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Résumé

Résumé

Le domaine du vivant est un ensemble complexe. Le vivant est entre autres une suite
d’interactions entre des protéines et des petites molécules appelées ligands. Les protéines sont
des ensembles d’atomes organisés et stabilisés dans un espace tridimensionnel. Chaque
protéine possede un role précis, réalisant des interactions définies par son agencement propre.
Il existe des méthodes pour définir les éléments qui interagissent entre eux, et créer ce que
I’on appelle I’Interactome, mais la nature des interactions reste quant a elle difficile a décrire.
La Bioinformatique structurale et la Cheminformatique sont deux disciplines visant a
modéliser et étudier in-silico les protéines et les ligands. Cette approche théorique se fait selon
deux principaux axes qui sont, la compréhension et la description des mécanismes impliqués
ainsi que I’identification de nouvelles molécules pour le traitement de maladies. Ces études
sont fréquemment basées sur la Protein Data Bank (PDB), une base de données regroupant
pres de 120 000 protéines représentées sous la forme de leur structure tridimensionnelle. Le
nombre d’interfaces protéine-protéine (PPI) et protéine-ligand explose depuis quelques années
grace a aux développements spectaculaires en biologie structurale.

Moduler les interactions protéine-protéine par des ligands de faible poids moléculaire
est une approche nouvelle et prometteuse pour la découverte de médicaments, ouvrant de
nouvelles voies thérapeutiques et étendant les champs d’application des cibles
macromoléculaires actuellement connues. Une des difficultés principales de cette stratégie
réside dans le fait que les interfaces protéine-protéine sont la plupart du temps plates et peu
propices a 1’accrochage de petites molécules inhibitrices. Cependant, des travaux récents de
recherche d’inhibiteurs d’interactions montrent des résultats encourageants. La détection et la
caractérisation des PPI est donc une étape clé de la découverte de nouveaux candidats

médicaments.

Le premier chapitre de cette theése s’intéresse aux interfaces protéine-protéine, il
définit ’ensemble des méthodes disponibles actuellement pour caractériser une PPI. La
caractérisation d’une protéine a évolué au fil des avancées technologiques majeures aussi bien
d’un point de vue expérimental que théorique. La discrimination des interfaces m’intéresse
plus particulierement, I’ensemble des structures sont résolues sous des conditions tres strictes
et restrictives qui peuvent entrainer la création d'artéfacts structuraux ne représentant pas

I’état physiologique in-vivo des protéines. Différencier une structure biologiquement



Résumé

pertinente a toujours été un élément important pour I’étude des PPI. Ce chapitre montre
également I’'importance des jeux de données d’études en pointant les défauts des jeux dits
"historiques" ainsi qu’en expliquant la création d’un nouveau jeu de données équilibré

permettant de réaliser un apprentissage efficient.

Le second chapitre s’intéresse aux outils développés et/ou améliorés au sein du
laboratoire. La majorité des travaux de cette theése sont intégrés a une suite logicielle (IChem)
d’analyse d’interactions atomiques a visé pharmacologique. La premicre partie décrit le
fonctionnement global du logiciel. Une grille composée d’une multitude de voxels de 1,5A de
dimension est placé autour des molécules, cela permet de calculer une valeur d’enfouissement
pour chaque point de I’espace en regardant son environnement. La grille définit les voxels de
protéines, de surfaces ainsi que les voxels trop éloignés. Les sites d’interaction et plus
précisément les cavités formées a la surface des protéines sont déterminées a 1’aide des
valeurs d’enfouissement. A chaque voxel est aussi associée une propriété physico-chimique
représentant la propriété de I’atome attendu si un ligand se trouvait dans cette espace. Cette
propriété est définie par des regles géométriques strictes, de distances et d’angles.
L’expérience a montré qu’il existe généralement plus d’une cavité par protéine, la suite du
chapitre décrit la maniére de déterminer plusieurs cavités a la surface d’une protéine ainsi que
la maniere de les trier. Le tri s’effectue principalement sur deux criteéres qui sont la taille de la
cavité et la droguabilité, celle-ci étant une valeur représentant la faculté qu’a une cavité a
accueillir une molécule droguable de petite taille. La droguabilité est calculé par un modele
d’apprentissage (svm) sur 76 cavités contenant ou non un ligand. Le mod¢le binaire obtient
une précision de 88%. Une autre maniere de représenter un site de liaison d’un ligand est le
pharmacophore, il s’agit d’'un ensemble de pseudos-atomes typés représentant les atomes
interagissant avec la protéine. Le pharmacophore est en général créé a partir d’un ou plusieurs
ligands. Je montre ici qu’il est possible de le créer a partir d’une cavité en 1’absence de tout
ligand, en sélectionnant et regroupant correctement les bonnes propriétés. Dans ce chapitre, je
montre qu’il est possible d’obtenir des phamacophores de moins de 40 propriétés conservant
70% des liaisons protéine-ligand et permettant d’aligner un ligand a moins de 3A de sa
position cristallographique. Cette technique a déja été utilisée mais n’est pas encore finalisée

notamment dans la priorisation des poses a sélectionner.
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Le troisieéme chapitre décrit le fonctionnement d’IChemPIC, un logiciel permettant de
déterminer, décrire puis classer les interfaces protéine-protéine. La procédure d’analyse
complete y est décrite en commencant par le jeu d’études créé spécifiquement pour entrainer
le logiciel. Les PPI sont détectées par des regles géométriques puis par des regles
d’interactions. Cette partie montre aussi comment transformer un objet tridimensionnel en un
vecteur, un ensemble de 45 descripteurs étudiables par un modele d’apprentissage basé sur
des foréts aléatoires ("Random forest"). Le modéele de prédiction finale est un consensus de 10
foréts aléatoires réalisées avec les mémes parametres. La classification des interfaces
protéine-protéine n’est pas nouvelle mais je montre qu’IChemPIC, avec une prédiction a 75%,
est aussi précis voir meilleur que les outils actuellement disponibles. Surtout, IchemPIC est la
seule méthode a prédire aussi bien les interfaces biologiquement pertinentes que les artéfacts
de cristallisation. C’est aussi la méthode présentant le domaine d’applicabilité le plus large,
pouvant traiter les interfaces de 200 a 2500A2. Cette derniére particularité est le but de sa
création, pouvoir étudier les petites interfaces biologiquement pertinentes qui ont longtemps

été oubliées.

Le dernier chapitre présente 1’application des travaux précédents sur I’ensemble de la
PDB. Le processus d’analyse est décrit, en commencant par la récupération des structures de
protéines puis I’application de filtres sur la précision et les méthodes de résolution des
structures. L’utilisation d’un nouvel algorithme pour détecter les interfaces ainsi que les
cavités et la création de pharmacophores y est décrite. Preés de 400 000 interfaces potentielles
ont été vérifiées, 60 000 dimeres interagissant suffisamment entre eux pour définir une PPI
dont 40% ont été prédits étant biologiquement pertinents. Aux niveaux des cavités, nous
trouvons en moyenne 7 cavités a proximité des interfaces de dimere dont en moyenne 2 sont
prédites droguables. Il nous reste encore a achever une description précise de la totalité des
cavités et pharmacophores associés aux interfaces dans le but de déterminer ceux a étudier et
valider expérimentalement. Ce chapitre met aussi en avant les limites de la méthode sur les

complexes oligomériques complexes.

Pour conclure, ces travaux consistent en une étude compléte des interactions protéine-
protéine de structure cristallographique connue. Les logiciels spécialement congus pour cette
étude sont rassemblés dans un seul et méme outil. Ils ont ét€ appliqués a I’ensemble de la

Protein Data Bank. Nous sommes désormais capables d'analyser automatiquement chaque

11
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N

entrée de la PDB, d’en extraire les chaines en interaction, et de la caractériser précisément a
I'échelle atomique. Chaque interface voit son environnement décrit sous forme de cavité
droguable et de ligand attenants, ainsi que sous forme de pharmacophore directement généré a
partir de la cavité. Ces nouvelles méthodologies permettent une meilleure compréhension et
une meilleure sélection des cibles autour des interfaces protéine-protéine. A court terme, nous
ambitionnons de sélectionner un panel divers de cavités allostériques a I'interface, de les

cribler in silico afin d’identifier de nouveaux modulateurs allostériques de PPIL.

12



Chapitre 1

Les interactions protéine-protéine

13



14



Chapitre 1 Les interactions protéine-protéine

1.1. Introduction

La recherche pharmaceutique a pour principal support d’études les interactions
protéine-ligand. Le développement de candidats-médicament est un procédé complexe dans
lequel on cherche fréquemment a reproduire la nature en mimant 1’interaction entre une
protéine et son ligand endogénel. Depuis quelques années, les interactions protéine-protéine
sont devenues une source d'inspiration majeure pour la recherche académique et
pharmaceutique, dans le but de pouvoir identifier des molécules de faibles poids moléculaire

capables de les moduler sélectivement.

Les interactions protéine-protéine composent ce que 1’on appelle I’interactome”, un

réseau immense constitué de toutes les interactions protéine-protéine connues (Figure 1.1).

. v‘..:u-u-r- R R R L e L T e e e e Y sesnane

R D o e e L T L L
. K

Figure 1.1: Représentation de ['interactome humain sous forme d’un graphe, chaque noeud
représente une protéine et chaque arréte une interaction.
(https://www . flickr.com/photos/andytrop/5232042116)
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Chapitre 1 Les interactions protéine-protéine

L’interactome de la levure est estimé a environ 20 000 interactions, celui de 1’espece
humaine étant estimé a environ 650 000 interactions’ ayant chacune une fonction. Ces
prédictions sont fondées principalement sur la taille et le nombre de génes dans le génome de
I'espece étudiée. Les interactions les plus connues ont des missions de structure (ex:
oligomérisation de I’actine) ou des fonctions de transmission de message (ex: récepteurs
couplés aux protéines G). Le principe de pouvoir influencer ce réseau par une molécule de
faible poids moléculaire (ici nommée petite molécule) ouvre un grand nombre de possibilités
pour la recherche pharmaceutique. Les interactions protéine-protéine jouent un réle majeur
dans le ViVaHtZ, elles sont au coeur du fonctionnement de la cellule. Pouvoir moduler ces

interactions ouvre 1’acces a I’étude et a de possibles traitements” de maladies pour lesquelles

les méthodes traditionnelles appliquées a des cibles uniques se sont révélées en échec.

La recherche d’une petite molécule pouvant moduler 1’effet d’une protéine unique se
fait usuellement par I’étude d’une cavité contenant déja un ligand. Le probléme est différent
pour une interface protéine-protéine qui, dans la plupart des cas, ne possede ni ligand ni cavité
préalablement identifiés. Une autre particularité des interfaces protéine-protéines vient du fait
qu'elles sont souvent de grande taille et avec peu de relief, ce qui complique la recherche de
molécules inhibitrices. Tester expérimentalement 1’ensemble de ces informations demanderait
énormément de temps et des moyens infinis. L’acceés a I'information biologique est cher et
méme impossible quand cela concerne 1'ensemble des interfaces protéine-protéine humaines.
Un moyen d’observer ces interfaces plus facilement est la résolution de structures cristallines.
Depuis pres de 50 ans, une quantité d’information phénoménale de structure de protéines est
mise a la disposition de tous. Ces informations sont rassemblées dans une grande base de
données internationale nommée Protein Data Bank (PDB)5 . Cette base recense actuellement
prés de 120 000 entrées. Une des méthodes les plus rationnelles pour exploiter cette
information est de concevoir des petites molécules altérant la stabilité de ces interfaces. Pour
cela, il est nécessaire de déterminer les zones d’interactions protéine-protéine, ainsi que de
trouver des sites de liaison potentiels pour de petites molécules. Ces sites de liaison sont des
cavités localisées a la surface des protéines constituantes, dans des zones favorables a leur
interaction. Ces sites sont flexibles et possédent une répartition des propriétés physico-
chimique unique dues a 1’alignement des acides aminés les composant. La complémentarité
du site de liaison et de son ligand forme un complexe permettant la réalisation d'interactions

non covalentes la stabilisant fortement.
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Chapitre 1 Les interactions protéine-protéine

La définition d’un site de liaison et de la complémentarité avec son ligand peut &tre
extrapolée a 1'étude des interactions protéine-protéine ou le ligand est une macromolécule. Les
zones d’interaction protéine-protéine sont plus grandes qu’un site de liaison de ligand
classique mais la complémentarité de formes et de propriétés physico-chimiques reste un
principe universel. Toutes les connaissances et méthodes mises au point pour la
compréhension des interactions protéine-ligand peuvent donc étre adaptées a 1’étude des
interactions protéine-protéine. L’analyse de la forme et des interactions des interfaces
protéine-protéine ouvrent notamment la perspective d’une possible sélection de petites
molécules potentiellement actives pour moduler ces interfaces particuliéres.

Le développement d’outils informatiques réellement adaptés a 1’étude des interfaces
protéine-protéine et l'identification de ces modulateurs est donc un enjeu majeur de la

recherche pharmaceutique moderne.

Ce chapitre décrit de maniere globale les particularités d’un site d’interaction entre
deux protéines. Dans un premier temps, nous décrirons 1’architecture de l'interface ainsi que
sa composition. Ces informations nous conduirons au potentiel de developabilité d’un site
d’interaction, grace au type d’interactions présentes. Par la suite nous nous intéresserons aux
données rassemblées au cours des années sur le sujet, celles ayant servies de données
d’apprentissage. Enfin, nous retracerons 1’histoire de la caractérisation des interfaces protéine-
protéine au travers de l’analyse des différentes méthodes et outils développés depuis les

années 2000.
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Chapitre 1 Les interactions protéine-protéine

1.2. Protéines

L’histoire de la science des protéines est un parfait exemple de montagnes russes. Le
terme protéine est apparu en 1838° mais il a fallu attendre des années pour qu’une
représentation des protéines comme une molécule bien définie soit reconnue par la
communauté. Méme apres que cette définition fut acceptée, les observations des protéines et
de leurs roles n’ont pas toujours été admises et furent toujours sujet a controverse. Des
avancées majeures ont notamment été ignorées pendant des années comme la cristallisation de
I'uréase’. Depuis longtemps 1’avancée autour des protéines est en dents de scie, avec des
bonds majeurs suivis de périodes de recul ou de stagnation. Certains concepts furent énoncés
bien avant que les moyens techniques permettent de les valider. La notion de protéines a
beaucoup évoluée au cours des dernieres années jusqu’a avoir plusieurs niveaux de
définitions. Il existe des définitions dites structurales ou fonctionnelles d’une protéine. D’un
point de vue fonctionnel, une protéine est une entité formée d’une ou plusieurs chaines
peptidiques ayant une fonction définie dans un organisme. D’un point de vue structural, une

protéine peut €tre définie comme une chaine peptidique.

1.2.1.Anatomie

La résolution des structures cristallines® de protéines a permis les plus grandes
avancées sur ces macromolécules. Connaitre la composition et la forme tridimensionnelle des
protéines permet en effet de bien mieux les caractériser. De ce fait, une protéine possede
plusieurs niveaux de repliement (Figure 1.2). Elle est composée d'une structure primaire qui
est une suite d'acides aminés. La structure secondaire est le repliement de cette chaine en
blocs, il en existe 3 types les hélices alpha, les brins bétas et les boucles. La structure
tertiaire est 'assemblement des structures secondaires. Enfin les structures quaternaires sont
les assemblements de chaines entre elles, ces assemblages sont la cible de cette thése. La
définition de protéines est floue a ce niveau-la, les protéines pouvant étre une chaine
peptidique ou un assemblage de plusieurs chaines. Pour le reste de cette étude, la définition de
protéine correspond a la structure tertiaire des protéines, c’est-a-dire une suite unique et

continue d’acides aminés structurés en trois dimensions.
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Figure 1.2 : Représentation des différents niveaux de structures applicables a une protéine. La
structure primaire est [’enchainement propre d’acides aminés, chaque couleur correspond a un acide
aminé. La structure secondaire est [’alignement tridimensionnel spécifique des acides aminé, les brins
béta sont en rose et I’hélice alpha en cyan. La structure tertiaire est l‘agencement tridimensionnel des
structures secondaires. La structure dite quaternaire est [’assemblement de plusieurs protéines
repliées. La structure quaternaire est le niveau qui nous intéresse le plus pour cette these.

Les protéines sont composées de 20 acides aminés standards, la forme générale de la
protéine dépendent de 1’enchainement en acides aminés’. Les acides aminés vont jouer un
role sur les structures secondaires mais aussi tertiaires de la protéine, les acides aminés dit
hydrophobes (isoleucine, valine, leucine, cystéine, méthionine, alanine et phénylalanine)
auront tendance a composer le cceur de la protéine pour laisser des acides aminés plus polaires

au contact avec le solvant.

1.2.2. Classes

Les protéines peuvent étre classées en plusieurs catégories selon des criteres distincts.
Elles sont en général classées selon leur forme, leur fonction ou méme encore selon leur
localisation au sein de la cellule. Ces classements se regroupent la plupart du temps mais il
n’existe pas encore de classement universel. Le classement structural principal, SCOP'"
repose uniquement sur la description des protéines, il existe aussi des classements basés sur
I’homologie de séquence tel que CATH''. SCOP trie les protéines dans 7 catégories
principales, les protéines tout alpha, les protéines tout béta, deux catégories avec des hélices
alphas et des brins bétas, les protéines a domaines distincts, les protéines membranaires et les
petites protéines. Pour la recherche pharmaceutique, ce classement est boudé au profit d’un
classement fonctionnel des protéines les regroupant par role biologique au sein de la cellule.
La principale banque de données classant les protéines par fonction se nomme GO. Le projet

Gene Ontology (GO) fournit un vocabulaire contrdlé pour décrire un géne et I’ensemble des
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produits du geéne dans tout I'organisme. Ce vocabulaire controlé est développé
indépendamment des bases de données existantes. 11 y a 3 catégories disjointes : composant
cellulaire, fonction moléculaire et processus biologique. Une tache importante est de
cartographier les termes GO'? avec les produits de génes (protéine) dans les bases de données
via l'annotation automatique (€lectronique) ou manuelle. GO est un projet ambitieux mais le
résultat de 1’annotation sur les protéines est souvent inutilisable. La base de données
principale de protéines (Uniprot) a composé son propre classement réalisé manuellement (au
sein de la SwissProt) et basé sur le vocabulaire de GO. Les classes permettent d’avoir une
information sur la structure quaternaire des protéines par homologie avec les protéines de la

méme famille connue.
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1.3.Interface protéine-protéine (structure

quaternaire)

1.3.1.Zone d’interaction

La taille des surfaces d’interaction entre les protéines est tres Variablel3, allant de 200 a
4000 A2. Les zones d’interactions (Figure 1.3) entre les protéines sont généralement décrites
comme grandes et avec peu de reliefs. L’étude de ces zones est un élément clé de la

compréhension des mécanismes d’interaction entre les protéines.

A

Figure 1.3: Représentation d'une zone d’interaction entre deux protéines A et B. Les résidus des
protéines A et B réalisant une interaction sont colorés en rose et rouge, respectivement. La somme des
interactions crée ce que nous appelons la zone d’interaction.

1.3.2.Flexibilité

Divers types d’interfaces sont possibles en fonction de la flexibilité structurale des
partenaires. Une protéine n’est pas un ensemble rigide mais un assemblage d’éléments
mobiles ordonnés. Malgré la structure imposée a la protéine, les chaines latérales des acides
aminés sont mobiles tout comme certaines boucles. Les boucles sont des chaines d’acides
aminés structurés de manieére moins rigide que le reste de la protéine. Elles peuvent étre
tellement flexibles qu’il arrive que 1’on ne puisse pas déterminer leur position par diffraction
des rayons X. Ces éléments mobiles font que la liaison des deux protéines en interaction n’est

jamais complétement rigide. L’échelle de modification de la structure varie d’aucun
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N

changement conformationel a un changement conformationnel radical d’une des deux

protéines. Le changement conformationnel de la structure des protéines est un des plus gros

N c : f . 14 iees \
probléemes pour la compréhension des mécanismes d’interaction ~. Différents modeles de

reconnaissance se sont succédés au cours du temps avant de cohabiter:

)

ii)

iif)

le modele rigide (clef serrure) implique la fixation de deux structures rigides
(Emil Fisher 1894);

i1) le modele par ajustement induit ("induced fit") décrit chaque partenaire
comme légérement flexible'”. Ce modéle a été mis en place car la
complémentarité entre les protéines partenaires est beaucoup plus faible sur
les structures résolues séparément que sur la structure du complexe
correspondant. Le changement de conformation est influencé par des
contraintes électrostatiques, I’énergie de desolvatation'® ou des interactions
de van der Waals. Les transformations citées ici ont lieu apres le phénomene
de reconnaissance des protéines;

iii) le modele "tout mobile””’lg, décrit les structures des protéines résolues
comme incomplétes, les protéines alternant entre un ensemble de
conformations inconnues parmi lesquelles sont présentes celles permettant la

reconnaissance protéine-protéine

La coexistence de ces trois modeles montre que nous ne connaissons encore

qu'imparfaitement les mécanismes de reconnaissance et de fixation des protéines, cette

difficulté se retrouvant aussi au niveau des techniques experimentales qui essayent de prédire

les interactions protéine-protéine.
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1.3.3.Dynamique

Le modéele prédisant que les structures résolues ne sont qu'une image d’une interaction
mobile a incité a I’étude de la dynamique des interfaces protéine-protéine. La méthode utilisée
par les protéines pour se reconnaitre est encore méconnue mais nous avons des informations
sur la stabilité des interfaces. Certains complexes sont souvent résolus par diffraction des
rayons X mais aussi grace a la résonance magnétique nucléaire (RMN.) La RMN apporte une
flexibilité et une liberté impossible en diffraction. Ces données ont confirmé la présence de
plusieurs modes d’interaction possible entre deux partenaires. Des études en dynamique
moléculaire sur des interfaces connues ont aussi montré la présence de plusieurs zones
d’interaction'®. Les dynamiques de 2us montrent Ialternance entre différente formes stables
toutes les 50-100ns. L’étude montre une réorganisation de la zone d’interaction entre chaque
forme, par le biais de liaisons hydrogenes et de ponts salins. La connaissance des transitions
entre les différentes interactions est un élément clé pour I’avenir de la modulation des

interfaces.

1.3.4.Statut d’oligomérisation

Le statut d’oligomérisation (Figure 1.4) correspond a la structure quaternaire quand

on parle de détermination d’interface protéine-protéine.

B

Monomere Homodimeére

Homotrimeére Hétérodimere

Figure 1.4: Modele de représentation de différents statuts d’oligomérisation. A. le statut monomere
correspond a une protéine seule ; B. Le statut homodimere correspond a deux protéines identiques
lies entre elles ; C. La méme protéine s’associe trois fois ; D. Tous les statuts sont dits homo- pour
une association de protéines identiques ou hétéro- s'il s’agit de protéines différentes. Les unités
biologiques les plus grosses actuellement (ribosomes d'eukaryotes) comprennent plus de 120
protéines.
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La détermination expérimentale du statut d’oligomérisation d’une protéine en solution

est particulicrement difficile. Il existe beaucoup de méthodes de caractérisation de 1’état

d’oligomérisation des protéines reposant sur des techniques différentes et qui ont des cibles

variées. On peut citer parmi les plus récentes :

1) Le croisement du couplage covalent avec la spectrométrie de masse®’ qui
observe les contacts au niveau du résidu. Cette méthode donne beaucoup
d’informations mais requiert beaucoup de matériel protéique ainsi que de
ressources informatiques ;

i1) la vitesse de sédimentation par ultralcentrifugaltion21 qui donne des informations
a propos de I’arrangement irrégulier du complexe. Cette technique a I’avantage de
donner des informations trés précises et n’a pas besoin de marquage des protéines
cibles, cependant elle colite trés cher et ne fonctionne pas en présence de
détergents ;

iii) La chromatographie par exclusion de taille* donne des informations sur les
steechiométrie globale du complexe mais fonctionne mal sur des protéines

membranaires.

Ce ne sont que des exemples parmi une longue liste d’outils (Tableau 1.1) disponibles

afin d’analyser les complexes protéine-protéine expérimentalement. La confirmation du statut

d’oligomérisation d’un complexe protéique est souvent validée aprés la comparaison de

résultats issus de plusieurs méthodes. Les méthodes expérimentales prouvent souvent la taille

du complexe (nombre de chaines impliquées) mais il est tres difficile de faire le lien avec la

structure protéique. Les partenaires de 1’interface (steechiométrie globale) sont connus mais

pas I'interface en elle-méme.
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Tableau 1.1: Tableau non exhaustif des méthodes expérimentales d’assignation de statut
d’oligomérisation et de structure quaternaire de protéines.

Chromatographie par

q oy 22,23
exclusion de taille

Diffusion de la lumieére

multi-angles (MALS)**

Ultracentrifugation21

Diffusion des rayons X aux
petits angles (SAXS)25

Diffusion de la lumiére
dynamique (DLS)26

Vitesse de sédimentation
avec centrifugation

analytique21

Microscopie
électronique27

Le couplage covalent-
spectrométrie de masse

(MS)ZO

Impression chimique et

MS28

Mutagénese dirigée29

Steechiométrie

globale

Stoechiométrie

globale

Stoechiométrie
globale
Arrangement
brut du
complexe
Arrangement
brut du
complexe
Arrangement
brut du
complexe
Arrangement
brut du

complexe

Contacts entre

les résidus

Contacts entre

les résidus

Contacts entre

les résidus

25

protéine native
Calcul de
I’équilibre de
I’interaction
Condition variables
protéine native
masse précise
fonctionne avec
détergents

masse précise
protéine native

protéine native
donne la forme du
complexe

protéine native
peu de protéine
nécessaire

pas de perte de
protéine

masse précise
protéine native

marche sur des
données a faible
résolution
protéine native

Donne la structure
tertiaire

Marche sur les
assemblages
complexes
Utilisable a haut
débit

Décrit les résidus
d’interfaces

Facile d’utilisation
Facile d’utilisation
Décrit les résidus
d’interfaces
Définit les points
chauds d'interaction

Masse imprécise
Résultats indirects

Besoin de calibration
Surveillance constante
nécessaire

Coute cher

Analyse des résultats
difficile en cas de
mélange

Qualité des résultats
variable

Utilisation d’un
synchrotron

Faible résolution
Les agrégats pose
probléeme

Coute cher
Masse moléculaire mal
défini

Ne fonctionne pas sur
les petites protéines
Probleme sur les sous-
unités biologiques

Matériel coliteux
Besoin informatique
élevé

Matériel cofiteux
Peu répandu

Besoin de connaissance
structurale

Besoin d’information
complémentaire
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1.4. Informatisation des méthodes d’étude des

interfaces protéine-protéine

1.4.1. Diffraction des rayons X

La diffraction de rayon X est une méthode visant a observer la diffraction résultante
des électrons d’une protéine. La diffraction de ceux-ci étant trop faible pour étre concrétement
observée, cette méthode se base sur la redondance des électrons présents dans un solide voire
méme plus précisément dans un cristal pur. L'avantage de 1'état cristallin est la répétition quasi
parfaite des éléments au sein de celui-ci, il y a une bonne amplification du signal. L’utilisation
de cristaux est I’élément clé de la méthode mais aussi son principal défaut, une protéine a
I’état biologique étant dans un environnement aqueux. De plus, il est difficile de prédire
I’effet de la cristallisation sur la conformation de la protéine cible. Cette technique nécessite
d’avoir des protéines peu flexibles et parfaitement alignées. La création de cristaux de
protéine est un procédé complexe et capricieux mais essentiel. La qualité du cristal est
directement reflétée dans la précision de la structure (résolution). Le résultat de la diffraction
électronique est une carte tridimensionnelle de la densité atomique représentant la probabilité
de présence d’un électron pour chaque ensemble de coordonnées possible. La carte résultante
c’est a dire la densité é€lectronique est alors interprétée informatiquement pour déterminer
l'emplacement de chaque atome. La partie résolue est ce que I'on appelle la maille
cristallographique, c’est le plus petit élément qui par des opérations de translation peut
reconstruire 1’ensemble du cristal (Figure 1.5). A I'intérieur de cette maille se retrouve 1’unité
asymétrique (la structure principalement distribuée dans la base de données PDB) qui contient
la plus petite portion de structure permettant par symétrie de retrouver la maille cristalline.
Dans la plupart des cas, 1'unité asymétrique correspond a 1’état d’oligomérisation de la
protéine native. Un élément clé avec cette méthode est que le cristal de molécules contient un
grand nombre d’interfaces appelées contacts cristallins ou plus communément interfaces
cristallines. Elles sont la plus part du temps indissociables des interfaces dites biologiques. La
complexification des structures de ces 20 derniéres années a mis en avant le probleme de
distinction entre les interfaces biologiques et les contacts cristallins, les erreurs sont devenues

un probléme récurrent.
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Figure 1.5: Représentation de 'unité asymétrique (source site web de la RSCB PDB). L’unité
asymétrique permet de recréer la maille par des opérations de symétrie. La maille permet de recréer
I’ensemble du cristal grdce a des translations.

1.4.2. Prédiction de la véracité des interfaces présente dans les

structures de protéine

Statuts d’oligomerisation

Le statut d’oligomérisation est aussi étudié a partir des structures 3D résolues par
diffraction des rayons X. Depuis des années, les cristallographes sont incités a décrire dans les
fichiers de structures I'unité biologique qu’ils pensent &tre la plus probable dans I’unité
asymétrique. La PDB stocke cette information dans la REMARK 350 du fichier PDB (ou la
catégorie pdb_struct_assembly dans les fichiers mmcif) afin de le décrire sur le site web™.
L’information soumise par les cristallographes est souvent remise en cause car composée de
données expérimentales manquantes ou erronées lors du dépot de la structure. Des études ont
estimé que le taux d’erreur présent dans les unités biologiques, en se basant sur des notions de
similarités de séquences et d’homologie, était de 1'ordre de 15%>!. Les informations décrites
par les cristallographes décrivent les structures qu’ils ont réussi a résoudre. Du fait que les
protéines sont des molécules flexibles, la structure résolue n’est qu’une conformation parmi
plusieurs possibles. Les interactions entre les protéines auraient plusieurs états plus ou moins

stables et nous observerions un état d’équilibre dans les structures cristallines. Dans cet état
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dit d’équilibre, toutes les interfaces présentes ne sont donc pas forcément dans leur forme la
plus stable en solution. Cette observation peut expliquer pourquoi I’énergie de dissociation
des interfaces ainsi que leur taille ne sont pas de bons critéres afin de prédire la véracité
biologique d’une interface. Certaines interfaces ont d’ailleurs des énergies libres de
dissociation du méme ordre voir plus faibles que celle des contacts cristallins pouvant induire
un mauvais jugement et méme |’impossibilité de cristalliser une structure contenant
I’interaction®”. Deux entités ont complété ces informations au sein de plusieurs bases de
données (PiQSi31 et PDBWiki”) contenant les informations quaternaire des protéines basées
notamment sur I’homologie de séquence et vérifiées a la main.

De nombreuses méthodes de prédiction de la pertinence biologique d'une interface
protéine-protéine sont disponibles (Tableau 1.2). Elles sont décrites plus précisément dans le

Chapitre 2 de cette these.
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Tableau 1.2: Tableau récapitulatif des outils de classification des interfaces protéine-protéine

données
_--_

PQS35 Différence de SAS® Hors ligne
37 http://www.ebi.ac.uk/
PISA AGgiss estimée .90 Ponstingl2003 pilsali

39 Tessellation de 0.90 BNCP-CS
DIMOVO Voronoi 0.83 Ponstingl2003 el e
CRK41 Ratio Ka=Ks ratios .84 Schirer2010
A partir des séquences
codantes
IPAC42 -.--
EPPIC* Nombre de résidus de Ponsting]2003
noyau et homologie (monomeres and
de séquence dimeéres)
L ¢ al. 45 Forét aléatoire 46 0.91 Bernauer2008
Ho et descripteurs 0.92 Ponstingl2003
--
Inférence des x
struct.ures 0.95 Levy2007
quaternaires par
homologie

29



Chapitre 1 Les interactions protéine-protéine

Nous ne mentionnerons ici que deux méthodes, 1'une d'entre elles (PISA) étant utilisée
par la Protein Data Bank pour caractériser la structure quaternaire de ses entrées, l'autre
(EPPIC) étant tres récente et présentant 1'avantage d'avoir été entrainée sur un jeu de données

récentes.

PISA

PISA est le principal outil de détermination de statut d’oligomérisation au sein des
structures des protéines®. Le but principal est de définir la forme la plus pertinente de la
structure présente dans un fichier de coordonnées. Il cherche a définir 1’assemblement
optimal, c’est a dire le plus stable dans une unité asymétrique. Le fonctionnement de PISA

suit différentes étapes (Tableau 1.3).

Tableau 1.3: Tableau récapitulatif des trois actions principales réalisées par PISA

Méthodes

Vérification de la symétrie

_ Calcul d’énergie

Classement des interfaces (taille > complexité > énergie)

La premiere vérification est une étape purement géométrique suivant les deux regles ci-
dessous :
- siune interface est validée, toutes les interfaces similaires sont validées.

- 1l ne peut pas y avoir d’interfaces entre deux protéines identiques parallélement
positionnées, c’est-a-dire qu’une translation n’est pas une symétrie suffisante pour que

I’interface soit biologiquement viable

La seconde regle est une dérivée logique de la premicre qui fait que si deux protéines
parfaitement alignées sont en interaction, par reproduction de I’interface nous obtenons une
répétition du complexe de maniere illimité.

Afin de déduire la stabilité chimique d'un ensemble complexe, il faut calculer 1’énergie libre
de Gibbs, I'énergie de dissociation AG;,, en utilisant I’équation.

AGt(i)iss = _AGint —TAS (1)

Ou AGj,: est ’enthalpie d’interaction, plus précisément la somme de 1’énergie de

toutes les interactions électrostatique, et TAS est un modele simplifié d’entropie. Comme
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cela a été discuté dans la stabilité des macromoléculaires complexes, PISA suppose que les
assemblées se dissocient en sous-unités stables le long d'un motif avec une valeur AGJ;
minimale. En outre, des considérations de symétrie, le motif de dissociation ne peut pas
contenir une interface engagée si une interface équivalente est désengagée quelque part
ailleurs dans le cristal. Si dans un complexe, une des interactions a un AGY;, négatif,
I’ensemble du complexe ou la sous-unité impliquée est instable. PISA considére que
l'identification de dissociation probable des motifs est un sous-produit important de la
méthode. 11 y a finalement trois régles pour déterminer les meilleures interfaces : i) Les
assemblées de grande taille sont prioritaires sur les petites ; ii) les homomeres sont prioritaires
vis a vis des hétéroméres ; iii) les assemblées avec énergie libre de dissociation AGY;, élevée

sont préférées a celles avec une valeur de AGJ; inférieure.

EPPIC

EPPIC pour « Evolutionary Protein-Protein Interface Classifier »* est un classifieur
d’interaction protéine-protéine discriminant les interfaces pertinentes des contacts cristallins
basés sur des critéres évolutionnaires. EPPIC est intéressant car il prend en compte beaucoup
de descripteurs mis au point au cours des années sur les interfaces protéine-protéine. Apres
plusieurs versions basées uniquement sur des critéres évolutionnaires la derniére version
d’EPPIC rajoute deux nouveaux critéres afin d’améliorer les prédictions du classifieur. Les
trois critéres pour la classification sont donc :

- le critere évolutionnaire basé sur de ’homologie de séquence avec des structures

connues ;

- un critere géométrique: la taille du ceeur de I’interface ;

- une estimation de la pression de sélection: 1’entropie de séquence.

Le critére géométrique a été utilisé au cours de différentes études des interfaces protéine-
protéine, il s’agit généralement d’un critére basé€ sur une classification des résidus présents a
I’interface. L'idée de diviser les résidus de l'interface, a savoir ceux qui plus enfouis qu’un
seuil déterminé, dans différentes classes sont apparues au début de la littérature sur les
interfaces protéine-protéine. Une équipe a proposé une premiere classification basée sur les
atomes plutdt que des résidus®, en les divisant en 3 classes qu'ils appelaient A, B et C. La
classe B contenant les atomes les plus enfouis, les deux autres classes A et C correspondant a
des atomes moins enfouis. Cette classification a évolué autour de la notion de résidus de base

comme les résidus ayant au moins une partie de leur chaine latérale entiérement enfouie™. La
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troisieme étape de la classification des résidus d’interface se fait sur les résidus dont
I’enfouissement change lors de la dimérisation, un résidu enfoui a plus de 95% est un résidu
du noyau d’interface. EPPIC utilise désormais une classification a catégories niveau, résidus
noyau, jante et de soutien’'. EPPIC a étudié les différents critéres avant de conserver la
méthode basé sur le pourcentage d’enfouissement qu’ils décrivent comme le plus
discriminant, ainsi une interface avec plus de 6 résidus de cceur sont considérés comme
biologiquement pertinente.

Le parametre entropie de séquence est une recherche de protéine par similarité de
séquence. Ils regroupent entre eux des protéines avec plus de 60% d’identité de séquence et
descendent a 50% dans le cas de groupes de plus de 10 séquences. Une interaction est définie
pertinente si les protéines du groupe correspondant possedent au moins 8 résidus du cceur en

commun et enfouis a plus de 70%.

1.4.3.Jeux de données d'interfaces protéine-protéine

Le principal probléme des classifieurs d’interface protéine-protéine est que la majorité des
outils développés au cours des années sont basés sur de structures et des jeux de données
anciens et déséquilibrés. Bien que la rigueur avec laquelle le jeu d'apprentissage a été
construit soit un élément clé de succes de toute prédiction, peu de groupes de recherche se
sont intéressés sérieusement a ce probleme. Dans les jeux de données classiquement utilisés,
nous avons tres vite identifié deux problémes majeurs remettant en cause la qualité des outils
disponibles :

- 1) la classification des interfaces dans une classe (biologique) ou une autre (contact

cristallin) n’est pas toujours vérifiée par des données expérimentales obtenues depuis
lors. De méme, beaucoup de structures contenant des contacts cristallins sont

qualitativement désuctes.

- 1i1) Les données sont totalement déséquilibrées vis-a-vis du simple critere de la taille de
l'interface, les interfaces cristallographiques étant d'une taille trés largement inférieure

a celle des interfaces biologiquement relevantes (Figure 1.6).
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Figure 1.6: Boites a moustaches présentant les deux jeux les plus utilisés (Ponstingl et Bahadur), le
dernier jeu (DC) créé pour EPPIC, et le jeu de données (FDS) créé lors de cette these.

Ponstingl

Le jeu de données Ponstingl52 est le premier jeu de données utilisé par la communauté
afin d’étudier les classifieurs d’interfaces protéine-protéine. Ce jeu est composé de 172
protéines non-redondantes qui ont pour caractéristiques d’étre solubles dans 1’eau. Le statut

oligomérique en solution est connu griace a des données expérimentales (monomere ou

multimeére).

Bahadur

Bahadur™ est un jeu de données publié en 2004 créé pour étudier la géométrie et les
propriétés physico-chimiques des interfaces protéine-protéine. Il contient 70 hétérodimeres et
122 homodimeres biologiquement pertinents. Les contacts cristallins sont représentés par 188
homodimeres réalisant des contacts semblables aux interfaces biologiquement pertinentes. Le
principal probléme de ce jeu de données est la tres faible taille des interfaces définies comme

contacts cristallins.
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Duarte-Capitani (DC)
Le jeu de données DC* est le premier a prendre en compte les erreurs du passé, il a été

créé afin de mieux déterminer I’efficacité des classifieurs d’interface protéine-protéine. Pour

créer le jeu, les auteurs se sont dirigés vers 3 axes d’optimisation principaux :

1) utiliser uniquement les entrées pour lesquelles la structure oligomérique est
clairement vérifiée expérimentalement;

ii) utiliser des structures de contacts cristallins avec des filtres beaucoup plus stricts:
résolution inférieure a 1.810\, rfree inférieur a 30% et un seuil d’identité de
séquence de 90%. Sur les structures dont les données expérimentales prouvent que
I’homodimeére n’existe pas, les cristaux sont reconstruits afin de générer les
interfaces cristallines;

1i1) Ne conserver que les interfaces d'une taille variant entre 1 000 et 1 500A2.

Le jeu de données est un trés bon jeu de validation et de comparaison de classifieurs. Le
principal probléme est le troisiéme axe qui supprime une grande partie d'interfaces
biologiquement pertinentes (ex: p5S3-mdm?2) dont la surface est inférieure a la valeur seuil de

1000 A2,

FDS

La méthode ayant conduit 2 la création de ce jeu de données™ est décrite en détail dans
le chapitre 2. Ce jeu de données est composé de 200 interfaces protéine-protéine
biologiquement pertinentes (sélectionnées et curées manuellement) et 200 interfaces
correspondant a des contacts cristallins impliquant des protéines connues pour exister a 1'état

monomérique en solution.

1.4.4.Bases de données d’interfaces protéine-protéine

La rapidité avec laquelle les données génomiques et protéomiques sont générées
nécessite le développement d'outils et de ressources pour la gestion des données qui

permettent 1'intégration des informations provenant de sources disparates.
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Hprd

La base de données de référence de protéines humaines (http://www.hprd.org) est une
ressource Web basée sur des technologies "open source" stockant pour chaque protéine un
nombre considérable d'informations dont les interactions protéine-protéine, les modifications
post-traductionnelles, les relations enzyme-substrat et les associations avec des maladies

(Figure 1.7).
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Figure 1.7: Capture d'écran des informations disponibles pour le récepteur béta2 adrénergique
humain dans la base de données Hprd.

Cette information a été extraite manuellement par une lecture critique de la littérature
publiée par les biologistes et a travers 1’analyse bio-informatique des séquences protéiques.
Cette base de données a pour visée une utilisation médicale. La complexité des données de
protéines sont difficiles a présenter sans méthodes de visualisation appropriées. Bien sir, il
serait désirable de profiter d'une vision intégrée alliant données de génomique ainsi de
protéomique comme cela a été démontré dans le cas de certaines voies métaboliques dans la

levure®.

BioGRID

La “Biological General Repository for Interaction Datasets” (BioGRID:
http://thebiogrid.org) est une base de données d'accés ouverte qui abrite les interactions
génétiques, chimiques et de protéines issus de la littérature pour tous les principaux modeles

d’organisme (Figure 1.8).
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Figure 1.8: Capture d'écran des informations disponibles pour le gene du récepteur béta2
adrénergique humain dans la base de données BioGRID. L'interactome est centré sur la requéte et
affiche a la fois les genes (méme espece, bleu; autre espéce: jaune) et les ligands (vert) en interaction.

directes(traits jaunes et bleus)

BioGRID contient aujourd’hui 1 069 563 interactions dont 468 948 interactions non
redondantes, décrites comme physiques. Il est a noter que BioGRID possede des algorithmes

d'apprentissage supervisés de traitement des publications développés au cours du temps afin

de faciliter son actualisation.
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EPPICDB

EPPICDB™ est un site web (http://www.eppic-web.org/ewui/) permettant de prédire
l'état d'oligomérisation de 99.32 % des structures présentes dans la PDB. EPPICDB montre
pour chaque entrée PDB la structure de 1'unité asymétrique ainsi que I’ensemble des

interfaces réalisables deux a deux griace aux axes de symétrie fournis par les auteurs (Figure

1.9).
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Figure 1.9: Capture d'écran des informations disponibles pour le récepteur béta2 adrénergique
humain (PDB ID 2rhl) dans la base de données EPPICDB.

Elle se présente comme la meilleure alternative aux informations données par PISA
dans la PDB. Les nouvelles entrées sont mise a jour tous les mois a I’aide de leur outil de

prédiction.
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1.5.Modulation des interfaces protéine-protéine

par des petites molécules

1.5.1.Introduction

Historiquement, les ligands endogenes ont €été identifiés bien avant que leurs
récepteurs ne soient isolés et que leurs structures ne soient résolues’. Les premiéres
informations sur la structure chimique du ligand étaient basiques et rares par rapport aux
informations disponibles actuellement. Toutefois, ces informations précoces se sont souvent
avérées suffisantes pour déduire la pertinence physiologique des ligands méme si les
mécanismes physiologiques sous-jacents restaient inconnus. Aujourd'hui, la découverte de
candidats médicaments est souvent contrainte par la cible biologique choisie, I'existence de
modeles animaux transgéniques, la biologie moléculaire, ou encore le génie génétique. Par
conséquent, la connaissance de la structure de la protéine cible est un atout crucial, pour
prédire et visualiser des ligands liés a leur cible. De nombreuses techniques expérimentales
ont été mises au point afin de visualiser la présence d’interaction entre une protéine et une
molécule, les structures de nombreux complexes protéine-ligand ont été résolues. Cependant
les outils chemoinformatiques existants ne sont toujours pas capables de décrire précisément

les mécanismes impliquant la reconnaissance d'un ligand par sa protéine cible.

1.5.2.Petites molécules aux interfaces protéine-protéine

Les interfaces protéine-protéine sont des éléments clés dans tous les processus
biologiques et leur dérégulation implique souvent des maladies, cela en fait des cibles
thérapeutiques privilégiées. L’ importance de ces cibles n’influe malheureusement en rien sur
la difficulté a les moduler de maniere rationnelle par des petites molécules. Ces interfaces
étaient encore considérées comme non droguables il y a une vingtaine d'années, notamment

par I'absence de cavités profondes et enfouies et de par leur taille considérable (1000-2000A*
57
).

Un autre obstacle provenait de l'absence de petits ligands endogeénes pouvant étre
utilisés comme support de modification structurale afin d'identifier les premicres touches
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d'intérét. La recherche d’inhibiteurs d’interfaces change a partir de 1995 quand est découvert

B et les

le fonctionement des molécules naturelles comme les taxanes, la rapamycine
cyclosporines. Quelques années plus tard, le tirofiban, un antagoniste d’intégrine rentre en
phase clinique. Des études de mutagénese dirigée ont montré que, dans I’interface, toutes les
interactions n’ont pas la méme importance. Il existe des aminoacides clés appelés points

chauds indispensables a la stabilité du complexes**.L’

avantage de ces points chauds est
qu’ils sont souvent situés au cceur de I’interface protéine-protéine et qu’ils sont étalés sur une
surface pouvant étre comparé a la taille de petites molécules médicamenteuses. Ce sont des
zones hydrophobes montrant une flexibilité assez €levée. Ces caractéristiques nous montrent
que certaines interfaces protéine-protéine pourraient avoir des zones d’interaction de taille

suffisamment petite pour étre efficacement modulées par des molécules "drug-like ".

Depuis lors, des inhibiteurs puissants ont été développés pour des complexes de
protéines diverses. En 2016, on recense 19 composés en phase d'études clinique active
(Tableau 1.4). Beaucoup de ces candidats cliniques d’inhibition d’interface ont une efficacité
élevée, typiques de molécules "drug-like" et sont disponibles par voie orale. De manicre
intéressante, les inhibiteurs d'interface les plus prometteurs sont issus de travaux
multidisciplinaires alliant entre autres outils moderne d’analyse, étude de la structure
tridimensionnelle, biomarqueurs et calculs théoriques. Les propriétés de ces inhibiteurs®' sont
légerement différentes de celles des molécules "drug-like" classiques, par exemple I’efficacité
du ligand (AG/HA) des inhibiteurs d’interface protéine-protéine est autour de 0.20 ce qui est
inférieur a la valeur de 0.3 classiquement observées pour des inhibiteurs de protéines
globulaires. Les parametres géométriques des inhibiteurs d’interfaces sont aussi différents®,
la partie hydrophobe des ligands exposant au solvant est plus petite que sur les ligands
classiques et cette zone est beaucoup plus localisé sur les extrémités. Les ligands des

interfaces protéine-protéine sont aussi plus globulaires que les ligands classiques.

Il est a noter que durant ces dernieres années, beaucoup d’avancées majeures dans la

création d’inhibiteurs d'interfaces ont eu pour source des peptides et peptidomimétiques&*("‘.
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Tableau 1.4: Tableau récapitulatif des inhibiteurs d’interface protéine-protéine passés en phase
clinique (issu de Scott et al., Nature Rev. Drug. Discov., 2016)
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1.5.3.Conception de médicaments

La conception de médicaments (Drug Design) fait appel a la recherche de molécules
affines pour une cible d’intérét qui peut étre une protéine, un complexe protéique ou une voie
métabolique. Divers algorithmes et méthodes existent depuis longtemps et les progres
informatiques incessants permettent d’accélérer toujours plus le processus. La conception de
médicaments assistée par ordinateur permet d’accélérer cette phase de criblage en évitant
notamment de tester expérimentalement des milliers de composés. Le but est de réaliser un
premier tri de composé a I’aide de tests in-silico, dont les trois principaux sont I’arrimage

moléculaire, la recherche de pharmacophores et I’étude des modes d’interactions.

L’arrimage moléculaire
Cette méthode a pour principe d’essayer de positionner une molécule de faible poids

. . . - 35
moléculaire au sein d’une protelne6.

L’arrimage moléculaire commence avec le
positionnement d’une protéine dans un champ de force. Chacune des conformations du
ligand, soit pré-enregistrée soit calculée a la volée, est positionnée a la surface de la protéine
et subit de nombreuses translations et rotations. Chaque position du complexe est conservée et
se voit attribuer un score grace a une fonction de score définie. Cette fonction est en général
basée sur la complémentarité entre les deux entités et prend en compte en priorité les liaisons
hydrogénes et les contacts hydrophobes®. Au final seule la pose ayant le meilleur score est
conservée pour chaque molécule. La chimiothéque criblée est ensuite triée par score de
docking décroissant afin de prioriser les molécules les plus prometteuses (touches) a la
validation expérimentale in vitro.

Cette technique est une des plus intuitives pour prédire des complexes
protéine/ligand®’ cependant elle posséde de nombreux inconvénients. La notation des
interactions est problématique pour prédire 1’affinité mais fonctionne bien pour positionner les
ligands. L’applicabilité de la méthode aux interfaces protéine-protéine a récemment été
vérifiée avec les logiciels AutoDock® et Glide® dans le but de reproduire les poses de
d’inhibiteurs de PPI dont la position cristallographique est connue’’. Les résultats obtenus
(54% de bonne prédiction sur les 80 inhibiteurs d’interfaces testés) sont en fait trés proches de
ceux obtenus avec des ligands de protéine globulaires. L'arrimage moléculaire a notamment
été utilisé ces dernieres années pour identifier des inhibiteurs de PPI par criblage virtuel

(Figure 1.10)
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Figure 1.10: Inhibiteurs d’interfaces protéine-protéine découverts par arrimage moléculaire. Pour
chaque inhibiteur, l'interface et sa constante de liaison sont précisées.

La recherche de pharmacophores

Le pharmacophore est la représentation d’un « ensemble de propriétés stériques et
électroniques défini a partir d’une interaction entre deux entités moléculaires et nécessaire
pour induire une réponse biologique » (IUPAC 1998). Il se présente sous la forme d’un
ensemble de spheres typées et orientées représentant les interactions entre les deux entités,
c’est une version simpliste et plus souple du ligand dans la position d’un complexe

donnée’"""%. Tl existe aussi des pharmacophores basés uniquement sur les ligands qui eux
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permettent de reproduire une molécule en trois dimension. Les propriétés étant représentées
par des spheéres, il y a une tolérance pour 1’alignement d’autres molécules. L'adaptation d'une
molécule au pharmacophore est approximée par un score de fitness témoignant de la
superposition des atomes du ligand aux éléments de méme nature physicochimique du
pharmacophore. Comme pour l'arrimage moléculaire, une chimiothéque peut étre criblée in

silico afin de sélectionner les touches vérifiant le mieux le pharmacophore de référence.

Cette méthode s’adapte trés bien aux interfaces protéine-protéine en utilisant une des
protéines partenaires en tant que ligand pour créer le pharmacophore, nous obtenons un
pharmacophore de I’interface. La taille de I’interface protéine-protéine est treés importante ici,
le pharmacophore doit étre souvent vérifié et sélectionné a la main afin d'obtenir des
inhibiteurs d'affinité suffisante, comme ceux récemment identifiés par recherche

pharmacophoriques a partir de larges chimiotheques (Figure 1.11).
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Figure 1.11: Inhibiteurs d’interfaces protéine-protéine découverts par une recherche de
pharmacophore. Pour chaque inhibiteur, l'interface et sa constante de liaison sont précisées.
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1.5.4. Bases de données d'inhibiteurs d'interfaces protéine-protéine

Initialement limité a des séries chimiques similaires ciblant un trés petit nombre
d'interfaces (ex: p53-MDM2, BclXlI-Bak, IL2-IL2R), le répertoire d'inhibiteurs connus
d'interfaces protéine-protéine ne cesse de croitre et accentue notre connaissance encore
parcellaire de l'espace chimique qui lui est associé”’. Trois bases de données stockent

l'essentiel de I'information disponible sur les interfaces et leurs ligands.

2P21

2P2Idb"*"™ est une base de données structurale (http://2p2idb.cnrs-mrs.fr/) dédiée aux
interactions protéine-protéine pour lesquelles des modulateurs sous forme de petite molécules

sont connus (Figure 1.12).
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Figure 1.12: Capture d'écran de la base de données 2P2I illustrant les données structurales connues

sur le complexe BCIXL-Bak.

Elle compile manuellement les informations structurales relatives aux inhibiteurs
orthostériques, a leur cible (structure issues de la PDB) et fournit des liens vers d'autres bases
de données utiles. 2P2Idb comprend toutes les interactions pour lequel a la fois le complexe
protéine-protéine, les protéines dissociées et des complexes protéine-inhibiteur ont été
structurellement caractérisés. Depuis sa premiere version en 2010, la base de données n'a
cessé de croitre et la version actuelle contient 27 complexes protéine-protéine et 274

complexes protéine-inhibiteur correspondant a 242 petites molécules inhibitrices uniques. Des
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outils cheminformatiques compagnons (2P2I inspector, 2P2I score, 2P2I hunter) ont été
développés autour de cette base de données afin de caractériser ces interfaces par propriétés
physicochimiques’*, prédire leur droguabilité structurale” et concevoir des chimiothéques

d'inhibiteurs d'interfaces’”.

iPPI-DB

La base de données iPPI-DB’® (http://www.ippidb.cdithem.fr) recense 1756 inhibiteurs
d'interfaces protéine-protéine (18 familles différentes) décrits dans la littérature selon 4
criteres distincts: (i) connaissance de la fonction de l'interface, (ii) ligands non-peptidiques,
(i1i) activité in vitro définie (ICsop, ECs, Ky, Kj), (iv) activité in vitro en dessous d'un seuil de

concentration de 30 uM (Figure 1.13)

Your results for BCL2-Like / BAX: 527 binding affinities from 326 compound(s). @ ¥* Q

Showing 1 to 50 of 527 entries

2 8 4 5 Next —
8] Compound RadarChart Target Assay Type Activity MW AlogP HBD HBA TPSA RB Ar Fsp3 R/IS LE LLE Biblio
oy =@ = oo = r
1 w @ 7 £10415 ELISA pics0 559 f 39213 6.12 3 6 10406 6 3 013 0 026 -053 M [%]
P - | 5

1 W\Q @ j'wﬁ'alu FP plcs0 567 f 39213 612 & 6 10406 6 3 013 0 026 -05 W [%]
Q {: Q Meed = Ki 800 F  800.00 9.07 2 § 1522 10 5 012 0 022 107
. Aﬁﬁkg . B Q07820 : o . i :

i

[100]

<}

i Wy ; . BCL-2 - B = [100]
2 quﬂhl‘[? _ e FP ki 696[F 8000 907 2 8 M52 10 & 012 0 019 21 E [100]

Figure 1.13: Capture d'écran de la base de données 2P2I illustrant les données structurales connues

sur la famille de complexes impliquant la protéine BCI2 et ses homologues

Pour chaque inhibiteur, outre son activité in vitro et le type d'essai utilisé, sont répertoriées
diverses propriétés physicochimiques calculées (divers comptes moléculaires et indices) ainsi
qu'une comparaison graphique (plot en étoile) des propriétés du ligand vis-a-vis de la totalité

des inhibiteurs répertoriés.
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TIMBAL

Timbal’’ est une base de données (http://mordred.bioc.cam.ac.uk/timbal) recensant de
maniere automatisée 8889 inhibiteurs et stabilisateurs d'interfaces protéine-protéine, a partir
de requétes dans la base de données ChEMBL suivant une liste pré-établie de 50 cibles et un
indice de confiance sur le type d'essai réalisé (Figure 1.14). 1l est toutefois a noter qu'une
grande partie des données présentées (environ 50%) concerne une seule famille d'interface

(intégrines) pas toujours clairement identifiée au niveau moléculaire.

Bcl-XL and Bcl-2

Apoptosis regulators bel-xl and bel-2

UniProt entries Small molecules tested in Bel-XL and Bel-2 binding 1730 datapoints for 909 distinct small Comma separated fils

. here
assays: molecules
Small molecules

PDB entries
Name Mature435_frag1
Affinity Mone
Assay description None

- Direct single profein farget assigned: B2CL1_HUMAN (Expert curation) —

QQ“

DOI http:/fdx doiorg/10.1038/natura03579
Doc title An inhibitor of Bel-2 family proteins induces regression of solid tumours
0 o PDB 1YSG - (4FC)
H
Name MNature435_frag2
Affinity None
Assay description None
— Direct single protein farget assigned: B2CL1_HUMAN (Expert curation) —
DoI http://dx doi_org/10.1038/nature03579
H’O Doc title An inhibitor of Bel-2 family proteins induces regression of solid tumours.
PDB 1YSG - (TN1)
Name Mature435_comp
Affinity None

oD

Assay description Mone
— Direct single profein farget assigned: B2CL1_HUMAN (Experi curation) —

050
o Dol http://dx.doi.org/10.1038/nature03579
¢ "N‘L Doc title An inhibitor of Bel-2 family proteins induces regression of solid tumours.
@ PDB 1YSI - (N3B)

Figure 1.14: Capture d'écran de la base de données TIMBAL illustrant les données structurales

connues sur la famille de complexes impliquant la protéine BCI2 et ses homologues
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1.6. Conclusion

La résolution des structures de protéines et notamment par diffraction des rayons X a
révolutionné 1’étude des interactions protéine-protéine. L’ afflux et la complexité grandissante
des données a amener son lot de problemes. Les structures présentes dans les cristaux ne sont
pas toujours similaires a celles effectivement mises en jeu in vivo. La résolution partielle de
ce probléme passe par la création de jeux de données permettant la validation d’outils de
distinction entre les interfaces biologiquement pertinentes et les contacts cristallins. La qualité
des jeux a toujours été variable et a évolué avec la qualité des structures résolues. Les outils
basés sur des méthodes d'apprentissage treés rapides méritent une attention particuliere et
pourraient étre encore améliorés.

Aujourd’hui de nombreux classifieurs d’interaction protéine-protéine existent mais peu
d’outils présentent des informations complémentaires pour 1’analyse des interfaces protéine-
protéine. Leur étude est devenue une discipline a part enticre et apporte de grands espoirs
pour I’avenir de la pharmacologie. Les méthodologies sont variées et commencent 2 montrer
des succes cliniques. Chaque interface reste néanmoins un cas a part et nécessite une
actualisation de la stratégie la plus adaptée afin d'identifier des petites molécules inhibitrices.
Malgré tout, les interfaces protéine-protéine représentent un potentiel encore tres faiblement
exploité, notamment de par un manque d'informations structurales et fonctionnelles a 1'échelle
protéomique. Le nombre grandissant de structures cristallographiques pertinentes et de
données expérimentales contribuera dans un futur trés proche au développement d'outils bio et
cheminformatiques de qualité permettant I'élargissement considérable de l'espace chimique
associé aux petites molécules inhibitrices et a de meilleures prédictions a la fois qualitatives et

quantitatives.
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2.1. Mise en contexte

La forme et la composition des interfaces protéine-protéine (PPI) sont caractéristiques
de la pertinence biologique de leurs structures. Les PPIs sont essentielles au monde du vivant
notamment pour le transfert d’information et le maintien structural au sein des cellules.
Analyser des interfaces et émettre des hypothéses basées sur des structures qui ne
représentent pas 1’état biologique des protéines est dangereux. Les outils permettant d’établir
cette véracité biologique n’étaient pas applicables aux données nous intéressant. De plus, le
phénomeéne d’interactions entre deux protéines est encore méconnu et il est important de
définir si D’interface est biologiquement viable, de la détecter et de la décrire. La
caractérisation des interfaces peut nous en apprendre plus sur l'oligomérisation et la
dissociation des complexes protéiques.

Les premiers exemples de régulation de PPIs par des inhibiteurs de faibles poids
moléculaires montrent que de nombreuses interfaces, méme de petite taille, peuvent étre
biologiquement pertinentes, et donc représenter des cibles privilégiées a des modulateurs de

faible poids moléculaire.

Dans ce chapitre, nous allons aborder la pertinence biologique des structures de PPIs.
Lors de nos premieres recherches, nous nous sommes apercus qu'il était usuel de trouver des
structures que 1'on peut définir comme étranges. Il est courant, par exemple, de trouver des
molécules de détergents ou d'agents précipitants a l'interface. De méme, certaines structures
de PPIs ont pu étre déterminées dans des conditions expérimentales non physiologiques (ex:
haute pression). Nous nous sommes posés la question de savoir comment mettre ces structures
de coté, car il n'existait que tres peu de méthodes de détermination de la pertinence biologique
de PPIs dont le domaine d'applicabilité couvrait I'ensemble de la PDB.

Les classifieurs les plus utilisés sont performants mais ils ont été entrainés sur des jeux
de données trés anciens et de mauvaise qualité. Ce sont des calculs longs souvent basés sur
des calculs énergétiques fortement influencés par la taille de l'interface. Or, nous voulions
précisément €tre en mesure de prédire a la fois des interfaces biologiques de petite taille (<
1000 A?) et des contacts cristallins de grande taille (> 2000 A?). Les interactions biologiques

de petites tailles concernent souvent des hélices-ot qui se lient a une cavité du partenaire. Ces
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structures, incomplétes la plupart du temps, sont systématiquement rejetées par les classifieurs
connus, car la taille de la zone d'interaction est trop faible.

Afin de corriger ce probléme, nous avons mis au point un jeu d'apprentissage complet
basé sur les jeux existants auxquels nous avons rajouté des PPIs biologiquement pertinentes
de petite taille et des PPIs non pertinentes de grande taille. Nous avons aussi développé une
méthode de détection et de caractérisation des interfaces protéine-protéine rapide
(IChemPIC), basée sur des descripteurs topologiques des interactions moléculaires mises en
jeu.

Ce chapitre a fait I’objet d’une publication qui décrit le fonctionnement d’IChemPIC,

notre classifieur d’interfaces protéine-protéines.
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2.2. Introduction

Les interactions protéine-protéine (PPI) sont au cceur de la plupart des situations
pathologiques au sein des cellules vivantes, et attirent donc de plus en plus la recherche
pharmaceutique.'™ Parmi les nombreuses stratégies pour identifier les modulateurs d’interface
de faible poids moléculaire, I’approche fondée sur la structure rationnelle a historiquement
joué un rdle important, notamment en raison de l'intégration possible du criblage biophysique
des banques de fragments (résonance plasmonique de surface, calorimétrie de titration
isotherme, spectroscopie par résonance magnétique nucléaire, spectrométrie de masse) en
déterminant la structure cristallographique.* Pour exploiter pleinement les connaissances
structurales des cibles droguables d’intérét, il est souhaitable de connaitre leur véritable état
d’oligomérisation ainsi que leur pertinence biologique. Tout au long de ce manuscrit, nous
allons considérer comme complexe protéine-protéine «biologique» toute entrée possédant une
vraie pertinence biologique ainsi qu’une fonction physiologique (par exemple 1'adhésion
cellulaire, la signalisation cellulaire, la reconnaissance immunitaire, la transcription). Les
complexes homo ou hétéro-oligomériques résultant soit de la formation du cristal ou
dépourvus de toute fonction biologique connue seront considérés comme «cristallins» ou non-
pertinents. Malheureusement, déduire la structure quaternaire et la pertinence biologique a
partir des coordonnées atomiques dans la Protein Data Bank (PDB) ° n’est pas simple. Par
exemple, le contenu de l'unité asymétrique (ASU) déposée dans la PDB (la fraction de la
cellule cristallographique unitaire qui n'a pas de symétrie cristallographique) peut décrire une
ou plusieurs copies d'une macromolécule, mais sans indication particuliere sur quel état
d’oligomérisation (par exemple, monomere, dimere) est le plus pertinent. De méme, I'ASU
peut avoir besoin d'opérations de symétrie cristallographique a appliquer avant de reconstituer
I'assemblage macromoléculaire biologiquement pertinent (unité biologique). Des procédures
automatisées, de discrimination de structures 3D, de différenciation des contacts cristallins et
d'interfaces biologiquement pertinentes stables sont donc nécessaires pour éviter des
expériences biochimiques longues et coliteuses telles que la filtration sur gel, diffusion de la
lumiere ou la sédimentation a 1'équilibre

En regle générale, ’aire des interfaces cristallographiques est beaucoup plus faible
(<1000 A?) que celles des interfaces biologiquement pertinentes®. Toutefois, cette régle
simple souffre de nombreuses exceptions, car certaines interfaces trés importantes comme

celles impliquant des sites de reconnaissance d’hélice o peuvent étre de trés petite taille (par
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exemple 780 A2 pour le complexe p53-mdm2). De nombreuses méthodes de classification ont
donc été congues pour prédire directement 1'état d’oligomérisation des complexes protéiques a
partir des simples coordonnées atomiques. ' La toute premiére approche, reportée en 1998 est
PQS (protein quaternary structure file server) ® utilise une fonction de score empirique basée
sur des descripteurs (aire de I’interface ; le nombre de résidus d’interfaces enfouis, les ponts
salins et liaison disulfure; 1’énergie de solvatation de la structure quaternaire). Bien
qu'imparfaite (au moins 20% des erreurs de classification ont été signalés par les auteurs eux-
mémes), le serveur PQS a ouvert la voie a de nombreuses méthodes qui peuvent étre
regroupées en deux catégories.

Un premier type d'approches, dont PISA” est le principal représentant, repose sur les
premiers principes de la physique pour prédire la stabilité des assemblages de protéines en
solution. Par exemple, PISA calcule explicitement I’énergie libre de dissociation de Gibbs
afin de prédire la pertinence biologique d'un assemblage macromoléculaire. Appliqué a un
ensemble de données de 218 structures PDB, cette méthode a atteint un taux de réussite
remarquable de 90% dans la prédiction de véritables interfaces biologiquesg. PISA peut étre
considéré comme une méthode de référence, et est actuellement utilisé pour prédire les
structures quaternaires de chaque entrée du site RCSB PDB. Un deuxi¢éme groupe de

2 7,10-17
méthodes’* *°

, génere des modeles de régression/classification linéaire ou non-linéaire sur un
jeu d’entrainement prédéfini (contacts cristallins et interfaces pertinentes) afin de prédire la
structure quaternaire de jeux externes. Plusieurs descripteurs géométriques et descripteurs de
complémentarité chimique peuvent étre utilisés pour discriminer, avec une précision similaire
(ca. 85-90%), les contacts cristallins des interfaces biologiquement pertinentes. Tres souvent,
ces méthodes (e.g. IPAC,7 DiMoVo,12 or NOXClass" ) utilisent des machines
d’apprentissages (séparateurs a vaste marge, arbres de décision, inférence Bayésienne) sur les
vecteurs de contacts atomiques ou les vecteurs inter-résidus pour décider quel jeu de
parametres est le plus adéquat pour une classification optimale. La conservation des résidus

! 18, 1
composant le cceur de I’interface 8.19

peut étre ajoutée aux descripteurs précédemment cités,
comme par exemple dans EPPIC,* pour mettre en avant I’importance des résidus du ceur de
I’interface au sein des interfaces biologiquement pertinentes.

Dans le but de pouvoir étre comparé aux autres, beaucoup d’études ont été réalisées sur un

DR . 10,21,22
nombre limité de jeux d’analyse comparative 021,

qui sont pourtant connus pour étre biaisés
par la taille des entrées les composant, des petits contacts cristallins opposés a de grandes

interfaces biologiquement pertinentes. " '>?° En conséquence, la plus part des classifieurs ont
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une précision beaucoup plus faible quand on les applique a un jeu de données dont les tailles
des interfaces sont équilibrées. Un jeu de données récent™ a été créé en faisant attention de
sélectionner des interfaces pertinentes et des contacts cristallins ayant une aire comparable et
trés stricte (autour de lOOOAZ). Notre but final étant d’identifier les interfaces de petites tailles
potentiellement droguables™, aucun des jeux de données existant ne nous apparaissait
satisfaisant. Nous avons donc concu manuellement un jeu de données (FDS set) de 200
complexes protéine-protéine biologiquement pertinents non redondants dont les structures
cristallographiques sont connues, qui a été complété par un nombre équivalent de 200
interfaces cristallines filtrées pour couvrir une aire d'interface comparable. Nous avons
ensuite utilisé un algorithme d'apprentissage automatique (Random Forest) a ’aide de 45
descripteurs d'interactions moléculaires, pour former un modele qui, lorsqu'il est appliqué a
plusieurs ensembles de test externes, permet d'obtenir une bonne précision et une robustesse
stable dans la distinction entre contacts cristallins et interfaces biologiquement pertinentes,

quelles que soient leurs aires d’interfaces.

2.3. Méthodes informatiques

2.3.1. Jeux de données

FDS dataset.

Les contacts cristallins ont été récupérés a partir de deux ensembles de données
précédemment rapportés.’” 2! Tout d'abord, 141 protéines monomériques connus 2 partir du
jeu de données Bahadur avec une zone d'interface cristalline dans l'intervalle 400-1200 AZ,
ont été récupérées de la maniere suivante. Les coordonnées atomiques de 1'unité asymétrique
ont été récupérées a partir de la « RCSB Protein Data Bank », pour chacune, une cellule
unitaire est reconstruite a 'aide AmberTools14*. Pour chaque structure et toutes les paires de
chaines possibles, Iaire d'interface IA (Eqnl) a été mesurée a l'aide de MSMS?® aprés le
retrait des atomes n’appartenant pas aux protéines (solvant, des ligands, des ions) et en

utilisant un rayon de sonde et une densité de sommet de 1,4 A et 2,0/ 10%2, respectivement.

IAA o (ASAx+ASAR)—ASAap (Eqn. 1)
3= 2
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Ou IAap est I'aire d’interface entre les chaines A et B, ASA4 est la surface accessible au
solvant de la chaine A isolée, ASAg est la surface accessible au solvant de la chaine B et
ASAp est la surface accessible au solvant du complexe AB.

L’interface possédant la plus grande aire est conservée pour chaque entrée PDB. Le jeu de
Bahadur est ensuite complété par 82 interfaces recrées sur des protéines connues pour étre
monomériques en solution provenant du jeu de données DCXtal* et sélectionnées sur la base
de leurs aires d’interface, de maniere a ce qu’elle soit comprise dans la gamme : 1000-

1500A2. Les structures PDB correspondantes ont été directement récupérées sur le site EPPIC

website (http://www.eppic-web.org/ewui/#tdownloads). La redondance entre les protéines a

été supprimée en ne conservant que les protéines ayant une identité de séquence inférieure a
70%, en se basant sur les reégles de redondance de la RCSB”. Le jeu final composé de 200
contacts cristallins non-redondant (PDB id, nom de la protéine, chaines, aire d’interfaces,

résolution, classification) est donné dans le Tableau supplémentaire 2.1.

Un ensemble de 200 interfaces biologiquement pertinentes et non redondantes (<70%
d’identité de séquences paire par paire entre deux chaines) a été créé a la main depuis la
littérature en accord avec les sources suivantes: (i) le jeu récent DCbio®™ d’interfaces
biologiques pertinentes d’homodimeres (74 PPIs) ; (i1) la base de données 2P21% archivant les
hétérodimeres pour lesquels est connue la structure cristallographique, la structure de chaque
monomere en forme libre et au moins un des partenaire co-cristallisé avec un inhibiteur de
faible poids moléculaire (10 PPIs) ;(iii) des inhibiteurs d’interfaces de faible poids
moléculaires®’ connus dont la structure du complexe des interfaces est connue (5 PPIs) ; (iv)
quelques structures connues d’interface protéine-protéine autour du cancer' (8 PPIs); (v) la
base de données “PPIAffinity”"” contenant les structures d’interface protéine-protéine
pertinente (complexe et forme libre de chaque partenaire) ainsi que des données
expérimentales comme la constante de liaison (54 PPis); (vi) la base de données appelée
« hot 100ps29>> (20 PPIs) ; (vii) des interfaces biologiquement pertinentes d’hétéromeres (18
PPIs). La pertinence des 200 complexes a été vérifié a la main au vu de la litérature™* > 27%

Les structures correspondantes ont été téléchargées depuis la PDB. Les chaines
participant a D’interface ont été sélectionnées manuellement en se référant aux sources
précédemment citées. La surface enfouie de I’interface a été calculé sur les structures sans les

atomes n’appartenant pas a la protéine, en suivant ’'Eqn 1 comme précédemment. Le jeu
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complet des 200 interfaces biologiquement pertinentes (PDB id, nom de la protéine, chaines,

aire d’interfaces, résolution, classification) est donné dans le Tableau supplémentaire 2.2.

Les 400 interfaces décrites ci-dessus (cristallographiques, biologiques) ont été
réparties au hasard en deux groupes (75% dans le jeu d’apprentissage, 25% dans le jeu de test)
conservant une proportion égale d'interfaces cristallographiques et biologiques dans chaque
sous-ensemble. Une attention particuliere a également été donnée pour déterminer une
distribution équivalente des aires de la zone d'interface dans les deux ensembles. En suivant la
procédure décrite ci-dessus, réaliser plusieurs répartitions aléatoires (75/25) n’a pas influencé
les résultats obtenus (meilleurs parametres RF, F-mesure des meilleurs modeles RF sur la
validation et des ensembles de tests externes, données non présentées). Le jeu d’apprentissage
ainsi que celui de test sont donnés dans les Tableaux supplémentaires 2.1 et 2.2.

Les entrées des jeux de données IPAC’, Ponstigl'® and Bahadur®' ont été extraites de la PDB

selon les identifiants PDB et les noms de chaine décrits dans la littérature.

Coordonnées atomiques. Pour chaque entrée PDB, les hydrogénes sont ajoutés avec
Protoss,” une méthode récemment décrite pour le placement des hydrogénes dans des
complexes protéine-ligand, qui tient compte des états tautomériques et de protonation des
tous les éléments présents. La méthode génere la position la plus probable des hydrogenes et
permet de recréer le plus grand réseau de liaison grace a une fonction de score empirique. Les
structures tout atome des entrées du jeu de données FDS peuvent étre téléchargées sur:

http://bioinfo-pharma.u-strasbg.{fr/IChemPIC.

2.3.2. Descripteurs d’interfaces protéine-protéines

Les interfaces entre les chaines protéiques sont détectées suivant une procédure en
trois étapes. Tout d'abord, I'interface est grossierement définie par comptage des distances par
paires entre tous les atomes des différentes chalnes. Ne sont gardés que les patchs pour
lesquels au moins 20 distances interatomiques sont plus courtes que 5 A. Dans une deuxiéme
étape, toutes les interactions intermoléculaires (hydrophobe, aromatique, liaison hydrogene,
liaison ionique) entre les deux chaines sélectionnées sont définies avec précision en utilisant
des parametres par défaut de 1’outil IChem développé en interne®'. L'ensemble des regles

topologiques, utilisées pour définir les interactions sur la base des paires d’atomes, de leur
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distances et des angles, est explicitement décrit dans le précédent rapport décrivant 1’outil’'.
Dans une troisieme étape, un pseudoatome d'interaction (IPA) est placé a mi-distance de
chaque paire d'atomes en interaction selon IChem. Il est important de noter que les IPAs
hydrophobes sont groupés si moins de 1,0 A les séparent’’. Si le nombre total d’IPAs est
supérieur ou égal a 5, l'interface est conservée; sinon elle est écartée. Enfin, un vecteur de 45
nombres réels est généré pour chaque interface restante décrivant sa taille, sa complémentarité
chimique et son enfouissement (Tableau complémentaire 2.3). Le vecteur final a la forme
suivante:

¢ e nombre total de pseudo-atomes (un parametre);

® Le pourcentage de chaque type d’interaction (quatre parametres);

e La distribution (en compte), pour chaque type d’interaction, de 1’enfouissement
des IPAs, divisé en dix intervalles allant de 25 a 100% d’enfouissement (4x10
parametres). L’enfouissement de chaque IPA a été déduit comme
précédemment décrit’ en projetant 120 rayons réguliérement espacées de 8 A
de long ayant leur origine les coordonnées 3D de 1'IPA, et en déterminant le
nombre intersectant la surface de la protéine environnante.

Au total, le procédé complet comprenant la génération des atomes d'hydrogene, la
détection d'interactions et la génération de descripteurs est suffisamment rapide (quelques

secondes par entrée PDB) pour étre appliqué a 1'ensemble de PDB.

Modele Random Forest

Les modeles de foréts aléatoire (RF) sont générés a 1’aide de la librairie RandomForest
4.6-7°° au sein de 'outil R cran. Un total de 500 arbres de décision (parametre ntree) a été
entrainé sur 1I’ensemble des descripteurs du jeu d’apprentissage (n=300), en faisant varier le
nombre de variables utilisées a chaque nceud (mtry). Une procédure de validation croisée par
cinq est utilisée pour séparer le jeu d’entrainement en cinq sous jeux d’entrainement aléatoire
(4/5 du jeu) et un sous jeu de test (1/5 des données) et analyser puissance de prédiction du
modele RF sur le jeu de test interne. Pour chaque valeur du parameétre mtry (nombre entier
entre 2 et 10), le modele de validation croisée correspondante a été évalué en fonction des

parametres statistiques suivants:
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Sensibilité = TP/(TP+FN)
Précision = TP/(TP+FP)
Specificité = TN/(TN+FP)
Exactitude = (TP+TN)/(TP+FP+TN+FN)
F-measure= 2*(Sensitivity*Precision)/(Sensitivity+Precision)
Dans lequel TP sont vrais positifs (interfaces biologiques prédites pertinentes), FP sont des
faux positifs (interfaces cristallographiques prédites pertinentes), TN sont vrais négatifs
(interfaces cristallographiques prédites cristallographiques) et FN sont des faux négatifs
(interfaces biologiques prédites cristallographiques).
La meilleur valeur de mtry est utilisée (i) pour générer dix modeles depuis le jeu
d’apprentissage complet (300 complexes) en faisant varier la graine aléatoire, (ii) utiliser les
dix modeles générées pour prédire la pertinence des 100 entrées présentes dans le jeux de

données du test externe.

2.3.3. Comparaison aux autres méthodes

Les prédictions IChemPIC ont été effectuées en utilisant le serveur IChemPIC

(http://bioinfo-pharma.u-strasbg. fr/IChemPIC). La prédiction finale se fait avec un consensus

des dix modeles, il faut au moins cinq des dix prédictions RF («biologique» ou
«cristallographique ») pour annoter une protéine testée. Dans le cas d'un nombre égal de
prédictions pour les deux types, l'interface est prédite cristallographique. IChemPIC a été
comparé a quatre méthodes de référence (NOXClass", PISA’, DiMoVo'? et EPPIC %) sur
trois jeux de test externes. Pour chacun de ces outils, les paramétres standards disponibles
dans leur version en ligne ont été choisis, en donnant comme entrée soit le code PDB et le
nom des chaines impliquées (interfaces biologiques) ou en soumettant le fichier de structure
préalablement préparé (contacts cristallins). Pour la classification SVM multi-niveaux
NOXClass (http://noxclass.bioinf.mpi-inf.mpg.de/), les probabilités d’appartenance au
différentes classes (biologiques, cristallographiques) ont été retenues pour chaque paire de
chaines de protéines, en conservant trois descripteurs (zone d'interface, ratio entre I’aire
d’interface et la surface des protéines, la composition en acides aminés de 1’interface). Dans
PISA (http://www.ebi.ac.uk/pdbe/pisa/), l'interface a été définie comme biologique si

l'interface correspondante a été prédite pour €tre stable parmi tous les ensembles proposés.
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Dans le cas contraire, l'interface a été prédite cristallographique. En utilisant la méthode de
prédiction Dimovo (http://albios.saclay.inria.fr/dimovo), un score supérieur a 0,50 a été utilisé
pour assigner une fonction biologique potentielle a une interface. Enfin, les prédictions EPPIC
(Bio ou Xtal) ont été effectuées sur un serveur web (http://www.eppic-web.org/ewui/) et sur la
base du systéme de vote par consensus (score final) en tenant compte des quatre descripteurs

(cceur de I’interface, la géométrie de I’interface, conservation du ceeur, surface de I’interface).
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2.4. Résultats et discussion

2.4.1. Paramétrisation du jeu FDS d’interfaces protéine-protéine
droguable

Aucun des jeux de données de référence n’est adapté a discriminer les contacts
cristallins des interfaces protéine-protéine biologiquement pertinentes. D'un c6té, les jeux de

c e 0, 13, 21, 22
données historiques 32k

sont déséquilibrés par une majorité des entrées
cristallographiques possédant une aire faible (500-1000 A?) et par les véritables entrées
biologiquement pertinentes de grande taille (1000-3000 A2). De l'autre coté, le jeu de donnée
DC? corrige cette anomalie en sélectionnant les entrées avec une répartition homogéne des
aires d'interface (1000 a 1500 A2) qui cependant tombe encore en dehors du domaine
d'applicabilit¢ de nombreuses PPI biologiquement pertinentes et importantes (par exemple
interface p53-mdm?2 de 780 A2, PDB ID: 1YCR) modulées par des inhibiteurs de faible poids
moléculaire”. Les deux jeux Bahadur et DC qui ont des données qui ne se chevauchent pas
beaucoup par rapport a la plage de la zone d'interface ont donc été fusionnés pour é€largir le
domaine d'applicabilité de nos prochaines prédictions. Nous avons finalement rassemblé
manuellement un ensemble supplémentaire de 115 PPIs biologiquement pertinentes pour
obtenir un nombre final de 400 interfaces qui a été divisé en un jeu d’entrainement (75% des
données) et un jeu de test (25% des données). L’inspection de la distribution respective des
tailles de I’aire d'interface dans les deux ensembles ne révele aucun biais majeur, bien que les
interfaces biologiques restent en moyenne un peu plus grandes que les contacts cristallins
(figure 2.1). Nous démontrerons plus tard que la taille de l'interface n'a pas une influence

majeure dans la discrimination cristallographique a partir d'interfaces biologiques.
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Figure 2.1 Distribution des aires d'interface dans les jeux FDS apprentissage et de test (Xtal,
l'interface est cristallographique; Biol, l'interface est biologiquement pertinente). Les boites délimitent
les 25°™ et 75°™ percentiles, les moustaches délimitent les 5™ et 95 percentiles. Les valeurs
médianes et moyennes sont indiquées par une ligne horizontale et un carré dans la boite. Les croix
délimitent les 1% et 99°™ percentiles, respectivement. Les valeurs minimales et maximales sont
indiquées par un tiret.

Environ 80% des contacts cristallins (jeu d’entrainement et de test) concerne des
enzymes dont le site catalytique est trés connu, le reste étant composé par des protéines de
transport. La proportion d’enzymes dans les interfaces pertinentes est plus faible (environ
55%), l'ensemble biologiquement pertinent présente plusieurs exemples de complexes de
reconnaissance impliqués dans des processus biologiques importants (par exemple la
reconnaissance immunitaire, la signalisation cellulaire, adhésion cellulaire, la transcription).

La résolution moyenne des structures cristallographiques est de 1.84 + 0.35 A pour les
contacts cristallins et 2.10 + 0.58 A pour les interfaces biologiquement pertinentes. Une
grande majorité des structures a été résolue 2 haute résolution (<2.5 A). Durant la préparation
de la protéine, nous avons vérifié que les chaines impliquées dans I’interface étaient
completes. Aucun des 400 complexes PDB décrits ici ne présente une chaine latérale
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incompléte a l'interface protéine-protéine sélectionnée. Une vérification des ions présents aux
interfaces a aussi été effectuée et a montré qu’il n’y avait pas d’ions importants a proximité
des interfaces sélectionnées. Conserver les molécules d’eau présente a I’interface aurait été un
plus mais il n’y a pas de molécules d’eau dans 184 des 400 entrées ce qui nous a imposé de
les retirer toutes. Nous avons un protocole unique pour le traitement de 1’ensemble des
structures utilisées. En observant les 400 structures utilisées, nous avons observé que des
molécules d’eau n'étaient utilisées a 1’interface que dans 30% des structures en contenant
(30% des 216 entrées contenant de 1’eau). Les liaisons réalisées par I’eau sont généralement
une liaison hydrogeéne unique. Ces observations nous confortent dans dans le fait que

supprimer les molécules d’eau n’a pas de conséquences majeures sur ces travaux.

2.4.2. Détection des interfaces et génération des descripteurs

Nous avons premierement détecté les interfaces entre les chaines, puis déterminé
explicitement toutes les interactions non liées (contacts hydrophobes, interactions

aromatiques, liaisons hydrogenes et ioniques) et généré des pseudo-atomes d’interface (IPA)

pour décrire chaque interaction (Figure 2.2).
. - —

Figure 2.2 |Interface (PDB ID: 4NNY) entre la sous-unité alpha du récepteur a l’interleukine-7
(bronze, chaine C) et la cytokine « receptor-like » facteur 2 (bleu, chaine C). Six pseudoatomes
d'interaction (spheres) sont placés a mi-distance de chaque paire d'atomes en interaction et se voient
attribuer une propriété correspondant au type d'interaction (hydrophobe, aromatique, liaison
hydrogene, une liaison ionique). L’image de droite est un zoom sur une liaison ionique unique avec
affichage explicite des chaines latérales.
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Un assemblage moléculaire complexe des plusieurs milliers d’atomes peut étre
représenté par un ensemble d’[PA beaucoup plus simple (60-70 points en moyenne) décrivant
a la fois la nature et I’enfouissement des interactions correspondantes. Puisque nous
considérons explicitement des liaisons hydrogene, il convient de noter que tous les atomes
d'’hydrogene sont ajoutés aux fichiers PDB natifs, tout en optimisant les états de tautomérie et
de protonation des acides aminés’.

Bien que les interfaces biologiquement pertinentes aient un nombre moyen d’IPA plus

grand (86 +40) que les contacts cristallins (50 * 30), le pourcentage moyen des différents

types d’interactions reste similaire dans les deux ensembles (Tableau 2.1)

Table 2.1. Pourcentage moyen pour chaque type d’interactions présente aux interfaces protéine-

protéine.
_ Cristallographique Biologique
78.06 + 15.70 83.32+9.71
0.24+1.14 0.10 + 0.32
17.97 £12.11 13.51+7.24
3.65+5.80 3.00 +3.87

* statistiques établies sur 27186 interactions protéine-protéine (200 contacts cristallins et 200 interfaces
pertinentes du jeu FDS), détectées avec IChem.”’

Comme prévu, les contacts hydrophobes sont majoritaires et représentent pres de 80%
des interactions. De plus, ils sont plus présents dans les interfaces biologiquement pertinentes
(Tableau 2.1). Les interactions aromatiques (face/face et face contre aréte) sont rares mais
elles existent et sont un peu plus représentées dans les contacts cristallins, comme le
montraient de précédentes observations'. Les liaisons hydrogenes sont plus fréquentes dans
les contacts cristallins que dans les assemblées biologiques. Cependant, la qualité des
interactions hydrogenes (force, accessibilité) n’est pas prise en compte dans cette analyse.
Finalement les interactions ioniques sont également représentées dans les deux ensembles.
Méme si les interactions métalliques ont été retrouvées quelques fois, cette valeur n’a pas été
transmise aux modeles de foréts aléatoires afin de générer le descripteur d'interface le plus

simple possible.
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2.4.3. Modé¢le de classification binaire en forét aléatoire

La Forét Aléatoire (RF) est une méthode trés polyvalente d'apprentissage automatique
pour la classification et la régression qui repose sur un grand nombre d’arbre de décision
indépendants®. Chaque arbre est créé par « bootstrap » des données d'origine en utilisant un
sous-ensemble aléatoire de caractéristiques. Ensuite, les arbres individuels sont combinés a
travers un processus de vote pour fournir une prédiction non biaisée. En contraste avec les
arbres de décision unique, les foréts aléatoires ont une variance faible et trés peu de biais.
Considérant que les foréts aléatoires ont peu de parametres a régler (nombre d'arbres, nombre
de variables a chaque division), la méthode est facile a utiliser afin de produire un modele
raisonnablement rapide et efficace. Parmi les nombreuses applications potentielles, le RF est
de plus en plus utilisé dans les sciences de la vie que ce soit en tant que classifieur ou comme
méthode de régression non-linéaire®”.

Dans notre application, le nombre d'arbres (parameétre ntree) a été fixé a 500. Outre
une nette influence sur le temps global de calcul, les variations de ce parametre n’ont pas
influencé les résultats présentés. Le nombre de variables échantillonnées au hasard en tant que
candidats a chaque division (parameétre mtry) a été systématiquement varié de deux a dix
variables utiles, et chaque modele a été répété cinq fois en faisant varier la graine aléatoire de
départ. En utilisant une valeur de mtry égal a quatre, la modélisation des foréts aléatoires
conduit a un modele stable et robuste avec validation croisée par 5 (F-mesure = 0,776 * 0,09)

lorsqu'elle est appliquée a I'ensemble de la formation FDS (Tableau 2.2).

Table 2.2 Statistique du meilleur modele RF généré avec le jeu FDS d’entrainement

Parameétre Apprentissage (n=300)* Test (n=100)°

Sensibilité 0.794 £ 0.017 0.728 £ 0.014

0.759+£0.010 0.745 £ 0.018
Specificité 0.747 £0.014 0.750 +£0.025
0.771 £0.009 0.739+0.012
0.776 £ 0.009 0.736 £ 0.010

* Moyenne et déviation standard des meilleurs modéles avec validation croisée (ntree=500, mtry = 4),
répétés 5 fois avec différentes graines aléatoire.
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® moyenne et déviation standard (ntree=500, mtry = 4) sur la prédiction des 100 interfaces du jeu FDS
de test.

Le modele est également bon pour prédire aussi bien les interfaces biologiques
(sensibilité) que les interfaces cristallographiques (spécificité). Lorsqu'il est appliqué au jeu
externe FDS de 100 PPIs, une baisse modérée de la précision (0,739 + 0,012) et de la F-
mesure (0,736 = 0,010) est observée, mais le modele est toujours robuste et prédit aussi bien
les deux catégories de PPIs (sensibilité = 0,728 + 0,014; spécificité = 0,750 = 0,025; Tableau
2.2).

Pour étre siir que les données observées ne sont ni le résultat de surentrainement, ni
de corrélation chanceuse, nous avons d'abord effectué un test de y-scrambling par
l'assignation aléatoire de la variable dépendante (cristallographique ou biologique) a chacune
des 400 interfaces protéine-protéine du jeu de données FDS. Comme prévu, la F-mesure des
modeles RF correspondantes (mémes parametres que ci-dessus) a sensiblement chuté a une
valeur moyenne de 0,515 et 0,502, lorsqu'il est appliqué au jeu d’entrainement et au jeu de
test externe. Nous avons ensuite calculé 45 modeles RF (dix essais/modele) dans lequel les
valeurs des 45 descripteurs ont été itérativement permutées pour chaque entrée de 1'ensemble
de la formation. Pour I'ensemble des 45 descripteurs, les 300 valeurs de descripteur calculées
précédemment ont été assignées au hasard (apprentissage). L'analyse des variations de la F-
mesure moyenne pour 1'ensemble du jeu d’apprentissage permet d'identifier les parametres les
plus importants parmi nos 45 descripteurs (Figure 2.3).

Sur les 45 descripteurs, 11 ont une réelle contribution au modele général (> 1%
diminution de la F-mesure) lorsque leurs valeurs respectives sont interverties. Les parametres
les plus importants sont clairement le nombre de pseudoatoms d'interaction (nPTS) et le
pourcentage de contact hydrophobes trés enfouis (descripteurs Hydro7-hydrol0, Tableau
annexe S2.3).

Permuter les valeurs prises par le nombre total d’IPAs (nPTS) diminue la F-mesure globale du
modele de 1,6% (Figure 2.3). Alors que des contacts hydrophobes accessibles (parametres
Hydrol-Hydro6) ne contribuent pas vraiment a la F-mesure globale, les interactions
hydrophobes plus enfouies (Hydro7, Hydro8, Hydro9, parametres Hydrol0) sont vraiment
critiques. De maniere remarquable, la permutation de valeur du parametre HydrolO
(pourcentage des contacts hydrophobes 100% enfouis) diminue la F-mesure du modele RF de
pres de 3% (Figure 2.3). En conséquence, les résidus du coeur de I'interface hydrophobes,
définis comme enfouis d'au moins 95% ont récemment été décrits comme les principaux
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2 . . 2 N . . . .
déterminants de interfaces™. Des parametres de moindre importance, mais toutefois encore
utile, sont les pourcentages des autres interactions (les liaisons hydrogéne, liaisons ioniques)
trés enfouies qui tendent a étre plus élevés dans les interfaces biologiques que dans les

contacts cristallins (Figure 2.3).

lonic10
lonic9
lonic8
lonic7
lonicé
lonic5
lonic4
lonic3

Parameéetre

0 5
Varation de la F-measure, %

| | I
-4 -6 -8 -10 -12

Figure 2.3 Influence de la permutation des valeurs de descripteur sur la F-mesure moyenne de dix
modeles RF obtenus avec les meilleurs parametres de validation croisée (ntree = 500, mtry = 4) et
entrainés sur le jeu d’apprentissage FDS.
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Permuter les valeurs de quatre des 45 parameétres (Hydro5, Aro8, Aro9, Hbond7)
conduit a de légerement meilleurs modeles RF. La plus forte baisse observée en F-mesure
(mélange des valeurs de paraméetre Hydro8) est seulement de 5% et est probablement
expliquée par des effets compensatoires sur I'élimination du descripteur le plus critique. Pour
démontrer cette hypotheése, nous avons supprimé le descripteur Hydro8 a partir du vecteur
initial, recalculé un modele RF sur l'ensemble des n-1 descripteurs (F-mesure de 0,705 sur
l'ensemble de la formation) et permuté a nouveau itérativement les valeurs des descripteurs.
Cette fois, le descripteur le plus critique est HydrolO (ancien second descripteur le plus
important) avec une diminution beaucoup plus forte de la F-mesure (11,3 * 3,3%). Cette
observation illustre parfaitement notre hypothése et l'effet compensatoire du parametre
Hydro10 lors du retrait de 'influence du descripteur Hydro8.

La contribution plus faible du parametre Hydro9 (nombre de IPAs hydrophobes
enfouis entre 91,6% et 100%) par rapport a celle de Hydro8 (compte des IPAs hydrophobes
enterrée entre 83,3% et 91,6%) et Hydrol0 (nombre de 100% enterré hydrophobe IPAs) est
intrigante et peut étre expliquée par une distribution particuliere des valeurs des parametres
lorsque I'on compare les contacts cristallins et les interfaces biologiquement pertinentes
(Figure 2.4). Par conséquent, les distributions de Hydro8 et HydrolO sont clairement
différentes lors de I'examen des deux sous-ensembles d'interfaces (valeurs plus élevées du
parametre Hydro8 dans les contacts cristallographiques, valeurs plus élevées du parametre
Hydrol0 dans les interfaces biologiques). Curieusement, les valeurs des paramétres Hydro9
sont distribuées de maniere similaire (Figure 2.4), ce qui explique pourquoi ce parameétre

contribue moins au modéle de validation croisée RF.
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Figure 2.4 Distribution des parameétres Hydro8, Hydro9 et HydrolO au sein du jeu d’apprentissage
FDS (vert : interfaces biologiquement pertinentes, rouge : contacts cristallins)
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Pour confirmer l'importance suggérée ci-dessus de certains parametres d'interface
(NPTs, Hydro7, Hydro8, Hydro9, Hydrol0O), nous avons classé¢ les 300 interfaces
d’apprentissage par valeur décroissante de chaque descripteur (45 listes d'entrées PDB classés
par ordre décroissant pour le descripteur étudié). Nous avons ensuite procédé a une
classification binaire des 300 entrées (cristallographiques, biologiques) dans les rangs obtenus
dans ces 45 listes. Un descripteur parfait conduirait a une classification (ROC AUC = 1) dans
laquelle toutes les 150 interfaces biologiques sont classés avant la premiére interface
cristalline. En utilisant la classification ROC, on peut donc estimer 1'importance relative de
chaque descripteur pour discriminer les deux catégories. Toute classification a base de
descripteur unique avec un AUC plus élevé que 0,7 (Figure 2.5) indique que ce descripteur

est particulicrement efficace. Cette analyse confirme le rdle crucial des deux parameétres

(nPTS, Hydro10) sur la discrimination des deux sous-ensembles d'interface.
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Figure 2.5 Aire sous la courbe ROC pour une classification binaire (contact cristallin, interface
pertinente) des 300 interfaces (FDS apprentissage) lors d’un classement décroissant de chacun des 45
descripteurs d’IChemPIC
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Cette analyse complémentaire montre également que les valeurs observées
pour trois descripteurs (Hbond, Hydro7 et Hydro8) sont en effet plus élevés pour les contacts
cristallins (ROCscore <0,50) et contribuent donc également a discriminer les deux ensembles
d'entrées PDB. Il est important de noter, qu’en utiliser I’aire d’interface comme descripteur ne
conduit pas a une bonne classification binaire (ROCscore = 0,59) qui confirme que le jeu
d’apprentissage FDS est tres bien équilibrée par rapport a ce critere important qui a été

négligé par le passé.

2.4.4. Comparaison d’IChemPIC aux méthodes existantes

IChemPIC a été comparée a quatre méthodes reconnues (NOXClass", PISA’,
DiMoVo'? et EPPIC*) pour prédire la nature des PPI provenant de trois jeux de test externes
différents.

Au vu de la diversité des interfaces dans le jeu de données FDS, il est peu surprenant
que la précision observée des méthodes existantes est nettement inférieure a celle rapportée
dans les publications qui les décrivent” ' '*2°, NOXClass est remarquablement sensible (bon
taux de vrais positifs), mais au prix d'une spécificité beaucoup plus faible (faible taux de vrai
négatif). En revanche, EPPIC et dans une moindre mesure Dimovo sont spécifiques dans la
détection des contacts cristallins (spécificité = 0,949), mais sont moins performants dans la
reconnaissance des interfaces biologiquement pertinentes (faible sensibilité), notamment
lorsque la zone d'interface est faible (<750 A2, Tableau supplémentaire S2.4). PISA, la
méthode actuellement utilisée pour prédire les assemblages macromoléculaires dans la RCSB
PDB, est le plus stable par rapport a tous les parametres statistiques pris en compte (Tableau
3). Au final, IChemPIC apparait toujours comme la méthode de choix pour une classification
binaire des interfaces protéine-protéine, car elle offre une performance constante et robuste
pour prédire les interfaces biologiquement pertinentes et les contacts cristallins, quelle que

soit leurs tailles (voir les prédictions completes dans le Tableau complémentaire S2.4)

D'une part, il est inférieur a NoxClass et PISA pour la détection d’interfaces
biologiques, mais beaucoup plus précis pour prédire les contacts cristallins. D'autre part,
IChemPIC est moins précis que les prédictions des contacts cristallins d’EPPIC mais
nettement meilleur dans la prédiction des interfaces biologiquement pertinentes (Tableau

2.3). Sur les cing méthodes testées ici, IChemPIC est la seule méthode capable de prédire
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avec une bonne précision I’ensemble des PPIs, quel que soit le statut (contacts cristallins,

biologiquement pertinent) ou la taille de 1'interface.

Table 2.3 Comparaison d'IChemPIC a quatre méthodes de référence pour prédire le statut
(biologique, cristallin) du jeu de données externe FDS (n=100)

- IChemPIC2  NOXClass DiMoVob PISAc EPPICd
0.740 0.878 0.480 0.771 0.667
0.755 0.694 0.857 0.725 0.909
0.760 0.525 0.733 0.674 0.949
W 0.750 0.719 0.538 0.725 0.826
0.747 0.775 0.615 0.747 0.769

a

prévisions consensuelles (biologiques ou cristallographiques) sur dix modéles RF indépendants.
Dans le cas d'un nombre égal de prédictions pour les deux propriétés, l'interface est prédite
cristallographique. Les prévisions ont été obtenues a l'aide du serveur IChemPIC (http://bioinfo-
pharma.u-strasbg.fr/IChemPIC).

® 35 entrées commune au jeu d'entrainement de DiMoVo ont été supprimées.

¢ Deux entrées (1i5h, 1y7q) n’ont pu étre prédites par PISA (données cristallographiques absentes); 7
entrée présentes dans le jeu d’entrainement de PISA ont été supprimées.

® 29 entrées communes aux jeux d'entrainements de EPPIC et FDS ont été supprimées.

Du fait qu’IChemPIC a été entrainé sur le jeu de données FDS, il est juste de
comparer ses performances sur des jeux de tests externes totalement indépendants. Nous
avons donc choisi trois jeux de données externes supplémentaires (IPAC’, Ponstigl'® and
Bahadur®') contenant des entrées PDB non présentes dans le jeu d’apprentissage FDS. Les
deux premiers jeux ont notamment été utilisés pour l'analyse comparative de la plupart des
outils similaires & IChemPIC. Comme indiqué précédemment,'* *° les jeux de donées Bahadur
et Ponstingl ne sont pas tres instructifs a cause d'une fort biais vers de petits contacts
cristallins et des grandes interfaces biologiquement pertinentes. En conséquence, tous les
programmes, y compris IChemPIC obtenir une excellente précision (0,85 a 0,95) pour prédire
la nature de ces entrées (Tableau 2.4). I[ChemPIC présente notamment la plus haute F-mesure

(0,932 et 0,870, respectivement) sur ces deux ensembles externes, ce qui indique sa robustesse
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dans la prédiction des interfaces aussi bien biologiques et cristallographiques (voir les
prédictions complétes des Tableaux supplémentaires 2.5 et 2.6).

Le dernier jeu externe (jeu IPAC3)’ est composé de 66 protéines hétérodimériques dont la
structure cristalline est connue et dont des constantes de liaison sont expérimentalement
déterminées. Il permet notamment d'évaluer la sensibilit¢ de la méthode pour prédire les
interfaces biologiques treés différentes. Sur les cing méthodes, NOXClass présente les
meilleures performances (seulement la sensibilité est rapportée) lorsqu'il est appliqué a cet
ensemble de données (Tableau 2.4). Etonnamment, cette méthode ne manque aucune entrée
méme appliquée aux complexes de plus basse d'affinité (Kd <10° M, Tableau
supplémentaire 2.7). Compte tenu de la propension de NoxClass a surestimer les interfaces
biologiques dans les jeux de tests externes examinés précédemment (sensibilité >> précision;
Tableaux 2.3 et 2.4), son excellente performance devrait donc étre considérée avec une
extréme prudence. D'autres méthodes sont en effet sensibles a la force des complexes
correspondants et ont logiquement échoué a prédire comme biologique les complexes de
faible affinité (Tableau 2.7). Parmi ces méthodes, IChemPIC présente clairement la plus

grande exactitude (Tableau 2.4).
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Table 2.4 Performance de IChemPIC par rapport aux méthodes de l'état de l'art dans la prédiction du statut (cristallographique, biologique) de trois jeux de référence

indépendants.
I e )
- Crystallographic  Biological IChemPIC? NOXClass DiMoVo PISA EPPIC
20 122 Sensibilité 0.902 0.938 n.a. 0.918 0.885
- Précision 0.965 0.892 n.a. 0.875 0.973
- Spécificité 0.800 0.450 n.a. 0.556 0.850
- Exactitude 0.887 0.855 n.a. 0.835 0.880
- F-measure 0.932 0.915 n.a. 0.896 0.927
67 76 Sensibilité 0.882 0.919 0.714 n.a.® 0.895
- Précision 0.859 0.760 0.714 n.a. 0.840
- Spécificité 0.831 0.731 0.930 n.a. 0.806
- Exactitude 0.858 0.822 0.887 n.a. 0.853
- F-measure 0.870 0.832 0.714 n.a. 0.866
0 66 Sensibilité 0.706 0.946 0.394 0.682 0.636

# prédictions consensuelles (biologiques ou cristallographiques) sur dix modéles RF indépendants. Dans le cas d'un nombre égal de prédictions pour les deux propriétés, l'interface est prédite
cristallographique. Les prévisions ont été obtenues a I'aide du serveur IChemPIC (http://bioinfo-pharma.u-strasbg.fr/IChemPIC).

® 142 structures PDB (122 biologiques, 20 cristallines) ne sont pas présentes dans le jeu d'entrainement de IChemPIC. Les entrées présentes dans les jeux d'entrainement de NoxClass (n = 25),
Dimovo (n = 142) et PISA (n = 63) ont été supprimées lorsque la méthode correspondante a été utilisée pour la prédiction.

¢ pas applicable car DiMoVo a été entrainé sur le jeu de données Bahadur.

4143 structures PDB (76 biologiques, 67 cristallines) ne sont pas présentes dans le jeu d'entrainement de IChemPIC. Les entrées présentes dans les jeux d'entrainement de NoxClass (n = 14),
Dimovo (n = 72), et PISA (n = 109) ont été supprimées lorsque la méthode correspondante a été utilisée pour la prédiction.

° non applicable car PISA a été entrainé sur le jeu de données Ponstingl.

£ 66 PDB structures hétérodiméres (Validation Set 3) de constantes de liaison connues. Les entrées présentes dans les jeux d'entrainement de IChemPic (n = 15) et NoxClass (n = 10) ont été
supprimées lorsque la méthode correspondante a été utilisée pour la prédiction.
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2.4.5. Application pratique d’IChemPIC a I’ensemble de la PDB et
explication d’erreurs

IChemPIC a ensuite été appliqué pour classer 4950 structures d’interfaces non
redondantes extraites de Dockground38. Toutes ces structures sont basées sur le fichier de
I'unité biologique (Biounit) déduit des prédictions PISA et fourni en ligne par le RCSB PDB.

Environ 30% (1493 au total) de ces interfaces sont néanmoins prédites comme contacts

cristallins par IChemPIC (Tableau S2.8). Ces écarts résultent de trois causes principales

Chaine A \ Chaine B
(a) {
U F , . Chaine C

Chaine D

(Figure 2.6).

(b)

(c)

Figure 2.6 Exemple d’interfaces prédites pertinente par DockGround qu’IChemPIC rejette. A)
complexe CTLA-4 (Chaines A, B) / B7-2 (Chaines C,D; PDB ID 1i85), B) Phosducine-like protéine
humaine 2 avec des molécules de PEG liées (sphere rouge) a linterface (PDB ID 3evi); C)
plastocyanine de la cyanobactérie Synechocystis sp. PCC 6803 (PDB ID Ipcs).
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Premiérement, notre méthode comme tout autre est loin d'étre parfaite et ne parvient
pas a prédire correctement 25% des entrées du jeu de test (Tables 2.3 et 2.4). Dans de
nombreux cas, l'erreur se produit parce qu’IChemPIC ne prédit pas les interfaces des
structures quaternaires. Par conséquent, deux chaines peuvent former une interface stable en
fonction du contexte précis ou d'un état d’oligomérisation beaucoup plus grand. Par exemple,
l'interface isolée entre CTLA-4 (chaine B) et B7-2 (chaine D) est prédite non pertinente (PDB
ID 1185, interface = 621 Az, NPTS = 42), car elle existe seulement dans un plus grand réseau
(Figure 2.6a) expliquant l'organisation périodique de ces molécules dans la synapse
immunologique 2 la surface cellulaire®®. Deuxiémement, un grand nombre d’interfaces de
petites dimensions (149 sont plus petites que 500 A?) sont des conséquences évidentes des
conditions de cristallisation, facilitée par la présence d’un sel ou d’un agent de précipitation.
Ce cas est bien illustré par la structure cristallographique de la protéine phosducine humaine
20 (PDB ID 3EVI, interface = 422 A% NPTS = 21) qui présente deux molécules de
diéthylene glycol stabilisant une interface homodimerique artefactuelle (Figure 2.6b). Enfin,
un empilement cristallin énergétiquement fort peut produire des interfaces artificielles,
comme illustré ici par 1'assemblée prédite biologiquement pertinente d'une plastocyanine de
cyanobactérie (Figure 2.6¢) avec une parfaite symétrie C2 (PDB ID 1PCS, interface = 395
A%, NPTS = 6), mais pas de pertinence biologique“.

De l'exercice actuel, nous estimons a 15% le pourcentage d'unités biologiques PDB
pour lesquels 1'état d’oligomérisation proposé est susceptible d'étre incorrect. Nous suggérons
donc fortement [l'utilisation d'un classificateur précis comme IChemPIC pour réduire le
nombre de ces ensembles biologiques erronés et permettre la conception d'inhibiteurs de PPI

sur les interfaces biologiquement pertinentes.
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2.5. Conclusions

Nous présentons ici une nouvelle approche informatisée (IChemPIC) pour distinguer les
interfaces protéine-protéine biologiquement pertinentes et les contacts cristallins. Etant donné
qu'aucun des jeux de données de référence existants n'est satisfaisant, notamment pour prédire
de petites interfaces biologiques droguables; nous avons défini manuellement de nouveaux
jeux d’apprentissage et de tests externes (FDSdataset) pour permettre: (i) une couverture
comparable des zones d'interface pour les contacts cristallins et les interfaces biologiques
pertinentes, (ii) 1’application aux interfaces protéine-protéine de petite taille connues pour étre
modulables par des molécules de faibles poids moléculaire.

En décrivant l'interface par un simple vecteur de 45 réels se concentrant sur les interactions
intermoléculaires, les machines d'apprentissages peuvent étre utilisées pour classer les
interfaces selon leur statut (contacts cristallins ou interface biologiquement pertinente). En
raison de son niveau de simplicité et de sa faible paramétrisation, la méthode d'apprentissage
forét aléatoire (Random Forest) a été choisie pour obtenir un modele qui distingue les contacts
cristallins des interfaces biologiques avec une précision robuste de 80%. En ce qui concerne
les autres méthodes actuelles, IChemPIC est la seule approche capable de prédire avec la
méme précision les deux catégories d'interfaces protéine-protéine, quel que soit le jeu de test
externe. Il existe de nombreux avantages a utiliser IChemPIC par rapport a d'autres méthodes:
(i) L’ajout explicite des atomes d'hydrogeéne permet d'utiliser des liaisons hydrogéne comme
descripteurs pour le développement de modeles; (Ii) la méthode peut étre appliquée a des
interfaces présentant des modifications post-traductionnelles; (lii) la performance est
indépendante de la taille de l'interface, (iv) le domaine d'applicabilité est vaste allant des
petites interfaces protéine-protéine biologiques (500 A?) a des contact cristallographique de
grande taille (1500 AZ).

Il faut toutefois reconnaitre qu’IChemPIC est actuellement paramétré pour traiter les
interfaces entre deux chaines de protéines. Par exemple, les trois interfaces possibles (AB,
BC, AC) d'un hétérotrimere ABC seront prédites soit cristallographique ou biologique, mais
aucune prédiction ne sera effectuée pour les interfaces triples entre une chaine et les deux
autres. En d'autres termes, aucune prédiction n’est faite pour la totalité de I'ensemble comme
avec PISA par exemple. Cet inconvénient explique certains des faux négatifs observés par
IChemPIC et pourrait étre facilement corrigé en permettant la détection de toutes les

interactions possibles entre une chaine unique et son environnement natif de protéine
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complete. Cependant, étant donné que notre méthode est principalement destiné a détecter
toutes les interfaces biologiquement pertinentes de la PDB pouvant étre modulées (inhibition
ou stabilisation) par des molécules de faibles poids moléculaires, nous préférons limiter
IChemPIC au traitement de deux chaines afin de localiser 1'interface ciblée par un modulateur
potentiel de PPL. IChemPIC peut é&tre utilis€é en ligne (http://bioinfo-pharma.u-
strasbg.fr/IChemPIC) a partir d'un identifiant PDB ou un fichier d'entrée PDB fourni par

1'utilisateur.
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2.8. Conclusion globale

Dans ce chapitre, nous avons développé un nouvel outil (IChemPIC) de caractérisation
de PPIs a partir de fichiers PDB. Cette méthode basée sur une caractérisation topologique des
interfaces entre les protéines permet la détermination des interfaces biologiquement viables de

celles ne présentant pas les caractéristiques pour €tre stables in vivo.

L’avantage de nos travaux réside dans le fait qu’IChemPIC est la seule méthode
réalisant des prédictions stables sur les interfaces de toutes les tailles comprises entre 200 et
4000A?. Les prédictions sont d’une précision supérieure a 80% et également réparties sur les
différentes tailles d’interface ainsi que sur les interfaces pertinentes ou non. Les descripteurs
topologiques sont un moyen rapide et efficace de discriminer les interfaces sans réaliser de

lourds calculs d’énergie.

La stabilité de 1’outil a été testée a 1’aide de moyens non décrits dans I’article, nous
avons notamment réalisé des simulations par dynamique moléculaire de complexes prédits ou
non biologiquement viable. La prédiction sur les complexes prédits non viables ne change pas
au cours de la dynamique, cela montre que I’interaction n’est pas stable méme aprés une
minimisation et une courte période de dynamique moléculaire (10 ns). Lorsque que 1’on
regarde des dynamiques de complexes prédits biologiquement viables, on observe qu’entre 30
et 40% des structures sauvegardées sont prédites viables; donc que la majorité du temps le
complexe est prédit non pertinent. Le modéle d'apprentissage n’a en effet été entrainé que sur
des structures issues de diffraction des rayons X dans des cristaux. Les résultats des
simulations de dynamique moléculaire nous poussent a croire que le modele a besoin de
structures trés compactes (cristallines) pour les prédire biologiquement viable. Les poses de la
dynamique ou les protéines sont plus relachées ne sont pas prédite pertinentes. Pour la suite
de nos études issues de dynamique moléculaire, la simple présence de poses prédites viable
suffit a décrire une interface dont la structure cristalline n’est pas connue (mod¢les, docking
protéine-protéine). En parallele de cette étude nous avons aussi réalisé des dynamiques sous
contraintes d’interface protéine-protéine, en forcant un des partenaires a se dissocier
progressivment. Les résultats montrent qu’IChemPIC est trés sensible a la distance entre les
deux protéines. Une déviation atour d’un 1A de la position des atomes lourds a I’interface

suffit a faire passer la prédiction de pertinente a non pertinente dans 100% des poses.
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IChemPIC est a I’heure actuelle I'outil le plus fiable pour prédire la véracité
biologique d’une interface entre deux protéines, cependant il a été principalement entrainé
pour étudier les interfaces entre des protéines globulaires; les résultats sur des protéines
membranaires tels que des récepteurs sont prometteurs mais I’interprétation est difficile. Il
reste difficile d’obtenir des structures de protéines membranaires dont on est absolument
certain du positionnement de la zone d’interaction. La dimérisation de certaines familles de
protéines dont les structures sont connues (ex: récepteurs couplés aux protéines G) font débat
au sein de la communauté scientifique. Les protéines membranaires ont une surface
d'interaction trop différente pour étre étudiée avec le méme modele d’apprentissage que les
protéines globulaires; un nouveau modele d'apprentissage pourra étre dans le futur dédié aux
protéines membranaires des lors que suffisamment de structures cristallographiques de degré

d'oligomérisation incontestable seront disponibles.

Le modele a une seconde faille au niveau des unités biologiques plus complexes que
des dimeres. IChemPIC ne prédit pas la structure quaternaire d'une unité biologique mais
simplement une interaction entre deux chaines protéiques. Il arrive, au sein de structures de
grandes tailles, qu’il y ait des incohérences au sein des prédictions; certaines interfaces étant
prédites comme pertinentes tandis que d'autres ne le sont pas. Les études de ces complexes
supramoléculaires méritent qu’on y attache de 1I’importance. Nous avons plusieurs hypotheses
a vérifier. La premiere est de voir s’il est possible de ne plus prédire des dimeres mais des
unités biologiques par cette méme méthode de description topologique. La deuxiéme est
d’observer plus attentivement les unités biologiques dont toutes les prédictions d'interfaces ne
vont pas dans la méme direction. Il est rare qu'un trimere ou plus s’assemble de maniére
spontanée en une seule étape. On privilégie le passage par des degrés d'oligomérisation
inférieurs comme le dimeére. Une structure tétramérique aura tendance a étre décrite comme
I’assemblage de deux dimeéres, de ce fait les interactions entre les protéines qui ne font pas
parties des dimeres originaux peuvent-elles exister sans la présence des autres partenaires ?
Une interaction entre deux protéines peut-elle nécessiter la présence d’une troisieme protéine
pour étre stable ? Savoir si IChemPIC peut prédire le degré d'oligomérisation des protéines

N

lors de 1’assemblage de structures quaternaires est une bonne perspective a cette étude
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2.9. Annexes

Supplementary Table 2.1. jeu de 200 contacts cristallins (FDS dataset)

PDB ID Protein name Chainl Chain2 Interface, A2 Set

1A12 Regulator Of Chromosome Condensation 1 A 787 Training
1A3Y Odorant Binding Protein A B 798 Training
1A6Q Phosphatase 2¢ A E 402 Training
1A7T Metallo-Beta-Lactamase A R 424 Training
1A7V Cytochrome C' A B 536 Training
1ADS Haematopoetic Cell Kinase Hck A B 1073 Training
1AE9 Lambda Integrase A B 509 Training
1AF7 Chemotaxis Receptor Methyltransferase Cher A L 1131 Training
1AH7 Phospholipase C A G 970 Training
1AJK Circularly Permuted (1-3,1-4)-Beta-D-Glucan 4-Glucanohydrolase A Q 535 Training
1AKO Exonuclease lii A D 968 Training
1AKZ Uracil-Dna Glycosylase A B 583 Training
1AMU Gramicidin Synthetase 1 A B 524 Training
1AQZ Restrictocin A B 215 Training
1ATL Atrolysin C A B 396 Training
1AW7 Toxic Shock Syndrome Toxin-1 A B 1147 Training
1AYI Colicin E Immunity Protein 7 A B 483 Training
1AYL Phosphoenolpyruvate Carboxykinase A E 518 Training
1B24 Protein (I-Dmoi) A D 1053 Training
1B3J Mhc Class I Homolog Mic-A A B 1645 Training
1B80 Protein (Recombinant Lignin Peroxidase H8) A N 589 Training
1B8X Protein (Aml-1b) A B 1319 Training
1BEO Haloalkane Dehalogenase A G 617 Training
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1BGO Arginine Kinase

1BGC Granulocyte Colony-Stimulating Factor
1BIN Leghemoglobin A

1BKZ Galectin-7

1CFY Cofilin

1CKI Casein Kinase I Delta

1CLU Transforming Protein P21/H-Ras-1

1CQX Flavohaeomglobin

1D3H Dihydroorotate Dehydrogenase

1DXM H Protein

1DYS Endoglucanase

1EHY Protein (Soluble Epoxide Hydrolase)

1EJD Mura

1ELP Gamma-D Crystallin

1EWF Bactericidal/Permeability-Increasing Protein
1FFR Chitinase A Mutant Y390f

1FIM Protein Serine/Threonine Phosphatase-1 (Alpha Isoform, Type 1)
1FKD Fk506 Binding Protein

1FMT Methionyl-Trna Fmet Formyltransferase
1FPO Hsc20

1IFSU 4-Sulfatase

1EVK Disulfide Bond Formation Protein

1G6A Pse-4 Carbenicillinase, R234k Mutant
1GAR Glycinamide Ribonucleotide Transformylase
1GPI Cellobiohydrolase Cel7d

1HRN Renin

1HSL Histidine-Binding Protein

114G Enterotoxin Type A

1ILR Interleukin-1 Receptor Antagonist Protein

596 Training
713 Training
573 Training
749 Training
370 Training
936 Training
761 Training
1110 Training
1483 Training
575 Training
770 Training
700 Training
1226 Training
517 Training
952 Training
1226 Training
416 Training
647 Training
575 Training
1087 Training
527 Training
759 Training
1020 Training
788 Training
1042 Training
734 Training
413 Training
758 Training
335 Training

> > > > > > > >R > > > > > > > > > >
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1J96 3alpha-Hsd Type 3 A B 1218 Training
1JFR Lipase A S 475 Training
1KFS Protein (Dna Polymerase I Klenow Fragment (E.C.2.7.7.7)) A B 1329 Training
1KPT Kp4 Toxin A B 512 Training
1IKWA Hcask/Lin-2 Protein A B 584 Training
1LQT Fpra A B 1004 Training
IMPG 3-Methyladenine Dna Glycosylase Ii A B 364 Training
1MSS Triosephosphate Isomerase A B 1059 Training
1N4G Cypl21 A B 1162 Training
INDB Carnitine Acetyltransferase A B 1390 Training
INMT N-Myristoyl Transferase A B 894 Training
1NP4 Protein (Nitrophorin 4) A B 732 Training
10ME Beta-Lactamase A B 1071 Training
10VW Endoglucanase I A 1 734 Training
1PP3 Thaumatin A B 1110 Training
1PPO Protease Omega A B 854 Training
1PVA Parvalbumin A B 442 Training
1QAZ Protein (Alginate Lyase Al-Iii) A B 810 Training
1QCI Pokeweed Antiviral Protein A B 512 Training
1QHA Protein (Hexokinase) A B 1734 Training
IQNT Methylated-Dna--Protein-Cysteine Methyltransferase A j 656 Training
1QTQ Protein (Glutaminyl-Trna Synthetase) A B 728 Training
1RB3 Dihydrofolate Reductase A B 622 Training
1RGE Ribonuclease B 1 554 Training
1S83 Porcine Trypsin A B 935 Training
1SHK Shikimate Kinase A M 542 Training
1SO7 Cytosolic Sialidase Neu2 A B 1190 Training
1SW6 Regulatory Protein Swi6 A B 685 Training
1THT Thioesterase A B 469 Training
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1TOA Protein (Periplasmic Binding Protein Troa)
1TON Tonin

1VBT Cyclophilin A

1VIW Ferredoxin(A)

1VQQ Penicillin-Binding Protein 2a

1W9Q Pdz Of Human Syntenin

1IWLY 2-Haloacrylate Reductase

1WOQ Polyphosphate/Atp-Glucomannokinase
1XGK N12g,A18g Nmra Mutant

1XGS Methionine Aminopeptidase

1YGH Protein (Transcriptional Activator GenS)
1ZIN Adenylate Kinase

171LQ Periplasmic Transporter Nika

256B Cytochrome B562

256L Lysozyme

2ACY Acylphosphatase

2BC2 Metallo Beta-Lactamase Ii

2E1V Dmat

2ERC Rrna Methyl Transferase

2EYI Alpha-Actinin 1

2F37 Human Trpv2

2FGF Human Basic Fibroblast Growth Factor
2G3P Infectivity Protein G3p

2GAS Isoflavone Reductase

2H44 Pde5al

2IHL Japanese Quail Egg White Lysozyme

1316 Training
707 Training
658 Training
478 Training
1217 Training
1004 Training
1144 Training
1129 Training
1020 Training
1182 Training
667 Training
564 Training
1680 Training
315 Training
775 Training
453 Training
357 Training
1655 Training
434 Training
1115 Training
1164 Training
400 Training
451 Training
1570 Training
1043 Training
400 Training

SRS S - >~ R e e i s g G - i i i i i S S
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21PI Aclacinomycin Oxidoreductase 1330 Training
2JOP Haem-Chaperone Protobacteria-Protein Hems 1017 Training
2J46 Ffh Ng Domain 1168 Training
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2MBR Uridine Diphospho-N-Acetylenolpyruvylglucosamine Reductase
2Q7D Human Inositol 1,3,4-Trisphosphate 5/6-Kinase
2RN2 Ribonuclease H

2SCP Sarcoplasmic Calcium-Binding Protein

2SHP Shp-2

2W20 Nana Sialidase

2WBF SeraSe

2WBM  Mithsbds

2WBQ  Vioc

2WSA N-Myristoyl Transferase

2X26 Sulfonate Binding Protein Ssua

2YVW Udp-N-Acetylglucosamine 1-Carboxyvinyl-Transferase
2YZ1 Murine Shps-1/Sirp

2760 Ufm1 Cinhugating Enzyme 1

27ZYR Lipase

3AAP Lplntpdase

3B37 Aminopeptidase N

3CID Recx

3C8Y Fe-Only Hydrogenase

3CJ1 Ntpdase 2

3CMS Chymosin B

3CU9 1,5-Alpha-L-Arabinanase

3ELS Yeast Pmllp

3F00 Merb

3GKJ Npcld(Ntd)

3GVO Mouse Pumilio Puf-2 Domai?

3H30 Protein Kinase Ck2

3HZL Nikd Aminooxidase

3IRB Uncharacterized Protein From Duf35 Family

766 Training
1784 Training

617 Training
1131 Training

539 Training
1103 Training
1236 Training
1443 Training
1517 Training
1007 Training
1377 Training
1520 Training
1378 Training
1158 Training
1011 Training
1387 Training
1149 Training
1430 Training
1527 Training
1126 Training

562 Training
1086 Training
1005 Training
1043 Training
1014 Training
1222 Training
1331 Training
1402 Training
1060 Training
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3KH7 Reduced Ccmg A B 1338 Training
3KKS8 Camkii A B 1291 Training
3LVD Gfp-Like Protein Acegfp-G222e A B 1005 Training
3M66 Mitochondrial Transcription Termination Factor3 A B 1012 Training
3MHJ Tankyrase-2 A B 1102 Training
3MHT Protein (Hhai Methyltransferase (E.C.2.1.1.73)) A B 248 Training
3MHZ 2-Fluorohistidine Labeled Protective Antigen A B 1537 Training
3N5C Arf6deltal3 A B 1458 Training
3PMG Alpha-D-Glucose-1,6-Bisphosphate A B 540 Training
830C Mmp-13 A B 1236 Training
SPTI Bovine Pancreatic Trypsin Inhibitor A R 700 Training
13PK 3-Phosphoglycerate Kinase A D 1393 Test
1AFK Ribonuclease A A B 291 Test
1AQO0 1,3-1,4-Beta-Glucanase A B 722 Test
1B1J Hydrolase Angiogenin A C 892 Test
1BEA Bifunctional Amylase/Serine Protease Inhibitor A G 524 Test
1BF6 Phosphotriesterase Homology Protein B D 509 Test
1BS2 Protein (Arginyl-Trna Synthetase) A G 1210 Test
1BYO Protein (Plastocyanin) A T 298 Test
1C02 Phosphotransferase Ypdlp A B 873 Test
1CK7 Protein (Gelatinase A) A B 953 Test
1DSU Factor D A C 728 Test
1DZ4 Cytochrome P450-Cam A U 542 Test
1EPA Epididymal Retinoic Acid-Binding Protein A B 642 Test
1FGK Fgf Receptor 1 A C 817 Test
1G2A Polypeptide Deformylase A B 577 Test
1HFS Clathrin Assembly Protein Short Form A O 538 Test
1THB Cyclin-Dependent Kinase 6 Inhibitor A B 329 Test
1INP Inositol Polyphosphate 1-Phosphatase A C 798 Test
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1LF2 Plasmepsin Ii A B 2168 Test
1LXK Hyaluronate Lyase A B 1036 Test
1N45 Heme Oxygenase-1 A B 1098 Test
INUC Staphylococcal Nuclease A S 606 Test
1PBG 6-Phospho-Beta-D-Galactosidase A R 271 Test
1PDA Porphobilinogen Deaminase A B 885 Test
1PMI Phosphomannose Isomerase A B 628 Test
1QJP Outer Membrane Protein A A A% 586 Test
1QME Penicillin-Binding Protein 2x A B 647 Test
1RHS Sulfur-Substituted Rhodanese A B 863 Test
1THE Cathepsin B A B 729 Test
1UEB Elongation Factor P A B 1150 Test
1URP D-Ribose-Binding Protein A i 805 Test
1VLZ Chey A B 435 Test
1XCA Cellular Retinoic Acid Binding Protein Type Ii A B 617 Test
1YNQ Aldo-Ketoreductase Akrl1c21 A B 1103 Test
2ATJ Peroxidase Cla A G 932 Test
2BLS Ampc Beta-Lactamase B E 610 Test
2CKI Ulilysin A B 1185 Test
2END Endonuclease V A D 610 Test
2EQA Hypothetical Su5a Protein A B 1110 Test
2FGZ Apo Pullulanase A B 1094 Test
2HLQ Type li Bmp Receptor A B 1087 Test
2NAP Protein (Periplasmic Nitrate Reductase) b p 747 Test
2TPS Protein (Thiamin Phosphate Synthase) A B 809 Test
2UGI Uracil-Dna Glycosylase Inhibitor A B 741 Test
2VT4 Betal Adrenergic Receptor A B 681 Test
2X0OV Rhomboid Protease Glpg A B 1200 Test
3FWK Fmn Adenyltransferase A B 1048 Test
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3GO5 Multidomain Protein With S1 Rna-Binding Domain A B 1141 Test
3ITA Penicillin-Binding Protein Pbp6 A B 1142 Test
3IMG1 Orange Carotenoid Protein A B 1099 Test
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Supplementary Table 2.2. Jeu de 200 interfaces biologiquement pertinentes (FDS date

PDB i

ID Protein 1 Protein 2 Chain1 Chain2 Interface, A2 Selection Set
1A14  Neuraminidase Ncl10 Fv N H 418 IPACdb Training
1A2K Ran Gtpase-Gdp Nuclear Transport Factor 2 C B 820 PPI affinity DB Training
1AUT Activated Protein C Activated Protein C C L 882 TPACdb Training
1AVZ Hiv-1-Nef Protein Fyn Kinase Sh3 Domain B C 654 PPI affinity DB Training
1AY7 Rnase Barstar A B 646 PPI affinity DB Training
1BT6 Annexin A2 S100A10 B C 505 Rognan et al., MedChemComm, 2014  Training
IBVN Alpha-Amylase Tendamistat P T 1133 PPI affinity DB Training
IBXL. Bcl2 Bax A B 937 2P2I Training
IC1Y Rap-la Protein Kinase Raf-1 A B 690 IPACdb Training
ICJU Acli Gs B C 820 IPACdb Training
1DS2 Proteinase B OMTKY3 E 1 582 IPACdb Training
1E4K  Fc Fragment Of Human Igg 1 Fc Fragment Of Human Igg 1 A B 1400 PPI affinity DB Training
1EER  Erythropoietin EPO Receptor A B 1032 PPI affinity DB Training
1EMS8 Dna Polymerase lii Chi Subunit Dna Polymerase lii Psi Subunit C D 721 TPACdb Training
1EMV Colicin E9 Nuclease Im9 Immunity Protein A B 800 PPI affinity DB Training
IFQJ  Gt-Alpha Rgs9 A B 960 PPI affinity DB Training
1GCQ Grb2 C-Ter Sh3 Domain Vav N-Ter Sh3 Domain B C 629 PPI affinity DB Training
1GL1 Chymotrypsin PMP-C (LCMI II) A I 857 PPI affinity DB Training
1GLA Glycerol Kinase Glucose Specific liiglc G F 695 PPI affinity DB Training
IGNG GSK-3beta GSK-3 Bp A X 761 Ivanov et al., TIPS, 2013 Training
1GPW Hisf Protein Amidotransferase Hish A B 1138 PPI affinity DB Training
IGRN Cdc42 Gtpase Cdc42 Gap A B 1215 PPI affinity DB Training
1H9D Runxl Domain Of Cbfalphal Dimerisation Domain Of Cbf-Beta A B 1095 PPI affinity DB Training
IHWG Ghbp GH B C 485 LoopFinder Training
1I5H Ppxy Nedd4 w B 431 Rognan et al., MedChemComm, 2014  Training
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1IXS
132J
1JDH
1JTW
1JQ5
1JSU
1JU3
1KAC
IKGY
1KKL
1KQ3
IKTZ
1LW4
1LZL
IM10
IMAH
1MQ8
IMZW
INOW
INSP
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10FU
1PSF

1POM
1PKH

1PVH
1QOP
IRSY

Ruva

Arf1 Gtpase.Gnp-Ranbd1
Beta Catenin

Alkaline Metallo-Proteinase
Glycerol Dehydrogenase
Cyclin A

Cocaine Esterase

Adenovirus Fiber Knob Protein

Ephb2

Hpr Kinase

Glycerol Dehydrogenase
Tgf-Beta
L-Allo-Threonine Aldolase
Bacterial Heroin Esterase

Von Willebrand Factor Dom. Al

Acetylcholinesterase
Icam-1 Domain 1-2

U-Snrnp-Associated Cyclophilin

Brca2

Cystathionine Gamma-Lyase
Anthranilate
Phosphoribosyltransferase
Cell Division Protein Ftsz
Dj-1

Gpl130
Deaminase/Diphosphatase

116 Receptor Beta Chain D2-D3

Domains
Trp Synthase
Queuine Trna-

Chapitre 2 Détermination de la pertinence biologique d’une interface protéine-protéine

Ruvb

Gat Domain Of Ggal
Htcf4

Proteinase Inhibitor
Glycerol Dehydrogenase
Cdk2

Cocaine Esterase
Adenovirus Receptor
Ephrin-B2

Hpr

Glycerol Dehydrogenase
Tgf-Beta Receptor
L-Allo-Threonine Aldolase
Bacterial Heroin Esterase
Glycoprotein Ib-Alpha
Fasciculin

Integrin Alpha-L I Domain
U4/U6 Snrnp 60kda Protein
Rad51

Cystathionine Gamma-Lyase
Anthranilate
Phosphoribosyltransferase
Sula Pa3008

Dj-1
-6
Deaminase/Diphosphatase

Leukemia Inhibitory Factor

Trp Synthase

Queuine Trna-Ribosyltransferase
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699
643
1777
1057
1366
1798
1338
793
1233
535
1549
522
1736
1249
1142
1104
656
466
1072
2089

963
812
1377
728
1731

737
1606
1619

IPACdb

PPI affinity DB

Ivanov et al., TIPS, 2013
PPI affinity DB

Dcbio dataset

Ivanov et al., TIPS, 2013
Dcbio dataset

PPI affinity DB
LoopFinder

PPI affinity DB

Dcbio dataset

PPI affinity DB

Dcbio dataset

Dcbio dataset

PPI affinity DB

PPI affinity DB

PPI affinity DB

IPACdb

IPACdb

Dcbio dataset

Dcbio dataset

IPACdb

Dcbio dataset

Rognan et al., MedChemComm, 2014
Dcbio dataset

PPI affinity DB
Dcbio dataset
Dcbio dataset

Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training

Training
Training
Training
Training
Training

Training
Training
Training



1R6Q
1527
1SML
1SVO
ITGS
ITNR

1US7
1UUG
1UZ3
1V2X
1X7V
1XD3
1XDT
1XQS
1YCR
1YEN
1ZE3

1ZM4
2A5L

2A9K
2AJF

2AQ3
2AQ6

2B42
2B4])

Ribosyltransferase

Clp Protease Subunit Clpa
Rubrerythrin

Metallo Betalactamase L1
Yan

Trypsinogen

Tnfrl

Heat Shock Protein 82 N-Ter
Domain

Uracyl-Dna Glycosylase

Emsy Protein

Trna (Gm18) Methyltransferase
Pa3566 Protein

Uch-L3

Hbegf

Hspbpl

Hdm?2

Sspb

Chaperone Protein Fimc

Elongation Factor 2

Trp Repressor Binding Protein
Wrba

Ral-A.GDP

Angiotensin-Converting Enzyme
2

Tcr Vbeta8.2

Pyridoxine 5'-Phosphate
Oxidase

Xylanase

Integrase
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Clp Protease Adaptor Protein Clps
Rubrerythrin

Metallo Betalactamase L1

Mae

Psti

Tnfrl

Hsp90 Co-Chaperone Cdc37 C-Ter
Domain

Glycosylase Inhibitor

Emsy Protein

Trna (Gm18) Methyltransferase
Pa3566 Protein

Ubiquitin

Dipheria Toxin

Hsp70 Atpase Domain

P53

Rsea

Chaperone Protein Fimh

Diphtheria Toxin A Catalytic
Domain

Trp Repressor Binding Protein Wrba

Mono-ADP-Ribosyltransferase C3
Sars Spike Protein Receptor Binding
Domain

Sec3
Pyridoxine 5'-Phosphate Oxidase

Xylanase Inhibitor
LEDGF
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1304
1677
1327
504
906
673

576
1097
1254
1751
1260
1177
1129
1240

751

875
1521

847

1305
917

913
599

1250
1331
1489

PPI affinity DB
Dcbio dataset
Dcbio dataset
LoopFinder
IPACdb

2P21

PPI affinity DB
PPI affinity DB
Dcbio dataset
Dcbio dataset
Dcbio dataset
PPI affinity DB
LoopFinder
PPI affinity DB
2P21
LoopFinder
Dcbio dataset

PPI affinity DB

Dcbio dataset
PPI affinity DB

PPI affinity DB
PPI affinity DB

Dcbio dataset
PPI affinity DB
2P21

Training
Training
Training
Training
Training
Training

Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training

Training

Training
Training

Training
Training

Training
Training
Training



2B59
2BHS
2COL
2C4W

2CFT

2D9Q
2E7]

2ECQ
2EXB

2F9D
2FWV

2G2U
2GOX
2HDI
2HQS
2HRK
2HYM
2J0T
2J3T
2MTA
2NZL
203B
2PCB
2PEH
2RKB

2VDB

Chromosome Segregation
Atpase

Cysteine Synthase B

Trp Region Of Pex5
3-Dehydroquinate Dehydratase
Pyridoxal Phosphate
Phosphatase

Csf3 Cytokine
Sep-Trna:Cys-Trna Synthase
O-Acetylserine (Thiol)-Lyase
Penicillin-Binding Protein 4
P14

Hypothetical Protein
Mtubf_01000852

Beta-Lactamase Shv-1
Complement C3d Fragment
Colicin 1 Receptor

Tolb

Glutamyl-T-Rna Synthetase
Ifna

Mmpl1 Intersitial Collagenase
Trappcl

Methylamine Dehydrogenase
Hydroxyacid Oxidase 1
Nuca Nuclease

Cyt C Peroxidase

Spfa5

Serine Dehydratase-Like

Serum Albumin
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Cellulosomal Scaffolding Protein A

Cysteine Synthase B
Sterol Carrier Protein 2
3-Dehydroquinate Dehydratase

Pyridoxal Phosphate Phosphatase

Colony-Stimulating Factor Receptor
Sep-Trna:Cys-Trna Synthase
O-Acetylserine (Thiol)-Lyase
Penicillin-Binding Protein 4

Sf3bl

Hypothetical Protein
Mtubf_01000852

Beta-Lactamase Inhibitory Protein
Staphylococcus Aureus Efb-C
Colicin -1a

Pal

Gu-4 Nucleic Binding Protein
IFNAR2

Metalloproteinase Inhibitor 1
Trappc4

Amicyanin

Hydroxyacid Oxidase 1

Nuia Nuclease Inhibitor
Cytochrome C

Sf3bl

Serine Dehydratase-Like
Peptostreptococcalalbumin-Binding
Protein
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864
1570
1043

918

976
734
1742
1684
2012
512

2171
1279
885
1013
1219
837
860
795
1885
1692
1356
820
560
477
1165

946

IPACdb

Dcbio dataset
PPI affinity DB
Dcbio dataset

Dcbio dataset
IPACdb
Dcbio dataset
Dcbio dataset
Dcbio dataset
IPACdb

Dcbio dataset
Dcbio dataset
PPI affinity DB
LoopFinder
PPI affinity DB
PPI affinity DB
Rognan et al., MedChemComm, 2014
PPI affinity DB
LoopFinder
PPI affinity DB
Dcbio dataset
PPI affinity DB
PPI affinity DB
LoopFinder
Dcbio dataset

PPI affinity DB

Training
Training
Training
Training

Training
Training
Training
Training
Training
Training

Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training
Training

Training



2VEF
2VR4

2W6A

2WG3
2WTM
2WXD
2XA0
2YON

2Y27

2Y39
2730

3A2Q

3BDW
3BIM
3BP8
3BT1
3BX7

3CKI
3D36

3DAS

3E1Z

3EPW
3FAH
3GUS

Dihydropterate Synthase
Beta Mannisodase

Arf Gtpase-Activating Protein
Gitl

Hedgehog

Est1E

Myrosinase

BxlIxl

Msl3
Phenylacetate-Coenzyme A
Ligase

Protein CNRR
Tk-Subtilisin
6-Aminohexanoate-Cyclic-
Dimer Hydrolase

Cdo4

Bcl6

MIlc Transcription Regulator
Upar

Lipocalin 2

Tace

Sporulation Kinase B

Probable 5'-
Phosphoribosylglycinamide
Formyltransferase Purn
Peptidase C1A
Iag-Nucleoside Hydrolase
Aldehyde Oxidoreductase
Glutathione S-Transferase P
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Dihydropterate Synthase
Beta Mannisodase

Arf Gtpase-Activating Protein Gitl

HIP

EstlE
Myrosinase
Bak

Msll

Phenylacetate-Coenzyme A Ligase

Protein CNRR

Tk-Propeptide
6-Aminohexanoate-Cyclic-Dimer
Hydrolase

Ngk2a

Bcor

Pts Glucose-Specific Enzyme Eiicb
Vitronectin

CTLA 4

Timp-3

Dual Specificity Protein
Phosphatase

Probable 5'-
Phosphoribosylglycinamide
Formyltransferase Purn
Papain

lag-Nucleoside Hydrolase
Aldehyde Oxidoreductase
Glutathione S-Transferase P
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1599
1352

1445

979
1336
1002
1232
1147

1460
1343
1220

1802
808
2042
726
653
1254
1108

1768

964
890
1360
1203
1243

Dcbio dataset
Dcbio dataset

Dcbio dataset
LoopFinder
Dcbio dataset
Dcbio dataset
2P21
LoopFinder

Dcbio dataset
Dcbio dataset
LoopFinder

Dcbio dataset
LoopFinder
IPACdb

PPI affinity DB
LoopFinder
IPACdb
LoopFinder

Dcbio dataset

Dcbio dataset
IPACdb

Dcbio dataset
Dcbio dataset
Dcbio dataset

Training
Training

Training
Training
Training
Training
Training
Training

Training
Training
Training

Training
Training
Training
Training
Training
Training
Training

Training

Training
Training
Training
Training
Training



Deoxyuridine 5'-Triphosphate

Chapitre 2 Détermination de la pertinence biologique d’une interface protéine-protéine

Deoxyuridine 5'-Triphosphate

3HOD Nucleotidohydrolase Nucleotidohydrolase A B 1724 Dcbio dataset Training
Periplasmic Adaptor Protein . . .
3ITF CpXII; p Periplasmic Adaptor Protein Cpxp A B 1426 Debio dataset Training
3IUE  Pantothenate Synthetase Pantothenate Synthetase A B 1184 Dcbio dataset Training
uinate/Shikimate . o
3IYO gehydrogenase Quinate/Shikimate Dehydrogenase A B 1256 Dcbio dataset Training
3KD2 Cftr Inhibitory Factor (Cif) Cftr Inhibitory Factor (Cif) C D 1395 Dcbio dataset Training
3KNB Titin Obscurin-Like 1 A B 701 TPACdb Training
3KYS Yap Tef-1 B A 1823 Ivanov et al., TIPS, 2013 Training
3LW6 Beta-4-Galactosyltransferase 7  Beta-4-Galactosyltransferase 7 A B 1034 Dcbio dataset Training
30IN 3-Dehydroquinate Dehydratase  3-Dehydroquinate Dehydratase A B 1068 Dcbio dataset Training
SOVP E;?rl;lgrsfsg osphate Ribulose-Phosphate 3-Epimerase B 1078 Dcbio dataset Training
3QS7 Flt3 Fl E A 516 TPACdb Training
3RON Polioyirus Receptor-Related Poliovirus Receptor-Related Protein . N
Protein 2 2 A B 946 Dcbio dataset Training
3V2A Vegf Vegfr2 A R 705 TPACdb Training
4AXG Eif4e Cup B D 502 Ivanov et al., TIPS, 2013 Training
4FJ3 03/03/14 Raf A P 510 Ivanov et al., TIPS, 2013 Training
4GQ6 Menin MLL A B 835 2P21 Training
4HQP A7 Nicotinic Receptor A-Bungarotoxin A I 777 LoopFinder Training
4JO1  Sntl Ten-1 A D 1195 LoopFinder Training
4MC1 Hiv-1Pr Hiv-A Pr A B 1845 TPACdb Training
4NN6 gllt;fllif T Receptor SO Cytokine Receptor-Like Factor2 C 479 TPACdb Training
40JK Rabllb Cgmp-Dependent Protein Kinase 2 A C 840 IPACdb Training
4P78  Hic3b Hic3a A D 1391 IPACdb Training
1BS1  Dethiobiotin Synthetase Dethiobiotin Synthetase A B 1548 Dcbio dataset Test
IDFJ  Ribonuclease A Rnase Inhibitor E | 1391 PPI affinity DB Test
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1EEJ
1IEWY
1F2D
1F34
1F47
1FFW

1GXD
1HCF
1KO6
1M9C
INW9
1PXV
1QA9
ITUE
1UJ6
1VKS
1IVKX
1X2R
1XX9
1Y7Q
1Z3E
1292
1ZHI
1ZLH
2ABO
2AFH

2AST
2BZ6

S-S Isomerase

Ferredoxin Reductase
Carboxylate Deaminase
Porcine Pepsin

Zipa

Chemotaxis Protein Chey
Vegf

Prommp?2 Type Iv Collagenase
Neurotrophin-4

Nup98

Cyclophilin A

Xiap

Saphopain

Cd2

Hpv2

Ribose 5-Phosphate Isomerase
Rddm

P50

Keapl

Fxla

Zinc Finger Protein 174

Spx

-2

Bah Domain Of Orcl
Carboxypeptidase Al

Yajl

Nifd

Cks-1

Blood Coagulation Factor Viia
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S-S Isomerase

Ferredoxin

Carboxylate Deaminase
Ascaris Inhibitor 3

Ftsz

Chemotaxis Protein Chea
Flt1

Metalloproteinase Inhibitor 2
Neurotrophin-4

Nup98

Gag P24

Casp-9

Sapostatin

Cds8

Hpvll

Ribose 5-Phosphate Isomerase
Rddm

P60

Nrf2

Ecotin

Zinc Finger Protein 174
RNA Polyemerase

[I-2r

Sir Orc-Interaction Domain
Carboxypeptidase Inhibitor
Yajl

Nifh1

Skp2

Blood Coagulation Factor Viia
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885
822
1957
1593
601
623
627
1306
1811
468
511
1111
1219
758
991
1338
1194
688
546
1135
1533
692
998
703
1082
1339
481
999
1012

Dcbio dataset

PPI affinity DB

Dcbio dataset

PPI affinity DB

2P21

PPI affinity DB

Ivanov et al., TIPS, 2013
PPI affinity DB

PPI affinity DB

IPACdb

IPACdb

2P21

PPI affinity DB

PPI affinity DB

2P21

Dcbio dataset

Dcbio dataset

Ivanov et al., TIPS, 2013
Rognan et al., MedChemComm, 2014
IPACdb

Dcbio dataset
LoopFinder

2P21

PPI affinity DB

Dcbio dataset

Dcbio dataset
LoopFinder

LoopFinder

Dcbio dataset

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test



2CAR

2D0D

2DVN
2H71

2125
217D

20XV
2V52
2VVT
2ZIN
3BZL

3CM3

3CPH
3F3E

3F6Q

3HON

3JRZ
4GEQ
4GPO

Inositol Triphosphate
Pyrophosphatase
2-Hydroxy-6-Oxo0-7-
Methylocta-2,4-Dienoate
Hydrolase

Hypothetical Protein Ph1917
Enoyl-[Acyl-Carrier-Protein]
Reductase [Nadh

Shark Single Domain Antigen
Receptor
5'(3")-Deoxyribonucleotidase
Eed

Actin, Alpha Skeletal Muscle
Glutamate Racemase
Ape0912

Escu

Dual Specificity Protein
Phosphatase

Ras-Related Protein Sec4
Leut Transporter

Integrin-Linked Protein Kinase

Uncharacterized Protein
Duf1470

Ccedb
Spc25
Betal Adrenergic Receptor
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Inositol Triphosphate
Pyrophosphatase

2-Hydroxy-6-Oxo-7-Methylocta-
2,4-Dienoate Hydrolase

Hypothetical Protein Ph1917
Enoyl-[Acyl-Carrier-Protein]
Reductase [Nadh

Hew Lysozyme

5'(3")-Deoxyribonucleotidase
Ezh2

Actin, Alpha Skeletal Muscle
Glutamate Racemase
Ape0912

Escu

Dual Specificity Protein
Phosphatase

Rab Gdp-Dissociation Inhibitor
Leut Transporter

Lim And Senescent Cell Antigen-
Like-Containing Domain Protein 1

Uncharacterized Protein Duf1470

Ccdb
Spc24
Betal Adrenergic Receptor
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1140

1040
1096

1541

741
1128
1567
1065
1434
1625
1108

1030
878
1335

993

1071
961
1090
903

Dcbio dataset

Dcbio dataset
Dcbio dataset

Dcbio dataset

PPI affinity DB

Dcbio dataset
IPACdb

Dcbio dataset
Dcbio dataset
Dcbio dataset
Dcbio dataset

Dcbio dataset

PPI affinity DB

Dcbio dataset

Dcbio dataset

Dcbio dataset
Dcbio dataset
LoopFinder
IPACdb

Test

Test
Test

Test

Test
Test
Test
Test
Test
Test
Test

Test
Test
Test

Test

Test
Test
Test
Test
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Supplementary Table 2.3. Descripteurs des PPI

Name Description

nPTS Total number of interaction points

Hydro % of hydrophobic interaction points

Aro % of aromatic interaction points

Hbond % of hydrogen-bond interaction points

ITonic % of of ionic bond interaction points

Hydrol % of hydrophobic points (25 %<Burial <33.3%)
Hydro2 % of hydrophobic points (33.3 %<Burial <41.6%)
Hydro3 % of hydrophobic points (41.6 %<Burial <50%)
Hydro4 % of hydrophobic points (50 %<Burial <58.3%)
Hydro5 % of hydrophobic points (58.3 %<Burial <66.6%)
Hydro6 % of hydrophobic points (66.6 %<Burial <75%)
Hydro7 % of hydrophobic points 75 %<Burial <83.3%)
Hydro8 % of hydrophobic points (83.3 %<Burial <91.6%)
Hydro9 % of hydrophobic points (91.6%<Burial <100%)
Hydro10 % of hydrophobic points (Burial =100%)

Arol % of aromatic points (25 %<Burial <33.3%)

Aro2 % of aromatic points (33.3 %<Burial <41.6%)
Aro3 % of aromatic points (41.6 %<Burial <50%)

Aro4 % of aromatic points (50 %<Burial <58.3%)

Aro5 % of aromatic points (58.3 %<Burial <66.6%)
Aro6 % of aromatic points (66.6 %<Burial <75%)

Aro7 % of aromatic points 75 %<Burial <83.3%)

Aro8 % of aromatic points (83.3 %<Burial <91.6%)
Aro9 % of aromatic points (91.6%<Burial <100%)
Arol10 % of aromatic points (Burial =100%)

Hbond1 % of hydrogen bond points (25 %<Burial <33.3%)
Hbond2 % of hydrogen bond points (33.3 %<Burial <41.6%)
Hbond3 % of hydrogen bond points (41.6 %<Burial <50%)
Hbond4 % of hydrogen bond points (50 %<Burial <58.3%)
Hbond5 % of hydrogen bond points (58.3 %<Burial <66.6%)
Hbond6 % of hydrogen bond points (66.6 %<Burial <75%)
Hbond7 % of hydrogen bond points 75 %<Burial <83.3%)
Hbond8 % of hydrogen bond points (83.3 %<Burial <91.6%)
Hbond9 % of hydrogen bond points (91.6%<Burial <100%)
Hbond10 % of hydrogen bond points (Burial =100%)

Tonicl % of ionic bond points (25 %<Burial <33.3%)
Tonic2 % of ionic bond points (33.3 %<Burial <41.6%)
Tonic3 % of ionic bond points (41.6 %<Burial <50%)
Ionic4 % of ionic bond points (50 %<Burial <58.3%)
Tonic5 % of ionic bond points (58.3 %<Burial <66.6%)
ITonic6 % of ionic bond points (66.6 %<Burial <75%)
Ionic7 % of ionic bond points 75 %<Burial <83.3%)
Tonic8 % of ionic bond points (83.3 %<Burial <91.6%)
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Ionic9 % of ionic bond points (91.6%<Burial <100%)
Tonic10 % of ionic bond points (Burial = 100%)
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Supplementary Table 2.4. Prédiction de 100 interface protéine-protéine (FDS jeu de test) par différetnes méthodes

PDB Set Chainl Chain 2 Interface, A” IChemPIC NOXClass DiMoVo® PISA  EPPIC
1bsl Bio A B 1485 Bio 99.16 0.70 Bio Bio
1dfj Bio E I 1309 Xtal 100 0.04 Bio Bio
leej Bio A B 858 Bio 98.84 0.51  Bio na
lewy Bio A C 762 Xtal 1.76 0.12  Xtal Xtal
1f2d Bio C D 1895 Bio 99.3 0.68 Bio na
1134 Bio A B 1522 Bio na 0.56 Bio Bio
1147 Bio A B 569 Xtal 100 0.55  Bio np*
1ffw Bio A B 593 Xtal 99.3 043  Xtal Xtal
111t Bio W X 588 Bio 99.24 -0.01 Bio Xtal
1gxd Bio A C 1247 Bio 98.49 0.47 Bio Bio
lhcf Bio A B 1721 Bio 100 0.79 Bio Bio
1i5h Bio W B 420 Bio 99.97 0.85 np Xtal
1m9c Bio A D 492 Bio 83.75 0.02  Xtal Bio
1nw9 Bio A B 1066 Bio 99.99 0.62 Bio Bio
1pxv Bio A C 1174 Bio 99.78 0.40 Bio Bio
1qa9 Bio A B 699 Bio 63 -0.04  Xtal Xtal
1tue Bio A B 938 Xtal 98.56 0.17  Xtal Bio
1uj6 Bio A B 1281 Bio 86.84 0.65 Bio Bio
1vk5 Bio A B 1146 Bio 99.77 0.20 Bio Bio
1vkx Bio A B 678 Bio 6.13 0.11 Bio Bio
1x2r Bio A B 537 Bio 100 0.25 Bio Bio
1xx9 Bio A C 1068 Bio 94.22 0.68 Bio Bio
1y7q Bio A B 1209 Xtal 99.98 1.05 np na
1z3e Bio A B 679 Bio 90.94 0.10  Xtal Bio
1292 Bio A B 947 Bio 93.86 0.66  Xtal Xtal
1zhi Bio A B 668 Xtal 65.21 -0.07  Xtal Xtal
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1zlh
2ab0
2ath
2ast
2bz6
2car
2dod
2dvn
2h7i
2i25
2i7d
2qxv
2v52
2vvt
2z1n
3bzl
3cm3
3cph
3f3e
3f6q
3hOn
3jrz
4geq
4gpo
13pk
lafk
laq0
1blj
1bea

Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
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1033
1297
449
937
981
1100
1004
635
1496
714
1080
1502
1030
1339
1587
1083
1012
848
1271
948
1022
932
1060
863
1393
291
722
892
524

Xtal
Bio
Xtal
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Xtal
Bio
Bio
Bio
Bio
Xtal
Xtal
Xtal
Xtal
Bio
Xtal

100
95.25
3.02
99.33
100
94.04
1.91
86.85
82.54
98.74
99.18
100
100
98.99
99.96
100
100
80.94
34.27
99.61
97.64
96.48
100
19.13
69.89
0.35
9.26
92.48
39.16

0.46
0.57
-0.05
0.17
0.59
0.29
0.56
0.19
0.60
0.51
0.65
0.46
0.46
0.18
0.92
0.73
0.49
0.12
0.62
0.29
0.61
0.74
0.75
0.24
na
na
na
na
na

Bio
Bio
Xtal
Bio
Bio
Bio
Xtal
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
na
Xtal
Xtal
na

na
na
Xtal
Xtal
na
na
na
na
na
Bio
na
Bio
na
na
Bio
na
na
Bio
na
na
na
na
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal



1bf6
1bs2
1byo
1c02
1ck7
1dsu
1dz4
lepa
1fgk
1g2a
1hf8
lihb
linp
112
11xk
1n45
Inuc
1pbg
1pda
1pmi
lqjp
1qme
Irhs
1the
lueb
lurp
1vlz
1xca

lyng

Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
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509
1210
298
873
953
728
542
642
817
577
538
329
798
2168
1036
1098
606
271
885
628
586
647
863
729
1150
805
435
617
1103
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Xtal

Bio
Xtal
Xtal

Bio

Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal

Bio
Xtal

Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal

90.04

56.51
2.8
5.76
2.87
20.79
24.27
3.76
2.1

1.97
99.92
1.04
29.33
77.26

29

99.98
42.09
0.68
51.75
27.4
53.85
8.01
84.55
90.13

na
na
na
na
na
na
na
na
na
na
na
na
na
0.92
0.00
0.32
na
na
na
na
na
na
na
na
0.42
na
na
na
0.25

Xtal
Xtal
Xtal
Bio
Bio
Xtal
Bio
Bio
Xtal
Xtal
Bio
Xtal
Xtal
Bio
Xtal
Xtal
Xtal
Xtal
na
na
Xtal
Xtal
na
Bio
Bio
Xtal
Xtal
Bio
Bio

Xtal
Xtal
Xtal
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
na
na
Xtal
Xtal
Xtal
Xtal
Bio
Xtal
Xtal
Xtal
na
Xtal
Xtal
Xtal
na



Chapitre 2 Détermination de la pertinence biologique d’une interface protéine-protéine

2atj Xtal A G 932 Bio 11.13 na na Xtal
2bls Xtal B E 610 Xtal 31.97 na na Xtal
2cki Xtal A B 1185 Xtal 12.62 0.22 Bio na
2end Xtal A D 610 Xtal 87.71 na  Xtal Xtal
2eqa Xtal A B 1110 Xtal 63.85 0.51  Xtal Xtal
2fgz Xtal A B 1094 Xtal 0.75 0.12  Xtal Xtal
2hlq Xtal A B 1087 Bio 99.99 0.33  Xtal na
2nap Xtal b p 747 Bio 4.54 na  Xtal Xtal
2tps Xtal A B 809 Xtal 78.1 na  Xtal Xtal
2ugi Xtal A B 741 Xtal 93.7 na Bio Xtal
2vtd Xtal A B 681 Xtal 95.21 0.32  Xtal Xtal
2xov Xtal A B 1200 Bio 99.85 0.37 Xtal na
3fwk Xtal A B 1048 Xtal 79.84 0.55 Xtal na
3hzl Xtal A B 1006 Bio 1.58 045  Xtal na
3ita Xtal A B 1142 Bio 47.59 0.52 Bio Xtal
3mgl Xtal A B 1099 Xtal 25.06 0.01 Xtal na

* Xtal if score <50, Bio if score > 50

® Xtal if score <0.5, Bio if score > 0.5

¢ not applicable because the entry was in the training set of the prediction method

d ..
no prediction
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Supplementary Table 2.5. Prédiction de 142 PPI (Bahadur external set) par différentes méthodes

PDB Chainl Chain2 Interface, A’ Set IChemPIC NOXClass® DiMoVo®  PISA EPPIC
12as A B 1964 Biol Bio 99.99 na‘ Bio Bio
la3c A B 1019 Biol Bio 62.78 na na Bio
ladi A B 1396 Biol Bio na na Bio Bio
ladu A B 2604 Biol Bio 100 na Bio Bio
laa7 A B 1123 Biol Bio 94.98 na Xtal Bio
lad3 A B 4068 Biol Bio 100 na na Bio
lade A B 2925 Biol Xtal 99.95 na Bio Bio
laf5 A B 895 Biol Bio 95.66 na na Bio
lafw A B 2491 Biol Bio na na na Bio
lajs A B 3530 Biol Bio na na na Bio
1al0 B F 1266 Biol Bio 99.99 na Bio Bio
lamk A B 1507 Biol Bio 99.93 na na Bio
laor A B 1281 Biol Bio 18.05 na na Bio
laqb A B 2235 Biol Bio na na na Bio
lauo B C 704 Biol Xtal 0.33 na na Bio
1b3a A B 757 Biol Bio na na Bio Bio
1b5e A B 2636 Biol Bio na na Bio Bio
1b67 A B 1650 Biol Bio na na Bio Xtal
1b8a A B 4445 Biol Bio na na Bio Bio
1b8§;j A B 3881 Biol Bio na na Bio Bio
1bam A B 777 Biol Bio 49.42 na na Xtal
1bbh A B 792 Biol Bio 87.21 na Bio Bio
1bd0 A B 3206 Biol Bio 100 na Bio Bio
1bif A B 956 Biol Xtal 57.59 na na Xtal
1biq A B 3086 Biol Bio 100 na Bio Bio
1bis A B 1544 Biol Bio 100 na Bio Bio
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1bjw
1bkp
1bmd
1brw
1bsl
1bsr
1buo
1bxg
1bxk
lcde
lcg2
1chm
lcmb
lenz
1coz
lcsh
lett
levu
lczj
1daa
1dor
ldpg
1dgs
1dxg
1e98
lebh
113
1fip
1fro
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2999
2360
1640
1094
1926
1986
2189
1084
1334
3990
1351
3422
1864
2535
1080
5176
2043
2523

855
2369
2282
2364
1739

759

791
1824
2719
1640
3762
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Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
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Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio

99.99
99.97
95.72
75.9
93.23
100
100
72.03
97.64
100
97.82
100
na
na
na
100
99.93
99.59
99.6
100
na
99.77
94.4
99.99
98.7
98.41
99.56
100
100

na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na

Bio
Bio
Bio
Bio
Bio
na
na
Xtal
Bio
Bio
na
na
na
Bio
Bio
na
na
Bio
na
na
Bio
Bio
Bio
Bio
Bio
Bio
Bio
na
na

Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
bio
Bio



1gvp
1hhp
1hjr
lhss
1hxp
licw
limb
lisa
livy
ljhg
1jsg
1kba
1kpf
1lyn
1m6p
1mkb
1mor
1nox
Inse
Insy
loac

lopy
1pgt
1pre
1qfh
1ghi
1qr2
1r2f
lreg
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929
1622

985
1128
3492

965
1695

951
1666
2294

815

517
1912

981
1086
1648
2635
3161
2865
2693
7381
1073
1249
2451
2376
1749
2011
1814

681
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Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
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Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Xtal

98.9
100
na
na
100
97.34
95.38
na
99.67
100
79.72
19.3
100
88.17
97.3
99.99
99.94
100
na
100
100
99.99
94.68
99.92
na
99.99
99.99
99.97
28.31

na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na

na
Xtal
na
na
Bio
na
na
na
Bio
na
na
na
na
na
Bio
Bio
Bio
na
Bio
na
na
na
na
na
Bio
Bio
Bio
Bio
Bio

Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Xtal
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Xtal



1rfb
1rpo
1ses
1slt
1smn
1smt
1sox
1tcl
1tox
1trk
luby
lutg
1vfr
1vok
1wtl
1xso
2arc
2ccy
2hdh
2ilk
2lig
2mcg
2nac
20hx
2spc
2sqc
2tct
2tgi
3dap
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2820
1421
2281

555

913
2020
1460
1555
3906
4546
2223
1521
3556
1666

722

692

831

841
1585
4675
1685
1746
3887
1765
2614

843
2744
1315
2732
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Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
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Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio

100
100
99.95
88.13
87.13
na

na
99.82
100
na
99.9
100
100
na
93.23
na
97.84
93.7
na
100
99.94
99.17
na
99.84
100
13.67
99.99
100
100

na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na

na
na
na
na
na
na
na
Bio
na
na
na
na
Bio
Bio
Bio
na
Xtal
na
Bio
na
Bio
Bio
Bio
Bio
Bio
Xtal
na
na
Bio

Bio
Bio
Bio
Xtal
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Xtal
Bio
Bio
Bio



3grs
3sdh
3ssi
4cha
4kbp
Scsm
Srub
8prk
9wga
1a39
lag9
1bc2
lcaq
1e0s
1feh
1gjm
1hvf
1mbl
1ml1
Imwc
Inaw
1qdm
1gpa
1gs8
1gsn
1rne
1trn
3ngl
5tss
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3390
929
894

2986

1558

1903

2913

1014

2277
528
444
657
711
899

1626
897
541
619
743
453

1225
822
893

1186
815

1171
761
570

1452
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Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal

Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Xtal
Bio
Xtal
Bio
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal

100
99.86
69.3
100
96.01
99.85
99.96
88.78
100
8.93
49.32
50
88.31
90.33
98.09
0.44
0.49
0.86
77.03
1.24
95.58
96.17
27.68
69.68
100
28.24
72.15
0
95.1

na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na

na
na
na
Bio
na
na
Bio
Bio
na
Xtal
Bio
na
Xtal
Bio
na
Xtal
Xtal
Xtal
Bio
Xtal
Bio
Xtal
Bio
Bio
Bio
Bio
Xtal
Xtal
Xtal

Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Xtal
Bio
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Bio
Xtal
Xtal
Xtal
Xtal
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 Xtal if score <50, Bio if score > 50
® Xtal if score <0.5, Bio if score > 0.5

¢ not applicable because the entry was in the training set of the prediction method

120



Supplementary Table 2.6.

Chapitre 2 Détermination de la pertinence biologique d’une interface protéine-protéine

Prédiction ode143 iOnterfaces protéine-protéine (Ponstingl external set) par différentes méthodes

PDB Chainl Chain2 Interface, A’ Set IChemPIC NOXClass® DiMoVo®  PISA EPPIC
la3c A B 991 Biol Bio 62.78 na na‘ Bio
lad3 A B 3941  Biol Bio 100 na na Bio
laf5 A B 853  Biol Bio 95.66 na na Bio
lafw A B 2398  Biol Bio na na na Bio
lajs A B 3443  Biol Bio na na na Bio
1al0 B F 1222 Biol Bio 99.99 na np* Bio
lalk A B 3851 Biol Bio 100 1.00 na Bio
lamk A B 1472 Biol Bio 99.99 na na Bio
laom A B 1243  Biol Bio na 0.06 na Bio
laor A B 1234  Biol Bio 18.05 na na Bio
laq6 A B 2217  Biol Bio na na na Bio
lauo B C 667  Biol Xtal 0.33 na na Bio
Ibam A B 746  Biol Bio 49.42 na na Xtal
1bif A B 895  Biol Xtal 57.79 na na Xtal
Ibsr A B 1920 Biol Bio 100 na na Bio
Ibuo A B 1978  Biol Xtal 100 na na Bio
lcg2 A D 1300 Biol Bio 97.82 na na Bio
Ichm A B 3316  Biol Bio 100 na na Bio
Icmb A B 1812  Biol Bio na na na Bio
Icp2 A B 953  Biol Xtal na 0.49 na Bio
Icsh A B 5087 Biol Bio 100 na na Bio
Lett A B 1989  Biol Bio 99.93 na na Bio
lczj A B 798  Biol Xtal 99.6 na na Bio
Idaa A B 2300 Biol Bio 100 na na Bio
Ifip A B 1607  Biol Bio 100 na na Bio
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1fro C D 3628  Biol Bio 100 na na Bio
1gvp A B 903 Biol Xtal 98.8 na na Bio
Thjr B D 964  Biol Bio na na na Bio
lhss A B 1099  Biol Bio na na na Bio
licw A B 987  Biol Bio 97.34 na na Bio
limb A B 1648  Biol Bio 95.38 na na Xtal
lisa A B 920  Biol Bio na na na Bio
liso A B 3305 Biol Bio 100 0.88 na Bio
1jhg A B 2209  Biol Bio 100 na na Bio
1jsg A B 793  Biol Bio 79.72 na na Xtal
1kba A B 492  Biol Bio 19.3 na na Bio
1kpf A B 1869  Biol Bio 100 na na Bio
Ilyn A B 945  Biol Bio 88.17 na na Xtal
Imjl A B 1775 Biol Bio 100 0.93 na Bio
Imka A B 1618 Biol Bio 99.99 0.97 na Bio
Imoq A B 2538  Biol Bio 99.94 0.97 na Bio
Inox A B 3034 Biol Bio 100 na na Bio
Insy A B 2611 Biol Bio 100 na na Bio
loac A B 7158  Biol Bio 100 na na Bio
lopy A B 1046  Biol Bio 99.99 na na Xtal
lotp A B 831 Biol Bio 3.37 0.39 na Bio
Ipgt A B 1231  Biol Bio 94.68 na na Bio
Ipre A B 2291  Biol Xtal 99.92 na na Bio
Ipuc A B 2169  Biol Bio 100 0.58 na Bio
Irfb A B 2645  Biol Bio 100 na na Bio
1rpo A B 1401 Biol Bio 100 na na Bio
Ises A B 2231  Biol Bio 99.95 na na Bio
Islt A B 544  Biol Xtal 88.13 na na Xtal
Ismn A B 868  Biol Bio 87.13 na na Xtal
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Ismt
1sox
Itox
1trk
1tys
luby
lutg
lwgj
1xso
2ccy
2ilk
2rsp
2tct
2tgi
3grs
3pgh
3sdh
3ssi
4kbp
Scsm
Stmp
9wga
16pk
la0k
1al9
1a8o
laay
lafk
lahq
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1968
1412
3774
4487
2330
2169
1482
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Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Biol
Xtal
Xtal
Xtal
Xtal
Xtal
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Xtal
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Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Xtal
Xtal
Bio
Bio
Xtal
Xtal

na

na
100
na
99.99
99.9
100
na

na
93.7
100
99.53
99.99
100
100
99.59
99.86
69.3
96.01
99.85
83.17
100
2.88
1.2
42.01
62.91
7.32
93.9
2.37

na
na
na
na
0.42
na
na
0.58
na
na
na
0.79
na
na
na
0.96
na
na
na
na
0.86
na
-0.05
0.09
0.35
0.55
0.09
na
-0.01

na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
Xtal
Xtal
na
na
Bio
na
Xtal

Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
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Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
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Xtal
Xtal
Xtal
Xtal
Xtal
Bio
Xtal
Bio
Xtal
Bio
Xtal
Xtal
Xtal
Xtal
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
na
Xtal
Xtal
Xtal
Xtal

1.18
27.31

90.2
100
40.29
99.99
1.7
4.58
1.04
61.35
11.31
21.24
50
30.64

23.81
7.74
0.65
0.42
9.98

59.58
4.44
2.24
2.27

89.42

-0.27
0.16
0.03
0.36

-0.07
0.50

na
0.32
0.03
0.00
0.37
0.07
0.30
0.05
0.28
0.25
0.37
0.14
0.17
0.28

-0.04
0.20
0.12
0.05

-0.29
0.07
0.11

na
0.07

Xtal
na
na
na
na

Bio
na
Bio

Xtal
na
na

Xtal
na

Xtal
na
na
na
na
na

Xtal
na

Xtal
na

Xtal
na

Xtal
na

Xtal
na

Xtal
Xtal

Bio
Xtal
Xtal

Bio

Bio

Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal

Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
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531
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445
795
585
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129
660
396
815
607
346
537
399
647
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Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
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Xtal
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Bio
Xtal
Bio
Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
na
Bio
Xtal
Xtal
Xtal
Xtal
Xtal

60.56
37.67
1.36
0.97
74.28
41.77
2.68
4.35
27.22
0
91.92
6.83
0.37
15.41
98.78
0
78.96
95.51
0.8
2.34
1.59
87.67
64.89
83.19
13.88
6.22
27.89
0.59
45.48

0.08
0.04
0.23
-0.09
na
0.00
na
0.07
-0.09
na
0.18
1.08
na
0.01
0.54
-0.09
0.03
0.01
na
na
0.28
na
0.43
0.14
0.22
0.05
-0.27
0.15
0.12

na
Xtal
na
na
Xtal
Xtal
na
na
Xtal
na
na
Xtal
na
Xtal
Xtal
Xtal
na
na
na
na
Xtal
Xtal
Xtal
Xtal
na
Xtal
Xtal
Xtal
Xtal

Xtal

Bio
Xtal
Xtal
Xtal
Xtal

Bio
Xtal

Bio
Xtal

Bio
Xtal
Xtal
Xtal

Bio
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal
Xtal

Bio

Bio
Xtal

Bio
Xtal
Xtal
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Scp4 A B 772 Xtal Xtal 2.09 0.17  Xtal Xtal
8paz A B 519  Xtal Xtal 2.39 0.02  Xtal Xtal

* Xtal if score <50, Bio if score > 50
® Xtal if score <0.5, Bio if score > 0.5
¢ not applicable because the entry was in the training set of the prediction method

d ..
no prediction
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Supplementary Table 2.7.  Prédiction de 66 interfaces protéine-proteine (IPAC validation set 3) par différents outils

PDB Chainl Chain2 Interface, A Kd, M IchemPIC NOXClass® DiMoVo® PISA EPPIC
1r8s A E 1493 1.40E-04 Bio 100 0.53  Bio Bio
1nw9 A B 1057 7.40E-05 Bio 89.88 0.00  Xtal Bio
200b A B 417 6.00E-05 Xtal 99.95 0.65  Bio Xtal
li2m C D 1336 3.16E-05 Xtal na 0.55  Bio Bio
1wql R G 1458 1.70E-05 Bio 97.43 034  Bio Xtal
lgeq C B 605 1.68E-05 na 99.89 0.73 Bio Xtal
lak4 A D 516 1.60E-05 Xtal na 0.62 Xtal Bio
2pcc C D 530 1.00E-05 Xtal 97.87 0.68  Xtal Xtal
1qa9 C D 674 9.00E-06 Xtal 69.12 0.07  Xtal Xtal
120k C D 926 7.20E-06 Bio 100 0.54  Bio Bio
196 A B 592 6.00E-06 Xtal 35.24 0.02  Bio Xtal
1sbb A C 1029 3.00E-06 Xtal 99.87 0.51  Bio Xtal
1b6c H B 324 2.80E-06 Xtal na 028  Bio Xtal
lefn C D 604 2.50E-06 Bio 38.4 0.18  Xtal Xtal
lhe8 A B 651 2.50E-06 Xtal 99.69 0.73  Bio Bio
2btf A P 1030 2.30E-06 Bio 99.4 041  Bio Bio
20t3 A B 1152 1.80E-06 Bio 99.96 0.50  Bio Bio
1gpw C D 1081 1.50E-06 na 97.92 0.15 Bio Xtal
132 A B 604 1.10E-06 na 98.65 026  Bio Bio
le6e A B 1157 8.60E-07 Xtal 1.13 0.64  Xtal Bio
lgrn A B 1169 3.88E-07 na 99.11 021  Bio Bio
2hrk A B 798 1.93E-07 na 97.49 026  Bio Bio
2¢01 A B 1004 1.09E-07 na 93.53 036  Bio Bio
2hgs B C 1173 9.00E-08 na 99.69 0.56  Bio Xtal
1buh A B 659 7.70E-08 Bio na 0.01 Xtal Xtal
latn A D 887 4.50E-08 Bio na 0.81 Xtal Xtal
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4.50E-08
4.00E-08
2.30E-08
1.62E-08
1.10E-08
1.00E-08
5.80E-09
5.60E-09
5.00E-09
3.57E-09
3.50E-09
3.30E-09
1.70E-09
1.07E-09
1.00E-09
1.00E-09
1.00E-09
4.00E-10
3.40E-10
3.00E-10
1.00E-10
1.00E-10
4.00E-11
2.50E-11
1.60E-11
9.00E-12
6.00E-14
6.00E-14
5.90E-14
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Bio
Bio
Bio
na
Bio
Bio
na
Bio
Bio
Xtal
Bio
Bio
Bio
na
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
na
na
Bio
na
Bio
na
Xtal

92.49
99.35
81.77
100
na
95.16
89.88
99.91
99.9
99.4
na

na
99.97
100
97.79
65.13
99.43
100
99.93
100
99.99
88.46
100
99.78
100
na
93.53
99.92
35.24

042  Xtal
0.06  Xtal
0.32  Xtal
-0.06 Bio
0.13 Bio
0.12  Xtal
0.80 Bio
0.05 Bio
0.35 Bio
0.40 Bio
0.35 Bio
0.00 Xtal
-0.03  Xtal
1.02 Bio
0.93 Bio
0.04 Bio
0.20 Bio
0.37 Bio
0.83 Bio
0.81 Bio
0.59 Bio
0.21 Bio
0.20  Xtal
0.40 Bio
0.59 Bio
-0.05  Xtal
0.31 Bio
0.55 Bio
0.35 Xtal

Bio
Bio
Bio
Xtal
Bio
Xtal
Bio
Bio
Bio
Bio
Xtal
Bio
Xtal
Bio
Bio
Xtal
Xtal
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Bio
Xtal
Xtal
Bio
Xtal
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5.00E-15
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown

unknown

Bio
Xtal
Bio
Bio
Bio
na
Bio
Bio
Xtal
Bio
Bio

99.35
na
99.55
99.59
98.61
99.93
99.91
68.14
100
99.79
97.46

0.52
0.86
0.28
0.37
0.40
0.67
0.79
0.27
0.03
0.66
0.13

Bio
Bio
Xtal
Bio
Xtal
Bio
Bio
Xtal
Bio
Bio
Xtal

Bio
Bio
Xtal
Bio
Bio
Xtal
Bio
Bio
Bio
Bio
Bio

 Xtal if score <50, Bio if score > 50

b Xtal if score <0.5, Bio if score > 0.5

¢ not applicable because the entry was in the training set of the prediction method
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Chapitre 3

De la cavité au pharmacophore
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3.1. Introduction

La conception de médicaments assisté par ordinateur' est devenue un outil standard
pour assister les chimistes médicinaux dans I’identification et/ou 1’optimisation de touches
pour des cibles d'intérét pharmaceutique. Les méthodes correspondantes sont classiquement
divisées en deux catégories selon qu'elles sont basées sur la structure des ligands” ou des
protéines cibles (site actif)’. Elles vont de pair avec I’évolution grandissante des
connaissances sur les ligands biologiquement actifs ainsi que sur les sites de liaison protéine-
ligand. Parmi les méthodes basées sur les ligands, la recherche par pharmacophore® est trés
populaire pour plusieurs raisons: (1) le concept de pharmacophore est trés facile a
comprendre et intuitif aussi bien pour les chémoinformaticiens que pour les chimistes
médicinaux; (2) cette technique n’a besoin d’aucune connaissance préalable sur la structure
tridimensionnelle de la protéine cible; (3) elle ne souffre pas des mémes inconvénients’ que
les méthodes basées sur les structures de protéines (par exemple 1’estimation de I’énergie libre
de liaison) car leurs fonctions de score® sont purement topologiques; (4) aligner des ligands
sur des pharmacophores aide naturellement a leur optimisation future de touches par ajout de
propriétés manquantes ou délétion de propriétés non alignées.

Un criblage de chimiothéques par recherche pharmacophorique classique commence
par I'alignement de toutes les molécules ayant le méme effet sur une cible, puis par
I'extraction des propriétés communes afin de créer le pharmacophore. La dernicre étape
consiste enfin a cribler la chimiothéque afin d'identifier les touches vérifiant les éléments du
pharmacophore. Quand la structure du complexe protéine-ligand est disponible, un
pharmacophore d'interaction peut étre déterminé en alignant les éléments pharmacophoriques
uniquement sur les atomes du ligand en interaction directe.”" 1l reste néanmoins énormément
de protéines dont la structure tridimensionnelle (3D) est connue mais pour lesquelle les
ligands sont toujours manquants (ex: les interfaces protéine-protéine). Dans ce cas de figure,
il peut étre intéressant de créer un pharmacophore a partir de la simple connaissance de la
structure 3D du site de liaison ciblé. Plusieurs méthodes ont été proposées depuis une dizaine
d’années pour combler le vide entre les méthodes basées sur la structure de protéine (docking)
et la recherche par pharmacophore basée sur les ligands. Les pharmacophore fondés
uniquement sur la structure de la cible sont généralement créés a 1’aide de sondes (atomes,
fragments) permettant de localiser les positions énergiquement favorables a une interaction

protéine-ligand. Les méthodes basées sur des grilles (GRID", SuperStarlz, FTMapB,
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VolSite'*) localisent les positions favorables dans une grille 3D englobant 1’ensemble de la
protéine ou sur une cavité définie comme étant un site de liaison potentiel. Les points de la
grille correspondant aux valeurs d'interaction optimales sont ensuite sauvegardés pour chaque

15-17
sonde

puis sont transformés en autant d'éléments du futur pharmacophore. Les méthodes
a base de fragments essaient de prédire les points chaud d’interaction a partir de simulations
par dynamique moléculaire des protéines hydratées (e.g. MCSS'®, SILCS'", HSRP?) en
presence de multiples copies de fragments représentant 1’ensemble des propriétés possibles
d'un pharmacophore (ex: accepteur et donneur de liaison hydrogene, hydrophobe). La derniére
possibilité est de réaliser des prédiction topologiques de la position des éléments de
pharmacophore en scannant une cavité ainsi que les acides aminés la composant, le but étant
de créer des positions d’interaction idéale dans une espace 3D (sphére, cones) ou les atomes
de ligands peuvent interagir favorablement avec la surface de la protéine. La premicre
méthode 2 utiliser cette technique fiit LUDI*' qui a ensuite inspiré de nombreux algorithmes
de génération de pharmacophores basés sur la structure des protéines (Virtual ligand®?,
SBP23, HS—Pharm24, Snooker® , Examplar%) .

Quelle que soit la méthode, le nombre d'éléments pharmacophoriques générés
(quelques centaines) reste trop €levé et dépasse largement la complexité autorisée par la
recherche de pharmacophore par des algorithmes d’alignement de sphéres rigides. Le nombre
d'éléments pharmacophoriques doit donc étre considérablement réduit a des valeurs
généralement inférieures a 10. Le nombre d'éléments peut €tre diminué en effectuant une
présélection basée sur des criteres énergétiqueslgfzo, des critéres d’enfouissement'’, des
critéres de superposition avec des site d’hydratation® ou de localisation en se basant sur la
connaissance des points chauds®® d’interaction. Toutes ces méthodes se terminent par un
algorithme d’agglomération hiérarchique des propriétés par type et par distance.

La recherche de pharmacophores créés a partir de la structure de la protéine cible a fait
ses preuves et est au moins aussi efficace que de I’arrimage moléculaire quant a
I’enrichissement en molécules actives lors de criblages virtuels'*****%°. Cette méthode souffre
néanmoins d'un manque d’automatisation et nécessite de nombreuses interventions humaines,
les étapes de construction citées précédemment étant fastidieuses et fortement dépendantes de
nombreux facteurs (utilisateur, choix des sondes et des seuils d’énergie d'interaction, nombre
de clusters). De plus la précision des pharmacophores basés sur les structures de protéines afin

d'aligner un ligand dans une cavité d'intérét a été peu étudiée’’ et rarement comparée aux

résultats obtenus par arrimage moléculaire.
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Pour répondre a ces problemes, nous avons amélioré un outil de détection de cavité
précédemment décrit au laboratoire (VolSite'") afin d’en automatiser les nombreuse étapes
allant de la détection d’une cavité et la définition finale d’'un pharmacophore. VolSite a été
intégré a la suite logicielle IChem®® afin de réaliser 1’ensemble des étapes suivante : (1)
détection de I’ensemble des cavités présentes a la surface d’une protéine cible, (2) prédiction
de la droguabilité structurale de chaque cavité, (3) détection et création de pharmacophores a
partir des structures 3D des cavités d’intérét, (4) alignement de ligands sur les
pharmacophores par un algorithme d’alignement de forme, (5) élimination des poses
incorrectes, (6) évaluation des poses par quantification de la qualité de 1'alignement.

Ce chapitre décrit notamment l'automatisation des étapes 1 a 5, I'évaluation

quantitative des alignements ligand-pharmacophore (étape 6) restant encore a optimiser.
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3.2. Méthodes

3.2.1. Jeux de données

Astex DiverseSet :

Les 85 entrées du jeu Astex DiverseSet*’ (Annexe 3.1) ont été téléchargées sur le site
du CCDC (http://www.ccdc.cam.ac.uk/products/life_sciences/gold/validation/astex_diverse/)
et étudiées de la maniere suivante. Pour chaque entrée, le complexe protéine ligand est récréé
avec Sybyl-X-2.1.1 (Certera Inc, Princeton, U.S.A.), cela en ajoutant le ligand (fichier au
format mol2) dans la protéine (fichier au format mol2). Les molécules d’eau liées sont
récupérées dans le fichier de structure PDB original, I’ensemble des hydrogénes est supprimé,
le complexe final hydraté (atomes lourds uniquement) est protoné a I’aide de Protoss®. Les
jons et cofacteurs ne possédant pas d’atomes lourds dans une sphére de 4.5A de rayon
(centrée sur le centre de masse du ligand) ne sont pas conservés. Les molécules d'eau sont
conservées a deux conditions : (1) I’atome d'oxygene est situé dans la sphere précédemment
décrite; (2) la molécule d'eau réalise au moins deux liaisons hydrogenes (distance accepteur-
donneur < 3.5A, I’angle donneur-hydrogéne-accepteur > 120°) avec la protéine. Le ligand et
la protéine (avec les ions et cofacteurs) sont finalement enregistrés dans deux fichiers mol2

distincts.

ScPDB DiverseSet :

213 complexes protéine-ligand (Annexe 3.2) ont été sélectionés dans la base de
données de complexes protéine-ligands sc-PDB’!, en tenant compte de la diversité des modes
d’interactions mesurés par alignement de graphes d'interactions (Grim)®®. Des groupes d'au
moins 6 entrées sont créés a 1’aide d’un simple algorithme d’agglomération et un score
minimal de similarité (GrimScore > 0.70) . Les entrées issues de la sc-PDB ont subi le méme
traitement que celles présentes dans le jeu Astex DiverseSet. Pour chaque entrée, la protéine
et le ligand co-cristallisé sont enregistrés dans des fichiers mol2 séparés. Pour chaque ligand,
au plus 250 conformeres sont générés avec I’option ‘FAST du générateur de conformeres de

CATALYST??, puis sauvegardés au format sdf. La conformation cristallisée des ligands est

retirée de l'ensemble conformationnel.
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DUD-E :
Dix entrées (Annexe 2.3) représentant 5 familles de cibles importantes (récepteurs

couplés aux protéines G, récepteurs nucléaires, protéine kinases, protéases, autres enzymes)

sont extraites du jeu DUD-E™ et traités de la méme maniére que les autres jeux de données.

3.2.2. Arrimage moléculaire (Docking)

L’arrimage moléculaire a été réalisé avec Surflex-Dock™ (version 2.745). Un
protomol™ est généré depuis la liste des acides aminés, ions, cofacteurs et molécules d’eau
dont au moins un atome lourd est distant de moins de 4.5A du centre de masse du ligand. Le
protomol est ensuite utilisé pour arrimer des conformations aléatoires du ligand a 1’aide de

n

parametres standards de Surflex-Dock en utilisant I’argument "-pgeom" qui raffine la
structure du ligand dans son environnement protéique aprés arrimage. Nous conservons

uniquement la meilleure pose selon le score de docking calculé (pKd).

3.2.3. Recherche de pharmacophores protéine-ligand (RL-Pharm)

Le protocole RL-Pharm de génération de pharmacophore récepteur-ligand’ de
Discovery Studio v4.5 a été utilisé afin de générer les pharmacophores. Les éléments
pharmacophoriques (accepteur, donneur, positif ionisable, négatif ionisable, aromatique et
hydrophobe) sont alignés sur les atomes lourds du ligand et conservés uniquement si I'atome
de ligand est en interaction directe avec la protéine cible (incluant les molécules d’eau liées)
selon un ensemble de régles topologiques’. Un pharmacophore unique regroupant 1'ensemble
des éléménts pharmacophoriques retenus est sauvegardé au format chm.

Les structures 3D des ligands sont converties au format sdf depuis les fichiers mol2 en
utilisant 1’outil "Convert" (Molecular Networks, Erlangen, Germany) et utilisées comme
entrées pour la génération de pharmacophores 3D en utilisant le protocole "Generate
Conformations" de Discovery Studio. La méthode est configurée en mode FAST, elle génere
un maximum de 100 conformeres par ligand avec un seuil d'énergie de 20 kcal/mol par
rapport au minimum global. La position initiale du ligand est supprimée afin de conserver un
fichier au format sdf contenant un ensemble de conformeéres pour chaque ligand. Le protocole
"Screen Library" de Discovery Studio est utilisé a des fins de criblage. Un maximum de 100
pharmacophores (toutes les combinaisons de 3 a 7 propriétés) est utilisé pour aligner le ligand

en mode rigide. Seul le meilleur alignement (valeur de fit la plus élevée) est conservé.
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3.2.4. Détermination de pharmacophores basés sur la cavité¢ (IChem)

L’algorithme Volsite préalablement développé au laboratoire', a été implémenté au sein de la
suite logicielle IChem?®® avec quelques améliorations. Premierement, les atomes d’hydrogene
sont ajoutés a ’aide de Protoss™ afin d'optimiser le réseau de liaisons hydrogénes intra et
intermoléculaires pour toutes les molécules présentes dans les fichiers de structure. Les
propriétés pharmacophoriques (hydrophobe, aromatique, donneur, accepteur, positif ionisable,
négatif ionisable, métallique) sont détectées a la volée en se référant au type atomique tout en
considérant les ions, cofacteurs, molécules d’eau et groupes prosthétiques comme faisant
partie de la protéine. Deuxiémement, les interactions hydrophobes sont redéfinies en utilisant
des regles plus strictes que dans la précédente version. Les atomes pouvant réaliser une
interaction hydrophobe sont restreints aux atomes de carbone et de soufre non liés a un
hétéroatome ainsi qu’aux halogénes. La création de pharmacophores a partir de la cavité suit
quatre étapes (Figure 3.1) :

1 — Détection de cavité a basse résolution : En utilisant le fichier de coordonnées de la
protéine cible, nous déterminons les coordonnées extrémes de la grille auxquelles sont
ajoutées 8 A dans chacune des 6 directions possibles. La grille ayant pour dimension la
distance précédemment calculée est positionnée sur le centre géométrique de la protéine avec
une résolution de 1.5A, ce qui crée des cubes (voxels) de 3.375 A’ de volume. A chaque voxel
est associé un point en son centre ainsi qu’une propriété. Si un atome lourd de protéine est
situé 2 moins de 2A du centre du voxel, celui-ci est considéré comme inaccessible et
appartenant a la protéine (propriété "IN"). Pour le reste des voxels, nous vérifions
I’enfouissement en générant, depuis le centre de ces coordonnées, un ensemble de 120
segments de 8 A de longueur. Si le nombre de segments interceptant un voxel ‘IN’ (Nri) est
inférieur a 40, le voxel est considéré comme en dehors de toute cavité et se voit assigner la

propriété "OUT".
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Protéine Détection de cavité Détection de cavité
a basse résolution a haute résolution

Alignement du ligand Agglomération par propriétés Eléments de pharmacophore

Figure 3.1. Vue d’ensemble de la méthode. 1) A partir d'une structure 3D de protéine sur laquelle les
hydrogenes ont été rajoutés, les cavités sont automatiquement générées par VolSite et décrites comme
un ensemble de points pharmacophoriques (points cyans, rouges et verts) ; 2) Les cavités prédites
droguables (cercle rouge) sont recalculées dans une grille plus fine (1 A de résolution). Les
caractéristiques pharmacophoriques (hydrophobe, cyan; aromatique, orange ; accepteur et négatif
ionisable, vert; donneur et positif ionisable, magenta) sont assignées en fonction des atomes de
protéines les plus proches; 3) Les éléments pharmacophoriques sont filtrés a [’aide de regles
topologiques (enfouissement > 80/120, distance au centre de la grille < 8 A) ; 4) Agglomération des
éléments pharmacophoriques; 5) Alignement ligand-pharmacophore par recouvrement de formes et
propriétés pharmacophoriques selon la méthode Shaper.

Les voxels isolés (moins de 3 voxels adjacents utilisables) sont supprimés. La cavité
est ainsi définie par les voxels restants. Ceux situés 2 moins de 4 A d’un atome de protéine se
voient attribuer une des 8 propriétés pharmacophoriques possible par complémentarité a
I’atome de protéine le plus proche en suivant les reégles d’interaction définies précédemment.
Les voxels ne correspondant pas a ces reégles topologiques se voient attribuer la propriété
"NULLE" et ne seront plus utilisés ici. Les résidus de protéine servant a typer les voxels de
cavité sont conservés dans un fichier site (format mol2). Nous attribuons enfin un score de

droguabilité a toute cavité identifiée selon une machine d'apprentissage a vecteurs supports
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définie précédemment”. Seules les cavités prédites droguables (score positif) sont utilisées
pour la génération de pharmacophores.

2 - Représentation de la cavité a haute définition: Les cavités droguables sont
recalculées avec deux modifications dans la procédure, (i) le centre de de la nouvelle grille de
20 A de coté est placé sur le centre de gravité de la cavité basse résolution. (ii) La résolution
de la grille passe 2 1 A pour une meilleure définition des points de cavité (6 000 voxels par
cavité en moyenne). Chaque voxel se voit assigner une propriété pharmacophorique comme
précédemment.

3 - Sélection et raffinement des éléments pharmacophoriques : Un pharmacophore
idéal a été calculé pour chacun des 213 complexes protéine-ligand du jeu sc-PDBDiverse.
Dans les pharmacophores idéaux, une propriété pharmacophorique n'est positionnée que sur
I’atome de ligand en interaction directe (selon les regles d'IChem) avec la protéine cible.
L’étude de la disposition spatiale de ces éléments de pharmacophores idéaux nous a permis de
déterminer des valeurs seuils pour deux propriétés (enfouissement, distance au centre de la
cavité) afin de réduire le nombre de points de pharmacophores finaux sans perte
d’information cruciale. Les points pharmacophoriques au centre de voxels ayant un
enfouissement inférieur a 80 ou étant a plus de 8 A du centre de gravité de la cavité sont ainsi
éliminés.

Les propriétés des points de pharmacophores restants sont ensuite raffinées de maniére
spécifique. Un point se verra assigné ainsi comme accepteur seulement s'il remplit la
condition suivante : I’atome de protéine le plus proche est un donneur de liaison hydrogene
avec un angle donneur-hydrogéne-point compris entre 120 et 180 degrés. Les points
pharmacophoriques ne vérifiant pas cette régle se voit assigner la propriété miroir du
deuxiéme atome de protéine le plus proche et ainsi de suite (3° plus proche, 4° plus proche,
etc...) jusqu’a ce I’ensemble des regles soit vérifi€. Si aucune regle n’est validée (tous les
atomes de protéines suivants sont a plus de 4 A du point pharmacophorique par exemple), le
voxel et le point pharmacophorique en son centre sont supprimés. Les régles d'assignation des
points de pharmacophore aromatiques ont aussi été 1égérement modifiées en tenant compte
des plans des cycles des acides aminés aromatiques environnants. En plus de la distance au
centre du cycle aromatique (<4A entre le centre et le point), nous ajoutons une seconde
distance seuil de 1.5A entre le point pharmacophorique et un point situé a 4 A du centre du
cycle aromatique voisin sur une normale au plan de ce dernier et dans les deux directions.

Cette définition nous permet ainsi de détecter des interactions aromatiques ligand-récepteur
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face-face ou les deux normales aux plans aromatiques en interactions sont décalées d'au
moins 1.5 A. La derniére propriété modifiée concerne les points pharmacophoriques
hydrophobes. La propriété hydrophobe est ainsi restreinte aux points de cavités dont
l'environnement 4 moins de 4 A contient au moins 50% de résidus hydrophobes (alanine,
valine, leucine, isoleucine, proline, méthionine, phénylalanine, tyrosine, tryptophane) et pour
lequel deux atomes de protéines hydrophobes sont distant de moins de 4 A du point de cavité
a assigner.

4 — Définition du pharmacophore final: Les points de pharmacophores restants sont
regroupés par propriété en utilisant un algorithme d’agglomération hiérarchique et une
distance seuil de 3.1 A. Des sphéres d’exclusions correspondant a des régions de l'espace
occupés par la protéine et interdites au ligand sont enfin définies selon la méthode suivante.
Une sphéere unique est placée pour chaque acide aminé tapissant la cavité aux coordonnées
atomiques correspondant au barycentre des atomes lourds les plus proches (< 4 A) des points
de pharmacophores. Leur diamétre est proportionnel au nombre d’atomes lourds utilisés pour
les définir (1.15 A pour 1 atome proche, 1.25 A pour 2, 1.35 A pour 3, 1.45 A pour 4, 1.55 A
pour 5, 1.6 A pour 6 et 1.7 A de diametre pour 7 ou plus d’atomes proches).

Les pharmacophores finaux (avec ou sans sphere d’exclusion) d’une taille moyenne de
35 éléments sont conservés au format chm de CATALYST™ ainsi que sous la forme d'un
fichier mol2. Le pharmacophore est décrit par les items suivants:

- la propriété : hydrophobe, aromatique, accepteur, donneur, négatif ionisable,
ionisable positif ionisable, métallique.

- les coordonnées atomiques de la propriété (téte).

- un vecteur de 3A de longueur dans la direction de la queue (accepteur, donneur,
aromatique) dirigé vers I’atome de protéine complémentaire.

- les attributs spéciaux pour la propriété aromatique (centre, plan)

- sphéres localisées sur les tétes et queues des vecteurs de rayon 1.6 et 2.2 A,
respectivement.

Les éléments a double propriété donneur et accepteur sont représentés par deux éléments

séparés (donneur, accepteur) partageant les mémes coordonnées atomiques en leur téte.

3.2.5. Alignement des ligands sur les pharmacophores (Shaper)
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L’algorithme Shaper préalablement développé au laboratoire'* a été utilisé pour
aligner les atomes de ligands sur les points de pharmacophores. Shaper est un outil utilisant
les bibliotheques "OEChem" et "OEShape" (OpenEye Sciencific Software, Santa Fe, U.S.A.)
pour décrire les formes moléculaires par des gaussiennes et pour aligner deux objets
moléculaires (atomes de ligands sur points de cavité) par maximisation de I’intersection des
deux volumes correspondants®. Pendant I’alignement, les points de cavité restent fixes alors
que les conformeres du ligand subissent des translations/ rotations. Les meilleurs alignements
sont ensuite triés par un score de couleur (les couleurs étant les propriétés
pharmacophoriques) au moyen, d'un champ de force spécifique. Le champ de force customisé
(Annexe 2.4) est composé de motif SMARTS pour décrire 10 propriétés pharmacophoriques
de ligands (hydrophobe, cycle aromatique, cycle aliphatique, accepteur, donneur, accepteur et
donneur, anion, cation et exclusion), 7 propriétés de points de cavité (hydrophobe, cycle,
donneur, accepteur, accepteur et donneur, cation, anions) et 33 regles d’alignement afin de
calculer le score de superposition des propriétés par similarité selon la métrique

FitTverskyCombo:

OScL + 0Ccl
0.1515S¢+0.9515,+0Sc L 0.151Cc+0.95IC,+0Cc¢,

FitTverskyCombo =

OS¢ représente le volume commun aux formes du pharmacophore et du ligand, IS¢ et ISy les
volumes non alignés, OC¢ est le volume commun aux couleurs du pharmacophore et du
ligand, ICc et ICy. les volumes des couleurs non alignées. Contrairement au score de Tanimoto
qui met un poids égal sur les deux éléments alignés, le score de FitTversky donne un poids
plus important (0.95) a I’objet mobile (le ligand). La métrique est asymétrique et varie entre O
et 2.

L’alignement des ligands a montré quelques limites qui nous ont fait changer la

méthode d'alignement (Figure 3.2).
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Ligand issu de la structure

IChem
Omega2 & filter :
(Conformeéres avec requéte)
Change type atomique  Change nom résidu \l/

Extraction de la pose originale

/N

Pose cristallographique Conformeres
(ordre mélangé)

4

Restauration des Noms

(Rajout du nom de ligand Restauration des Noms
Et champs Substructure)

Conversion en
Conversion en propriétés pharmacophoriques

propriétés pharmacophoriques

Alignements des poses
Sauvegarde avec Shaper

Alignement des /

Conformeéres sur le Restauration des noms

ligand <———  etchamp Substructures
Calcul du Rmsd

Figure 3.7. Diagramme représentant les modifications apportées au ligand avant le processus
d’alignement (fleche grise: lecture, fleche noire: modification, fleche cyan: alignement des
coordonnées 3D). Chaque boite correspond a la création d’un nouveau fichier.
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Le fait d’utiliser un champ de force personnalisé a montré que I’interprétation des
ligands et du pharmacophore par OEChem est erroné. Afin de pallier a ce probléme, nous
n'alignons pas les atomes de ligands mais des pseudoatomes décrivant les propriétés
pharmacophoriques de celui-ci. Il en résulte un plus petit nombre de points a aligner. Ce
procédé simple d’aspect demande plusieurs tiches d'harmonisation des noms, types atomiques
et ordre de lecture. Les ligands sont d’abord traités par IChem afin d’avoir un fichier mol2 de
référence avec un bon type atomique. Le conformeéres sont ensuite générés par le logiciel
Omega2 (OpenEye) La premiére pose est donc extraite et conservée en tant que référence.
L’ensemble est converti en propriétés pharmacophoriques a 1’aide d’IChem. On peut enfin
aligner les conforméres sur les pharmacophores et comparer les poses obtenues a la pose co-
cristallisée si celle-ci est connue.

Les poses ainsi générées par IChem sont filtrées par le nombre de contacts répulsifs

avec la protéine (clashl, distance seuil < 1.710\; Clash2, distance seuil < 2.31&) puis triées par

score FitTverskyCombo.
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3.3 Résultats et discussion

Le concept de pharmacophore, plus que centenaire’’, reste fréquemment utilisé a des
fins de criblage virtuel afin d'identifier des molécules bioactives. La plupart du temps, le
pharmacophore est défini a partir de ligands partageant un mécanisme d'action et une cible
protéique. Plus récemment, le concept a été étendu a des pharmacophores déduits directement
de structures cristallographiques protéine-ligand. Quand seule la structure 3D de la protéine
est connue sans qu'aucun ligand n'ait pu é&tre préalablement identifié, définir un
pharmacophore simple et utilisable est plus difficile car cela impose une perception des
éléments pharmacophoriques a partir de la seule connaissance d'un site de liaison. Ce procédé
est trés complexe: il requiert la détection de cavités droguables a la surface de la protéine
cible, la détermination des régions de l'espace ou des atomes de ligands interagiront de
maniere optimale avec les points d'ancrages supposés les plus importants de la cavité.

Souvent le nombre de points pharmacophoriques générés in situ dans la cavité excede
de loin le seuil toléré par des algorithmes d'alignement ligand-pharmacophore. Par
conséquent, les points pharmacophoriques initiaux doivent é&tre élagués de maniére
rationnelle, généralement a partir de cartes énergétiques, afin de conduire a un
pharmacophore utilisable (< 10 points) a des fins de criblage virtuel.

Parmi les diverses méthodes de génération de pharmacophores a partir de structures de
cavités, nombre d'entre elles reposent sur des calculs longs et complexes de dynamique
moléculaire interdisant leur utilisation méme a faible débit. Méme s’il existe un effort récent
pour simplifier les étapes de construction précédemment décrites, il y a toujours un besoin en
un logiciel unique, rapide, fiable, automatisant le procédé entier, depuis la détection de la

cavité jusqu’a la définition du pharmacophore final.

3.3.1. Détermination de pharmacophores a partir de cavités

Les pharmacophores basés sur la cavité sont générés par un procédé en 4 étapes
(Figure 3.1). Premierement, les cavités potentiellement droguables sont déterminées a la
volée depuis la structure de protéine en utilisant les parametres standard de notre outil
VolSite. La méthode centre la protéine dans une grille de résolution 1.5 A et assigne les
propriétés pharmacophoriques  (hydrophobe, aromatique, donneur, accepteur, positif
ionisable, négatif ionisable, chélateur de métal) aux différents voxels accessibles, en fonction
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des atomes de protéines les plus proches. La droguabilité potentielle de chaque cavité détectée
est déterminée par un modele d'apprentissage a vecteurs supports (SVM) montrant une tres
bonne précision de classification (89%) sur des jeux de tests, par rapport aux méthodes
concurrentes'*. Pour chaque cavité prédite droguable, une nouvelle détection avec une
résolution plus fine (1A) est réalisée de maniére a ce que la cavité soit centrée dans une grille
de 20 A de coté. Dans une troisiéme étape, les points de cavité obtenus sont élagués afin de
diminuer considérablement leur nombre et de les transformer en points de pharmacophore.
L’algorithme VolSite précédemment publié a été modifié pour prendre en compte les
positions explicites des hydrogenes. Le principal avantage d’utiliser les positions explicites
des hydrogenes sur la protéine est I’optimisation de la définition des accepteurs de liaison
hydrogéne en suivant le vecteur correspondant (donneur-hydrogeéne-voxel). Nous avons aussi
redéfini la définition des points de pharmacophore aromatiques afin de prendre en compte des
interactions face-face décalées. La propriété hydrophobe a aussi été raffinée afin d’améliorer
la qualit¢ des pharmacophore générés. Au moins deux atomes hydrophobes de protéine
doivent étre distants de moins de 4A d'un voxel hydrophobe, I'environnement immédiat doit
étre composé de plus de 50% de résidus hydrophobes).

La premiere conséquence de ces changements est que I’assignation des propriétés ne
se fait plus forcément en une étape. Par exemple, un atome de protéine hydrophobe (carbone
CB d’une alanine) ne peut réaliser une interaction hydrophobe au voxel le plus proche s’il ne
vérifie pas les conditions précédemment énoncées; méme s'l s’agit de I’atome de protéine le
plus proche du voxel. Dans ce cas, la vérification des atomes suivants les plus proches est
réalisée jusqu’a ce qu'un atome de protéine vérifie I'ensemble des régles. Si aucun atome ne

convient, aucune propriété pharmacophorique n'est assignée au voxel correspondant

Une fois les points de cavités assignés, un €lagage est réalisé par vérification de deux
propriétés: l'enfouissement et la distance au centre. Des valeurs seuils pour ces deux
propriétés ont étés définis par observation de points pharmacophoriques idéaux directement
générés a partir de 213 complexes protéines-ligands de structure connue (Figure 3.3).
L'examen de la distribution de ces deux propriétés pour 4871 points pharmacophoriques,
montre que la distance au centre de la cavité est généralement inférieure a 8 A alors que

I'enfouissement du point pharmacophorique est trés majoritairement supérieur a 80/120.
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Figure 3.3 : Propriétés des 4871 éléments pharmacophoriques générés a partir de 231 complexes
protéine-ligand divers (sc-PDBDiverseSet); A) Distance de l'élément (en fi) au centre de la cavité,
exprimée en nombre cumulé de points pharmacophoriques. La distribution cumulative suit une
fonction sigmoide de Boltzmann (R° = 0,999); B) Boites a moustaches de la distribution de
l'enfouissement des caractéristiques pharmacophoriques (Hyd, hydrophobe, Aro, aromatique, Don,
liaison hydrogene donneur; Pos, ionisable positif, Acc, liaison hydrogéne accepteur, Neg: ionisable
négatif- Met : Métal) exprimé par le nombre de projections de 8 A (sur un total de 120) provenant du
centre du voxel et intersectants des atomes de protéines. La boite délimite les 25e et 75e percentiles,
les moustaches délimitent les 5e et 95e percentiles. Les valeurs médianes et moyennes sont indiquées
par une ligne horizontale et une case vide dans la boite. Les croix délimitent les 1% et 99e percentiles,
respectivement. Les valeurs minimales et maximales sont indiquées par un tiret

L'application de ces filtres permet de réduire considérablement le nombre de points
pharmacophoriques potentiels de 800 lors de la définition initiale a 300 si I'enfouissement est

supérieur a 80, puis 2 150 si distance au centre est inférieure 2 8 A (Figure 3.4)
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Figure 3.4: Décroissance du nombre de points pharmacophoriques en fonction des étapes de notre
protocole

Au fur et a mesure des étapes de notre protocole automatisé, nous avons vérifié que
des éléments pharmacophoriques importants n'étaient pas perdus en cours de route, en
comparant les pharmacophores obtenus a chaque étape avec les pharmacophores idéaux
obtenus directement a partir des 85 entrées du jeu de controle AstexDiverseSet (85
complexes). Nous avons considéré comme un succes le fait de placer un point de cavité a
moins de 2 A d'un vrai élément pharmacophorique de méme type (Figure 3.5). Nous
observons ainsi que le taux de récupération de vrais éléments pharmacophoriques décroit
logiquement au fur et 2 mesure que le nombre de points de cavité diminue. Dans la définition
initiale (800 points en moyenne), 95 a 100% des vrais éléments pharmacophoriques se
superposent aux points de cavité, si ce n'est les points hydrophobes ou on observe déja une
perte de 20% de vrais éléments pharmacophoriques observés sur les ligands du jeu
AstexDiverseSet (Etape 1, Figure 3.5). La seconde étape de raffinement de la cavité n'influe
que tres peu les statistiques observées a 1'étape 1. L'élagage puis 1'agglomération des points de
cavités en points pharmacophoriques finaux réduit les pourcentage de couverture aux
alentours de 60% pour les points hydrophobes et 70-80% pour les autres propriétés

pharmacophoriques (Figure 3.5).
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Figure 3.5 : Pourcentage de récupération de propriétés pharmacophoriques idéales tout au long du
protocole. Une caractéristique est définie récupérée s’il existe un voxel généré par IChem avec une
propriété de méme type que le vrai point pharmacophorique (set AstexDiverseSet) et distante de moins
de2 A.

Les points pharmacophoriques hydrophobes sont notoirement les plus difficiles a
reproduire du fait du manque de directionalité rencontrée dans ce type d'interaction. L'examen
des propriétés hydrophobes prédites par rapport aux vrais €léments pharmacophoriques
observés sur les ligands du jeu de test, laisse apparaitre que le vrai point pharmacophorique
n'est que rarement au centre d'un cluster de voxels hydrophobes. Il n'en demeure pas moins
que les performances observées restent excellentes au vu du faible nombre de points

pharmacophoriques (environ 30) obtenus en fin de protocole.

3.3.2. Alignement ligand-pharmacophore

L'alignement de ligands sur des pharmacophores composés en moyenne de 30 points
s'est vite avéré impossible au moyen de méthodes classiques employant des sphéeres rigides,
telle qu'implémentées dans la plupart des méthodes dont CATALYST. La combinatoire de
superpositions possibles d'un ligand possédant en moyenne 20-30 atomes a un pharmacophore
de 30 points est tellement grande qu'il est impossible de la satisfaire dans un temps
raisonnable. Nous avons donc opté pour des méthodes de superposition plus floues et plus
rapides en considérant non plus les atomes comme des sphéres rigides mais comme des
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Gaussiennes décrivant la forme des especes moléculaires (ligands, points de pharmacophore)
a aligner. Cette méthode a été développée dans le logiciel ROCS d'OpenEye™ afin de
comparer des ligands selon leur forme, avec énormément de succés.” Nous avons donc
adapté le logiciel Shaper, préalablement développé au laboratoire pour aligner une paire de
points de cavité, a l'alignement de ligand a des points de cavités'!. Notre générateur de
pharmacophore ainsi que la méthode d'alignement a été comparé, sur le jeu de test
AstexDiverseSet de 85 complexes protéine-ligand, a deux méthodes concurrentes: 1'arrimage
moléculaire, et le criblage de pharmacophore protéine-ligand RL-Pharm (Tableau 3.1).
L'arrimage moléculaire a été retenu comme une méthode standard de positionnement de
ligands a partir de la simple structure d'une protéine cible. Ce sera notre référence. La
superposition RL-Pharm a des pharmacophores protéine-ligand déduits de ces mémes
complexes, définit quant a elle la limite supérieure de précision possible pour toute recherche

pharmacophorique.

Tableau 3.1. Précision de positionnement de 85 ligands (Astex Diverse Set) a leur site de liaison par
arrimage moléculaire (Surflex-Dock), alignement a un pharmacophore récepteur-ligand (RL-Pharm)
et alignement a un pharmacophore de cavité (IChem Volsite)

Méthode rmsd, A? % entrées <1 A %entrées <2 A %entrées <3 A
Surflex-Dock 2.54 25 66 78
RL-Pharm 1.70 40 75 86
IChem-VolSite" 3.69 2 27 39
IChem-VolSite* 2.30 2 39 84

* écart quadratique moyen des coordonnées entre la pose prédite et la pose cristallographique
® pose correspondant au meilleur score FitTverskyCombo
“ meilleure solution possible (plus petit rmsd a la pose cristallographique)

Le jeu de données AstexDiverseSet représente des complexes protéine-ligand
sélectionnés manuellement et particulierement difficiles a reproduire comme en témoigne la
qualité des poses prédites par Surflex-Dock, un outil d'arrimage jugé parmi les meilleurs.
Considérant uniquement la meilleure pose, 1'écart quadratique moyen des coordonnées (rmsd)

est de 2.54 A avec 66% des ligands dont la pose est acceptable (rmsd < 2 A, Tableau 3.1).
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La méthode de recherche de pharmacophorique protéine-ligand RL-Pharm, que nous
avons développé en partenariat avec Accelrys’, produit logiquement les meilleurs résultats
(rmsd moyen de 1.70 A) dans la mesure ou les pharmacophores ont été précisément déduits
des complexes protéine-ligand dont la structure est a reproduire. La qualité des résultats est
donc essentiellement dépendante de la précision du générateur de conformeres (la pose
cristallographique ayant été omise dans le jeu de conformeéres) et de la qualité de la routine
ajustant ces conformeres au pharmacophore.

Les résultats obtenus par notre méthode (IChem VolSite) sont encourageants (rmsd
moyen de 3.6 A) mais encore inférieurs a ceux obtenus par arrimage moléculaire, notre
référence pour la présente étude Si l'on considére l'ensemble des poses générées par notre
méthode d'alignement (500 en moyenne), au moins l'une d'entre elles est proche de la solution
cristallographique (plus petit rmsd de 2.3 A en moyenne, Tableau 3.1). Il ne nous a
malheureusement pas encore été possible de détecter ces poses correctes au moyen ni d'un
score d'alignement ni d'une énergie d'interaction calculée par deux fonctions de score

empirique (PLP, Chemscore).
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3.4. Conclusion

La perception automatique de pharmacophores a partir de la simple structure de la
cavité protéique d'intérét reste un probléeme non résolu par des méthodes cheminformatiques
automatisées et rapides. Alors que l'arrimage moléculaire permet de bien poser des ligands
mais pas de les scorer, la recherche de pharmacophore basés sur les cavités pourrait permettre
de répondre a cet inconvénient, étant donné que les recherches pharmacophoriques sont
rapides et indépendantes de tout calcul énergétique. En étudiant les propriétés de vrais points
de pharmacophore issus de complexes protéine-ligand co-cristallisés, nous avons pu mettre en
évidence des filtres simples d'enfouissement et de distance au centre de cavité, nécessaires a la
réduction du nombre de points pharmacophoriques générés automatiquement a partir de la
structure de la cavité. Ces filtres, ajoutés a une agglomération finale des éléments
pharmacophoriques nous permettent la définition automatique de pharmacophores simples (30
points en moyenne) sans perte importante d'information. Nous avons estimé a environ 20-30
le pourcentage de points pharmacophoriques effectivement perdus par les 4 étapes de notre
protocole automatisé avec une exception notable pour les points hydrophobes ou environ 40%
des points sont perdus en cours de route. Cette déperdition explique en partie les résultats
certes encourageants mais encore non satisfaisants obtenus lors de 1'alignement final ligand-
pharmacophore. Nous avons clairement a faire face a un probléme d'évaluation quantitative de
l'alignement car un jeu de bonnes solutions existe presque toujours, sauf pour les ligands tres
flexibles (> 10 liaisons de rotation), mais les diverses métriques d'évaluation de 1'alignement
que nous avons retenues ont ét€ incapables de les identifier. Un modéle d'apprentissage (foréts
aléatoires) basé sur les propriétés du ligand, de la cavité et de I'alignement ne permet
également pas d'améliorer la qualité de la premicre pose retenue. Diverses pistes restent a
étudier afin de distinguer les bonnes des mauvaises poses dans les solutions fournies. Tout
d'abord, nous allons essayer d'utiliser un filtre supplémentaire a 1'étape importante d'élagage
en calculant au moyen d'une fonction empirique (PLP, Chemscore) 1'énergie d'interaction du
point pharmacophorique avec son environnement. L'observation  de vrais points
pharmacophoriques déduits de complexes protéine-ligand nous donnera la distribution et les
valeurs seuils énergétiques a utiliser pour chaque propriété pharmacophorique. Nous espérons
que la diminution du nombre de points pharmacophoriques a aligner permettra de réduire la
proportion de faux alignements néanmoins bien scorés. Il est également possible d'assigner

des poids différents dans le champ de force d'alignement aux points pharmacophoriques
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polaires (accepteurs, donneurs, négatif et positif ionisables) afin d'éviter 1'alignement simple
de points hydrophobes sans conservation des couleurs. Il est enfin possible d'utiliser d'autres
techniques d'alignement de Gaussiennes. La méthode que nous avons utilisée utilise une grille
pour aligner les volumes des objets a comparer. Elle est recommandée par OpenEye pour sa
vitesse et des objets de taille importante ( > 20 points pour l'objet mobile) mais elle ne
discrimine pas les couleurs pharmacophoriques (tous les points ont un rayon unique assimilés
a celui d'un atome de carbone). Dans la mesure ou nous pensons réduire le nombre de points
de pharmacophores et que 1'alignement du ligand ne se fait plus sur la totalité de ses atomes
mais sur ses points pharmacophoriques déduits (en bien plus petit nombre), il nous sera
possible d'utiliser une méthode exacte de recouvrement de points en testant systématiquement
toutes les combinaisons possibles. Nous en attendons une meilleure qualité globale de
lI'alignement et un meilleur respect des couleurs pharmacophoriques.

Nous pensons étre en mesure d'obtenir une qualité de pose voisine de celle obtenue par
arrimage moléculaire. La qualité d'alignement et la fonction de score associée devront dans un
second temps étre vérifiées par criblage virtuel de la base de données DUD-E afin de calculer
des taux d'enrichissement en vrais actifs lorsque ceux-ci sont mélangés a un grand nombre

d'inactifs chimiquement similaires, ceci pour une dizaine de cibles d'intérét pharmaceutique.
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3.6. Annexes

Annexe 3.1. Jeu de données AstexDiverseSet de 85 complexes protein-ligand

PDB ID Ligand ID Protéine

1g9v RQ3 Hemoglobin alpha chain

1gkc NFH 92 kda type iv collagenase

I1gm8 SOX Penicillin g acylase beta subunit

1gpk HUP Acetylcholinesterase

lhnn SKF Phenylethanolamine n-methyltransferase

1hpO AD3 Inosine-adenosine-guanosine-preferring nucleoside hydrolase
1hq2 PH2 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase
lhvy D16 Thymidylate synthase

1Thwi 115 Hmg-coa reductase

Thww SWA Alpha-mannosidase ii

lial TQ3 Dihydrofolate reductase

lig3 VIB Thiamin pyrophosphokinase

153j CP6 Bifunctional dihydrofolate reductase-thymidylate synthase
15d0 AZM Carbonic anhydrase xii

1jje BYS Imp-1 metallo beta-lactamase

1jla TNK Hiv-1 rt a-chain

1k3u IAD Tryptophan synthase alpha chain

1ke5 LS1 Cell division protein kinase 2

1kzk JE2 Protease

112s STC Beta-lactamase

117 BCZ Neuraminidase

1lpz CMB Blood coagulation factor xa

11rh NLA Auxin-binding protein 1

Im2z DEX Glucocorticoid receptor

Imeh MOA Inosine-5'-monophosphate dehydrogenase

Immyv 3AR Nitric-oxide synthase, brain

Imzc BNE Protein farnesyltransferase beta subunit

Inlm A3M Dipeptidyl peptidase iv soluble form

In2j PAF Pantothenate synthetase

In2v BDI Queuine trna-ribosyltransferase

In46 PFA Thyroid hormone receptor beta-1

Inav IH5 Hormone receptor alpha 1, thral

lofl SCT Thymidine kinase

lof6 DTY Phospho-2-dehydro-3-deoxyheptonate aldolase, tyrosine-inhibited
lopk P16 Proto-oncogene tyrosine-protein kinase abl1

log5 CEL Carbonic anhydrase 1i

lowe 675 Urokinase-type plasminogen activator

loyt FSN Thrombin heavy chain

1p2y NCT Cytochrome p450-cam

1p62 GEO Deoxycytidine kinase
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Ipmn
1qlg
1g41
1qdg
Irlh
1r55
1r58
19
1s19
1s3v
1sg0
1sj0
1sq5
Isqn
1t40
1t46
1t9b
Itow
1ttl
1tz8
lulc
ludd
Tuml
lunl
luou
1vOp
1v48
1v4s
1vcj
Iwlp
1w2g
1x8x
1xm6
1xoq
Ixoz
1y6b
lygc
lyqy
1yv3
lyvf
lywr
1295
2bm?2
2brl
2bsm

984
MTI
XM
BFL
BIR
097
AO5
FLP
MC9
TQD
STL
E4D
PAU
NDR
ID5
STI
1CS
CRZ
KAI
DES
BAU
DBQ
FR4
RRC
CMU
PVB
HAI
MRK
IBA
GIO
THM
S04
5RM
ROF
CIA
AAX
905
915
BIT
PH7
LI9
198
PM2
PFP
BSM
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Mitogen-activated protein kinase 10

Uridine phosphorylase putative

Glycogen synthase kinase-3 beta
Prostaglandin g/h synthase 1

Neprilysin

Adam 33

Methionine aminopeptidase 2
Cytochrome p450 2c9

Vitamin d3 receptor

Dihydrofolate reductase

Nrh dehydrogenase [quinone] 2

Estrogen receptor

Pantothenate kinase

Progesterone receptor

Aldose reductase

v-kit hardy-zuckerman 4 feline sarcoma viral oncogene homolog
Acetolactate synthase, mitochondrial

Fatty acid-binding protein, adipocyte
Glutamate receptor, ionotropic kainate 2
Transthyretin

Uridine phosphorylase

Activated cdc4?2 kinase 1

Adenosine deaminase

Cyclin-dependent kinase 5

Thymidine phosphorylase

Cell division control protein 2 homolog
Purine nucleoside phosphorylase
Glucokinase isoform 2

Neuraminidase

Chitinase b

Thymidylate kinase tmk

Tyrosyl-trna synthetase

Camp-specific 3',5'-cyclic phosphodiesterase 4b
Camp-specific 3',5'-cyclic phosphodiesterase 4d
Cgmp-specific 3',5'-cyclic phosphodiesterase
Vascular endothelial growth factor receptor 2
Coagulation factor vii

Lethal factor

Myosin ii heavy chain

Hcv ns5b polymerase

Mitogen-activated protein kinase 14
Androgen receptor

Human beta?2 tryptase
Serine/threonine-protein kinase chk1

Heat shock protein hsp90-alpha
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Annexe 3.2. Jeu de données sc-PDBDiverseSet de213 complexes protein-ligand

Cluster PDB Ligand Protéine Entrées
0 10gs VWW Glutathione S-transferase P 18
1 1kjx IMP Adenylosuccinate synthetase 9
2 2r3a  SAM Histone-lysine N-methyltransferase SUV39H2 25
3 2r3f  SC8 Cyclin-dependent kinase 2 6
4 3e5Sh GNP Ras-related protein Rab-28 171
5 13pk  ADP Phosphoglycerate kinase, glycosomal 6
6 2fde 385 Protease 81
7 1v3s ATP Signaling protein 31
8 2fdp FRP Beta-secretase 1 66
10 1v45 3DG Purine nucleoside phosphorylase 11
12 3orf NAD Dihydropteridine reductase 58
14 3orn  30R Dual specificity mitogen-activated protein kinase kinase 1 11
15 3oro AGS Serine/threonine protein kinase 65
16 2r4b  GW7 Receptor tyrosine-protein kinase erbB-4 9
18 3e65 XXZ Nitric oxide synthase, inducible 8
20 3orz BI4 3-phosphoinositide-dependent protein kinase 1 10
21 1klk  PMD Dihydrofolate reductase 9
22 1a28 STR Progesterone receptor 19
24 2r4f RIE 3-hydroxy-3-methylglutaryl-coenzyme A reductase 17
28 la2n TET UDP-N-acetylglucosamine 1-carboxyvinyltransferase 9
32 1v79 FR7 Adenosine deaminase 6
34 2r4t  ADP Glycogen synthase 13
36 2feq 34P Prothrombin 76
37 2r59 PHO Leukotriene A-4 hydrolase 7
38 la42 BZU Carbonic anhydrase 2 9
39 2r5¢  C6P Kynurenine aminotransferase 23
42 3otf CMP Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 18
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45 lknr FAD L-aspartate oxidase 125
46 lknu YPA Peroxisome proliferator-activated receptor gamma 7
52 3ou2 SAH SAM-dependent methyltransferase 174
53 kol NAD Glutathione-independent formaldehyde dehydrogenase 75
54 2roh  FAD NADH:ubiquinone oxidoreductase, Na translocating, F subunit 32
55 2r6) NDP Eugenol synthase 1 6
58 lkor ANP Argininosuccinate synthase 21
59 2row LLB Estrogen receptor 17
5-formaminoimidazole-4-carboxamide-1-(beta)-D-ribofuranosyl  5'-monophosphate
68 2r7m AMP synthetase 28
70 la4dz NAD Aldehyde dehydrogenase, mitochondrial 31
73 1von NDP Malate dehydrogenase 10
79 3ow3 SMY cAMP-dependent protein kinase catalytic subunit alpha 8
80 3e7x AMP D-alanine--poly(phosphoribitol) ligase subunit 1 14
83 3e87 G995 RAC-beta serine/threonine-protein kinase 8
85 Ivbm YSA Tyrosine--tRNA ligase 9
87 lve2 NAD Glyceraldehyde 3-phosphate dehydrogenase 52
88 3owa FAD Acyl-CoA dehydrogenase 22
89 3owb BSM Heat shock protein HSP 90-alpha 21
90 Ivef  FMN Isopentenyl-diphosphate delta-isomerase 8
92 2r8o0 T5X Transketolase 1 32
96 1kp8 ATP 60 kDa chaperonin 21
100 3e8x NAP BH1520 protein 17
102 lkpg SAH Cyclopropane mycolic acid synthase 1 33
104 1a80 NDP 2,5-diketo-D-gluconic acid reductase A 30
105 392 GO6A Mitogen-activated protein kinase 14 21
107 lvdc FAD Thioredoxin reductase 1 28
111 3e9h KAA Lysine--tRNA ligase 10
116 4caf  TCE Dual specificity protein kinase TTK
118 3ox4 NAD Alcohol dehydrogenase 2 7
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119 lkgb FMN Oxygen-insensitive NAD(P)H nitroreductase 18
120 2197 FMN NAD(P)H dehydrogenase (quinone) 12
122 4c58 824 Cyclin-G-associated kinase 7
125 4c50 FAD Putative monooxygenase 30
126 4c61 LMM Tyrosine-protein kinase JAK2 7
128 3oyl 589 Mitogen-activated protein kinase 10 7
130 3oy3 XY3 Tyrosine-protein kinase ABL1 28
133 lkgm ANP Myosin heavy chain, striated muscle 10
135 2r19r  NAP Voltage-gated potassium channel subunit beta-2 10
136 lkgn NAD Nicotinamide mononucleotide adenylyltransferase 1 6
151 4c8g C5P 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 9
156 2tky  N2T Kinesin-like protein KIF11 17
162 4ca6 3EF Angiotensin-converting enzyme 21
173 3pOn  BPU Tankyrase-2 12
180 Ivhn FMN tRNA-dihydrouridine synthase 28
181 2rd2  QSI Glutamine--tRNA ligase 6
183 3ebh BES M1 family aminopeptidase 12
184 Ivhw ADN Purine nucleoside phosphorylase DeoD-type 1 18
185 3pl9 NAP Putative blue fluorescent protein 91
189 4ccb  OFG ALK tyrosine kinase receptor 8
192 3p23 ADP Serine/threonine-protein kinase 39
195 2foi  JPA Enoyl-acyl carrier reductase 22
199 ladc PAD Alcohol dehydrogenase E chain 17
200 4cdg ADP Bloom syndrome protein 16
202 4cdqg 7VR Polyprotein 6
203 3p3c 3P3 UDP-3-0O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase 8
212 2fpt  ILB Dihydroorotate dehydrogenase (quinone), mitochondrial 14
223 3eei MTM 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase 8
225 3eej S3R Strain CBS138 chromosome J complete sequence 13
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228 3pSs AVU CD38 molecule 7
232 defq 714 Farnesyl pyrophosphate synthase 6
234 2rh1 CAU Beta-2 adrenergic receptor 6
238 3p7n  FMN Sensor histidine kinase 8
241 laj2 2PH Dihydropteroate synthase 6
242 2fsn  ADP Archaeal actin homolog 15
246 2fsv = NAP NAD(P) transhydrogenase subunit beta 9
247 lkyi ATP ATP-dependent protease ATPase subunit HsIU 6
249 3p88 P88 Bile acid receptor 8
252 2fto TMP Thymidylate synthase 10
255 3p8x ZYD Vitamin D3 receptor 66
256 lakw FMN Flavodoxin 9
258 3ehg ATP Sensor histidine kinase DesK 26
259 3p8z 36A RNA-directed RNA polymerase NS5 12
261 lkyx CRM 6,7-dimethyl-8-ribityllumazine synthase 20
263 laml ADP ATP-dependent molecular chaperone HSP82 14
264 3ehx BDL Macrophage metalloelastase 13
267 2fv9 002 Disintegrin and metalloproteinase domain-containing protein 17 6
269 2fvc 888 Genome polyprotein 12
274 4d86 ADP Poly [ADP-ribose] polymerase 14 6
276 2rkg ABI Pol protein 11
278 3p9; P9J Aurora kinase A 11
279 2rku  R78 Serine/threonine-protein kinase PLK1 13
281 2rl15 2RL Vascular endothelial growth factor receptor 2 13
295 4d9t  0JG Ribosomal protein S6 kinase alpha-3 7
296 4d9w X32 Thermolysin 13
303 112t  ATP Uncharacterized ABC transporter ATP-binding protein MJ0796 12
307 114e RBZ Nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase 8
314 2gin 11G Renin 8
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319
322
323
325
333
336
351
354
355
356
360
364
369
378
379
383
388
389
400
401
407
411
412
419
427
431
432
434
444

2udp
lagb
3elj
3elm
4dc3
3en4d
2uuo
laux
3eos
3epp
3ept
4dfp
4dgm
1b0h
3pd3
3eqp
1b0p
3erk
Ivrw
4dk5
lvso
4dko
1b3d
3peh
2ga2
2uyy
4dlk
Ivtk
11hn

UPP
RTL
GS7
24F
2FA
KS1
LK3
AGS
PK2
SFG
FDA
OL7
AGI
LYS_LYS_ALN
A3T
T95
TPP
SB4
NAD
0KO
AT1
0LM
S27
IBD
Al19
NA7
ATP
TMP
AON

UDP-glucose 4-epimerase

Retinol-binding protein 4
Mitogen-activated protein kinase 8
Collagenase 3

Putative adenosine kinase

Proto-oncogene tyrosine-protein kinase Src
UDP-N-acetylmuramoylalanine--D-glutamate ligase
Synapsin-1

Queuine tRNA-ribosyltransferase

mRNA cap guanine-N7 methyltransferase
Putative FAD-monooxygenase

DNA polymerase I, thermostable

Casein kinase II subunit alpha

Periplasmic oligopeptide-binding protein
Threonine--tRNA ligase

Activated CDC42 kinase 1
Pyruvate-flavodoxin oxidoreductase
Mitogen-activated protein kinase 1
Enoyl-ACP reductase

Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform

Glutamate receptor ionotropic, kainate 1
Envelope glycoprotein gp160
Stromelysin-1

Endoplasmin homolog, putative
Methionine aminopeptidase 2

Putative oxidoreductase GLYR1

Phosphoribosylaminoimidazole carboxylase, ATPase subunit

Thymidine kinase
Sex hormone-binding globulin
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Chapitre 3 De la cavité au pharmacophore

453 1lik  ADN Adenosine kinase 6
454 2v0i  UDI1 Bifunctional protein GImU 10
459 1b91  PXG Putative UDP-kanosamine synthase aminotransferase subunit 7
475 3pig  UGA UDP-glucose 6-dehydrogenase 6
478 2vlu ADP ORCl1-type DNA replication protein 1 11
488 3ewr APR Non-structural protein 3 6
501 4dgqw ATP Inosine-5'-monophosphate dehydrogenase 13
502 3plg RP2 cAMP-dependent protein kinase type I-alpha regulatory subunit 6
503 4dr9 BB2 Peptide deformylase 16
511 1w05 WO05 Isopenicillin N synthase 20
512 4drx GTP Tubulin alpha chain 10
521 3exh TPP Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial 19
532 Ibif  AGS 6-phosphofructo-2-kinase 13
535 1bjy CTC Tetracycline repressor protein class D 7
538 1lvg 5GP Guanylate kinase 7
540 2glx NDP 1,5-anhydro-D-fructose reductase 7
551 deyg MIl Tyrosine-protein kinase JAK1 16
567 1boo SAH Modification methylase Pvull 17
586 2gqt  FAD UDP-N-acetylenolpyruvoylglucosamine reductase 14
598 2vbg NAP 3-oxo0-Delta(4,5)-steroid 5-beta-reductase 6
609 3ptq NFG OSIGBa0135C13.7 protein 8
616 3f3y 40A Bile salt sulfotransferase 6
621 2gtb  AZP Orflab polyprotein 6
627 2v95 HCY Corticosteroid-binding globulin 6
632 4dya OMF Nucleocapsid protein 6
640 1w7k ADP Dihydrofolate synthase 10
649 4e01  FAD Mitochondrial FAD-linked sulfhydryl oxidase ERV1 10
650 3f82 353 Hepatocyte growth factor receptor 8
665 Icle 612 Reverse transcriptase/ribonuclease H 6
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677
685
689
704
759
765
768
773
785
801
802
826
885
889
903
969
978
984

1031
1061
1073
1099
1163
1202

1260
1265
1271
1310

3pzb
1¢30
3fbu
3q0u
lcbf
2ha8
2vfz
4e7z
1wkg
deaw
4eb3
3flk
2vna
3qcf
Imp3
3fy4
2hsd

3qgz
2VW

3g5e
3qov
2w0j
Ixoi
3r04

3gjq
2we3
1xwk
4fhh

NAP
ADP
COA
LL3
SAH
SAH
UPF
ADP
POI
ONQ
003
NAD
NAP
NXY
TTP
FAD
NAD
ADN

7X2
Q74

ADP

ZAT

288

UNQ
TRP_GLU_HIS_ASP_AC
E

DUT
GDN
0U3

Aspartate-semialdehyde dehydrogenase
Carbamoyl-phosphate synthase large chain
Acetyltransferase, GNAT family

HTH-type transcriptional regulator EthR
Cobalt-precorrin-4 C(11)-methyltransferase

Probable methyltransferase TARBP1
N-acetyllactosaminide alpha-1,3-galactosyltransferase
Unconventional myosin-VI
Acetylornithine/acetyl-lysine aminotransferase
RNA-directed RNA polymerase
4-hydroxy-3-methylbut-2-enyl diphosphate reductase
D-malate dehydrogenase [decarboxylating]
Prostaglandin reductase 2

Receptor-type tyrosine-protein phosphatase gamma
Glucose-1-phosphate thymidylyltransferase
(6-4)DNA photolyase

3-alpha-(or 20-beta)-hydroxysteroid dehydrogenase
Histidine triad nucleotide-binding protein 1

Ephrin type-B receptor 4

Aldose reductase
Phenylacetate-coenzyme A ligase
Serine/threonine-protein kinase Chk2
Glycogen phosphorylase, liver form
Serine/threonine-protein kinase pim-1

Caspase-3

Deoxyuridine 5'-triphosphate nucleotidohydrolase
Glutathione S-transferase Mu 1

Vitamin D3 receptor A
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1418
1440
1453
1505
1717
1719
1801
1845
2170
2615
2716
2898
3197

2wqo
3rll
4fsm
1o6h
4gfd
4gfn
4gpj
4gv2
3iub
4jd4
Isgb
4kfn
3zcm

VGK
RLL
HK1
W37
0YB
SUY
0Q1
SME
FG2
DM
AZO
1QR
PX3

Serine/threonine-protein kinase Nek2
Androgen receptor
Serine/threonine-protein kinase Chkl
Squalene--hopene cyclase

Thymidylate kinase

DNA gyrase subunit B
Bromodomain-containing protein 4
Poly [ADP-ribose] polymerase 3
Pantothenate synthetase

Dihydroorotate dehydrogenase (fumarate)
Cytochrome b

Nicotinamide phosphoribosyltransferase
Integrase
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Annexe 3.3. Jeu de données DUD-E (10 entrées)

Protéine PDB Ligand DUD-E

Actifs Decoys
G Protein-Coupled receptors
Adenosine A2A receptor (AA2AR) 3eml ZMA 482 31498
Beta2 adrenergic receptor (ADRB?2) 3ny8 JRZ 231 14993

Récepteurs nucléaires
Androgen receptor (ANDR) 2am9 TES 269 14343
Glucocortocoid receptor (GCR) 3bqd DAY 258 14987

Autres enzymes

Adenosine deaminase (ADA) 2elw FR6 93 5449
Prostaglandin G/H synthase 2 (PGH2) 3Inl CEL 435 23135
Proteases

Angiotensin-converting enzyme (ACE) 3bkl KAW 282 16860
Renin (RENI) 36z ATT 104 6955

Protein kinases
Fibroblast growth factor receptor 1 (FGFR1) 3c4f C4F 139 8691
RAC-alpha protein kinase (AKT1) 3cqw CcCQw 293 16426
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Annexe 3.4. Champ de force customisé pour l'alignement ligand-pharmacophore (Shaper)

HHHHHH AR
# Pharmacophoric properties #
HHHHHH AR
TYPE donor

TYPE acceptor

TYPE DonnAcc

TYPE cation

TYPE anion

TYPE rings

TYPE hydrophobe

TYPE ringAliph

TYPE exclusion

HHHHHHTHH R R AR R
# Pattern Types #
HHHHHHTHH R R AR R
PATTERN DonnAcc [150;X0]

PATTERN rings [15C]

PATTERN hydrophobe [13C]

PATTERN acceptor [150,140]

PATTERN donor [150,14N]

PATTERN cation [15N]

PATTERN anion [170]

S
# Interaction Definitions #
S

INTERACTION donor donor attractive gaussian weight=1.0 radius=1.0
INTERACTION acceptor acceptor attractive gaussian weight=1.0 radius=1.0
INTERACTION cation cation attractive gaussian weight=1.0 radius=1.0
INTERACTION anion anion attractive gaussian weight=1.0 radius=1.0
INTERACTION DonnAcc DonnAcc attractive gaussian weight=1.0 radius=1.0
INTERACTION DonnAcc donor attractive gaussian weight=1.0 radius=1.0
INTERACTION DonnAcc acceptor attractive gaussan weight=1.0 radius=1.0
INTERACTION donor cation attractive gaussian weight=1.0 radius=1.0
INTERACTION acceptor anion attractive gaussian weight=1.0 radius=1.0
INTERACTION cation donor attractive gaussian weight=1.0 radius=1.0
INTERACTION anion acceptor attractive gaussian weight=1.0 radius=1.0
INTERACTION anion cation repulsive gaussian weight=1.0 radius=1.0
INTERACTION cation anion repulsive gaussian weight=1.0 radius=1.0
INTERACTION hydrophobe donor repulsive gaussian weight=1.0 radius=1.0
INTERACTION hydrophobe acceptor repulsive gaussian weight=1.0 radius=1.0
INTERACTION hydrophobe DonnAcc repulsive gaussian weight=1.0 radius=1.0
INTERACTION hydrophobe cation repulsive gaussian weight=1.0 radius=1.0
INTERACTION hydrophobe anion repulsive gaussian weight=1.0 radius=1.0
INTERACTION donor hydrophobe repulsive gaussian weight=1.0 radius=1.0
INTERACTION acceptor hydrophobe repulsive gaussian weight=1.0 radius=1.0
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INTERACTION DonnAcc hydrophobe repulsive gaussian weight=1.0 radius=1.0
INTERACTION cation hydrophobe repulsive gaussian weight=1.0 radius=1.0
INTERACTION anion hydrophobe repulsive gaussian weight=1.0 radius=1.0
INTERACTION rings donor repulsive gaussian weight=1.0 radius=1.0
INTERACTION rings acceptor repulsive gaussian weight=1.0 radius=1.0
INTERACTION rings DonnAcc repulsive gaussian weight=1.0 radius=1.0
INTERACTION rings cation repulsive gaussian weight=1.0 radius=1.0
INTERACTION rings anion repulsive gaussian weight=1.0 radius=1.0
INTERACTION donor rings repulsive gaussian weight=1.0 radius=1.0
INTERACTION acceptor rings repulsive gaussian weight=1.0 radius=1.0
INTERACTION DonnAcc rings repulsive gaussian weight=1.0 radius=1.0
INTERACTION cation rings repulsive gaussian weight=1.0 radius=1.0
INTERACTION anion rings repulsive gaussian weight=1.0 radius=1.0
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

4.1. Introduction

Les interfaces protéine-protéine (PPI) sont au coeur du fonctionnement de la cellule et
attirent de plus en plus l'industrie pharmaceutique afin d'identifier des petites molécules (le
plus souvent des inhibiteurs) capable de les moduler sélectivement'. Etant donné la trés
grande complémentarité des protéines en interface, les modulateurs de PPIs constituent une
nouvelle génération de candidat-médicaments trés prometteurs de par leur trés grande
sélectivité pour une cible unique’. De trés nombreuses bases de données ont été décrites afin
de répertorier l'ensemble des PPIs au niveau génomique, protéomique et structural'. Ces bases
de données’ permettent notamment d'interroger l'interactome protéine-proteine (variant de
130 000 a 600 000 selon les estimations*) selon une pathologie et permettent une visualisation
de réseaux d'interactions afin d'identifier les nceuds les plus importants. Au niveau structural,
essentiel pour concevoir de maniere rationnelle des modulateurs de PPI, peu de données sont
disponibles. Trois bases de données de ligands’~’ recensent de maniére non-exhaustive les
quelque milliers modulateurs de PPIs connus, la plupart ciblant un faible nombre de PPIs
multi-investiguées (ex: p53-MDM?2, BclXL-Bak). Encore plus tenues sont les données
structurales sur les PPI cibles. La base de données 2P2Idb> recense 27 PPIs pour lesquelles
une structure cristallographique est connue a la fois pour le complexe, les monomeres a 1'état
apo (libre) ou holo (co-cristallisé avec un modulateur). Timbal’ affiche 1695 structures
cristallographiques de complexes protéine-protéine, protéine-inhibiteur et protéine-acide
nucléiques. Il est plus que probable que des dizaines de milliers de PPI biologiquement
importantes et de structure connue n'aient encore jamais été répertoriées de par la simple

absence de ligands capables de les moduler.

L'objectif de ce travail est donc de réaliser pour la premiére fois une cartographie
exhaustive de l'ensemble des PPIs de structure cristallographique connue au moyen de
logiciels spécifiques capables de parcourir la Protein DataBank et de réaliser les opérations
suivantes de maniere compleétement automatisée:

e Détection des interfaces;

e Prédiction de leur pertinence biologique;
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e Recherche de cavités droguables a l'interface et au voisinage de celle-ci;

e Recherche de ligands occupant ces cavités droguables.

La Protein Data Bank (PDB) contient a ce jour preés de 120 000 structures de
macromolécules a haute résolution, dont la majorité est composée de protéines. Cela en fait la
premiere source d’informations pour 1’étude des interfaces entre protéines. Une structure
tridimensionnelle est composé d’un ou plusieurs éléments structuraux, principalement des
chaines peptidiques que 1’on assimile a des protéines. Dés lors qu’il y a plusieurs chaines
peptidiques dans une structure, il y a potentiellement une interface. L’amélioration de la
qualité des structures (notamment leur résolution) rend 1’étude de la centaine de milliers de
contact inter-protéines possible, sachant qu'un ensemble non négligeable d’entre eux est
biologiquement pertinent. La discrimination des contacts biologiquement viables est
réalisable a I’aide de différents outils tels que PISA®* ou EPPIC’ mais leur domaine
d’applicabilité ne couvre pas I’ensemble des interfaces présentes dans la PDB; la détection et
caractérisation d' interfaces de petite taille restant problématique'. La caractérisation de
I’interface comme biologiquement pertinente n’est pas la seule information a sauvegarder, il
faut aussi différentier les propriétés phyisicochimiques clés des interfaces viables de celles

des artefacts de cristallisation.

La modulation de PPI est possible de deux manieres: (1) de maniére orthostérique au
moyen d'une petite molécule rentrant en compétition avec l'un des deux partenaires, (ii) de
manicre allostérique par une molécule capable de favoriser ou d'empécher de maniére
indirecte la liaison des deux chaines protéiques. La premiere voie est de tres loin la plus
utilisée en chimie médicinale' mais se heurte au fait que les PPIs sont souvent plates et
délocalisées sur une treés grande surface, ce qui résulte dans la conception de molécules de tres
haut poids moléculaire avec un indice de développabilité clinique faible. La seconde voie a
été tres peu investiguée jusqu'a présent et a surtout été la conséquence de criblages aléatoires
ou d'observations fortuites®. Nous ne privilégieront ici aucune des deux voies. De ce fait, nous
allons répertorier 1'ensemble des cavités droguables et leurs ligands ou qu'ils se trouvent, soit

a la surface d'un dimere, soit a la surface d'un des deux protomeéres en interaction.

Ce chapitre détaille la procédure d’analyse de la Protein Data Bank, il présente les statistiques

obtenues puis développe une classification topologique des cavités présentes aux interfaces.
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4.2. Matériel et Méthodes

Le traitement de la Protein Data Bank a été réalisé a 1’aide de scripts écrit en python 2.7.11 et
exécuté avec anaconda 4.0''. Les données finales seront stockées dans une base de données
MariaDB'?. L’ensemble des calculs utilisés ici a été réalisé grace au centre de calcul de
I’IN2P3 du CNRS." Pour la suite de ce chapitre la Protein Data Bank sera nommée "PDB " et

le fichier au format PDB sera cité comme la structure protéique.

4.2.1. Lecture des entrées PDB

Un total de 115 041 structures de protéines (contenu de la PDB au 1* juin 2016) a été utilisé
pour détecter toutes les interfaces protéine-protéine de structures connues et qui pourraient
étre modulées par des molécules de faibles poids moléculaires, selon un protocole illustré en
Figure 4.1. Une interface protéine-protéine est définie par un minimum de 20 interactions non
covalentes entre deux chaines peptidiques réparties sur au moins 10 acides aminés. Chaque
molécule présente dans un fichier PDB (protéine, peptide, acide nucléique, ligand, solvant,
ion, ajout de cristallisation) est caractérisée au moyen de critéres simples se basant sur
l'existence de noms de résidus. La protéine est composée d'aminoacides naturels reliés par une
liaison peptidique puis de cofacteurs et d'ions importants pour le maintien de son intégrité
structurale. Les brins d'acides nucléiques (ARN, ADN) n'ont pas été pris en compte dans cette
étude. Une molécule est considérée comme un ligand lorsqu'elle remplit les conditions

suivantes:

® poids moléculaire est inférieur a 500;
e structure de type organique, peptidique ou nucléotidique
e interactions moléculaires non covalentes avec son environnement

¢ surface exposée au solvant, a 1'état lié, inférieure a 50%.
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Protein Data Bank

115041 Structures )
<3A
L e
L/-»"’_‘-_ ‘-_‘_-—“\_\
Ligands Dimeéres Monomeéres
600 000 58 000 dissociés
116 000
Diméres protonés / \
Monomeres Protéines
protonés Similaires
Détection des \
interfaces Détections des
Cavités
Interfaces
biologiquement viable Cavitésdans
Les monomeéres
- 1 150 000
—
Ligands Détection des imilarité
al'interface Cavités | ) SnTellsa;tveiteénstre
42 000 =
/ Cavités
- droguables Cavités présente
ng?l?dsdrdms g;s 221 000 al'interface et sur
cavites droguables un monomeére
120 000

Figure 4.8: Diagramme présentant le processus de filtre et d’analyse de la PDB. Les structures
parcourent I’ensemble du diagramme de haut en bas. Les différents scripts sont représentés en bleu et

les productions finales sont en violet. Le nombre d'objets (ligands, cavités, monomeres, dimeres) est
indiqué en bas de chaque catégorie.

L’étude a été réalisée sur I' unité asymétrique fournie pour chaque entrée de la PDB,

en parcourant les fichiers au moyen de BioPython 1.66." Seules les structures composées de
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2-9 chaines protéiques ont été analysées. Les entrées plus complexes d'au moins 9 chaines
(ex: PDB id 4U3M, ribosome 80S de levure) seront analysées plus tard afin de ne pas
impacter le temps de calcul d'opérations déja complexes sur de simples monomeres (ex:
détection de cavités). Les informations relatives a ces entrées seront donc jointes plus tard aux
résultats décrits dans ce chapitre.

Les informations principales sont issues de 1’entéte du fichier de structure: le code
PDB de référence de la structure, nom des protéines composant la structure, nom des chaines
et données expérimentales. Lorsqu’il est présent, le numéro d'accession UniProt est extrait du
fichier afin de récupérer des informations sur les chaines de la structure. A ce stade sont
éliminées les structures non obtenues par diffraction des rayons de X et ayant une résolution

supérieure a 3A.

4.2.2. Détection des interfaces biologiquement pertinentes

La détection d’interfaces se réalise sur des complexes dimériques (paires de chaines),
reconstitués de maniere systématique a partir de chaque chaine sauvegardée en fichiers
distincts. Ainsi, une structure trimérique composée de 3 chaines peptidiques (A, B, C) donne
naissance a trois structures de dimeres possibles (AB, BC, AC). Pour chaque fichier de
structure de dimere, les atomes d’hydrogenes ont été ajoutés a 1’aide de Protoss'®, un outil
récemment décrit qui optimise le réseau de liaison hydrogéne intra- et inter-moleculaire au
moyen d'une fonction de score empirique. De manicre intéressante, Protoss considére la
combinatoire des états d'ionisation et tautomériques possibles pour la totalité des atomes
présents quelle que soit leur origine (protéine, solvant, cofacteur, ion, ligand). Le logiciel
modifiant les en-tétes des fichiers PDB qui sont utiles pour la suite du processus, un script
python récupere les en-tétes des fichiers originaux et les replace dans les sorties de Protoss.
Chaque fichier est ensuite converti au format mol2 (TRIPOS Intl., St.Louis, U.S.A.) afin de
controler le type de chaque atome présent. Lors de cette conversion certains acides aminés
portant un atome de sélénium (sélénocystéine et sélénométhionine) sont standardisés et
transformés en acides aminés naturels correspondants. Les coordonnées multiples des atomes
ne sont pas tolérées et nous ne conserverons que les coordonnées dont le taux d’occupation est

le plus élevé.
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Les structures au format mol2 sont ensuite analysées afin d'identifier les interfaces
entre deux chaines avec un outil (detectPPI) développé au laboratoire. Les interfaces sont
détectées en deux temps: (1) les zones d’interactions sont d'abord déterminées en comptant le
nombre d'atomes portés par des chaines différentes, distants de moins de 5 A, et délocalisés
sur au moins 10 acides aminés; (2) si ce nombre est supérieur a 20, les interactions
moléculaires non covalentes sont déterminées de maniere explicite dans la zone de contact
avec le logiciel IChem" également développé au laboratoire. Rappelons que les interactions
entre deux chaines sont formalisées par des pseudoatomes (IPAs) placés a mi-distance des
atomes en interaction et annotés par type d'interaction (hydrophobe, aromatique, liaison

hydrogene, liaison ionique; Figure 4.2)

L S *.

Figure 4.2: Exemple d'interface (PDB ID: 4NNY) entre la sous unité alpha du récepteur a
l'interleukine-7 (rubans beige, chaine B) et le cytokine receptor-like factor 2 (rubans bleus, chaine C).
Six pseudoatomes (spheres) sont places a mi-distance de chaque paire d'atomes en interaction et
héritent d'une propriété correspondant a l'interaction correspondante. L'insert a droite est un zoom
sur une liaison ionique (trait vert) montrant les chaines latérales en interaction (Arg140.B, Glul53.C)
et le pseudoatome d'interaction (sphere rouge)
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La pertinence biologique de chaque interface est ensuite prédite avec le logiciel
IChemPIC'? préalablement décrit dans le chapitre 2, afin de ne conserver que les interfaces

prédites comme biologiquement pertinentes.

4.2.3. Détection des cavités droguables

Détection

Une partie de ce travail de these a été consacrée a l'intégration puis la modification du
programme Volsite'® dans la suite IChem. Pour rappel, VolSite est un outil programmé en
langage C++ permettant la détection de cavités a la surface d'une protéine d'intérét, et au
voisinage d'un ligand défini par 1'utilisateur. La protéine est placée au sein d'une grille 3D de

taille 20 A, de résolution 1.5 A, et centrée sur le ligand prédéfini (Figure 4.3).
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Figure 4.3: Grille tridimensionnelle (projetée ici en deux dimensions par souci de clarté) englobant la
protéine cible (surface grise). Chaque voxel de 1.5 A de c6té est assigné une propriété (IN: protéine,
OUT: extérieur). Pour ceux dont l'enfouissement est supérieur a une valeur seuil (50/120 par défaut),
la propriété pharmacophorique complémentaire de celle de ['atome de protéine le plus proche leur est
assignée (HBA: donneur de liaison hydrogene, A-: négatif ionisable, HBD: donneur de liaison
hydrogene, D+: positif ionisable, H: hydrophobe, Ar: aromatique). Les voxels en dehors de la cavité
ont une propriété nulle (NULL).
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La nature de chaque cube (protéine, cavité, extérieur) que 1'on nommera ici voxel, est
définie en fonction de sa localisation et de son enfouissement. Ce dernier est calculé en
projetant, a partir du centre de chaque voxel, 120 rayons de 8 A de longueur et en
comptabilisant ceux interceptant un voxel contenant un atome de protéine. Une propriété
pharmacophorique est ensuite attribuée a chaque voxel de cavité, propriété complémentaire de
celle de l'atome de protéine le plus proche. Ainsi un voxel aura par example la propriété
"donneur de liaison hydrogene" si l'atome de protéine voisin est un accepteur de liaison
hydrogene. Un total de 8 propriétés pharmacophoriques (hydrophobe, aromatique, donneur,
accepteur, accepteur et donneur, positif, négatif, nulle; Tableau 4.1) est ainsi répertorié pour
chaque voxel, le centre de chacun d'entre eux délimitant une image inverse de la cavité
accessible au ligand. Cette image inverse est sauvegardée au format mol2 permettant ainsi sa

visualisation par n'importe quel logiciel de modélisation.

Tableau 4.1: Liste des propriétés de voxels délimitant une cavité

Propriété Nom Atome de protéine voisin
hydrophobe ' CA hydrophobes*
aromatique CzZ aromatique

accepteur 0) donneur

donneur N accepteur
accepteur/donneur oG accepteur/donneur
positif ionisable NZ négatif ionisable
négatif ionisable OD1 positif ionisable
nulle DU aucun a moins de 4 A

* . . . N .
au moins 2 atomes hydrophobes voisin (vor reégles ci-dessous)
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Mon travail a consisté a modifier spécifiquement le programme VolSite de maniére a
ce que l'ensemble des cavités présentes a la surface d'une structure protéique (monomérique
ou multimérique) soient détectées a la volée, indépendamment de toute présence d'un ligand
potentiel. Afin d'éviter la formation d'une multitude de petites cavités reliées entre elles par de
trés courts canaux, les cavités identifiées ont été assemblées avec un algorithme agglomératif
en partant des voxels les plus enfouis jusqu’a ceux dont l'enfouissement reste supérieur a une
valeur seuil de 50/120. Chaque voxel n’appartenant pas a la protéine est parcouru en
commengant par le plus enfoui. Le premier voxel représente le premier cluster. Les voxels
suivants sont ensuite assemblés de maniere agglomérative a un des groupes préexistant au
moyen de regles incluant le nombre de voxels, leur enfouissement et la densité du cluster.

La formalisation finale de la cavité se fait par un algorithme d’agrégation des clusters.
La fusion entre deux clusters a lieu en prenant en compte la taille des clusters impliqués, la

distance minimale entre eux ainsi que le gain de la fusion (Tableau 4.2).

Tableau 4.2: Regles d'agrégation des clusters de voxels

‘ Taille du cluster 1 Taille du cluster 2 Distance Gain
1 1 Diagonaledunvoxel /
1 5 Coté d’un voxel 0.1
5 15 Coté d’un voxel 1
15 15 Coté d’un voxel 1.5
15 30 Coté d’un voxel 2
30 30 Coté d’un voxel 2.5
70 70 Coté d’un voxel 4
/ / Coté d’un voxel 8

Dans une grille standard, un voxel a 26 voisins. Le gain est le nombre de voxels
voisins appartenant au second cluster divisé par le nombre maximal de voisins. Cette fonction
a été paramétrée sur un ensemble de 80 protéines avec leurs ligands, le but étant d’optimiser
le nombre, la taille et la forme des cavités. La modification de la méthode d’agglomération
n’a pas engendré de modification majeure de la génération des cavités au niveau de voxels
interceptant les atomes de ligands. Une fois les cavités créées, il a fallu corriger quelques

erreurs dues a la méthode de calcul d’enfouissement des voxels qui tend a créer des cavités
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creusées au niveau de leurs bordures extérieures. Un protocole de "lissage" de la cavité
(Figure 4.4) est alors entrepris en parcourant a nouveau les voxels les moins enfouis mais
avec de nouvelles régles. Un voxel est ainsi rajouté a la cavité, si celui-ci est relié de maniére
ininterrompue a au moins 11 voxels de cette cavité et en partageant au moins une face

complete avec un des voxels voisins (Figure 4.4).

Protéine Cavité

Figure 4.4: Procédé de lissage de la cavité représenté en 2D, A) Représentation de la cavité générée
par U'ancienne version de VolSite; B) Cavité dont [’extrémité la moins enfouie a été lissée, en 2D. Les
voxels orange sont rajoutés lors du lissage couche par couche.

Finalement le dernier critére important est la taille des agglomérats de voxels finaux.

Un agglomérat sera définit comme cavité uniquement si celui-ci fait plus de vingt voxels.
Annotation pharmacophorique

L'atome de protéine le plus proche de chaque voxel de cavité n'est pas toujours le plus
représentatif afin d'en assigner la propriété pharmacophorique. Par exemple, un voxel dont les
3 atomes de protéine les plus proches sont deux hydrophobes (distance de 2.9 et 3.1 A) et un
accepteur de liaison hydrogéne (distance de 3.0 A), se verra assigner la propriété
"hydrophobe" bien que la propriété "accepteur" puisse Etre plus adaptée. La méthode
d'assignation originale de VolSite'® a donc été raffinée a ’aide de régles plus strictes. Les
interactions polaires (liaisons ioniques et liaison hydrogeénes) sont notamment priorisées
méme si un atome hydrophobe de protéine est le plus proche du voxel. Ainsi, si les conditions
de distance de d'angles sont vérifiées, un voxel se verra attribué la propriété donneur ou
accepteur de liaison hydrogene méme si un atome de protéine plus proche est incapable
d'engager une liaison hydrogéne. La définition de l'assignation "hydrophobe" a aussi été

renforcée. Une propriété hydrophobe de voxel n’est plus liée a un seul atome hydrophobe de
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protéine voisin mais a un environnement dit hydrophobe. Un voxel ne se verra ainsi assigner
la propriété hydrophobe qu'a trois conditions: (1) au moins la moitié des acides aminés
environnants (< 5 A) doivent étre hydrophobes (définition selon une liste préétablie dans
IChem), (2) au moins deux atomes hydrophobes de protéine se situent 2 moins de 5 A de
distance du centre du voxel, (iii) il n’y a pas d’atomes polaires de protéine présents a une
distance comprise entre 1’atome hydrophobe le plus proche et 1’atome hydrophobe suivant,

dans ce cas présent la propriété polaire est prioritaire.

Estimation de la droguabilité

La présence d’une cavité a la surface d’une protéine ne signifie pas qu’un ligand peut
venir s’y fixer. La droguabilité ou ligandabilité'” est une valeur arbitraire définissant si une
cavité peut accueillir un candidat médicament avec une affinité suffisante. Dans VolSite, la
droguabilité est estimée par une machine d'apprentissage a vecteurs supports (SVM) entrainée
sur un jeu (NRDLD) de 113 structures de cavités (71 droguables et 42 non-droguables)
représentées par une empreinte de 73 descripteurs'®. La valeur de droguabilité est présentée
sous la forme d'un réel variant autour de z€éro, mais devant étre interprétée de maniére binaire.
Une valeur positive indique que la cavité est prédite comme droguable. Par rapport a des
algorithmes concurrents (Fpocket, SiteMap, DrugPred), VolSite présente les meilleures
prédictions (précision de 89%) sur le jeu de cavités test issues de I'ensemble NRDLD'®,

Dans la mesure ou nous avons légérement modifié les régles de détection et
d'annotation pharmacophoriques des voxels de cavité, nous avons refait un modele
d'apprentissage sur le méme jeu de données (NRDLD) en validation croisé 5-fois au moyen
du logiciel svm_light 6.02. Une grille de deux parameétres a été mise en place, elle optimise la
valeur Y du noyau rbf (g) et la marge C du modele. Ceux-ci ont été définis de la maniere la
plus exhaustive possible en variant Y de 0 a 1 par pas de 1.10%et C de 0 a 100 par pas de 1.
L’optimisation a été réalisée sur le cluster de I'IN2P3 a I’aide de 200 nceuds. Le meilleur jeu
de parametres (y =1¢'"®, C=100) conduisant a la meilleure valeur de F-mesure (F-mesure =
0.86) a été conservé pour prédire la droguabilité de nouvelles cavités. Il est a noter que cette
nouvelle implémentation n'altére pas significativement la précision de la méthode (précision
de 89% et 88 % pour l'ancienne et la nouvelle implémentation, respectivement). La valeur de
droguabilité prédite a la volée par VolSite lors de I'examen de la PDB, sert de tri afin de ne

conserver que les cavités droguables dont le score est positif.
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Calcul de similarité

La similarité de deux cavités a été estimée par Shaper'®, un outil permettant
l'alignement de forme des cavités de maniere similaire au programme d'alignement de forme
des ligands ROCS'. Chaque centre de voxel de cavité est ici considéré comme un atome typé
pharmacophoriquement dont le volume est approximé par une Gaussienne. L'alignement de
deux cavités se fait en optimisant le recouvrement des Gaussiennes, donc des volumes des
deux cavités a comparer. L'alignement est dirigé vers la meilleure superposition possible des
formes. Cet alignement est ensuite scoré pour le recouvrement des propriétés
pharmacophoriques prédéfinies au moyen d'un champ de force spécifique (Annexe 4.1)
définissant les propriétés pharmacophoriques, les reégles d'alignement et les poids assignés a
chaque alignement de propriétés. La qualité de I'alignement est estimée par la métrique

TanimotoCombo:

OSA,B OCA,B
ISp+ 1Sgp+0Sa B ICp+ICg+0Cy B

TanimotoCombo =

OS 4 B: volume commun aux cavités A et B alignées

IS4, ISg: volume des cavités individuelles A et B non alignées

OCa 3 : volume commun aux propriétés pharmacophoriques des cavités A et B alignées

ICx, ICp : volume des propriétés pharmacophoriques des cavités individuelles A et B non
alignées

Le score de similarité TanimotoCombo varie de 0 (cavités entierement dissimilaires) a 2
(cavités identiques)
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4.2.4. Annotation de I’interface

Pour chaque PPI biologiquement pertinente, un certain nombre de propriétés
attenantes a l'entrée PDB, les chaines en contact, la nature de l'interface et la localisation de

cavités et de ligands sont répertoriées (Tableau 4.3)

Tableau 4.3: Annotation de chaque interface

Protéine Chaines Interface Cavité
Code PDB Code Pseudoatomes Taille, Code HET
d'interaction
Structure Nom Taille, A2 73 descripteurs masse
N° UniProt 45 descripteurs droguabilité Distance a

l'interface, A

Pertinence biologique  Enfouissement Structure (mol2)

Distance a

l'interface, A

Classification

Structure

Chaque interface est décrite sous la forme d’un fichier de structure mol2 contenant les
pseudo-atomes d’interactions (IPAs), un descripteur de 45 valeurs décrivant les interactions
présentes a I’'interface et leur valeur d’enfouissement. L’ensemble est référencé pour deux
protéines données et un complexe unique. Les cavités détectées sont obligatoirement
associées a une interface précise, elles sont aussi décrites sous formes de structure mol2 et
d’un descripteur de 73 valeurs décrivant 1’enfouissement des différentes interactions des
différents types physico-chimique. Les différentes cavités et ligands sont classés en fonction
de leur distance a l’interface, la distance étant la plus petite distance entre point de cavité/
atome de ligand et pseudoatome d'interface. Cavités et ligands ne sont conservés que si la

distance a l'interface est inférieure a 8 A.
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4.3, Résultats

4.3.1. Composition en oligomeres de la PDB

L'analyse exhaustive de la PDB réalisée au cours de ce travail répond a trois objectifs

majeurs:

¢ analyser chaque interaction moléculaire a 1'échelle atomique entre deux chaines d'une
méme structure en se focalisant sur les interfaces prédites biologiquement pertinentes;
¢ identifier la totalité des cavités droguables a l'interface et au voisinage de celle-ci;

e caractériser les ligands occupant ces cavités.

La PDB est une base de données en constante évolution. A la date 1¥ juin 2016, nous
avons pu analyser 115 041 entrées différentes. Nous avons uniquement sélectionné les
structures obtenues par diffraction des rayons X car leur qualité est facile a analyser au moyen
de descripteurs simplex (ex: résolution). Les entrées obtenues par RMN décrites sous forme
d'ensembles ont été écartées afin de facilite I'analyse, de méme que les entrées obtenues par
d'autres méthodes (ex: microscopie électronique, diffraction de neutrons) souvent obtenues a
basse résolution. La seconde étape de filtrage a consisté a ne retenir que les structures RX de
résolution suffisante (< 3 A) et oligomériques (2-9 chaines).

Ces filtres ont rejeté 19 109 entrées obtenues par une méthode autre que la diffraction des
rayons X, 36 407 structures monomériques, et enfin 2 182 structures posseédant au moins dix
chaines protéiques (Figure 4.5). Les 57 339 entrées oligomériques restantes décrivent un total

de 320 389 chaines soit une moyenne de 3 chaines par structure.
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Entrées PDB

19 109 RX (Resolution >3 A)ou 7
(16,6%) autre méthode

B Monomeres

57 339 Filtrées

(49,8%)

Oligomeres (> 9 chaines) |

Oligomeres (2- 9 chaines) } Traitées

2182
(1,9%)

Figure 4.5: Filtrage des entrées par source expérimentale, résolution et niveau d'oligomérisation

4.3.2. Détection des interfaces biologiquement pertinentes

L’intégralité des interfaces entre deux chaines a été détectée, I’ensemble des
interactions non covalentes étant explicitement définie (contacts hydrophobes, interactions
aromatiques, liaisons hydrogenes et liaisons ioniques). Pour chaque interaction, nous générons
un pseudoatome (IPA) situé a mi-distance des atomes en interaction (Figure 4.2). Les
interfaces complexes sont ainsi représentées d’une maniere simplifiée a 1’aide d’un ensemble
d’IPAs (80 a 110 en moyenne) décrivant la nature et 1I’enfouissement des interactions
correspondantes. Nous avons tout particulierement €té attentifs aux placements des liaisons
hydrogenes grace a 1’ajout explicite d'atomes d'hydrogene sur 1’ensemble des structures
permettant a la fois une optimisation des états de protonation et des formes tautomériques
possibles sur la totalité des molécules en présence (protéine, co-facteur, ligand, solvant, ion)

Sur les 295 128 interfaces détectées, 23 % d'entre elles ont été prédites biologiquement

pertinentes par IChemPic (Figure 4.6).
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Figure 4.6. Interfaces prédites biologiquement pertinentes par IChemPIC. A) Représentation du
nombre d’interfaces prédites biologiquement pertinente (biologique) et non pertinente (cristal) sur
I’ensemble des contacts protéine-protéine présentes aux seins des structures multimériques de la
Protein Data Bank. B) Distribution des interactions moléculaires (IPAs) observées aux interfaces
biologiquement pertinentes.

La treés grande proportion d'interfaces cristallographiques sans pertinence biologique
s'explique par la méthode combinatoire de définition des interfaces ou toutes les combinaisons
possibles sont évaluées indépendamment de leur disposition spatiale relative. Il n'en demeure
pas moins que 67 880 interfaces ont été prédites comme biologiquement relevante par notre
modele de foréts aléatoire IChemPIC (Figure 4.6). La distribution des interactions
moléculaires observées a ces interfaces d'intérét laisse apparaitre sans surprise une forte

proportion d’interactions hydrophobes (80%, Figure 4.6).
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4.3.3. Cavités droguables

Détection

Chaque interface prédite biologiquement pertinente est un site d’étude potentiel. Afin
de déterminer celles que I’on veut étudier plus particulierement, nous avons identifié les
cavités présentes a la surface de tout dimere prédit biologiquement pertinent ainsi qu'en
dissociant artificiellement le dimere en considérant chacun des deux monomeres
correspondants pris isolément. Cette approche nous permet de détecter des cavités a la surface
du dimere mais également a la surface d'un des deux monomeéres avant association et en
considérant un modele de liaison enticrement rigide. Bien entendu, ce mode rigide
d'association n'est pas pertinent pour tous les complexes. C'est pourquoi nous effectuerons
plus tard une recherche de cavités sur des protéines uniquement monomériques (par exemple
co-cristallisée avec un inhibiteur de PPI) mais préalablement identifiées comme faisant partie
d'une interface biologiquement pertinente.

Sur I’ensemble des entrées présentes dans la PDB, qu’elle soient sous forme
monomérique (dimere dissocié) ou dimérique, VolSite a détecté 2 180 354 cavités soit une
moyenne de 40 cavités par entrée et 7 cavités par interface. Sur ces 2 180 354 cavités, 73%
d'entre elles (1 595 113) ont un volume inférieur a 230A° soit 70 voxels (Figure 4.7). Ces
cavités de petite taille ont été éliminées de notre analyse car nous considérons qu'elles sont
inadaptées a accueillir un candidat médicament potentiel. Cette valeur seuil de 230 A’ a été
définie en considérant la distribution du volume des cavités droguables dans la base de
données sc-PDB de sites protéine-ligand drogualbles19 développée au laboratoire.

La droguabilité des 585 241 cavités restantes (27%) a été prédite par notre machine
d'apprentisssage SVM incluse dans VolSite et laisse apparaitre une trés forte proportion (380
746 soit 65%) de cavités réellement droguables (Figure 4.7). Il nous faut ici rappeler que ces
cavités peuvent exister a la fois a la surface du complexe dimérique et de chacun des deux

monomeres, sous des formes identiques ou non.
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Figure 4.7 : Histogramme empilé des différentes cavités identifiées a la surface des entrées traitées de
la PDB possédant une interface biologiquement pertinente. Les cavités de petite taille (< 230 A’) ne
sont pas soumises a une prédiction de droguabilité par VolSite. La quantité de chaque type de cavité
est indiquée, soit a la surface d'un dimere soit du dimére dissocié (monomeére)

Classification

Nous avons classé les cavités droguables en 4 catégories en fonction de leur
enfouissement dans les formes dimeriques (E;) et monomériques (E,,), la contribution des
monomeres respectifs a leur constitution, et leur distance D; a l'interface (Figure 4.8):

e Les cavités interfaciales sont présentes uniquement a l'interface du dimeére et sont

entierement enfouies;

e Jes cavités de bordure: formées par l'association de 2 monomeres, elles sont
accessibles chez le dimeére mais s'ouvrent chez les deux monomeres le constituant.
Elles se retrouvent en périphérie immédiate de la zone d'interface proprement dite;

e Les cavités orthostériques sont uniquement accessibles lorsque les deux monomeres
sont dissociés, sont localisées a l'interface du dimeére correspondant et accueillent la
majorité des inhibiteurs de PPI co-cristallisés a ce jour;

e Les cavités allostériques: présentes indifféremment a la surface d'un des deux
monomeres et du dimere correspondant, elles se situent a distance de I'interface et ne
changnte pas ou trées peu de conformation lors de la formation du complexe

dimérique.
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Figure 4.8. 4 types de cavités possibles a l'interface et au voisinage de celle-ci

Afin de comptabiliser et de caractériser de maniere plus approfondie chacune de ces
quatre catégories, nous avons calculé les propriétés suivantes pour l'ensemble des 380 746
cavités droguables observée a la surface des dimeéres et de chacun des monomeres les
constituant:

e volume (A%) approximé par le calcul du nombre de voxels de cavités;
¢ enfouissement moyen a la surface du dimere (E;) et des monomeres séparés (E,,);

e Ja distance a l'interface (D;) , plus petite distance entre un pseudo-atome d'interaction

(IPA) et un centre de voxel de cavité.

e Similarité entre la cavité a la surface du dimeére et celle a la surface d'un des deux

monomeres correspondant (TanimotoCombo).

La vérification de I’exactitude de ces catégories a été réalisée en plusieurs phases. Dans un
premier temps nous avons analysé 10 cavités interfaciales connues®’. Nous avons par la suite
analysé 10 cavités choisies aléatoirement parmi toutes celles possédant des propriétés
similaires (D; < 3A et E; > 90). Sur ces 10 cavités de dimeres choisies, une analyse visuelle
nous confirme que 9 d'entre elles sont bien des cavités interfaciales, une seule étant une cavité

de bordure (Tableau 4.4). Nous avons ensuite réalisé le méme test sur 10 cavités choisies
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aléatoirement mais présentant un enfouissement beaucoup plus faible (E; < 70). 9 de ces 10
cavités sont des cavités de bordure, une seule étant interfaciale.

Pour compléter ces tests nous avons observé 10 cavités présumées allostériques
(présentes sur un seul monomere, distance a l'interface > 3 A, enfouissement < 90). Ces 10
cavités se sont avérées étre réellement allostériques a I’interface cible bien que 3 d'entre elles
soient également proches d'une autre interface biologiquement viable pour cette entrée PDB
(Tableau 4.4). Enfin, 10 cavités dites orthostériques (présentes sur un seul monomere,
distance a l'interface < 3 A) ont été observées; ce sont toutes des cavités orthostériques dans

lesquelles au moins un acide aminé du protomeére manquant est entierement enfoui.

Tableau 4.4 : Propriétés de cavités choisies aléatoirement correspondants a la définition d'une cavité
interfaciale (D; < 3A et E; > 90).

PDB  Proposition de Distance a Enfouissement a la surface  Vérification
Classification l'interface, D; du dimere, E, visuelle
1h6d Interfaciale 1,70 100 Interfaciale
1094 Interfaciale 2,41 98 Interfaciale
1wd6 Interfaciale 2,35 100 Interfaciale
1x29 Interfaciale 2,6 103 Interfaciale
2c3c Interfaciale 2,00 108 Interfaciale
2evl Interfaciale 1,90 95 Interfaciale
2pTo Interfaciale 2,01 95 Interfaciale
2vTt Interfaciale 1,63 103 Interfaciale
3mma Interfaciale 2,06 96 Interfaciale
3mph Interfaciale 1,90 98 Bordure
1kSm Bordure 2,12 66 Bordure
4xdj Bordure 2,31 67 Bordure
41ql Bordure 2,40 69 Bordure
dcew Bordure 2,95 68 Bordure
3pg6 Bordure 2,05 65 Bordure
1s78 Bordure 2,29 69 Bordure
Itju Bordure 2,69 66 Bordure
3ghf Bordure 2,56 68 Bordure
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5dd6 Bordure 2,46 69 Bordure
3are Bordure 2,90 70 Interfaciale
3vu7 Allostérique 12 75 Allostérique
Injj Allostérique 10.3 77 Allostérique
3vbe Allostérique 10.67 73 Allostérique
4in7 Allostérique 8.75 81 Allostérique™
4u5c Allostérique 17.56 72 Allostérique*
3noc Allostérique 20.3 71 Allostérique
3noc Allostérique 21.07 87 Allostérique™
4kue Allostérique 12.16 74 Allostérique
3sxn Allostérique 19.41 77 Allostérique
3nog Allostérique 21.4 71 Allostérique
liy8 Orthostérique 0.74 81 Orthostérique
4drs Orthostérique 0.86 72 Orthostérique
2VXX Orthostérique 0.57 74 Orthostérique
3faz Orthostérique 0.9 68 Orthostérique
3fad Orthostérique 0.56 71 Orthostérique
3ics Orthostérique 1.69 76 Orthostérique
2p6t Orthostérique 0.47 73 Orthostérique
4h80 Orthostérique 2.17 99 Orthostérique
Inw4  Orthostérique 1.56 79 Orthostérique
Stiw Orthostérique 0.87 82 Orthostérique

* Allostérique pour l'interface cible mais impliquée dans une autre interface a la surface d'un

autre dimere de cette entrée

A la suite de ces observations nous avons déterminé un arbre de décision permettant
un classement des cavités droguables (Figure 4.9) retrouvées a la surface des structures
contenant des interfaces pertinentes. Le premier critere observé est la distance a I’interface: si
une cavité est situé a une distance (la plus courte) supérieure a 3A de U’interface, elle est

classé comme allostérique.
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Le deuxieme critere vérifié est 1’enfouissement moyen de la cavité: si I’enfouissement a la
surface du dimere est inférieur a 90 (90 projections enfouies sur les 120 existantes), la cavité
sera considérée comme une cavité de bordure accessible au solvent

Les cavités restantes sont donc proches de I’interface et treés enfouies, elles sont classées en
fonction de la participation d'un ou des deux protomeres a la cavité. Si une chaine participe a
la définition de la cavité, c'est une cavité orthostérique. Sinon, nous avons affaire a une cavité

interfaciale (Figure 4.9).

Cavités droguables
non-redondantes

272007
non ~__oui
||| -
Allostérique | | | 117792 ‘
«771_1

on L oui

n
4" 95947
Bordures

non L oui
&
Interfaciales 7352 50916 Orthostériques

Figure 4.9: Classification des cavités droguables selon un arbre de décision
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Afin d'avoir un compte aussi exact que possible, nous avons éliminé les cavités
redondantes observées a la fois a la surface du dimere et des monomeres correspondants
(TanimotoCombo (Shaper) >1.4) et avons ainsi classé 272 007 cavités en:

e 117792 cavités allostériques;
e 05947 cavités de bordure;
e 50916 cavités orthostériques;
e 7352 cavités interfaciales.

Les cavités dites allostériques ne sont certainement pas toutes exploitables pour une
modulation de la PPI correspondante. Néanmoins, leur trés grand nombre illustre leur
potentiel complétement inexploité jusqu'ici. Le nombre de cavités droguables dites de bordure
est également trés important et conforte une étude préliminaire réalisée sur un petit ensemble
d'entrées non redondantes de la PDB*. Ces cavités présentent également un potential
interessant de par leur accessibilité a la surface de 1'oligomeére. Bien que nous n'ayons pas
encore considéré les entrées PDB monomériques et leur cavités droguables (ex: co-
cristallisées avec des inhibiteurs de PPI*'), nous avons pu identifier plus de 50 000 cavités
droguables orthostériques présentes a la surface d'un monomere et en interaction avec au
moins un résidu du monomere partenaire. Ces cavités sont bien évidemment les plus
interessantes a étudier pour l'identification d'inhibiteurs orthostériques. Enfin, nous avons pu
identifier plus de 7000 cavités interfaciales completement enfouies a la surface du dimere et

représentant des cibles idéales a des stabilisateurs d'interface™.

Volume

Les cavités droguables ont pour la plupart un volume inférieur a 350A° (Figure 4.10)
et restent donc trés petites par rapport aux cavités droguables de la sc-PDB qui ont un volume
moyen de 800 A3 '°. Ces cavités de faible taille, malgré qu'elles soient prédites droguables
par notre modele d'apprentissage sont probablement inexploitables a des fins de recherche de
modulateurs d'interface. Un trés grand nombre de cavités présentent néanmoins un volume

idéal (entre 600 et 1000 A3) pour accueillir des modulateurs de haute affinité.
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Figure 4.10: Distribution des volumes de cavités (monomeres, dimeres)

Distance a l'interface protéine-protéine

Les cavités droguables observées a la surface des diméres sont pour la plupart situées a
I'extérieur de I’interface protéine-protéine (D; > 2 A). Leur distribution (Figure 4.11) montre
néanmoins qu’un nombre significatif d'entre elles (environ 30%) se situe a une distance tres
proche de l'interface (1.7 > D; > 2.3 A). Ces derniéres sont soit des cavités interfaciales, soit
des cavités de bordure. Les cavités tres éloignées de l'interface (D; > 3 A) sont des cavités
allostériques.

Sur les complexes dissociés (Figure 4.11), les cavités sont réparties de maniere plus
homogene sur 1’ensemble de la surface du monomeére. Cependant, on observe toujours une
concentration de cavités plus élevée a moins de 1.5 A des interfaces, correspondant soit a des

réminiscences de cavités de bordure, soit a des vraies cavités orthostériques.
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Figure 4.11: Distribution des distances a l'interface: A) dimeres; B) monomeres.
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Figure 4.12: Distribution des valeurs d'enfouissement moyen de cavités (dimeres)

La distribution observée de 1'enfouissment moyen est la méme que pour les cavités
droguables de la sc-PDB avec un pic a la valeur de 80 (Figure 4.12). En plus de cette
distribution, on observe une seconde tendance plus 1égere entre les valeurs de 100 et 110. Ce
second épaulement correspond aux cavités intefraciales tres enfouies du faite de leur création

par agglomération de deux chaines protéiques.
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Distribution des propriétés pharmacophoriques

Chaque cavité étant caractérisée par les propriétés pharmacophoriques des voxels la
délimitant, nous avons analysé la distribution des propriétés pharmacophoriques des cavités
en fonction de leur classification, et par rapport aux cavités de sites de liaison protéine-ligand
droguables de la base de données sc-PDB (Figure 4.13).

Les cavités interfaciales sont logiquement plus petites (volume moyen de 300 A’) et
posseédent un caractére hydrophobe et aromatique marqué, se traduisant par des ligands
interfaciaux de méme nature. Les cavités de bordure sont les plus accessibles comme en
témoigne la plus grande proportion de voxels a propriété nulle situés a plus de 5 A de l'atome
de protéine le plus proche. Les deux autres types de cavités (orthostériques, allostériques) ont
des propriétés pharmacophoriques similaires a celles rencontrées dans les cavités de protéine
globulaire (sc-PDB). La seule différence réside en un enrichissement des cavités sc-PDB en
voxels donneurs de liaison hydrogene, résultant de la forte représentation en ligands

nucléotidiques a forte densité d'atomes accepteurs de liaison hydrogene.
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Figure 4.13: Distribution des propriétés pharmacophoriques pour les cavités drogguables

Comparaison des cavités de dimeres et des cavités de monomeres

Méme si nous travaillons sur des structures rigides, nous avons observé des
modifications notables de cavités lors de la dissociation du dimere correspondant. Afin de les
détecter, nous avons comparé systématiquement, pour chaque entrée, 1'ensemble des cavités
droguables observées a la surface du dimere, avec celles observées apres dissociation sur les

deux monomeres correspondant (Figure 4.14). Les cavités droguables présentes aux
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interfaces sont comparées avec Shaperg, un outil basé sur le recouvrement de formes et de

propriétés pharmacophoriques des points de cavités (centre de voxels).
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Figure 4.14: Similarité des cavités observées (score Tanimoto Combo), pour chaque entrée, a

la surface de dimeres et des monomeres correspondants

De maniére trés intéressante, les valeurs de similarité suivent une distribution
bimodale avec deux pics centrés sur les valeurs de 0.75 et 1.30, respectivement. 3 203 paires
de cavités ont un score de similarité supérieur au seuil empirique de 1,4 que nous avons fixé
pour déclarer deux cavités comme similaires, sur la base de notre expérience passée a
comparer des sites de liaison protéine-ligand droguables de la base de données sc-PDB. Ces
cavités ne varient donc que tres peu suite a la dissociation du dimere et correspondent a notre
définition de cavité allostérique. Une trés forte majorité des cavités présentes a la surface des
dimeres subissent un réarangement de forme trés important suite a la dissociation des deux
momoneres, ce sont les cavités orthostériques, les cavités interfaciales et les cavités de

bordure.
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4.3.4. Ligands des cavités droguables

Nous avons enfin analysé systématiquement la localisation des ligands par rapport aux
interfaces protéine-protéine sur les structures de dimeres (Figure 4.15), en se focalisant sur
les 700 ligands distants de moins de 8A d’une interface biologiquement pertinente (plus petite
distance entre pseudoatome d'interface et atome du ligand). On observe une distribution
bimodale avec un pic 2 1A de distance a I’interface et un second pic plus important 2 une
distance de 5 A. Il est probable que le premier pic correspond aux ligands interfaciaux et le

second aux ligands de bordure ainsi qu'aux ligands allostériques.
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Figure 4.15: Distances observées entre ligands et interface protéine-protéine

Une analyse plus fine nous démontre que les cavités contenant un ligand co-cristallisé
sont composées a 90% de cavités de bordures, 9.9% de cavités interfaciales et 1% de cavités

allostériques (Figure 4.16). La tres faible proportion de ligands de cavités allostériques vient
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de notre parti pris de ne considérer que des ligands distants de moins de 8 A de l'interface la

plus proche.

1%

M Allostérique M Bordure m Interfaciale

Figure 4.16 Distribution des cavités co-cristallisées avec un ligand a moins de 8 Adel "interface.

La majorité des ligands observés sont des ions ou des molécules dépouvues de
propriétés pharmacologiques (détergeants, agents précipitants). Nous avons recensé 41 824
ligands redondants aux abords des interfaces (< 8A de I’interface) dont 9 126 sont a une
distance de 4 A ou moins. Les ligands identifiés ont été filtrés selon une liste de code HET

pré-établie dans IChem, afin de ne conserver que les ligands pharmacologiques.

Ligands interfaciaux

Aprés élaguage, on observe 64 ligands uniques situés & moins de 2 A de I’interface
Annexe 4.2) et 64 ligands situés entre 2 et 2.5 A de Vinterface (Annexe 4.3) dont 5 sont
également présents dans la liste précédente (A77, ADE, BT6, PLP, SAM, XFJ). On y retrouve
notamment des cosubstrats (ex: s-adénosylméthionine, pyridoxal S5'-phosphate), des
inhibiteurs enzymatiques (ex: A77, inhibiteur de la protéase du VIH-1) et des inhibiteurs
interfaciaux connus comme la brefeldine (HET = AFB) situé a l'interface du complexe entre

Arfl et Arno (PDB id 1R8Q, Figure 4.16).
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Figure 4.16: Brefeldine (surface translucide) logée dans une cavité droguable (points) a l'interface du
complexe entre les protéines Arfl (rubbans bleus) et le domaine Sec7 de la protéine Arno (rubbans
verts). Les points de cavité sont colorés en fonction de leurs propriétés pharmacophoriques
(hydrophobe, gris; aromatique, vert; donneur, bleu; positif ionisable, bleu; accepteur; rouge; négatif
ionisable, rouge)

Il est a noter que certains ligands interfaciaux connus (ex: rapamycine) n'ont pu étre
détectés par notre protocole automatisé. En effet, la rapamycine est logée au sein d'une cavité
trés volumineuse (1400 A’) délimitant une interface prédite non pertinente par IChemPIC. En
effet, les deux protéines (FKBP-12, FRAP) ne présentent que trés peu d'interactions directes

entre elles, la plupart étant médiées par le ligand d'interface lui-méme (Figure 4.17)

Figure 4.17: A) Complexe entre la rapamycine et l'interface FKBP-12/FRAP (PDB IFAP). B) La
cavité interfaciale contenant la rapamycine est représentée en vert, attenante a une cavité de bordure
(surface orange). Une cavité allostérique (surface rouge) est présente sur le monomere FRAP.
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Ligands de bordure

Apres filtrage, nous n'avons trouvé qu’un seul ligand présent dans une cavité de
bordure: il s'agit du dTDP-4-amino-4,6-dideoxyglucose (HET code: OFX) a l'interface des 3

chaines d'un homotrimere de la galactoside O-acetyltransferase (Figure 4.18).

Figure 4.18: dTDP-4-amino-4,6-dideoxyglucose (surface translucide) a l'interface des 3 chaines
(rubbans bleus, verts et jaunes) de la galactoside O-acetyltransferase (PDB ID 3vbi). Les points de
cavité sont colorés en fonction de leurs propriétés pharmacophoriques (hydrophobe, gris; aromatique,
vert; donneur, bleu, positif ionisable, bleu; accepteur; rouge; négatif ionisable, rouge)

Ce ligand étant un co-substrat (avec le coenzyme A) d'une acétyltransferase dans la
biosynthése du D-anthrose chez bacillus cereus> , le site de bordure correspondant est donc un
site potentiel dans la recherche d'anti-infectieux. Dans la mesure ou la recherche de cavités n'a
été effectuée que sur des structures oligomériques, il est normal que nous n'ayons pas encore
identifié des sites de bordure co-cristallisés avec un inhibiteur d'interface. Pour ce faire, nous
devrons comparer les structures monomériques de la PDB avec le structures oligomériques

selon un protocole deja défini, décrit plus tart (section Ligands orthostériques)
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Ligands allostériques

Malgré le fait que les cavités allostériques soient trés largement majoritaires parmi
toutes les cavités droguable détectées (Figure 4.9), nous n'avons pu identifier qu'un seul
ligand pharmacologique occupant une de ces cavités, un stabilisateur allostérique de

I'interface ubiqui‘tine-Cdc3424 (Figure 4.19)

Figure 4.19: Inhibiteur CC00651 (surface translucide) a l'interface du complexe entre ubiquitine
(rubbans verts) et son enyzyme de conjugaison Cdc34 (rubbans bleus, PDB ID 4mdk). Les points de
cavité sont colorés en fonction de leurs propriétés pharmacophoriques (hydrophobe, gris; aromatique,
vert, donneur, bleu, positif ionisable, bleu; accepteur; rouge; négatif ionisable, rouge)

Nous avons délibérément omis pour le moment toute cavité distante de plus de 8 A de
l'interface. Il est évidemment probable que d'autres ligands aient pu étre co-cristallisés dans

une cavité droguable a plus grande distance de l'interface

Ligands orthostériques

Le procédé décrit actuellement ne permet pas de détecter les ligands orthostériqueszl,

principalement constitués d'inhibiteurs d’interfaces qui se fixent a un des partenaires du
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complexe afin d’empécher la fixation de la seconde protéine. Afin de les détecter, il nous

reste a mener les étapes suivantes:

parser les entrées monomériques de la PDB;

détecter les cavités droguables correspondantes;

identifier les chaines protéiques présentes a la fois dans ces entrées
monomeériques et dans nos structures oligomériques déja analysées;

aligner les deux chaines protéiques (monomere vs.dimere) afin de les placer
dans le méme référenciel de coordonnées;

enfin sélectionner les cavités/ligands a l'interface ou proche de cette dernicre.

Nous avons réalisé manuellement cette recherche sur certaines entrées test issues de la

base de données 2P2I*'. Dans le cas d'un complexe ou deux protéines se lient sans

changement conformationnel notable et apres alignement des monomeres séparés au dimere

cristallographique, nous retrouvons facilement les ligands d'interface dans les cavités

orthostériques décrites a partir du dimere dissocié (Figure 4.20).

Figure 4.20: Inhibiteur de Brd2 (73B, surface translucide) co-cristallisé au domaine N-terminal de
Brd2 humain (PDB ID 4uyf, rubbans bleu foncé). Le ligand se trouve dans une cavité orthostérique
(points) détectée apres dissociation du dimere (PDB ID 2dvq) sur la chaine Brd2 (rubbans bleu clair).
La cavité délimite exactement le site d'interaction du fragment N-terminal de ['histone H4 (rubban
vert). Les points de cavité sont colorés en fonction de leurs propriétés pharmacophoriques
(hydrophobe, gris; aromatique, vert; donneur, bleu; positif ionisable, bleu; accepteur; rouge; négatif
ionisable, rouge)
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4.4. Conclusions

Nous avons présenté ici une nouvelle méthode de recherche d’interfaces dérivées de
complexes cristallographiques afin de découvrir de nouveaux sites potentiels de modulation
d’interface protéine-protéine ainsi que leurs ligands. Plus précisément, nous avons montré le
développement d'un processus d'analyse des interactions protéine-protéine dans la Protein
Data Bank. Le fonctionnement du processus a été détaillé et les résultats préliminaires ont été
mis en avant.

Les cavités droguables observées a la surface du dimere ou des monomeres dissociés
ont été classées en 4 catégories selon leur enfouissment et leur distance a une interface
biologiquement relevante. Nous avons pu détecter pres de 272 000 cavités non redondantes
pour 68 000 interfaces d'intérét. Ces cavités représentent un gisement extraordinaire pour la
recherche de modulateurs (orthostériques, allostériques) de ces interfaces. Leur identification
et caractérisation structurale nous permettra dans le futur: (1) de les comparer a des cavités
droguables de protéines monomériques globulaires afin d'identifier des ligands potentiels par
simple recherche de similarité de cavités, (2) de proposer de maniere automatisée un
pharmacophore seon le procédé décrit dans le chapitre précédent, (3) d'identifier des ligands
potentiels par recherche pharmacophorique ou par arrimage moléculaire.

Afin de prioriser les interfaces les plus prometteuses, il nous faudra encore relier ces
cavités et les complexes correspondant soit a des voies métaboliques soit a des maladies déja
identifiées par recherche des identifiants de protéine ou de géne correspondant dans des bases
de données spécialisées (ex: KEGG, PharmGKB). 1l est a noter que notre détection de cavités
n'est pas exhaustive car uniquement opérée soit sur des structure oligomériques, soit sur les
monomeres dissociés correspondants. Dans la mesure ou les disrupteurs de PPI ne se lient
qu'a un des deux partenaires, il nous faudra encore détecter I'ensemble des cavités droguables
a la surface des protéines monomériques de la PDB, les placer dans le méme référenciel de
coordonnées que les complexes existants impliquant cette méme protéine, puis localiser ces
cavités par rapport aux interfaces biologiquement pertinentes a leur voisinage. Nous aurons
ainsi une cartographie compléte de 1'ensemble des cavités droguables a l'interface et pres de
cette derniere, ainsi que des ligands inhibiteurs co-cristallisés.

L'ensemble de ces données sera stockée dans une base de données relationelle
permettant la saisie de requétes complexes portant de multiples caractéristiques structurales

du complexe, des protéines impliquées, des cavités droguables et des ligands existants.
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L'actualisation périodique de cette base sera d'autant plus facilitée que le flux de données

présenté dans ce chapitre est entierement automatisé.
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Annexes

Annexe 4.1 Champ de force utilisé pour l'alignement des cavités

AR

# Preliminary Definitions #

HHHHHHH AR

e S i S aiad

# Interaction Types #

WA

TYPE donor

TYPE acceptor

TYPE cation

TYPE anion

TYPE rings

TYPE hydrophobe

TYPE ringAliph

TYPE test

e S i S aiad

# Type Patterns #

HHEHHHH R HARE R E

# rings

#

PATTERN rings [14C]

#

# ringAliph

#

# hydrophobic

#

# terminal hp

PATTERN hydrophobe [13C]

# non-terminal hp

PATTERN acceptor [170;X0]

PATTERN acceptor [150;X0]

PATTERN donor [14N;X0]

PATTERN donor [150;X0]

#

# anion/cation patterns

#

# cations

PATTERN cation [15N;X0]

# anions

PATTERN anion [140;X0]

HHEHHHHH AR HAHE R E

#  Interaction Definitions #

e s G S aiad

INTERACTION donor donor attractive gaussian weight=0.0 radius=1.0

INTERACTION acceptor acceptor attractive gaussian weight=0.0 radius=1.0

INTERACTION rings rings attractive gaussian weight=0.0 radius=1.0

INTERACTION ringAliph ringAliph attractive gaussian weight=0.0 radius=1.0

INTERACTION ringAliph hydrophobe attractive gaussian weight=0.0 radius=1.0

INTERACTION cation cation attractive gaussian weight=0.0 radius=1.0

INTERACTION anion anion attractive gaussian weight=1.0 radius=1.0

INTERACTION anion acceptor attractive gaussian weight=1.0 radius=1.0
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INTERACTION cation donor attractive gaussian weight=1.0 radius=1.0
INTERACTION hydrophobe hydrophobe attractive gaussian weight=0.0 radius=1.0
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Annexe 4.2 Tableau récapitulatif des ligands situés a moins de 2A d’une interface protéine-protéine

Ligand | . Ligand . Ligand
D Ligand Formula MW Ligand Name SMILES Instance PDB IDs (All)
3-[5-(3,5-
DICHLOROPHENYL)- | Steeteclel)s(=
ouz | HZBCLSZ FN2 1 37318 | 1,3,4-0xADIAZOL-2- 333(2_)2;Fc)c(:(i:(rlc 4FI6
YLIBENZENESULFONY | “°% 2
L FLUORIDE
3-[3-(3,5-DIMETHYL-
1H-PYRAZOL-4- | Cclc(c(n[nH]1
16V | CISH17FN203 | 29231 | YL)PROPOXY]-4- | )C)CCCOC2cc 4HIQ
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4-0XO-1,4,56,7,8 1)\ c@@H(C

HEXAHYD_RG(?PTERIDIN INC3cee(ce3)C

YLIETHYL}AMINO)PHE LC](@[)C@@H@]JJ(I[_'C](@;
NAM | C30 H45 N6 016 P NYL]-1-DEOXY-5-0-{5-

o[C@@H]4[C

O'[(R)'{[(]-R)'ll3' @@H]([C@@

DICARBOXYPROPYL]O HI([C@H](04)

COP(=0)(0)0[
C@H](CCC(=0
)0)C(=0)0)0)

XYLITOL 0)0)0)0
4-[(1E)-3-
HYDROXYPROP-1-EN- | COclcc(ccclO
N7I C10 H12 03 1-Y1]-2- )/C=C/CO 3TKY,4E70,4EVI,5CV],5CVV
METHOXYPHENOL
Cclnc2c(nenc
5'-DEOXY-5'- 2n1[C@H]3][C
N8M C13 H20 N6 03 (DIMETHYLAMINO)-8- | @ @H]([C@ @
METHYLADENOSINE | H)([C@H](03)
CN(C)C)O)O)N

o
o

1FWN,1FWS,1FWT,1IFWW,1FXQ,1G7U,1HFB,1JCY,1KFL,1KHF,1LRO,1LRQ,1
N8F,1NHX,10AB,10F8,10FA,10NE,1P48,1Q3N,1QR7,1RZM,1T8X,1T96,1V
BH,1VS1,1XUZ,1ZC0O,1ZHA,2A21,2A21,2AL1,2AL2,2B70,2DWO0,2EF9,2GMV,
2NWR,2NWS,2NX1,2NX3,2NXG,2NXH,2NXI,200E,20NE,20X3,2PTY,2QZY,2
R46,2XGZ,2XH0,2XZ7,3E01,3FY0,3FYP,3NV8,3QPW,3TFC,3UCD,3UJE,3UJF,3
UJR,3UND,4C1K,4EGR,AGMW,4GNL,4GNP,4HSN,4HSO,4HYV,4141,417E,40
WG,4UCG,4WPT,4WPU,4217,4Z1D,5BOE,5CZ0,5CZS,5D02,5D03,5D05,5D0

PHOSPHOENOLPYRU
VATE

C=C(C(=0)0)0

C3 H506 P P(=0)(0)O

168.04

221




Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

9,504
N-[3-(8-SEC-BUTYL-
7,10-DIOX0-2-OXA- | CC[C@H](C)[C
6,9-DIAZA- @H]1C(=0)NC
BICYCLO[11.2.2] CCOc2ccc(cc2
HEPTADECA- )C[C@@H](C(
1(16),13(17),14- | =0)N1)NC[C@
P17 €36 H>3 N5 07 TRIEN-11-YAMINO)-2- | H]([C@H](Cc3 1B6P
HYDROXY-1-(4- ccc(ce3)O)NC(
HYDROXY-BENZYL) - | =0)[C@H](C(C
PROPYL]-3-METHYL- | )C)NC(=0)CC)
2-PROPIONYLAMINO- 0]
BUTYRAMIDE
(10S,13S,1'R)-13-[1'-
HYDROXY-2'-(N-P- CC(C)CCIN@
AMINOBENZENESULF | @](C[C@H]([C
ONYL-1"-AMINO-3"- | @@H]1Cc2cc
PIo €32 HA8 N4 06 S METHYLBUTYL)ETHYL | c¢(cc2)OCCCCC 1D4L

]-8,11-DIOX0O-10-
ISOPROPYL-2-OXA-
9,12-DIAZABICYCLO
[13.2.2]NONADECA-

15,17,18-TRIENE

C(=O)N[C@H]

(C(=0)N1)C(C)

C)0)s(=0)(=0)
c3ccc(cc3)N
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

PYRIDOXAL-5'-
PHOSPHATE

Cclc(c(c(cnl)
COP(=0)(0)0)
C=0)0

1A3G,1A50,1A5A,1A5B,1A5S,1AAM,1AAW, 1AHE, 1AHF, 1AHG, 1AHP, 1AHX, 1
AHY,1AKA,1ARI, 1ARS,1ART,1ASA, 1ASB,1ASF,1ASG,1ASM,1ASN, 1AXR,1AY4,
1AY5,1AY8,1B4D,1B4X,1B54,1B50,1B5P,1B8G,1B9H,1BJ4,1BJ0,1BKS,1BT4,
1BX3,1CON,1C29,1C4K,1C50,1C7G,1C7N,1C8K,1C8L,1C8V,1C9D,1CJO,1CT5,
1CW?2,1CX9,1CZC,1CZE,1D2F,1D6S,1DAA,1DGD,1DGE,1DJE,1DJU,1DKA,1D
TY,1E1Y,1E40,1E5F,1ECX,1EGS5,1EKF,1EKP,1EKV, 1ELQ,1EM6,1EQB, 1ETO, 1E
XV,1F2D,1F3T,1FA9,1FCO,1FC4,1FCJ,1FG3,1FS4,1FTQ,1FTW,1FTY,1FU4,1F
U7,1FUS,1FUY,1G2W,1G4V,1G4X,1G76,1G77,1G78,1G79,1G7W,1G7X,1GB
N,1GC3,1GC4,1GCK,1GD9,1GDE,1GEW,1GEX,1GFZ,1GG8,1GGN,1GPA,1GP
B,1GPY,1HOC,1H1C,1H5U,1HKV, 1HLF,111K,111L,111M,1129,112K,1143,1148,1
IAX,1I1AY,1IBJ,11J1,11X6,11X7,11X8,11YD,1J0A, 1J0C,1J0E,1J32,1)BQ, 1JF9, 1IN
W,1JS3,1J56,1K06,1K08,1K3U,1K7E,1K7F,1K7X,1K8X, 1K8Y,1K8Z, 1KFB,1KFC,
1KFK,1KKJ,1KKP,1KL1,1KL2,1KL7,1KMJ,1KMK,1KNW, 1KOO,1KTI,1L5Q, 1L5R,
1L5S,1L5V,1L5W,1L6l,1L7X,1LK9,1LKC,1LS3,1LW4,1LW5,1LWN,1LWO,1M3
2,1M4N,1M54,1MDX,1MDZ,1MGV, 1MLY,1MLZ,1N2T,1N31,1N8P,1NOI, 1N
0J,1NOK,1NRG,104S,1061,10AS,10AT,10HV,10HW,10HY,10RD,1P29,1P
2B,1P2D,1P2G,1P3W,1P4G,1P4H,1P4J,1P5J,1PG8,1PMM,1QGN,1QIR,1Q]S,
1QIT,1QJ3,1QJ5,1QM5,1Q0P,1Q0Q,1QU4,1Q079,1RCQ,1RFU,1RQX,1RV3,1
RV4,1RVU,1RVY,1507,1SF2,1SFT,15ZS,15ZU,1T3I,1TAR,1TAT,1TDJ,1TIP,1TT
P,1TTQ,1TWI,1TYZ,1TZ2,17ZJ,1TZK,1TZM,1U08,1UBS,1UIM,1UIN,1UZU,1V
2D,1V2E,1V2F,1V71,1V72,1V8Z,1VE1,1VE5, 1VEF,1VFH,1V]0,1VP4,1W23,1
W3U,1W7L,1W7M,1W8G,1WBJ,1WDW,1WKV,1WRV,1WST,1WTC,1WUT, 1
WUY,1WV0,1WV1,1WW2,1WW3,1WYU,1WYV,1XC7,1XEY, 1XFC,1XI9,1XKX
,1XL0,1XL1,1XOl,1XQL,1XRS,1YAA,1YGP,1YJS,1YJY,1YJZ,1Y00,123Z,1262,1Z
7W,1Z0B,1Z0D,2A1H,2A5H,2ABJ,2AMV,2AQ6,2ASV,2ATI,2AV6,2AW3,2AY
1,2AY2,2AY3,2AY4,2AY5,2AY6,2AY7,2AY8,2AY9,2AZD,2BHS,2BHT,2BHX, 2Bl
1,2B12,2BI3,2BI5,2B19,2BIA,2BIE,2BIG,2BKW,2BWN,2BWO,2BYJ,2BYL,2COR,
2C2B,2C2G,2C4M,2C7T,2CAN,2CB1,2CFT,2CH1,2CH2,2CIN,2CJD,2CJH,2CLE
,2CLF,2CLH,2CLI,2CLK,2C0OG,2COI,2C0J,2CST,2CTZ,2D1F,2D5Y,2D61,2D63,
2D64,2D65,2D66,2D7Y,2D7Z,2DAB,2DGK,2DGL,2DGM,2DH5,2DKB,2DK]J,2
DR1,2DY3,2E54,2E71,2E7J,2ECO,2ECP,2ECQ, 2EFY,2EGY, 2EH6,2E1Y,2EJ3,2E
05,2F3P,2F3Q,2F3S,2F3U,2FET,2FF5,2FFR,2FNI,2FYF,2GPA,2GPB,2GSA, 2H
DK,2HG8,2HGW,2HGX,2HHF,2HP1,2HP2,2HZP,21SQ,2J66,2)9Z,2)C3,2)G2,2)
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

IS,2JJE,2J)G,2JJH,2NMP,2NV9,201B,2000,20RD,2P69,2PB0,2PB2,2PQM, 2

PRI,2PRJ,2QGH,2QLL,2QN7,2QN8,2QN9,2RH9,2RHG,2RJG,2RKB,2SFP,2SKC
,2SKD,2SKE,2TOD,2UZP,2V03,2VD8,2VGS,2VGT,2VGU,2VGV,2VGW,2VGZ,2
VI8,2V19,2VIA,2VIB,2VLH,2VMN,2VMO,2VMP,2VMQ,2VMR,2VMS,2VMT, 2

VMU,2VMV,2VMW,2VMX,2VMY,2VMZ,2VYC,2W7D,2W7E,2W7F,2W7G,2

W7H,2W71,2W7J,2W7K,2W7L,2W7M,2WS8T,2W8U,2W8V,2WK8,2WK9,2W
SY,2X3L,2X5D,2X5F,2X8U,2XH1,2Y4R,2YCT,2YHK,2YKU,2YKX,2YKY,2YOB,2Y
RR,2YXX,2Z1Y,2212,2720,2267,2ZB2,2ZGl,2ZP7,2Z5),2ZUK,2ZY2,2ZY3,2ZY4,
27Y5,3A2B,3A8U,3A9X,3A9Y,3A9Z,3AAT,3AMV,3ANU,3ANV,3A0V,3A0W,3
ATH,3AWN,3AWO,3B1C,3B1D,3B8T,3B8U,3B8V,3B8W,3BB8,3BD7,3BDS,3

BDA,3BMS5,3BV0,3C5Q,3CEH,3CEJ,3CEM,3CEP,3C08,3COG,3CSW,3DD1,3D
DS,3DDW,3DOD,3DTG,3DU4,3DWG,3DWI,3DXV,3DXW,3DYD,3E5P,3E77,3
E9K,3EI8,3EIB,3ELE,3F9T,3FCR,3FDD,3FHX,3G8M,3GJU,3GPB,3HMK,3HQT,
3HY8,3116,315T,31F2,31HJ,3110,31SL,3J26,3K28,3K7Y,3KEU,3KGW, 3KKI,3KOW
,3KP1,3L6B,3L6C,3L8A,3LV2,3LVJ,3LVK,3LVL,3LVM,3LY1,3MEB,3N29,3N20,
3NYS,3NZP,3005,3PC2,3PPL,3QB0,3R79,3RBF,3RCH,3557,3559,3TAT,3TFT,
3TQX,3UYY,3UZB,3UZ0,3VAX,3VBE,3VOM,3VSA,3VSC,3VSD,3WQC,3WQD,
3WQE,3WQF,3WQG,3WWH,3WWI,3WW]J,3X43,3ZCP,32CQ,3ZCR,3ZCS,3ZC
T,3ZCU,3ZCV,3ZEI,3ZRP,322),4A0F,4A0G,4A0H,4A0R,4A3Q,4A6T,4A72,4AD
B,4ADC,4ADD,4AEC,4AH3,4A09,4ATP,4ATQ,4AZ),4AZK,4B98,4B9B,4BEQ,4
BEU,4BF5,4BMK,4BQ0,4BQE,4BQF,4BQl,4CBR,4CBS,4CE5,4CHI,4CMD,4CO
0,4CTM,ACTN,4CTO,4CVQ,4CXQ,4CXR,4DAA,4DGT,ADQ6,4E10,4EB5,4EB7,
AEMY, 4FAF,4FLO,AGPB,4GSA,4H67,4H6D,4HT3,4JE5,4JEY,4)F1,4K6N,4L0D,

4L00,4L27,41L28,4L3V,4LMA,4LMB,4LW2,4LW4,4M2J,4M2K,4M2M,4NOW,
4NOG,406Z,40BU,40T8,40TL,4PB3,4PB4,4PB5,4PCU,4PFF,APFN,4PPM,4Q
GR,4QYS,4R2N,4R8D,4RKD,4511,4UHM,4UHN,4UHO,4U0X,4U0Y,4UQV, 4V
15,4W1V,4W1W,4W1X,4W5K,4WBT,4WR3,4WX2,4WYA,4WYC,4WYD,4W
YE,AWYF,4WYG,4XAU,4XEW, 4XIL,4XJM,4XJ0,4XIP,4XUG,4YOH,4Y6G,4YI3,4
YI5,4YSN,4YUA,4YWR,4Z5X,4ZGY,4ZLV,4ZM3,4ZM4,4ZQC,42U6,4ZWM,5B3
6,5B3,5BJ4,5BW6,5BWA,5BWR,5BWT,5BWU,5BWV,5BWW,5BWX,5C3U,5
C6U,5CE8,5CGQ,5CR5,5CVC,5D5S,5D84,5D86,5D87,5DAA,5DDS,5DX5,5EA
A,5EQC,5EY5,5G0A,5G2P,5GPB,5HDM,5HNE,5HXX,515S,515T,515U,515V,515
W,5I5Y,5160,516D,517A,517H,5170,517R,5190,51K0,51KP,51W8,5IWC,5IWQ,5)
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

8Q,6GPB,7AAT,7GPB,70DC,8AAT,8GPB,9GPB

2-ISOBUTYL-3- | CC(C)Celc(ncc
PRZ COH14 N2 O 16622 | | hoc 1DZK,1GT1,1HQP,1QY1,1YP6,2NND,2P70
6-[({(25)-1-AMINO-4-
[(6-AMINO-4-
METHYLPYRIDIN-2- )Cgéécc({'ccggﬁ
QU4 | CI18H27N502 | 34544 | YLMETHOXYJBUTAN- |\ o 0o 0 4K5F,4K5), 4UGD
2-YLIOXY)METHYL]-4- | ° 10600

METHYLPYRIDIN-2-
AMINE
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3-(2-(6-AMINO-4-
METHYLPYRIDIN-2-

O
a1t C19 H25 N5 323.43 (METHYL(2- NICICNCICH 4UG),4UH4,4UH6
(METHYLAMINO)ETH N
YL)AMINO)BENZONIT
RILE
5,7-DIHYDROXY-3-(4- | COclccc(ccl)
aso C16 H12 05 284.27 | METHOXYPHENYL)- | C2=COc3cc(cc 2QY0,4F)2
4H-CHROMEN-4-ONE | (c3C2=0)0)0
clec(ce(c1)0) | 1EVR,1Q1Z,20LY,20LZ,20M0,20M1,20MH,20MI,2W44,3AQT,3ZU1,4AIX, 4
RCO C6 H6 02 110.11 RESORCINOL S D3, 4E45.4000 4710
CC(C)cinc(cs1
)CN(C)C(=0)N
[C@@H](C(C)
CIC(=0INIC@ | 3|1\ 1N49,1RL8,15H9,2B60,3NDW,3NDX,3NXU, 3PRS,3Q70,3TNE 4EVYR 4
RIT | C37H48 N6 0552 | 720.94 RITONAVIR @H](Cc2ccece S T I e R
2)C[C@@H]([
C@H](Cc3cccc
c3)NC(=0)0Cc
4cnes4)0
RW1 C10 H8 N2 156.19 | 4-PHENYLPYRIMIDINE c1ccccr$2:]12)c2c 3B895,3KAN,3KER
6-[(2R)-3-AMINO-2-
{3-[2-(6-AMINO-4-
METHYLPYRIDIN-2- )Cccclcczci:i?g)\'[
sa2 C23 H29 N5 375.52 | YL)ETHYL]PHENYL}PR 4CTU
C@@H](Cc3cc
OPYL]-4- (ce(n3)N)C)CN
METHYLPYRIDIN-2-
AMINE
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. C[s@@H](cC
5'-[(S)-(3-
AMINOPROPYL)(MET f['i)@cj[:ﬁ?@':ﬂ'
saM | C14H24N603S | 356.44 | HYL)-LAMBDA~4"- 200L,2PT6,2PT9,4BP3,4YUV,4YUW,4YUX,4YUY,4YUZ,4YVO,4YV1,4YV2
\ l([C@@H](O1
DES(;J):_\EAAIID\IIZII\I_](SSSI-NE Jn2enc3c2nen
3N)0)O
N1-(3-(2-(6-AMINO-4-
METHYLPYRIDIN-2-
YL)ETHYL)-5- Cclcc(nc(c1)N
s85 C18 H25FN4 | 316.42 | FLUOROPHENYL)- |)CCc2cc(ce(c2) 4UH3,4UH9
N1,N2- F)N(C)CCNC
DIMETHYLETHANE-
1,2-DIAMINE
(2E)-3-(1H-IMIDAZOL- | c1c(nc[nH]1)C
URO C6 H6 N2 02 13813 |4V UACRYLICACD | ~CORO)0 1UWK,1W1U
2_
VNJ C8 HON O 135.16 | AMINOACETOPHENO CC('Sl)IC\Ilcccc 4cz1
NE
(3R,3AS 4R 6AR)-4-[2-
(METHYLAMINO)-2-
OXOETHOXY]HEXAHY | CC(C)CN(CIC
DROFURO[2,3- | @H]([C@H](C
B]JFURAN-3-YL clccececl)NC(=
[(25,3R)-3-HYDROXY- | O)O[C@H]2C
VXL | C31H43N3010S | 649.75 4-{[(4- o[C@@H]3[C SAHC
METHOXYPHENYL)SU | @H]2[C@H](C
LFONYL](2- 03)0CC(=0)N
METHYLPROPYL)AMI | C)0)S(=0)(=0)
NO}-1- cdcec(ccd)0C
PHENYLBUTAN-2-
YL]JCARBAMATE
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

6,6'-(PYRIDINE-3,5-

DIYLDIETHANE-2,1- )Cééz;(crﬂi)z'\;
XFJ C21 H25 N5 347.46 DIYL)BIS(4- CCeace(ec(n3) 3N5T,3N5W,3N61,3N62,3N65,3N69,3N6B,3N6F,4UG6
METHYLPYRIDIN-2- NIC
AMINE)
6-(2-{5-[2-(2-AMINO-
6-METHYLPYRIDIN-4- | Cclce(nc(c1)N
YL)ETHYLJPYRIDIN-3- | )CCc2cc(cnc2)
XFK C21 H25 N5 347.46 YLETHYL)-2- CCeace(nelca) 3N55,3N5X,3N6A,3N6G,4UG5
METHYLPYRIDIN-2- N)C
AMINE
6-{[(3R,4R)-4-(3- clccce(ccl)Oc2
PHENOXYPHENOXY)P | cccc(c2)0[C@
XJH | C22H23N302 | 361.44 YRROLIDIN-3- | H]3CNC[C@H] 3N2R
YLJMETHYL}PYRIDIN- | 3Cc4ccec(nd)
2-AMINE N
(3R,3AS,4R,6AR)-4-(2-
METHOXYETHOXY)HE
XAHYDROFURO[2,3- | CC(C)CN(CIC
BJFURAN-3-YL | @H]([C@H](C
{(25,3R)-3-HYDROXY- | clcccccl)NC(=
4-[{[(22)-2- 0)O[C@H]2C
(METHYLIMINO)-2,3- | O[C@ @H]3[C
ZLP | C32H44N4010S | 676.78 DIHYDRO-LS. | @H2Ic@HIC SAHA
BENZOXAZOL-6- | 03)0CCOC)0)
YLISULFONYL}(2- | S(=0)(=0)c4cc
METHYLPROPYL)AMI | c5¢(c4)0/C(=
NOJ-1- N\C)/N5
PHENYLBUTAN-2-
YL}CARBAMATE
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Annexe 4.3 Tableau récapitulatif des ligands situés entre 2 et 2.5A d’une interface protéine-protéine

Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

Ligand | . Ligand . Ligand
D Ligand Formula MW Ligand Name SMILES Instance PDB IDs (All)
6-{[(3S,4S)-4-{2-[(2-
METHOXYBENZYL)AM
INOJETHOXY}PYRROLI | Cclcc(nc(cl)N)
DIN-3-YL]METHYL}-4- | C[C@H]2CNCI[C
METHYLPYRIDIN-2- @H]20CCNCc3
08R C21 H30 N4 02 370.49 | AMINE ccccc30C 3TYM
(5-PHENYL-1,2-
OXAZOL-3- clcec(ccl)c2ec(
ONX C10H9 N O2 175.19 | YL)METHANOL no2)CO 3vQ4
CCCC[C@@H](
C(=0)N)NC(=0)
N-[(2R)-2-({N~5~- [C@H](C)NC(=
[AMINO(IMINIO)MET | O)[C@H](CCC(=
HYL]-L-ORNITHYL-L- | 0)O)NC(=0)[C
VALYL}AMINO)-4- @H](Cclcceecl
METHYLPENTYL]-L- JNC[C@H](CC(C
PHENYLALANYL-L- )C)NC(=0)[C@
ALPHA-GLUTAMYL-L- | H](C(C)C)NC(=0
ALANYL-L- )[C@H](CCCNC( | 1A8K,1A94,1BAI,1DAZ,1DW6,1EBK,1FFF,1FGS8,1K1T,1K1U,1K2B,1K2C,2A
0Q4 C40H70N11081 833.06 | NORLEUCINAMIDE =[NH2+])N)N OE
CC(C)(C)oc(=0)
N-{(25,3S)-3-[(TERT- | N[C@@H](Cclc
BUTOXYCARBONYL)A |ccccl)[C@H](C
MINQ]-2-HYDROXY-4- | N[C@ @H](Cc2c
PHENYLBUTYL}-L- cccc2)C(=0)NI[C
PHENYLALANYL-L- @@H](CCC(=0)
ALPHA-GLUTAMYL-L- | O)C(=O)N[C@
PHENYLALANINAMID | @H](Cc3cccec3
0zZT C38 H49 N5 08 703.83 | E )C(=0)N)O 1FQX,12)7,1ZSR

229
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2-
METHYLNAPHTHALEN | Cclcc(c2cccec2

17z C11 H1002 174.20| E-1,4-DIOL c10)0 4HQM
2-({[2-(3,4-
DIHYDROQUINOLIN-
1(2H)-YL)-2- CN(CC1=NC(=0
OXOETHYL](METHYL) |)c2ccccc2N1)CC
AMINO}METHYL)QUI |(=0)N3CCCc4c3

1FG C21 H22 N4 02 362.43 | NAZOLIN-4(1H)-ONE | ccccd 41G0
(2R)-2-AZANYL-3-
[(1R,25)-2-OXIDANYL- | C[C@@H]([C@
1-PHOSPHONO- H](P(=0)(0)0)S
PROPYLJSULFANYL- | C[C@@H](C(=0

1IKM |C6H14NO6PS 259.21 | PROPANOIC ACID JO)N)O 4JH7,4JH9
ISOQUINOLIN-1- clcecc2c(cl)cen

1sQ |C9 H8 N2 144.18 | AMINE c2N 20HK,3KPW,4YUY
(12)-5-(2-{4-[2-
(DIMETHYLAMINO)ET
HOXY]PHENYL}-5- CN(C)CCOclccc
PYRIDIN-4-YL-1H- (cc1)c2[nH]c(c(
IMIDAZOL-4- n2)c3ccc\4c(c3)
YL)INDAN-1-ONE CC/C4=N/0O)c5c

215 | C27 H27 N5 02 453.54 | OXIME cncc5 2FB8
N~2~-({[7-
(diethylamino)-2-oxo- | CCN(CC)clccc2
2H-chromen-4- c(c1)OC(=0)C=
yllmethoxy}carbonyl)- | C2COC(=0)NI[C
N-[(2S,4S,55)-4- @@H](C(C)C)C(
hydroxy-1,6-diphenyl- | =O)N[C@ @H](
5-{[(1,3-thiazol-5- Cc3cceee3)C[C
ylmethoxy)carbonyl]a | @ @H]([C@H](
mino}hexan-2-yl]-L.- | Cc4cccccd)NC(=

3EM |[C43H51N508S 797.96 | valinamide 0)O0Cc5cncs5)0 | 4U7Q
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

2-(3,5-
DICHLOROPHENYL)-

clcc2c(cc1C(=0

1,3-BENZOXAZOLE-6- |)O)oc(n2)c3cc(c

3MI C14 H7 CL2N O3 308.12 | CARBOXYLIC ACID c(c3)Cl)cl 3TCT,4HIS
N-[(2S,3R)-4-
{(CYCLOHEXYLMETHY
L)[(4- COclccc(ccl)S(
METHOXYPHENYL)SU |=0)(=0)[N@ @]
LFONYLJAMINO}-3- | (CC2CCCCC2)C[
HYDROXY-1- C@H]([C@H](C
PHENYLBUTAN-2-YL]- | c3cccce3)NC(=
3- O)c4ccec(ca)0)

77F C31H38N206S 566.71 | HYDROXYBENZAMIDE | O 3SAA
6-(3-AMINO-2-(6-(2-
(6-AMINO-4-
METHYLPYRIDIN-2-
YL)ETHYL)PYRIDIN-2- | Cclcc(nc(c1)N)
YL)PROPYL)-4- CCc2cccc(n2)[C
METHYLPYRIDIN-2- @H](Cc3cc(cc(

757 C22 H28 N6 376.50 | AMINE n3)N)C)CN 4CTV
N-{1-BENZYL-(2R,3R)-
2,3-DIHYDROXY-4-[3- | CC(C)[C@@H](
METHYL-2-(3- C(=O)N[C@@H
METHYL-3-PYRIDIN-2- | ](Cclcccecl)[C
YLMETHYL-UREIDO)- | @H]([C@@H](]
BUTYRYLAMINO]-5- C@H](Cc2ccccc
PHENYL-PENTYL}-3- | 2)NC(=0)[C@H
METHYL-2-(3- 1(C(C)C)NC(=0)
METHYL-3-PYRIDIN-2- | N(C)Cc3cceen3)
YLMETHYL-UREIDO)- | O)O)NC(=O)N(C

A76 C44 H58 N8 06 794.99 | BUTYRAMIDE )Ccdccecend 1HVL
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

N-{1-BENZYL-(2R,3S)-
2,3-DIHYDROXY-4-[3-
METHYL-2-(3-
METHYL-3-PYRIDIN-2-
YLMETHYL-UREIDO)-
BUTYRYLAMINO]-5-
PHENYL-PENTYL}-3-
METHYL-2-(3-

CC(C)[C@@H](

C(=0)N[C@@H
](Cclcccecl)[C

@@H]([C@e@H
J([C@H](Cc2ccc
cc2)NC(=0)[C@
H](C(C)C)NC(=0

METHYL-3-PYRIDIN-2- | )N(C)Cc3cccen3
YLMETHYL-UREIDO)- |)O)O)NC(=0)N(

A77 | C44 H58 N8 06 794.99 | BUTYRAMIDE C)Ccdcceen4d 1HVI,1HVS
N-{1-BENZYL-3-
HYDROXY-4-[3- CC(C)[C@@H](
METHYL-2-(3- C(=O)N[C@@H
METHYL-3-PYRIDIN-2- | ](Cclcccccl)C[C
YLMETHYL-UREIDO)- | @ @H]([C@H](
BUTYRYLAMINOQO]-5- | Cc2ccccc2)NC(=
PHENYL-PENTYL}-3- O)[C@H](C(C)C
METHYL-2-(3- JNC(=O)N(C)Cc
METHYL-3-PYRIDIN-2- | 3cccc[nH+]3)0)
YLMETHYL-UREIDO)- | NC(=O)N(C)Cc4

A78 | C44 H60 N8 O5 2 781.01 | BUTYRAMIDE cccc[nH+)4 1HVIJ
N-{1-BENZYL-(2S,3S)-
2,3-DIHYDROXY-4-[3- | CC(C)[C@@H](
METHYL-2-(3- C(=O)N[C@@H
METHYL-3-PYRIDIN-2- | ](Cclcccecl)[C
YLMETHYL-UREIDO)- | @ @H]([C@H]([
BUTYRYLAMINO]-5- C@H](Cc2ccccc
PHENYL-PENTYL}-3- 2)NC(=0O)[C@H
METHYL-2-(3- ](C(C)C)NC(=0)
METHYL-3-PYRIDIN-2- | N(C)Cc3cccen3)
YLMETHYL-UREIDO)- | O)O)NC(=0O)N(C

A79 | C44 H58 N8 06 794.99 | BUTYRAMIDE )Ccdcccend 1HVC,1HVK
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

N-{1-BENZYL-2,2-
DIFLUORO-3,3-
DIHYDROXY-4-[3-
METHYL-2-(3-
METHYL-3-PYRIDIN-2-
YLMETHYL-UREIDO)-
BUTYRYLAMINO]-5-
PHENYL-PENTYL}-3-

CC(C)[C@@H](
C(=0)N[C@@H
](Cclcccecl)C(C
([C@H](Cc2ccc
cc2)NC(=0)[C@
H](C(C)C)NC(=0

METHYL-2-(3- JN(C)Cc3cceen3
METHYL-3-PYRIDIN-2- | )(F)F)(O)O)NC(=
YLMETHYL-UREIDO)- | O)N(C)Cc4cccc
A85 | C44 H56 F2 N8 06 830.97 | BUTYRAMIDE n4 1DIF
1AHA,1BJQ,1CB0,1D2A,1GIU,1HQC,1IFS,1J1R,1JH8,1JYS,1LPD,1LU1,1M2T
,AMUD,1NLI,10D2,10D4,1Q8Y,1QB7,1QCl,1QD2,1S2D,1VRL,1WEI,1WTA,
1XE8,1Y26,1YXM,1Z5N,1Z8D,1ZN7,2GA4,2H8G,2ICS,2P8N,2PQJ,2PUB,2P
UE,2QES,2QET,2QLU,2QTT,2X0C,2X0Y,2YED,3A71,3BSF,3E9R,3K9W,3KPV
,3KUO,3LE7,3LGS,3LQV,3MRY,3NG9,3NM6,30NE,3PAO,3QUI,3RL9,3RYS,3
$99,3TPV,3U62,3U70,3UJ0,3V2K,3W52,3WAZ,4BMX,4D8V,4DA0,4DC2,4
F1W,4FBA,4FBB,4G89,4130,4]0S,4JWT,4KQF,4L0M,4L5C,4L61,4LNA,4LWO0,
c1[nH]c2c(nl)c |4M1E,4NSN,40JT,4P14,4PR3,4QAR,4QEZ,4TRC,A4TZX,4TZY,4XGP,4X)7,4XN
ADE | C5 H5 N5 135.13 | ADENINE (ncn2)N R,4YMI,5DK6,5DYX
4-(1-
BENZOTHIOPHEN-2-
YL)-6-[4-(2-OX0-2- clccc2c(cl)cc(s
PYRROLIDIN-1- 2)c3cc(ncn3)N4
YLETHYL)PIPERAZIN- | CCN(CC4)CC(=
B87 C22H25N50S 407.53 | 1-YL]PYRIMIDINE O)N5CCCC5 3IPY
2-AMINOBENZOIC clece(c(c1)C(= | 1AN9,1C01,1E8N,1F8S,1ZFP,1ZYK,2E4A,2GVQ,2HUS,2JB3,2YR6,3H78,3T44
BE2 C7H7NO2 137.14 | ACID O)O)N ,A0WV,4X5D,4X5E,4Y17,5FIN
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

[H]/N=C(\clccc

1A0J,1ANB,1ANC,1AND,1ANE,1BIT,1BRA,1BTY,1CC7,1CC8,1CE5,1DPO,1D
WB,1EAX,1H4W,1J14,1)15,1)16,1J8A,1JBU,1KLI,1L2E,1L06,1LPU,1LR4, 1M
BQ,1NKZ,1NSA,10SS,1RTF,1S0R,1TRM,1V11,1V16,1V1M,1V2J,1V2L,1V2

M,1V2S,1V2U,1V2V,1W80,1WRI,1ZHM,1ZHP,1ZHR,2AER,2AIQ,2ASS,2AST
,2AYW,2BLV,2BLW,2BMV,2BPQ,2CKR,2CKS,2EEK,2GLL,2GLM,2GLP,2GNN,
2J9N,208U,20Q5,20XS,2PKA,2TBS,2TI0,2TRM,2VJ0,2VZB,2Y46,2Y5Z,2Y8
D,2ZFQ,2Z12,271Q,2ZPQ,2ZPR,2ZPS,3ATL,3B3J,3B87J,3BB8,3BCX,3BEU,3BG
8,3CF8,3CF9,3D04,3D49,3D0Y,3D0Z,3DP0,3DP1,3DP2,3DP3,3EDO,3GY7,

3178,31T1,3M70,3MFJ,3M14,3MXN,3NQ8,3NQV,3P70,3P8G,3PLB,3PTB,3P
WB,3QK1,3RXE,3RXQ,3RXU,3RXV,3T25,3T26,3T27,3T28,3T29,3TAY,3TH2,
3TPK,3UNQ,3UNR,3UY9,3VYW,3W5S,3WJP,3WJQ,3WJR,3ZSN,4COF,4D8T
,AD8W,4D92,4D96,4D97,4D99,4D9B,4D9C,4DIE,4DIF,4DSO,4E2K,4E3Q,4
EDG,4EDK,4EDR,4EDT,4EDV,4EE1,4EMN,4EQM,4HZE,4106,418G,4I8H,418),
418K, 418L,41BL,41E2,41E3,41XU,41XV,4INN,4IPU,4KPM,4N8Z,4NCY,4NFE, 4N
VC,4P1H,4TPY,4UEH,4UQU,4UQW,4UR0,4UR1,4XV8,4YTA,5AUK,5C50,5C

BEN |[C7 H8 N2 120.15 | BENZAMIDINE ccl)/N AJ,5F6M,5FXL
3-(1,3-BENZODIOXOL-
5-YL)-1-METHYL-1H- | Cnlc(cc(nl)c2c
PYRAZOLE-5- cc3c(c2)0C0o3)
BMC |C12 H10 N2 04 246.22 | CARBOXYLIC ACID C(=0)0 3A03
BT6 C6H6S 110.17 | BENZENETHIOL clccc(ccl)s 3HSR
1AVD,1BDO,1BIB,1DF8,1F27,1HXD,1KQS,1LUQ,1MEP,1MK5,1N43,1N9M,
1NDJ,1NQM,1STP,1SWD,1SWE,1SWG,1SWK,1SWN,1SWP,1SWR,1SWT,1V
Q6,1VQN,1WBI,1WPY,1XNY,1Y52,1Y55,2AVI,2B8G,2BD0,2C1Q,2C41,2DT
H,2DTO,2DXT,2EJ9,2EJF,2EJG,2F01,2FYK,2GH7,21ZF,21ZG,21ZH,21Z1,212J,2)
Cl[C@H]2[C@ |GS,2RTD,2RTE,2RTF,2RTG,2UYW,2UZ2,2Y3F,2ZGW,2ZSC,3D9L,3EFR,3EFS,
@H]([C@@H]( |3EW2,3G8C,31B9,3MG5,3034,3RDM,3RDO,3RKY,3RY2,352J,3T2W,3T6F,3
S$1)CCCCC(=0)0 | V8K,3WYP,3WYQ,3WZN,4BBO,4BCS,4BJ8,4DVE,4EKV,4GD9,4GDA,4GGZ,4
BTN |[C10H16N203S 244.31 | BIOTIN JNC(=0O)N2 IRW,4JNJ,4JXT,4LOC,4MFE,4Q6S,4Q94,4Q96,4WVP,4YVB,4228
DIPHENYLMETHANO | clccc(ccl)C(=0
Bza |[C13H100 182.22 | NE )c2cceec2 1DZP,1GT5
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

C[C@H](CCcC(=
O)NCC(=0)0)[C
@H]1CC[C@@
H]2[C@@]1(CC
[C@H]3[C@H]2
C(C[C@H]4[c@
GLYCOCHENODEOXYC | @]3(CC[C@H](
CHO C26 H43 N O5 449.63 | HOLIC ACID C4)0)C)0)C 1AHI,1FMC,2B04,2LBA,2LFO,2MM3
4-{[4-(4-FLUORO-3-
METHYLPHENYL)-1,3-
THIAZOL-2-
YLJAMINO}-2- Cclcc(ccclF)c2
HYDROXYBENZOIC csc(n2)Nc3cec(
D28 |C17H13FN203S 344.36 | ACID c(c3)0)C(=0)0 |2vD1
2-METHYL- CIN@e@]1C[C@
DECAHYDRO- H]2CCCC[C@H]
ISOQUINOLINE-3- 2C[C@H]1C(=0
piIQ |C11H19NO2 197.28 | CARBOXYLIC ACID )O 1MTB,2FGU,2FGV
3-(4-DIETHYLAMINO-
2-HYDROXY-PHENYL)- | CCN(CC)clccc(c
2-METHYL- (c1)O)\C=C(/C)\
pMC |C14 H19 N O3 249.31 | PROPIONIC ACID C(=0)0 4GCH
Cl[C@@H]([C
@H](O[C@H]1
N2C=CC(=0)NC | 1RN8,1RNJ,1SIX,1SJN,2BT1,2CIC,2D4N,2FMQ,2FMS,2HQU,2HXD,20KE,2P
2=0)CO[P@](= |FN,2PFO,2PY4,2XCE,2XY3,2YAY,3C2K,3EHW,3H6D,3HZA,3193,3L0J,3P48,3
2'-DEOXYURIDINE 5'- | O)(N[P@@](=O | S9H,35CX,3516,35JJ,35Q0,35Q1,3TP1,3TPN,3TPS,3TPW,3TPY,3TQ3,3TQ4,3
ALPHA,BETA-IMIDO- |)(O)OP(=0)(0) |UIQ,3ZEZ,3ZF0,3ZF1,3ZF4,3ZF5,4GCY,4GV8,4JWM,4JWN,4KHQ,4M04,4M
DUP C9 H16 N3 013 P3 467.16 | TRIPHOSPHATE 0)0)o 9J,400P,4R65,4R66,4WRK,4YD1,5CCT,5IIN
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

CC[C@H]1/C=C
/C=C/C[C@H](]
C@@H]([C@@
I(C(=0)[C@H]([
C@@H]([C@H]
(C(=0)[C@H(]
C@@H]([C@H]
(/C=C/C(=0)0[
Co@H)2[Co@
H]([C@H](C[C
@H]10)0[C@
@]3([C@H]2C)
CC[C@@H]([C
@@H](03)C[C
@@H](C)o)C)C
21-hydroxy- )C)0)C)C)O)C)(
C45 H74 012 807.06 | oligomycin C)0)o)C 5BQJ

m
o

CC[C@@HI\1C
C[C@H]2[C@H]
([CeH]([Ce@
H]([C@]3(02)C
Clce@H]([c@
@H](03)C[C@
@H](C)o)C)C)o
C(=0)/c=C/[C@
@H]([C@HJ([C
@@H](C(=0)[C
@@H]([Ce@HI(l
C@@H](C(=0)[
C@]([C@H]([C
@@H](c/c=C/
C=C1)C)0)(C)0)
C45 H74 011 791.07 | OLIGOMYCIN A C)0)C)C)0)C)C | 3WGV,4F4S,4WQ0,5BPS
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

6-FLUORO-4H-1,3-

BENZODIOXINE-8- clc(cc(c2c1iCoC
FBG |C9H7FO4 198.15 | CARBOXYLIC ACID 02)C(=0)O)F | 3vQB
cinc(c2c(n1)n(
cn2)[C@H]3][C
@@eH|([Cee@H
5'-0- ([C@H](03)CO
(GLYCYLSULFAMOYL) | S(=0)(=0)NC(=
G5A C12 H17N707S 403.37 | ADENOSINE O)CN)O)O)N 3HXV,3HY0,3MF1,4H2T,4H2X,5F5W
3,4,5-
TRIHYDROXYBENZOIC | clc(cc(c(c10)0)
GDE |C7H605 170.12 | ACID 0)C(=0)0 3WKU,3WPM,3WR3,3WR4,3WR9,3WRB,41C0,4J0H,4Z5X
clcc(c(cca[N+](
=0)[0-
DIN+](=0)[O-
)sC[C@@H](C(
=0)NCC(=0)0)
GLUTATHIONE S-(2,4 | NC(=O)CC[C@
GDN |[C16 H19N5010S 473.41 | DINITROBENZENE) @H](C(=0)0O)N | 18GS,1GSQ,1HNA,1HNB,1HNC,1VF3,1XWK,4ZBB,5GST
clcc(ceclC2=C
Oc3cc(cc(c3C2=
GEN |C15H1005 270.24 | GENISTEIN 0)0)0)o 1QKM,1X7J,1X7R,2QA8,3KGT,3KGU,4FJ1,5AUZ,5AV4
[(1S,25)-1,2- C[C@@H]([C@
DIHYDROXYPROPYL]P | @H](O)P(=0)(O
GG6 |C3H9O5P 156.07 | HOSPHONIC ACID )0)O 2P7Q,2RL2
6-{[(3R,4R)-4-{[5-(6-
AMINOPYRIDIN-2-
YL)PENTYL]JOXY}PYRR
OLIDIN-3- Cclcc(nc(c1)N)
YL]METHYL}-4- C[C@@H]2CNC
METHYLPYRIDIN-2- [C@@H]20CCC
HWO |C21H31N50 369.51 | AMINE CCc3cccc(n3)N | 3UFW,4CWX
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Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

1A10,1AI17,1A1Y,1FJW,1FOH,1JHX,1JHY,1LI2,1LPH,1MPJ,1PNO,1Q4V,1QlY, 1
RWE,1V03,1W8P,1WAV,1XDA,1XU5,1XW7,1ZEG,1ZNJ,2AIY,2AS3,2J9N,20
LD,20MB,20MN,2PZV,2VE7,2WS6,2WS7,3AlY,3F39,3GKY,3GUO,3JSD,3K
MH,3KQ6,3NC0,3NX8,3P2X,3P33,3Q30,3R0V,3U3E,3V19,3V1G,3ZQR,3ZS
2,4A71,4A1Y,4AJZ,4AK),4F3T,4H07,4HDS,417L,4)MW,40LA, 4P65,4W5N, 4
W50,4W5Q,4W5R,4W5T,4Z4C,4Z4D,4Z4E,4Z4F, 424G,4Z4H,4241,5A1Y,58

IPH |C6H60 94.11 | PHENOL cleec(ccl)0 QQ,5FRW,5J51,5)52,5KBE,5KI6
3-({(3S,4S)-4-[(6-
AMINOPYRIDIN-2-
YL)METHYL]PYRROLID
IN-3- clcc(nc(c1)N)C[
YL}JAMINO)PROPAN- | C@H]2CNC[C@

Jii C13 H22N4 0 250.34 | 1-0L H]2NCCCO 3B3M
N-{(3S,4S)-4-[(6-
AMINOPYRIDIN-2-
YL)METHYL]PYRROLID | clcc(nc(c1)N)C|
IN-3-YL}ETHANE-1,2- | C@H]2CNC[C@

J2 C12 H21 N5 235.33 | DIAMINE HJ2NCCN 3B3N,3DQR
7-{2-[(3-
FLUOROBENZYL)AMI | clcc(cc(c1)F)C
NOJETHYL}QUINOLIN- | NCCc2ccc3cec(

C18 H18 FN3 295.36 | 2-AMINE nc3c2)N 4CAN
(2S,35,4R,5R,6R)-5- CC(=O)N[C@@
(ACETYLAMINO)-4- H]1[C@H]([C@
AMINO-6-{[(R)-{[(R)- | @H]([C@H](O[
{[(2R,3S,4R,5R)-5- C@@H]10[P@
(2,4-DIOX0-3,4- @](=0)(0)o[P
DIHYDROPYRIMIDIN- | @](=0)(0)OC[C
1(2H)-YL)-3,4- @@H]2[C@H](
DIHYDROXYTETRAHY |[C@H]([C@@H
DROFURAN-2- ](02)N3C=CC(=
C17 H26 N4 017 YLJMETHOXY}(HYDRO | O)NC3=0)0)0)
Mz |P2 620.36 | XY)PHOSPHORYL]OXY | C(=0)O)O)N 3MQH
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}HYDROXY)PHOSPHO
RYL]OXY}-3-
HYDROXYTETRAHYDR
0-2H-PYRAN-2-
CARBOXYLIC ACID

7-({[3-(3-
FLUOROPHENYL)PRO | clcc(ce(cl)F)CC
PYLJAMINO}METHYL) | CNCc2ccc3cec(
ML6 C19H20 F N3 309.39 | QUINOLIN-2-AMINE nc3c2)N 4CAP
METHYLS5,7-
DIHYDROXY-2-
METHYL-4,6,11- CC1=C(c2cc3c(c
TRIOXO-3,4,6,11- (c2C(=0)C1)0)C
TETRAHYDROTETRAC | (=0)c4c(ccccdO
NGV C21 H14 O7 378.34 | ENE-1-CARBOXYLATE |)C3=0)C(=0)OC | 1SJW,2F98
2-(1,2-BENZOXAZOL- |clccc2c(cl)ce(n
NVU COH7NO3 177.16 | 3-YL)ETHANOIC ACID | 02)CC(=0)O 3Z16,4CK2,5I5S
TRANS-O-HYDROXY-
ALPHA-METHYL CC(CclccccclO
OAC |C10H1203 180.20 | CINNAMATE )C(=0)0 3GCH
1A57,1H17,110Z,1110,1LDG,1LDM,1LDN,1LTH,10C4,1T2E,2DLD,2V5K,2V7
C(=0)(C(=0)0) | P,2XXJ,3H3F,3PFL,3UQN,3VPH,4AJ1,4KNL,4LOC,4ND1,40L9,4PLG,4PLH,4
OXM |C2H3NO3 89.05 | OXAMIC ACID N PLT,4PLZ,5A1T,5ES3,5H90,5HJR,5K9F,9LDB,9LDT
3-
{HYDROXY[(PHOSPHO
NOOXY)ACETYLJAMIN
O}PROPYL C(CN(C(=0)corP
DIHYDROGEN (=0)(0)0)o)co
PH4 |C5H13NO10P2 309.11 | PHOSPHATE P(=0)(0)O 3C56
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N-13-[(10S,135)-9,12-
DIOXO-10-(2-BUTYL)-
2-OXA-8,11-
DIAZABICYCLO
[13.2.2] NONADECA-
15,17,18-TRIENE]
(2R)-BENZYL-(4S)-
HYDROXY-5-
AMINOPENTANOIC
(1R)-HYDROXY-(2S)-
INDANEAMIDE

CC[C@H](C)[C
@H]1C(=0)NCC
CCCOc2ccc(cc2
)C[C@@H](C(=
O)N1)NC[C@H]
(C[C@@H](Cc3
ccecec3)C(=0)N[
C@H]4c5ccecc
5C[C@H]40)0

1D4K

C8HIONO6 P

247.14

PYRIDOXAL-5'-
PHOSPHATE

Cclc(c(c(cn1)C
OP(=0)(0)0)C=
0)0

1A3G,1A50,1A5A,1A5B,1A5S,1AAM,1AAW, 1AHE, 1AHF, 1AHG, 1AHP, 1AHX
,1AHY,1AKA, 1ARI,1ARS,1ART,1ASA,1ASB, 1ASF,1ASG,1ASM,1ASN, 1AXR, 1
AY4,1AY5,1AY8,1B4D,1B4X,1B54,1B50,1B5P,1B8G,1B9H,1BJ4,1BJO, 1BKS,
1BT4,1BX3,1CON,1C29,1C4K,1C50,1C7G,1C7N,1C8K,1C8L,1C8V,1C9D,1C)
0,1CT5,1CW2,1CX9,1CZC,1CZE,1D2F,1D6S,1DAA,1DGD,1DGE,1DJE,1DJU,
1DKA,1DTY,1E1Y,1E40,1E5F,1ECX,1EG5,1EKF,1EKP,1EKV, 1ELQ,1EM6,1EQ
B,1ETO,1EXV,1F2D,1F3T,1FA9,1FCO,1FC4,1FC),1FG3,1FS4,1FTQ,1FTW,1FT
Y,1FU4,1FU7,1FUS,1FUY,1G2W,1G4V,1G4X,1G76,1G77,1G78,1G79,1G7
W,1G7X,1GBN,1GC3,1GC4,1GCK,1GD9,1GDE,1GEW,1GEX,1GFZ,1GG8,1G
GN,1GPA,1GPB,1GPY,1HOC,1H1C,1H5U,1HKV,1HLF,111K,111L,111M,1129,1
12K,1143,1148,11AX, 11AY, 11BJ, 111,11X6,11X7,11X8,11YD,1J0A,1J0C, 1J0E, 1)32,
1JBQ,1JF9,1JNW,1JS3,1JS6,1K06,1K08,1K3U,1K7E, 1K7F,1K7X,1K8X,1K8Y,
1K8Z,1KFB,1KFC,1KFK,1KKJ,1KKP,1KL1,1KL2,1KL7,1KMJ,1KMK,1KNW,1KO
0,1KTI,1L5Q,1L5R,1L5S,1L5V,1L5W,1L61,1L7X,1LK9,1LKC,1LS3,1LW4, 1LW
5,1LWN,1LWO,1M32,1M4N,1M54,1MDX,1MDZ,1MGV, 1MLY,1MLZ,1N2T,
1N31,1N8P,1NOI,1NOJ,1NOK,1NRG,104S,1061,10AS,10AT,10HV,10HW
,10HY,10RD,1P29,1P2B,1P2D,1P2G,1P3W,1P4G,1P4H,1P4J,1P5),1PG8,1P
MM,1QGN,1QlIR,1QIS,1QIT,1QJ3,1QJ5,1QM5,1Q0P,1Q0Q,1QU4,1079,1
RCQ,1RFU,1RQX,1RV3,1RV4,1RVU,1RVY,1507,1SF2,1SFT,15ZS,15ZU,1T3l,
1TAR,1TAT,1TDJ,1TJP,1TTP,1TTQ,1TWI,1TYZ,1TZ2,1T2J,1TZK,1TZM,1U08,
1UBS,1UIM,1UIN,1UZU,1V2D,1V2E,1V2F,1V71,1V72,1V8Z,1VE1,1VE5,1V
EF,1VFH,1VJO,1VP4,1W23,1W3U,1W7L,1W7M,1W8G,1WBJ,1WDW, 1 WK

240




Chapitre 4 Caractérisation des interfaces protéine-protéine de structure cristallographique connue

V,1WRV,1WST,1WTC,1WUT,1WUY,1WV0,1WV1,1WW2,1WW3,1WYU, 1
WYV, 1XC7,1XEY,1XFC,1X19,1XKX,1XL0,1XL1,1XOl,1XQL, 1XRS,1YAA,1YGP,
1YJS,1YJY,1YJZ,1Y00,1232,1262,1Z7W,1Z0B,1Z0D,2A1H,2A5H,2ABJ,2AM
V,2AQ6,2ASV,2ATI,2AV6,2AW3,2AY1,2AY2,2AY3,2AY4,2AY5,2AY6,2AY7,2
AY8,2AY9,2AZD,2BHS,2BHT,2BHX,2BI1,2BI2,2BI3,28BI5,2B19,2BIA,2BIE,2BI
G,2BKW,2BWN,2BWO,2BYJ,2BYL,2COR,2C2B,2C2G,2C4M,2C7T,2CAN,2CB
1,2CFT,2CH1,2CH2,2CIN,2CJD,2CJH,2CLE,2CLF,2CLH,2CLI,2CLK,2COG,2CO
,2C0J,2CST,2CTZ,2D1F,2D5Y,2D61,2D63,2D64,2D65,2D66,2D7Y,2D7Z,2D
AB,2DGK,2DGL,2DGM,2DH5,2DKB,2DKJ,2DR1,2DY3,2E54,2E71,2E7J,2ECO,
2ECP,2ECQ,2EFY,2EGY,2EH6,2EIY,2EJ3,2E05,2F3P,2F3Q,2F35,2F3U, 2FET,
2FF5,2FFR,2FNI,2FYF,2GPA,2GPB,2GSA,2HDK,2HG8,2HGW,2HGX, 2HHF,2
HP1,2HP2,2HZP,21SQ,2J66,2J9Z,2)C3,2)G2,2J1S,2JJE,2JJG,2JJH,2NMP, 2NV
9,201B,2000,20RD,2P69,2PB0,2PB2,2PQM,2PRI,2PRJ,2QGH,2QLL,2QN7,
2QN8,2QN9,2RH9,2RHG,2RJG,2RKB,2SFP,2SKC,2SKD,2SKE,2TOD,2UZP,2V
03,2VD8,2VGS,2VGT,2VGU,2VGV,2VGW,2VGZ,2VI8,2VI9,2VIA,2VIB,2VLH,
2VMN,2VMO,2VMP,2VMQ,2VMR,2VMS,2VMT,2VMU,2VMV,2VMW,2VM
X,2VMY,2VMZ,2VYC,2W7D,2W7E,2W7F,2W7G,2W7H,2W71,2W7J,2W7K,
2W7L,2W7M,2W8T,2W8U,2W8V,2WK8,2WK9,2WSY,2X3L,2X5D,2X5F,2X
8U,2XH1,2Y4R,2YCT,2YHK,2YKU,2YKX,2YKY,2YOB,2YRR,2YXX,2Z1Y,2Z1Z,2
720,2267,2ZB2,27G1,2ZP7,275),2ZUK,2ZY2,2ZY3,2ZY4,2ZY5,3A2B,3A8U, 3A
9X,3A9Y,3A9Z,3AAT,3AMV,3ANU,3ANV,3A0V,3A0W,3ATH,3AWN,3AWO
,3B1C,3B1D,3B8T,3B8U,3B8V,3B8W,3BB8,38D7,3BD8,3BDA,3BMS5,3BV0,
3C5Q,3CEH,3CEJ,3CEM,3CEP,3C08,3COG,3CSW,3DD1,3DDS,3DDW,3D0D
,3DTG,3DU4,3DWG,3DWI,3DXV,3DXW,3DYD,3E5P,3E77,3E9K,3EI8,3EIB,3
ELE,3F9T,3FCR,3FDD,3FHX,3G8M,3GJU,3GPB,3HMK,3HQT,3HY8,3116,3I5
T,3IF2,31HJ,3110,31SL,3Z6,3K28,3K7Y,3KEU,3KGW,3KKI,3KOW, 3KP1,3L6B,
3L6C,3L8A,3LV2,3LVJ,3LVK,3LVL,3LVM,3LY1,3MEB,3N29,3N20,3NYS,3NZ
P,3005,3PC2,3PPL,3QB0,3R79,3RBF,3RCH,3557,3559,3TAT,3TFT,3TQX,3U
YY,3UZB,3UZ0,3VAX,3VBE,3VOM,3VSA,3VSC,3VSD,3WQC,3WQD,3WQE,
3WQF,3WQG,3WWH,3WWI,3WWSJ,3X43,3ZCP,32CQ,3ZCR,3ZCS,3ZCT,3ZC
U,3ZCV,3ZEI,3ZRP,32ZJ,4A0F,4A0G,4A0H,4A0R,4A3Q,4A6T,4A72,4ADB,4A
DC,4ADD,4AEC,4AH3,4A09,4ATP,4ATQ,4AZ),4AZK,4B98,4B9B,4BEQ,4BEU
,ABF5,4BMK,4BQ0,4BQE,4BQF,4BQl,4CBR,4CBS,4CE5,4CHI,ACMD,4C00, 4
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CTM,4CTN,4CTO,4CVQ,4CXQ,4CXR,4DAA,4DGT,4DQ6,4E10,4EB5,4EB7, 4
EMY,4F4F,4FLO,AGPB,4GSA,4H67,4H6D,4HT3,4JE5,4JEY,4)F1,4K6N,4L0D,
4L00,4L27,41L28,4L3V,4LMA,4LMB,4LW2,4LW4,4M2J,AM2K,4M2M,4NO
W,4NOG,406Z,40BU,40T8,40TL,4PB3,4PB4,4PB5,4PCU,4PFF,4PFN,4PP
M,4QGR,4QYS,4R2N,4R8D,4RKD,4511,4UHM,4UHN,4UHO,4U0X,4U0Y,4U
QV,4V15,4W1V,4W1W,4W1X,4W5K,4WBT,4WR3,4WX2,4WYA,4WYC,4W
YD,4WYE,4WYF,4WYG,4XAU,4XEW,4XIL,4XIM,4XJ0,4XIP,4XUG,4YOH,4Y6
G,4Y13,4Y15,4YSN,4YUA,4YWR,4Z5X,4ZGY,4ZLV,4ZM3,4ZM4,4ZQC,4ZU6,4
ZWM,5B36,5B)3,5BJ4,5BW6,5BWA,5BWR,5BWT,5BWU,5BWV,5BWW,58
WX,5C3U,5C6U,5CE8,5CGQ,5CR5,5CVC,5D5S,5D84,5D86,5D87,5DAA, 5D
DS,5DX5,5EAA,5EQC,5EY5,5G0A,5G2P,5GPB,5HDM,5HNE, 5HXX,515S,515T
,515U,5I5V,515W,515Y,5160,516D,517A,517H,5170,517R,5190,51KO,51KP, 51W
8,5IWC,5IWQ,5)8Q,6GPB,7AAT,7GPB,70DC,8AAT,8GPB,9GPB

(5-HYDROXY-4,6-
DIMETHYLPYRIDIN-3-

YL)METHYL

DIHYDROGEN Cclc(cnc(c10)C | 1PMO,2CFB,2GJ4,2GM9,2IEG,2IEl,3FSL,3FZ8,3GZC,3GZD,3HL2,3MAU,3PI
PLR |C8H12NO5P 233.16 | PHOSPHATE )COP(=0)(0)O | U,3USF,4LNJ,4LNM,4QYS,4ZDL,4ZDO,4ZDP

2-ETHYL-1-PHENYL- CCSC(=Nclcccc
PTU COHI12N2S 180.27 | ISOTHIOUREA c1)N 1D1V,1K2T

C[S@@H](ccc

5'-[(S)-(3- N)C[C@@H]1[C

AMINOPROPYL)(MET | @H]([C@H]([C

HYL)-LAMBDA~4~- @@H](01)n2c

SULFANYL]-5'- nc3c2ncnc3N)O
saM | C14 H24 N6 03 S 356.44 | DEOXYADENOSINE  |)O 200L,2PT6,2PT9,4BP3,4YUV,4YUW,4YUX,4YUY,4YUZ,4YVO0,4YV1,4YV2

242
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N'-[6-[2-(6-AZANYL-4-
METHYL-PYRIDIN-2-

YL)ETHYL]PYRIDIN-2- | Cclcc(nc(cl)N)
YL]-N,N'-DIMETHYL- | CCc2cccc(n2)N(
SKO C17 H25 N5 299.41 | ETHANE-1,2-DIAMINE | C)CCNC 4UGlI,4UHO
5-HEXYL-2-(2- CCCCCCclccc(c
METHYLPHENOXY)PH | (c1)O)Oc2ccccc
TCU |C19H24 02 284.40 | ENOL 2C 2X22,2X23,4BNM,5C0Q,5CP8
CC1=CN(C(=0) |1E2J,1GOR,1H5R,1KIM,10T3,1P6X,1P72,1P7C,1RXU,1TLW,1W2G,1ZMX,2
NC1=0)[C@H]2 | B8T,2J9R,2QQ0,2QQFE,2VTK,2Y1l1,2Y1J,2Z1A,3BCU,3H5Q,3N2I,3ROE,4ESH,
C[C@@H]([C@ |4G8J,4HN1,4HO2,4H04,4H0O8,4LCA,4LZW,40GK,4QSV,4R8),4TXJ,4UXI,4Y
THM |C10 H14 N2 O5 242.23 | THYMIDINE H](02)CO)O EK,4ZU5,5BSZ,5FUV,5FUW,5IDT
1-[4-HYDROXY-5-
(HYDROXYMETHYL)BI | CC1=CN(C(=0)
CYCLO[3.1.0]HEX-2- | NC1=0)[C@H]2
YL]-5- C[C@@H]([C@
METHYLPYRIMIDINE- |]3([C@@H]2C3
TMC |C12 H16 N2 O4 252.27 | 2,4(1H,3H)-DIONE )CO)O 1E2K,1E2L
N-(3-{(1R)-1-[(6R)-4-
HYDROXY-2-OXO-6-
PHENETHYL-6-
PROPYL-5,6-
DIHYDRO-2H-PYRAN-
3-
YLJPROPYL}PHENYL)- |CCC[C@]1(CC(=
5- C(C(=0)01)[C@
(TRIFLUOROMETHYL)- | H](CC)c2ceec(c
2- 2)NS(=0)(=0)c3
C31 H33 F3 N2 05 PYRIDINESULFONAMI | ccc(cn3)C(F)(F)
TPV |S 602.67 | DE F)O)CCc4cceecd | 1D4S,1D4Y,204L,204N,204P,3SPK,4NJU
5-CHLORO-4- C(CC(=0)0)C(=
TQ9 C5H7CLO3 150.56 | OXOPENTANOIC ACID | O)CCI 2XYH
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6,6'-(PYRIDINE-3,5-
DIYLDIETHANE-2,1-

DIYL)BIS(4- Cclcc(nc(c1)N)
METHYLPYRIDIN-2- CCc2cc(cnc2)CC
XF | C21H25N5 347.46 | AMINE) c3cc(ce(n3)N)C | 3N5T,3N5W,3N61,3N62,3N65,3N69,3N6B,3N6F,4UG6

PHENYLMETHYL N-
[(2S)-4-CHLORO-3- clcec(cc1)C[C

OXO-1-PHENYL- @@H](C(=0)cC
BUTAN-2- I)NC(=0)OCc2c
XVE |C18H18CLN O3 331.80 | YLJCARBAMATE ceee2 2XYP,4Q24
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Conclusion

Conclusion

L’objectif de cette these était de développer des outils cheminformatiques
spécifiquemment dédiés aux interfaces protéine-protéine longtemps négligées par la recherche
pharmaceutique. Pour ce faire, ce travail décrit la création de plusieurs logiciels permettant
de mieux caractériser les interfaces protéine-protéine et de les utiliser a des fins
d'identification de modulateurs de petit poids moléculaire. L.’avantage de ces développements
est qu’ils sont applicables a 1’ensemble des structures présentes dans la Protein Data Bank
(PDB).

Originellement, cette thése visait a poursuivre le travail de développement d’analyse
de sites de liaisons protéine-ligand afin l'appliquer aux interactions protéine-protéine. Ce
travail consistait au développement de plusieurs outils, le premier (detectPPI) permet de
détecter les zones d’interaction entre les protéines. Nous souhaitions étre capables de définir
précisément 1’ensemble des interactions (liaison hydrogeéne, liaison hydrophobe, liaison
ionique et métallique) entre deux chaines peptidiques. Nous nous sommes rendus compte que
toutes les interfaces détectées n’était pas biologiquement pertinentes et avons ainsi développé
un classifieur d’interfaces protéine-protéine (IChemPIC). De part leur nature, les structures de
protéine obtenues par diffraction des rayons X ne reflétent pas forcément leur état en milieux
aqueux phsiologiques. La diffraction des rayons X utilisant la redondance d’informations
présente au sein d’un cristal pur de protéine, 1’état cristallin entraine une compaction des
protéines et donc la création de contacts cristallins artéfactuels en plus des vraies interfaces
biologiquement pertinentes. Il est important de distinguer ces contacts cristallins des
interfaces biologiquemes car les premiers n’ont aucun intérét pharmacologique. Le troisieme
outil (VolSite) développé dutant ma thése permet de détecter et d'analyser I’ensemble des
interfaces présentes a la surface d’une ou plusieurs protéines ; il s’agit de I’évolution d’un
outil préalablement développé au laboratoire mais qui s'est affranchi de la présence d'un
ligand centré sur la cavité a détecter. Ces routines ont été incorporées dans la suite logicielle
IChem, un outil complet de détection et d’analyse des interfaces protéine-protéine.

Dans un second temps, j'ai exploité notre outil de détection de cavité afin générer
automatiquement des pharmacophores déduits de la structure de la cavité cible. Les
pharmacophores sont le plus souvent utilisés de deux maniéres distinctes, soit a partir de
ligands soi a partir de complexes protéine-ligand. Des pharmacophores basés uniquement sur
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la structure de la protéine cible sont possibles mais restent difficilement utilisables car
beaucoup trop complexes. J'ai ainsi développé une méthode de création de pharmacophore
dont les propriétés sont déduites de la structure 3D de la cavité. Je me suis focalisé sur la
méthode a employer afin de sélectionner et optimiser le nombre d'éléments
pharamcophoriques ainsi que leurs types. Cette méthode permet la création de pharmacophore
de taille raisonnable (35 éléments) avec lesquels il est maintenant possible de rechercher de
nouveaux ligands par criblage virtuel. Pour compléter 1’étude des pharmacophore, j'ai testé
plusieurs méthodes de d’alignement ligand-pharmacophores et ai décidé d'employer une
routine basée sur l'alignement de formes. Cette méthode donne de bonnnes poses de ligands
que nous ne sommes malheureusement pas encore capables d'évaluer correctement de maniére
quantitative afin de prioriser une pose unique par ligand.

Dans un troisiéme temps, j'ai utilisé I’ensemble des outils préalablement développés et
les ai appliqués a I’ensemble des structures de la PDB. Nous souhaitions obtenir une
cartographie précise de l'ensemble des PPIs d'intérét pharmacologique de structure 3D
connue. Nous avons mis au point un premier flux de travail automatisé et reproductible
permettant 1’analyse des structures, la détection des interfaces, la prédiction de leur pertinence
biologique puis la détection de cavités droguables a l'interface ainsi qu'a sa proximité
immédiate. En parallelele, flux d’analyse des ligands co-cristallisé a aussi été mis au point.
Grace a I’ensemble des données présentes nous avons pu déterminer des statistiques sur la
taille des interfaces, leurs propriétés mais aussi sur les cavités et les ligands situés a proximité.

Nous avons identifié un grand nombre de cavités droguables allostériques potentielles a

oo

proximité des interfaces ainsi que de nombreuses cavités orthostériques directement situés
interface. Nous proposons une nouvelle ontologie des cavités en 4 catégories (interfaciale,
bordure, orthostérique, allostérique) selon leur localisation par rapport a l'interface ainsi que
leur accessibilité.

Ce travail prouve que beaucoup d’informations disponibles dans la PDB sont restées
jusqu'a présent inexploitées. Le developpement d'outils chemiformatiques dédiés a permis
l'extraction automatique de données cruciales a la mise au point d'une cartographie 3D précise
des PPIs a I'échelle de la PDB. Ce travail ouvre la possibilité d'identifier prochainement des

modulateurs de petit poids moléculaire pour un trés grand nombre d'interfaces.
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ABSTRACT: Protein—protein interactions are becoming a
major focus of academic and pharmaceutical research to
identify low molecular weight compounds able to modulate
oligomeric signaling complexes. As the number of protein
complexes of known three-dimensional structure is constantly
increasing, there is a need to discard biologically irrelevant
interfaces and prioritize those of high value for potential
druggability assessment. A Random Forest model has been
trained on a set of 300 protein—protein interfaces using 45
molecular interaction descriptors as input. It is able to predict
the nature of external test interfaces (crystallographic vs

E?_ IChemPIC Biologically relevant

Random Forest Classifier of biological and
crystallographic protein-protein interfaces
Protein: 1A2K
i Chains: B c
G
® T .o Prediction: int
= @ Interface Area
‘S.\ Number of Interactions:
=

Hydrophobic Contacts: 39
Hydrogen Bonds: 1" (20 %,
lonic Bonds:

Aromatic Interactions: 0

biological) with accuracy at least equal to that of the best state-of-the-art methods. However, our method presents unique
advantages in the early prioritization of potentially ligandable protein—protein interfaces: (i) it is equally robust in predicting
either crystallographic or biological contacts and (ii) it can be applied to a wide array of oligomeric complexes ranging from

small-sized biological interfaces to large crystallographic contacts.

B INTRODUCTION

Protein—protein interactions (PPI) stand at the heart of most
pathophysiological situations in living cells and therefore have
attracted more and more attention in drug discovery.'
Among the many strategies to identify low molecular weight
PPI modulators, rational structure-based approaches have
historically played an important role, notably because of the
possible integration of biophysical screening of fragment
libraries (surface plasmon resonance, isothermal titration
calorimetry, nuclear magnetic resonance spectroscopy, mass
spectrometry) with X-ray structure determination.” To fully
exploit the current structural knowledge on druggable targets, it
is desirable to ascertain their true oligomeric state as well as
their biological relevance. Throughout this article, we will
consider as biological any protein—protein complex with a true
biological relevance and function (e.g, cell adhesion, cell
signaling, immune recognition, transcription). Homo- or
hetero-oligomeric complexes resulting either from crystal
packing or lacking any known biological function will be
considered crystallographic. Unfortunately, inferring the
quaternary structure and biological relevance from atomic
coordinates in the Protein Data Bank (PDB)’ is not
straightforward. For example, the contents of the asymmetric
unit (ASU) deposited in the PDB (the fraction of the
crystallographic unit cell that has no crystallographic symmetry)
can describe one or several copies of a macromolecule but with
no particular indication on which oligomeric state (e.g.,
monomer, dimer) is the most relevant. Likewise, the ASU
may need crystallographic symmetry operations to be applied
before reconstituting the beforehand known biologically
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relevant macromolecular assembly (biological unit). Automated
procedures to discriminate, from 3D structures, crystal from
biologically relevant and stable interfaces are, therefore, needed
to avoid long and costly biochemical experiments such as gel
filtration, light scattering, or equilibrium sedimentation.

As a rule of thumb, crystallographic interfaces are generally
much smaller (<1000 A?) than biologically relevant ones.’
However, this simple rule suffers from many exceptions since
some very important interfaces, like those involving a-helix
recognition sites, may be quite small in size (e.g., 780 A* for the
pS3—mdm2 complex). Many classification methods have been
designed, therefore, to directly predict the oligomeric status of
protein complexes from atomic coordinates.” The very first
approach, reported in 1998 as PQS (protein quaternary
structure file server),” used an empirical scoring function
based on several contributions (interface contact area; number
of interfacial buried residues, salt bridges, and disulfide bonds;
solvation energy of quaternary structure formation). Although
it is not perfect (at least 20% of misclassifications were reported
by the authors themselves), the PQS server paved the way for
many methods that can be grouped in two categories.

A first type of approach, of which PISA” is representative,
relies on first-principles physics to predict the stability of
protein assemblies in solution. For example, PISA explicitly
computes Gibbs dissociation free energies to predict the
biological relevance of a macromolecular assembly. When
applied to a dataset of 218 PDB structures, it achieved a
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remarkable success rate of 90% in predicting true biological
interfaces.” PISA can be considered to be a reference method,
as it is currently used to predict quaternary structures of every
entry of the RCSB PDB web site. A second group of
methods”'*”"” applies linear or nonlinear regression/classi-
fication models to predefined training sets (crystallographic,
biological) in order to predict the quaternary structure of
external test sets. Many geometrical and chemical complemen-
tarity descriptors of the interface can be used to discriminate,
with comparable accuracies (ca. 85-90%), crystal from
biological contacts. Very often, these methods (e.g, IPAC,’
DiMoVo,"? or NOXClass'®) utilize a machine learning
algorithm (support vector machine, decision trees, Bayesian
inference) trained on atom or residue-based contact vectors to
decide which parameter set is the most adequate for an optimal
classification. Residue conservation of interface core resi-
dues'®" can be added to the above-cited descriptors, as, for
example, in EPPIC,” to highlight the importance of highly
buried core residues at biological interfaces.

To allow them to be compared, most studies have relied on a
limited number of benchmarking datasets,'>*"** which turned
out to be biased toward small crystal and high-affinity large
biological interfaces.”'”*” As a consequence, most current
classification methods have a much lower accuracy when
applied to a set of interfaces (biological, crystal) with an
equivalent distribution of interface areas. A recently designed
dataset”” paid attention to select true biological and crystallo-
graphic interfaces with a hard cutoff with respect to interface
areas (mostly above 1000 A?). Since we finally aim at
identifying potentially ligandable protein—protein interfaces
that may be small in size,”” none of the existing datasets appears
to be satisfactory. We therefore designed a hand-curated dataset
(FDS set) of 200 biologically relevant nonredundant protein—
protein complexes of known X-ray structure, which was further
supplemented by an equivalent number of 200 crystal interfaces
filtered to span a comparable interface area range. We next used
a machine learning algorithm (Random Forest) and 45
molecular interaction descriptors to train a model that, when
applied to several external test sets, achieves good accuracy and
robustness in distinguishing between crystallographic and
biologically relevant interfaces, whatever their size.

B COMPUTATIONAL METHODS

Datasets. FDS Dataset. Crystallographic interfaces were
retrieved from two previously reported datasets.””*" First, 141
known monomeric proteins from the Bahadur dataset” with a
crystalline interface area in the 400—1200 A’ range were
retrieved as follows. Atomic coordinates of the asymmetric unit
were retrieved from the RCSB Protein Data Bank, and one unit
cell was reconstructed for each entry using AmberTools14.”*
For each structure and all possible pairs of chains, the interface
area IA (eq 1) was measured with MSMS™ after removing
nonprotein atoms (solvent, ligands, ions) and using a probe
radius and vertex density of 1.4 A and 2.0/A% respectively.

_ (ASA, + ASA;) — ASA,
2

e ©))
where A, is the interface area between chains A and B, ASA,
is the solvent-accessible surface area of isolated chain A, ASAy is
the solvent-accessible surface area of isolated chain B, and
ASA,; is the solvent-accessible surface area of complex AB.
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The largest interface area was kept for each PDB entry. The
Bahadur set was then complemented by 82 interfaces from the
DCxtal dataset”® selected to present an interface area in the
1000—1500 A* range for proteins reported to be monomeric in
solution. The corresponding PDB files were directly retrieved
from the EPPIC web site (http://www.eppic-web.org/ewui/
#downloads). Protein redundancy was removed by keeping
only one entry in cases where sequence identity between two
different entries was above 70%, according to RCSB
redundancy rules.”® The final set of 200 nonredundant
crystallographic interfaces (PDB identifier, protein name,
chains, interface area, resolution, protein classification) is
given in Table SI.

A collection of 200 biologically relevant nonredundant
protein—protein interfaces (<70% pairwise sequence identity
between any two chains) was manually assembled from the
literature according to the following sources: (i) the recently
described DCbio dataset™ of homodimeric biological interfaces
(74 PPIs); (ii) the 2P2I database® that archives heterodimers
for which an X-ray structure exists for the complex, each
individual monomer in the free state, and one partner is bound
to a low molecular weight inhibitor (10 PPIs); (iii) existing
small molecular weight inhibitors”” for biologically relevant
PPIs of known X-ray structure (five PPIs); (iv) cancer-related
PPIs' of known X-ray structure (eight PPIs); (v) the PPI
affinity database™ of biologically relevant PPIs with available X-
ray structures (complex, free state) and known experimental
binding constant (54 PPIs); (vi) the dataset of “hot loops”
mediated PPIs*” of known X-ray structures (20 PPIs) and (vi)
diverse biologically relevant heterodimeric proteins (18 PPIs).
The biological relevance of all of these 200 complexes was
checked manually according to known literature data.”****"~*’

The corresponding structures were downloaded from the
Protein Data Bank (PDB). Chains participating in the interface
were selected manually according to the above-cited sources.
After removing nonprotein atoms (solvent, ligands, ions), the
buried interface area for the selected chains was computed as
previously described in eq 1. The full set of 200 biological
interfaces (PDB identifier, protein names, chains, interface area,
selection mode, resolution, protein classification) is given Table
S2.

The above-described 400 interfaces (crystallographic, bio-
logical) were randomly split into two sets (75% in the training
set; 25% in the test set), maintaining an equal proportion of
crystallographic and biological interfaces in each subset.
Caution was also given to ascertain an equivalent distribution
of interface area sizes in both sets. Following the above-
described procedure, different random splits (75/25) do not
influence the obtained results (best RF parameters, F-measure
of the best RF models on the validation and external test sets;
data not shown). Training or test set membership is given in
Tables S1 and S2.

IPAC,’ Ponstigl,m and Bahadur®' datasets were retrieved
from the PDB according to PDB identifiers and chain names
described in the literature.

Atomic Coordinates. For each input PDB file, hydrogen
atoms were added with Protoss,* a recently described method
for the placement of hydrogen coordinates in protein—ligand
complexes that takes tautomers and protonation states of both
protein chains into account. The method generates the most
probable hydrogen positions on the basis of an optimal
hydrogen-bonding network using an empirical scoring function.
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Full atomic coordinates of FDS dataset entries can be
downloaded at http://bioinfo-pharma.u-strasbg.fr/IChemPIC.

Protein—Protein Interface Descriptors. Interfaces be-
tween protein chains are detected following a three-step
procedure as follows. First, the interface is broadly defined by
counting pairwise distances between all atoms of different
chains and keeping only patches for which at least 20
interatomic distances are shorter than S A. In a second step,
all intermolecular interactions (hydrophobic, aromatic, hydro-
gen bond, ionic bond) between the two selected chains are
precisely defined using standard parameters of the in-house
developed IChem toolkit.”" The set of topological rules, used to
define interactions based on atom pair-dependent distances and
angles, is explicitly described in the previous report describing
the IChem toolkit.>' In the third step, an interaction
pseudoatom (IPA) is placed at the mid-distance of each atom
pair in an interaction according to IChem. Please note that
hydro;)hobic IPAs are clustered if they are less than 1.0 A
apart.”" If the total number of IPAs is higher than or equal to 3,
then the interface is saved; otherwise, it is discarded. Last, a
vector of 45 real numbers is generated for each remaining
interface describing its size, chemical complementarity, and
buriedness (Table S3). The final vector has the following form:

o the total number of IPAs (one parameter);

o the percentage of each of the four interaction types (four
parameters);

the distribution (in counts), for each interaction type, of
the buriedness of the corresponding IPAs, binned in 10
intervals from 25 to 100% burial (4 x 10 40
parameters). Buriedness of each IPA was inferred as
previously reported®” by computing the proportion of
120 regularly spaced 8 A long rays having their origin at
the IPA 3D coordinates and intersecting the surrounding
protein surface.

Altogether, the complete process comprising hydrogen atom
addition, interaction detection, and descriptor generation is fast
enough (a few seconds per PDB entry) to be applied to the
entire PDB.

Random Forest Model. Random Forest (RF) models were
built using the RandomForest 4.6-7 library®® in the R statistical
package.”” A total of 500 decision trees (ntree parameter) were
trained on all descriptors of the training set (n = 300), but the
number of variables (mtry parameter) at each splitting node
was varied. A S-fold cross-validation procedure was used to
randomly split the training set five times into an internal
training (four-fifths of the dataset) and an internal test set (one-
fifth of the dataset) and analyze the predictive power of RF
models on the nonoverlapping five internal test sets. For each
mtry value (integer between 2 and 10), the corresponding
cross-validated model was assessed according to the following
statistical parameters

sensitivity = TP/ (TP + FN)

precision = TP/(TP + FP)

specificity = TN/(TN + FP)

accuracy = (TP + TN)/(TP + FP + TN + FN)

F-measure = 2 X (sensitivity X precision)

/ (sensitivity + precision)

2007

where TP are true positives (biological interfaces predicted
biological), FP are false positives (crystallographic interfaces
predicted biological), TN are true negatives (crystallographic
interfaces predicted crystallographic), and FN are false
negatives (biological interfaces predicted crystallographic)

The best mtry value was used (i) to derive 10 RF models
from the full training set (300 complexes) by varying the
random seed number and (ii) these 10 RF models were applied
to predict the nature of interfaces in the 100 entries of the
external test set.

Comparison to Other Methods. IChemPIC predictions
were done using the IChemPIC server (http: //bioinfo-pharma.
u-strasbg.fr/IChemPIC) and rely on the majority of the 10
independent RF predictions (biological or crystallographic) to
annotate an input protein—protein interface. In cases where
there are an equal number of predictions for both types, the
interface is predicted to be crystallographic. IChemPIC was
compared to four state-of-the-art methods (NOXClass,"
PISA,” DiMoVo,"* and EPPIC)* on three external test sets.
For each of these tools, standard parameters available at their
online version were chosen, giving as input either the PDB
code and chain letters (biological interfaces) or the above-
prepared atomic coordinates for the two chains (crystallo-
graphic interfaces). For the NOXClass multistage SVM
classification (http://noxclass.bioinf.mpi-inf.mpg.de/), the pair-
wise class probabilities (biological, crystallographic) were
retained for each pair of protein chains, using three descriptors
(interface area, interface area ratio, area-based amino acid
composition). In PISA (http://www.ebi.ac.uk/pdbe/pisa/), the
interface was defined as biological if the corresponding interface
was predicted to be stable among all proposed assemblies.
Otherwise, the interface was predicted to be crystallographic.
Using the DiMoVo prediction method (http://albios.saclay.
inriafr/dimovo), a score above 0.50 was used to assign a
potential biological function to an interface. Last, EPPIC
predictions (Bio or Xtal) were done on a web server (http://
www.eppic-web.org/ewui/) and based on the consensus voting
scheme (final score) based on four descriptors (core sizes,
geometry, core-rim, core-surface) of the input interface.

B RESULTS AND DISCUSSION

Setting Up the FDS Dataset of Ligandable Protein—
Protein Interfaces. None of the existing benchmark datasets
is suitable for the purpose of discriminating crystallographic
from biologically relevant protein—protein interfaces. On one
hand, historical datasets'”'>*"** are biased by having a majority
of crystallographic entries of much lower interface areas (S00—
1000 A?) than those of true biologically relevant entries (1000—
3000 A?). On the other hand, the DC dataset™ corrected this
discrepancy by selecting entries with an homogeneous
distribution of interface areas (1000—1500 A?) that, however,
still falls outside the applicability domain of many biologically
important PPIs (e.g, pS3—mdm2 interface of 780 A% PDB ID:
1YCR) modulated by low molecular weight inhibitors.”> Both
the Bahadur’' and DC datasets, which do not overlap much
with respect to the interface area range, were therefore merged
to enlarge the applicability domain of our next predictions.
Lastly, we manually collected an additional set of 115
biologically relevant PPIs to yield a final number of 400
interfaces, which was split into training (75% of data) and test
(25% of data) sets. Inspecting the respective distribution of
interface area sizes in both sets reveals no major bias, although
biological interfaces remains, on average, slightly larger than
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crystallographic ones (Figure 1). We will demonstrate later that
the size of the interface has no major influence in discriminating
crystallographic from biological interfaces.
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Figure 1. Distribution of interface areas in the designed FDS training
and test sets (Xtal, crystallographic interface; Biol, biological interface).
Boxes delimit the 25th and 75th percentiles; whiskers delimit the Sth
and 95th percentiles. The median and mean values are indicated by a
horizontal line and a square in the box. Crosses delimit the 1% and
99th percentiles, respectively. Minimum and maximum values are
indicated by a dash.

About 80% of crystallographic complexes (both in the
training and test sets) relate to enzymes with well-defined
catalytic sites, with the rest being dominated by protein
transporters. The proportion of enzymes in the biologically
relevant set is lower (about 55% in both the training and test
sets), with the biologically relevant set exhibiting more
examples of recognition complexes involved in important
biological processes (e.g, immune recognition, cell signaling,
cell adhesion, transcription).

The average resolution of crystallographic and biologically
relevant complexes was 1.84 + 035 and 2.10 + 0.58 A,
respectively. A large majority of structures (ca. 75%) in both
sets was solved at high resolution (<2.5 A). In the protein
preparation step, we ascertained that all side chains
participating in the interface were fully described. None of
the herein described 400 PDB complexes present an
incomplete side chain at the selected protein—protein interface.
Along the same line, we checked that no small ions could
stabilize the interface of the herein described complexes.
Handling water molecules at the interface is tricky since water
molecules are absent in 184 of the 400 complexes. We therefore
decided to remove all water molecules, whatever their location,
resulting in a unique preparation protocol and a fair
comparison to other methods that do not take bound waters
into consideration. Coming back to the 400 raw PDB files, it
appears that bound waters are not frequently present at
protein—protein interfaces. When this is the case (30% of 216
entries with explicit water molecules), bound waters typically
engage in no more than a single hydrogen bond. We therefore
do not believe that the decision to remove bound waters really
affects the accuracy of our classifier.

PPl Detection and Descriptor Generation. We first
detect the interface between two protein chains and then
explicitly compute all nonbonded interactions (hydrophobic
contacts, aromatic interactions, hydrogen, and ionic bonds) and
generate a pseudoatom (IPA) for describing each interaction
(Figure 2). A complex molecular assembly of thousands of
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Figure 2. Interface (PDB ID: 4NNY) between interleukin-7 receptor
subunit alpha (tan, chain C) and cytokine receptor-like factor 2 (blue,
chain C). Six interaction pseudoatoms (spheres) are placed at the mid-
distance of each pair of atoms in the interaction and assigned a
property corresponding to the interaction (hydrophobic, aromatic,
hydrogen bond, ionic bond). The right inset is a zoomed view of a
single ionic bond that explicitly displays the interacting side chains.

atoms can be represented, therefore, by a much simpler set of a
few IPAs (60—70 on average) describing both the nature and
buriedness of the corresponding interaction. Since we explicitly
consider hydrogen bonds, it is worth noting that all hydrogen
atoms are added to the raw PDB files while optimizin% the
tautomeric and protonation states protein’s amino acids.’
Although biological interfaces exhibit, on average, many more
IPAs (86 + 40) than crystal packing contacts (S0 + 30), the
average percentages of interaction types are rather similar in
both sets (Table 1). As expected, hydrophobic contacts are

Table 1. Average Percentage of Interaction Types at
Crystallographic and Biological Interfaces

protein—protein interface”

interaction type crystallographic biological

hydrophobic 78.06 + 15.70 83.32 £ 9.71
aromatic 0.24 + 1.14 0.10 £ 0.32
hydrogen bond 17.97 + 12.11 13.51 + 7.24
ionic bond 3.65 £ 5.80 3.00 + 3.87

“Statistics from 27 186 protein—protein interactions (200 crystallo-
graphic and 200 biological interfaces from the FDS set) detected by
IChem.”

dominant and represent about 80% of all interactions, although
they are more populated in biological interfaces (Table 1).
Aromatic interactions (edge-to-face and face-to-face) are quite
rare, but they are more populated in the crystallographic set,
thereby confirming previous observations.”' Hydrogen bonds
are more frequently found in crystallographic interfaces than in
biological assemblies. However, the quality of these hydrogen
bonds (e.g, strength, accessibility) is not taken into account in
the current analysis. Lastly, the frequency of ionic bonds is
rather constant for the two interface categories (3%). Since
metal chelation is rarely found at protein—protein interfaces,
this interaction type was discarded from the descriptor set to
define the shortest possible input vector for RF modeling.
Random Forest Binary Classification Model. Random
Forest (RF) is a highly versatile ensemble machine learning
method for classification and regression that relies on many
independent decision trees.”® Each tree is created by bootstrap
samples of the original training data using a randomly selected
subset of features. Then individual trees are combined through
a voting process to provide an unbiased prediction. In contrast
with single-decision trees, random forests have a low variance
and very few biases. Considering that random forests have few
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parameters to tune (number of trees, number of variables at
each split), the method is easy to use in order to produce a
reasonable model fast and efficiently. Among its many potential
applications, RF is increasingly used in life sciences as either a
classifier or nonlinear regression method.””

In our application, the number of trees (ntree) was fixed to
500. Besides it having a clear influence on the overall
computing time, variations of this parameter did not influence
the herein presented results. The number of variables randomly
sampled as candidates at each split (mtry parameter) was
systematically varied from 2 to 10, and each model was
repeated five times by varying a random seed number. Using a
mtry value equal to 4, Random Forest modeling leads to a
stable and robust S-fold cross-validated model (F-measure =
0.776 + 0.09) when applied to the FDS training set (Table 2).

Table 2. Statistics of the Best RF Model on the FDS Dataset

parameter training set (n = 300)“ external set (n = 100)"
sensitivity 0.794 + 0.017 0.728 £ 0.014
precision 0.759 + 0.010 0.745 + 0.018
specificity 0.747 + 0.014 0.750 + 0.025
accuracy 0.771 £ 0.009 0.739 + 0.012
F-measure 0.776 + 0.009 0.736 + 0.010

“Mean and standard deviation of the best S-fold cross-validated model
(ntree = 500, mtry = 4), repeated five times using different random
seed numbers. “Mean and standard deviation of the best RF model
(ntree = 500, mtry = 4) at predicting the nature of 100 protein—
protein interfaces, repeated 10 times using different random seed
numbers.

The model is equally good at predicting either biological
contacts (sensitivity) or crystallographic interfaces (specificity).
When applied to the FDS external set of 100 PPIs, a moderate
drop in accuracy (0.739 # 0.012) and F-measure (0.736 +
0.010) is observed, but the model is still robust at predicting the
two categories of PPIs equally well (sensitivity = 0.728 + 0.014;
specificity = 0.750 = 0.02S; Table 2).

To be sure that observed data are neither the result of
overtraining nor chance correlation, we first performed a y-
scrambling test by randomly assigning the dependent variable
(crystallographic or biological) to each of the 400 protein—
protein interfaces of the FDS training and test sets. As expected,
the F-measure of the corresponding RF models (same
parameters as above) significantly dropped to mean values of
0.515 and 0.502 when applied to the training and external test
sets, respectively. We next computed 45 RF models (ten runs/
model) in which the values of the 45 descriptors were
iteratively scrambled for each entry of the training set. For all
4S5 descriptors, the previously computed 300 values of
descriptor d; were just randomly assigned to the 300 objects
(training interfaces). Analyzing the variations in the mean F-
measure for the training set permits the identification of the
most important parameters among our 4S5 descriptors (Figure
3).

Out of the 45 descriptors, 11 have a real contribution to the
global model (>1% decrease in F-measure) when their
respective values are scrambled. The most important
parameters are clearly the number of interaction pseudoatoms
(nPTS) and the percentage of fully buried hydrophobic
contacts (hydro7—hydrol0 descriptors; Table S3).

Permutating the values taken by the total number of IPAs
(nPTS) decreases the overall F-measure of the model by 1.6%
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Figure 3. Influence of the permutation of descriptor values on the
mean F-measure of 10 RF models obtained with the best cross-
validated parameters (ntree = 500, mtry = 4) and trained on the FDS
training set.

(Pigure 3). Although accessible hydrophobic contacts
(hydrol—hydro6 parameters) do not really contribute to the
overall F-measure, the more buried hydrophobic interactions
(hydro7—hydro10 parameters) are truly critical. Remarkably,
permutating the value of the hydro10 parameter (percentage of
100% buried hydrophobic contacts) decreases the F-measure of
the RF model by almost 3% (Figure 3). Accordingly,
hydrophobic core interface residues, defined as buried by at
least 95%, have recently been described as key determinants of
biological interfaces.”” Of less importance, but still significant, is
the percentage of other interactions (hydrogen bonds, ionic
bonds) and their buriedness, which tends to be higher in
biological interfaces than in crystal packing contacts (Figure 3).
Scrambling the values of four out of the 45 parameters (hydroS,
Aro8, Aro9, Hbond?7) leads to slightly better RF models. The
largest observed decrease in F-measure (scrambling values of
hydro8 parameter) is only by 5% and is probably explained by
compensatory effects upon removal of the most critical
descriptor. To demonstrate this assumption, we suppressed
the hydro8 descriptor from the vector, recomputed a RF model
on the set of n — 1 descriptors (F-measure of 0.705 on the
training set), and iteratively scrambled again the n — 1
descriptor values. This time, the most critical descriptor is
hydro10 (the former second most important descriptor starting
from the full set of descriptors), with a much higher mean
decrease in the F-measure (11.3 + 3.3%). This observation
perfectly illustrates our hypothesis and the compensatory effect
of the hydrol0O parameter upon removing the influence of the
hydro8 descriptor.

The weaker contribution of the hydro9 parameter (count of
hydrophobic IPAs buried is between 91.6 and 100%) with
respect to that of the related hydro8 (count of hydrophobic
IPAs buried is between 83.3 and 91.6%) and hydro10 (count of
100% buried hydrophobic IPAs) parameters is intriguing and
explained by a peculiar distribution of these parameter values
when comparing crystallographic and biologically relevant
interfaces (Figure 4). Hence, the distributions of hydro8 and
hydrol0 counts are clearly different when examining the two
subsets of interfaces (shift to higher hydro8 values in
crystallographic contacts; shift to higher hydrolO values in
biological interfaces). Intriguingly, the hydro9 parameter values
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Figure 4. Distribution of the hydro8—hydrol0 parameter counts
across the FDS training set (green: biological interfaces; red:
crystallographic interfaces).

are similarly distributed (Figure 4), thereby explaining why it
contributes less to the RF cross-validated model.

To confirm the above-suggested importance of some
interface parameters (nPTS, hydro7—hydrol0), we ranked
the 300 training interfaces by decreasing value of each
descriptor (45 lists of PDB entries ranked by decreasing counts
for the current descriptor under investigation). We next
performed a binary classification of the 300 entries (crystallo-
graphic, biological) from the ranks obtained in these 45 lists. A
perfect descriptor would lead to a classification (ROC AUC =
1) in which all 150 biological interfaces are ranked higher than
the first ranked crystallographic interface. Using the ROC
classification, we can estimate the relative importance of each
descriptor in discriminating the two categories. Any single
descriptor-based classification with an AUC higher than 0.7
(Figure 5) indicates that this descriptor is particularly efficient.
This analysis confirms the crucial role of two parameters
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Figure 5. Area under the ROC curve for a binary dlassification
(crystallographic or biological) of 300 interfaces (FDS training set)
based on decreasing counts of each of the 45 IChemPIC descriptors.

(nPTS, hydrol0) in the discrimination of the two interface
subsets. This complementary analysis also shows that counts
observed for three descriptors (Hbond, hydro7, and hydro8)
are, indeed, higher for crystallographic contacts (ROCscore <
0.50) and therefore also helps to discriminate the two sets of
PDB entries. Importantly, using the interface area as a
descriptor does not lead to a good binary classification
(ROCscore = 0.59), confirming that the FDS training set is
really well-balanced with respect to this important criterion,
which has been overlooked in the past.

Comparison of IChemPIC to Existing Methods.
IChemPIC was compared to four state-of-the-art methods
(NOXClass," PISA,” DiMoVo,'” and EPPIC*’) with regard to
their ability to predict the nature of PPIs originating from three
different external test sets.

Regarding the diversity of interfaces in the herein presented
FDS dataset, it is not surprising that the observed accuracy of
existing methods is significantly lower than that reported in the
seminal reports describing them.”'>'*** NOXClass is remark-
ably sensitive (good true positive rate), but this comes at the
cost of a much lower specificity (low true negative rate). In
contrast, EPPIC and, to a lesser extent, DiMoVo are specific in
detecting crystal assemblies (specificity = 0.949), but they
perform less well in recognizing biological contacts (low
sensitivity), notably when the interface area is small (<750 A%
Table S4). PISA, the method currently used in predicting
macromolecular assemblies in the RCSB PDB, is the most
stable with respect to all statistical parameters taken into
account (Table 3).

Altogether, IChemPIC still appears to be the method of
choice for a binary classification of protein—protein interfaces
since it provides constant and robust performance at predicting
both biological and crystal interfaces, whatever their size (see
full predictions in Table S4). On one hand, it is inferior to
NoxClass and PISA at detecting biological contacts, but it is
much more accurate at predicting crystallographic interfaces.
On the other hand, IChemPIC is less accurate than EPPIC at
predicting crystallographic contacts, but it is significantly better
at predicting biologically relevant interfaces (Table 3). Out of
the five methods tested here, IChemPIC is notably the only
method able to predict, with a similar good accuracy, either
small biological interfaces or large crystal contacts.
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Table 3. Comparison of IChemPIC and State-of-the-Art
Methods’ Abilities To Predict the Status (Crystallographic,
Biological) of the FDS External Test Set (n = 100)

method
statistics IChemPIC” NOXClass DiMoVo”  PISA°  EPPIC?
sensitivity 0.740 0.878 0.480 0.771 0.667
precision 0.755 0.694 0.857 0.725 0.909
specificity 0.760 0.525 0.733 0.674 0.949
accuracy 0.750 0.719 0.538 0.725 0.826
F-measure 0.747 0.775 0.61S 0.747 0.769

“Consensus predictions (biological or crystallographic) out of 10
independent RF models. In cases where there is an equal number of
predictions for both properties, the interface is predicted to be
crystallographic. Predictions were obtained using the IChemPIC server
(http:/ /bioinfo-pharma.u-strasbg.fr/IChemPIC). bThirty five entries
common to the DiMoVo and FDS training sets were excluded. “Two
entries (1iSh, 1y7q) could not be predicted by PISA (crystallographic
data is either absent or incomplete); seven additional entries common
to the PISA and FDS training sets were excluded. “Twenty nine
entries common to the EPPIC and FDS training sets were excluded.

Since IChemPIC has been trained on the FDS dataset, it is
fair to compare its performance on totally independent external
test sets. We therefore chose three additional external datasets
(IPAC, Ponstigl,"’ and Bahadur”') containing PDB entries not
present in the FDS training set. The first two sets have notably
been used for benchmarking most tools similar to IChemPic.
As stated before,"”*° the Bahadur and Ponstingl datasets are
not very informative because they have a strong bias toward
small crystallographic and large biological contacts. As a
consequence, all programs including IChemPIC achieve an
excellent accuracy (0.85—0.95) at predicting the nature of these
entries (Table 4). IChemPic notably exhibits the highest E-
measure (0.932 and 0.870, respectively) on these two external
sets, which indicates its robustness at predicting biological and

crystallographic interfaces equally well (see full predictions in
Tables S5 and S6).

The last external set (IPAC validation set 3)” is composed of
66 heterodimeric proteins of known crystal structure and
experimentally determined binding constants. It notably
permits the sensitivity of the method at predicting biological
interfaces of quite different strengths to be evaluated. Out of
the five methods, NOXClass presents the highest performance
(only sensitivity is reported since crystallographic interfaces are
lacking in this set) when applied to this dataset (Table 4).
Surprisingly, this method never fails when it is applied to the
lowest affinity complexes (Kyq < 107 M; Table S7). Given the
propensity of NoxClass to overpredict biological interfaces in
the previously examined external test sets (sensitivity >
precision; Tables 3 and 4), its excellent performance should be
considered with extreme caution. Other methods are indeed
sensitive to the strength of the corresponding complexes and
logically failed more often for low-affinity than for high-affinity
complexes (Table S7). Among these methods, IChemPic
clearly exhibits the highest accuracy (Table 4).

Practical Application of IChemPIC to PDB Biological
Unit Files and Reasons for Its Failure. IChemPIC was next
applied to classify 4950 nonredundant interfaces from the
Dockground resource of protein—protein X-ray structures.’® All
of these structures are based on the proposed biological unit file
(Biounit) inferred from PISA predictions and provided online
by the RCSB PDB. About 30% (1493 in total) of these
interfaces are, nevertheless, predicted as crystallographic by
IChemPIC (Table S8). These discrepancies result from three
major causes (Figure 6).

First, our method, like any other, is far from being perfect
and fails in ca. 25% of test cases (recall Tables 3 and 4). In
many of these cases, the error occurs because IChemPIC
predicts interfaces and not quaternary structures. Hence, two
chains may form a stable interface depending on the precise
context of a much larger oligomeric state. For example, the
isolated interface between CTLA-4 (chain B) and B7-2 (chain

Table 4. Performance of IChemPIC with Respect to State-of-the-Art Methods at Predicting the Status (Crystallographic,

Biological) of Three Independent Benchmark Sets

no. of interfaces

test set crystallographic statistics

Bahadur” 20 122

biological
sensitivity
Pprecision
specificity
accuracy
F-measure
Ponstingl” 67 76 sensitivity
precision
specificity
accuracy
F-measure

IPACdb" 0 66 sensitivity

method

IChemPIC“ NOXClass DiMoVo PISA EPPIC
0.902 0.938 na.“ 0918 0.885
0.965 0.892 n.a. 0.875 0.973
0.800 0.450 n.a. 0.556 0.850
0.887 0.855 n.a. 0.835 0.880
0.932 0915 na. 0.896 0.927
0.882 0919 0.714 na.® 0.895
0.859 0.760 0.714 na. 0.840
0.831 0.731 0.930 na. 0.806
0.858 0.822 0.887 n.a. 0.853
0.870 0.832 0.714 n.a. 0.866
0.706 0.946 0.394 0.682 0.636

“Consensus predictions (biological or crystallographic) out of 10 independent RF models. In cases where there is an equal number of predictions for
both properties, the interface is predicted to be crystallographic. Predictions were obtained using the IChemPIC server (http://bioinfo-pharma.u-
strasbg.fr/IChemPIC). ®One-hundred forty two PDB structures (122 biological, 20 crystallographic) not present in the IChemPIC training set.
Entries present in NoxClass (n = 25), DiMoVo (n = 142), and PISA (n = 63) training sets were removed when the corresponding method was used
for prediction. “Not applicable because DiMoVo was trained on the Bahadur set. “One-hundred forty three PDB structures (76 biological, 67
crystallographic) not present in the IChemPIC training set. Entries present in NoxClass (n = 14), DiMoVo (n = 72), and PISA (n = 109) training
sets were removed when the corresponding method was used for prediction. “Not applicable because PISA was trained on the Ponsting] set. 7 Sixty six
PDB heterodimeric structures (validation set 3) of known binding constants. Entries present in IChemPic (n = 15) and NoxClass (n = 10) training
sets were removed when the corresponding method was used for prediction.
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Chain C

Chain D

(b)

(c)

Figure 6. Typical examples of Dockground biological assemblies
predicted crystallographic by IChemPIC. (A) CTLA-4 (chains A, B)
/B7-2 (chains C, D) complex (PDB ID 1i85); (B) human phosducin-
like protein 2 with bound PEG molecules (red ball and sticks) at the
interface (PDB ID 3evi); (C) plastocyanin from the cyanobacterium
Synechocystis sp. PCC 6803 (PDB ID 1pcs).

D) is predicted to be crystallographic (PDB ID 1I8S; interface
= 621 A% nPTS = 42) since it exists only within a larger
network (Figure 6A), explaining the periodic organization of
these molecules within the immunological synapse at the cell
surface.”” Second, many of the small-sized interfaces (149 are
smaller than 500 A?) are a clear consequence of the
crystallization conditions, with either a salt or a precipitant-
facilitating molecule at the interface. This case is nicely
exemplified by the X-ray structure of human phosducin-like
protein 2*° (PDB ID 3EVI; interface = 422 A% nPTS = 21),
which presents two diethylene glycol molecules stabilizing an
artifactual homodimeric interface (Figure 6B). Lastly, strong
crystal packing may produce artificial interfaces, as shown here
by the predicted biological assembly of a cyanobacterium
plastocyanin (Figure 6C) with a perfect C, symmetry (PDB ID
1PCS; interface 395 A% nPTS = 6) but no biological
relevance.”'

From the present exercise, we estimate that ca. 15% of PDB
biological units have a proposed oligomeric state that is likely to
be biologically irrelevant. We therefore strongly suggest the
usage of an accurate classifier like IChemPIC to reduce the
number of such erroneous biological assemblies and enable the
design of PPI inhibitors on biologically relevant interfaces.

2012

B CONCLUSIONS

We present a novel computational approach (IChemPIC) to
distinguish between biologically relevant and crystallographic
protein—protein interfaces. Since none of the existing bench-
mark datasets are satisfactory at this, notably for predicting
small-sized ligandable biological interfaces, novel training and
external test sets (FDS set) were defined and manually curated
to afford (i) a comparable coverage of interface areas for
existing crystallographic and biological interfaces and (i) an
application to small-sized protein—protein interfaces known to
be modulated by low molecular weight drug-like compounds.

By describing the interface with a simple vector of 45 real
numbers focusing on intermolecular interactions, machine
learning methods can be used to classify interfaces as either
crystallographic or biological. Due to its simplicity and low
parametrization level, the Random Forest machine learning
method was chosen to derive a model that distinguishes
crystallographic from biological interfaces with a robust
accuracy close to 80%. With respect to current state-of-the
art methods, IChemPIC is the only approach able to predict
with the same good accuracy the two categories of protein—
protein interfaces, whatever the external test set. There are
many advantages of using IChemPIC with respect to other
methods: (i) the implicit inclusion of hydrogen atoms allows
for using hydrogen bonds as descriptors for model develop-
ment; (ii) the method can be applied to interfaces presenting
post-translational modifications; (iii) the performance is
independent of the size of the interface; and (iv) the
applicability domain is large, ranging from small biological
protein—protein interfaces (500 A%) to larger crystallographic
contact (1500 A?).

We should acknowledge, however, that IChemPIC is
currently parametrized to treat interfaces between two protein
chains. For example, the three possible interfaces (AB, BC, AC)
of an ABC heterotrimer will be predicted to be either
crystallographic or biological, but no prediction will be made
for interfaces between one chain and the two others. In other
words, no prediction is made for the entire assembly, as in
PISA, for example. This drawback explains some of the false
negatives observed by IChemPIC and could be easily corrected
by enabling the detection of all possible interactions between a
single chain and its full protein environment. However, since
our method is primarily aimed at further detecting all PDB
biologically relevant interfaces amenable to small molecule
disruption or stabilization, we prefer to restrict IChemPIC to
treat only two-chain interfaces in order to exactly localize the
interface to be targeted by a potential PPI modulator.
IChemPIC can be used online (http://bioinfo-pharma.u-
strasbg.fr/IChemPIC) starting from either a PDB identifier or
a user-provided PDB input file.
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Abstract High affinity ligands for a given target tend to
share key molecular interactions with important anchoring
amino acids and therefore often present quite conserved
interaction patterns. This simple concept was formalized in
a topological knowledge-based scoring function (GRIM)
for selecting the most appropriate docking poses from
previously X-rayed interaction patterns. GRIM first con-
verts protein—ligand atomic coordinates (docking poses)
into a simple 3D graph describing the corresponding
interaction pattern. In a second step, proposed graphs are
compared to that found from template structures in the
Protein Data Bank. Last, all docking poses are rescored
according to an empirical score (GRIMscore) accounting
for overlap of maximum common subgraphs. Taking the
opportunity of the public D3R Grand Challenge 2015,
GRIM was used to rescore docking poses for 36 ligands (6
HSP90a inhibitors, 30 MAP4K4 inhibitors) prior to the
release of the corresponding protein—ligand X-ray struc-
tures. When applied to the HSP90o dataset, for which
many protein—ligand X-ray structures are already available,
GRIM provided very high quality solutions (mean
rmsd = 1.06 A, n = 6) as top-ranked poses, and signifi-
cantly outperformed a state-of-the-art scoring function. In
the case of MAP4K4 inhibitors, for which preexisting 3D
knowledge is scarce and chemical diversity is much larger,
the accuracy of GRIM poses decays (mean rmsd = 3.18 A,
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n = 30) although GRIM still outperforms an energy-based
scoring function. GRIM rescoring appears to be quite
robust with comparison to the other approaches competing
for the same challenge (42 submissions for the HSP90
dataset, 27 for the MAP4K4 dataset) as it ranked 3rd and
2nd respectively, for the two investigated datasets. The
rescoring method is quite simple to implement, indepen-
dent on a docking engine, and applicable to any target for
which at least one holo X-ray structure is available.

Keywords Docking - D3R - Drug discovery data
resource - Grand challenge

Introduction

In absence of structural data on protein ligand complexes
(X-ray diffraction, nuclear magnetic resonance spec-
troscopy, electron microscopy), molecular docking remains
the computational method of choice to predict ligand
binding modes [1]. Since the pioneering work of Kuntz
et al. [2], over 100 different docking software have been
reported [1, 3—6] that progressively addressed most of the
issues related to this computational exercise: full ligand
flexibility, accurate configurational sampling of the ligand
in the protein binding site, partial protein flexibility,
implicit or explicit solvation, prediction of relative or
absolute binding (free) energies. Many benchmarking
studies [7-11] comparing different algorithms across
diverse datasets of protein—ligand X-ray structures, agree
on the point that state-of-the-art docking algorithms are
very efficient in predicting ligand poses: a relative position
of a ligand with respect to a protein and a conformation of
a protein-bound ligand. Unfortunately, these good solutions
are hardly distinguishable from a much larger set of
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incorrect proposals (decoys) using any predicted energy
criterion. Considering success in pose prediction as the
ability to predict poses with root-mean square deviation
(rmsd) from X-ray solution below 2 A, most docking tools
present in the best cases (self-docking) a success rate close
to 70 % when considering the top-1 (best scored) solution
[12]. Considering all possible solutions, this rate raises
typically up to 85-90 % [12] thereby demonstrating that
the best scored pose is not always the most reliable one. If
handling multiple docking solutions is feasible albeit
cumbersome for one particular ligand, this approach cannot
be followed upon in silico screening a large compound
library. Reasons accounting for repetitive failures in pre-
dicting either binding free energies or relative potency
ranks [9, 12-14] are numerous: target flexibility, incorrect
protonation/tautomeric states, incorrect treatment of many
energy terms (solvation, entropy, metal chelation and weak
non-covalent interactions).

Three main approaches have been followed to rescue the
inability of fast scoring functions to prioritize the best
docking poses: (1) develop more sophisticated first-prin-
ciple scoring functions, (2) use supervised machine learn-
ing (ML) algorithms to predict the likelihood of docking
poses, (3) apply knowledge-based (chemical and topolog-
ical) rules to filter out unreliable solutions. The first
approach uses CPU-intensive energy calculations (e.g.
MM-PBSA, MM-GBSA) to refine early docking results.
Unfortunately, the benefit of this extra computational cost
is controversial as it appears to be target-dependent and
hardly predictable [15-17]. The second approach consists
in training machine learning algorithms (e.g. support vector
machines [18], random forest [19, 20]) with 3D protein—
ligand structural descriptors in order to discriminate good
from bad poses. If remarkable results in predicting binding
affinities from protein—ligand X-ray structures have been
recently published [20], such scoring functions have rarely
been applied to prospective virtual screening campaigns
and their true utility in virtual screening remains unknown.
In any case, docking/ML combinations [21] must be
regarded with great care due to the tendency of machine
learning methods to be overtrained [22]. The third strategy,
which is currently experiencing a revival, utilizes various
knowledge-based approaches to rescore docking poses.
The main idea is to use non-energetical topological criteria
to address the quality of docking poses, notably by com-
paring docking solutions with protein—ligand complexes of
known X-ray structure. Among knowledge-based approa-
ches, we can clearly distinguish those methods aimed at
constraining the docking algorithms towards expected
poses (pharmacophore-constrained docking [23], shape-
guided docking [24, 25], template matching [26]) from
computational protocols that just restrain the analysis of
docking poses to reward user-defined features. Both
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methods have proven useful in many examples for
enhancing the quality of top-ranked poses as well as
enriching virtual hit lists in true actives. Constrained
docking may however be dangerous in forcing known
inactive compounds to properly dock in a binding site. It is
therefore common practice to conduct a totally free dock-
ing calculation and further apply simple cheminformatics
descriptors (1D fingerprints [27], 3D similarity [28]) to
enable the selection of docking solutions that look the most
similar to experimentally-determined poses of known
ligands. For example, we [29] and others [27, 30, 31]
proposed several years ago, the concept of molecular
interaction fingerprints (IFPs) [29] to post-process docking
data and pick-up poses producing IFPs similar to that of
known actives. Computing IFPs from docking poses is a
robust and very efficient manner to predict ligand binding
modes [32], propose reliable scaffold hops [33], and enrich
virtual hits in true actives upon docking a compound
library [34, 35]. The success of this post-processing
approach relies on the fact that true ligands of a same target
often share key interactions with key anchoring residues
and thereby produce quite similar IFPs. A drawback of this
method lies in the definition of a consensus binding site
(fixed set of target residues) in order to generate fixed-sized
and comparable interaction fingerprints. To overcome this
limitation and extend the concept of interaction fingerprints
to binding site-independent and coordinates frame-invari-
ant fingerprints, we recently proposed to encode interaction
patterns (sets of protein—ligand interactions) into either
generic 1D fingerprints or 3D graphs [36]. Our GRIM
algorithm for matching interaction pattern graphs has been
described in details elsewhere [36], and here it will be just
briefly summarized. Starting from 3D coordinates of a
protein—-ligand complex, molecular interactions (hy-
drophobic contacts, aromatic interactions, hydrogen bonds,
ionic bonds, metal chelation) are first computed from a set
of topological and chemical rules. Every detected interac-
tion is then labelled by three interaction pseudoatoms
(IPAs) located on (1) the ligand-interacting atom, (2) the
protein-interacting atom and (3) the geometric barycenter
of protein and ligand-interacting atoms (Fig. la, b). Start-
ing from two sets of IPAs (reference, target), GRIM first
creates a list of possible IPA matches. A pair is made if
reference and target IPAs have the same label (same
interaction type) and represent the same point of view (li-
gand, protein, barycenter). A product graph is created from
the two reference and target graphs in which each suc-
cessfully matched pair is consequently a vertex. A weight
is added to each pair which is inversely proportional to the
observed frequency among the 284,186 IPAs generated
from the 9877 protein-ligand complexes of the sc-PDB
dataset [37]. Assigned weights were as follows:
hydrophobic IPA (0.299), aromatic IPA (0.990), h-bond
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Fig. 1 Principle of the graph alignment method for matching
interaction patterns (GRIM). a The estrogen receptor B-WAY697
complex (PDB ID 1 x 76) is converted into a set of interaction
pseudoatoms (IPAs) describing intermolecular interactions. For each
interaction (e.g. hydrogen-bond between Arg346 of the protein and a
phenolic oxygen atom of the ligand, displayed by a dashed black
line), IPAs are placed on the ligand-interacting atom (1), the protein-
interacting atom (p) and the geometric barycenter of both interacting
atoms (c). IPAs are color-coded according the described interaction
(gray, apolar and aromatic interactions; red, hydrogen bond (protein
acceptor) and ionic bond (protein negatively charged); blue, hydrogen
bond (protein donor) and ionic bond (protein positively charged).

acceptor (0.930), h-bond donor (0.834), negative ionizable
(0.993), positive ionizable (0.966), metal complexation
(0.985). An edge is observed between two vertices of the
product graph after computing distances between the two
reference IPAs and the two target IPAs. If the difference is
below a given threshold [37], an edge is created. The lar-
gest cliques are then detected using the Bron—Kerbosch
algorithm [38] with pivoting and pruning improvements
[39]. Each TPA of the target is matched with the corre-
sponding reference IPA using a quaternion-based charac-
teristic polynomial [40]. It returns both the translation
vector and the rotation matrices to match target and ref-
erence graphs as well as a Graph-alignment score
(GRIMscore). As the graph is specific of a given protein—
ligand interaction pattern, two sets of protein—ligand

b Same procedure as above for a second complex between the same
receptor and WAY-338. IPAs describing the same interaction with
Arg346 are labelled L, C and P, respectively. IPAs are color-coded
according the described interaction (light gray, apolar and aromatic
interactions; light red, hydrogen bond (protein acceptor) and ionic
bond (protein negatively charged), light blue, hydrogen bond (protein
donor) and ionic bond (protein positively charged). ¢ Graph-based
alignment of the two sets of IPAs leading to an interaction-guided
overlay of the two bound ligands. Please note that GRIM does not
allow matching IPAs from different origin (e.g. 1-type with p-types
for example)

coordinates can therefore be easily compared by aligning
the corresponding graphs (Fig. 1c¢). According to a previ-
ous benchmark, a GRIMscore value above 0.70 is indica-
tive of a statically significant similarity of interaction
patterns.

When applied to rescore docking poses generated by
Surflex-Dock [41], GRIM rescoring significantly outper-
formed the Surflex-Dock scoring function in a retrospective
virtual screening exercise aiming at recovering true actives
from DUD-E decoys [42] for 10 targets of pharmaceutical
interest [36]. We herewith present a prospective application
of the GRIM graph matching method to the problem of
docking pose selection by predicting, prior to the release of
the corresponding X-ray coordinates (D3R Grand Chal-
lenge 2015) [43], the binding modes of 36 inhibitors bound

@ Springer



J Comput Aided Mol Des

to two different targets of pharmaceutical interest
(HSP90o, MAP4K4). This manuscript will only highlight
results obtained for Stage 1 (docking pose accuracy) of the
D3R challenge.

Computational methods
HSP90a dataset

Four input protein structures (PDB ID: 2JIC, 2XDX,
4YKY, 4YKR) and 180 known HSP90a inhibitors
(SMILES strings, Supplementary Table 1) were directly
downloaded from the D3R Grand Challenge 2015 website
[43] as a zipped archive file (279_data_303589.tar.gz).

HSP90u protein structures were prepared for docking as
follows. First, existing hydrogen atoms were removed from
the 4 input HSP90a structures and added back while
optimizing both the protonation and tautomeric states using
Protoss v.2.0 [44]. Two conserved waters mediating the
interactions between protein and ligands (HOH2078 and
HOH2166 for 2JJC; HOH2029 and HOH2054 for 2XDX;
HOH6 and HOH233 for 4YKR; HOHS and HOH198 for
4YKY) were kept, other water molecules were removed.
Next, each protein structure was saved in 4 copies varying
by the presence/absence of bound waters as follows: with
both water molecules (wat2), with the first water molecule
(watla), with the second water molecule (watlb), without
waters (dry). In total, 16 structures were therefore used as
input for docking the 180 HSP90ua inhibitors, which were
provided by D3R Grand Challenge. Note, that binding
mode should have been predicted only for 6 of those
compounds.

Ligands from HSP90a crystal structures were checked
manually (bond order, protonation and tautomeric states)
and corrected whenever necessary. Protein and ligand
structures were separately saved in MOL2 format using
SYBYLX-2.1 [45]. In addition, 176 HSP90a-inhibitor
complexes (Supplementary Table 2) were defined as tem-
plates for graph matching by searching the RCSB Protein
Data Bank [46] for the PO7900 UniProt [47] accession
number and a known bound ligand. These 176 complexes
were further processed as described above.

Starting from the provided input SMILES strings of 180
HSP90a inhibitors, hydrogen atoms were added and a 3D
conformation was generated for every ligand using Corina
v3.40 [48]. All Ligands were then saved in MOL2 format.

MAP4K4 dataset
Two input protein structures (PDB ID: 40BO, 4U44) and 30

known MAP4K4 inhibitors (SMILES strings, Supplementary
Table 3) were directly downloaded from the D3R Grand
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Challenge 2015 website [43] as a zipped archive file (280_-
data_473989.tar.gz). Furthermore, 6 additional MAP4K4-
inhibitor complexes (Supplementary Table 4) were retrieved
by searching the RCSB Protein Data Bank for the 095819
UniProt accession number and a known bound ligand. The 8
protein structures were prepared for docking using the pro-
tocol described for the HSP90a dataset. No bound water
molecules were conserved in the present case.

Starting from the input SMILES strings of the 30
MAP4K4 inhibitors, hydrogen atoms were added and 3D
conformations were generated using Corina v3.40 [48]. All
Ligands were then saved in MOL2 format.

Docking

Ligands were docked to input protein structures using
Surflex-Dock v.2745 [41]. For each protein input structure,
a protomol was first generated using a list of binding site
residues (including bound waters) for which at least one
heavy atom was closer than 6.5 A from at least one ligand
heavy atom. The docking accuracy parameter set -pgeom
was used. The -pgeom option starts each docking from 4
initial and different poses to ensure good search coverage,
turns on ligand minimization prior to docking and after
docking (in-pocket minimization), ensures that the returned
poses are different from one another by at least 0.5 A rmsd,
and saves a total of 20 poses (ranked by Surflex-Dock
energy score, from 000 to 019). In summary a total of
57,600 (180 x 16 x 20) and 4800 (30 x 8 x 20) poses
were generated for the HSP90a, and MAP4K4 inhibitors
respectively.

GRIM rescoring

Each Surflex-Dock pose was compared to the list of tem-
plate complexes (176 for HSP90o inhibitors, 8 for
MAPA4K4 inhibitors). The interaction pattern of each
docking pose was computed with IChem [36], aligned to
that of the corresponding templates by graph-based align-
ment and ranked by GRIMscore. For every HSP90a ligand
to dock, all poses were merged, regardless of the input
protein structure and graph template used, and ranked by
decreasing GRIMscore. For each MAP4K4 inhibitor, poses
that do not exhibit at least one hydrogen-bond to the hinge
region of the MAP4K4 kinase (residues E106, M107,
C108) were discarded from further evaluation. Such poses
were detected thanks to the protein—ligand interaction fin-
gerprint generator [29] embedded in the IChem toolkit
[36]. The 5 remaining poses with the highest GRIMscores
(GRIM-1 to GRIM-5) were saved for every MAP4K4
ligand. For HSP90a inhibitors, a slightly different protocol
was used to reflect the much higher number of templates
and GRIM comparisons. To avoid retrieving too similar
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solutions, all poses were then clustered using an agglom-
erative method and a complete linkage clustering, starting
from the highest GRIMscore (seed) and using a 2 A rmsd
threshold from the seed pose, until five different clusters
were defined for each ligand. A representative pose
(highest GRIMscore) for each of the 5 clusters was finally
saved and ranked from 1 (GRIM-1) to 5 (GRIM-5) by
decreasing GRIMscore.

Results and discussion
Predicting the binding mode of 6 HSP90a inhibitors

The first part of the challenge consisted in predicting the
bound conformation of 180 HSP90a inhibitors from three
chemical series (benzimidazolones, aminopyridines, ben-
zophenones), given four reference input protein structures
co-crystallized with at least one inhibitor of the above-cited
three chemical series. A particular emphasis was put on six
inhibitors (Fig. 2) whose protein-bound X-ray structures
had to be released just at the closure of the first step (pose
prediction accuracy) of the D3R Grand Challenge 2015.
Since HSP90a inhibitors notoriously use conserved water
molecules [49] to recognize the ATP-binding site, we
decided to generate four sets of protein coordinates for
each of the provided 4 input structures that just differ in the
number of bound waters (none, one or two; see “Compu-
tational methods”). To use knowledge about inhibitor
binding to the HSP90o target, we further retrieved 176
additional protein-ligand X-ray structures from the Protein
Data Bank and ensured that all these inhibitors were

Fig. 2 Structure and name of OH
six HSP90a inhibitors to dock
and to determine binding mode
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occupying the same binding site that the 4 ligands co-
crystallized with the input reference structures. Docking of
all inhibitors to the 16 input structures was completely
unrestrained (beside defining the common binding-site) and
led to a total of 57,600 poses which were all compared to
the 176 template structures using our GRIM interaction
pattern matching method. To ascertain the generation of a
few representative but diverse poses, we decided to cluster
docking solutions using a 2 A-rmsd threshold and provided
up to 5 poses for each of 180 ligands (Table 1). Analyzing
the rmsd of predicted poses to the true X-ray solution
(released just after closure of the challenge) shows that our
interaction pattern rescoring strategy achieves an out-
standing accuracy since top-1 GRIM poses are predicted
with a mean rmsd of 1.06 A (Table 1). The top-1 GRIM
pose of only two compounds (hsp90_44, hsp90_175) is
predicted with a rmsd higher than 1 A. The larger value of
247 A (hsp90_44) is mainly due to pose differences
occurring at the accessible pyridine-3-sulfonamide that
does not strongly interact with the binding site; the position
of the buried benzimidazolone core being nicely predicted
with a rmsd of 0.53 A (Fig. 3a). For compound hsp90_175,
the main difference (rmsd = 1.67 ;A) lies in the rotation of
a single dihedral angle that drifts a phenol ring from its
X-ray pose.

Since we intentionally clustered poses to avoid gener-
ating too many redundant answers, the quality of GRIM
poses logically deteriorates when other solutions are con-
sidered (Table 1). Four 4 out of the 6 ligands, the GRIM-1
pose is by far the closest to the true X-ray structure which
greatly facilitates the analysis of our rescoring. In all cases,
the top solution selected by GRIM is better than that
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Table 1 Accuracy of pose
selection (rmsd in A to X-ray
solution) for six HSP90a
inhibitors

o

Compound rmsd to X-ray, A
GRIM-1?* GRIM-2" GRIM-3° GRIM-4¢ GRIM-5° Surflex-17  Best®

hsp90_40 0.44 1.69 5.54 2.35 6.12 0.59 0.44
hsp90_44 2.48 4.19 2.79 1.49 2.78 4.17 1.36
hsp90_73 0.85 2.49 5.78 5.60 331 2.01 0.72
hsp90_164 0.37 5.56 5.87 3.53 5.42 0.85 0.37
hsp90_175 1.67 5.85 1.35 6.00 5.72 1.81 0.73
hsp90_179 0.54 2.12 4.53 3.63 3.44 2.00 0.27
Mean rmsd 1.06 3.65 431 371 4.47 191 0.65

# 1st pose according to GRIMscore

® 2nd pose according to GRIMscore

¢ 3rd pose according to GRIMscore

4 4th pose according to GRIMscore

¢ 5th pose according to GRIMscore

' 1st pose according to Surflex-Dock score
& Lowest rmsd pose

hsp90_44

2ykr

hsp90_179

4fcq

Fig. 3 Predicted versus X-ray pose of two HSP90a inhibitors.
Heteroatoms are colored in blue (nitrogen), red (oxygen), yellow
(sulfur), and green (chlorine). The chemical structures of the two
inhibitors are displayed below the binding poses. a Predicted binding
mode of hsp90_44 (tan sticks) to HSP90a ATP-binding site (white
surface). The pose has been selected by interaction pattern similarity

predicted by the native scoring function embedded in
Surflex-Dock (mean rmsd = 1.91 A; Table 1). As
observed for almost all docking engines, the top-ranked
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to that of another HSP90u inhibitor co-crystallized with PDB entry
2ykr (plum sticks). The true X-ray pose is indicated by cyan sticks.
b Predicted binding mode of hsp90_179 (green sticks) to HSP90a
ATP-binding site (white surface). The pose has been selected by
interaction pattern similarity to that of another HSP90a inhibitor co-
crystallized with PDB entry 4fcq (plum sticks)

pose is rarely the absolute best solution (the closest to the
true X-ray pose). Among the set of 320 poses generated for
each ligand, the lowest-rmsd pose is indeed very close
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(mean rmsd = 0.65 A; Table 1) to the X-ray solution,
thereby attesting the quality of Surflex-Dock as pose gen-
erator. For two out of the six ligands (hsp90_40,
hsp90_164), the absolute best pose is ranked first by GRIM
(Table 1). For two others (hsp90_73, hps90_179), the rmsd
difference is so tiny (<0.3 A) that these poses can be
considered as almost equivalent.

We next looked for those cases where GRIM rescoring
was able to rank at first position a near-native pose, and
identified which protein input structures and which interac-
tion pattern template had been used to select this particular
pose (Table 2). In two cases (hsp90_40, hs90_175), the
ligand to dock is a very close analog of the co-crystallized
ligand from the input reference structure (2D similarity
>0.90), it is therefore logical that the later protein structures
and corresponding interaction patterns are used by GRIM to
select the top pose. As a consequence, the interaction pattern
of the predicted pose is very similar to that of the template
(GRIMscore >0.85). However, the remaining ligands were
posed by interaction pattern similarity to that of chemically
different template ligands (2D similarity <0.60) thereby
nicely illustrating the power of the knowledge-based
rescoring method. A prototypical example is given by the
6-phenyl-1,3,5-triazine-2,4-diamine hsp90_179 (Table 2)
whose correct pose (rmsd = 0.54 A) has been deduced from
that of a chemically unrelated 7H-pyrrolo[2,3-d]pyrimidine
inhibitor (PDB entry 4fcq) that however exhibits a very
similar binding mode (Fig. 3b) and interaction pattern
(GRIMscore = 0.79).

Predicting the binding mode of 30 MAP4K4
inhibitors

The second challenge aims at predicting the bound con-
formation of MAP4K4 inhibitors, and is much more

demanding than the previous one for many reasons: (1) the
dataset to dock is larger (30 inhibitors; Fig. 4 and Sup-
plementary Table 3) and much more chemically diverse
(17 different chemotypes, 11 low molecular-weight frag-
ments), (2) the number of templates (known MAP4K4-
inhibitor X-ray structures) is lower with only 8 PDB
complexes and three chemotypes (amino-quinazolines,
amino-pyrrolotriazines, hydroxydihydropyridinone; Sup-
plementary Table 4).

Although Surflex-Dock is able to propose at least one
very reliable docking pose for 28 out of the 30 ligands
(mean rmsd of the best possible pose = 0.94 A; Table 3).
The native Surflex-Dock scoring function and GRIMscore
cannot detect near-native poses (<2 A rmsd) as top-1
solution for 17 and 19 inhibitors, respectively. Rescoring
by interaction pattern graph similarity (GRIM) provides
overall better poses (mean rmsd of GRIM-1 pose = 3.18
A) than Surflex-Dock (mean rmsd of Surflex-1
pose = 3.63 A) but their accuracy remains lower than that
observed for the previous HSP90a dataset. Despite their
medium accuracy, it remains reassuring that the quality of
the poses decreases with the GRIM rank (Table 3).

We next looked for the reasons explaining why it is so
challenging to find near-native poses for MAP4K4 inhibi-
tors. The first reason is that the MAP4K4 set of inhibitors
contains a significant amount (11 out of 30 compounds) of
low molecular weight fragments (MW < 250 and heavy
atoms count <20). Out of these 11 fragments, only three of
them (27 %) are well posed by GRIM (Fig. 5). Conversely,
the success in predicting near-native poses for higher
molecular weight ligands (heavy atom count >20) is sig-
nificantly higher (8 out of 19, ratio = 42 %; Fig. 5).

Upon examining the GRIM docking poses of all 30
MAP4K4 inhibitors, we could identify three possible sce-
narios. The first one relates to 9 lead-like compounds

Table 2 Characteristics of

GRIM top-ranked docking Ligand Protein® Pose” Template® GRIMscore* Tc® rmsd’

poses for six HSP90a inhibitors 90 49 dykr_watla® 000 dykr_wat2 0.89 0.94 0.44
hsp90_44 4ykr_watla 004 4ykr wat2 0.84 0.58 2.48
hsp90_73 2xdx_watla 000 2xdx_wat2 0.80 0.63 0.85
hsp90_164 4yky_wat2 005 4yky_wat2 0.89 0.77 0.37
hsp90_175 dyky_wat2 008 dyky_wat2 0.87 1.00 1.67
hsp90_179 4ykr_wat2 001 4fcq 0.79 0.52 0.54

 Set of protein coordinates used for docking

® Surflex—Dock pose number

¢ Set of protein-ligand coordinates used as template for graph matching; see “Computational methods” for
the numbering of conserved water molecules in PDB input structures

4 GRIMscore

¢ 2D chemical similarity (Tanimoto coefficient) between query and template ligands, calculated from

166-bit MDL public keys

T Root-mean square deviations (in A) from X-ray pose

€ See “Computational methods™ section for the numbering of water molecules
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Fig. 4 Structure and name of 30 MAP4K4 inhibitors to dock
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Table 3 Accuracy of pose

selection (rmsd in A to X-ray Compound rmsd to X-ray, A

solution) for 30 MAP4K4 GRIM-1* GRIM-2" GRIM-3° GRIM-4¢ GRIM-5° Surflex-1" Best®

inhibitors
MAPO1 0.98 1.29 2.04 9.67 2.26 9.68 0.93
MAPO2 4.35 4.37 3.25 3.45 3.39 1.47 1.08
MAPO3 2.73 2.73 2.74 2.81 2.74 0.63 0.45
MAPO4 5.12 5.21 5.21 5.21 1.95 5.46 1.54
MAPOS 8.69 8.81 8.31 8.31 8.91 8.32 0.66
MAPO06 5.19 5.10 4.92 2.05 227 2.32 1.10
MAPO7 1.73 1.75 0.94 8.72 8.67 1.18 0.86
MAPO08 0.71 1.69 1.79 0.83 1.79 0.88 0.49
MAPQO9 1.73 1.88 1.74 1.88 1.14 7.47 0.55
MAPI11 2.26 8.30 8.39 1.36 0.63 0.80 0.76
MAP12 4.21 2.56 423 8.60 8.60 6.53 2.11
MAPI13 6.11 6.13 6.21 6.18 6.11 7.22 2.25
MAP14 1.64 1.26 1.12 1.70 1.09 4.84 0.95
MAP15 3.49 3.46 3.69 3.51 2.32 2.33 0.39
MAP16 4.52 4.43 4.24 292 4.24 4.58 1.16
MAP17 3.09 4.74 9.36 4.77 3.02 2.39 1.24
MAP18 0.63 2.34 1.72 1.23 1.93 1.76 0.57
MAP19 1.33 1.34 3.66 751 2.66 0.62 0.62
MAP20 1.03 1.86 1.61 1.25 1.86 1.93 1.03
MAP21 0.51 0.55 0.50 0.46 5.21 0.51 0.35
MAP22 5.83 6.32 6.08 6.07 6.32 0.69 0.61
MAP23 2.29 4.59 4.89 4.89 5.06 225 1.27
MAP25 3.67 3.60 3.73 3.76 8.18 1.53 0.42
MAP26 2.74 3.17 2.78 2.78 2.78 6.60 0.90
MAP27 0.89 1.03 1.03 1.03 1.03 3.45 0.80
MAP28 3.00 4.15 3.24 4.24 4.15 2.70 1.85
MAP29 4.24 4.16 4.16 4.14 4.14 6.65 1.17
MAP30 4.12 4.04 4.06 3.38 3.59 3.93 0.63
MAP31 6.26 6.45 4.71 4.82 5.94 4.55 0.77
MAP32 0.98 2.20 220 2.20 2.20 5.21 0.73
Mean rmsd 3.18 3.65 3.75 3.99 3.81 3.63 0.94

# 1st pose according to GRIMscore
® 2nd pose according to GRIMscore

<

9 4th pose according to GRIMscore

€ Lowest rmsd pose

3rd pose according to GRIMscore

Sth pose according to GRIMscore

Ist pose according to Surflex-Dock score

(MAPO1, MAPO7, MAPOS, MAP09, MAP11, MAP14,
MAP18, MAP19, and MAP23) that were successfully
docked (rmsd < 2.5 10\) and scored by GRIM (GRIMs-
core > 0.68) because the corresponding interaction pat-
terns are quite similar to that from one of the six templates
exhibiting either the same or a bioisosteric scaffold (e.g.
MAPI18 binding pose; Fig. 6). Importantly, polar interac-
tions are those that contribute the most to the GRIMscore,
thereby ensuring that both key hydrogen bonds to the

kinase hinge region and overall shape of the bound inhi-
bitors are shared between docked compounds and tem-
plates. The second scenario applies to the three fragments
(MAP21, MAP27, MAP32) whose poses were also pre-
cisely recovered with GRIM. In all cases, the good pose
was inferred by bioisosterism (same interaction pattern but
different chemical structure) to a larger template ligand
(Table 3). For example, the hydroxyphenyl-aminopyrim-
idine scaffold of MAP21 is perfectly docked (rmsd to

@ Springer



J Comput Aided Mol Des

0.90

0.854-0

0.80 1 o

0.75

GRIMScore
>
o

&)
0.704+—0o0—o0 5

0.654AA o

0.60 T T
rmsd to X-ray

Fig. 5 Plotting the GRIMscore versus the rmsd to the X-ray pose for
30 MAP4K4 inhibitors. Lead-like and fragment-like inhibitors are
represented by white circles and gray triangles, respectively

X-ray structure = 0.51 A) to MAP4K4 because of the high
similarity of its interaction pattern graph to that observed in
the 4rvt PDB template, although the latter ligand exhibits a
chemically different but bioisosteric scaffold (Fig. 7). It is
interesting to notice that GRIM did not select an interaction
pattern graph generated by a much chemically closer

template ligand (e.g. 4obo, 4o0bq) therefore demonstrating
that our pose selection protocol is really biased by protein—
ligand interactions and not dominated by simple ligand
chemical neighborhood. Since Surflex-Dock was able to
generate at least one reliable pose for all these ligands, the
reason for GRIM failure to detect it (third scenario) usually
lies in wrong graph alignments dominated by hydrophobic
interactions. A prototypical example is illustrated with the
incorrect pose of MAP0O6 (rmsd to X-ray pose = 5.19 A)
by analogy to that of the 4obp template (Fig. 8) where
GRIM optimizes the shape overlap between the two
interaction patterns without a single shared hydrogen-bond.
The overlay of the GRIM pose to that of the 4obp template
notably highlights a very good match of both pyridine rings
which serve as pure hydrophobic anchors to the MAP4K4
binding site. In fact, MAP0O6 H-bonds to the kinase hinge
by its pyridine nitrogen atom (Fig. 8). This interaction is
indeed found in some poses which were not rewarded by
GRIM because of a lower overall GRIMscore. Since
fragments with a dominant hydrophobic character exhibit
simpler interaction patterns, the risk of misaligning the
corresponding graphs to that of larger templates is rela-
tively high, therefore explaining many of the herein
observed failures (Table 4).

0 NH
HO
MAP18

Fig. 6 Predicted versus X-ray pose of the MAP4K4 inhibitor
MAPI18. Heteroatoms are colored in blue (nitrogen), red (oxygen),
and green (fluorine). A red arrow indicates the location of the hinge
region (E106, M107, C108) of the kinase. The chemical structures of
inhibitor and template are displayed below the binding poses.
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a Predicted (tan sticks) and X-ray poses (cyan sticks) of MAP18
bound to MAP4K4 (white ribbons). b The GRIM pose (fan sticks) has
been selected by interaction pattern similarity to that of PDB template
4zkS (plum sticks)
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OH

MAP21

Fig. 7 Predicted versus X-ray pose of the MAP4K4 inhibitor
MAP21. Heteroatoms are colored in blue (nitrogen), and red
(oxygen). A red arrow indicates the location of the hinge region
(E106, M107, C108) of the kinase. The chemical structures of
inhibitor and template are displayed below the binding poses.

4rvt

a Predicted (tan sticks) and X-ray poses (cyan sticks) of MAP21
bound to MAP4K4 (white ribbons). b The GRIM pose (tan sticks) has
been selected by interaction pattern similarity to that of PDB template
4rvt (plum sticks)

HN

o
MAPO6

Fig. 8 Predicted versus X-ray pose of the MAP4K4 inhibitor
MAPO6. Heteroatoms are colored in blue (nitrogen), red (oxygen),
and yellow (sulfur). A red arrow indicates the location of the hinge
region (E106, M107, C108) of the kinase. The chemical structures of
inhibitor and template are displayed below the binding poses.

We recall here that all poses were prefiltered before
GRIM scoring for hydrogen-bonding to the hinge region of
the kinase. This filtering step improved the mean rmsd of

4obp

a Predicted (tan sticks) and X-ray poses (cyan sticks) of MAP06
bound to MAP4K4 (white ribbons). b The GRIM pose (tan sticks) has
been selected by interaction pattern similarity to that of PDB template
4obp (plum sticks)

the 30 MAP4K4 inhibitors from 3.62 to 3.18 A. For 21 out
of 30 inhibitors, the filter has no effect since exactly the
same pose was selected by GRIM with or without filtering.
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For 4 inhibitors (MAPO1, MAP004, MAP12, MAP32), the
filter positively contributes to the selection of better poses.
Notably, the mean rmsd of compound MAPO1 could be
decreased from 10.78 to 0.98 A. Conversely, the filtering
was detrimental in 5 cases, most of the time with a very
marginal rmsd increase. All rmsd values with and without
the hydrogen bond filter are described in Supplementary
Table 5.

Table 4 Characteristics of GRIM top-ranked docking poses for 30
MAP4K4 inhibitors

Ligand  Protein® Pose® Template® GRI Tc®  rmsd”
Mscore®
MAPOI 4obp 015  4dobq 0.81 054 098
MAPO2 4obq 000 4obq 0.73 0.61 4.35
MAPO3  4zk5 010 4obq 0.67 0.51 273
MAPO4  4u43 005 4obq 0.66 0.35 5.12
MAPO5 4obp 003  dobq 0.68 046  8.69
MAPO6  4obp 008 4obp 0.67 0.39 5.19
MAPO7  4zk5 015 47k5 0.70 0.62 1.73
MAPO8  4zk5 000 47k5 0.70 0.64 0.71
MAPQ9  4rvt 007 4rvt 0.68 0.30 1.73
MAPI1  4obp 007 4obp 0.69 0.59 2.26
MAPI12  4u43 008 4rvt 0.67 0.34  4.21
MAPI3  4zkS5 008 4zk5 0.72 0.60 6.11
MAPI14  4obp 007 4obp 0.83 0.50 1.64
MAPI5 4obp 001 4obp 0.74 0.47 3.49
MAP16  4zk5 005 4zk5 0.79 0.63 4.52
MAPIL7  4rvt 014 4rvt 0.71 0.36  3.09
MAPI8  4zk5 007 4zk5 0.85 0.64 0.63
MAPI19  4zk5 011 47k5 0.80 045 133
MAP20  4u43 004 4obq 0.63 0.50 1.03
MAP21  4rvt 006 4rvt 0.65 0.36  0.51
MAP22  4zkS 017 4rvt 0.62 0.24 5.83
MAP23  4zk$S 008 4zkS 0.72 0.52 2.29
MAP25 4u43 014 4obq 0.65 0.54 3.67
MAP26  4rvt 001 4rvt 0.63 028 274
MAP27  4zk5 002 47k5 0.73 0.51 0.89
MAP28  4u43 003 4obq 0.66 0.32  3.00
MAP29  4zk5 018 4obq 0.66 031 4.24
MAP30  4zkS 008 4obp 0.64 0.58 4.12
MAP31  4zk5 014 4zk5 0.64 035 6.26
MAP32  4zk5 019 4obq 0.65 0.35 098

# Set of protein coordinates used for docking
® Surflex-Dock pose number

¢ Set of protein-ligand coordinates used as template for graph
matching

¢ GRIMscore

¢ 2D chemical similarity (Tanimoto coefficient) between query and
template ligands, calculated from from 166-bit MDL public keys

! Root-mean square deviations (in A) from the a posteriori released
X-ray pose
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Comparative evaluation of GRIM rescoring

The release, by the D3R Grand challenge 2015 organizers,
of results from all contributions permits a comparative
evaluation of our pose selection method with respect to
many others (Fig. 9). Two criteria have been retained to
estimate the accuracy of every method. First, the mean
rmsd of the best possible pose (lowest rmsd to the X-ray
structure) was selected to reflect the overall quality of the
posing algorithm. Second, the mean rmsd of the top-ranked
pose illustrates the capacity of a scoring function to reward
docking solutions that are very close to the true X-ray pose.

Among the 42 contributions to predict the binding pose
of HSP90x inhibitors, GRIM is ranked 3rd when consid-
ering the average rmsd of the top-ranked pose (Fig. 9a).
Seven methods deliver quite accurate answers with a mean
rmsd of the top-ranked pose below 1.5 A, one method
being slightly better than GRIM (rmsd of 0.85 A). Since
contributions are anonymous, we are not aware, at the time
this manuscript was written, of the corresponding method
and its sophistication level.

The much more challenging MAP4K4 dataset drew less
attention with 27 answers. The quality of the corresponding
predictions is significantly lower than for the HSP90u
dataset (Fig. 9b). Only 3 contributors predicted the pose of
the 30 MAP4K4 inhibitors with an accuracy below 3.5 A
when considering the top-ranked pose. GRIM is one of
these 3 methods being ranked second in this challenge
(Fig. 9b). Looking at the accuracy of the best possible pose
clearly highlights a docking problem since deviations to the
X-ray pose remains between 2 and 3 A for the best methods
(Fig. 9b). Reasons for failures have already been discussed
in the previous section of this manuscript and therefore do
not only concern our docking engine (Surflex-Dock) but
also all other dockers used in this competition.

We do not know whether it is the same method that
slightly outperform GRIM in predicting the pose of both
HSP90a and MAP4K4 inhibitors. Our interaction pattern-
guided pose selection strategy is anyhow quite robust and
accurate, with respect to competitor methods as it ranks 3rd
and 2nd, respectively for the two sets of predictions. As to
be expected, the quality of the results depends on the
preexisting knowledge. When numerous and diverse
interaction patterns are available for a particular target (e.g.
HSP90a dataset), GRIM docking poses are very accurate.
If less information is known (e.g. MAP4K4 dataset), the
quality of the GRIM poses logically deteriorates but still
remains better than that obtained without GRIM rescoring
for the same set of poses. We have not investigated here the
possibility to select more interaction pattern templates (e.g.
from other protein kinases) for posing MAP4K4 inhibitors,
as preliminary GRIM pairwise comparisons between the
eight available MAP4K4-inhibitor complexes and 1548
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Fig. 9 Comparative evaluation of GRIM (red triangles) with other
approaches (gray dots) in predicting the binding mode of 36 inhibitors
(6 HSP90o. inhibitors, 30 MAP4K4 inhibitors) prior to the release of
their protein-bound X-ray coordinates. Posing accuracy is evaluated
by the rmsd of predicted poses to the X-ray solution. a Plotting the
mean rmsd of the top-ranked pose versus the mean rmsd of the
absolute best (lowest rmsd) pose for six HSP90a inhibitors; b Plotting
the mean rmsd of the top-ranked pose versus the mean rmsd of the
absolute best (lowest rmsd) pose for 30 MAP4K4 inhibitors

protein kinase-inhibitor complexes (sc-PDB dataset) [37]
were not particularly promising (GRIMscore <0.70). In
some cases however, a protein family-based GRIM scoring
strategy has been shown to be useful [36] and should not be
forgotten. At this point, it should be recalled that selecting
a near-native pose by GRIM matching does not mean that
predicting the binding free energy of that pose with state-
of-the art scoring functions will deliver good results.
Indeed, we could not find any correlation (Pearson
R = 0.19) between the Surflex-Dock score of GRIM-1
poses and experimental binding affinities of 180 HPS90a
inhibitors (stage 2 of the challenge).

Conclusions

The herein presented GRIM method rescores docking
poses by interaction pattern graph similarity to known
protein—ligand X-ray structures. The methodology is both
very simple and intuitive. Basically, the method automa-
tizes the reasoning of a molecular modeler: Does this pose
remind me the binding mode of known ligands for this
protein or its close homologues?

Conceptually, it is different from many shape or tem-
plate-matching docking methods [23-26] recently reported
to outperform free docking in generating reliable poses.
GRIM operates on freely generated docking poses but will
just reward that poses which lead to interaction patterns
similar to known ligands of the same or related target
protein. In ca. 80-90 % of test cases, state-of-the-art
docking engines propose a set of poses out of which at least
one is close to the X-ray solution [12]. GRIM can therefore
be used in addition to any of these dockers to prioritize the
most relevant ones. The method is fast (20 ms/pose on
average) and independent on the docking engine, however
protein—ligand coordinates should be provided in a stan-
dard MOL2 format.

When applied to the a priori prediction of binding poses
for 36 new inhibitors of two different targets, GRIM
compares very favorably with competing methods as it
ranked 3rd and 2nd, for HSP90a and MAP4K4 dataset
respectively, in predicting near native poses. In most cases,
the top-ranked pose as predicted by GRIM is the one that is
the closest to the true solution. As any knowledge-based
method, the accuracy of GRIM depends on existing
experimental data. Depending on the target, the number
and chemical diversity of co-crystallized ligands may vary
quite significantly. GRIM rewards the pose with the closest
interaction pattern to that seen in any other crystal of the
same target, independently of how frequently this pose has
already been obtained experimentally. The more chemi-
cally-diverse ligands co-crystallized with the target (or
close homologues) are available, the higher the probability
of the first GRIM pose being near native. The user should
therefore be aware of the target-dependent applicability
domain of the method, before using it blindly. The corre-
sponding executable (IChem) is available for non-profit
academic research at http://bioinfo-pharma.u-strasbg.fr/
labwebsite/download.html.

Supporting information
List of 180 HSP90a inhibitors to dock, list of 176 PDB

templates for HSP90a-inhibitor complexes, list of 30
MAP4K4 inhibitors to dock, list of 8 PDB templates for
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MAP4K4-inhibitor complexes, effect of hydrogen-bond
filtering on the quality of GRIM top-ranked poses.
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~ Cartographie des interfaces protéine-
protéine et recherche de cavités
droguables

Résumé

Les interfaces protéine-protéine sont au cceur de nombreux mécanismes physiologiques du vivant. Les
caractériser au niveau moléculaire est un donc enjeu crucial pour la recherche de nouveaux candidat-
médicaments.

Nous proposons ici de nouvelles méthodes d’analyse des interfaces protéine-protéine a visée
pharmaceutique. Notre protocole automatisé détecte les interfaces au sein des structures de la Protein Data
Bank afin de définir les zones d’interactions a potentiel pharmacologique, les cavités droguables, les ligands
présents a ’interface ainsi que les pharmacophores directement déduits a partir des cavités. Notre méthode
permet de réaliser un état de 1’art des informations disponibles autour des interfaces protéine-protéine ainsi que

de prédire de nouvelles cibles potentielles pour des molécules candidats médicaments.

Mots clés : base de données, bioinformatique, cavité, chémoinformatique, classifieurs, interface protéine-

protéine, pharmacophore, protéine, site de liaison.

Résumé en anglais

Protein-protein interfaces are involved in many physiological mechanisms of living cells. Their
characterization at the molecular level is therefore crucial in drug discovery.

We propose here new methods for the analysis protein-protein interfaces of pharmaceutical interest.
Our automated protocol detects the biologicaly relevant interfaces within the Protein Data Bank structures,
droguables cavities, ligands present at the interface and pharmacophores derived directly from the cavities. Our
method enables a state-of- the-art of all available structural information about protein-protein interfaces and

predicts potential new targets for drug candidates.

Keywords: binding site, cavities, classifiers, computational biology, computational chemistry, database,

pharmacophore, protein, protein-protein interface.




