protocols, refinement procedures and interpretation habits
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Figure 4. Mg2+ close to guanine N7 atoms in PDB structures. The cyan question mark, red cross and green mark are used to identify: (i) sites where
either Na+ or Mg2+ match the electron density, (ii) a misidentified and (iii) a correctly placed ion. (A) The d(Mg2+. . . Ow) coordination distances, shown in
magenta, were irrealistically modeled to 2.18 Å. A larger Na+ could equally fit into this density pattern. (B) Mg2+ is distant from the electron density center,
leading to underestimated d(Mg2+. . . N7) and d(Mg2+. . . O6) distances. (C) Incomplete and poorly defined Mg2+ coordination shell. The coordination
distances suggest the presence of Na+ or water but not Mg2+. (D) A reliable but rare pentahydrated coordination pattern with separate densities for water
and Mg2+. Similar patterns are reported in a set of high-resolution Z-DNA crystal structure (PDB codes: 1VRO, 292D, 2DCG, 2ELG, 336D).

(37,82–83). Going through such a demanding process is at
least necessary for some sites. Such coordination distance
spreads could certainly not have been foreseen otherwise.

In the following, we focus on the 43 ions with
d(Mg2+. . .N7) ≤ 2.4 Å found at site I and IV. Although
their coordination distances seem appropriate, we noticed
several inconsistencies that led us to question their identity.
The first is associated with ion B-factors that show a propen-
sity to be lower than those of the attached purines (Table 2
and Figure 5C): in one instance, for site I, the Mg2+ B-factor
was set to zero (PDB code: 4U20); in 10 instances, the ion B-
factors were set to ≤ 1.0 Å2. Such low B-factors usually ap-
pear when the atom at the origin of the observed density has
more electrons than the one used in the model. We identified
additional strategies used by experimentalists to absorb ex-
cess density in the Fo−Fc maps at site IV: first, an occupancy
of 1.3 was assigned to Mg2+ (PDB code: 1N32; resolution:
3.0 Å); second, two Mg2+ separated by 1.7 Å and each with
1.0 occupancy were modeled (PDB code: 4B3M; resolution:
2.9 Å). Both of these scenarios are physically impossible.
Consequently, we pondered about which other ion could
explain such density patterns and realized that, by analogy

with zinc-fingers where Zn2+ binds to two histidine residues,
this double N7 motif represents also an appropriate bind-
ing site for Zn2+, a metal that should not be perceived as a
trace element given high Zn2+ intracellular concentrations
(84). We realized also that Zn2+ has been identified in the
ribosomal proteins (85–87) of almost all T. thermophilus, E.
coli and S. cerevisae structures (Supplementary Table S1).
Further, although Zn2+ displays a tetrahedral coordination
in zinc-fingers, this ion binds sometimes to (G)N7 with an
octahedral coordination (see PDB code: 4HIF; resolution:
0.85 Å) (73). In order to validate our hypothesis of Zn2+ re-
placing Mg2+, we examined the peak height of the electron
densities associated with some of these ions. In 11 instances
out of 43, the density of the ion remains visible at sigma lev-
els above those corresponding to neighboring phosphorus
atoms, therefore strongly suggesting the presence of a tran-
sition metal (Figure 5D). When we attempted to re-refine
some of these structures by replacing Mg2+ by Zn2+, rea-
sonable ion B-factors and no abnormal positive or negative
peaks in the Fo−Fc density maps were obtained.

As mentioned above, 28 structures of the large H. maris-
mortui ribosomal subunit where crystallized in the pres-
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Figure 5. Mn+ bound to a double N7 motif. (A) Schematical representation of this ion binding pattern with two guanines. Guanine-adenine combinations
were also identified (Table 2). (B) 2D diagram showing Mg2+ distances with respect to each of the bound N7 atoms. The Mg2+ dots are colored according
to their distance to the closest N7 atom (see Figure 2). The colored rectangular boxes frame the ions with respect to both coordination distances. (C) A
Mg2+ placed close to site IV in an E. coli structure (Table 2). Though the coordination distance is correct, this ion assignment is ambiguous since ion and
water B-factors < 1.0 Å2 are not consistent with those of the guanines. These facts hint to the presence of a more electron dense ion such as Zn2+. (D)
Mg2+ placed close to site IV in a T. thermophilus structure. This ion assignement is ambiguous since, although the coordination distances are in agreement
with those of Mg2+, the Fo−Fc density (in orange) points to the presence of a more electron dense ion, possibly Zn2+.

Table 2. Occurrence of Mg2+ and Sr2+ ions bound to two N7 atoms of stacked purines in ribosomal structures (resolution ≤ 3.0 Å; see Supplementary
Table S1 and Figure 5)

Site Org.a Res.b
d(Mg2+. . . N7) ≤
2.4 Åc

d(Mg2+. . . N7) >

2.4 Åd
Second-shell
Mg2+ e Sr2+ f Empty site g Total h

Large ribosomal subunit (LSU)
I. HM G:824-G:854 27 (18) 1 (1) –– 28 (0) 1 57

TT G:733-A:761 4 (3) 37 (27) –– NR 1 42
EC G:733-A:761 5 (4) 7 (5) –– NR –– 12
DR G:733-A:761 –– –– –– NR –– ––

II.i TT G:1358-G:1371 –– 13 (6) 26 (4) NR 3 42
EC G:1358-G:1371 –– 12 (8) –– NR –– 12
DR G:1358-G:1371 –– –– –– j NR 1 1

Small ribosomal subunit (SSU)
III.i TT G:581-G:758 2 (2) 44 (17) 2 (1) NR 4 52
IV. TT G:858-G:869 6 (6) 35 (26) –– NR –– 41

EC G:858-G:869 1 (1) 11 (10) –– NR –– 12
Total: 45 (33) 160 (99) 28 (5) 28 (0) 10 271

The number of ions with an inappropriate B-factor––lower than that of at least one of its bound N7 atoms––is given in parenthesis. A site is counted only
when the B-factors of any of the two purines are below 79 Å2; no B-factor criterion was applied to the ion.
aOrganisms in which these motifs occur; HH, TT, EC and DR stand for H. marismortui, T. thermophilus, E. coli and D. radiodurans, respectively.
bThe residue numberings are those found in the most representative PDB structure for each organism as noted in Supplementary Table S1, namely 4V9F,
4Y4O, 4YBB, and 5DM6 for HM, TT, EC and DR, respectively.
cBoth d(Mg2+. . . N7) distances have to be below 2.4 Å.
dOne of both d(Mg2+. . . N7) distances has to be in the 2.4–3.8 Å range.
eBoth d(Mg2+. . . N7) distances have to be in the 3.8–4.6 Å range.
fSr2+ ions are only present in some HH–LSU structures (see Supplementary Table S1). Sr2+ ions are considered if d(Mg2+. . . N7) ≤ 3.0 Å.
gNo ions with the criteria defined above are found at these sites.
hTotal number of identified sites.
iSite II. in HM and site III. in EC have no double N7 ion binding motif.
jWithout the B-factor < 79 Å2 criterion, two second shell Mg2+ ions are reported in DR structures (PDB codes: 5DM6, 5DM7).
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ence of Sr2+. In site I, Mg2+ is systematically replaced by 
Sr2+ that accounts better for the observed electron density 
and results in ion B-factors larger than those of the nucle-
obases (Table 2). However, a close inspection of the crystal-
lographic data suggests that Sr2+ is incompatible with the 
observed electron density: B-factors are twice those of the 
nucleobase with some d(Sr2+. . . N7)  distances  as  short  as  
2.2 Å, while the CSD estimated Sr2+ coordination distance 
is ≈2.6 Å and the preferred ligands are oxygens (23,88). 
Moreover, all alkali earth metals, including Sr2+, are poor 
N7 binders (25). Rightfully, the authors of these structures 
did not envisage the binding of Cd2+, an ion that is present 
in all H. marismortui structures (Supplementary Table S1) 
and has an excellent affinity for nitrogens but has also 10 
and 18 more electrons than Sr2+ and Zn2+, respectively.

We are aware that the data we gathered are not sufficient 
to unambiguously identify the ions present at these loca-
tions. However, the possibility that site I and IV bind Zn2+ 

is strongly supported by our analysis and should be further 
investigated. Based on EXAFS experiments, it has been pro-
posed that the E. coli 70S ribosomes tightly bind to 8 equiv-
alents of Zn2+ (87,89). The authors of this study suggested 
that, next to zing-finger motifs, another strong Z n2+ bind-
ing site was associated with ribosomal RNA but were un-
able to characterize it. Therefore, we hypothesize that these 
double N7 binding sites, that are poor binding sites for al-
kali earth ions, are the best ribosomal locations for Zn2+ 

and other transition metals and bind eventually monova-
lent cations when transition metals are not present. Definite 
answers regarding the identity of these ions will have to wait 
for multi-wavelength anomalous diffraction measurements 
(36,56,90).

Mn+ bound to N7/O6 atoms of stacked guanines: Mg2+ or 
a monovalent cation? Contrary to the double N7 binding 
site described above (Figure 5), a pattern where both N7 and 
O6 atoms belonging to stacked purines coordinate Mg2+ 

has not been identified in the CSD. In the PDB, such a mo-
tif with d(Mg2+. . . N7/O6) ≤ 2.4 Å is found 8 times and 
is associated with ApG and GpG steps (Figure 6A). This 
motif has been first d escribed i n a  P 4–P6 g roup I  intron 
structure (Figure 6B) and is since cited as a good example 
of a well-defined M g2+ b inding p ocket ( 91–93). However, 
even at 2.25 Å resolution (PDB code: 1HR2), the ion den-
sity is merged to that of the attached waters prohibiting un-
equivocal Mg2+/Na+ identification. In support to this as-
sumption, a water has replaced Mg2+ in a related P4-P6 
structure (PDB code: 2R8S; resolution: 1.95 Å) marking a 
poor divalent binding site. Moreover, this binding pattern is 
reminiscent of that of monovalent ions to carbonyl groups 
in DNA/RNA quadruplexes where an ion bridges two O6 
atoms of ‘stacked’ guanines. Indeed, a ‘semi-quadruplex’ 
binding pattern with Mg2+ bound to the carbonyl groups 
of a GpU step has been identified in the same group I  in-
tron fragment (Figure 6C). This Mg2+ is more probably Na+ 

given d(Mn+. . . Ow)  in  the  2.3–2.5 Å range.
Thus, we hypothesize that this site is not occupied by 

Mg2+ but rather by monovalent cations or transition met-
als as suggested by the binding of a hexacoordinated cobalt 
ion to a B-DNA structure (PDB code: 4R4A, resolution: 
1.45 Å). Such sites could also be occupied by Mn2+, ques-

tioning results from ion substitution experiments. To sum-
marize, the significance of this site is limited since the bind-
ing of Mg2+ to consecutive purines has only been reported
in 8 instances, although every ribosome contains on average
> 200 similar purine-purine steps.

N7: a secondary Mg2+ binding site next to primary anionic
oxygens. As discussed above, Mg2+ to N7 binding is rare
and existing assignments are often questionable. However,
in some instances, N7 may correspond to a secondary Mg2+

coordination site when the ion is primarily bound to an-
ionic phosphate or carboxylate oxygens. We gathered evi-
dence from CSD structures that when such multiple binding
occurs, the distance to the anionic oxygen over the nitrogen
atom is systematically shorter by 0.1-0.2 Å (25).

In the PDB, we identified 80 sites with d(Mg2+. . .N7/OP)
≤ 2.4 Å for which 71 satisfy the d(Mg2+. . .OP) <
d(Mg2+. . .N7) criterion. Among those, 51 and 20 sites in-
volve an N7 atom belonging to an adenine and guanine nu-
cleobase, respectively. Yet, a large number of them are re-
dundant. For example, 48 out of 51 adenines are located
in a loop capping helix 11 of the large ribosomal subunit
and involve an N7 atom and two phosphate groups (Figure
7A). This site is present in all four ribosome families (Sup-
plementary Table S1). Elsewhere in ribosomes, we identified
only 8 weak non-redundant sites. These sites are at best oc-
cupied by Mg2+ satisfying our stereochemical criteria in five
instances in the 134 surveyed ribosome structures. Hence,
Mg2+ directly bound to phosphate groups are rarely estab-
lishing direct contacts to N7 atoms given the paucity of ap-
propriate structural contexts in RNA and DNA.

Furthermore, it is important to consider that solvation
conditions in the surveyed ensemble of ribosomal struc-
tures are very heterogeneous. While the highest populated
site (Supplementary Figure S7A) points to Mg2+ in high-
resolution H. marismortui structures (see PDB code: 1VQ8;
resolution: 2.2 Å), in two other high-resolution structures
from E. coli (PDB code: 4YBB; resolution: 2.1 Å) and
T. thermophilus (PDB code: 4Y4O; resolution: 2.3 Å),
d(Mg2+. . .N7) distances are more consistent with the pres-
ence of Na+ (Supplementary Figure S7B and C). Further
studies are necessary to isolate the factors that favor the
binding of one or the other ion to this location.

Besides ribosomal structures, a binding pattern involv-
ing a single phosphate group with d(Mg2+. . .N7/OP) ≤
2.4 Å was reported in only two instances. In a c-di-GMP ri-
boswitch (PDB code: 3Q3Z; resolution: 2.51 Å), the bound
OP atom is in an equatorial (cis) position with respect to
the N7 atom (Supplementary Figure S8A) while it is op-
posite (trans) to the N7 atom in a DNA quadruplex (Fig-
ure 7B and Supplementary Figure S8B). Interestingly, these
patterns involve crystal contacts that are part of the ion co-
ordination shell. Lastly, in a CRISPR-Cas RNA complex
(Figure 7C), a single hexacoordinated Mg2+ bound to a Glu
carboxylate ligand in trans has been identified (94). This ion
is found in a tight binding pocket at the RNA/protein inter-
face. As shown elsewhere, one of the Mg2+ first shell water
forms a hydrogen bond with an oxygen of the carboxylate
group (95).

The ion placement should be checked carefully when
d(Mg2+. . .OP) > d(Mg2+. . .N7). For example, see Sup-
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Figure 6. Mn+ bound to N7/O6 atoms of RpG steps. (A) Schematical representation of this ion binding pattern. (B) Mg2+ binding as reported in a group
I intron structure. (C) Probable Na+ binding observed in a group I intron structure of slightly better resolution.

Figure 7. Mg2+ bound to N7 and anionic oxygens. (A) Overlap of 51 Mg2+ found in helix 11 of large ribosomal subunits with d(Mg2+. . . N7/OP) ≤ 2.4 Å.
Loop configuration is taken from a H. marismortui structure (PDB code: 4V9F; resolution 2.4 Å). All structures were superimposed on the adenine base.
(B) Mg2+ bound to a (G)N7 and a phosphate group in B-DNA (crystal contact); separate density peaks for ion and water allow for more reliable ion
identification. (C) Mg2+ bound to a (G)N7 and a glutamate carboxyl group in a RNA/protein complex.

plementary Figure S8C where d(Mg2+. . .N7) ≈2.3 Å and
d(Mg2+. . .OP) ≈2.4 Å (PDB code: 462D; resolution: 2.3 Å).
Here, the coordination distances strongly suggest the pres-
ence of Na+. Note that the distances to phosphate oxygens
(when not restrained) are much more reliable and accurate
than those to nitrogens. Yet, these examples of simultaneous
binding to N7 and anionic oxygens remain exceptional.

Suspicious Mg2+ binding occurrences in the 2.6-3.2 Å range:
Na+, K+, NH4

+ or water?

As stressed by Table 1 and Figure 2, Mg2+ are often placed
in the 2.4–3.2 Å exclusion zone that corresponds to the
coordination distance range for Na+/K+/NH4

+ and wa-
ter. Na+ ions were clearly identified in several structures
with resolution ≤ 2.0 Å. For example, in a hammerhead
ribozyme (PDB code: 3ZP8; resolution: 1.55 Å) (67), two
out of sixteen Na+ are bound to (G)N7 and one is bound to
(A)N7. The associated octahedral coordination patterns are
similar to those for Mg2+ in Z-DNA (Figure 4D) with, how-
ever, d(Na+. . .N7) ≈ 2.4–2.6 Å. These Na+ are associated
with density patterns showing clearly identifiable metal-
bound water molecules. One of these residues (G10; Figure
8A) is often linked to the hammerhead ribozyme catalytic
mechanism (32,96). This residue is also associated with di-
rect Mn2+ binding but was never unambiguously shown to
be in direct contact with Mg2+. Further, 12 examples of Na+

to N7 contacts, where Na+ displays an octahedral coordi-

nation, are found in 8 structures with resolutions ≤ 2.0 Å
(PDB codes: 2R1S, 2R20, 2R21, 2R22, 3ND4, 3ZP8, 3DIL,
3PNC). Interestingly, besides Z-DNA structures, no Mg2+

to N7 contacts with separate water densities were identified.
It is possible that the binding of these hydrated Na+ is in-
duced by the crystallization buffers since a 1.7 M sodium
malonate or NaCl buffer were used to crystallize a ham-
merhead ribozyme and a H. marismortui large ribosomal
subunit, respectively (PDB codes: 3ZP8, 1S72; resolutions:
1.55, 2.4 Å). On the contrary, the authors of a lysine ri-
boswitch structure containing 29 well-resolved Na+ ions
(PDB code: 3DIL; resolution: 1.9 Å) mentioned the use of
a ≈0.1 M sodium citrate buffer (97). These data shake the
common idea that Na+ octahedral coordination is difficult
to observe due to a weaker stability of its hydration shell
compared to hydrated Mg2+. Such a belief might have led to
misidentifications in H. marismortui where octahedral den-
sities with Na+ coordination distances in the 2.4-2.6 Å range
were attributed to Mg2+ and where Na+ labels were used for
species with coordination distances in the 2.8–3.2 Å range
that are more typical for K+ ions (14). Indeed, the octa-
hedral Mg2+/Na+ coordination geometries are difficult to
distinguish when the refinement protocols involve distance
restraints (Figure 8B).

Next to Na+, binding of K+ to nucleic acid N7 atoms
is rarely observed. We identified only 79 instances with
d(K+. . .N7) in the 2.6–3.2 Å range; 10 of those are found
in structures with resolution ≤ 2.0 Å (PDB codes: 5EW4,
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Figure 8. Na+ coordination. (A) Pentahydrated Na+ bound to (G10)N7 in a hammerhead ribozyme structure. (B) Based on coordination distances in the
2.3–2.5 Å range, this pentahydrated Mg2+ is probably a Na+. Note that some water molecules display isolated density blobs even at a 2.4 Å resolution.

1HQ1, 5EW7, 1DUL, 4WO2, 4CN5, 4YAZ). The detection
of such ions is complicated by their weak binding affinity
and a less nicely defined non-octahedral coordination shell
involving preferentially eight ligands with coordination dis-
tances similar to those of water molecules (≈2.8 Å). There-
fore, K+ is difficult to distinguish from water especially in
case of mixed water/K+ occupancy. When K+ is mentioned
in the crystallization conditions, anomalous diffraction ex-
periments should systematically be conducted to detect its
presence (36,56,98,99).

NH4
+ ions are common in crystallization buffers due

to the recurrent use of (NH4)2SO4. Hence, many water
molecules close to nucleotides could correspond to hidden
NH4

+ ions and this hypothesis should be seriously consid-
ered (14,50). When it occurs, binding of NH4

+ resembles
that of water although, instead of being surrounded by two
donor and two acceptor atoms, these ions should be sur-
rounded by four acceptor atoms. Such differences are very
subtle and NH4

+ was assigned in only four structures at res-
olutions ≤ 2.5 Å (100).

Mg2+ replacing co-solvent molecules like polyamines: can this
happen? When resolution is insufficient and/or data treat-
ment inappropriate, co-solvent molecules like polyamines
might remain hidden. In a refinement using low temperature
data, isolated ‘water’ peaks converted into a ‘tube’ of elec-
tron density and resulted in the correct placement of a sper-
mine molecule. It was inferred that at room temperature,
the methylene groups were thermally disordered while the
more ordered amino groups, which are stabilized through
direct hydrogen bonds, appeared as spheres of electron den-
sity (35).

In a fragment of a human signal recognition particle
(101), we identified several Mg2+ at 2.8 Å from N7 atoms
(Figure 9A) and none in the appropriate 2.1–2.4 Å coor-
dination range. A closer examination of the 2Fo−Fc maps
revealed a tube of density that could be interpreted as result-
ing from the presence of a polyamine. Tentatively, we placed
a spermine molecule into this density and suggest that this
model, supported by the presence of spermine in the crystal-
lization buffer, constitutes a reasonable working hypothesis
(Figure 9B). In a combined x-ray/neutron Z-DNA diffrac-

Figure 9. Polyamine misattributions. (A) Mg2+ ions with inapropriate co-
ordination distances are close to N7 atoms in a human SRP helix 6 struc-
ture. (B) A spermine molecule––spermine is mentioned in the crystalliza-
tion conditions––has tentativelly been fitted into the electron density in
place of the original Mg2+ and water molecules. (C) A misplaced symme-
try related polyamine lined up on the major groove of a Z-DNA G=C
pair. Note the coordination pattern of the hydrated –NH3

+ head that fits
a pentahydrated Mg2+ (see Figure 4D).

tion structure in complex with a spermine molecule (PDB
codes: 1WOE, 1V9G; resolutions: 1.5, 1.8 Å), ammonium
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groups are at hydrogen bond distance to both guanine N7
and phosphate groups (78) (see also PDB code: 4HIG,
2F8W; resolutions: 0.8, 1.2 Å) indicating that N7 sites are
good docking spots for ammonium groups.

We traced also the opposite type of misidentification,
namely a polyamine positioned at Mg2+ binding sites. In
a Z-DNA hexamer (102), a symmetry related polyamine is
unusually lined up on the major groove of a terminal G=C
pair. Here, a –NH3

+ group is at 2.1 Å from a N7 atom (Fig-
ure 9C) and the coordination is similar to that shown Figure
4D. Further, the Mg2+ ion placed in this structure is at 2.6 Å
from the closest oxygen and its coordination shell is not oc-
tahedral. This observation stresses that odd solvent density
interpretations occur even in high-resolution structures.

Mixed Mg2+ and monovalent cation/water occupancies: are
they meaningful? It has been reported that some DNA
major groove hexahydrated Mg2+ binding sites are not
fully occupied but that a monovalent cation can partially
occupy such a site (35). The latter event was identified
through anomalous diffraction experiments involving Tl+

ions (103). Furthermore, K+ or NH4
+ could overlap with

inner-sphere water molecules of a hexacoordinated Mg2+

(104,105). However, it is less likely that water overlays with
Mg2+ in direct contact to a N7 atom. Yet, this was re-
ported in a Z-DNA structure (PDB code: 1ICK; resolution:
0.95 Å) where a 0.24 occupancy water and a 0.76 occupancy
Mg2+ share the same position (106). This site is similar to
the Z-DNA Mg2+ binding site described for Z-DNA (Fig-
ure 4D) and illustrates the outcomes of unusual protocols
employed to satisfy crystallographic constraints. Although
such quirks are rare, they are present in high-resolution
crystal structures as mentioned above, a fact that should not
be ignored when surveying structural databases.

Direct Mg2+ binding to imine N1/N3 nitrogens is unlikely

Mg2+ binding to N1 and N3 sites is observed in only nine
non-redundant instances and appears at best marginal (Ta-
ble 1). None of these Mg2+ binding occurrences passes vi-
sual scrutiny. All Mg2+ have one or more contacts in the
2.5–3.0 Å exclusion zone. Titration experiments suggest
that Mg2+ and Ca2+ close to these imine atoms form outer
sphere complexes (107). Hence, these inner-sphere contacts
represent obvious misattributions.

For instance, an ill-placed Mg2+ ion in front of an (A)N1
atom is found in a T. thermophilus ribosome structure (108)
(see the density extension on the adenine Watson–Crick
edge; Figure 10A). Here, the 2.9 Å distance to an amino
group of an arginine amino acid suggests the binding of a
water molecule. Similarly, in a thiamine riboswitch, a direct
binding of Mg2+ to N3 with a tetrahedral coordination and
long Mg2+ to ligand distances suggests the presence of a wa-
ter molecule rather than an ion (Figure 10B).

Mg2+ do not bind to the N7 atom of purine containing
metabolites

We checked if Mg2+ to N7 binding could be associated with
purine containing metabolites, such as ATP, by using the
Relibase+ program to search the PDB (109). In the ≤ 3.0 Å

Figure 10. Missassigned Mg2+ ions close to imine N1/N3 atoms. (A) This
figure illustrates the pitfalls of placing ions into poorly defined density pat-
terns. See, for example, the unrealistic Mg2+ to arginine contact. (B) The
tetrahedral coordination inferred from the solvent density at the N3 site
and d(Mg2+. . . N/O) in the 2.4–3.0 Å range suggest the presence of a wa-
ter molecule and excludes that of Mg2+.

resolution range, close to 25 000 such metabolites were iden-
tified but only four binding sites with d(Mg2+. . .N7) in the
3.0–3.5 Å range, and none with d(Mg2+. . .N7) ≤ 3.0 Å. In
the best resolution structure (PDB code: 4H2U; resolution:
2.1 Å), Mg2+ is at a 2.8–3.0 Å distance from all its ligands
including a phosphate oxygen and a positively charged Arg
side chain. This unambiguous result strongly illustrates the
poor Mg2+ binding potential of N7 atoms.

Resolutions > 3.0 Å

If serious identification issues arise at resolutions better that
3.0 Å (≤ 3.0 Å), such issues are certainly much more severe
at lower resolutions. In that respect, it is important to note
that the PDB contains a significant number of structures
with resolutions lower than 3.0 Å. Many of these structures
comprise Mg2+, Na+ and even NH4

+ ions (110). For in-
stance, we counted in this resolution range 84 nucleic acid
structures containing Na+ (including 12 ribosomes) while
43 Mg2+ and 2 K+ containing structures at resolutions lower
than 4.0 Å as well as 63 cryo-EM structures containing
Mg2+ with resolutions > 3.0 Å were deposited to the PDB.
Although crystallography is making significant progress, we
believe that assigning light mono- and divalent ions at such
resolutions can be detrimental to the crystallographic pro-
cess and problematic in the development of data mining
tools since misinterpretation odds are too high (43,52). In
this resolution range (> 3.0 Å), Na+, Mg2+ and their hy-
dration shell are essentially modeled (see below) and, con-
sequently, should be excluded from database surveys.
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About the use of coordination distance restraints and modeled 
hydration spheres

As noted above, the default refinement procedures often in-
volve the use of restraints to place water molecules coordi-
nated to Mg2+. Therefore, their positions are approximated 
or sometimes entirely modeled. The most obvious example 
comes from water with d(Mg2+. . . Ow)  = 2.18 Å. Such water 
molecules represent a large part of those that are bound to 
Mg2+ in the PDB (Figure 11). The use of restraints might 
help to position properly the octahedral coordination shell. 
However, it has several important drawbacks. The first is 
that this coordination distance is not appropriate for Mg2+ 

since it is intermediate between the 2.07 Å coordination 
distance expected for d(Mg2+. . . Ow)  and  the  ≈2.40 Å co-
ordination distance expected for d(Na+. . . Ow).  Thus,  the  
use of restraints to model the Mg2+ hydration shell might 
make impossible the unambiguous assignment of the elec-
tron density peak to Mg2+ or Na+. This is especially true 
when water and ion densities are merged. In those cases, 
since we identified well defined coordination shells for Mg2+ 

and Na+ in structures with resolution ≤ 2.0 Å, the possibil-
ity of Na+ coordination should at least be considered during 
the refinement process.

The use and implications of crystallographic restraints 
have already been noted elsewhere as well as the less fre-
quent but more appropriate use of ≈2.1 Å restraints (12). 
Finally, we note that restraints are mainly used for Mg2+ 

and rarely for other ions such as Na+ and Mn2+, as de-
duced from the d(Na+/Mn2+. . . Ow)  histograms  (Figure  11 
and Supplementary Figure S9). For these ions and at least 
in nucleic acid structures, restraints do not seem necessary.

Because of the issues mentioned here, it appears worth-
while to tag modeled water molecules associated with the 
systematic use of restraints especially at resolutions > 3.0 Å. 
Occupancies could be set to zero as is already done by 
some authors for polyatomic ligands. Specific identifiers 
could be added to the more accommodating mmCIF files. 
But, as noted elsewhere, non-crystallographers visualizing 
a biomolecular system might not be aware of the presence 
of modeled waters (40). Therefore, we suggest that visual-
ization programs should include an option to turn ‘on’ the 
modeled part of the structure that should remain hidden 
when the structure is first opened. Turning on the visualiza-
tion of the modeled part of the structure should require a 
voluntary action. Lastly, the use of restraints should be sys-
tematically mentioned in PDB headers and validation re-
ports.

Ion substitution experiments

To identify Na+ or Mg2+ when the resolution is insuffi-
cient, replacement strategies are used (14,111,112). How-
ever, they do not supersede direct evidence obtained from 
high-resolution structures. This is especially true when 
Mn2+ ions are used as substitutes since the affinity of Mn2+ 

over Mg2+ for N7 is higher (20,25). Further, although rarely 
described, Mn2+/Mg2+ substitutions can induce significant 
structural changes; see for instance a crystallographic study 
of a signal recognition particle (104). There, Mn2+ changed 
the conformation of a nucleotide by linking the N7 to a 
phosphate oxygen from a neighboring residue. For another

RNA structure for which soaking with 13 different metals
was performed, a similar conformational change induced
by the binding of Mn2+, Zn2+ and Co2+ with respect to
the native Mg2+ structure was reported, resulting in a di-
rect N7 to Mn+ contact (113). Indeed, Mn2+ are not perfect
substitutes for Mg2+ and replacement of MgCl2 by MnCl2
in H. marismortui crystallization buffers resulted systemat-
ically into twinned crystals (14).

Such ion-induced conformational changes might be more
frequent than expected in crystallographic structures with
insufficient resolution or in spectroscopic experiments such
as electron paramagnetic resonance (EPR) and NMR (8).
Drawbacks of substitution experiments might even become
worse when larger transition metals like Zn2+ or Cd2+ are
used. Indeed, strong binding of transition metals to N7 sites
significantly affects the nucleobase chemical properties (21).
It has been shown that Cd2+ binding to (G)N7 leads to an
acidification of the N1 imino group that can consequently
deprotonate at physiological pH and affect the interpreta-
tion of biochemical experiments (24).

Thus, in the best resolution structure of tRNAPhe (PDB
code: 1EHZ; resolution: 1.93 Å), anomalous data derived
from crystals soaked with MnCl2 and CoCl2 were used to
identify ion binding sites. In this structure, all four sites close
to N7 atoms were associated with Mn2+ or Co2+ and unre-
alistically short 2.0 Å metal-water restraints were used. In
the parent tRNAPhe structure that was obtained without the
use of soaking procedures (PDB code: 1EVV; resolution:
2.0 Å), no N7-bound ions were reported (114).

Further, numerous soaking experiments were performed
on the hammerhead ribozyme showing consistently the
presence of a transition metal bound to (G10)N7 and, in a
high-resolution structure, the presence of Na+ (32,96). De-
spite significant efforts, no direct evidence of Mg2+ binding
to this site has been reported (Figure 8A).

Hence, binding sites presenting new coordination topolo-
gies should not be proposed based uniquely on substitution
experiments combined or not with anomalous diffraction
data unless a similar binding site backing up the proposed
topology has unambiguously been identified in unrelated
high-resolution structures (115–117). Given the affinity of
Mn2+ for N7, this transition metal could eventually replace
Mg2+ but more probably also Na+ commending great care
in the interpretation of ion substitution experiments. This
is not purely speculative since we are aware of at least one
example of substitution of Na+ by Mn2+ in a protein crystal
structure (118).

Comparison with the MgRNA database

The abundance of poorly modeled or incorrectly identified
Mg2+ ions in nucleic acids has already been noted and was
taken into account in an attempt to build an exhaustive
and comprehensive classification of Mg2+ binding sites, in-
cluding 41 inner-sphere coordination patterns among which
eight are associated with nitrogen sites (12). The MgRNA
database defines a set of rules to separate good from bad
ion assignments (52). Based on a complex combination of
geometrical and crystallographic criteria derived from those
used by the CheckMyMetal web server (37), benchmark sets
for each binding pattern were defined, embracing 15% of the
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Figure 11. d(Mg2+. . . Ow) histogram for nucleic acid crystal structures (PDB; May 2016; resolution ≤ 3.0 Å) that emphasize the systematic use of crystal-
lographic restraints around 2.07 and 2.18 Å. The d(Na+. . . Ow) histogram peaks around 2.4 Å and no peaks associated with crystallographic restraints are
apparent (see insert; resolution ≤ 2.0 Å). Supplementary Figure S9 displays d(Mn2+/Na+. . . Ow) histograms where peaks due to the use of restraints are
also absent (resolution ≤ 3.0 Å).

full dataset––for details, see (12). However, we believe that
these criteria were not restrictive enough to exclude all du-
bious coordination patterns, resulting in a still considerable
overestimation of the Mg2+ to N7 binding.

In this section, we identify shortcomings in the criteria
defined by MgRNA that make further investigations nec-
essary and describe methods to improve them. We have to
stress that the numbers provided by MgRNA are not di-
rectly comparable to ours since we use resolutions ≤ 3.0 Å
on a May 2016 dataset while no resolution limits are applied
in MgRNA on the September 2014 dataset. Here, we adopt
the MgRNA nomenclature where Oph corresponds to phos-
phate oxygens (OP1/OP2); Or to O2’/O4’/O3’/O5’ ribose
oxygens; Ob to nucleobase oxygens and Nb to nucleobase
nitrogens.

In MgRNA, 284 Mg2+ to N1/N3/N7 (Nb) contacts were
identified and placed in the benchmark dataset (Figure 4).
The authors chose a representative of this category in the
2QOU ribosome (resolution: 3.93 Å) that shows a perfectly
modeled hydration shell with d(Mg2+. . .N7) = 2.18 Å and
d(Mg2+. . .Ow) = 2.08 Å, raising once more the issue of
modeled water molecules (see above). Cleary, such a struc-
ture including a modeled hydration shell is not representa-
tive. Overall, the Nb benchmark dataset contains 77 struc-
tures with resolution ≤ 3.0 Å and 92 structures with reso-
lutions > 3.0 Å. The lowest resolution structure is 4V5Y
(resolution: 4.45 Å). Among the 77 structures with res-
olution ≤ 3.0 Å, 127 Mg2+ were identified but only 12
of them satisfy the d(Mg2+. . .N7) ≤ 2.4 Å criterion. The
largest d(Mg2+. . .N7) is 3.17 Å (PDB code: 4PEA; resolu-
tion: 2.95 Å) and the average d(Mg2+. . .N7) of 2.64±0.40 Å
is too long for Mg2+ to N7 contacts. Based on these data,
only 12 out of the 284 sites satisfy our criteria although their
coordination shell is far from being strictly octahedral.

For the double N7 site discussed above (2Nb), called
‘purine N7-seat’ in MgRNA (Figure 5), 158 occurrences
constitute the benchmark set. The representative site is ex-
tracted from an E. coli ribosome structure (PDB code: 2I2V;
resolution: 3.22 Å), that used d(Mg2+. . .N7) ≈2.08 Å re-
straints. Monovalent cation or transition metal binding was
not considered. This double N7 binding site was tagged as a
novel Mg2+-binding motif, although it has been mentioned
elsewhere (8,14).

We already addressed the direct binding of an ion to N7
and a nucleobase oxygen atom (Ob.Nb) (Figure 6). The rep-
resentative site was taken from 1HR2 (resolution: 2.25 Å).
To us, it is unlikely that Mg2+ binds to this site, which is most
probably involved in the binding of a monovalent cation,
possibly Na+. Further, only 26 instances are found in the
MgRNA benchmark dataset stressing its limited relevance.

Occurrence of simultaneous binding to N7 and two base
or sugar atoms were categorized into three binding types
(2Ob.Nb, Ob.2Nb, 2Or.Nb) derived from only five crystal
structures with resolution in the 3.3-3.9 Å range. No struc-
ture with sufficient resolution to interpret solvent binding
details is available to support the genuineness of these mod-
eled sites. Therefore, they should not be labeled as Mg2+

binding sites.
The representative Oph.Nb site (PDB code: 3R8S; reso-

lution: 3.0 Å) displays good coordination distances to wa-
ter, phosphate oxygen and N7 atoms. However, a closer ex-
amination revealed that all the Mg(H2O)4

2+ but also all
the neighboring nucleotide B-factors display an unrealistic
0.01 Å2 value. In 1VQ8 (resolution: 2.2 Å), d(Mg2+. . .N7)
is stretched to 3.12 Å. Indeed, all these occurrences in the
benchmark dataset have not been identified by us mainly
because of inappropriate resolution and/or d(Mg2+. . .N7)
> 2.4 Å. Thus, this Mg2+-binding motif should be excluded
from the MgRNA classification.

The benchmark set for the last MgRNA site, labelled
cis-2Oph.Nb, comprises 118 occurrences. The representative
site is extracted from the 1VS6 ribosome structure with a
3.46 Å resolution and d(Mg2+. . .Ow) = 2.08 Å. Overall,
for this dataset, the level of redundancy is high. The 118
sites, exclusively identified in ribosomes, are found at two
locations involving (A)N7 or (G)N7. We identified 49 out
of 118 sites in structures with resolution ≤ 3.0 Å. Among
those with (A)N7, 18 have d(Mg2+. . .N7) ≤ 2.4 Å and 15
have d(Mg2+. . .N7) > 2.4 Å. The remaining 16 occurrences
involve (G)N7 with d(Mg2+. . .N7) > 2.4 Å. One of these
MgRNA sites, called ‘10-member ring with purine N7’, has
been identified in the present study (Figure 7). Again, the
significance of this site is low and there is not enough evi-
dence to suggest its presence other than in rare and highly
specific ribosomal pockets. This site can probably also ac-
commodate Na+ ions (Supplementary Figure S7).
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Consequently, MgRNA still contains a large number 
of misidentified M g2+ a nd w as n ot s uccessful i n creating 
reliable benchmark datasets. We identified s everal factors 
that led to such issues. First, the process could be im-
proved if structures with resolutions > 3.0 Å were excluded 
(38,40). Second, strict enforcement of d(Mg2+. . . N/O) cut-
offs would lead to a significant r eduction o f f alse posi-
tive. Although uncertainties in the coordination distances 
are difficult to estimate (23,37), it seems problematic to ac-
cept distances >2.4 Å to validate new Mg2+ binding sites. 
Third, coordination distance issues involving restrained wa-
ter molecules have to be identified m ore systematically 
(12,23,37). In that respect, indicators based on the bond 
valence theory should be considered with caution for res-
olutions > 2.0 Å (119). Such indicators should not be used 
when restraints on coordination bonds are present. As an 
outcome, when stricter criteria are used, the eight binding 
sites described by MgRNA, reduce to two for which we 
found a limited number of convincing occurrences, namely 
Nb and cis-2Oph.Nb.

Mg2+ ion assignment and validation checklist

In order to facilitate the ion assignment process, we de-
fined a  set of rules regarding the placement of ions in sol-
vent electron densities next to N7 atoms that can easily be 
extended to the binding of ions to other sites (Table 3). 
In that perspective, we would like to stress a few points 
that we consider of importance. First, numerous compet-
ing ionic species might be present in crystallization buffers, 
sometimes as contaminants and should be taken into ac-
count (70). For instance, in our survey, it was not immedi-
ately apparent that Zn2+ could bind to a specific ribosome 
site (Figure 5) especially since Zn2+ is not mentioned in the 
crystallographic conditions. Therefore, it is important to in-
tegrate excess electron density that can reveal the presence 
of transition metals or electron rich K+. Second, an ion B-
factor lower than those of the bound nucleobase or water 
molecules or an ion occupancy significantly higher than 1.0 
should hint to the presence of an electron rich atom. In 
such instances, anomalous diffraction data should be col-
lected at the appropriate wavelengths. It has to be noted 
that a large excess of unassigned electron density might af-
fect not only the position of the ion and its hydration shell, 
but can also wrongfully force nucleobases to come closer to 
the excess electron density center leading to unreliable coor-
dination distances (43,117). On the other hand, weak elec-
tron density patterns manifested by high B-factors or nega-
tive Fo−Fc peaks suggest ‘wishful’ ion attributions. Anions 
such as Cl−, SO4

2− or even cacodylate are also often dis-
regarded (68,69). If the identity of an ion is inferred from 
binding sites observed in a different structure, the original 
data should be carefully checked including the electron den-
sity peak height, B-factor value, coordination number, bond 
distances and angles as well as the 2Fo−Fc and Fo−Fc maps 
in order to avoid replicating errors. Finally, when no rea-
sonable solution emerges, protonated and tautomeric forms 
of the coordinated nucleobase or the surrounding residues 
should be considered (120).

In case of doubt, and especially in the d(Mg2+. . . N7)  
≈3.2–3.8 Å exclusion range (Figures 1 and 2), density pat-

terns should not be assigned to Mg2+. Such patterns are
probably related to the presence of other ionic or molec-
ular species present in the crystallization buffer or as con-
taminants. X-ray data are also prone to experimental errors
that might result in weak/spurious electron density peaks
(121,122). In those instances, density assignment is coun-
terproductive even if it reduces Rwork and Rfree values. It can
here be reminded that the PDB allows to use the UNK code
for placing an atom at positions where atom identity is un-
certain.

We have to stress that the chosen cutoff distances are
merely indicative. They are less stringent for Mg2 binding
to nitrogen than to oxygen. These distances will be refined
in further studies when more high-quality data become
available. A rule of thumb is that, at least in nucleic acids,
d(Mg2+. . .N7) ≤ 2.4 Å and d(Mg2+. . .N7) > d(Mg2+. . .O).
Caution should be exerted when restraints are used, espe-
cially with the 2.18 Å default value, suggesting that the data
do not allow to differentiate Mg2+ from Na+ and that fur-
ther refinement without restraints should be conducted.

Further reasons can lead to bad ion assignments among
which we list: (i) the possibility that ions were placed auto-
matically or without great care into density blobs in order
to lower the Rfree value; (ii) existing stereochemical knowl-
edge was ignored; (iii) wishful thinking; (iv) the replication
of errors already present in PDB structures and (v) overesti-
mation of the amount of information that can be extracted
from low-resolution structures. Hence, it is suggested to ex-
clude structures displaying obvious ion identification errors
from database surveys, at least as far as ion placement is
concerned (40).

CONCLUSION AND PERSPECTIVES

Based on the data we gathered, we conclude that nearly all
the Mg2+ to N7 contacts reported in PDB structures need
to be reexamined and propose a Mg2+ assignment check-
list to facilitate this endeavor. Indeed, non-ambiguous ex-
amples of Mg2+ binding to N7 are excessively rare and are
limited to a few occurrences where Mg2+ binding seems to
result from unique crystallization conditions and/or is as-
sociated with primary contacts with anionic oxygens. Addi-
tionally, we noted that none of the 25 000 purine metabolites
from the PDB establish Mg2+ to N7 contacts, an additional
strong evidence that Mg2+ does rarely bind to purine N7
sites. Consequently, we conclude that almost all Mg2+ as-
signments to solvent density in front of N7 atoms, as found
in PDB structures, are incorrect. This outcome significantly
diverges from that presented by the MgRNA survey that
identified 8 binding modes involving imine nitrogens in op-
position to barely two by us (12).

Interestingly, we characterized a potential Zn2+ binding
site in prokaryotic ribosomal structures that involves two
head-to-tail stacked purines in the core of a three-way junc-
tion, a finding that opens a new window on the complex-
ity of the metal/nucleic acid ecosystem (123,124). However,
we were unable to establish if these transition metal bind-
ing sites are populated in vivo or if they may only be found
under specific in crystallo conditions.

From a purely methodological point of view, the most in-
teresting outcome of this study resides in the recognition of
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Table 3. Ion to N7 assignment and validation checklist

specific and frequent octahedral Na+ coordination modes
identified in structures with resolution ≤ 2.0 Å. Those are
very difficult to distinguish from octahedral Mg2+ coor-
dination modes, especially when 2.18 Å coordination dis-
tance restraints are used during the refinement process. Un-
deniably, such restraints often combined with poor reso-
lutions do not allow to distinguish Na+ from Mg2+ based
on their respective 2.40 and 2.07 Å coordination distances.
We suggest that the use of restraints on Mg2+ coordination
distances is probably at the origin of the large number of
Mg2+ misidentifications in nucleic acids and that Na+ bind-
ing should always be considered as an alternative.

To conclude, we strongly believe that careful visual ex-
amination of crystallographic data is needed in order to
create a reliable ‘prior knowledge’ dataset before develop-
ing or using automatic assignment protocols, pattern detec-
tion algorithms or machine learning tools (12,47). Further,
‘prior-knowledge’ should only be based on Mg2+ binding
motifs unambiguously characterized in multiple unrelated
high-resolution structures and not on circumstantial evi-
dences as it is too often the case. Currently, automatic re-
refinement workflows such as PDB-REDO cannot resolve
solvent attribution issues that remain one of the last ma-

jor bottlenecks in the interpretation of crystallographic data
(37,44,46,48,49). This work should provide a more solid ex-
perimental ground for the development of molecular dy-
namics force-fields that sometimes rely on the erroneous
assumption that N7 is an appropriate Mg2+ binding site
(12,31).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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About ribosomal PDB structures (resolution ≤ 3.0 Å) and assembly choice  

Currently (Mai 2016), the PDB contains 134 X-ray structures of ribosomes with resolution ≤ 3.0 Å 

(Table S1) that comprise: (i) 12 Thermus thermophilus small subunits (30S), (ii) 3 Deinococcus 

radiodurans large subunits (50S), (iii) 57 Haloarcula marismortui large subunits (50S), (iv) 39 Thermus 

thermophilus 70S ribosomes, (v) 15 Escherichia coli 70S ribosomes and (vi) 7 

Saccharomyces cerevisiae 80S ribosomes. 

For the 61 ribosomal structures that are considered as large by the PDB (70S and 80S) and only 

available in mmCIF files, only one biological assembly was analyzed (see Table S1), the choice of 

which was based on the following consideration: the biological assembly with the lowest average 

B-factor value is retained. However, for the T. thermophilus 70S structures, numbering inconsistencies

between the two or four assemblies that resulted from in-house PDB annotations were found. Hence, 

when such discrepancies occur, we chose to use the structure that has a numbering consistent with the 

2D structures found at http://apollo.chemistry.gatech.edu/RibosomeGallery (1). Appropriate 

annotations are made in Table S1 and Table 2. 

T. thermophilus (30S)

The best resolution structure is 2VQE (2.50 Å). All structures comprise Zn2+ and Mg2+ ions. K+ has been 

attributed in eight of them. For some of these structures, Ca2+, Na+, NH4+, Cl- and acetate ions may also 

be present (CaCl2, KCl, NH4Cl, magnesium acetate, sodium cacodylate, …) according to the 

crystallization conditions noted in the PDB (see for example 1FJG). The publication describing the 

purification and crystallization protocols gathered does not mention the use of CaCl2 (2). Proteins S4 

and S14 contain each a zinc-finger domain (3). Thus, each of these structures contain two 

unambiguously identified Zn2+. 

D. radiodurans (50S)

The best resolution structure is 5DM6 (2.90 Å). Mg2+ is the only ion that has been assigned in these 3 

structures. Zn2+ is not present since the cysteine residues that should be involved in a zinc finger motif 

form disulfide bridges. Na+, NH4+, spermidine and Cl- may also be present according to the 

crystallization conditions noted in the PDB. Further information on purification and crystallization 

protocols can be found in reference (4). 

H. marismortui (50S)

Currently, the best resolution structures are 1VQO and 1VQ8 (2.20 Å). Oddly, all 58 structures contain 

Cd2+ and do not mention Zn2+. Cadmium was introduced in the crystallization buffers as CdCl2 for 

improving the crystallization conditions (5,6). The composition of the crystallization buffer for 1FFK was: 

1.2 M KCl, 0.5 M NH4Cl, 100 mM KCH3COO, 30 mM MgCl2, 7% polyethylene glycol (PEG) 6000, 15 

mM tris, 15 mM MES, and 1 mM CdCl2 (pH 7.1), with transfer of crystals in the following buffer: 12% 

PEG 6000, 22% ethylene glycol, 1.7 M NaCl, 0.5 M NH4Cl, 100 mM KCH3COO, 30 mM MgCl2, and 

1 mM CdCl2 (pH 6.2) at 4°C (6). The four proteins L24e, L37e, L37ae, and L44e, contain zing finger 

motifs. Four of these domains, where Cd2+ replaces Zn2+, were identified (7). Further, one additional 

weak and probably suspicious Cd2+ binding site has been reported. 
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This group of H. marismortui structures is very heterogeneous. In early structures, residue 1329 

(chain 0) is wrongly assigned to an adenine as shown by 2Fo-Fc and Fo-Fc maps in 1FFK (Figure S1). 

This error has been subsequently corrected in 4V9F that is a re-refinement of 1FFK and in the structures 

marked as such in Table S1. The best resolution structures with the corrected sequence are thus, 4V9F, 

1YHQ and 3CC2 (2.40 Å). Modified ribosomal nucleotides are assigned in 4V9F. 

Twenty-eight of these structures contain Sr2+. The use of SrCl2 seems to be related to the 

crystallization of antibiotic/ribosome complexes. In one study, it is mentioned that crystals were soaked 

with antibiotic in a buffer containing among other: 1.7 M NaCl, 0.5 M NH4Cl, 1nM CdCl2, 100mM 

KCH3COO, 6.5 mM CH3COOH and with either 30 mM MgCl2, or 21 mM MgCl2 and 30 mM SrCl2, or no 

MgCl2 and 100 mM SrCl2 (8). These conditions suggest that these ribosomes, when crystallized 

following such soaking protocols, might include very high NaCl and NH4Cl concentrations. The best 

resolution structure with Sr2+ and the corrected sequence is 3CCM (2.55 Å). 

It should be noted that H. marismortui structures contain single ribosomal RNA chains, which in 

some structures are labeled “chain 0” and “chain A” in others. Here, these chains were considered 

equivalent. 

T. thermophilus (70S)

The best resolution structure is 4Y4O (2.30 Å) that contain also a full array of modified ribosomal 

nucleotides. Zn2+ is present in all 40 structures. 

E. coli

The best resolution structure is 4YBB (2.10 Å). It is also currently the best resolution of all ribosomal 

structures and contains a full array of modified ribosomal nucleotides. Zn2+ is present in all E. coli 

structures. For 4YBB, a strong discrepancy between the B-factors of both assemblies present in the 

crystal unit has to be noted (average B-factors around ≈67 and ≈123 Å2, respectively) signifying that 

the analysis should be limited to the first biological assembly. Besides Mg2+ and Zn2+, the 4YBB 

structure contains also acetate, 1,2-ethanediol, di(hydroxyethyl)ether, putrescine, spermidine, MPD, 

TRIS, tetraethylene- and pentaethyleneglycol. Purification and crystallization protocols can be found in 

reference (9,10). 

S. cerevisiae (80S)

The best resolution structure is 4U4R (2.80 Å). Osmium hexamine is present in all seven structures as 

well as eight Zn2+ ions per assembly. Purification and crystallization protocols for eukaryotic ribosomes 

can be found in references (11-13). 
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Table S1: List of 134 ribosomal structures in the PDB (resolution ≤ 3.0 Å). The best resolution 

structure in each category is shown in blue. In each category, structures are ordered according to PDB 

deposition date (first criterion), best resolution (second criterion) and best R-free value (third criterion). 

PDB code Deposited Res. (R-Free) Residue count Ions Ref. 
T. Thermophilus (30S) — 12 structures

1FJG 08/2000 3.00 (0.26) 4068 Zn2+, Mg2+ (14) 
1N32 10/2002 3.00 (0.27) 4077 Zn2+, Mg2+ (15) 
1XMQ 10/2004 3.00 (0.24) 4078 Zn2+, Mg2+ (16) 
2UUB 03/2007 2.80 (0.24) 4086 Zn2+, Mg2+, K+ (17) 
2UUA 03/2007 2.90 (0.25) 4086 Zn2+, Mg2+, K+ (17) 
2UXC 03/2007 2.90 (0.26) 4086 Zn2+, Mg2+, K+ (18) 
2VQE 03/2008 2.50 (0.28) 4086 Zn2+, Mg2+, K+ (19) 
2VQF 03/2008 2.90 (0.26) 4086 Zn2+, Mg2+, K+ (19) 
3T1Y 07/2011 2.80 (0.27) 4065 Zn2+, Mg2+ (20) 
4B3M 07/2012 2.90 (0.25) 4072 Zn2+, Mg2+, K+ (21) 
4B3T 07/2012 3.00 (0.24) 4072 Zn2+, Mg2+, K+ (21) 
4B3R 07/2012 3.00 (0.25) 4072 Zn2+, Mg2+, K+ (21) 
D. radiodurans (50S) — 3 structures

2ZJR j 03/2008 2.91 (0.31) 6562 Mg2+ (22) 
5DM6 09/2015 2.90 (0.27) 6490 Mg2+ (23) 
5DM7 j 09/2015 3.00 (0.33) 6490 Mg2+ (23) 
H. marismortui (50S) — with wrong adenine at position 1329 (see Figure S1) — 32 structures

1FFK 07/2000 2.40 (0.26) 6825 Cd2+, Mg2+, K+ (6) 
1JJ2 07/2001 2.40 (0.22) 7279 Cd2+, Mg2+,K+, Na+, Cl- (24) 
1K8A 10/2001 3.00 (0.26) 7279 Cd2+, Mg2+,K+, Na+, Cl- (25) 
1K9M 10/2001 3.00 (0.26) 7279 Cd2+, Mg2+,K+, Na+, Cl- (25) 
1KD1 11/2001 3.00 (0.27) 7279 Cd2+, Mg2+,K+, Na+, Cl- (25) 
1M90 07/2002 2.80 (0.22) 7282 Cd2+, Mg2+,K+, Na+, Cl- (26) 
1N8Rk 11/2002 3.00 (0.24) 7279 Cd2+, Mg2+,K+, Na+, Cl- (27) 
1NJI 12/2002 3.00 (0.21) 7279 Cd2+, Mg2+,K+, Na+, Cl- (27) 
1QVG 08/2003 2.90 (0.26) 7288 Cd2+, Mg2+,K+, Na+, Cl- (28) 
1Q81 08/2003 2.95 (0.26) 7281 Cd2+, Mg2+,K+, Na+, Cl- (26) 
1Q82 08/2003 2.98 (0.25) 7281 Cd2+, Mg2+,K+, Na+, Cl- (26) 
1Q86 08/2003 3.00 (0.26) 7285 Cd2+, Mg2+,K+, Na+, Cl- (26) 
1S72 01/2004 2.40 (0.22) 7464 Cd2+, Mg2+,K+, Na+, Cl- (7) 
1VQOa 12/2004 2.20 (0.25) 7478 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (29) 
1VQ8a 12/2004 2.20 (0.25) 7479 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (29) 
1VQP 12/2004 2.25 (0.25) 7483 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (29) 
1VQK 12/2004 2.30 (0.25) 7480 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (29) 
1VQL 12/2004 2.30 (0.25) 7482 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (29) 
1VQM 12/2004 2.30 (0.25) 7482 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (29) 
1VQN 12/2004 2.40 (0.25) 7484 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (30) 
1VQ9 12/2004 2.40 (0.26) 7480 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (29) 
1VQ7 12/2004 2.50 (0.24) 7482 Cd2+, Mg2+,K+, Na+, Cl- (30) 
1VQ5 12/2004 2.60 (0.24) 7482 Cd2+, Mg2+,K+, Na+, Cl- (29) 
1VQ4 12/2004 2.70 (0.23) 7482 Cd2+, Mg2+,K+, Na+, Cl- (29) 
1VQ6 12/2004 2.70 (0.23) 7483 Cd2+, Mg2+,K+, Na+, Cl- (30) 
2OTL 02/2007 2.70 (0.25) 7462 Cd2+, Mg2+,K+, Na+, Cl- (31) 
2OTJ 02/2007 2.90 (0.24) 7463 Cd2+, Mg2+,K+, Na+, Cl- (31) 
2QEX 06/2007 2.90 (0.24) 7320 Cd2+, Mg2+,K+, Na+, Cl- (32) 
2QA4 06/2007 3.00 (0.29) 7486 Cd2+, Mg2+,K+, Na+, Cl- (33) 
3CPW 04/2008 2.70 (0.23) 7334 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (34) 
3CXC 04/2008 3.00 (0.23) 7282 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (35) 
3OW2 09/2010 2.70 (0.25) 6801 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- — 
H. marismortui (50S) — with correct guanine at position 1329 (see Figure S1) — 26 structures

1YHQ 01/2005 2.40 (0.23) 7480 Cd2+, Mg2+,K+, Na+, Cl- (36) 
1YIJ 01/2005 2.60 (0.22) 7481 Cd2+, Mg2+,K+, Na+, Cl- (36) 
1YI2 01/2005 2.65 (0.21) 7481 Cd2+, Mg2+,K+, Na+, Cl- (36) 
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1YIT 01/2005 2.80 (0.22) 7478 Cd2+, Mg2+,K+, Na+, Cl- (36) 
1YJ9 01/2005 2.80 (0.24) 7478 Cd2+, Mg2+,K+, Na+, Cl- (36) 
1YJW 01/2005 2.90 (0.22) 7481 Cd2+, Mg2+,K+, Na+, Cl- (36) 
1YJN 01/2005 3.00 (0.23) 7481 Cd2+, Mg2+,K+, Na+, Cl- (36) 
3CC2 02/2008 2.40 (0.23) 7517 Cd2+, Mg2+,K+, Na+, Cl- (8) 
3CCM 02/2008 2.55 (0.24) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CC7 02/2008 2.70 (0.23) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CCJ 02/2008 2.70 (0.23) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CC4 02/2008 2.70 (0.24) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CCE 02/2008 2.75 (0.23) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CD6 02/2008 2.75 (0.24) 7520 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CCU 02/2008 2.80 (0.22) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CCL 02/2008 2.90 (0.22) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CCV 02/2008 2.90 (0.22) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CCQ 02/2008 2.90 (0.23) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CCS 02/2008 2.95 (0.24) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CCR 02/2008 3.00 (0.25) 7517 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (8) 
3CMA 03/2008 2.80 (0.24) 7522 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (37) 
3CME 03/2008 2.95 (0.26) 7522 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (37) 
3G6E 02/2009 2.70 (0.23) 7217 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (38) 
3G71 02/2009 2.85 (0.23) 7217 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (38) 
3I56 07/2009 2.90 (0.24) 7217 Cd2+, Sr2+, Mg2+,K+, Na+, Cl- (38) 
4V9Fb 02/2012 2.40 (0.21) 7583c,d Cd2+, Mg2+,K+, Na+, Cl- (39) 
T. thermophilus (70S) — 42 structures

4V51 07/2006 2.80 (0.31) 21886c,e Zn2+, Mg2+ (40) 
4V67 20/2008 3.00 (0.32) 22654c,e Zn2+, Mg2+ (41) 
4V7L 11/2009 3.00 (0.27) 22204c,e Zn2+, Mg2+ (42) 
4V7Y 08/2010 3.00 (0.27) 21368c,e Zn2+, Mg2+, K+ (43) 
4V7W 08/2010 3.00 (0.28) 21368c,e Zn2+, Mg2+, K+ (43) 
4V7X 08/2010 3.00 (0.28) 21368c,e Zn2+, Mg2+, K+ (43) 
4V8D 12/2011 3.00 (0.24) 21658c,e Zn2+, Mg2+ (44) 
4V8B 12/2011 3.00 (0.27) 21634c,e Zn2+, Mg2+ (44) 
4V8I 12/2011 2.70 (0.25) 21484c,e Zn2+, Mg2+ (43) 
4V8G 12/2011 3.00 (0.25) 21368c,e Zn2+, Mg2+ (43) 
4V9H 03/2013 2.86 (0.25) 11728c,d Mg2+ (45) 
4LNT 07/2013 2.94 (0.26) 21492c,e Zn2+, Mg2+ (46) 
4V9R 12/2013 3.00 (0.26) 21468c,e Zn2+, Mg2+, K+ (47) 
4V90 02/2014 2.95 (0.24) 11801c,d Zn2+, Mg2+ (48) 
1VY5 05/2014 2.55 (0.28) 21748c,e Zn2+, Mg2+, K+ (49) 
1VY4 05/2014 2.60 (0.26) 21748c,e Zn2+, Mg2+, K+ (49) 
1VY7 05/2014 2.80 (0.28) 21602c,e Zn2+, Mg2+, K+ (49) 
1VY6 05/2014 2.90 (0.29) 21448c,e Zn2+, Mg2+, K+ (49) 
4W2E 06/2014 2.90 (0.30) 11638c,d Zn2+, Mg2+ (50) 
4W2G 09/2014 2.55 (0.27) 21748c,e Zn2+, Mg2+, K+ (51) 
4W2H 09/2014 2.70 (0.26) 21596c,e Zn2+, Mg2+, K+ (51) 
4W2I 09/2014 2.70 (0.26) 21748c,e Zn2+, Mg2+, K+ (52) 
4W2F 10/2014 2.40 (0.28) 21748c,e Zn2+, Mg2+, K+ (51) 
4WPO 10/2014 2.80 (0.25) 24064c,e Zn2+, Mg2+, K+ (53) 
4WQF 10/2014 2.80 (0.26) 23898c,e Zn2+, Mg2+ (53) 
4WQU 10/2014 2.80 (0.26) 23918c,e Zn2+, Mg2+ (53) 
4WQY 10/2014 2.80 (0.27) 23760c,e Zn2+, Mg2+, K+ (53) 
4WSD 10/2014 2.95 (0.24) 21694c,e Zn2+, Mg2+ (54) 
4Y4Ob 02/2015 2.30 (0.25) 21468c,e Zn2+, Mg2+ (55) 
4Y4P 02/2015 2.50 (0.28) 21748c,e Zn2+, Mg2+, K+ (56) 
4Z3S 03/2015 2.65 (0.27) 21748c,e Zn2+, Mg2+, K+ (57) 
4Z8C j 04/2015 2.90 (0.25) 21482c,e Zn2+, Mg2+ (58) 
5DOY 09/2015 2.60 (0.28) 21754c,e Zn2+, Mg2+, K+ (57) 
5E81 10/2015 2.95 (0.24) 21961c,e Zn2+, Mg2+ (59) 
5FDV 12/2015 2.80 (0.24) 20986c,e Zn2+, Mg2+ (56) 
5F8K 12/2015 2.80 (0.29) 20948c,e Zn2+, Mg2+, K+ (56) 
5FDU 12/2015 2.90 (0.23) 20974c,e Zn2+, Mg2+ (56) 
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5HAU j 12/2015 3.00 (0.26) 23832c,e Zn2+, Mg2+ (60) 
5HD1 j 01/2016 2.70 (0.27) 21484c,e Zn2+, Mg2+ (60) 
5HCQ j 01/2016 2.80 (0.25) 21472c,e Zn2+, Mg2+ (60) 
5HCR j 01/2016 2.80 (0.27) 21482c,e Zn2+, Mg2+ (60) 
5HCP j 01/2016 2.89 (0.27) 21474c,e Zn2+, Mg2+ (60) 
E. coli (70S) — 12 structures

4V9D 07/2012 3.00 (0.26) 20931c,e Zn2+, Mg2+ (9) 
4V9O 05/2013 2.90 (0.27) 45264c,f Zn2+, Mg2+ (10) 
4V9P 05/2013 2.90 (0.27) 44972c,f Zn2+, Mg2+ (10) 
4U1U 04/2014 2.95 (0.28) 20810c,e Zn2+, Mg2+ (61) 
4U27 06/2014 2.80 (0.26) 20808c,e Zn2+, Mg2+ (61) 
4U26 06/2014 2.80 (0.27) 20810c,e Zn2+, Mg2+ (61) 
4U20 06/2014 2.90 (0.28) 20794c,e Zn2+, Mg2+ (61) 
4U24 06/2014 2.90 (0.26) 20794c,e Zn2+, Mg2+ (61) 
4U25 06/2014 2.90 (0.26) 20794c,e Zn2+, Mg2+ (61) 
4U1V 06/2014 3.00 (0.27) 20808c,e Zn2+, Mg2+ (61) 
4WOI 10/2014 3.00 (0.25) 21699c,e Zn2+, Mg2+ (62) 
4YBBb 02/2015 2.10 (0.23) 20744c,e,h Zn2+, Mg2+ (63) 
S. cerevisiae (80S) — 7 structures i

4V88 10/2011 3.00 (0.23) 35856c,g Zn2+, Mg2+ (12) 
4U4R 07/2014 2.80 (0.25) 35344c,g Zn2+, Mg2+ (64) 
4U3U 07/2014 2.90 (0.24) 35344c,g Zn2+, Mg2+ (64) 
4U3M 07/2014 3.00 (0.24) 35344c,g Zn2+, Mg2+ (64) 
4U4U 07/2014 3.00 (0.26) 35344c,g Zn2+, Mg2+ (64) 
4U52 07/2014 3.00 (0.26) 35344c,g Zn2+, Mg2+ (64) 
4U4Q 07/2014 3.00 (0.26) 35346c,g Zn2+, Mg2+ (64) 
a Although these ribosomes have the best 2.20 Å resolution for H. marismortui, they embed assignment errors as shown in 
Figure S1 and should be considered with caution. 
b These structures embed ribosomal modifications. 
c These very large ribosomal structures are only available in mmCIF format in the PDB. 
d These large structures contain one biological assembly (space group: P1211). 
e These large structures contain two biological assemblies (space group: P212121). 
f These large structures contain four biological assemblies (space group: P1211). 
g These large structures contain two biological assemblies (space group: P1211). 
h The B-factors of the first assembly are significantly higher than those of the second assembly that should consequently not 
be considered for further structural analysis. 
i The numbering of these files are consistent with the 2D structures available at 
http://apollo.chemistry.gatech.edu/RibosomeGallery (1). 
j The numbering of these files follows sequence and is not aligned towards E. coli ribosome. 
k Structure factors not available. 
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Figure S1. Nucleotide assignment error in H. marismortui. (A) Although a density for an N2 amino 

group is clearly visible in the Fo-Fc map (red arrow), this nucleotide has been incorrectly assigned to an 

adenine in 1FFK and related structures (Table S1) at odds with a Cl- ion bound to its Watson-Crick 

edge. (B) This error has been corrected In 4V9F and related structures (Table S1). 
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Figure S2. d(Mn2+…N7) histograms derived from the PDB (May 2016; resolution ≤ 3.0 Å). These 

histograms emphasize the quasi-absence of coordination above 2.6 Å. For the first histogram, the 

largest number of data commes from nucleosomes (top). 
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Figure S3. Mg2+ to N7 scatter plots for the ≤ 2.0, ≤ 2.5 and ≤ 3.0 Å resolution ranges. The 1.9 ≤ 

d(Mg2+…N7) ≤ 2.4 Å and the 3.5 ≤ d(Mg2+…N6/06) ≤ 3.9 Å limits are marked by dashed grey lines. The 

Mg2+ ions in a suitable range are shown in green, the others in grey (Figure 2B). 
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Figure S4. Ni(H2O)52+ bound to an adenine (CSD structure). For further data on transition metals 

binding to N7 of purines, see (65). 

Figure S5. Clashes associated with the modeling of Mg2+ hydration shells. (A) In the 2QUS structure, 

a Mg2+ ion has been placed at 2.0 Å from the N7 atom of an adenine. (B) A complete hydration shell 

“set” with a 5° increment has been caculated for this ion. The one with the smallest chashes is shown 

in cyan in (B) and (C).  
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Figure S6. Two Mg2+ misidentifications. (A) Based on coordination distances, this assigned Mg2+ ion 

should be replaced by a Cl- ion (66,67). (B) This Mg2+ ion should be replaced by Na+, given coordination 

distances in the 2.4-2.6 Å range. 

Figure S7. Ion binding to N7 and two OP atoms. (A) In the H. marismortui structure, the coordination 

distance are compatible with Mg2+. (B) In the E. coli structure, the d(Mg2+…N7) = 2.5 Å coordination 

distance is not comptible with Mg2+. The distances to water might have been restrained. (C) In the T. 

thermophilus structure, the coordination distances strongly suggest the presence of Na+ rather than 

Mg2+. The ion to water distances restrained to 2.18 Å are shown in magenta). 
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Figure S8. Ion binding to N7 and one OP atoms. (A) The OP atom binds in cis to Mg2+. However, the 

use of d(Mg2+…Ow) = 2.18 Å restraints prevents its unambiguous distinction from Na+. (B) Same as 

Figure 7B. The OP atom binds in trans. (C) For this Mg2+ binding, the coordination distances around 

2.4 Å and d(Mg2+…OP) > d(Mg2+…N7) suggest the binding of Na+. 
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Figure S9. d(Mn2+/Na+…Ow) histograms derived from the PDB emphasizing the absence of systematic 

restraints for modelling the hydration shell of these metals (May 2016; resolution ≤ 3.0 Å). 
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5.2.4 Further remarks and outlook on Mg2+ binding to nucleic acids 

The idea behind the CSD (Paper 4) and PDB survey (Paper 5) was to propose a general picture 

of Mg2+ binding to nucleic acids, considering all possible nucleotide binding sites. However, the 

numerous issues found during this endeavor prompted us to focus on just few nucleotide positions at 

a time, highlighting all the structural pitfalls that are associated with the assignment of coordination 

of Mg2+ to these atoms. The ultimate goal remains to write a comprehensive paper about the rules, 

issues and biological implications of Mg2+ binding to nucleotides. In this perspective, these papers are 

meant to be a part of a larger story. An investigation of Mg2+ binding to nucleobase carbonyl oxygen 

atoms is currently ongoing in our group, with analogous premises, methodology and approach. A final 

exploration of Mg2+ binding to phosphate oxygen atoms will be likely the last chapter of this 

fascinating but still incomplete tale.  
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5.3 Asp/Glu side chains and “free” anions interacting with 

nucleic acids 

Besides cationic metals, a diverse ensemble of anionic species can be localized by structural 

analysis in the nucleic acid first hydration shell, directly interacting with nucleotides (Auffinger et al. 

2004). Among these anions, our focus has been on inorganic molecules such as halides, sulphate and 

negatively charged amino acid side chains (Asp and Glu). A surprising outcome of these surveys is 

that anions have been found not only to bind to hydrogen-bond donor sites, but also to hydrogen bond 

acceptor sites such as phosphate oxygen atoms. These occurrences can be explained by considering 

that anions assume unexpected protonation states under physiological conditions.  

Aspartate and glutamate side chains are involved in the recognition networks between proteins and 

nucleic acids. These two amino acids bear a carboxylate group, negatively charged under 

physiological conditions. In order to obtain a statistical view of the Asp/Glu binding with nucleic 

acids, we searched the PDB for crystallographic structures of nucleic acid-protein complexes at 

resolution ≤ 2.5 Å. A total of 1844 structures were included in the search. The binding events were 

defined considering the syn versus anti conformer of carboxyl and carboxylate groups, collectively 

identified as carboxyl(ate) (Fig. 5.1). 

A variable cutoff for hydrogen bonds was applied, considering the data on short interaction 

distances between carboxyl(ate) and oxygen atoms (Paper 6). A 2.8 Å cutoff was used for interactions 

involving phosphate groups, while interactions with other nucleotide atoms were searched with a 3.2 

Å cutoff. The survey took into account the anionic as well as the neutral form of Asp/Glu side chains, 

interacting with nucleotides by a single or two hydrogen bonds. The latter case is associated with the 

formation of nucleobase-carboxyl(ate) pseudo-pairs (Kondo and Westhof 2011). The results sorted by 

base and inferred protonation state of Asp/Glu side chain are reported in Table 5.1. 

 

Figure 5.1 Carboxyl(ate) groups syn and anti conformers. Schematic illustration of the syn 

versus anti lone pair on a carboxylate group (red) and the syn versus anti hydrogen for a carboxyl 

group (green).  
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Table 5.1. Asp/Glu interactions with nucleic acids. 1844 PDB structures of protein/nucleic acid 

complexes at resolution ≤ 2.5 Å were surveyed (August 2014). For all contacts the pseudo-base pair 

(with two hydrogen bonds), the syn and the anti (one hydrogen bond each) interaction modes are 

reported. Variable distance cutoff were used depending on the nature of the nucleotide atom. Number 

of occurrences refer to non-reundant set. 

 Asp/Glu carboxylate 
Asp/Glu carboxyl 

(protonated) 
Asp/Glu total 

  pseudo- pair syn anti pseudo-pair syn anti pseudo-pair syn anti 

G 51 31 33 - - 1 51 31 34 

A - 5 4 8 2 2 8 7 6 

C - 45 41 4 2 - 4 47 41 

U/T - 8 18 - 1 3 - 9 21 

PO4 - - - - 24 10 - 24 10 

Total 51 89 96 12 29 16 63 118 112 

 

The most intriguing events of Asp/Glu binding are the ones involving hydrogen bond interactions 

with anionic phosphate oxygen atoms, thus inferring the occurrence of a protonated carboxyl group. 

In term of non-redundant occurrences, these contacts are among the most represented. A further 

structural analysis uncovered a large number of instances showing ill-defined contacts in term of 

electron density map quality or presence of metal ions in the proximity that blurred the picture. Few 

trustworthy cases were found in the vicinity of the active site of endonuclease enzymes, showing short 

interaction distances ~ 2.6 Å. An example of a Glu contacting a phosphate in the complex between a 

homing endonuclease and its target DNA (Marcaida et al. 2008) is presented in Fig. 5.2. 

Figure 5.2 Protonated Glu in the active site of a homing endonuclease. Glu 117 (chain G) 

makes a short hydrogen bond with an anionic phosphate oxygen belonging to the DNA target 

helix. The inferred protonated state of the carboxyl group is highlighted by adding a hydrogen 

atom, not visible in the crystallographic structure (PDB: 2VS7; res.: 2.0 Å; Marcaida et al. 2008). 
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5.3.1 Review 2. Anions in nucleic acid crystallography (Methods Mol. Biol. 

2016) 

Graphical abstract 

 
 

Anions are widely used in crystallization buffers as phasing agents, pH regulators and cation 

co-salts, but their inclusion in the first hydration shell of negatively charged nucleic acids seems 

counterintuitive. However, since a 2004 study performed in the group it is appreciated that anions can 

interact with nucleic acids in certain conditions. We review here the current state of anions binding to 

nucleic acids as observed in PDB structures, with considerations on their importance in nucleic acid 

crystallography as well as their biological relevance. Due to various identification and attribution 

issues, it is likely that many anions have been missed in the available structures (especially in the 

diffusive solvent bulk) and their occurrence is thus underestimated. To help with their identification 

and to avoid misinterpretations, we report data about their water coordination distances, as well as 

their coordination modes with nucleobases. A special attention is paid to the highly represented 

chloride and sulfate ions. Together with the coordination of anions with electropositive sites, 

protonation issues emerged for some instances of coordination with electronegative positions. In order 

to explain these instances, we found the possibility of adenine and cytosine protonation in several 

examples to be inconsistent and probably due to attribution inaccuracies. On the other hand, neutral 

or protonated anions are more likely to occur. The main message of the review is that understanding 

the anion binding properties should help to avoid mislabeling of electron densities and provide insight 

related to their potential effects in crowded cellular environments. 
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5.4 Anionic or neutral carboxyl(ate) interactions and their 

involvement in protein structures 

The studies on carboxyl(ate) interactions during the search for protein-nucleic acids binding made 

us realize the importance of these functional groups for protein structure as well as crystal engineering. 

This interest culminated in a project of research in the CSD for carboxyl(ate) interacting with 

themselves and water molecules. The information yielded by this analysis have been extended to 

protein, where Asp/Glu pair can be found at key structural locations, such as the example on thaumatin 

that will be discussed later. 
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5.4.1 Paper 6. A comprehensive classification and nomenclature of 

carboxyl-carboxyl(ate) supramolecular motifs and related catemers: 

implications for biomolecular systems (Acta Cryst B, 2015) 

Graphical abstract 

 

Carboxyl and carboxylate groups can interact between themselves to form cyclic dimers and 

associate in many different ways through a single interlinking hydrogen bond to form specific 

supramolecular motifs. Further, they can form catemers that are polymeric-like chains formed by 

hydrogen bonded carboxylic groups in crystals. Through an exhaustive exploration of the Cambridge 

Structural Database (CSD) we reduced the apparently infinite number of single hydrogen bond 

arrangements involving these groups to 17 isolated carboxyl–carboxyl (13) and carboxyl–carboxylate 

(4) motifs. In addition, we found that only eight distinct catemer motifs involving repetitive 

combinations of syn and anti carboxyl groups can be formed. Statistical data related to the occurrence 

and conformational preferences of these motifs are presented along with data related to the strength 

of the hydrogen bonds they can form. We show that interaction distances are shorter for hydrogen 

bonds involving carboxylate groups (~2.5 vs ~2.7 Å), pointing towards a stronger type of hydrogen 

bond when a charged and/or electron delocalized species is implied. This distance difference between 

neutral and charged species can be used to infer protonation states in crystallographic biomolecular 

structures. Additionally, such strong hydrogen bonds are found in proteins where Asp/Glu amino acids 

form recurrent carboxyl–carboxylate motifs that are part of complex interaction networks playing a 

role in structure and folding. We consequently present data emphasizing how the exploration of small 

molecules can help understanding larger and more complex biomolecular systems. 
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Carboxyl and carboxylate groups form important supramolecular motifs

(synthons). Besides carboxyl cyclic dimers, carboxyl and carboxylate groups

can associate through a single hydrogen bond. Carboxylic groups can further

form polymeric-like catemer chains within crystals. To date, no exhaustive

classification of these motifs has been established. In this work, 17 association

types were identified (13 carboxyl–carboxyl and 4 carboxyl–carboxylate motifs)

by taking into account the syn and anti carboxyl conformers, as well as the syn

and anti lone pairs of the O atoms. From these data, a simple rule was derived

stating that only eight distinct catemer motifs involving repetitive combinations

of syn and anti carboxyl groups can be formed. Examples extracted from the

Cambridge Structural Database (CSD) for all identified dimers and catemers

are presented, as well as statistical data related to their occurrence and

conformational preferences. The inter-carboxyl(ate) and carboxyl(ate)–water

hydrogen-bond properties are described, stressing the occurrence of very short

(strong) hydrogen bonds. The precise characterization and classification of these

supramolecular motifs should be of interest in crystal engineering, pharmaceu-

tical and also biomolecular sciences, where similar motifs occur in the form of

pairs of Asp/Glu amino acids or motifs involving ligands bearing carboxyl(ate)

groups. Hence, we present data emphasizing how the analysis of hydrogen-

containing small molecules of high resolution can help understand structural

aspects of larger and more complex biomolecular systems of lower resolution.

1. Introduction

Carboxyl and carboxylate [written collectively as carboxyl-

(ate)] groups are found in a large variety of biomolecular

compounds and also in drugs and synthetic molecular systems.

For the former, the two Asp and Glu amino acids represent

� 2% of the � 2 million amino acids found in the Protein

Data Bank (PDB, November 2014 release; Berman et al.,

2000). For the latter, they assemble to form essential supra-

molecular synthons recurrently used in crystal engineering

(Desiraju, 2007, 2013; Merz & Vasylyeva, 2010) and are

present in � 37 000 (� 5–6%) of the � 675 000 crystal struc-

tures in the Cambridge Structural Database (CSD Version

5.35, November 2013; see Table 1; Allen, 2002; Chisholm et al.,

2006; Groom & Allen, 2014).

Despite the fact that carboxyl groups figure among the best

investigated hydrogen-bond functionalities (Huggins, 1936;

Leiserowitz, 1976; Berkovitch-Yellin & Leiserowitz, 1982;

Steiner, 2001, 2002; Das & Desiraju, 2006; Rodrı́guez-

Cuamatzi et al., 2007), no systematic classification of carboxyl–

carboxyl motifs is currently available. This is also true, but to a
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lesser extent, for carboxyl–carboxylate interaction modes

(Wohlfahrt, 2005; Rodrı́guez-Cuamatzi et al., 2007; Langkilde

et al., 2008). Indeed, the latter interaction types are essential in

biology where numerous close contacts between Asp/Glu side

chains have been reported (Gandour, 1981; Sawyer & James,

1982; Ramanadham et al., 1993; Flocco & Mowbray, 1995;

Torshin et al., 2003; Wohlfahrt, 2005; Langkilde et al., 2008).

For synthetic carboxyl dimers, the most common interaction

mode is the centrosymmetric cyclic dimer, but numerous other

dimers involving a single interlinking hydrogen bond have

been characterized. Interestingly, some of these dimers can

form catemers (Fig. 1), defined as infinite one-dimensional

patterns involving their carboxyl groups (Leiserowitz, 1976;

Berkovitch-Yellin & Leiserowitz, 1982; Kuduva et al., 1999;

Beyer & Price, 2000; Das et al., 2005; Das & Desiraju, 2006;

DeVita Dufort et al., 2007; Rodrı́guez-Cuamatzi et al., 2007;

Saravanakumar et al., 2009; Sanphui et al., 2013). A complete

classification of catemer motifs is also currently missing.

The formation of carboxyl(ate) dimers and further of

carboxyl catemer motifs implies the involvement of common

syn but also less common anti conformers, as well as the syn

and/or anti lone pairs of the O atoms (Görbitz & Etter, 1992a;

Das et al., 2005; Das & Desiraju, 2006; Sanphui et al., 2013; Fig.

1). Theoretical studies have investigated the relative stability

of the syn and anti conformers. It is generally accepted that in

the gas phase, the syn conformer is favoured over the anti

conformer by 21.4–28.9 kJ mol�1 depending on the theoretical

level and basis set used in quantum chemical calculations

(Kamitakahara & Pranata, 1995; Sato & Hirata, 1999; Nagy,

2013). In aqueous solution, the estimated relative energy

difference between the two conformers is reduced to

7.12 kJ mol�1 (Nagy, 2013). A further point of interest

involves the relative basicity of the syn and anti lone pairs of

carboxylate groups. Theoretical studies have reported that

although the syn lone pairs are intrinsically more basic, the

basicity difference decreases and even cancels out when

environmental effects are taken into consideration (Li &

Houk, 1989; Allen & Kirby, 1991; Gao & Pavelites, 1992). In

line with these data, a significant number of catemer motifs

involving anti conformers have been observed in various

crystallographic surroundings, supporting the fact that envir-

onmental effects are able to reverse anticipated conforma-

tional equilibria (Das & Desiraju, 2006). Anti conformers have

also been considered in drug discovery strategies involving

bioisosterism (McKie et al., 2008; Meanwell, 2011; Allen et al.,

2012).

Given the importance of these carboxyl–carboxyl(ate)

dimers in both the chemical and biochemical realms, the

present study aims at:

(i) providing an exhaustive classification of all possible

dimers and catemers involving these groups;

(ii) proposing a systematic nomenclature for them;

(iii) defining recurrent hydrogen-bond properties.

This study should contribute to an improved understanding of

the structural diversity observed in small-molecule crystal

structures, and provide insights into crystal engineering of new

materials (Desiraju, 2007, 2013), including pharmaceutical co-

crystals (Blagden et al., 2007). However, the main incentive of

the study resides in acquiring reliable statistical data that will

help to understand carboxyl(ate) interactions in biomolecular

systems. In this respect, analysing small-molecule crystal

structures, where H atoms are systematically observed, has a

clear edge over exploring biomolecular systems where H atom

positions are rarely reported (Ahmed et al., 2007; Fisher et al.,

2012).

2. Methods

The Cambridge Structural Database (CSD Version 5.35,

November 2013) was searched for structures containing

carboxyl–carboxyl(ate) motifs by using explicit H-atom posi-

tions. All searches were performed with the ConQuest soft-

ware (Bruno et al., 2002) using filters so that error-containing,

polymeric and powder structures were excluded, as well as

structures marked as disordered. Although H-atom disorder is

common in carboxylic systems, structures where the H atom

could not be unambiguously assigned to a single O atom were

not considered (Leiserowitz, 1976; Berkovitch-Yellin &

Leiserowitz, 1982; Wilson et al., 1996; Das et al., 2005; Thomas

et al., 2010; Hursthouse et al., 2011). This criterion leads to

exclusion of 12 out of the 23 catemers listed by Das & Desiraju

(2006). However, Steiner (2001) reported that statistics were

not affected by excluding disordered structures. The searches

were also restricted to structures with low R-factor values (R

� 0.05) unless otherwise specified. Metal-bound carboxyl(ate)
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Figure 1
Carboxyl(ate) groups (syn and anti conformers) and schematic structure
of a catemeric chain. The syn and anti lone pairs of the three
carboxyl(ate) O atoms are marked by double dots.

Table 1
Number of structures in the CSD (Version 5.35, November 2013)
containing at least one carboxyl, carboxylate or metal-bound carbox-
yl(ate) group and number of structures with low R-factor values (R �
0.05). Disordered, error-containing, polymeric and powder structures
were excluded from the search.

All R � 0.05

Carboxyl 14 452 8254
Carboxylate 9283 5446
Metal-bound carboxyl 492 305
Metal-bound carboxylate 13 438 9082
Total 37 665 23 087
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groups were excluded given their specific structural features

(Hocking & Hambley, 2005). Note that the November 2006

CSD release contained less than 2/3 of the structures found in

the November 2013 release. Thus, the present searches

significantly extend those presented in earlier publications on

smaller samples of structures (Kuduva et al., 1999; DeVita

Dufort et al., 2007; Langkilde et al., 2008).

Since carboxyl(ate) groups are involved in strong hydrogen

bonds (Jeffrey, 1997; Steiner, 2001; Langkilde et al., 2008), a

stringent hydrogen-bond cut-off criterion could be used

(O� � �O � 2.8 Å). The H-atom positions were not considered

for analysing hydrogen-bond lengths since their position is

systematically unreliable when not derived from neutron

diffraction experiments (Vishweshwar et al., 2004; Allen &

Bruno, 2010). Neutron diffraction surveys provide an average

1.018 Å (Allen & Bruno, 2010) or even a 1.070 Å value

(Vishweshwar et al., 2004) for the carboxyl O—H bond length,

compared with an average of 0.87 Å derived from our survey.

Hence, we have not used H atoms in the subsequent analysis,

except for obviously differentiating carboxyl from carboxylate

groups and for defining the syn/anti character of the former.

An incidental advantage of not using H atoms is that our

defined criteria can be used in biomolecular systems where H

atoms are rarely characterized.

The geometric parameters used to distinguish the syn and

anti conformers of the carboxyl groups and the spatial syn and

anti arrangement of carboxyl–carboxyl(ate) dimers are

detailed in x3.1. Specific criteria were used to exclude a few

borderline and possibly error-containing structures. For

instance, the WEGBUH structure (Ying, 2012) contains a

short (2.58 Å) interaction between two O atoms of the

carboxylic hydroxyl groups that corresponds rather to a

carboxyl–carboxylate than to a carboxyl–carboxyl motif.

Similarly, a significant number of structures are excluded

where the H atoms are located out of the O C—O plane by

more than 0.4 Å.

The results of the searches were analysed using Vista

(CCDC, 1994), and all structures were visualized using

Mercury CSD Version 3.3 (Macrae et al., 2008). Catemer

structures were individually examined and classified. The

possibility that some of the presented catemer motifs could

belong to large rings rather than infinite chains was considered

and excluded.

3. Results

3.1. Carboxyl and carboxylate groups

Carboxylic acids bear a proton that is commonly found in

the syn and more rarely in the anti conformation. In order to

distinguish between the syn and anti conformers, we imposed

the following criterion on the O� � �O—H angle (�) (Fig. 2).

The syn conformer corresponds to � angle values between 0

and 120�; the anti confirmer to � angle values between 120 and

180�. The relative proportion of these conformers is roughly

9/1 in favour of syn, while negatively charged carboxylate

groups represent about 2/3 of the total carboxyl groups (Table

2). The main geometric features of carboxyl(ate) groups are

research papers

Acta Cryst. (2015). B71, 164–175

Figure 2
Geometric parameters used for separating the carboxyl syn and anti
conformers. The syn conformers are defined by a � value below 120�

(marked by a blue dashed line on the histogram; � corresponds to the
O� � �O—H angle). The anti conformers are defined by a � value greater
than 120�. The histogram has been derived from an ensemble of low R-
factor (R � 0.05) carboxylic acid containing structures.

Table 2
Number of structures and fragments containing carboxyl(ate) groups in the CSD.

Only low R-factor structures (R � 0.05) are considered. Statistics were also collected for the anti conformer subgroups that take into account the carboxyl groups
that are involved in intra- and intermolecular hydrogen bonds, respectively. Distances are in Å, angles in �.

No. of structures No. of fragments d(C O) d(C—O) �(O C—O) �(C—C O) �(C—C—O) �(C—C—OH)

Carboxyl-syn 6852 9295 1.22 � 0.02 1.31 � 0.02 124 � 1 123 � 2 113 � 2 111 � 3
Carboxyl-anti (intermolecular) 209 223 1.21 � 0.01 1.31 � 0.02 121 � 2 122 � 2 117 � 2 112 � 4
Carboxyl-anti (intramolecular) 760 945 1.22 � 0.01 1.30 � 0.02 121 � 1 120 � 2 118 � 2 110 � 4
Carboxylate 5353 6760 1.25 � 0.02 – 125 � 2 117 � 2 – –

Figure 3
Three dicarboxylic acids with an anti carboxyl group involved in an
intramolecular hydrogen bond, schematically displayed under the CSD
most represented mono-anion dicarboxylic acid form.
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similar to those reported in an early study (Leiserowitz, 1976).

Our updated values are reported in Table 2. Note that, due to

its partial double-bond character, the C O bond of carboxyl

groups is shorter by � 0.11 Å than the adjacent C—O(H)

hydroxyl bond.

The anti conformer population is more heterogeneous than

the syn population since they are involved in a large diversity

of intermolecular but also intramolecular bonds such as those

observed in oxalic, malonic, maleic (Fig. 3) as well as phthalic

acids. For the three former acids in their most represented

mono-anion dicarboxylic acid form, the average d(O� � �O)

hydrogen-bond distances are 2.67 � 0.03 (10 structures),

2.46 � 0.03 (20 structures) and 2.44 � 0.03 Å (107 structures),

stressing the formation of very short hydrogen bonds. Since

the scope of this study is to examine supramolecular motifs, we

eliminated from our searches all ‘intramolecular’ contacts

involving an anti carboxyl conformer unless otherwise speci-

fied. When structures containing intramolecular hydrogen

bonds were excluded, the number of

fragments containing an anti carboxyl

conformer decreased from 1168 to 223.

3.2. Carboxyl–carboxyl(ate) interactions

3.2.1. Nomenclature. An evaluation of

carboxyl(ate) interaction modes based on

the syn/anti carboxylic conformers and

the syn/anti carboxyl(ate) lone pairs led

to a total of 17 carboxyl–carboxyl(ate)

dimers comprising: (i) one cyclic dimer;

(ii) 12 carboxyl–carboxyl dimers invol-

ving a single hydrogen bond; (iii) 4

carboxyl(ate) dimers. Free rotation

around the interlinking hydrogen bond is

considered for all except the cyclic dimer

(Fig. 4). The formation of three-centred

or bifurcated hydrogen bonds was not

considered since they do not appear in

previous (Görbitz & Etter, 1992b) and

current CSD surveys as well as in mole-

cular dynamics simulations of formate

and acetate ions in water (Payaka et al.,

2009, 2010). This simplifies considerably

the presented nomenclature.

Sixteen interaction modes involve a

single hydrogen bond linking the two

units. We propose a three letter nomen-

clature for carboxyl–carboxyl dimers

based on:

(i) the syn or anti conformer of the first

carboxyl group that is by convention

always the hydrogen-bond donor group

of the dimer;

(ii) the syn or anti lone pair of the

carbonyl hydrogen-bond acceptor group

of the dimer;

(iii) the syn or anti conformer of the

dimer hydrogen-bond acceptor group.

The first letter (S or A) corresponds to the

syn or anti conformer; the second letter (S

or A) to the lone pair involved in the

hydrogen bond; the third letter (S or A

separated by a dash from the two others)

to the position of the H atom not involved

in the hydrogen bond. For the eight

dimers involving the participation of a
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Figure 4
All 17 possible carboxyl–carboxyl(ate) dimers with accompanying nomenclature. The cyclic dimer
is represented in the top left box; the eight ‘carbonyl dimers’ involving a hydroxyl donor and a
carbonyl acceptor group are represented in the top right box; the four ‘hydroxyl dimers’ involving
a donor and acceptor hydroxyl group are represented in the central box (the two as-a and aa-s
dimers not identified in the CSD are shaded); the four carboxyl–carboxylate dimers are
represented in the bottom box.
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carbonyl lone pair in the hydrogen bond (‘carbonyl dimers’),

capital letters are used. Lowercase letters are used for the four

dimers involving the hydroxyl lone pair (‘hydroxyl dimers’). A

two capital-letter code suffices for the four carboxyl–carbox-

ylate dimers.
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Figure 6
Histograms showing the distance distribution between the two O atoms
involved in the interlinking hydrogen bond(s) for carboxyl–carboxyl(ate)
dimer structures with low R-factors (R � 0.05). The arrows mark the
average values. (a) d(O� � �O) histogram for the two carboxyl� � �carboxyl
hydrogen bonds of the cyclic dimers. (b) d(O� � �O) histogram for the non-
cyclic carboxyl� � �carboxyl hydrogen bonds. All syn and anti conformers
are taken into account. (c) d(O� � �O) histogram for the carbox-
yl� � �carboxylate hydrogen bonds (intramolecular hydrogen bonds are
not considered). All syn and anti conformers are taken into account. (d)
d(O� � �O) histogram for the carboxyl� � �carboxylate intramolecular
hydrogen bond found in mono-anion dicarboxylic acids (see for instance
Fig. 3).

Figure 5
Geometric parameters used for separating carboxyl–carboxylate dimers
involving syn or anti lone pairs. The histogram has been drawn for a sub-
ensemble of SS and SA dimers. The syn conformers are defined by a �
value below 130� marked by a blue dashed line on the histogram; �
corresponds to the O(H)� � �O� � �O angle. The anti conformers are defined
by a � value greater than 130�.

Table 3
Number of structures and fragments containing carboxyl–carboxyl(ate)
dimers in the CSD.

No. of structures† No. of fragments† d(O� � �O)‡

Carboxyl–carboxyl
Cyclic dimer 1741 (2984) 1929 (3385) 2.65 � 0.03

Carbonyl dimer
SS-S 57 (91) 64 (98) 2.68 � 0.04
SS-A 57 (80) 62 (88) 2.64 � 0.05
SA-S 204 (333) 234 (378) 2.67 � 0.05
SA-A 18 (25) 19 (26) 2.65 � 0.06
AS-S 4 (6) 4 (6) 2.68 � 0.05
AS-A 6 (7) 6 (7) 2.64 � 0.02
AA-S 11 (15) 11 (16) 2.64 � 0.04
AA-A 3 (3) 3 (3) 2.70 � 0.04

Hydroxyl dimer
ss-a 2 (7) 2 (7) 2.71
sa-s 6 (8) 6 (8) 2.76 � 0.12
as-a – (–) – (–) –
aa-s – (–) – (–) –

Carboxyl–carboxylate
SS 801 (1199) 947 (1429) 2.53 � 0.05
SA 319 (492) 357 (554) 2.58 � 0.05
AS 27 (48) 29 (52) 2.52 � 0.06
AA 61 (102) 68 (117) 2.54 � 0.06

† The number of structures and fragments are given for structures with low R-factors
(R � 0.05). The number of structures and fragments derived from the entire CSD (no R-
factor restrictions) are given in parentheses. ‡ Average distances (Å) calculated for the
R � 0.05 subset.

263



3.2.2. Geometric classification criteria. As noted above

(Fig. 2), simple geometric criteria can be used to filter the

carboxyl syn and anti conformers. It was less obvious how to

discriminate dimers based on their syn or anti lone pair

bonding types. After having tried several options, we found

that the histograms showing the � angle that corresponds to

the O(H)� � �O� � �O angle involving the hydrogen-bond donor

O atom and the two carboxylate O atoms are the most helpful

to achieve such a goal. The histogram drawn for the carboxyl–

carboxylate dimers is unambiguous and prompted us to use a

130� cut-off for isolating the SS and AA from the SA and AS

carboxyl–carboxylate dimers, respectively (Fig. 5). Although a

clear partition is difficult to identify on the SS-S dimer histo-

gram (data not shown), a visualization of these dimers

confirmed the soundness of the defined criteria. As is often the

case, borderline conformations are observed and are difficult

to eliminate but do not alter the inferred landscape.

3.2.3. Carboxyl–carboxyl interaction modes. Cyclic dimer:

This dimer is undoubtedly the best represented in the CSD

(Table 3). The distance between the O atoms involved in the

hydrogen bond is on average close to 2.65 � 0.03 Å (Fig. 6)

and consequently shorter by 0.17 Å than the accepted

H2O� � �OH2 hydrogen-bond length (2.82 Å). Cyclic dimers are

almost perfectly planar.

‘Carbonyl dimers’: Eight ‘carbonyl dimer’ types were iden-

tified (Table 3). The four types involving the syn conformer of

the donor carboxyl group and among them, the SA-S dimers,

are well represented. The synplanar rotamers are generally

not observed except for the SA-S dimers where they are as

prominent as antiplanar rotamers (Fig. 7). Note that syn- and

antiplanar rotamers are defined by

inter-dimer dihedral angles with

values close to 0 and 180�, respec-

tively (see, for example, Fig. 7c).

The ACETAC09 acetic acid struc-

ture seems to be stabilized by a C—

H� � �O interaction involving the

methyl group, an orientation that is

not found for chloroacetic acid in

the CLACET01 structure and

illustrates how weak interactions

participate in structural networks.

Not surprisingly, the four dimer

types involving the anti conformer

of the donor carboxyl are rare.

Among them, the AA-S dimer that

involves the anti lone pair of a

carbonyl group is best represented.

However, convincing structures are

found for each dimer type (Fig. 8).

The hydrogen-bond length distri-

bution is broader than the one

given for the cyclic dimers, while

the average hydrogen-bond length

is roughly the same (2.66 � 0.05 Å;

Fig. 6).

‘Hydroxyl dimers’: Although the

two carboxyl hydroxyl groups

could form hydrogen bonds, this

interaction occurs rarely. Only two

ss-a and six sa-s conformers were

characterized (Table 3; Fig. 9).

None of the two other possible as-a

and aa-s conformers were

observed. This points to the fact

that the lone pairs of carboxyl —

OH groups seem to be much less

basic and/or accessible to other

carboxyl groups than the lone pairs

of more common hydroxyl groups.
3.2.4. Carboxyl–carboxylate

interaction modes. The SS dimer,
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Figure 8
Carboxyl–carboxyl dimers involving an anti conformer and the lone pair of a carbonyl group (‘carbonyl
dimer’). The C and O atoms not belonging to the interacting carboxyl groups are shown in light blue, Cl
and Ge atoms are shown in green and dark green, respectively. (a) AS-S dimer (WOKPOC). (b) AS-A
dimer (NEWXAO). (c) AA-S dimer involving two fumaric acid molecules (KACNAD). (d) AA-A dimer
(DMOXEA01).

Figure 7
Carboxyl–carboxyl dimers involving a syn conformer and the lone pair of a carbonyl group (‘carbonyl
dimer’) along with their rotamer distribution around the interlinking hydrogen bond for structures with R
� 0.05. The C and O atoms not belonging to the interacting carboxyl groups are shown in light blue, F and
Cl atoms are shown in yellow and green, respectively. (a) Antiplanar SS-S dimer (NAGVUM) and O1—
O2—O3—O4 dihedral angle rotamer histogram. (b) Antiplanar SS-A dimer (CBUCDX01) and O1—
O2—O3—O4 dihedral angle rotamer histogram. (c) Antiplanar and synplanar SA-S dimers (CLACET01
and ACETAC09) and O1—O2—C3—C4 dihedral angle rotamer histogram. (d) Antiplanar SA-A dimer
(MALIAC12) and O1—O2—C3—C4 dihedral angle rotamer histogram.
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involving a hydrogen bond between a syn hydroxyl group and

a syn carboxylate lone pair, is the most prevalent carboxyl–

carboxylate dimer in the CSD (Table 3). The antiplanar SS

dimer is frequently observed while dimers close to the

synplanar orientation are much less represented (Fig. 10).

Some rare occurrences of the synplanar orientation stabilized

by intervening groups (such as NH4
+ in JEDPUE; see Fig. 10)

are reported. In those instances, the distances between the O

atoms not involved in the hydrogen bond exceed 3.0 Å.

All SA rotamers, involving a hydrogen bond between a syn

hydroxyl group and an anti carboxylate lone pair, are nicely

represented with some preference for the antiplanar orienta-

tions. The AS and AA dimers are less abundant but are still

observed in a significant number of structures.

The most distinctive feature of these carboxyl–carboxylate

dimers is related to the very short average hydrogen-bond

distance between the two O atoms (2.54 � 0.06 Å), which

does not seem to be dependent on the dimer type (Fig. 6). The

shortest observed hydrogen bonds (2.43 � 0.04 Å) belong to

intramolecular mono-anion dicarboxylic acids (Figs. 6 and 10).

3.2.5. Carboxyl(ate)–water hydrogen-bond length. The

hydrogen-bond length between carboxyl(ate) groups and

water molecules is strongly dependent on the acceptor or

donor character of the former. When bound to the hydroxyl

group, the average d(C—O(H)� � �Ow) distance is

2.59 � 0.06 Å (Fig. 11a); when bound to a carboxyl(ate)

carbonyl group, the average d(C O� � �Ow) distance

(2.77 � 0.07 Å) becomes close to water hydrogen-bond

distances (Figs. 11b and c). The shortest reported hydrogen-

bond lengths are close to 2.4 Å. Such a short length is found in

the CACTUW structure (Vishweshwar et al., 2004), where the

(C O)O—H� � �Ow distance is close to 2.48 Å and involves an

anti conformer (Fig. 9a). Interestingly, only 44 water molecules

establish a hydrogen bond with the lone pair of the carboxyl—

OH group either in syn or anti

(compared with the � 2800 water

molecules found around the other

groups), confirming its poor

acceptor potential. The associated

distances are close to 2.80 Å.

3.2.6. Catemers. Nomenclature:

The dimer nomenclature can be

adapted without major modifica-

tions to the catemer motifs for

which two classes can be defined:

(i) the homo-catemers involving the

formation of a continuous chain of

the same dimer and (ii) the hetero-

catemers involving two alternating

dimer types. In the latter case, we

impose the convention that the syn

conformer precedes the anti

conformer. Thus, the SS-A�AS-S

code should be used instead of the

AS-S�SS-A code. In the current

CSD release, four homo- and four

hetero-catemer types were identi-

fied (Table 4 and Fig. 12).

Catemer formation rule: The SS-

S and SA-S homo-catemers are the

most represented followed by the

SS-A�AA-S hetero-catemers. Three

other catemers are poorly repre-

research papers

Acta Cryst. (2015). B71, 164–175

Figure 9
Rare carboxyl–carboxyl dimers involving the lone pair of the hydroxyl
group (‘hydroxyl dimers’). The C and O atoms not belonging to the
interacting carboxyl groups are shown in light blue, N atoms are shown in
magenta. The light blue spheres indicate that the molecule has been
truncated for visualization purposes. (a) Antiplanar SS-A dimer
(CACTUW; R = 0.04). Due to the size of the system, only the interacting
fragments are shown. The unusually short carboxyl–Ow distance is given.
The red asterisks mark the carboxyl groups involved in the ss-a dimer. (b)
Antiplanar sa-s dimer (CAYJAO; R = 0.06). (c) Synplanar sa-s dimer
involving two fumaric acid molecules (EMONAW; R = 0.11). The N-
containing interacting molecule has been truncated due to its size.

Figure 10
The four carboxyl–carboxylate dimer types and their rotamer distribution around the interlinking
hydrogen bond for structures with R� 0.05. The C and O atoms not belonging to the interacting carboxyl
or carboxylate groups are shown in light blue, N atoms are shown in magenta. (a) (Left) Antiplanar SS
dimer involving two fumaric acid molecules (HUSSUJ). (Middle) Synplanar SS dimer (JEDPUE). An
NH4

+ molecule links the carboxyl(ate) groups. The light blue spheres indicate that the molecule has been
truncated for visualization purposes. (Right) O1—O2—O3—O4 dihedral angle rotamer histogram. (b)
Antiplanar SA dimer involving two fumaric acid molecules (CLEMAS) and O1—O2—C3—C4 dihedral
angle rotamer histogram. (c) Antiplanar AS dimer involving two fumaric acid molecules (SEGSAZ) and
O1—O2—O3—O4 dihedral angle rotamer histogram. (d) Antiplanar AA dimer involving two fumaric
acid molecules (BAHLEC) and C1—C2—C3—C4 dihedral angle rotamer histogram.
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sented but still present in the CSD. These catemers involve the

eight ‘carbonyl dimers’ shown Fig. 4.

After closer examination of the catemer nomenclature

(Table 4), a simple rule emerged. If the dimer starts with a syn

or an anti conformer it should end with an identical

conformer. Thus, the SS-S, SA-S, AS-A and AA-A dimers

form homo-catemers since the first and the last conformers are

identical, while the SS-A, SA-A, AS-S and AA-S dimers need

to associate with a complementary motif and can only form

hetero-catemers. According to this rule, all eight possible

homo- and hetero-catemer combinations were identified in the

CSD, although the SS-A�AS-S (ROZHEU; Dawid et al., 2009)

and SA-A�AS-S catemers (MEKLOE; Das & Desiraju, 2006)

were identified in only one instance. Table S1 of the

supporting information provides a list of all characterized

catemers, which were manually checked to confirm that they

are not part of large rings.

4. Discussion

4.1. A systematic classification of carboxyl–carboxyl(ate)
dimers . . .

By using simple stereochemical considerations, we have

demonstrated that the apparently overwhelming diversity of

carboxyl–carboxyl(ate) dimers (Rodrı́guez-Cuamatzi et al.,

2007) can be reduced to 17 supramolecular motifs when

considering free rotation around the interlinking hydrogen

bond. A hierarchy of motifs emerged that distinguishes first

the cyclic dimer (1929 fragment occurrences), followed by the

SS (947 occurrences), SA (357 occurrences) and SA-S dimers

(234 occurrences) (Table 3). The other dimers are less repre-

sented and some are rare, especially those in the ‘hydroxyl

dimer’ class where the as-a and the aa-s types are absent from

the current CSD release (Fig. 4). This latter observation is in

agreement with the fact that strong donor groups such as

carboxyl —OH functions are also poor acceptors, as reported

in small molecules and biomolecular systems (Ramanadham et

al., 1993; Steiner, 2002).

The reasons as to why in certain circumstances, carboxyl

groups prefer to form single hydrogen-bonded dimers

extending sometimes into polymeric-like catemeric chains

rather than cyclic dimers remains a subject of astonishment,

although much has been written on this topic including

considerations related to the preferential involvement of syn

and anti lone pairs and conformers (Glusker, 1998; Sato &

Hirata, 1999; Nagy, 2013).

In order to appreciate better these conformational prefer-

ences, statistical models predicting the number of hydrogen

bonds that might form between any donor/acceptor pair in a

crystal structure have been derived using CSD data (Allen et

al., 1999; Galek et al., 2014) along with computational models

providing estimates of their intrinsic stability (Dunitz &

Gavezzotti, 2012). These studies confirmed the pre-eminence
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Figure 11
Histograms showing the distance distribution between the two O atoms
directly involved in the carboxyl(ate)–water hydrogen bond. For clarity,
only water molecules positioned in a 1 Å slice above and below the plane
defined by the three heavy atoms of the carboxyl(ate) groups are
considered. A cut-off of 2.2 Å for d(C O� � �H—Ow) or d(C—
OH� � �Ow) was used. (a) d(C—OH� � �Ow) histogram involving carboxyl
groups. (b) d(C O� � �Ow) histogram involving carboxylate groups. (c)
d(C O� � �Ow) histogram involving carbonyl O atoms of the carboxyl
group.

Table 4
Number of catemer-containing structures in the CSD.

Only low R-factor structures (R � 0.05) are taken into account (see complete
list in Table S1). Disordered, error-containing, polymeric and powder
structures were excluded from the search.

No. of structures

Homo-catemer
SS-S 23
SA-S 67
AS-A 3
AA-A 3

Hetero-catemer
SS-A�AS-S 1
SS-A�AA-S 17
SA-A�AS-S 1
SA-A�AA-S 7
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of the cyclic dimer over other motifs. Although such approa-

ches appear promising, they suffer from: (i) drawbacks related

to the still noticeable lack of a sufficient number of crystal

structures; (ii) the difficulty to take into account environ-

mental effects; (iii) important approximations in the calcula-

tion of the interatomic forces at play in such complex systems.

In this respect, non-additive contributions are especially

difficult to estimate and quantum mechanical calculations

confirmed that the energy gap between different motifs is

small and lies within the precision limits of the methods

(Meot-Ner et al., 1999; Meot-Ner, 2012).

The most important factor to take into account is related to

the strong competition of alternate binding motifs. Indeed, in

CSD crystal structures, it was established that the probability

of formation of dimers was around 30%, the remainder

forming hydrogen bonds with a great variety of other accep-

tors (Steiner, 2001, 2002). Interestingly, unforeseen motifs are

still brought to light. To cite only a few of them, new crystal

forms of aspirin were recently published (Hursthouse et al.,

2011) and a crystallization study of a family of mono-substi-

tuted salicylic acid compounds reported an unexpectedly large

diversity of motifs (Montis & Hursthouse, 2012). To under-

stand the association rules of these supramolecular synthons

and to be able to be truly predictive, we probably still have to

expand current databases by orders of magnitude.

4.2. . . . and associated catemers

For catemers, we designed a simple rule derived from the

carboxyl–carboxyl(ate) dimer nomenclature that postulates

that only eight catemer motifs can be formed (Fig. 12). As for

dimers, a catemer hierarchy exists, with the SA-S catemer

being the most represented (Table 4). The possible origin of

the less frequent formation of catemer motifs over the

common cyclic dimer has been addressed by several authors

and is of special interest in crystal engineering (Beyer & Price,

2000; Das & Desiraju, 2006; Sanphui et al., 2013). Basically, the

same factors involved in the preferential formation of one or

the other dimer play a role here, namely steric factors,

supporting C—H� � �O interactions and hydrogen-bond

competition with various types of chemical groups in addition

to specific stereoelectronic effects. These observations stress

that intrinsic or local energetic considerations are not suffi-

cient to describe the formation rules of these motifs (Leiser-

owitz, 1976; Berkovitch-Yellin & Leiserowitz, 1982; Kuduva et

al., 1999; Das & Desiraju, 2006; Hursthouse et al., 2011).

As for dimers, new catemer patterns are still uncovered

such as in the 1,2-phenylenedipropynoic acid where two

carboxylic groups from the same molecule are involved in the

formation of a SA-A�AS-S catemeric chain (unfortunately the

structure was not deposited in the CSD; Saravanakumar et al.,

2009). Furthermore, recent examples of carboxylic acid

catemer and dimer synthon polymorphs were reported (Gajda

et al., 2009; Sanphui et al., 2013). Overall, we characterized 122

catemers that can be compared with the 73 catemers char-

acterized from a survey of the April 1998 CSD (Kuduva et al.,

1999). Note that in this present study, we were able to cate-

gorize two particularly rare catemers observed in only one

instance each (Table 4). This is fortunate since we believe to

have now a complete structural

sample of each of the eight possible

homo- and hetero-catemer struc-

tures.

4.3. Short hydrogen bonds

Besides these classification

attempts, this study supports find-

ings established in earlier surveys

on smaller structural samples that

hydrogen bonds involving

carboxyl–carboxylate dimers are

on the shorter and consequently

stronger side of hydrogen bonds

(Jeffrey & Saenger, 1991; Jeffrey,

1997; Steiner, 2001, 2002; Vish-

weshwar et al., 2004; Langkilde et

al., 2008). It is beyond the scope of

this paper to analyse the reasons as

to why such short hydrogen bonds

are formed. However, the topic of

short or ‘strong’ hydrogen bonds

involving amongst others the

carboxyl(ate) groups found in

proteins has received great atten-

tion especially since they were
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Figure 12
Examples of the eight catemer types identified in the CSD. The C and O atoms not belonging to the
interacting carboxyl groups are shown in light blue. The white and red dots mark the position of the
connected carboxylic groups in the catemeric chain. The red asterisks mark the carboxyl groups used for
naming the catemer. The light blue spheres indicate that the molecule has been truncated for
visualization purposes. (a) SS-S homo-catemer (XONNET); (b) SA-S homo-catemer (ACETAC07); (c)
AS-A homo-catemer (GIMRAW); (d) AA-A homo-catemer (DMOXBA01); (e) SS-A�AS-S hetero-
catemer (ROZHEU); (f) SS-A�AA-S hetero-catemer (WOKPOC); (g) SA-A�AS-S hetero-catemer
(MEKLOE). (h) SA-A�AA-S hetero-catemer (MALIAC12).
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associated with enzymatic catalytic mechanisms (Perrin &

Nielson, 1997; Katz et al., 2002; Gilli & Gilli, 2009; Perrin,

2010; Hosur et al., 2013) involving either the syn or anti lone

pairs (Zimmerman et al., 1991).

The carboxyl–carboxyl hydrogen bonds are generally

considered as �-cooperative bonds or bonds belonging to the

class of ‘resonance-assisted hydrogen bonds’ (RAHB; Vish-

weshwar et al., 2004; Bertolasi et al., 2006; Gilli & Gilli, 2009).

In these motifs, the COOH donor is activated by �-coopera-

tive hydrogen bonding (O—H� � �O C). The carboxyl–

carboxylate hydrogen bonds that involve a bond between an

acid and its conjugate base fall clearly in a different pool

where the stabilizing effect is induced by the presence of the

negative charge. These bonds are also called ionic hydrogen

bonds (Steiner, 1999; Meot-Ner, 2012) or negatively ‘charge-

assisted hydrogen bonds’ (CAHB; Vishweshwar et al., 2004;

Gilli & Gilli, 2009). They are on average � 0.1 Å shorter than

the RAHB hydrogen bonds (Fig. 6). This is particularly

obvious when both groups have similar pKa values as in

protein structures where they play important structural and

sometimes catalytic functions (Cleland & Kreevoy, 1994;

Hosur et al., 2013).

A third category of hydrogen bonds is found in mono-anion

dicarboxylic compounds (Fig. 3). These intramolecular

hydrogen bonds can be regarded as very short CAHBs given

their average 2.43 Å distance (Fig. 6d). Consequently, they

also belong to the strongest class of hydrogen bonds among

those involving carboxyl(ate) groups. The shortening of the

hydrogen bond is attributed to the presence of the electro-

negative O acceptor atom. They are probably further stabi-

lized by some synergism due to increased �-delocalization

facilitated by their intramolecular character (Perrin &

Nielson, 1997). These dimers involve both the anti conformer

and a carbonyl lone pair, supporting the view that the lone

pair basicity scale might be essentially contextual. Further,

these mono-anion dicarboxylic compounds are involved in the

formation of at least two types of hetero-catemeric chains:

(i) the SA-A�AS-S (Fig. 7d) and (ii) SA-A�AA-S types

(Fig. 13d).

Rather counterintuitively, the shortest carboxyl(ate)–water

hydrogen bonds involve the neutral carboxyl and not the

charged carboxylate group (Fig. 11). Such short hydrogen

bonds were analysed by density functional theory (Śmie-

chowski et al., 2011; Brown et al., 2012) and extensively

discussed in a small-molecule neutron diffraction study where

the authors were able to demonstrate the associated chain of

polarization events (Vishweshwar et al., 2004). The latter

group observed that not only charge and resonance assistance

can lead to very short intermolecular hydrogen bonds

[d(O� � �O) ’ 2.4–2.5 Å], but polarization assistance must also

be considered in terms of �-cooperative stabilization (see Fig.

9a). These synergistic effects were named ‘synthon-assisted

hydrogen bonds’ or SAHB (Brown et al., 2012). Examples of

such multi-centred short hydrogen bonds can also be found in

biomolecular systems and might play a significant role

at catalytic sites (Cleland & Kreevoy, 1994; Katz et al.,

2002).

4.4. Implications for biomolecular systems

Carboxyl dimers that involve simultaneous protonation of

two Asp/Glu amino acids have not been reported in biomo-

lecular systems, although carboxyl–carboxylate dimers appear

to be relatively frequent in a wide pH range that can extend to

8.0 (Sawyer & James, 1982; Flocco & Mowbray, 1995; Torshin

et al., 2003; Wohlfahrt, 2005; Langkilde et al., 2008). The

formation of such interactions is surprising since it is generally

assumed that given the pKa of the Asp (� 3.9) and Glu (� 4.3)

residues (Pace et al., 2009), they would be deprotonated at

physiological pH. As an outcome, carboxyl(ate) groups can

form four different dimer types that extend to 16 when the two

Asp/Glu amino-acid types are considered. However, since H-

atom positions can rarely be observed in macromolecular

systems, SA and AS dimers cannot be differentiated and this

number reduces to nine due to degeneracy.

It was reported that the SA/AS arrangement is the most

common in proteins (62%) followed by SS (24%) and AA

(14%; Wohlfahrt, 2005), in contrast to the present study where

the SS dimer dominates (Table 3). This originates probably

from the better accessibility of the anti lone pairs of the Asp/

Glu residues that are not shielded by large chemical groups, as

is observed in a majority of CSD structures. However, it

remains to be determined whether the SA or AS arrangements

is favoured or if they are energetically not differentiable. In

other words, if the anti conformer is preferred or not over the

syn conformer or if these preferences are contextual as so

often witnessed in all types of chemical systems. Theoretical

calculations on model systems favour the AS arrangement

(Wohlfahrt, 2005), while the present study identifies the SA

arrangement as being the most frequent (Table 3).

To identify the protonated state of Asp/Glu residues in X-

ray structures, efforts based on stereochemical factors have

been made. The most obvious consideration relates to the

hydrogen-bond proximity of two carboxyl(ate) O atoms, the

associated distance being generally well below 2.7 Å (Sawyer

& James, 1982; Ramanadham et al., 1993; Flocco & Mowbray,

1995; Torshin et al., 2003; Wohlfahrt, 2005; Langkilde et al.,

2008). The carboxyl C—O(H) and C O bond lengths differ

by� 0.1 Å (Table 2) and the bond electron densities have also

been exploited in the analysis of high-resolution protein

structures (� 1.3 Å), leading to clear identification of proto-

nated Asp/Glu residues (Ahmed et al., 2007; Fisher et al.,

2012). In the absence of good neutron diffraction structures

(Ahmed et al., 2007; Hosur et al., 2013), such techniques could

help to unscramble the degeneracy issue mentioned above. On

a similar line of thought, short side-chain Asp/Glu carbox-

yl(ate) to Ow distances could be used to infer protonation

states of the residues (Ramanadham et al., 1993).

5. Summary and perspectives

This work illustrates the diversity of supramolecular motifs

generated by a single chemical group and offers a compre-

hensive carboxyl–carboxyl(ate) dimer and catemer nomen-

clature. As noted above:
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(i) 17 possible carboxyl–carboxyl(ate) interaction modes

including syn and anti conformers as well as carbonyl lone

pairs were identified;

(ii) among them, the cyclic dimer is the most represented;

(iii) instances of all other possible interaction modes were

found in the CSD, except the two as-a and aa-s ‘hydroxyl

dimers’;

(iv) based on this classification, eight catemeric types could

be uniquely identified;

(v) the anti conformers are well represented and form

distinguishable supramolecular motifs implying no significant

basicity difference between the syn and anti lone pairs;

(vi) the strongest (intramolecular) hydrogen bonds are

observed in mono-anion dicarboxylic compounds and involve

simultaneously an anti conformer and an anti lone pair,

supporting the fact that anti interactions are by no means

weaker than syn interactions;

(vii) the shortest hydrogen-bond lengths found in this

survey, including those formed with water molecules, are close

to 2.36 Å (Fig. 6d);

(viii) cooperative effects appear to be important in probably

all systems involving carboxyl(ate) groups and should always

be considered.

Although significant progress has been achieved in crystal

engineering, it seems appropriate to recall a sobering thought

by Steiner, who wrote in a paper on hydrogen-bond compe-

tition: ‘Even though it is true that strong hydrogen-bond donors

tend to interact with strong acceptors, this is valid only as a

tendency. Weak acceptors also have a certain chance of

attracting the strong donor. This weakens the general applic-

ability of rules for predicting hydrogen-bond modes from

hierarchies of donor and acceptor strengths and indeed all such

rules published are very unreliable in practice’ (Steiner, 2001).

Further, Desiraju, witnessing the constant discovery of

unforeseen structures, noted that after all: ‘it would seem that

brute-force method will eventually win’ (Desiraju, 2007),

suggesting that many more interaction rules of increasing

complexity will be brought to light and that concerted but also

serendipitous crystallization experiments are still very much

needed to make progress in the field. These considerations on

small supramolecular synthons apply fully to biomolecular

systems where carboxyl(ate) groups are found to adapt in

surprising and still insufficiently documented ways to their

local environment.
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Table S1 List of all catemer-containing structures identified in the CSD with R1 ≤ 0.05. 

Homo-catemer  

SS-S DAYNUN; ENIFAJ; FIKJEO; GUWCOQ; HUKJUT; HUSXAU; IBUHES; IBUHOC; 

MUCQAD; NAGVUM; SUVYEN; TARTAC; TARTAL; TARTAL01; TARTAL02; 

TARTAL03; TARTAL04; TORTEA; VAFCUB; WOCHIF; XEDZUC; XONNET; 

ZOGTUK 

SA-S ACETAC07; ACETAC09; ARUVAK; BELQOZ; BIPCIQ10; BUJYEL; CANSAL; 

CIJLOW; CIPZIL; CITRAC10; CITRAC11; CLACET01; DIYDIY; DMCPCX; 

DOTWOY; EVORIQ; EYONAI; FIWQEI; FOHREI; FORMAC01; GELZIG; 

GOGPEY; GOGPIC; HEKWOJ; HIFWOJ; HUGSEH; HUWLIV; IMEHIS; IROQOV; 

ISORUD; ISOSAK; ISOSAL; IVEBIV; JUMVIW; KABGOL; KIKLIZ; KOJZEO; 

KUTMIW; MEKMOF; MIYCON; MEDNOZ01; NUFJUU; OWUSEF; OXALAC05; 

OXALAC07; PEPPAD; PEZWAS; QAGMOG; QUQHAL; QURQID; RACCEE; 

SAWBUN; SDPPCX; TEHMAU; TETROL01; TUSPOM; UCAYUU; URUPUT; 

VEVSIZ; VOHNUC; WANROU; WASJAD01; WINVAR; WOCTUD; WUXHUS; 

ZAVTOF; ZILBOL 

AS-A GIMRAW; NEWXAO; ROGHOL 

AA-A DMOXDA01; DMOXDA02; HUMGOL 

Hetero-catemer  

SS-A•AS-S ROZHEU 

SS-A•AA-S BCOCDC; CBUDCX; CBUDCX01; CBUDCX02; CBUDCX03; CBUDCX04; 

COMHFN; COMHFN01; CPRDCA; FIGMAJ; FURDCB01; IDAKAB; JUNCUQ; 

JUNMAG; MEKLOE; MIGPEX; RAJJUH 

SA-A•AS-S WOKPOC 

SA-A•AA-S CPIBFC; CUKGIZ; KAMKAK; KAKTOS; MALIAC11; MALIAC12; MALIAC13 
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5.4.2 Further remarks and outlook 

One of the most important outcomes of this work is that very short hydrogen bonds should be 

evaluated as individual interactions and their occurrence, although rare, has to be considered in 

prediction or computational techniques such as molecular dynamics. A parametrization for a unique 

interaction between two specific atoms that can lead to distances ~ 2.5 Å is needed for a trustworthy 

description of the system, wherever they appear. This work infers also that structural analysis has the 

potential to improve our perception of protonation states inside large crystallographic structures and 

shed light on biochemical mechanism involving variation of pH/protonation.  

Analyses such as the study of interaction distances between carboxyl(ate) and water molecules can 

show significant patterns regarding the strength of hydrogen bond donor/acceptor and protonation 

states can be successfully highlighted even when the hydrogen atoms are not directly visible. In this 

direction, an example of Asp/Glu interaction can be found within the thaumatin (a sweetener protein, 

PDB: 2VHK, res.: 0.9 Å) core. Considering the very short interaction distance (~ 2.5 Å), even without 

explicit hydrogen atoms (present only in some ultra-high resolution structures) the protonation states 

can be reliably inferred. Thus, interaction distances between particular atoms of charged species can 

be used to infer protonation states even in lower resolution structures, such as the large majority of 

relevant biomolecules.  
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5.5 Preliminary data on MD analysis of temperature effects on 

RNA  

The binding of charged species is a significant factor in understanding how the environment can 

act on nucleic acids by affecting the properties of solvent coordination. Yet, it is just a part of the wide 

spectrum of environmental effects. In the effort to provide a more complete picture, I used MD 

simulations on RNA during my PhD. The data presented in this chapter are preliminary results, 

because, at the time of writing (September 2016), more detailed analysis were still being performed.  

The MD data on GNRA tetraloops presented in Paper 1 highlighted the structural role of bound 

water molecules for these loops. Given the symbiotic nucleic acid/solvent relationship, it is clear that 

these hydration patterns are involved in the stabilization of RNA structures. The main focus of further 

MD studies has been to analyze the RNA first shell solvent structure, by measuring simulated water 

and ions residency times surrounding the loop, as a measure of the loop stability. In fact, a previous 

MD study conducted in the group in 2002 on a RNA duplex showed that the dynamics of water 

molecules and ions located in the RNA first coordination shell strongly depends on the temperature 

(Auffinger and Westhof 2002). The most spectacular variation, observed between 278 K and 310 K, 

was a halving of the water molecule highest residence time (from 1 ns to 0.5 ns). The associated 

invariability of RNA structure suggested that this observation was related to a “premelting” of the 

solvent surrounding RNA.  

Starting from these premises, we planned to conduct similar MD simulation at variable 

temperatures on tetraloop motifs. The goal was to assess the stability of the loop through 

temperature-induced melting of the first shell solvent structure, in order to study how base mutations 

within the loop, in the closing pair or in the stem affects it. However, the results of these simulations 

were contradictory. Although a destabilization of the tetraloop was observed upon disruption of the 

Watson-Crick closing pair, we needed further results to isolate the key aspects of this phenomenon. 

To gather these information and isolate the relevant point to analyze, we shifted our attention to 

simpler RNA duplex systems. Thus, (GpC)12 and (ApU)12 duplexes have been studied in sets of 50 ns 

MD simulations, at five constant temperatures: 277 K, 300 K, 320 K, 340 K and 360 K. More details 

on the simulations setup can be found in Chapter 2.5.1. Each simulation was performed in three 

independent copies. A total of 30 trajectories were analyzed in term of residence time of water and K+ 

ions around nucleotide positions. Residence time values were added for each nucleotide, as well as 

for each one of the three copies. This yielded an effective sampling time for the binding of water and 

ions in the order of hundreds of ns. The preliminary results are presented in Figure 5.3 and Figure 

5.4. 
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Figure 5.3. Residence time profiles for water and K+ ions bound on phosphate oxygen 

atoms. The number of water/K+ ions bound to OP2/1 (PDB identifier) phosphate oxygen atoms 

are plotted as a function of their coordination contact times, adding all the contributions from the 

24 nucleotides. Plots on the left columns refers to the (GpC)12 duplex, while plots on the right 

column to (ApU)12 duplex. On top of each plot, it is indicated the corresponding phosphate 

oxygen and water/K+ coordinating atom partners. Colored profiles represent different 

temperatures used in the respective simulations, in accord to the legend in the upper-right section 

of each plot. Time values are reported in ps.  
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Figure 5.4. Residence time profiles for water and K+ ions bound on base pairs major 

groove. The number of water/K+ ions bound to atoms of the base pairs major groove atoms are 

plotted as a function of their coordination contact times, adding contribution for each base pair. 

Plots on the left columns refers to the (GpC)12 duplex, while plots on the right column to (ApU)12 

duplex. On top of each plot, it is indicated the corresponding nucleobase and water/K+ 

coordinating atom partners. Colored profiles represent different temperatures used in the 

respective simulations, in accord to the legend in the upper-right section of each plot. Time 

values are reported in ps, on a 2,000 ps scale for each graph, except (GpC)12 O6 K+ that is plotted 

with a 5,000 ps scale. 
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The data on residence time of water with OP2 and OP1 atoms show the most significant 

temperature dependence. At 277 K both duplexes show water molecules with residence times larger 

or close to 1 ns, in accord with the data obtained in 2002 over a 2.4 ns simulation. The mild decay of 

binding profiles for water molecules infers a dynamic coordination scheme, without molecules bound 

for significantly longer times than others; the only partial exception is the profile of water bound to 

OP1 atoms of (ApU)12 at 277 K. Conversely, profiles of K+ coordination to phosphate oxygen atoms 

show no remarkable temperature dependence. Slightly longer (~800 ps versus ~500 ps) residence 

times at 277 K are observed for the coordination of most long-bound K+ with phosphate of (ApU)12 

duplex compared to (GpC)12.  

Concerning the solvent interactions with major grooves, water molecules show a similar 

temperature-dependent profiles compared to phosphate binding; the only difference is a slightly more 

pronounced difference between the longest residence times and the others. No differences appear 

comparing the carbonyl oxygen of uridine (O4) and guanine (O6). Overall, N7 atoms appear to provide 

a preferred coordination site for water compared to carbonyl oxygens. Residence times for K+ bound 

to N7 and O4/O6 are sensibly longer compared to phosphate atoms, and in the case of guanines O6 

exceed even 5 ns. In fact, K+ ions have already shown a high affinity for the major groove of (GpC)12 

duplexes, and specifically to guanine O6 atoms (Auffinger and Westhof 2000). On the other hand, K+ 

ions binding in (ApU)12 duplex major grooves have been found to make ion bridges between base 

pairs and thus coordinating to U(O4) and A(N7) simultaneously (Auffinger and Westhof 2001b). 

Further analysis based on these results have to be run in order to clarify the binding of K+, which has 

been rarely found to bind purine N7 in crystallographic structures (see Paper 4 and Paper 5). 

The preliminary data presented on the temperature dependence of solvent in the RNA first 

coordination shell are overall in accord with earlier results. The residence time profiles infer a 

“disorganization” of the solvent structure when raising the temperature, but this effect is not clear and 

it is difficult to quantify in the current state. More in-depth analysis on the binding of all solvent atoms 

(and not only the longest residence time profiles) could reveal some of the still hidden results in this 

perspective, suggesting which nucleotide sites should be focused in order to gain insightful 

information. The simulation performed established an investigation base in terms of protocols and 

parameters, that will be utilized in future endeavors, for more complex systems than RNA duplexes. 

Our final goal will remain to shed light on some of the darkest aspects of how RNA is modulated by 

its context, at the local atomistic level. 
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6.1 Concluding remarks 

The results presented in this thesis work complement our knowledge of RNA and RNA/protein 

systems. The description of rare non-covalent interactions, RNA tetraloop motifs and environmental 

effects on RNA will help to improve the understanding of biomolecular recognition networks. These 

insights are especially suited to improve structural determination with techniques such as X-ray 

crystallography and computational methods (e.g. force fields parametrization). 

Stacking interactions between aromatic nucleobases and backbone oxygen atoms have been 

characterized in nucleic acid systems. The main outcome on this subject is that these interactions are 

probably weak due to their need of assistance by stronger contextual interactions. Nonetheless, they 

are significant for the fold of nucleic acid architecture, thus structural/functional analysis on these 

systems cannot overlook them. Our description of stacking interactions has always been based on 

structural considerations about contact distances and local geometry, without referring to energy 

values. Although energetic descriptions are useful to infer the relative strengths of biomolecular 

interactions, they need to be considered with respect to the local context. This, in the case of 

biomolecular systems that function in complex cellular media, is actually difficult. On the other hand, 

one can speculate about the fact that structural observations are affected by the same limitations. In 

this perspective, all the results presented and discussed in this work have to be considered as true for 

the environment in which structural data where obtained. Relative considerations such as those on the 

interaction assistance, have more chances to be actually conserved, even in vivo.  

The results on RNA tetraloops are meant to describe these motifs with simple although effective 

structural signatures, which also bear also information on their tertiary interactions. Here, the case of 

UNCG tetraloop receptors is anecdotal. The identification of a fundamental ensemble of structural 

elements also goes in the direction of redefining tetraloop classification. This is particularly important 

considering the occurrences of unexpected folds and has the potential to be extremely useful in the 

forthcoming structural determination of lncRNAs. 

The considerations on environmental conditions have been focussing in the first place on the 

binding modes of charged species to nucleic acids. During this endeavour, a large number of structural 

inaccuracies in the analyzed structures prompted us to assess the issues of solvent interpretation by 

structural methods, especially X-ray diffraction. Moving from structural studies, more complex and 

dynamic environmental effects have been begun to be assessed by MD simulations on RNA systems.  

Altogether, these points are linked by the fil rouge of the unbreakable relationship 

structure/function and are meant to be pieces of a colourful and dynamic puzzle that portrays how 

biomolecules behave inside beings, from their synthesis up to their degradation. A taste of the 

forthcoming steps I foresaw to construct my personal scientific puzzle is presented in the following 

and last chapter. 
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6.2 What does the future hold: investigations of crowding 

conditions by MD 

When asked about my scientific future, I like to point towards the study of bigger biomolecular 

systems embedded in more complex environments. For this reason, I include as a perspective to my 

PhD thesis the overview of a research project oriented towards this direction. The goal of the project 

is to study by MD how crowding conditions affect RNA and RNA-RNA systems, employing the T-box 

tRNA riboswitch as model system (Zhang and Ferre-D'Amare 2013; Zhang and Ferre-D'Amare 2015).  

Thermodynamic and kinetic properties of biomolecules in intracellular crowded environment are 

different from those commonly reported for in vitro dilute solutions. Yet, given the high complexity 

of biological systems, molecular details are generally difficult to ascertain. The aim of the project is 

to develop a molecular sensor, based on the bacterial T-box tRNA riboswitch, to study crowding 

effects on RNA recognition through full atomistic MD simulations. A particular attention will be given 

to the stacking between two otherwise solvent exposed base pairs that are part of the tRNA/riboswitch 

recognition motif (Fig. 6.1).  

In this unique docking platform, the RNA-RNA recognition mode involves an intermolecular 

stacking of two base pairs, in a manner analogous to the complex of tetraloops found inside the 

ribosome (Fig. 4.4 in Chapter 4.3.4). This stacking interaction is essential for the function of the 

tRNA riboswitch, which is a key element of many bacteria. For its hydrophobic nature and absence of 

hydrogen bonding it is hypothesized to be very responsive to environmental alterations such as those 

associated with the presence of crowding agents or with temperature variations. Given these 

properties, this complex represents a good opportunity to design a molecular sensor based on the 

Figure 6.1. Graphical overview of the study on crowding conditions affecting a tRNA 

riboswitch. Schematic representation of thermal disruption at the level of the docking platform, 

together with a list of potential crowding agents. The tRNA/riboswitch complex is taken from 

PDB: 4LCK; res.:3.2 Å; (Zhang and Ferre-D'Amare 2013). 
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above-mentioned stacking interaction. It can provide information related to the effect of a large panel 

of crowding molecules and crowding conditions on RNA systems as well as on fundamental stacking 

processes that are significantly modulated by solvation changes. 

The tRNA/riboswitch system will be simulated by full atomistic molecular dynamics (MD) in 

different ionic and crowding conditions by using temperature changes as control variable. In this 

endeavor, raising temperature would induce a controlled disruption of the docking platform in order 

to screen the effects of a large number of ionic and crowding conditions. Besides fundamental 

molecular recognition issues, this model system will allow to specifically study crowding on a 

dynamic system that mimics a step of the tRNA release from the riboswitch. Consequently, this setup 

is designed to replicate and evaluate the stabilizing potential of crowding agents ranging from 

monomers to polymeric biomolecules, the latter having for goal to mimic more closely intracellular 

conditions.  

The first step of the project is to develop MD models for RNA in crowding conditions, given that 

up to now no full atomistic MD simulations of RNA in crowding conditions have been reported. This 

will be accomplished using the tRNA as starting model, in nanosecond (ns) to microsecond (µs) range 

simulations with cosolutes such as ethylene glycol (EG) and short polyethylene glycol (PEG, ≤ 20 EG 

monomers). After this phase, the goal will be to shift to the whole tRNA/riboswitch complex and 

analyze the stability of the docking platform versus thermal disruption. MD simulations at different 

temperatures will be run, ranging from 293 to 350 K. It is estimated that in this temperature range and 

on the investigated time-scales, the RNA parts of the system will remain stable while the docking 

platform will open. Indeed, the hydrophobicity-driven stacking interaction is expected to be the most 

sensitive part of the complex to temperature changes and likely the first interaction to break during 

temperature changes. Crowders are expected to modulate this temperature sensitivity, a hypothesis 

that will be verified in the last phase of the project. The last part of the project consists in evaluating 

the (macro)molecular crowding effects on the tRNA/riboswitch, with simulations up to µs time scales 

in progressively more complex conditions involving a palette of different crowding agents. Altogether, 

these simulations will help to understand crowding effects on RNA systems and on a family of 

noncovalent interactions that is fundamental for main recognition processes. It is my hope that the in 

silico development of this tRNA/riboswitch environmental sensor will also be extended to 

experimental in vitro techniques, that in parallel with data coming from MD simulations could 

synergistically help to further our understanding on (macro)molecular crowding effects.  
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Luigi D’ASCENZO 

Etude des réseaux de reconnaissance 
biomoléculaire à l'échelle atomique pour 
les systèmes ARN et ARN/protéines 

 

 

Résumé  

Mis à part les liaisons hydrogène, d’autres interactions non covalentes participent dans les 

réseaux de reconnaissance ARN et ARN-protéines. Parmi celles-ci, j’ai étudié les interactions 

oxygène-. Cette interaction prend la forme phosphate- dans les U-turns et O4'- dans les 

motifs ARN-Z. Je propose une nouvelle classification des boucles de quatre nucléotides, 

décrivant les U-turn et les Z-turn à partir d’interactions oxygène-. De plus, les motifs 

"Z-like" présents dans tous les ARN, sont aussi reconnus par certaines protéines 

immunologiques. Pour mieux comprendre les réseaux de reconnaissance biomoléculaire, 

nous avons examiné les interactions entre cations/anions et ARN. Nous avons trouvé de 

nombreuses erreurs dans les structures de la PDB et proposé des règles pour améliorer 

l'attribution d’espèces ioniques. Les résultats de cette thèse amélioreront notre connaissance 

des réseaux de reconnaissance biomoléculaire et aideront aux techniques de modélisation 

structurale des ARN. 

 

Mots clés: interactions  oxygène-tétraboucles ; ARN-Z ; repliement d’ARN ; solvatation ; 

interactions ARN-Mg2+ ; protonation ; analyse de données PDB   

 
 

Résumé (anglais) 

Together with hydrogen bonds, uncommon non-covalent interactions are fundamental for 

recognition networks in RNA and RNA-protein systems. Among them, I focused on oxygen- 

stacking. This interaction takes the form of phosphate- within U-turns and of ribose O4’- 

within “Z-RNA” motifs. In that respect, a novel classification of tetraloops is proposed, 

defining U-turns and Z-turns based on their oxygen- stacking properties. Further, “Z-like” 

motifs are found to pervade small and large RNAs, being also a recognition pattern for 

immunology-related proteins. To better understand biomolecular recognition networks, we 

reviewed the binding of metal ions and anions within RNA, finding many examples of Mg2+ 

misattribution in PDB structures. We propose rules to avoid attribution errors. The results of 

this thesis will improve our knowledge and understanding of biomolecular recognition 

networks, as well as assist structural determination and structural modelling techniques of 

RNA systems. 

 

Keywords: oxygen-interactions; tetraloops; Z-RNA; RNA folding; solvation; RNA-Mg2+ 

interactions; protonation; PDB data mining 
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