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Introduction

State of the art and objectives

Although the concept of spin wave as collective excitation of electron’s spin
was introduced by Bloch 80 years ago [13], the study of magnetic dynamics
has recently attracted a renewed interest from both the fundamental and
applied points of view. The research field which deals with magnetic phe-
nomena related with spin waves is called magnonics. The aim of magnonics
is to generate, detect and manipulate the spin waves to carry and store
the information. The functionality of magnonics devices depends on a large
extent on the damping factor of the ferromagnetic material used (which de-
fines the distance over which the information is carried). That’s why the
search of materials with a small damping factor is essential. A possibil-
ity to propagate spin waves over long distances in materials with a moderate
damping, is to amplify them. Among the different proposed methods of spin

wave amplification , such as parametric amplification [63, 14], magneto-
electric amplification [66, 19], the amplification by spin Hall effect induced
spin transfer torque (SHE-STT) [27, 39] is particularly promising. The prin-
ciple of spin wave amplification by SHE-STT is to compensate part of the
intrinsic Gilbert damping of the material by means of a transfer of spin mo-
mentum from the conduction electrons to the magnetization. An attractive
aspect in using spin waves for practical application is their wave nature .
It was shown, that the spin waves, as sound or light waves, can reflect [41],
interfere [103], be subjected to a Doppler effect [135], etc, and that these
wave effects can be used for data processing [68]. Moreover, in certain cir-
cumstances, spin waves also shows a very specific property of non-reciprocal
propagation, which means that two counter-propagating spin waves can pos-
sess different amplitude and/or phase [65, 116, 40]. It was proposed to use
this non-reciprocal character for spin-wave logic devices, where the logic op-
erations are based on difference between the amplitude and/or phase, which
can be tuned by a field or dc-current [60, 113]. Let us now develop a little bit
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10 INTRODUCTION

more each of these points, which are of particular importance for an efficient
manipulation of spin waves.

Materials

Up to now, research in magnonics has concentrated on a few materials
containing iron, such as Permalloy (Py), CoFeB, Yttrium Iron Garnet (YIG),
or Heusler alloys. Among all these materials, the ferrimagnetic insulator
YIG has the lowest known damping factor in the range of 10−4 [140, 80]. A
drawback of YIG is its low saturation magnetization (about 0.18 T), which
translates into a relatively small group velocity and weak signals in both
inductive and magneto-optical measurements. Moreover, it is still difficult
to grown high quality thin YIG films. Among the ferromagnetic metals, the
most widely used is permalloy (Py=Ni80Fe20), which is magnetically very
homogenous and has a moderate damping of about 0.008 and a saturation
magnetization of 1 T. This plus this easy deposition by standard magnetron
sputtering makes Py suitable to build many different magnonic devices [21].
Recently, Heusler alloys have been used [145, 115]: due to their half-metallic
character, they have a small damping of the order of 0.003 and a high degree
of spin polarization about of 0.8-0.9. As for YIG, the deposition process is
quite complicated. Another promising material for magnonics devices is pure
iron. Despite its promising properties, namely a low damping factor, a high
saturation magnetization and a well-defined magneto-crystalline anisotropy,
there is no study of spin wave propagation in this material. To fill this gap,
we decided to study the propagation of spin waves, as well as a spin-polarized
electrical transport in single crystal iron films grown on MgO.

Spin wave amplification

In the context of spin wave amplification, the electrical control of the spin
wave relaxation rate is of particular interest. Suitable systems allowing to do
so are bilayer structures composing of a ferromagnetic material (FM) and a
heavy metal (HM) possessing a strong spin-orbit coupling. In such systems,
the spin current generated by the spin Hall effect in the heavy metal can pene-
trate through the FM/NM interface and modify the relaxation rate in the fer-
romagnet via spin transfer torque. The effect of SHE-STT on magnetization
relaxation was reported in numerous publications [6, 109, 97, 93, 99, 54, 144],
both theoretical and experimental. One of the most commonly used experi-
mental technique to put it in evidence is the ferromagnetic resonance (FMR)
spectroscopy, where the modification of the damping factor caused by the
spin transfer torque is analyzed by measuring the modification of the width
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of the FMR spectra [6, 89]. Numerous studies were also carried out by the
technique of spin-torque ferromagnetic resonance (ST-FMR), where an AC
torque leads to the spin precession, that results in DC voltage generation
due to the anisotropic magnetoresistance [79, 97].

The limitation of these techniques is that they can be used to study the
excitation/modification of only the uniform mode with k = 0 and does not
provide access to the non-uniform excitations. The techniques allowing to
do so are micro-focus Brillouin light scattering (µ-BLS) and propagating
spin wave spectroscopy (PSWS). The advantages of µ-BLS is the possibility
of mapping spin wave propagation by simply changing the position of the
laser spot. In this way, Demidov et al. [27] could show a modification of spin
wave propagation due to SHE-STT. However, the quantitative analysis of the
effect was not reported. In PSWS, following the spin wave propagation along
the magnetic strip requires several devices with different distances between
emitting and receiving antenna, which requires a lot of time and resource.
However, the great advantage of PSWS is that it is a very accurate technique,
which provides a lot of information in the same spectrum. We will show that
by analyzing PSWS measurements in Py/Pt bilayers one can quantify the
modifications of the non-uniform spin dynamics induced by both the spin
pumping and the spin Hall effect.

Propagation properties of spin waves

Spin waves are highly dispersive and their dispersion characteristics [ω(k)]
depend strongly on the strength and direction of applied magnetic field. One
of the most interesting spin wave configuration for both fundamental and ap-
plied points of view is the so-called magnetostatic surface spin wave (MSSW),
which is generated when the magnetic field is applied in the film plane per-
pendicularly to the wave vector. The most peculiar property of this wave
is its non-reciprocal propagation, which reveals in the different amplitude,
modal profile and frequency for the two counter-propagating spin waves.
While the amplitude non-reciprocity arising from the coupling between the
excitation field and the dynamical magnetization is well understood, the ori-
gin of the frequency non-reciprocity is not so clear. It was shown, that a
frequency non-reciprocity appears as soon as the top/bottom symmetry of
the ferromagnetic film is broken. The reason of the broken symmetry can
be the presence of a metallic ground plane in vicinity to one of the film
surfaces [65], an inhomogeneity of saturation magnetization of the film [71],
a difference of magnetic surface anisotropies at the two film surfaces [56],
or an electrical current flowing in the film (Oersted field effect) [51]. While
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such frequency non-reciprocity has been predicted theoretically and observed
experimentally in some very specific cases, a dedicated investigation of this
phenomenon is still needed.

Recently, a renewed interest in the frequency non-reciprocity was ob-
served due to the fact that it can be used as an efficient method for the
extraction of the magnitude of the interfacial Dzyaloshinskii-Moria interac-
tion (iDMI) in ultra-thin films [31, 10, 125, 98]. Indeed, when included into
the Landau-Lifshitz equation of motion for MSSW, iDMI translates directly
into a frequency non-reciprocity (see section 1.7). However, this effect al-
ways combines with the effects arising from the magnetic asymmetry of the
film, because both contributions to the spin wave frequency obey the same
symmetry (odd in wave vector k and applied field H0). Therefore, it is
of primary interest to determine precisely the magnitude of the frequency
non-reciprocity induced by asymmetries of the magnetic properties across
the film thickness, so as to be able to disentangle it from the iDMI non-
reciprocity [125]. For this purpose, we report here a detailed investigation
of spin-wave frequency non-reciprocities in Al2O3/Py/Al2O3 layers (used as
a reference with very low iDMI) and Py/Pt bilayers.

Manuscript organization

The manuscript contains six chapters.
In the first chapter, the general theoretical background on the magneti-

zation dynamics in ferromagnetic materials is presented. It includes a brief
description of uniform magnetization precession and of spin wave dynamics
in the magnetostatic regime, as well as a more detailed description of spin
wave excitations in the dipole-exchange regime.

In the second chapter, we discuss the generation of spin current in metals
by different processes, which include spin-dependent electron transport in
ferromagnetic metals and spin Hall effect in non-magnetic metals. The effect
of spin current on the magnetization dynamics via the spin transfer torque
is then considered, together with its reciprocal effect, namely spin pumping.

In the third chapter, we describe the experimental technique used and
the fabrication process of the studied devices.

In the fourth chapter, we discuss the experimental results on the fre-
quency non-reciprocity measured for Py/Al2O3 and Py/Pt films using PSWS.
The main result of this chapter is to show that the frequency non-reciprocity
arises from combined contributions of both iDMI and a magnetic asymmetry
across the film thickness.
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In the fifth chapter, we study the spin wave propagation in Py/Pt devices
and its modification by different spin transfer torques using PSWS. First, the
influence of the spin pumping and SHE-STT on the spin wave is analyzed.
The later effect leads to the modification of the magnetization relaxation
rate, which is extracted from the current-induced change of the amplitude
of the inductance signal.

In the sixth chapter, we investigate the spin wave propagation and its
modification by an electrical current in Fe/MgO films. We deduce the main
propagation parameters of spin waves and extract the value of the degree
of spin polarization of the electrical current by means of current-induced
Doppler shift measurements.
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Chapter 1

Magnetization dynamics

1.1 Landau-Lifshitz equation of motion

The response of a magnetic moment to an external magnetic field can be
treated by an analogy with the response of a spinning top with an angular
momentum J to some external force F [46]. The equation of motion of such
a spinning top can be written as

∂J

∂t
= γJ× F. (1.1.1)

If we consider now an atom with an electron moving around, the orbital
motion of the latter will create a magnetic moment M, which is related to
the angular moment by the gyromagnetic ratio γ as

M = −γJ. (1.1.2)

The ferromagnetic system can be considered as a sum of individual atomic
magnetic moments where the magnetization density M in the volume V is

M =

∑
V M

V
. (1.1.3)

Therefore, considering an external force in the form of magnetic field µ0Heff

the equation of motion for the magnetization is written as

∂M

∂t
= −γµ0M×Heff. (1.1.4)

where µ0 is the permeability of a vacuum. Eq.(1.1.4) is the well-known
Landau-Lifshitz equation [76], which describes a precessional motion of the

15



16 CHAPTER 1. MAGNETIZATION DYNAMICS

Figure 1.1: (a) Magnetization precession around an effective magnetic field.
Static components of M and H is along z-axis, dynamical components pre-
cess in xy plane. (b) Uniform oscillation of magnetization in an ellipsoid

magnetization. Here, Heff is the effective magnetic field

Heff = H0 +Hd +Hex +Hk, (1.1.5)

which represents the sum of all fields acting on the magnetization: the ap-
plied magnetic field H0, the dipolar field Hd, the exchange field Hex contain-
ing both symmetric (Heisenberg) and antisymmetric (Dzyaloshinskii-Moriya)
exchange interactions, and an anisotropy field Hk including magnetocrys-
talline and surface magnetic anisotropies. An important feature of this equa-
tion is the conservation of the magnitude of the magnetization vector

∂M2

∂t
= 0, (1.1.6)

that means that the magnetization vector moves on the surface of a sphere.

1.2 Susceptibility tensor

Let us now solve the Landau-Lifshitz (LL) equation for the ferromagnetic
system under the effect of a magnetic field, which consists of a static part
Heq ‖ z and a small-amplitude time-dependent part h(t) oriented in the xy
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plane. The equilibrium magnetization Meq is aligned along the static field
and the small dynamic component m(t) rotates around the equilibrium po-
sition [see Fig. 1.1(a)]. The total magnetic field and the total magnetization
in Eq. (1.1.4) can be thus written as

Heff = Heq + h(t) (1.2.1)

M = Meq +m(t), (1.2.2)

with
h << Heq, m << Meq (1.2.3)

The substitution of Eqs. (1.2.1)-(1.2.2) into the equation of motion (1.1.4)
gives

∂m

∂t
= −γµ0[Meq ×Heq +Meq × h+m×Heq +m× h], (1.2.4)

where the first term vanishes since the equilibrium magnetization is parallel
to the static field, and the last term can be neglected too due to the fact that
both h and m are small compared to the magnitude of the static components
and their product is of second order in small quantities. As a result one
obtains the linearized LL equation

∂m

∂t
= −γµ0[Meq × h+m×Heq]. (1.2.5)

We solve Eq. (1.2.5) assuming that the time dependent variation of h and
m is harmonic, h(t) = heiωt and m(t) = meiωt:

iωm = −γµ0[Meqz× h+m×Heqz]

= −z× [ωMh− ωHm], (1.2.6)

where ωM = γµ0Ms and ωH = γµ0Heq. The projection onto the axes of a
coordinate system defined in Fig. 1.1 gives:

iωmx = ωMhy − ωHmy

iωmy = −ωMhx + ωHmx (1.2.7)

iωmz = 0,

where the solution for the components of magnetic field are:
(
hx
hy

)
=

1

ωM

(
ωH −iω
iω ωH

)(
mx

my

)
. (1.2.8)
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Equation (1.2.8) can be written in the form m = χph, where χp is the Polder
susceptibility tensor defined as

χp =

[
χ iκ

−iκ χ

]
(1.2.9)

with χ = ωHωM

ω2

H
−ω2

and κ = ωωM

ω2

H
−ω2

.

The Polder tensor is a non-diagonal nonsymmetric tensor that indicates
the gyrotropic property of the medium. Indeed, the transverse components
of the magnetic field (hx and hy) couples not only with the dynamical mag-
netization parallel to them (mx and my, respectively), but also with the
corresponding perpendicular components my and mx with a phase shift of
π/2 according to the factor i in Eq. (1.2.9). This is actually the demonstra-
tion of the precessional motion of a magnetization vector as a response to
the microwave field excitation.

One should also nitece the resonance character of the components of the
Polder tensor, whose components diverge when the frequency ω approaches
the pole

ω ≡ ωH = γµ0Heq. (1.2.10)

This corresponds to the uniform resonance condition of a bulk isotropic fer-
romagnet. In a finite sample and/or in the case of a non uniform mode
the resonance condition differs from that defined by Eq. (1.2.10) since the
dynamic effective field also contains the demagnetizing field defined by the
sample geometry, the magnetocrystalline anisotropy field, and the exchange
field. These aspects will be discussed in the following sections.

1.3 Ferromagnetic resonance for different sample
geometries

In 1947 Kittel has shown that the resonance frequency depends strongly on
the sample shape and, that this effect can be described using the demagne-
tizing factors [67]. Let us consider the resonance condition for an uniform
oscillation of magnetization in an ellipsoid, whose principle axes are parallel
to the x, y, z axes, as shown in Fig. 1.1(b). A static external field H0 is
applied along z, and a small amplitude external oscillating field h1 is applied
in the x, y plane. The effective field in the system is thus defined as:

Heff = H0 +Hdem, (1.3.1)
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where Hdem is the demagnetizing field given by the demagnetizing tensor N
as

Hdem = −NM = −



Nx 0 0
0 Ny 0
0 0 Nz






mx

my

Ms


 , (1.3.2)

with Nx, Ny, Nz being the demagnetizing factors.
The static and dynamical components of the effective field can be thus

written as

hx = h1x −Nxmx

hy = h1y −Nymy (1.3.3)

Heq,z = H0 −NzMs

By solving the linearized LL equation (1.2.5) for h1 we obtain the Kittel
susceptibility tensor

h1 = χ−1
K m =

(
h1x
h1y

)
=

1

ωM

(
ωx −iω
iω ωy

)(
mx

my

)
. (1.3.4)

where ωx = ωH +NxωM , ωy = ωH +NyωM and ω0 = γµ0(H0 −NzMs).
The tensor’s components diverge (det(χ−1

K ) = 0) when the frequency ω
approaches the pole

ω =
√
ωxωy. (1.3.5)

For the ωx and ωy defined above the resonance frequency can be written in
the form of the Kittel formula

ωres = γµ0[(H0 + (Nx −Nz)Ms)(H0 + (Ny −Nz)Ms)]
1/2. (1.3.6)

Demagnetizing factors differ for different sample geometries and so do the
resonance frequency, as it is shown in Fig. 1.2. Indeed, considering a spherical
sample where the demagnetizing factors are Nx = Ny = Nz = 1/3 the
expression for the resonance frequency takes its simplest form ωres = γµ0H0,
while for a magnetic film magnetized in-plane for which Nx = Nz = 0
and Ny = 1, the resonance frequency is given by the expression ωres =
γµ0[H0(H0 +Ms)]

1/2.

1.3.1 Influence of an uniaxial magnetic anisotropy on the
resonance frequency

The magnetic anisotropy energy is an important factor, which affects the
resonance condition by modifying the total effective field. In an uniaxial
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crystal the first order term of the anisotropy energy density is written as

Uan = −Ku cos
2 θ = −Ku(

Mi

Ms
)2, (1.3.7)

where Ku is the anisotropy constant, θ is the angle between the magnetiza-
tion and the main axis, and Mi is the component of M along this axis. The
effective field associated to this energy writes:

Han = − 1

µ0

∂Uan

∂M
, (1.3.8)

which for the uniaxial crystal can be written as

Han =
2KuMi

µ0M2
s

ei, (1.3.9)

Let us consider the general ellipsoid case when the uniaxial anisotropy
axis ei is along y and H0 is along z. Expressing the anisotropy field in a form
similar to that of the demagnetizing field Han = −NanM one can write the
effective field as a sum of a shape and an uniaxial anisotropy contributions:

H
′

dem = −(N +Nan)M = −



Nx 0 0

0 Ny +
2Ku

µ0M
2
s

0

0 0 Nz






mx

my

Ms


 (1.3.10)

We can now rewrite the resonance condition accounting for the uniaxial
anisotropy by replacing the demagnetizing factor Ny in Eq. (1.3.6) by a new
factor Ny +

2Ku

µ0M
2
s
.

For the case of the film magnetized in-plane, where Nx = Nz = 0 and
Ny = 1, the resonance frequency can therefore be written as

ωres = γµ0[H0(H0+Ms−2Ku/µ0Ms)]
1/2 = γµ0[H0(H0+Meff)]

1/2, (1.3.11)

where Meff =Ms − 2Ku/µ0Ms is the effective magnetization.
In thin magnetic films the magnetic anisotropy can be induced by the

symmetry breaking at the surface of the film [8, 15]. In this case, the
anisotropy constant can be phenomenologically divided into two parts, where
the first part is related to the volume contribution and the second one rep-
resents the surface contribution: Ku = Kv +

∑
Ks/t (

∑
Ks indicates the

contribution of the two interfaces). The uniaxial surface anisotropy constant
Ks leads to a thickness dependence of Ku and consequently to a thickness
dependence of the effective magnetization:

Meff =Ms − 2
∑

Ks/(µ0Mst). (1.3.12)

The presence of an uniaxial anisotropy leads to the modification of the dis-
persion relation as it is shown in Fig. 1.2.
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Figure 1.2: Dispersion relations calculated for an in-plane magnetized film
(red line) and for a sphere (black line) with parameters µ0Ms = 2 T
and γ/(2π) = 29 GHz/T. The dashed and dash-dotted lines correspond
to the dispersion relations for the thin film modified by an out-of-plane
uniaxial anisotropy with Ku = 100 kJ/m3 and a cubic anisotropy with
Kc = 50 kJ/m3, respectively
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1.3.2 Influence of a cubic magnetic anisotropy on the reso-
nance frequency

In the case of a cubic crystal, the magnetocrystalline anisotropy energy in
lowest order is written as

Uc = Kc(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1), (1.3.13)

and the anisotropy field is given by

Hc = − 2Kc

µ0M4
s



M1(M

2
2 +M2

3 )
M2(M

2
3 +M2

1 )
M3(M

2
1 +M2

2 )


 . (1.3.14)

Considering M as a sum of a static component M0 and a small time-
dependent component m(t) we can express the anisotropy field in a form
similar to that of the demagnetizing field as [124]:

Hc = − 2Kc

µ0M4
s



M01(M

2
02 +M2

03)
M02(M

2
03 +M2

01)
M03(M

2
01 +M2

02)


+N cm, (1.3.15)

where the off-diagonal elements of the anisotropy tensor N c are

N ij
c = − 4Kc

µ0M4
s

M0iM0j(i 6= j) (1.3.16)

and the diagonals elements are

N ii
c = − 2Kc

µ0M4
s

[M2
s −M2

0i]. (1.3.17)

Let us assume that the directions of M is along 〈001〉 axis, for which Kc > 0
(easy axis). Therefore, the effective field is now expressed as

H
′

dem = −(N +N c)m = −



Nx +

2Kc

µ0M
2
s

0 0

0 Ny +
2Kc

µ0M
2
s

0

0 0 Nz







mx

my

Ms




(1.3.18)
and thus the dispersion relation for the film magnetized in plane takes the
following form:

ωres = γµ0[Heff(Heff +Ms)]
1/2, (1.3.19)

where Heff = H0 + 2Kc

µ0M
2
s
. The dispersion relation accounting for cubic

anisotropy is shown in Fig. 1.2 as a dashed line.
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1.4 Spin waves

Up to now, we discussed the uniform mode of precession of the magnetiza-
tion. We will now focus on the non-uniform modes of precession, in which
the spins are oscillating at the same frequency but with different phases,
which are called spin waves. We will first analyze the magnetostatic waves,
for which the dipolar interaction between spins dominates the exchange in-
teraction since the wavelength λ is much higher than the exchange length
Λ (λ >> Λ). Then, we describe the theory of dipole-exchange spin waves,
where the exchange interaction is important. The general term ’spin wave’
will be used for both dipole and exchange dominated excitations.

1.5 Magnetostatic waves

In the magnetostatic regime the propagating uniform plane waves are de-
scribed by the magnetostatic equations

∇× h = 0 (1.5.1)

∇× b = 0, (1.5.2)

where b = (1 + χ)h is the magnetic flux density. Expressing magnetic field
h in term of a scalar potential ψ as h = −∇ψ and using the definition of b,
one obtains from Eq. (1.5.1)-(1.5.2) the generalized Walker’s equation [137]:

∇[(1 + χp) · ∇ψ] = 0, (1.5.3)

that is the basic equation for the magnetostatic modes in homogeneous
media. For a uniform plane wave, the scalar potential has the form ψ =
ψ0e

i(ωt−kr). The solution of the Walker’s equation will depend on the prop-
agation direction k and the direction of the magnetization vector M. Let us
briefly consider three main spin wave configurations and the corresponding
dispersion relations for a wave propagating in a thin film with a thickness t.

A magnetostatic wave, which propagates in the film plane (k ⊥ n) with
the magnetization perpendicular to the plane (M ‖ n), is called Magneto-
static Forward Volume Wave (MSFVW). The dispersion relation for the
MSFWV mode, which writes as [124]

ω2 = ωH [ωH + ωM (1− 1− e−2kt

kt
)], (1.5.4)

depends on the magnitude of the wave vector and does not depend on its di-
rection. Following (1.5.4), the resonance frequency increases with k increas-
ing (Fig. 1.3) indicating a forward wave character (positive group velocity,
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Figure 1.3: Dispersion relations plotted for the MSFVW, MSBVW and
MSSW geometries in the magnetostatic regime (solid lines) and in the dipole-
exchange regime (dashed lines). Parameters used for calculations: film thick-
ness t = 50 nm, magnetic field µ0H0 = 100 mT, saturation magnetization
µ0Ms = 1 T and exchange constant A = 11 pJ/m.

from where the name comes). The wave amplitude is distributed sinusoidally
through the volume of the film.

The wave is called Magnetostatic Backward Volume Wave (MS-
BVW), when it propagates in a tangentially magnetized film, M ⊥ n, par-
allel to the magnetization vector direction k ‖ M. The dispersion relation
for a given mode takes the form

ω2 = ωH [ωH + ωM (
1− e−kt

kt
)]. (1.5.5)

Contrary to MSFVW, the resonance frequency decreases when the wave
vector increases (magenta line in Fig. 1.3), which corresponds to a negative
group velocity, which points in the direction opposite to the phase velocity
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(k) indicating a backward wave character. As for MSFWV configuration,
the wave amplitude has a sinusoidal character through the film volume.

The wave is called Magnetostatic Surface Wave (MSSW) or Damon-
Eshbach wave when it propagates in a tangentially magnetized film, M ⊥ n,
but perpendicularly to the magnetization vector direction k ⊥ M. The
dispersion relation is given by the expression

ω2 = ωH(ωH + ωM ) +
ω2
M

4
(1− e−2kt), (1.5.6)

that shows the frequency increases with k, which corresponds to a posi-
tive group velocity (red line in Fig. 1.3). Contrary to both MSFWV and
MSBWV, the mode amplitude is maximum near one of the film surface and
decays accros the film thickness [23]. Accounting for an uniaxial out-of-plane
anisotropy the dispersion relation for MSSW takes the form

ω2 = ωH(ωH + ωeff) +
ωeffωM

4
(1− e−2kt), (1.5.7)

where ωeff = γµ0Meff.

1.6 Dipole-exchange spin waves

We will now discuss the dispersion characteristics of spin waves, when both
dipole and exchange interactions are important. The theory of dipole-exchange
spin wave was developed by Kalinikos and Slavin [64] and we will refer to
their calculation method to obtain a general formula of dispersion relation for
an arbitrary direction of magnetic field. More detailed calculations will be
done for the particular case of the magnetostatic surface spin wave geometry,
which is the main object of study within the framework of this thesis.

Consider a spin wave propagating along the ζ direction in a ferromagnetic
film of a thickness t whose film normal is along the ξ direction [Fig. 1.4(a)].
We introduce another coordinate system xyz, where the y axis is parallel to
the saturation magnetization. The transition from one coordinate system to
another is performed by rotations through the angles θ and ϕ, where θ is
the angle between the equilibrium magnetization and the normal of the film,
and ϕ is the angle between the in-plane projection of the magnetization and
the wave vector.

We describe the magnetization dynamics in the film using the Landau-
Lifshitz equation for a plane spin wave of the form m = m(ξ)ei(ωt−kζζ)

iωm = γµ0Hequy ×m− γµ0Msuy × heff, (1.6.1)
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where the dynamic component of the effective magnetic field consists of both
exchange and dipolar fields heff = hex + hd. We can now use the method of
effective demagnetizing factor described in previous sections and rewrite the
effective magnetic field in the form

heff = −Nm = −(Nd +N ex)m. (1.6.2)

The dynamic component of the dipolar field hd can be obtained by inte-
grating the magnetostatic Green’s function Gk(ξ, ξ

′

) inside the film

hd = −
∫ t

0
Ndm(ξ)dξ

′

=

∫ t

0
Gk(ξ, ξ

′

)m(ξ)dξ
′

, (1.6.3)

where Gk(ξ, ξ
′

) is a tensorial function of the form

Gk(ξ, ξ
′

) =



−δ(ξ − ξ

′

) +Gp(k) 0 iGq(k)
0 0 0

iGq(k) 0 −Gp(k)


 . (1.6.4)

Here, Gp(k) =
|k|
2 exp(−|k||ξ − ξ

′ |), Gq(k) = sign(ξ − ξ
′

)Gp(k) and δ(ξ − ξ
′

)
is the Dirac delta function [48].

In the same way we can determine the exchange field. From the definition
of the exchange energy

Eex = A

∫

V
(
∇M

Ms
)2dV (1.6.5)

one finds the exchange field

hex = − ∂Eex

µ0∂M
= Λ2∇2m(ξ, t) (1.6.6)

where Λ2 = 2A/(µ0M
2
s ) is the exchange constant. The operator N ex is

therefore given by the expression

N ex = δ(ξ − ξ
′

)(−Λ2 ∂
2

∂ξ2
+ αk2ζ ). (1.6.7)

By substituting Eq.(1.6.2) in the equation of motion (1.6.1), we obtain

iωm = ωHuy ×m+ ωMuy ×Nm = uy × Cm, (1.6.8)

where uy× can be written as a matrix
(

0 1
−1 0

)
and operator C is

C =

∫ t

0

∫ t

0

(
ωH + ωMNxx ωMNxz

ωMNzx ωH + ωMNzz

)
m(ξ)m(ξ

′

)dξdξ
′

. (1.6.9)
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Figure 1.4: (a) Schematic illustration of the coordinate systems used to
describe spin wave propagation in a film. The xyz coordinate system is at-
tached to the direction of equilibrium magnetization and the ξηζ systems is
related to the direction of spin wave propagation. (b) Geometry of the mag-
netization M and wave vector k in xyz coordinate system, that corresponds
to MSSW configuration. The profile of the fundamental mode (n = 0) and
perpendicular standing spin wave modes (n = 1 and n = 2) are sketched
across the film thickness
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Here Npp (p = x, z) are function operators containing the exchange and
dipolar contributions, and which play the role of effective demagnetizing
factor

Nxx = 1−Gp + Λ2(k2 − ∂2

∂ξ2
)

Nxz = −Gp + Λ2(k2 − ∂2

∂ξ2
)

Nxz = −iGq (1.6.10)

Nxx = −iGq

To solve Eq. (1.6.8) the dynamical magnetization m(ξ) is expanded in
series of orthogonal vector functions. For arbitrary boundary conditions
(pinned or unpinned) the eigenvector m is given by the sum of cosine and sine
functions (m ∝ [cos(kζζ) + d sin(kζζ)]), where d is some pinning parameter.
By considering the case of totally unpinned boundary conditions (d = 0),
the dynamic magnetization can be written as

m(ξ) = m(ξ)p0 +
√
2
∑

n

mp
n cos(

nπ

t
ξ). (1.6.11)

Here, cos(nπt ξ) is the nth cosine function (n = 1, 2..) used to represents the
dipole-exchange mode profile. Note that it represents exactly the nth spin
wave mode profile in the specific case of k = 0.

After projecting the different contributions of the effective field onto the
basis functions (1.6.11) one can find the eigenfrequencies of spin wave from
the condition

det(uy × C − iω1) = det(L) = 0. (1.6.12)

Matrix L can be represented as a sum of diagonal and non-diagonal blocks,
where the diagonal blocks give the dispersion equation for the nth spin wave
mode when it is assumed to be well represented by the nth basic functions,
and the non-diagonal matrix makes the corrections to the dispersion relations
related to the interaction between basic functions of different type (n 6= n

′

).
By solving Eq. (1.6.12) the dispersion relation for nth spin wave mode

in the dipolar-exchange regime without taking into account the interaction
between different modes (non-diagonal blocks are zero) is given by the ex-
pression [64]:

ω2
n = (ωH + Λ2ωMk

2
n)(ωH + Λ2ωMk

2
n + ωMFnn) (1.6.13)
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where k2n = k2ζ+κ
2
n with κn = nπ/t being the wave vector over film thickness,

and

Fnn = Pnn+sin2 θ[1−Pnn(1+cos2 ϕ)+ωM
Pnn(1− Pnn) sin

2 ϕ

ωH
+Λ2ωMk

2
n],

(1.6.14)
where the matrix elements Pnn are obtained by a weighted average of the
dipole Green’s function

Pnn =
1

t

∫ t

0

∫ t

0
Gp(ξ, ξ

′

)φn(ξ)φn′ (ξ
′

)dξdξ
′

, (1.6.15)

where φ0 = 1/
√
t, φn≥1 =

√
2/t cos(nπ/t) are the normalized basis func-

tions. In the case of totally unpinned surface spins they take the form

Pnn =
k2ζ
k2n

(1−
k2ζ
k2n

2

1 + δ0n

1− (−1)ne−kζt

kζt
). (1.6.16)

The dispersion relations of the lowest mode in the dipolar-exchange
regime are plotted in Fig. (1.3) for three main spin wave configurations (MS-
FVW, MSBVW and MSSW). One can note, that the difference between the
dispersion curves obtained in the magnetostatic and dipole-exchange regimes
is negligible for a small wave vector and starts to reveal at k > 10µm−1.

The dispersion curves of different spin wave modes n may cross each
other leading to frequency degeneracies. The degeneracies can be removed
by taking into account the dipolar interaction of the different modes, i.e. by
treating the non-diagonal part of matrix L as a perturbation.

1.6.1 Surface spin wave in the dipolar-exchange regime

Let us now specify the aforementioned calculations for the particular case,
when θ = ϕ = π/2, that corresponds to the surface spin wave geometry, and
evaluate the corresponding dispersion relation accounting for the hybridiza-
tion between the first two modes. The geometry is shown in Fig. 1.4(b): x
is the film normal, y is the direction of the equilibrium magnetization and
z is the direction of propagation of the surface spin wave. The plane spin
wave takes the form m(x) = m0(x)e

i(ωt−kz), where only two components
(mx,mz) do not vanish.

We expand the dynamical magnetization m(x) into a Fourier series keep-
ing only terms up to first order

m = m0
xux +m0

zuz +m1
x

√
2 cos(

πx

t
)ux +m1

z

√
2 cos(

πx

t
)uz + ... (1.6.17)
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where n = 0 corresponds to the FMR mode with a uniform profile, and
n = 1 is so-called first perpendicular standing spin wave mode (PSSW1),
which has an antisymmetric profile across a film thickness (see Fig. 1.4(b)).
The higher order PSSW modes (n = 2 and above) can be safely neglected
because of their much higher frequency.

Substituting Eq. (1.6.17) for m(x) in Eq. (1.6.9) we can write a matrix
eigenvalue equation iωm = uy × Cm with a new 4 × 4 dynamic matrix C
defined as

C =

(
C00 C01

C10 C11

)
=




ωx0 0 0 −iωMQ
0 ωz0 −iωMQ 0
0 iωMQ ωx1 0

iωMQ 0 0 ωx1


 , (1.6.18)

where the matrix elements are given by the following expressions:

ωx0 = ωH + ωM (Λ2k2 + 1− P00)

ωz0 = ωH + ωM (Λ2k2 + P00)

ωx1 = ωH + ωM (Λ2k2 + 1− P11 + Λ2(π/t)2) (1.6.19)

ωz1 = ωH + ωM (Λ2k2 + P11 + Λ2(π/t)2)

The matrix elements P00, P11 [obtained from (1.6.15)] and Q are given by:

P00 =
1

t

∫ t

0

∫ t

0
Gp(x− x

′

)dxdx
′

= 1− 1− e−|k|t

|k|t

P11 =
1

t

∫ t

0

∫ t

0
Gp(x− x

′

) cos(
πx

t
) cos(

πx
′

t
)dxdx

′

(1.6.20)

=
(kt)2

π2 + (kt)2
(1− 2(kt)2

π2 + (kt)2
1 + e−|k|t

|k|t )

Q =

√
2

t

∫ t

0

∫ t

0
Gq(x− x

′

) cos(
πx

′

t
)dxdx

′

=

√
2kt

π2 + (kt)2
(1 + e−|k|t)

P00, P11 are self-demagnetizing factors describing the dipole field generated
by the in-plane component of the uniform and PSSW1 modes, respectively,
and Q is a mutual demagnetizing factor describing the dipolar interaction
between n = 0 and n = 1 basis functions.

We find the dispersion relation of the dipole-exchange spin wave using
the condition det(uy × Ck − iω1) = 0. It is easy to see, that the diagonal
2 × 2 blocks containing C00 and C11 give the dispersion relation for the
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Figure 1.5: (a) Dispersion curves of unperturbed fundamental (f00) and
PSSW1 (f11) spin wave modes are shown by dashed lines (violet and magenta
respectively). Solid blue and red lines are the hybridized fundamental (f0)
and PSSW1 (f1) spin wave modes, respectively. Dispersion relations were
calculated for following parameters: film thickness t = 50 nm, magnetic
field µ0H0 = 100 mT, saturation magnetization µ0Ms = 1 T and exchange
constant A = 11 pJ/m.

fundamental and PSSW1 modes, respectively [51]:

ω2
00 = ωx0ωz0 (1.6.21)

= [ωH + ωM (Λ2k2 + P00)][ωH + ωM (1 + Λ2k2 − P00)]

ω2
11 = ωx1ωz1 (1.6.22)

= [ωH + ωM (Λ2k2 + (Λπ/t)2 + P11)][ωH + ωM (1 + Λ2k2 + (Λπ/t)2 − P11)]

where Λ2k2 and (Λπ/t)2 terms are the exchange contributions to the disper-
sion characteristic. Since the out-of-plane exchange term varies as 1/t2, by
increasing the film thickness the dispersion branches of the modes n = 0 and
n = 1 will tend to approach closer to each other, and for some value of k
may intercross.

Close to such mode intersection the dipole-dipole interaction between the
modes should be taken into account. For this purpose, we solve the 4 × 4
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Figure 1.6: Sketch of the distribution of the dipolar field (solid and dashed
lines) generated by themx andmz components of the dynamic magnetization
(solid and open arrow, respectively) across one wavelength for k > 0

determinant accounting for the off-diagonal blocks, which are responsible for
the coupling between modes. As a result, one find the dispersion relation for
hybridized uniform and PSSW1 modes in the following form:

(ω2
00 − ω2)(ω2

11 − ω2) +Q2(Q2 + 2ω2 − ωz1ωx0 − ωz0ωx1) = 0, (1.6.23)

which leads to the solutions

ω2
0,1 =

ω2
00 + ω2

11

2
−Q2∓

1

2

√
(ω2

11 − ω2
00)

2 − 4Q2((P00 − P11)2 +
Λ4π4

t4
) (1.6.24)

One can see, that the frequency of the hybridized fundamental and PSSW1
modes (ω0 and ω1 respectively) are a combination of the frequencies of the
unperturbed fundamental and PSSW1 modes (ω00 and ω11 respectively),
and a term describing the mode hybridization involving the quantity Q.
The main consequences of the mode hybridization are that approaching to
the intersection point the two branches start to repulse each other as it is
shown in Fig. 1.5(a), and that the modal profile shows a certain asymmetry
across the film thickness [Fig. 1.7(a)].

Let us focus on the last statement. In our description, the modal profile is
a combination of an uniform function and an antisymmetric cosine function.
The contribution of the latter gives rise to an asymmetric profile across the
film thickness, that means that the maximum amplitude is located at one of
the film surfaces depending on the sign of wave vector. A simple schematic
explanation of the non-reciprocal modal profile is sketched in Fig 1.6, which
shows the spatial distribution of the dynamic magnetization across a spin
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Figure 1.7: Modal profile of the dipole-exchange surface spin wave. (a)
amplitude, (b) in-plane component mz and (c) out-of-plane component mx.
The numerical calculation was done for a wave vector k = 7.8 µm−1 and
k = −7.8 µm−1, film thickness t = 50 nm, magnetic field µ0H0 = 100 mT,
saturation magnetization µ0Ms = 1 T and exchange constant A = 11 pJ/m.
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wave wavelength for the uniform mode and for a positive wave vector. As one
can see, both mx and mz components of the dynamic magnetization (solid
and open arrows, respectively) create magnetic poles, which in turn generate
a dynamic dipolar field (solid and dashed lines, respectively). In the lower
half of the film both components of dipolar field are parallel, whereas they
are in anti-phase in the upper half. As a result, for k > 0, the dipolar field
is larger in the lower half. The inverse situation is expected for wave moving
in opposite direction (k < 0): as m rotates in the opposite sense in the (x,
z) plane, the total dipole field is larger in the upper half of the film. This
non-reciprocal asymmetry of the dynamic dipolar field is at the origin of the
modal profile non-reciprocity. Indeed, the true eigenmode builds its profile
to account for the dipolar field it generates.

Fig. 1.6 illustrates precisely the relation between the antisymmetric in-
plane dipole field component and the uniform out-of-plane magnetization
component, which can extracted from Eq. (1.6.18)

hd,z0 = P00mz0 − iQmx1

hd,z1 = P11mz1 + iQmx0 (1.6.25)

Therefore, one can conclude that the surface character of the fundamental
mode results from the dipolar coupling between n = 0 and n = 1 modes via
the anti-diagonal component Q of the Green’s function. The non-reciprocity
of modal profile originates from the symmetry of Q function: since Q is
odd in k, a change in the sign of k changes the sign of Q and therefore
reverses the mode profile [69, 51]. This feature of the modal profile may give
an important contribution to the frequency non-reciprocity of two counter-
propagating surface spin waves, that will be discussed in section 4.1.

1.7 Dzyaloshinskii-Moriya interaction

In addition to the symmetric (Heisenberg) exchange interaction, which tends
to align neighboring spins parallel or antiparallel, there exists an antisym-
metric exchange interaction called Dzyaloshinskii-Moriya (DM) interaction,
which favors a canted orientation of neighboring spins [36]. This interaction
exists in materials with broken inversion symmetry, such as alloys of the B20
crystal structure (for example, FeBO3 [33], MnSi [128], FeGe [141], etc.), or
at the interface between a ferromagnetic and a non-magnetic material pos-
sessing a strong spin-orbit coupling. In the latter case it is called interfacial
Dzyaloshinskii-Moriya (iDM) interaction [98, 91].
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Figure 1.8: Sketch of an iDM interaction at the interface between a ferromag-
netic and a heavy metal. The spin wave propagates along the z direction,
the magnetization M is along the y direction and the broken symmetry is
along the x direction. The iDM interaction between two neighboring spin
moments m (red arrows) is considered as an indirect exchange interaction,
which arises from the spin-orbit interaction with a heavy atom (green atom).
The orientation of DM vector D is obtained from the relation uz × ux and
it is oriented perpendicularly to the film plane.

The energy of the DM interaction between two spins Si and Sj is given
by the expression

EDM = −Dij · (Si × Sj), (1.7.1)

where Dij is the Dzyaloshinskii-Moriya vector.
It has been recently shown [98, 91, 84, 125, 142], that the presence of the

iDM interaction leads to a notable modification of spin wave propagation,
namely a modification of the resonance frequency of the surface spin wave.

To describe the influence of the iDM interaction on MSSW, let us consider
a bilayer structure (ferromagnet/heavy metal), where the x axis indicates the
direction of the symmetry breaking, the y axis is parallel to the direction of
magnetization, and the z axis corresponds to the spin wave propagation
direction (see Fig. 1.8). In such system, two neighboring precessing spin
moments are coupled by a DM vector Dij , which connects two spins via
the exchange mechanism that includes an atom in the adjacent nonmagnetic
heavy metal layer. The vector Dij is parallel to uz × ux, where uz is the
vector between two neighboring spins and ux is normal to the film plane.
Switching to a micromagnetic continuous description, we can therefore write
the iDM interaction energy acting on the MSSW as

EDM = −D[(uz × ux) · (
M

Ms
× ∂M

∂z
)], (1.7.2)

where D is the average micromagnetic DM constant. Under the assumption
that the DMI is a purely interfacial property, the magnitude of D should be
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proportional to 1/t. According to this, we can introduce a constant Ds such
that D = Ds/t, which is the characteristic of the FM/HM interface and is
independent on the film thickness [10]. We can now calculate the dynamic
field originating from the DMI as

hDM = − 1

µ0

δEDM

δM
= − 2Ds

µ0M2
s t

(uy ×
∂m

∂z
), (1.7.3)

which for a plane spin wave of the form m(x) = m0(x)e
i(ωt−kz) becomes

hDM =
2Ds

µ0M2
s t

(uy × ikm). (1.7.4)

Introducing the DM field in the LL equation (1.6.1) as a part of the dynamic
effective field (h = hex + hd + hDM), we obtain

iωm = ωHuy ×m− ωMuy × heff

= ωHuy ×m− ωMuy ×Nm− ωM
2Dsik

µ0M2
s t

uy × (uy ×m),(1.7.5)

where operator N is the dipole-exchange operator defined in Eq.(1.6.4) and
(1.6.7). It is easy to see, that the LL equation can be rewritten as

i(ω − 2γDsk

Mst
)m = ωHuy ×m− ωM

2D

µ0M2
s

uy ×Nm, (1.7.6)

In the case of the uniform mode ω00 this yields the following dispersion
relation:

ω = ω00 + ωDM = (1.7.7)

= [ωH + ωM (Λ2k2 + P00)][ωH + ωM (1 + Λ2k2 − P00)] +
2γDs

Mst
k

One can see, that the presence of the DM interaction leads to the modifica-
tion of the dispersion relation of the fundamental MSSW mode by changing
its eigenfrequency ω00 by the quantity (2γDsk)/(Mst). Depending on the
sign of wave vector (k > 0 or k < 0), the resonance frequency will ei-
ther increase or decrease resulting in the frequency non-reciprocity for two
counter-propagating spin waves. The sign of the frequency shift also depends
on the sign of iDM constant, on the direction of magnetization (M ‖ ±uy),
as well as on the direction of vector ux, which indicates at which interface
(top or bottom) the symmetry is broken.
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Figure 1.9: Magnetization relaxation process

1.8 Magnetization relaxation process

Up to now, we considered the magnetization precession around an applied
magnetic field without dissipation. However, in a real system, there exists
always a dissipation of energy from the precessing spin to other degree of
freedom such as impurities, phonons or magnons, that leads to the magneti-
zation relaxation toward an equilibrium state where M ‖ H. To account for
the relaxation process, the LL equation is complemented by an additional
term including a dimensionless damping parameter α:

∂M

∂t
= −γµ0M×Heff +

α

Ms
(M× ∂M

∂t
), (1.8.1)

Performing the linearization procedure, one finds

iωm = −z× [ωMh− (ωH + iαω)m] (1.8.2)

One can see that the damping parameter enters as an imaginary part to the
precession frequency, and thus the loss can be introduced into the Polder
tensor (1.2.9) by performing the substitution ωH → (ωH + iαω). In the
case of an isotropic infinite medium, the magnetic response to an impulse
excitation field can be written as

mx(t) = ωMe
−αωH t sin(ωHt)

my(t) = −ωMe
−αωH t cos(ωHt) (1.8.3)
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Figure 1.10: Real and imaginary parts of Polder susceptibility in presence of
damping

As follows from Eq. (1.8.3), the magnetization tends to the equilibrium state
describing the spiral, which decays exponentially in amplitude (Fig. 1.9).

Experimentally, the magnetic damping of the uniform precession can be
determined from ferromagnetic resonance measurements. Sweeping the field,
the full resonance line width at half-maximum ∆H (see Fig. 1.10) will be
related to the damping parameter as:

∆H =
2αω

γµ0
. (1.8.4)

However, it is worth noting, that the resonance line width may contain not
only the contribution due to the damping, but other contributions related to
the presence of inhomogeneities in the sample, leading to linewidth broad-
ening.

In the case of traveling waves, it is more convenient to use the relaxation
time T2, defined as the time needed for the amplitude of the magnetization
to decay by a factor 1/e [124]. T2 is related to α by

1

T2
= αω

∂ω

∂ωH
, (1.8.5)

For the specific case of the magnetostatic surface wave, the relaxation time
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is given by
1

T2
= α(ω0 + ωM/2). (1.8.6)
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Chapter 2

Spin current and spin transfer
torque

In this section charge and spin currents in ferromagnetic and nonmagnetic
materials are described. First, we will introduce the definition of spin current
(Sec. 2.1). We will show with the help of the two current model that a spin
current may be generated in ferromagnetic materials as a result of spin-
dependence of the electrical resistivity (Sec. 2.2.1). A spin current can be
also created by the spin Hall effect, which takes place in materials with strong
spin-orbit coupling and transforms a charge current into a transverse spin
current (Sec. 2.2.2). In a bilayer structure the spin current can be generated
by the spin-pumping process, which manifests itself as a transfer of spin
angular momentum at the ferromagnetic/non-magnetic interface (Sec. 2.3.2).
At the end of this chapter, the interaction between the generated spin current
and the dynamical magnetization will be discussed.

2.1 Spin current

In the case of spin-up and spin-down electrons propagating in two indepen-
dent channels, the spin current can be defined as:

js = j↑s − j↓s . (2.1.1)

In a more rigorous definition, the spin current operator is given as [5]

Q =
1

2
(v̂ŝ+ ŝv̂), (2.1.2)

for carriers with spin momentum ŝ propagating with the spin velocity v̂.

41
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Let us now consider the different generation mechanisms of spin current,
starting with the spin dependent electrical transport in ferromagnetic metals.

2.2 Spin current generation in metal

2.2.1 Two current model

The spin dependent electrical transport in ferromagnetic transition metals
can be understood from the s− d electron band structure. In these materi-
als the majority (spin-up) and minority (spin-down) 3d bands are exchange
splitted [Fig. 2.1(a)]. This results in different spin population of 3d electrons
at the Fermi level, which is at the origin of spin polarization of the current.
Since the scattering of electrons is determined by the total DOS at the Fermi
level, the s to d scattering rate will be different for ↑ and ↓ electrons. It was
proposed by Mott [94] to describe the spin dependent transport in magnetic
material by considering two independent conductive channels for ↑ and ↓
electrons "connected" in parallel [see schema in Fig. 2.1(b)]. The resistivity
of each channel depends on the scattering events for electrons of each spin.
In this so-called two current model, the total resistivity ρ is calculated as

ρ =
ρ↑ρ↓
ρ↑ + ρ↓

, (2.2.1)

where ρσ is the resistivity of channel σ =↑, ↓. The degree of spin polarization
of the electric current is defined as the difference between spin-up and spin-
down resistivities normalized by the total resistivity:

P =
J↑ − J ↓
J↑ + J ↓ =

ρ↓ − ρ↑
ρ↑ + ρ↓

(2.2.2)

Eq. (2.2.1) does not include the possible intermixing between the cur-
rent of spin-up and spin-down electrons, which originates from the spin-flip
scattering due to electron-magnon collision or spin-orbit interaction. This
scattering is schematically represented in Fig. 2.1(c) by a spin mixing term
ρ↑↓. Accounting for this transfer of momentum between the two channels,
the total resistivity is now written as

ρ =
ρ↑ρ↓ + ρ↑↓(ρ↑ + ρ↓)

ρ↑ + ρ↓ + 4ρ↑↓
, (2.2.3)

and the degree of spin polarization of the electrical current takes the form

P =
ρ↑ − ρ↓

ρ↑ + ρ↓ + 4ρ↑↓
. (2.2.4)
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Figure 2.1: (a) The density of state of the majority and minority electrons.
(b) A schema of the two current model consisting of an independent con-
ductive channels for ↑ and ↓ electrons. (c) A schema of two current model
including spin-flip scattering

Here, the Matthiessens’ rule is assumed for each sub-band

ρσ =
∑

x

ρxσ ρ↑↓ =
∑

x

ρx↑↓, (2.2.5)

where the index x corresponds to the different types of scattering centers,
such as phonon, magnon or impurities.

The resistivity of each channel can be determined by measuring the de-
viation from Matthiessen’s rule for ternary alloys at low temperature or by
studying the temperature dependence of the resistivity of binary alloys. In-
deed, in ferromagnetic ternary alloys with two types of impurities A and B,
the total resistance ρAB differs from the sum of the resistivities ρA+ρB due to
the impurities A and B. This is attributed to the fact, that the Matthiessen’s
rule, which is satisfied for each individual channels, is not necessarily satisfied
for the total resistivity. In the absence of spin-flip scattering, this deviation
from Matthiessen’s rule can be written as [38]

∆ρAB = ρAB − ρA − ρB =
(αA − αB)

2ρAρB
(1 + αA)2αBρA + (1 + αB)2αAρB

. (2.2.6)
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From this expression one can determine αA and αB, which are resistivity
ratios αA = ρA↓/ρA↑, αB = ρB↓/ρB↑.

In the case of binary alloys the resistivity of each channel can be writ-
ten as the sum of pure metal resistivities ρiσ(T ), which are temperature
dependent, and impurity terms ρ0σ, which are assumed to be temperature
independent

ρσ = ρ0σ + ρiσ(T ). (2.2.7)

Substituting this relation in Eq. (2.2.3), one obtains the expression for
the temperature dependent resistivity of the binary alloys

ρ(T ) =
[ρ0↑ + ρi↑(T )][ρ0↓ + ρi↓(T )] + ρ↑↓(T )[ρ0↑ + ρi↑(T ) + ρ0↓ + ρi↓(T )]

ρ0↑ + ρi↑(T ) + ρ0↓ + ρi↓(T ) + 4ρ↑↓(T )
(2.2.8)

The deviation from Matthiessen’s rule is defined as [82]

∆ρ(T ) = ρ(T )− ρ0 + ρi(T ) = [
µ− α

1 + α
]2
ρi(T )

µ+ 1
+ [

1− α

1 + α
]2ρ↑↓(T ), (2.2.9)

where
ρi(T ) =

ρi↑ρi↓
ρi↑ + ρi↓

, ρ0 =
ρ0↑ρ0↓
ρ0↑ + ρ0↓

(2.2.10)

and
µ = ρi↓(T )/ρi↑(T ) α = ρ0↓/ρ0↑ (2.2.11)

As follows from Eq. (2.2.9), in the alloys with α ≃ 1, the temperature
dependence of the resistivity will be dominated by the temperature depen-
dence of the pure metal resistivity ρi. The main contributions to ρi at room
temperature arises from electron-phonon and electron-magnon scattering.

For alloys with α very different from unity, the dominant contribution to
the temperature dependence is proportional to the spin-mixing term ρ↑↓(T ),
which is associated to the electron-magnon scattering. The electron-magnon
scattering vanishes at T = 0 K remaining the spin-orbit interaction a dom-
inant mechanism responsible for the mixing of majority and minority spin
states [9].

2.2.2 Spin Hall effect

In 1929 N.F.Mott described the elastic scattering of an electron beam on a
heavy atom which, due to the spin-orbit interaction, leads to the separation
of the two spin states. Based on this approach, in 1971 Dyakonov and Perel
predicted theoretically the existence of the Spin Hall Effect, defined as the
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accumulation of oppositely polarized spins at the opposite boundaries of
the sample, which leads to the creation of a spin current perpendicular to
the charge current [34]. Unlike the ordinary Hall effect, where the flowing
charges accumulate at the surfaces due to the action of the Lorentz force in a
magnetic field, in SHE the spin accumulation originates from the spin-orbit
interaction, therefore no magnetic field is needed. The inverse situation can
also take place: a spin current can generate a transverse electrical current,
which leads to an accumulation of electrical charges of opposite signs at the
opposite lateral boundaries (Inverse Spin Hall Effect, ISHE).

In the following sections we will describe a phenomenological way to cal-
culate the generated spin Hall current for the cases when an electric current
flows in a single heavy metal. We will also discuss briefly the main mecha-
nisms of the spin Hall effect, namely an intrinsic mechanism, which is due to
the spin-dependent band structure coupling with an external electric field,
and extrinsic mechanisms (skew-scattering and side-jump), which are due to
the influence of spin-orbit interaction on electron scattering by impurities.

Phenomenological description of the effect

The transport of spins and charges can be described in a simple phenomeno-
logical way [34, 35]. Let qck be the charge current flowing in the k direc-
tion and qsij be the generated spin current, where the first index indicates
the flow direction and the second one corresponds to the direction of spin-
polarizations (i, j, k = x, y, z). Without spin-orbit interaction the charge
current and the spin current can be written as

qc,0k = −µnEk −D
∂n

∂k
, (2.2.12)

qs,0ij = −µnEiPj −D
∂Pj

∂i
(2.2.13)

where µ is the electron mobility, n is the electron concentration, D is the
diffusion coefficient and P is the vector of spin polarization. If the spin-orbit
coupling is considered, the charge current and spin current are interconnected
by the following relations:

qck = qc,0k + θSHεkijq
s,0
ij (2.2.14)

qsij = qs,0ij − θSHεijkq
c,0
k , (2.2.15)

where εijk is the unit antisymmetric tensor and θSH is a dimensionless cou-
pling constant called spin Hall angle, which shows the efficiency of charge-to-
current conversion. The different signs in Eq. (2.2.14) and (2.2.15) originates
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Figure 2.2: Illustration of spin Hall effect: a charge current jc flowing in
x-direction generates a transverse spin Hall current jSH leading to the spin
accumulation at the edges of the strip. The spin accumulation µs in turn
generates a spin current in opposite direction js. The profile on the front
panel shows the spin accumulation distribution over the strip width indicat-
ing the maximum of the spin accumulation at the boundary and its decay
within the spin diffusion length

from the different properties of the charge and spin current with the respect
to time inversion (while charge current changes sign under time inversion,
the spin current does not). Let us now substitute Eq. (2.2.12) in (Eq. 2.2.14)
representing the charge current in term of charge current density j = −eq:

j/e = µnE+D∇n+ θSHµnE×P+ θSHD∇P (2.2.16)

jsij/e = −µnEiPj −D
∂Pj

∂i
+ θSHεijk(µnEk +D

∂n

∂k
), (2.2.17)

These simple equations show the main consequences of the charge and spin
current coupling: the anomalous Hall effect, the spin Hall effect and the
inverse spin Hall effect. Indeed, the third term in Eq. (2.2.16) describes
the anomalous Hall effect, where the induced charge current is proportional
to the magnetization produced by the spin polarization. The fourth term
in Eq. (2.2.16) describes the generation of an electrical current due to the
inhomogeneous spin density, known as the inverse spin Hall effect. Finally,
the last term in Eq. (2.2.17) is nothing else as the spin Hall effect: the
creation of a spin current induced by a charge current.

Spin Hall effect in a single heavy metal

Let us consider the case, when the charge current flows in the x direction
producing a spin current flowing in the z direction being polarized in the y
direction (Fig. 2.2). The generated spin Hall current jSH = θSHσEx produces
a spin accumulation µs at the edge of the strip, which in turn generates a
spin current in the opposite direction js = σ

2e
∂µs

∂z , where σ = e2ND is the
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conductivity of spin channel, N is the density of states, and D is the spin
diffusion coefficient. The spin accumulation can be described by the spin-
diffusion equation

∂2µs
∂x2

=
µs
λ2sd

, (2.2.18)

where λsd =
√
Dτsf is the spin-flip diffusion length and τsf is the spin relax-

ation time. The general solution of this differential equation (2.2.18) can be
presented in the form:

µs(x) = Ae−x/λsd +Bex/λsd , (2.2.19)

where coefficients A,B are determined from the boundary conditions at the
interfaces

Using Eq. (2.2.17), we define the total spin current as a sum of the spin
Hall current and the diffusive current driven by spin accumulation:

Js(z) =
σ

2e

∂µs
∂z

+ θSHσEx. (2.2.20)

We can now calculate the total current Js using the spin-diffusion equa-
tion (2.2.18) with the boundary conditions Js(0) = Js(L) = 0 (since at the
edge of the strip jSH = −js). The solution of spin diffusion equation (2.2.18)

µs(z) =
2eλsdj

SH

σ

sinh(L/2λsd − z/λsd)

cosh(L/2λsd)
(2.2.21)

shows that the spins accumulate in thin layer near the sample boundaries
and diffuse through the width of this layer over the spin diffusion length
λsd. In the center of the strip (L = L/2) the spin accumulation is zero (see
Fig. 2.2).

Intrinsic mechanism

Let us now discuss the mechanisms of the spin Hall effect, starting with the
intrinsic mechanism. The intrinsic spin Hall effect arises in a perfect crystal
in the presence of spin-orbit coupled band structure. The mechanism of the
effect was independently elucidated by Murakami et al. [96] and Sinova et
al. [119]. In the latter work, the intrinsic SHE is described for the specific case
of 2D electron systems with a strong Rashba spin-orbit coupling (system with
inversion symmetry breaking), where the electrons have definite momentum
p = ~k and spin polarization. Under the influence of an external electric
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Figure 2.3: Illustration of intrinsic spin Hall effect: (a) Fermi surface of 2D
Rashba spin-orbit coupled system in unperturbed regime. (b) Fermi surface
displacement under the influence of an electric field. When electrons move
through the momentum space they experience an additional spin-orbit field
that leads to the rotation of spin down and spin up electron in opposite
direction. Figure is taken from [120]

field electrons move through the momentum space experiencing an effective
magnetic field, that results in the rotation of spin-up and spin-down electrons
in opposite direction (Fig. 2.3).

In more general case, the intrinsic SHE can be analyzed in term of Berry
phase in momentum space [96]. In this model, the momentum displacement
caused by an electric field can be regarded as an adiabatically changing
parameter and the Berry phase Bn(k) can be regarded as a magnetic field in
k-space. The spin Hall conductivity is calculated from the Kubo formula as

σsH
xy = −e

2

~

∑

n

∫

BZ
d2knF (εn(k))Bnz(k), (2.2.22)

where nF (εn(k)) is the Fermi distribution function for the n-th band and
the integral is over the entire Brillouin zone. By introducing B(k) into the
Boltzmann transport equation, one obtains modified equations of motion

ẋ =
1

~

∂En(k)

∂k
+ k̇ ×Bn(k), (2.2.23)

~k̇ = −e[E+ ẋ×B(x)]

where the additional second term in Eq. (2.2.23) represents an anomalous
electron velocity coming from the Berry phase. This result shows, that while
moving in an external electric field, an electron experiences an effective mag-
netic field created by its own spin that gives rise to an anomalous electron
velocity perpendicular to the field direction. This anomalous velocity gener-
ates the intrinsic spin Hall effect.
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The effective magnetic field Bn(k) and the intrinsic spin Hall conductiv-
ity can be evaluated by first principle calculations. It was first calculated
for semiconductors showing that the intrinsic mechanism is dominant in p-
type GaAs structures [96]. Recently, a large intrinsic SH conductivity was
calculated in 4d and 5d transition metals [126], showing that the largest
conductivity arises for those parts of band structure where the Fermi level
is located within spin-orbit splitted branches. It was also shown that the
sign of SH conductivity depends on the number of d-electrons, which was
experimentally confirmed in lateral spin valve structures [92].

Extrinsic mechanisms

The extrinsic mechanisms originate from the influence of the spin-orbit in-
teraction on electron scattering by impurities. There exists two processes
through which the impurities separate different spin states: side jump and
skew-scattering.

Consider first the side jump scattering [Fig 2.4(a)]. It originates from the
displacement of the center of the electron wave packet. If an electron with a
velocity v passes through an electric field E = −(1/e)∇u(r) created by the
impurity potential u(r), it experiences an effective magnetic field Beff , that
leads to the spin-orbit potential [85]

uso(r) = µBσ ·Beff = ηsoσ · [∇u(r)×∇/i], (2.2.24)

where σ is the Pauli spin operator and ηso is the spin-orbit coupling param-
eter. Due to the presence of such spin-orbit potential, an additional term
appears in the expression of the electron velocity, which is related to the
anomalous velocity of the finite wave packet. In other words, describing
the electron not by an infinitely extended plane wave but by a finite wave
packet, one can imagine that during the very short interval of time, in which
the wave packet overlaps the impurities, the anomalous velocity caused by
spin-orbit coupling will dominates leading to the small displacement of the
center of the wave packet. Thus, the electron trajectory will be shifted by
some distance with the respect to the electric field. Electrons with opposite
spins will move in opposite directions, in turn creating the spin current. The
spin Hall conductivity caused by side-jump contribution is given by [85]

σSJ
sH = θSJ

sHσN = e2/~ηsone, (2.2.25)

where σN is the electrical conductivity and ne is the carrier density. Notably,
although the effect arises from the collision of electron with impurities it does
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Figure 2.4: Illustration of extrinsic spin Hall effects: (a) side jump scattering;
(b) skew-scattering

not depend on the impurity concentration, but only depends on the applied
electric field.

Now, let us consider the skew scattering contribution to the spin Hall
conductivity [Fig. 2.4(b)]. It arises from the asymmetric scattering of an
electron on heavy atom impurities, which takes its origin from the Mott
scattering in relativistic physics [94]. When an electric current flows in a
material with strong spin-orbit coupling, the spin-up electron is strongly
scattered by the down-pointing angular momentum of the heavy atom, which
tents to deflect the electron motion to the right. On the contrary, the spin-
down electron is affected more by the up-pointing angular momentum, which
twists its direction to the left. Intuitively, this process can be understand by
comparing the electron with a ball, which is deflected in one direction or the
other depending on its sense of rotation.

The skew-scattering can be calculated from the asymmetric contribution
of the scattering probability in the Boltzmann equation. From the calcula-
tions given in Ref. [85], one obtains the spin Hall conductivity due to the
asymmetric skew-scattering:

σSS
sH = θSS

sHσN = −(
2π

3
)ηso[N(0)uimp]σN, (2.2.26)

where N(0)uimp is the impurity concentration. The study of the skew-
scattering using first-principle calculations was performed for different sys-
tems, where light element impurities were incorporated in heavy element
hosts and vice versa [42]. It was shown, that the magnitude of spin Hall con-
ductivity depends on the spin-orbit coupling between the impurities and the
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Figure 2.5: Schematic illustration of the transfer of spin momentum from
incoming electrons with spin s to local magnetization M of a ferromagnet.
The in-plane torque (IP) and the out-of-plane (OP) torque are sketched.

hosts and thus the choice of impurities and hosts may significantly influence
the spin Hall conductivity.

2.3 Spin transfer torque

The first prediction of the existence of spin transfer torque has been put
forward by Berger in 1980’s after the experimental observation of the cur-
rent induced domain wall motion in ferromagnetic material. However, at
that time the effect did not attract great attention, since a huge current was
required to move the domain wall in a sample of a few mm, resulting in a
large heating of the sample that hindered the experimental confirmation of
current driven DW. With the advance in nanofabrication process it became
possible to demonstrate the effect of spin transfer torque at reasonably low
current in nanoscale spin-valve structure [108, 43]. In 1996, Berger [11] and
Slonczewski [121] independently showed that the current flowing perpendic-
ularly to the film plane in a spin-valve structure (F1-N-F2) is able to reorient
the magnetization of the second ferromagnet via spin transfer torque.

The physics of the spin transfer torque process is illustrated in Fig. 2.5(a).
When an electron enters the ferromagnet the local magnetization M tends to
align the spin moment s of the incoming electron in the direction of magneti-
zation. As a result, an electron experiences a torque from magnetization that
leads to the reorientation of the electron’s spin at the exit of the ferromag-
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net. In turn, due to the conservation of the angular momentum, the flowing
electron must exert an equal and opposite torque on the magnetization. This
torque is called the spin transfer torque and is defined as

T =
PµB

eM2
M× (M× s) (2.3.1)

where P is the degree of the spin polarization of the electric current. This
torque is called Slonczewski torque or in-plane because it lies in the plane
containing M and s. There exists a correction to the Slonczewski torque
called out-of-plane, which is directed perpendicular to the first one. The
magnitude of both torques may be more or less important depending on the
material and magnetic texture.

In the following, we will consider the effect of STT on the precession mag-
netization for two cases: when the spin current flows through a continuously
variable magnetization texture (section 2.3.1) and when it flows through the
interface between a ferromagnet and a non-magnetic metal (section 2.3.1).

2.3.1 Spin transfer torque for a continuously variable mag-
netization texture

Consider a spin current js(x) expressed in units of µB flowing in the x di-
rection through the volume Adx of a ferromagnet with a non-uniform mag-
netization M(x). Assuming that the dynamics of the magnetization is slow
compared to the characteristic time of the electron transport, such as the
decoherence time, the electron relaxation time, and the spin diffusion time.
In such a case, it is reasonable to assume that the spin of the conduction
electron follows the direction of the local magnetization at each point of
space js(x) = M(x)js/Ms, that is known as the adiabatic hypothesis. As
shown in Fig. 2.5, this alignment of the spin with the local magnetization is
accompanied by a loss of magnetic momentum of the itinerant electron. Per
unit volume and unit time this loss of momentum amounts to

∂js
∂x

= js
∂M

∂x

1

Ms
. (2.3.2)

An equal quantity of momentum is gained by the magnetic moment in
the ferromagnet due to the conservation of angular momentum:

∂M

∂t
= −∂js

∂x
. (2.3.3)

Expressing the spin current density in terms of the charge current density jc
and the degree of spin polarization of the electrical current P , the adiabatic
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spin transfer torque can be written as

∂M

∂t
=

µB

eMs
P jc ·

∂M

∂x
, (2.3.4)

where µB

eMs
P jc = u is the effective magnetization velocity.

A torque perpendicular to the adiabatic torque may also exist, which
is called non-adiabatic spin transfer torque. It was first deduced by Zhang
et Li [143] from the theoretical s-d model, where the Hamiltonian Hsd =
JexsM/Ms relates the conduction s-electron spin with the the local magne-
tization M/Ms via the exchange coupling. The spatial and the temporal
variation of the spin of the conductive electron is divided in two terms:
〈s〉 = m(r, t) = m0(r, t) + δm(r, t), where the first corresponds to the spin
density whose direction is parallel to the magnetization and δm(r, t) is the
nonequilibrium spin density, which relaxes by spin-flip scattering. In ad-
dition to the adiabatic torque, the local magnetization also experiences a
torque due to the nonequilibrium spin density δm(r, t), which is given by the
expression

T =
µBP

eM2
s

βM× (jc · ∇)M, (2.3.5)

where the parameter β characterizes the relative strength of the non-adiabatic
torque with respect to adiabatic one, and is related to the spin flip scattering
time τsf.

The dynamic magnetization affected by both adiabatic and non-adiabatic
torques is described by the modified LLG equation of motion

dM

dt
= −γM×Heff +

α

Ms
M× dM

dt
− u

dM

dx
+ βu

M

Ms
× dM

dx
(2.3.6)

where u = −PµBj/(eMs) is the effective magnetization velocity and corre-
sponds to the magnitude of the adiabatic STT, and β is the non-adiabatic
coefficient.

Current induced domain wall motion

For a system with non-uniform magnetization, such as a domain wall (DW),
the spin transfer torque leads to the displacement of the DW, that is called
current induced domain wall motion (Fig. 2.6).

The DW motion is caused by both the adiabatic and the non-adiabatic
torques, but depending on the magnetic material their contributions can be
more or less important. For an in-plane magnetized magnetic wire (fabri-
cated from a soft material such as permalloy), it is the non-adiabatic torque,
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Figure 2.6: Photoemission electron microscopy image of the DW motion in
a Py wire. Figure is taken from Ref [86]

which plays a dominant role in the DW displacement acting as an additional
magnetic field. Indeed, in the absence of the non-adiabatic torque, the the-
ory predicts the existence of a threshold current density, below which the
DW can not move. This threshold current jth is given by the DW width λw
and the easy plane anisotropy K as [127]

jth =
eγλw
PµB

K (2.3.7)

However, the experimental results showed that DW motion is allowed below
this threshold current, which is attributed to the non-adiabatic torque. In
this case, the DW velocity is defined by the ratio between the non-adiabatic
torque β and the Gilbert damping constant α as v = βu/α.

In contrast, it was demonstrated by micromagnetic simulations [62] and
confirmed experimentally [72], that the DW motion in a wire with perpen-
dicular magnetic anisotropy is mostly governed by the adiabatic STT. It
was shown, that for systems with out-of-plane magnetization, where the
effective anisotropy constant K is much smaller than for the system with
in-plane magnetization, the adiabatic threshold current is significantly re-
duced. As a result, the adiabatic torque becomes dominant compared to the
non-adiabatic one.
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Figure 2.7: An illustration of the current-induced spin wave Doppler shift.
The alignment of the spin of conduction electrons with the local magnetiza-
tion M at each point of space leads to the adiabatic STT, which results in
the change of precession frequency.

Current induced spin wave Doppler shift

Another example of non-uniform magnetization configuration is a spin wave.
The effect of the spin transfer torque on a propagating spin wave, which has
the form m = m0e

i(ωt−kx) with a frequency ω and a wave vector k, can be
determined from the linearized version of equation of motion (Eq. 2.3.6)

iωm = −γ(m× µ0H0 +M0 × µ0h) +
iωα

Ms
M0 ×m+ ikum− ikβu

M0

Ms
×m

(2.3.8)
From this equation one can see, that the adiabatic torque leads to a variation
of the precessional frequency

ω → ω + uk (2.3.9)

whereas the non-adiabatic torque results in the modification of the magne-
tization damping

αω → αω − βuk. (2.3.10)

Note that the magnitude of the non-adiabatic torque is in general much
smaller than the magnitude of the adiabatic one (β < 0.1).

The frequency shift due to the adiabatic STT is called the current in-
duced spin wave Doppler shift (CISWDS). The phenomenon is illustrated in
Fig. 2.7. In the adiabatic regime the spin of conduction electrons is aligned
everywhere with the local magnetization. This alignment is accompanied by
a transfer of angular momentum. The direction of this transfer is oriented
along the tangent of the magnetization precession trajectory. Depending
on the current direction the magnetization precession will speed up or slow
down. More precisely, if the flow of magnetic moments is parallel to the
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direction of spin wave propagation, the spin transfer torque will increase the
frequency of magnetization precession, as it is shown in Fig. 2.7. On the
contrary, electrons moving in the opposite direction will exert a torque in
the direction opposite to the precession, thus reducing the frequency.

The reason why this effect is called a Doppler shift can be understood
by following the initial theoretical prediction by Lederer and Mills [77]. Let
the spin wave propagates in a frame R′ in the form of plane wave

m′(x′) = m0e
i(ωt−kx′) (2.3.11)

When an electric current is applied to the material, the electrons start to
move with some drift velocity vd. A Galilean transformation x = x′ + vdt
relates the reference frame R linked with the material with the frame R

′

linked with the electrons. As a result, the spin wave in reference R can be
written as

m(x) = m0e
i(ωt−kx+kvdt) = m0e

i([ω+kvd]t−kx). (2.3.12)

As one can see, the motion of the electrons induces a shift of the precession
frequency by an amount

δωDoppler = kvd (2.3.13)

Despite the spin wave Doppler shift effect was theoretically predicted half
a century ago, the first experimental observation of the effect was reported
in 2008 by our group in Strasbourg [135]. The experimental device is shown
in Fig. 2.8(a). Two microwave antenna are used to excite and to detect the
propagating spin waves with a given wave vector k. When the dc current
is applied along the ferromagnetic strip it modifies the spin wave precession
frequency shifting it to the left or to the right depending on the relative
orientation between the direction of the current and the spin wave wave
vector, as seen in Fig. 2.8(b) and (c). Using Eq.(2.3.9), from the frequency
shift on the applied current, one can extract the value of spin velocity u and
therefore the degree of spin polarization P .

Spin waves can be also used to determine the non-adiabatic coefficient
β. As was shown by Eq. (2.3.10), the non-adiabatic torque leads to a modi-
fication of the damping parameter of the system. Since the damping process
determines the attenuation length of the spin wave and, in turn, the spin
wave amplitude, the non-adiabatic torque can be experimentally estimated
from the difference of amplitudes measured for two current polarities [118]

Sekiguchi et al. [117] and Chauleau et al. [18] have reported time-domain
inductive and magneto-optical measurements of spin wave dynamics under
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Figure 2.8: (a) Experimental device used to study spin wave Doppler shift.
(b)-(c) Influence of an electric current on propagating spin wave. Mutual-
inductance measured film for k > 0 and k < 0 in the presence of a ±6 mA
dc current. Figure is taken from Ref. [135]

.

current, that allows them to estimate the magnitude of the non-adiabatic
coefficient in a permalloy film, which is found to be of the order of a few
damping constants, β = 2α to 3α.

2.3.2 Spin transfer torque in bilayers

Let us consider now the effects of spin transfer torque occurring at ferromagnetic/non-
magnetic interfaces. In such bilayer structures, the spin current can flow
perpendicularly to the film plane exerting a torque at the interface. Below
we will consider two types of interfacial spin transfer torque: spin pumping
and spin Hall driven spin transfer torque. In the first case, the spin cur-
rent is created by the ferromagnet’s magnetization precession and is injected
into the normal metal exerting a torque on conduction electrons, while in
the second case, the spin current generated by SHE in the normal metal is
injected into the ferromagnet exerting a torque on the local magnetization.
In the following sections we will describe the interplay between both these
STT effects, as well as their influence on the magnetization dynamics in
ferromagnetic material.
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Spin pumping phenomena

The spin pumping process occurs as a result of the injection of the spin cur-
rent generated by the precession of the magnetization precession of a ferro-
magnet into an adjacent nonmagnetic metal. This process can be considered
as an adiabatic pumping. Its period is defined by the period of the magne-
tization precession. The theoretical description of spin pumping is based on
a scattering-matrix approach, where the spin transport is described by the
interface scattering parameter A = Ar + iAi [129]:

Ipump
s =

~

4π
(Ars×

ds

dt
−Ai

ds

dt
), (2.3.14)

where

Ar =
1

2

∑
[|r↑mn − r↓mn|2 + |t↑mn − t↓mn|2],

Ai = Im
∑

[r↑mn(r
↓
mn)

∗ + t↑mn(t
↓
mn)

∗], (2.3.15)

are given by the reflection and transmission coefficients r↑mn, r
↓
mn, t

↑
mn, t

↓
mn of

spin-up and spin-down electrons at the interface. Here, m and n indicate
the transverse modes at the Fermi energy in the normal-metal film.

Using Eq. (2.3.15), one can express the scattering parameter A as A =

g↑↓−t↑↓, where g↑↓ = g↑↓r +ig↑↓i is the interface spin mixing conductance and
t↑↓ is the transmission matrix. The physical meaning of these parameters
are that the spin mixing conductance describes the longitudinal part of the
spin current pumped into the normal metal, while the transmission matrix
represents its transverse components. The longitudinal part of the spin cur-
rent is along the steady-state magnetization direction and its propagation is
defined by the spin diffusion length. The propagation of the transverse com-
ponents is limited by the spin-coherence length λc = π/(k↑−k↓), where k↑(↓)
are the Fermi wave vectors. When the ferromagnetic film is thicker than λc
(that is the case for most transition metals for which λc is of the order of few
monolayers), the spins of electrons undergo a precession dephasing [104]. As
a result, the transverse components of spins average to zero, so t↑↓ vanishes,
and thus the pumped spin current is only determined by the spin mixing
conductance:

Ipump
s =

~

4π
g↑↓s× ds

dt
, (2.3.16)

Let us consider the case, when the spin injection rate from the ferromag-
net is higher than the spin diffusion rate τ−1

sf in the normal metal. This leads



2.3. SPIN TRANSFER TORQUE 59

Figure 2.9: Illustration of spin pumping process in a ferromagnetic
(FM)/heavy metal (HM) bilayer. The precession magnetization generates
a spin current, which is injected into the heavy metal via the transfer of spin
momentum to conductive electrons. The transverse part of the pumped spin
current decays through the spin-coherence length λc and the longitudinal
part decays through the spin-flip length λsf.

to the spin accumulation in normal metal, which in turn yields the creation
of a spin current, which will propagate in both directions, i.e. back into
the ferromagnet and forth into the normal metal. Consequently, the total
current at the F/N interface will be a sum of a pumped spin current and a
back-flow current Is = Ipump

s − Iback
s . It has been shown in [129], that the

back-flow current Iback
s can be calculated as

Iback
s =

1

2π
g↑↓µs. (2.3.17)

Using the spin-diffusion equation (2.2.18) with boundary conditions js(0) =
js0 and js(L) = 0, the back-flow current driven by the spin accumulation
through the interface reads

Iback
s =

1

2π
g↑↓

eλsd

σ

js0
tanh(L/λsd)

. (2.3.18)

For the current density js0 = Is/S, where S is the area of interface, we can
rewrite Eq. (2.3.18) as

Iback
s = βG↑↓Is, (2.3.19)

where β = (1/2π)(λsd/σ) is the back-flow factor in the limit L ≫ λsd and
G↑↓ = g↑↓/S in units of [S/m2]. Therefore, the total current through the
interface can be expressed in terms of the pumped current as

Is =
Ipump
s

1 + βG↑↓
=

~

4π

G↑↓

1 + βG↑↓
(s× ds

dt
). (2.3.20)
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Let us now consider the consequence of the spin pumping on the mag-
netization precession in the ferromagnet. From the conservation of angular
momentum, the injection of the spin current out of the ferromagnet leads to
the loss of spin angular momentum ds/dt = −Is, where s = MV/γ is the to-
tal spin in the ferromagnet. The modification of the magnetization dynamic
can be thus evaluated using LLG equation by introducing an additional term,
which describes the momentum loss due to the spin pumping

dM

dt
= −γM×Heff + α0M× dM

dt
+

γ

MsV
Is, (2.3.21)

where Ms is the saturation magnetization and V is the volume of the ferro-
magnet. Replacing the expression for Is from Eq. (2.3.20) in the Eq. (2.3.21),
one can see that the spin pumping acts as an additional damping term, en-
hancing the Gilbert damping α0 by an additional term

αSP =
G↑↓

1 + βG↑↓

gµB
4πMst

= G↑↓
eff

gµB
4πMst

, (2.3.22)

where t is the thickness of ferromagnet. By assuming τsf → 0, i.e. treating
the normal metal as a perfect spin sink, the back-flow factor β tends to 0,
so the total Gilbert damping coefficient can be defined as

α = α0 + αSP = α0 +
gµBG

↑↓

4πMst
. (2.3.23)

The damping factor of the magnetic films with and without the non-
magnetic spin sink layer can be extracted from the line width of the FMR
spectra. The enhancement of the damping can be used to extract the spin
mixing conductance of the F/N interface by analyzing the modification of
the damping factor as a function of t [89].

Spin Hall effect in bilayer structure

By applying an electrical current in a heavy metal, one generates a transverse
spin current. The total spin current is the sum of the spin current induced by
the SHE and the spin current driven by the gradient of spin accumulation (see
Sec. 2.2.2): For the charge current applied in the x direction, the generated
spin current in the z direction is written as

Js(z) =
σ

2e

∂µs
∂z

+ jSH. (2.3.24)
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In the presence of an adjacent ferromagnetic layer at the bottom side of HM
(at z = 0), the induced spin current will penetrate through the NM/FM
interface with an efficiency governed by the effective interfacial spin mixing
conductance G↑↓

Js(z = 0) = js0 =
1

2π
G↑↓µs. (2.3.25)

The spin accumulation in the normal metal is calculated using the drift-
diffusion equation (2.2.18) with two boundary conditions: Eq. (2.3.25) at the
NM/FM interface (z = 0) and Js = 0 at the vacuum/NM interface (z = L).
For the given boundary conditions the expression for spin accumulation takes
the form

µs(z) = −2eλsd

σ
jSH sinh[(2z − L)/2λsd]

cosh(L/2λsd)
+

2eλsd

σ
js0

cosh((z − L)/λsd)

sinh(L/λsd)
.

(2.3.26)
If there is no spin transfer at the interface, i.e. the spin-mixing conductance
is zero, the second term in Eq.( 2.3.26) becomes zero and the spin accumu-
lation at the interface is the same as was calculated for a single heavy metal
layer (Eq. 2.2.21). In the case when G↑↓ 6= 0, the spin accumulation at the
magnetic interface is determined as

µs0 =
2eλsdjSH tanh(L/2λsd)

σ + (2eλsd)/(2π)G↑↓ coth(L/λsd)
. (2.3.27)

The spin current traversing the interface can be thus expressed as

js0 =
1

2π
G↑↓µs0 = jSH · T, (2.3.28)

where T is the so-called spin interfacial transparency defined as

T =
G↑↓ tanh(L/2λsd)

GNM/2 +G↑↓ coth(L/λsd)
, (2.3.29)

with GNM = σ/λsd being the spin conductance of the nonmagnetic material.
As one can see from Eq. (2.3.28), the spin interfacial transparency is the ratio
between the spin current diffusing into the ferromagnet to the spin current
generated in the nonmagnetic material, thus showing the ability of the spin
current to penetrate trough the NM/FM interface.

The spin-mixing conductance can be deduced from [144, 101]

G↑↓ =
G↑↓

eff

1− 2G↑↓
eff/GNM

, (2.3.30)
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where the effective spin-mixing conductance G↑↓
eff is derived from the the

damping increase when the nonmagnetic layer is adjacent (Eq. 2.3.22). For
the thickness of a nonmagnetic metal larger than the spin-diffusion length,
the interfacial transparency can be simply expressed as

T = 2G↑↓
eff/GNM. (2.3.31)

To calculate the effect of the spin Hall induced spin transfer torque on
the dynamical magnetization, we use the LLG equation by introducing the
Slonczewski STT term (2.3.1)

dM

dt
= −γM×Heff + α0M× dM

dt
+

γ

tM2
s

[M× (js0 ×M)]. (2.3.32)

For a geometry in which the spin polarized current is collinear with the
static component of magnetization, the Slonczewski spin transfer torque acts
as a damping-like torque, which modifies the intrinsic damping by the term
αSHE [79] (see subsection 5.3.3 for a derivation of this result)

α = α0 + αSHE = α0 +
γ

tM2
s

TJSH

2ω0 + ωM
, (2.3.33)

where (2ω0+ωM ) is proportional to the relaxation rate of the uniform preces-
sion mode [see Eq. (1.8.6)]. Depending on the orientation of the injected spin
(up or down) with the respect to the local magnetization, the spin transfer
torque will either increase or decrease the magnetic damping. Writing the
spin current in term of the charge current JSH = θSHJ

c, one can see that
the spin relaxation process can be controlled by simply tuning the direction
of the electric current with an efficiency given by spin Hall angle θSH.

In conclusion, a heavy metal layer adjacent to the ferromagnet leads to
spin-orbit related phenomena such as spin transfer torque induced by spin
Hall induced spin transfer torque and spin pumping. In both cases, the effect
of this spin transfer torque is to modify the magnetic damping. In case of
spin pumping, the STT always leads to the increase of damping. In case of
STT-SHE, the damping can be either reduced or enhanced depending on the
current polarity.



Chapter 3

Experimental setup

In this section the experimental method used to measure the magnetization
dynamics will be described. First, the operational principle of propagating
spin wave spectroscopy will be presented. Afterwards, the fabrication pro-
cess of the devices needed for this technique will be discussed. Finally, the
complete set-up including the electromagnet and the vector network analyzer
(VNA) will be presented.

3.1 Propagating spin wave spectroscopy

Propagating spin wave spectroscopy (PSWS) is a technique, which is based
on the inductive coupling between a conducting antenna and a ferromag-
netic film. Its operational principle is schematically represented in Fig. 3.1.
The device consists of a pair of meander-shape metallic lines (the spin-wave
antennas) placed on the ferromagnetic strip. By injecting a microwave cur-
rent I(ω) into the antenna one generates an oscillating magnetic field h(ω)
around each metallic line. This oscillating field couples with the magnetiza-
tion inducing a non-uniform precessional motion, i.e. generating a spin wave.
The excited spin wave can propagate in both positive and negative directions
with a wave length defined by the spatial periodicity of the antenna. The
spin wave induces a variation of magnetic flux, which in turn generates an
oscillating voltage V (w), which can be measured by the antenna. An impor-
tant feature of such devices is that each antenna can be used as emitter and
receiver, i.e. the spin wave can be excited and detected by the same antenna,
or can be excited by the one antenna and detected by another one. By mea-
suring the voltage Vi and current Ii, where i = 1, 2 are the antenna number,
one can determine the inductance matrix ∆Lij (see sec. 3.3.1). From the
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Figure 3.1: Sketch of the operating principle of propagating spin wave spec-
troscopy: a microwave current I(ω) is injected into the first antenna gener-
ating an oscillating magnetic field h(ω). This field excites a spin wave, which
can be detected, in particular, by the second antenna.

self-inductances ∆L11 and ∆L22 one can evaluate the efficiency of spin wave
excitation, and from the mutual-inductances ∆L12 and ∆L21 one can extract
the propagation characteristic of the spin wave. A more detailed description
of the spin wave devices is given in Refs. [134, 136].

3.2 Spin wave device fabrication

We will now describe the fabrication process of the spin wave devices. We
used standard lithography processes, which contain both optical and electron-
beam lithography parts. A device consists of a ferromagnetic strip, a pair
of SW antennas connected to coplanar wave guides and patterned on top of
a magnetic stripe, four DC pads and an insulator (Fig. 3.2). As a magnetic
material we used both the nickel-iron alloy Ni80Fe20 (permalloy, Py) and pure
Fe. Because different film deposition techniques and different substrates were
used in the two cases, we will first describe in details the fabrication process
on Py films, and then explain the specificities of the fabrication process on
Fe films. We will also discuss the possible obstacles which may occur during
each fabrication process.

All fabrication work has been done in the nanofabrication platform STnano
in Strasbourg.
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Figure 3.2: Optical microscopy image of a Py/Pt device consisting of a Py
stripe, the coplanar waveguides connected to a pair of microwave antenna
and four DC pads.

3.2.1 Sample fabrication on Py films

The spin wave devices were fabricated from a set of Ti(5)/Py(t)/Pt(5) trilay-
ers with varying Py film thickness t = 4, 7, 20 nm, together with Ti(5)/Py(10)/Pt(10)
and Ti(5)/Py(4)/Ti(5) trilayers. All films have been deposited by magnetron
sputtering on intrinsic silicon substrates with a thermal oxide layer of about
100 nm. For each Py thickness several devices with different magnetic strip
widths and different distances between antennas were realized. The follow-
ing description of the sample fabrication on Py films will be done using as
example the Ti(5)/Py(t)/Pt(5) multilayers (the procedure for the other two
trilayers is identical).

Strip

The first step is the patterning of the magnetic strip from the extended
film. The strips of a length of 80 µm long and a width of w = 5, 10, 20 µm
were patterned from the films by using a positive photolithography process,
which is shown in Fig. 3.3. The sample was covered with 0.5 µm of pho-
toresist S1805 and then baked at 115◦ on a hotplate for 2 minutes. Then it
was placed against a chromium mask, on which we designed 9 blocks each
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Figure 3.3: Fabrication process of the strip: (a) Positive photolithography
process: resist exposure by UV light. (b) Ar+ ion etching. (c) The strip
after the removal of photoresist.

containing 6 strips and alignment crosses (different blocks correspond to dif-
ferent strip widths). Using a MJB4 mask aligner, the sample was exposed
by ultraviolet light during 3 sec [Fig. 3.3(a)], after which it was immersed in
a bath of developer MF319 for 30 sec. As a result, the resist exposed by UV
light was completely dissolved, thus leaving only the part protected by the
photomask and creating a resist profile with the typical sidewall slope shown
in Fig. 3.3(b). To obtain the required resist profile, a low exposure dose is
needed. In this case, the resist is subjected to more intensive irradiation
near the mask region, whereas the resist near the substrate is less irradiated.
Too high exposure dose leads to homogenous resist irradiation resulting in
rectangular resist profile (perpendicular sidewall).

After photolithography, the sample was etched using the Ar+ ion gun
available in the loadlock of our Plassys 550 evaporator. The etching is per-
formed at an incidence of 45◦ and with a continuous rotation of the sample
to minimize the atom re-deposition. The etching time was adjusted to etch
the whole metal trilayer [Ti(5 nm)/Py(t)/Pt(5 nm)] and 20 nm of SiOx. The
etching rate, which have been determined for each material, is given in Ta-
ble 3.1. As a final step, the sample was immersed in acetone (lift-off process)
for a few minutes (∼ 30 min) to dissolve the remaining resist as shown in
Fig. 3.3(c). A successful lift-off process requires a stooped resist sidewall to
minimize the re-deposition of the etched material. If the latter happens, it is
recommended to use a remover solution or oxygen plasma cleaning in order
to facilitate the lift-off.

Coplanar waveguides and DC pads
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Metal Rate
(nm/min)

Deposition
technique

Py 12 sputtering
Ti 4 sputtering
Pt 16 sputtering

SiOx 16 rf
sputtering

Fe 9.5 MBE
MgO 9.4 MBE
Ti 1.5 MBE

Table 3.1: The etching rate of the different materials grown by different
deposition technique

A pair of coplanar waveguides (CPW) together with four DC pads were
patterned by a negative photolithography process, as shown in Fig. 3.4. The
sample was coated with image reversal resist AZ 5214, with a thickness of
1.4 µm suitable for lift-off process, and baked on a hotplate at 105◦ for
1 min 40 sec (the resist thickness should be at least tree times higher than
the thickness of deposited material). We used a second photomask, on which
we designed the CPW, DC pads, and alignment marks. This pattern was
aligned on the strips and alignment crosses already fabricated on the sample.
The sample was exposed by UV light during 2.8 sec followed by a post
exposure bake (PEB) at 120◦ for 1 min. Then the sample was irradiated
again by UV light for 30 sec without any mask (flood exposure). Since PEB
makes the exposed resist insoluble in the developer, areas initially protected
by the mask become soluble. So, after developing the sample in AZ-726MIF
developer for 25 sec, we got the structure shown in Fig. 3.4(a). Such undercut
resist profile is obtained by using a low exposure dose (for the same reason as
explained for positive tone lithography). After developing and a few seconds
of Ar+ etching to get a good electrical contact between the DC pads and the
Py strip, the sample was covered by Ti(10 nm)/Au(60 nm) in our Plassys
550 evaporator. Then the resist was dissolved in acetone (lift-off precess),
resulting in the structure shown in Fig. 3.4(b). The undercut resist profile
is essential for a successful lift-off process since the deposited film covers
discontinuously the pattern and thus the metal deposited on the resist can
be easily removed.

Insulator
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Figure 3.4: Fabrication process of the CPW and DC pads: (a)Negative pho-
tolithography process. (b) CPW and DC pads formed after metal deposition
and lift-off process

Figure 3.5: Insulator patterned on top of FM stripe

An insulator was patterned on top of the FM strip to avoid any electrical
contact between the strip and the microwave antenna, as shown in Fig. 3.5.
The same negative photolithography recipe as above was used. After the
photolithography, 80 nm layer of SiO2 was deposited by RF sputtering us-
ing our Alliance Concept EVA300+ machine. This is followed by a lift-off
in acetone of a few minutes. Using the RF sputtering one may expect the
formation of lateral walls (co-called "collars") due to a lack of directionality
of sputtered atoms (Fig. 3.6). To avoid the "collar" formation the sputter-
ing should be performed without wafer rotation, which results in a more
directional material deposition. Also, one can reduce the resist thickness to
reduce the height of the material deposited on the resist sidewall.

Spin wave antenna

As a final step we patterned the spin wave antennas on top of the FM strip
using electron beam lithography. The sample was covered with a positive
tone electron resist bilayer PMMA 600K/PMMA 950K (AR-P 669.04/AR-P
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Figure 3.6: AFM image of a CPW pad partially covered by an insulator. A
"collar" formation of 250 nm at the edge of insulator, which results in circuit
interruption when a metal track is deposited on top.

679.02). The two resist layers are used to increase the resist thickness and
to facilitate the lift-off. The sample was baked at 180◦ for 1 min 30 sec. The
exposure was performed at an acceleration voltage of 20 kV in our Zeiss Supra
40 Scanning Electron Microscope equipped with a Raith Elphy Plus pattern
generator. Preliminary tests allowed us to determine the nominal exposure
dose of the resist, which is of 200 µC/cm2. The latter is an important
parameter: since the width of the wires and their spacing are of the order
of hundred nanometers, overexposure may lead to the lines merging, while
underexposure may cause a hard lift-off process. After the resist exposure
the sample was developed in AR 600.56 developer for 30 sec and rinsed in
AR 600.60 for 30 sec. Then the sample was cleaned by an oxygen plasma
for a few seconds in order to remove any organic contamination. At last, a
deposition of 10 nm of Ti and 120 nm of Al was carried out in the e-beam
evaporator followed by a lift-off of a few minutes.

Fig. 3.7(a) shows a SEM image of antennas fabricated on top of a 10 µm
wide stripe with an edge-to-edge distance D = 2 µm. The antenna is com-
posed of a central conductor and two narrow ground lines adapted to the
configuration of a coplanar waveguide. By calculating the Fourier transform
of the current distribution normalized by the current injected one obtains
the distribution of the wave vector of the spin wave generated. For the given
antenna geometry, the calculated Fourier transform shows one broad peak
centered at 7 µm−1.
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Figure 3.7: (a) A spin wave antennas patterned on a 10 µm wide Py strip.
(b) A zoomed view of the conductors lines of one antenna. (c) Corresponding
Fourier transform, which shows one broad peak at 7 µm−1.
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The final devices

The optical microscope image of a final device is shown in Fig. 3.2. As
was mentioned at the beginning, for each Py thickness we fabricated sev-
eral devices with different strip width w and different distances between the
antennas D. For the thickest films the separation between antennas is cho-
sen to be D = 1, 3, 5 µm, while for the thinnest films it scales down to
D = 0.5, 0.8, 1.1 µm in order to detect an intense enough signal. The total
amount of fabricated devices is around 40.

3.2.2 Sample fabrication on Fe films

Thin Fe (001) films of a thickness of 10-20 nm were grown by molecular beam
epitaxy (MBE) on MgO(001) substrate by David Halley. A buffer MgO layer
(20 nm) was first grown on top of the MgO substrate at 550◦C, then the Fe
film was grown at 100◦C. Both films were annealed at 480◦C before to be
capped with a MgO (8 nm) layer. Most of the films were covered by a 4.5 nm
Ti layer to protect the MgO surface from degradation. Due to the lattice
mismatch between Fe and MgO (aFe = 2.86, aMgO = 4.21), the Fe film
grows such that the Fe[100] easy axis is rotated by 45◦ with the respect to
the MgO[100] axis, as shown in Fig. 3.8. For most devices, we have chosen
to orient the strip along the Fe[100] axis. For this purpose the strips were
patterned at 45◦ with respect to the [100] edges of the MgO substrates.

As one can see from this microscopic image, the main components and
the general view of the devices are almost the same as for the Py-based
devices (except a stripe orientation). However, there exists few significant
differences in the fabrication, which will be emphasized below.

Using the same photomask as above, we pattern 5 or 10 µm wide Fe
stripes. Using an Ar+ ion gun, we etched MgO(10)/Fe(t)/MgO(8)/Ti(4.5)
(the etching rates is given in Table 3.1). After being etched, the samples
were immersed in acetone for a few minutes.

Then, we deposited an insulator layer of SiO2 of 70 nm on the whole
sample surface to improve adhesion on the MgO. Thereafter, the CPW and
DC pads were patterned using a negative photolithography process with an
exposure time of 2.4 sec. Then, the samples were etched to remove the SiO2

layer with a following etching of Ti, MgO and 2-3 nm of Fe layers to get an
electrical contact with the Fe stripe. Then, 10 nm of Ti and 70 nm of Au
were deposited and the lift-off process was carried out.

As the final step, the spin wave antennas were fabricated using e-beam
lithography. The main difficulty arising during this process is that the in-



72 CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.8: (a)A schematic illustration of the device designed on the Fe film
with the strip patterned along a Fe[100] axis.

sulating MgO substrates accumulates the charges, which causes a deflection
of electron beam and a distortion of the pattern. To avoid this problem,
we used a conductive resist, which was directly deposited on top of PMMA
resists and removed in DI water for 2 min after exposure. After cleaning the
samples in plasma oxygen, 10 nm of Ti and 120 nm of Al was deposited by
e-beam evaporator.

This time, a meander shape antenna with three meanders was patterned,
where the central and the lateral conductor lines are two times larger than the
central and the lateral lines in the simple antenna patterned on Py stripe,
respectively (Fig. 3.9). The Fourier transform of the current distribution
flowing in the antenna shows a main peak situated at 3.9 µm−1, a much
less intense secondary peak at 1.55 µm−1, and an even less intense peak in
between the main and the secondary peaks at 2.6 µm−1.

As in the case of Py-based devices, for each Fe film thickness and strip
width we fabricated three devices with difference distances between antenna,
namely D = 2, 3, 4 µm. Three series of devices with different geometries and
compositions (with or without Ti capping layer) were fabricated:

1. DH190: MgO(20)/Fe(20)/MgO(8), w = 10 µm, D = 2, 3, 4 µm

2. DH228: MgO(20)/Fe(10)/MgO(8)/Ti(4.5), w = 5 µm, D = 2, 3, 4 µm
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Figure 3.9: (left) SEM image of the microwave antennas patterned on top
of MgO stripe of 10 µm wide with a separation distance of 3 µm.(right) The
corresponding Fourier transform, which shows the main peak at 3.9 µm−1

and the secondary peak at 1.55 µm−1.

3. DH232: MgO(20)/Fe(20)/MgO(8)/Ti(4.5), w = 10 µm, D = 2, 3, 4 µm

All the devices have the same antenna design thus producing the same wave
vectors of km = 3.8 µm−1 and ks = 1.5 µm−1.

3.3 Experimental procedure

The experimental setup used is shown in Fig. 3.10(a). The sample is placed
at the center of an electromagnet and the microwave probes (picoprobes)
are connected to the coplanar wave guides on the sample [Fig. 3.10(c)]. In
turn, the probes are connected to a vector network analyzer (VNA) (Agilent
PNA E8364B) using phase-stable coaxial cables [Fig. 3.10(b)]. These cables
provide an excellent phase-stability against temperature changes in a large
frequency range between 10 MHz and 50 GHz. To inject DC electrical current
we use four DC tips connected to a Keithley 2600 source-meter.

3.3.1 Device characterization using vector network analyzer

A device characterization by means of a VNA is based on the measurement
of the S−parameters, which are extracted from the magnitude and phase of
the signals reflected and transmitted at the two ports. Fig. 3.11 illustrates
a S-parameters measurement. By injecting a signal in port 1 with a voltage
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Figure 3.10: (a)Picture of the experimental setup containing an electromag-
net, a vector network analyzer and a microscope. (b) A zoomed view show-
ing a coils and pole pieces of the electromagnet. (c) Zoomed view showing
the end of the coaxial cables and the picoprobes connected to the coplanar
waveguides.
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V +
1 , a part of the signal is reflected at the same port with the amplitude V −

1 ,
whereas another part is transmitted with the amplitude V −

2 detectable at
port 2. By placing the source at port 2 with a voltage V +

2 one can measure
the reflected signal V −

2 at port 2 and the transmitted one V −
1 at port 1. We

can build the S-matrix, which relates the incident waves V +
1 , V +

2 and the
transmitted ones V −

1 , V −
2 as

(
V −
1

V −
2

)
=

(
S11 S12
S21 S22

)
·
(
V +
1

V +
2

)
. (3.3.1)

In other words, the parameters Sii = V −
i /V

+
i define the ratio between the

magnitude of reflected and incident voltage signal on the same port i and the
parameters Sij = V −

i /V
+
j correspond to the ratio between the transmitted

signal at port j to the incident signal at port i.
From the S-parameters measured by the network analyzer we can extract

the impedance matrix Zij as

Vi =
∑

j

Zij(ω)Ij(ω), (3.3.2)

where Vi = V +
i + V −

i and Ij = I+j + I−j are the voltage and the current at
the ports (i, j) = (1, 2), and [134]

Zii = Zc
(1 + Sii)(1− Sjj) + SijSji
(1− Sii)(1− Sjj)− SijSji

Zij = Zc
2Sij

(1− Sii)(1− Sjj)− SijSji
(3.3.3)

During our PSWS measurements, the impedance matrix is always mea-
sured at two different magnetic fields: the first one Zij(ω,Hres) at the res-
onance field Hres and the second one Zij(ω,Href) at a reference field Href

chosen such that no resonance occurs within the given frequency range. The
difference between these two matrixes thus gives a signal only attributed to
the spin waves and eliminates the field-independent electromagnetic peaks.
Since the impedance variation induced by the spin wave originates from the
inductive coupling between the strip and the antenna, we can transform the
impedance matrix into the inductance matrix ∆Lij(ω):

∆Lij(ω) =
1

iω
[Zij(ω,Hres)− Zij(ω,Href)]. (3.3.4)

The self-inductance (∆L11 and ∆L22) and the mutual-inductance (∆L12 and
∆L21) are the signal of interest of propagating spin wave spectroscopy (see
section).
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Figure 3.11: Schematic illustration of the S-parameters definition for a 2-port
measurements

Before starting the measurements we perform a calibration of the mi-
crowave circuit and of the magnetic field as explained below.

3.3.2 The microwave circuit calibration

An important factor for microwave measurements is the good impedance
adaptation of all elements (the VNA, the coaxial cables, the coplanar waveg-
uides) in order to minimize the signal loss due to reflections at the connection
of different elements. The coplanar waveguide is designed to have a charac-
teristic impedance of 50 Ω, which is determined by the relative permittivity
of the substrate (SiO2 or MgO in our case) and the ratio between the cen-
tral conductor width and its spacing with the ground line. To eliminate
systematic errors arising from residual reflections, we use a calibration sub-
strate, which contains a short (0Ω), an open (∞ Ω), a load (50 Ω), and a
through microwave line. The calibration is performed over the whole fre-
quency range of the VNA (from 10 MHz to 50 GHz) at conditions similar
to that used during the measurements on real devices (power, bandwidth,
number of points). After the calibration, we define an additional electrical
delay corresponding to the propagation along the coplanar waveguide before
reaching the antenna. We estimate an electrical delay of about 12± 2 ps.

3.3.3 The magnetic field calibration

We use a home made electromagnet consisting of two iron-core coils. The
electromagnet is calibrated with the help of a Hall probe placed in its cen-
ter. The center of the gap is determined by searching the maximum field
measured for a small current value. Then the magnetic field is measured
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Figure 3.12: The calibration of magnetic field in a range between +5 A and
-5 A
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as a function of the DC current between +5 A and -5 A with a step of 2
mA. We obtain an hysteresis loop, which is almost saturated at ±5A (which
corresponds to a field of 0.306 T), and shows a remanent field of 13.6 mT
(Fig. 3.12). Therefore, to follow the same magnetic history during the mea-
surements, we first apply a high DC current and then decrease it down to
the desired value.



Chapter 4

Frequency non-reciprocity of
surface spin waves

In this chapter we will start with the qualitative and quantitative expla-
nation of the frequency non-reciprocity observed experimentally in the thin
Al2O3/Py/Al2O3 films. These measurements are interpreted with the help
of the dipole-exchange theory accounting for different surface anisotropies at
the top and bottom film surfaces. The effect of the iDM interaction on the
spin wave spectrum will be then investigated in Py/Pt films and discussed
in sec. 4.2.

Most of the measurements reported for Py/Al2O3 films have been per-
formed by M. Haidar during his PhD thesis [49, 50, 51]. I build upon this
previous work by measuring a few extra Py/Al2O3 devices and completed
the data analysis, which have been published in Ref. [40].

4.1 Frequency non-reciprocity induced by the mag-
netic asymmetry of the film

4.1.1 Experimental observation of the frequency non-reciprocity
in Al2O3/Py/Al2O3 trilayers

In this investigation Al2O3(21 nm)/Py(t)/Al2O3(5 nm) trilayers have been
used with a thickness of magnetic material of t = 6 − 40 nm. We used
propagating spin wave spectroscopy devices consisting of a ferromagnetic
stripe with a width of w = 2 − 8 µm and a pair of microwave antenna
patterned atop. We also used two different antenna geometries with different
values of antenna pitch (Fig. 4.1). The Fourier transform of the current

79
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Figure 4.1: SEM images of the microwave antennas and corresponding
Fourier transform. The image is taken from Ref. [134]

density flowing in antenna shows two distinct peaks for each device, where
the main (more intense) peak corresponds to a wave vector kM and the
secondary (less intense) peak corresponds to a wave vector ks. Therefore,
using two different antenna pitches we are able to excite the spin waves with
four values of k: 1.5, 3.1, 3.9, 7.8 µm−1.

Before starting the analysis of the non-reciprocal spin wave propagation,
we first performed reflection measurements in order to extract the efficiency
of spin wave excitation and to characterize the magnetic properties of the
film. An example of self-inductance spectrum measured at an applied field
of 37 mT for device with 40 nm is shown in Fig. 4.2, where both real and
imaginary parts are plotted in units of picohenry (pH). The latter shows two
absorption peaks of a Lorentzian form, which correspond to the resonance
peaks of spin waves with wave vector kM = 3.9 µm−1 (peak at higher fre-
quency) and ks = 1.5 µm−1 (peak at lower frequency). We measured the
dependence of these resonance frequencies fres on the applied field for 12
devices with varying film thickness t and wave vector k. For all devices,
a monotonic increase of the resonance frequency as a function of the field
was observed. We analyze these dependencies by following the procedure
described in Appendix A. From this analysis we extract the value of the gy-
romagnetic ratio γ/2π = 30 ± 1 GHz/T, the saturation magnetization Ms,
which decreases from 1.02 T to 0.92 T with varying the film thickness from
40 nm to 6 nm, and the effective magnetization µ0Meff = 0.99 − 0.83 T
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Figure 4.2: The self-inductance spectrum measured at an applied field of
37 mT for the device of the 40 nm film with a width of 7 µm. The two
absorption peaks, seen on Im(∆L11) (red line), lie at fM = 9.2 GHz (cor-
responding to a spin wave with kM = 3.9 µm−1) and at fs = 7.15 GHz
(corresponding to ks = 1.5 µm−1).

for t = 40 − 6 nm. The total surface anisotropy is estimated from the dif-
ference between the saturation magnetization and effective magnetization
[2
∑
Ks = (µ0Mst)(Ms −Meff)] [see Eq. (1.3.12)], which yields a value of∑

Ks = 0.1± 0.1 mJ/m2.
Next, we performed the transmission measurements, which actually carry

the information about the propagation of the spin wave in the magnetic
material. Since each microwave antenna can be used as emitter or receiver,
we measure two mutual inductance signal ∆Lij . The wave excited on the
first antenna and detected on the second one (k > 0) is associated to the
mutual-inductance ∆L21, while the wave generated on the second antenna
and detected on the first one (k < 0) is associated to the mutual-inductance
∆L12. Fig. 4.3(a) shows a typical mutual-inductance spectrum measured at
µ0H = 37 mT in a 40 nm Py film (the mutual-inductance spectrum presented
here and the self-inductance spectrum shown in Fig. 4.2 were measured in the
same device). As one can see, the real and imaginary parts of both ∆L12 and
∆L21 signals exhibit well pronounced oscillations, which are due to the phase
delay acquired during the wave propagation between two antennas. One can
also note, that the amplitudes of the oscillations [black lines in Fig. 4.3(a)]
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show two well-defined peaks, which are located at the same frequencies as the
two absorption peaks of the self-inductance spectra in Fig. 4.2. This means
that the oscillations under the first envelope peak (f = 6.4 − 7.7 GHz)
correspond to the wave propagating with ks = 1.5 µm−1 and the oscillations
under the second envelope peak (f = 8.7− 9.7 GHz) correspond to the wave
propagating with kM = 3.9 µm−1.

From Fig. 4.3(a) one can clearly see that the waves propagating in posi-
tive and negative directions differ in their amplitude and in their frequency
showing thus a non-reciprocal behavior. We notice that the wave propagat-
ing in the positive direction ∆L21 has a smaller amplitude than the wave
propagating in the opposite direction (∆L12). The origin of the observed
amplitude non-reciprocity is well-known and is attributed to the coupling be-
tween the field excited by the antenna and the dynamical magnetization [49]:
for k < 0 the direction of the out-of-plane component of the magnetization
is in phase with that of the excitation field, whereas for k > 0 they are in
anti-phase. Therefore, the wave with k < 0 will propagate with higher am-
plitude than the wave with k > 0. When the magnetic field is applied in the
opposite direction the reverse situation is observed: the wave with k < 0 will
possess smaller amplitude than that with k > 0.

Let us focus now on the frequency non-reciprocity. In Fig. 4.3(b),(c)
we zoom the oscillations under the two peaks to show the frequency shift
between the imaginary parts of the inductance signals ∆L12 and ∆L21 for
ks = 1.5 µm−1 [panel (b)] and kM = 3.9 µm−1 [panel (c)]. The frequency
non-reciprocity fNR = f12−f21 is measured to be 15 MHz for ks and 34 MHz
for kM . We then performed the same measurements for different values of
the applied field and observe a slight decay of the frequency non-reciprocity
as a function of the magnetic field (Fig. 4.4). By switching the direction
of the magnetic field the frequency non-reciprocity changes sign, i.e. the
frequency of the positive SW wave vector (∆L21) becomes higher than that
of the negative SW wave vector (fNR = f12 − f21 < 0).

In Fig. 4.5 and 4.6 we collected the data from all devices and plotted
the dependence of the frequency non-reciprocity as a function of the film
thickness and the wave vector, respectively. In Fig. 4.5 the frequency non-
reciprocity for different wave vectors is plotted as a function of t on a semilog-
arithmic scale. One observes a bell shape dependence of fNR on t, whose
amplitude increases with k. From Fig. 4.6, one can see that the frequency
non-reciprocity increases linearly with k is a linear function for t ≤ 20 nm,
whereas for t = 40 nm, it first increases and then seems to saturate between
3.9 µm−1 and 7 µm−1.

To interpret these data we use the theory of dipole-exchange spin wave [64]
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Figure 4.3: (a) The mutual-inductance spectrum measured at an applied
field of 37 mT for the device of the 40 nm film with a width of 7 µm. The
inductance ∆L12 and ∆L21 correspond to the signals measured for k < 0 and
k > 0, respectively. The black solid and dashed lines are the amplitudes for
k < 0 and k > 0, respectively. The frequency shift between the imaginary
parts of the inductance signals ∆L12 and ∆L21 for ks = 1.5 µm−1 and
kM = 3.9 µm−1 is shown in panel (b) and (c), respectively.
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Figure 4.4: Frequency non-reciprocity versus applied magnetic field. Black
and red symbols show the measured frequency non-reciprocity for kM =
3.9 µm−1 and ks = 1.5 µm−1, respectively. Solid lines are the theoretical fit
obtained for Kbot

s = 0.15 mJ/m2, Ktop
s = −0.05 mJ/m2, A = 11.5 pJ/m,

µ0Ms = 1 T, µ0H0 = 37 mT, γ/2π = 29.02 GHz/T.
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Figure 4.5: Measured frequency non-reciprocity as a function of film thick-
ness for k = 7.8 µm−1 (squares), k = 3.86 µm−1 (circles), k = 3.14 µm−1

(diamonds), k = 1.55 µm−1 (triangles up). Solid lines are the theoretical
results (Eq. 4.1.6) obtained for the set of parameters indicated in the caption
of Fig. 4.4.

Figure 4.6: Same data as in Fig. 4.5 plotted as a function of wave vector for
t = 6 nm (squares), t = 10 nm (triangles down), t = 14 nm (triangles up),
t = 20 nm (circles), t = 40 nm (diamonds). The dashed lines are obtained
when including iDMI (Ds = −0.04 mJ/m2, see text for details) only for
t = 6 nm.
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and extend it for the case when the surface anisotropy is present and makes
a non negligible contribution to the spin wave frequency.

4.1.2 Theoretical explanation

Let us first explain qualitatively how the frequency non-reciprocity may arise
due to the presence of the surface anisotropy. As was shown in section 1.6.1,
one of the specific features of the surface spin waves is their non-reciprocal
modal profile. The result of such modal profile non-reciprocity is the spin
wave localization at the different surfaces while propagating in the opposite
directions, as it is shown in Fig. 4.7.

Let us assume now that the magnetic properties are also asymmetric
across the thickness of the film, i.e. the dynamic and/or static effective fields
are different in the top and bottom halves of the film. This can happens,
for example, if a homogeneous ferromagnetic film has out-of-plane uniaxial
surface anisotropies of different magnitudes on both sides (Ktop

s and Kbot
s ),

as illustrated in Fig. 4.7. One can see that the wave propagating in the
positive direction and having larger amplitude in the lower half will be more
sensitive to the anisotropy at the bottom surface, while the wave propagating
in the opposite direction and having larger amplitude in the upper half will
be more affected by the surface anisotropy at the top. If the magnitude of
these surface anisotropies are different (and consequently the effective fields),
the wave having larger amplitude in the half with higher effective field will
oscillate at higher frequency than the wave having larger amplitude in the
half with lower effective field, thus leading to the frequency non-reciprocity.
We thus conclude, that a frequency non-reciprocity (fNR) can result from
the mutual influence of two factors: an intrinsic non-reciprocity of the modal
profile and an asymmetry of the magnetic film properties [40].

To estimate quantitatively the effect of the surface anisotropies on the
spin wave spectrum we use the theory of hybridized dipole-exchange spin
wave [see subsection (1.6.1)], extending it by introducing the surface mag-
netic anisotropy term in the effective field. For this purpose, the dynamic
effective field is written as

h = hex + hd + hs (4.1.1)

where the exchange field hex and dipolar field hd are given by Eqs.[ (1.6.6),(1.6.3)],
and the out-of-plane magnetic anisotropy field hs is given by

hs =
2

µ0M2
s

ux(K
bot
s δ(x)mx(0) +Ktop

s δ(x− t)mx(t)). (4.1.2)
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Figure 4.7: Schematic representation of the MSSWs possessing an asymmet-
ric modal profile across the film thickness t for k < 0 and k > 0, which
propagate in thin magnetic film with different surface anisotropy at top and
bottom sides (Ktop

s and Kbot
s ) with M ‖ +y.

We use the basis of the ortho-normal functions containing the fundamental
FMR mode with a uniform profile (n = 0) and the first perpendicular stand-
ing spin wave mode (n = 1,PSSW1) with an antisymmetric profile across a
film thickness [cos(πx/t)] [see Eq.( 1.6.17)]. Using the formalism of the dy-
namic effective tensor (h = −Nm), we define the components of the tensor
N s associated to the uniaxial out-of-plane surface anisotropies as

Ns,00 =
1

tµ0M2
s

∫ t

0

∫ t

0
[−Kbot

s δ(x)δ(x
′

)−Ktop
s δ(x− t)δ(x

′ − t)]dxdx
′

= − 2

tµ0M2
s

(Kbot
s +Ktop

s ) = −ε

Ns,11 =
2

tµ0M2
s

∫ t

0

∫ t

0
[−Kbot

s δ(x)δ(x
′

)−Ktop
s δ(x− t)δ(x

′ − t)]

cos (
πx

t
) cos(

πx
′

t
)dxdx

′

= − 4

tµ0M2
s

(Kbot
s +Ktop

s ) = −2ε (4.1.3)

Ns,01 =

√
2

tµ0M2
s

∫ t

0

∫ t

0
[−Kbot

s δ(x)δ(x
′

)−Ktop
s δ(x− t)δ(x

′ − t)]

cos (
πx

′

t
)dxdx

′

= − 2
√
2

tµ0M2
s

(Kbot
s −Ktop

s ) = δ

One can see, that the projection of the surface anisotropy field on the basis
of the functions n = 0, 1 produces two terms related to the sum of the two
surface anisotropies ε and a term related to their difference δ. This yields
the modification of the dynamical operator C of Eq. 1.6.18, which now takes
the following form
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C =

(
C00 C01

C10 C11

)
=




ωx0 − ε 0 δ −iωMQ
0 ωz0 −iωMQ 0
δ iωMQ ωx1 − 2ε 0

iωMQ 0 0 ωx1


 (4.1.4)

In other words, the addition of the surface anisotropies in the matrix equation
leads to a modification of the ωx terms in the expression of fundamental and
PSSW1 mode frequencies by a term ε and 2ε, respectively, as well as a
modification of the off-diagonal blocks responsible for the coupling between
two modes by a terms δ related to the difference in the surface anisotropies.
The solution of the eigenvalue equation det(uy × Ck − iω1) = 0 takes the
form

(ω2
0 − ω2)(ω2

1 − ω2)− 2δQω(ω2
z1 − ω2

z0) = 0, (4.1.5)

where ω0, ω1 are the spin wave eigenfrequency obtained for δ = 0 [see
Eq. (1.6.24)].

To demonstrate the effect of the surface anisotropy on the dispersion
characteristic we calculate the frequency of positive and negative wave vec-
tors for some typical values of the surface anisotropy. Fig. 4.8 shows that
for the same magnitude of magnetic anisotropy at top and bottom surfaces
(Kbot

s = Ktop
s = 1 mJ/m2) no divergence between k > 0 and k < 0 is

observed (solid green line). However, this relatively high value of total sur-
face anisotropy (ΣKs = 2 mJ/2) leads to significant decrease of the effective
magnetization and, as a result, to a significant decrease of the resonance
frequency at zero k comparing with the zero anisotropy case (magenta line).
If we now consider the presence of the surface anisotropy only at the one
side, for example Ktop

s = 1 mJ/m2 and Kbot
s = 0, one observe not only the

decay of the resonance frequency at zero k caused by the total anisotropy
of ΣKs = 1 mJ/2, but also a divergence between the positive and nega-
tive waves caused by the difference in the surface anisotropies at the top
and bottom sides ∆Ks = 1 mJ/2 (red dashed lines). This difference in
the dispersion characteristic of the oppositely propagating waves yields a
substantial frequency non-reciprocity, which can be calculated treating the
surface anisotropy in Eq. (4.1.5) as a perturbation (δQ is assumed to be a
small parameter). Note, that the same effect was calculated by Hillebrand
et al. [56] using a different approach.

As a result, the frequency shift induced by the magnetic asymmetry is
given by the expression:

∆ω0 = δQ
ωz1 − ωz0

ω2
1 − ω2

0

. (4.1.6)



4.1. FNR INDUCED BY THE MAGNETIC ASYMMETRY 89

Figure 4.8: Dispersion curves calculated for the case when the surface
anisotropy is absent (magenta solid line), when the surface anisotropy is
present having the same magnitude at top and bottom sides (green solid
line), and when the surface anisotropy differs at opposite sides (red dashed
lines). The difference in surface anisotropies leads to the frequency non-
reciprocity linear in k (inset).
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Q being odd in k, this frequency shift changes sign when k is reversed so that
it corresponds to a frequency non-reciprocity ωNR = ω0(k < 0)−ω0(k > 0) =
−2∆ω0(|k|). As follows from Eq. (4.1.6), the frequency non-reciprocity scales
linearly with the difference in surface anisotropy and is inversely proportional
to the difference between the two unperturbed spin wave frequencies ω0 and
ω1. In most cases, this difference (ω2

1 −ω2
0) is positive. However, close to the

avoided crossing point in the dispersion relation (ω0 = ω1) it changes sign
and becomes responsible for the saturation observed for the 40 nm film at k
between 4 and 8 µm−1 (see Fig. 4.6).

In the small thickness limit (kt ≪ 1 and Λ2π2

t2
≫ P00, P11, h, ε,Λ

2k2),
Eq. (4.1.6) can be rewritten in a more simple form

fNR ≃ 8γ

π3
Kbot

s −Ktop
s

Ms

k

1 + Λ2π2

t2

, (4.1.7)

which indicates a linear dependence of fNR on the wave vector and a nearly
quadratic dependence on the film thickness and explains quantitatively the
frequency non-reciprocity we measured in thin films (up to 20 nm)(Fig. 4.6).

Let us now discuss the quantitative comparison with the experimental
results. As shown in Fig. 4.6, the model (solid lines) reproduces quite
well the experimental data using a single value of the difference in sur-
face anisotropies: Kbot

s − Ktop
s = 0.20 ± 0.01 mJ/m2. The order of mag-

nitude of this difference is consistent with typical values reported for surface
anisotropies in permalloy films, which are in the range of 0 − 0.5 mJ/m2

(Refs. [105, 58, 57]). At first sight, the large difference may appear surprising
for two nominally identical interfaces (Py/Al2O3 and Al2O3/Py). However,
surface anisotropies are known to depend quite strongly on the details of the
interface structure, which in turn can dependent on the material deposition
sequence. More specifically, we suspect a partial surface oxidation to play
a role in our case [50]. Indeed, using X-ray photoelectron spectroscopy and
polarized neutron reflectivity, we have detected a non-magnetic nanometer-
thick iron oxide forming mostly at the top surface, probably during the Al2O3

sputter deposition. In this picture, one expects a quite pronounced easy-axis
surface anisotropy for the bottom Al2O3/Py interface (as observed in most
ferromagnet/non-magnetic oxide interfaces) and a reduced value for the top
Py/Al2O3 interface. The sign of the observed frequency non-reciprocity is
consistent with this expectation (i.e. Kbot

s > Ktop
s ). It is worth noting

that to determine the strength of two individual surface anisotropies one
requires to estimate their sum, in addition to their difference. Referring
to the reflection measurements, where the sum of surface anisotropy was
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extracted by measuring the effective magnetization of the films, we found
the magnitude of the surface anisotropy at top and bottom surfaces to be
Ktop

s = −0.05 mJ/m2 and Kbot
s = 0.15 mJ/m2.

One can note however the deviation between theory and experiment ob-
served for thinnest film of t = 6 nm. This deviation is due to the additional
contribution to the frequency shift, which arises from the Dzyaloshinkii-
Moria interaction (DMI) [91, 125, 31, 70]. Indeed a value as small as Ds =
0.04 pJ/m at one of the film interfaces generates an additional contribution
of the form given in Eq. (4.2.1) that explains the values measured experi-
mentally (dotted lines in Fig. 4.6). Because it scales as the inverse of the
film thickness, this contribution becomes significant only for the thinnest
film investigated. Such a small value of Ds, about fourty times smaller than
the value observed in Pt/Co/AlOx ultrathin films [10], seems plausible in
a system which does not contain any heavy metal with strong spin-orbit
interaction.

In conclusion, we have shown that for the magnetostatic surface spin
waves, which possess an antisymmetric modal profile across the film thick-
ness, an asymmetry of the magnetic properties through the film thickness
leads to a difference of the frequencies of counter-propagating spin waves. We
have measured this frequency non-reciprocity as a function of film thickness
and wave vector. Using a theory of dipole-exchange spin waves, in which
asymmetric surface anisotropies are included as a perturbation, we have de-
duced a simple analytical formula allowing predict the magnitude of fNR as
a function of difference in surface anisotropies at top and bottom sides. We
have shown that in the limit of small t, the frequency non-reciprocity has a
linear dependence on k and a quasi-quadratic dependence on t.

4.2 Frequency non-reciprocity induced by the Dzyaloshinskii-
Moriya interaction

4.2.1 Experimental observation of the frequency non-reciprocity
induced in Ti/Py/Pt trilayers

To study the effect of the Dzyaloshinskii-Moriya interaction on the surface
spin waves we use the set of Siint/SiO2/Ti(5 nm)Py(t)/Pt(5 nm) films t =
4, 7, 20 nm and Siint/SiO2/Ti(5 nm)Py(10 nm)/Pt(10 nm) films described
in chapter 3. Remind that the strips have the width of w = 5− 20 µm and
the microwave antennas contain only one meander (Fig. 3.7), contrary to the
case of Py/Al2O3 films, where three or five meanders were used. The pitch
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of the antenna (that defines the spin wave wavelength) is about 900 nm and
the corresponding Fourier transform shows one broad peak at k = 7 µm−1.
We also use a reference sample consisting of a 4 nm Py layer sandwiched
between two 5 nm Ti layers, where the iDM interaction is not expected to
be present.

As before, we first perform the reflection measurements, i.e. we measure
the resonance frequency dependence on the magnetic field. The obtained
curves for all devices are shown in Fig. 6.15 in Appendix A. The magnetic
parameters extracted from these curves are approximately the same as those
obtained for Py/Al2O3 films (γ/(2π) = 30 ± 1 GHz/T, µ0Ms = 1 − 0.92 T
and µ0Meff = 0.99 − 0.83 T for t = 20 − 4 nm, respectively, which yields
Ks ≃ 0.1 mJ/m2).

In the next step, we perform the transmission measurements with varying
Py film thickness. Fig. 4.9 shows the mutual-inductance spectra measured
at µ0H = 37 mT in Py(4)/Ti, Py(4)/Pt and Py(20)/Pt strips with a width
of 20µm. The maximum of amplitude is located at f = 5.5 GHz for t = 4
nm and at f = 8 GHz for t = 20 nm. In the right side of Fig. 4.9 we
plot the imaginary part of the inductance signals ∆L12 and ∆L21, that
correspond to the wave with k < 0 and k > 0, respectively. In the case
of the Py(4)/Ti(5) stack, no significant difference between the ∆L12 and
∆L21 signals is observed (the frequency non-reciprocity is as small as 0.8
MHz). On the contrary, the presence of the Pt layer on top of the Py
layer leads to a substantial frequency shift of the counter-propagating spin
waves. We measure a frequency non-reciprocity fNR = f12 − f21 = 65 MHz
for t = 4 nm and −15 MHz for t = 20 nm. The positive frequency non-
reciprocity indicates a higher frequency for the wave traveling in negative
direction, whereas the negative sign indicates a higher frequency for the
wave moving in positive direction.

By increasing the Py film thickness we observe a decrease of the frequency
non-reciprocity, which for t = 7 nm reaches a value of 32 MHz and for
t = 10 nm a value of 20 MHz (squares in Fig. 4.10).

4.2.2 Discussion

Referring to Eq. (1.7.7), the frequency shift between oppositely propagating
waves induced by the DMI can be calculated as

fNR = [ω(−k)− ω(+k)]/(2π) =
2γDs

πMst
k. (4.2.1)

The DMI-induced frequency shift is linear and odd in k and inversely
proportional to the film thickness. Therefore, using the dependence of the



4.2. FNR INDUCED BY THE IDMI 93

Figure 4.9: (left panels) Mutual-inductance spectrum measured at µ0H =
37 mT in Py(4)/Ti, Py(4)/Pt and Py(20)/Pt films. (right panels) A zoom
of difference between inductance signals ∆L12 and ∆L21 showing a minor
frequency non-reciprocity in Py(4)/Ti film, a large fNR of +65 MHz in
Py(4)/Pt film, and a negative fNR of -15 MHz in Py(20)/Pt film. In middle
panels the noise in raw signal is due to the small Py film thickness.
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Figure 4.10: Magnetic asymmetry and iDMI contributions to the frequency
non-reciprocity for a ferromagnet/heavy metal bilayer with A = 11.5 pJ/m,
µ0Ms = 1 T, k = 7.8 µm−1 and µ0H0 = 37 mT. The magnetic asymmetry
contribution (green dash-dotted line) is calculated for Kbot

s = −0.1 mJ/m2,
the iDMI contribution (red dashed line) is calculated for Ds = 0.3 pJ/m
and the combined contribution from both effects is shown by solid black
line. This reproduces well the measured frequency non-reciprocity (black
squares).

frequency non-reciprocity as a function of 1/t, the value of the iDM constant
can be easily extracted.

In Fig. 4.10 we show the dependence of the measured frequency non-
reciprocity as a function of the Py thickness (symbols). One observes a
drastic decrease of the frequency shift with increasing the film thickness. For
thicker films the frequency non-reciprocity starts deviating from a 1/t law
and changes a sign for t = 20 nm. Such behavior is attributed to the influence
of an asymmetry between the surface pinning at the top and bottom surfaces
of the Py film, which leads to an additional frequency non-reciprocity oppo-
site to that induced by the iDMI. To calculate the frequency non-reciprocity
induced by the magnetic asymmetry between the top and bottom surfaces
we use our analytical formula [Eq. (4.1.7)], which predicts a nearly quadratic
dependence of fFN on the film thickness. This distinct thickness dependence
is actually the main criterium to separate the contributions of both effects on
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the frequency shift. The iDMI induces a shift proportional to 1/t, which is
the standard scaling for a purely interfacial effect. The difference of surface
anisotropy generates a shift varying as t2, which is attributed to the influence
of exchange interaction which limits the inhomogeneity of the mode across
the film. The best fit was obtained for an iDM constant of Ds = 0.25 pJ/m
and a difference of surface anisotropy of ∆K = −0.1 mJ/m2 [solid line in
Fig. 4.10]. To confirm these analytical findings, we also performed a rigorous
numerical calculation [55], where the film was subdivided into a set of single
elements N of thickness a = 0.125 nm with the total thickness defined as
N · a resulting in a DM constant D = 2.4 mJ/m2. The simulated frequency
non-reciprocity is exactly the same as the one derived from an analytical
formula. In Fig. 4.10 the individual contribution of the DMI and surface
anisotropy is plotted by the red dashed line and green dot-dashed line, re-
spectively. One sees, that in very thin films the dominant contribution is
due to the DMI, which clearly demonstrates its interfacial nature, while the
contribution of the difference in surface anisotropies is negligible. On the
contrary, in moderately thin film the influence of the magnetic asymmetry
becomes more important: it fully compensates the DMI-induced frequency
shift at t=15 nm and becomes dominant in thicker films.

A similar value of the iDM constant for Py/Pt interface was reported by
Stashkevich et al. [125]. In their work, the frequency non-reciprocity was
studied in 4-10 nm Py film using Brillouin light scattering (BLS). In a 4 nm
film, they observe a frequency non-reciprocity of 100 MHz for k = 8 µm−1

and about 300 MHz for k = 20.5 µm−1, which corresponds to an iDM interac-
tion with D = 1.2 mJ/m2 (Ds = 0.3 pJ/m). However, for a film of thickness
of 10 nm, the BLS measurements show a zero frequency non-reciprocity at
k = 20.5 µm−1, which is not expected if only the DM interaction is con-
sidered. The authors attribute this to the effect of a perpendicular uniaxial
anisotropy at one of the film surfaces, which for this thickness has almost
equal contribution to fFN as the DMI, but with opposite sign. Their nu-
merical calculations show that accounting for a surface anisotropy the total
frequency non-reciprocity should be −36 MHz which, due to the limited res-
olution of BLS technique (±75 MHz), can not be measured. On the contrary,
by using PSWS with a resolution of a few MHz, we can precisely determine
the contribution of surface anisotropy from both interfaces and estimate the
frequency non-reciprocity induced by their difference, as well as the frequency
shift induced by iDM interaction.

It was also shown by Nembach et al. [98] and Belmeguenai et al. [10],
that the sign of Ds may vary depending at which interface an adjacent
heavy metal is placed. By using BLS, they found a negative value of Ds =
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−0.3 pJ/m for the interface Pt/Py [98] and −1.7 pJ/m for Pt/Co [10].

4.3 Conclusion

The frequency non-reciprocity of MSSWs can arise in magnetic films as soon
as the top/ bottom symmetry is broken and/or as a result of the iDM inter-
action, which becomes important in FM/HM bilayers. In order to identify
the contribution of both effects, the spin wave propagation have been stud-
ied in both Py/Al2O3 and Py/Pt systems. In Py/Al2O3 films we observed
a frequency non-reciprocity, which increases linearly with wave vector and
nearly quadratically with the permalloy thickness. Using a theoretical model
of dipole-exchange spin waves we could account for the measured frequency
non-reciprocity by introducing asymmetric surface anisotropies. We deduced
a simple analytical formula allowing to predict the magnitude of fNR as a
function of the difference in surface anisotropies at the top and bottom sides.
In Ti/Py/Pt films, the measured frequency non-reciprocity was attributed
to the combined effect of iDMI and a difference in surface anisotropies. We
could extract the magnitude of both effects and demonstrate that in ultra-
thin films the frequency non-reciprocity is mostly induced by iDMI, while,
by increasing the film thickness, the contribution from magnetic asymmetry
becomes more important.



Chapter 5

Spin wave propagation and its
modification by an electrical
current in permalloy/Pt
bilayers

In this chapter, by studying the spin wave propagation in a Py film with
an adjacent heavy metal layer and its modification by an electrical current,
we show that the spin-orbit spin transfer torque arising at the interface
can significantly modify the propagating characteristics of a spin wave. In
this study we focus mainly on two spin-orbit related phenomena, namely
spin pumping (sec 5.2) and spin transfer torque induced by spin Hall effect
(sec. 5.3.3). We also briefly consider the effect of adiabatic spin transfer
torque arising while electrical current flows trough the spin wave (current-
induced spin wave Doppler shift, sec. 5.3.5).

5.1 Experimental devices

The experimental study was performed by using the Ti/Py/Pt devices de-
scribed in chapter 3 and already used for frequency non-reciprocity measure-
ments. Ti/Py/Ti devices were used as reference devices, for which no spin
no spin Hall induced spin transfer torque is expected due to the weak spin-
orbit coupling in Ti. Another set of samples have been fabricated by our
collaborators from UMPhy CNRS Thales (M. Collet, C. Cheng, K. Garcia-
Hernandez, A. Anane). The film is a SiOx/Py(15)/Pt(10) trilayer without Ti

97
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Figure 5.1: Scanning electron microscopy image of the Thales device with
w = 10 µm and D = 3 µm.

underlayer. The sample design and the nanofabrication process are slightly
different (Fig. 5.1): a Py/Pt strip of width w = 5−50µm is covered by a 330
nm thick insulating SiO2 layer to avoid the electrical contact with antenna.
The wave vector of the excited spin wave is k = 7.1µm−1. As before, differ-
ent devices with different edge-to-edge distances between antenna were used
(D = 1, 3, 5µm). The spin wave propagation characterization and SHE-STT
measurements on these devices have been published in [39].

The geometrical parameters of all fabricated devices are collected in Ta-
ble 5.1, where the successfully measured samples (over 20) are marked by
the check marks.

5.2 Spin wave propagation at zero current

Before analyzing the effect of spin current on the spin wave, we start char-
acterizing the propagation of spin wave at zero current. Fig. 5.2(a) shows
typical mutual-inductance spectra ∆L12 and ∆L21 measured at µ0H = 37
mT for w = 10 µm and D = 1 µm device of the Thales series. Note that
the detailed discussion below will be shown for this series and then sum-
marized for all devices. The mutual-inductance consist of a real and an
imaginary part, which oscillate with a 90◦ phase lag between each other.
These oscillations are attributed to the phase delay φ = −kD accumulated
by the spin wave during the propagation. The relatively broad envelop of



5.2. SPIN WAVE PROPAGATION AT ZERO CURRENT 99

Device Py(15)/Pt(10) (Thales) PF8: Py(10)/Pt(10) PF6: Py(20)/Pt(5)
❍
❍
❍
❍
❍❍

w
D

1 3 5 1 1.5 2 1 2 3

5 X X x
10 X X X X X x
20 x X X X X X X x X

50 x X X

Device PF4: Py(7)/Pt(5) PF2: Py(4)/Pt(5) PF9: Py(4)/Ti(5)
❍
❍
❍
❍
❍❍

w
D

0.5 1 1.5 0.5 0.8 1 0.5 0.8 1

20 X X X X X X X X X

Table 5.1: List of Py/Pt devices. Samples that could be measured are indi-
cated by the check marks.

the waveform [black line in Fig. 5.2(a)] is associated to the finite width δk
of peak of the Fourier transform of the antenna (see Fig. 3.7). For a change
δk the phase accumulation changes by δφ = −δkD. On the other hand, the
frequency change δω corresponding to this wave vector change is given by
the spin wave group velocity vg as δω = vgδk. For a full period of oscilla-
tion δφ = 2π. Therefore, δk = 2π/D = 2πfp/vg, so the group velocity is
determined as vg = Dfp, where fp is the period of the oscillation.

Another important characteristic of the transmitted signal is its ampli-
tude. The propagation of the spin wave in the dissipative medium is limited
by the damping factor, which is related to the attenuation length of spin
wave Latt (the length over which the amplitude of the magnetization preces-
sion decay by a factor e). Experimentally, we extract the attenuation length
from the amplitude of the normalized transmitted signal A using the relation
A = exp(−D/Latt).

An important point of this kind of measurements is a realistic deter-
mination of the effective propagation distance Deff. We define D as the
edge-to-edge distance between two antenna. However, the waves also prop-
agate under the emitting and receiving antenna, giving rise to an additional
phase accumulation. A correction term D0 accounting for the finite width of
the antenna should be included, such that Deff = D +D0. For a relatively
large antenna it is not obvious to define at which point of space the domi-
nating signal is generated (for example, at the central conductor or at the
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Figure 5.2: (a-c) Mutual-inductance spectrum measured in the
Py(15)/Pt(10) film with w = 10 µm and D = 1, 3, 5 µm at µ0H = 36 mT.
Black solid lines are the amplitude of ∆L12 and ∆L21, and ∆f is a quarter
of the signal period. (d) Dependence of the logarithm of the maximum SW
signal amplitude -ln(A) on the distance D (diamonds), of the propagation
time τ on D (circles), and of -ln(A) on τ (squares). Solid lines are linear fits.
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edge of antenna). To clarify this point, we used devices with three differ-
ent distances between antenna. Comparing the corresponding periods and
amplitudes of the signals we can deduce both the group velocity and the at-
tenuation length, as well as evaluate the real propagation distance traveled
by the wave.

Group velocity

Fig. 5.2(b),(c) show the mutual-inductance spectra measured at µ0H =
36 mT for the 10µm width devices with edge-to-edge distance D = 3µm
and D = 5µm, respectively. We measure the period of the oscillation as
fp = 4∆f , where ∆f is the frequency difference between adjacent maxima of
the real and imaginary parts. One sees that the period of the signal notably
decreases with increasing the distance between antenna. We can express the
period of the oscillation in the term of a propagation time τ = 1/fp and
plot the dependence of the propagation time as a function of distance D [red
circles in Fig. 5.2(d)]. Using the relation τ = (D+D0)/vg we determine the
group velocity from the slope of the linear fit and the distance D0 traveled by
the wave under the antenna from the fit intercept. For the given frequency,
we found a group velocity of 2.2 km/s. The offset distance is found to be
D0 = 900 nm, which corresponds to the full width of one antenna. We can
therefore assume that the total traveling distance is the distance between
the central conductors of the antennas, that agrees well with the modeling
performed in Ref. [17].

We then performed the same measurements for different values of mag-
netic field. For each value of field, the propagation time was plotted as a
function of the distance and the group velocity was extracted. The depen-
dence of the group velocity on the magnetic field is shown in Fig. 5.3 for all
studied Py thicknesses (symbols). A clear decay of vg with H is observed.
One can also note a clear dependence of the group velocity on the thickness,
which reaches 2.9 km/s for the 20 nm films and goes down to 0.9 km/s for
the 4 nm films at µ0H = 14 mT.

To compare these values with the theoretical ones, we use the expression
of the group velocity deduced from the dispersion relation [Eq. (1.5.7)]:

vg =
∂ω

∂k
=
ωMωefft

4ω
e−2kt, (5.2.1)

where ωM and ωeff are the saturation and effective magnetization, respec-
tively, converted in angular frequencies. We calculated the group velocity
for different thickness by accounting for a decrease of the saturation mag-
netization from 1 T for the thickest film down to 0.92 T for thinnest film
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Figure 5.3: Magnetic field dependence of the group velocity measured for
t = 20 nm (squares), t = 15 nm (circles), t = 10 nm (triangles up), t = 7 nm
(triangles down) and t = 4 nm (diamonds and stars for Py/Pt and Py/Ti
films, respectively). The solid lines are the theoretical values of vg calculated
with µ0Ms = 1− 0.92 T and µ0Meff = 0.98− 0.85 T for t = 20− 4 nm.

and by accounting for an additional decrease of the effective magnetization
with decreasing thickness due to the surface anisotropy. From Eq. (1.3.12)
and for a total surface anisotropy ΣKs = 0.1mJ/m2, we estimate the effec-
tive magnetization µ0Meff = 0.98 − 0.85 T for t = 20 − 4nm, respectively.
The values calculated in this way are shown as solid lines in Fig. 5.3. We
note that these values fit well with those extracted experimentally for all
film thicknesses. A slight difference between the group velocity measured for
Py(4)/Pt and Py(4)/Ti films was observed, which might be due to slightly
different values of saturation and effective magnetization for the two films.

Attenuation length

To extract the attenuation length of the propagating spin waves, we
monitor the dependence of the amplitude of the transmission signal as a
function of the propagation distance. In Fig. 5.2(a-c) the amplitudes of the
mutual-inductance signals

√
(Re(Lij))2 + (Im(Lij))2 are plotted for positive

and negative wave vectors. As one sees, by increasing the distance between
antenna, the amplitude of the signal significantly decreases with the same
ratio for both k > 0 and k < 0. Accounting for the finite width of the
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antenna we write the amplitude decay with the distance as

A = A0e
−[D+D0]/Latt , (5.2.2)

whereA = ∆Lij/
√
LiiLjj is the maximum amplitude of the mutual-inductance

normalized to the maximum amplitudes of both self-inductance spectra, and
A0 is a prefactor related to the amplitude non-reciprocity of the counter-
propagating spin waves.

In Fig. 5.2(d) we plot the logarithm of the normalized amplitude [-ln(A)]
as a function of D (diamonds). A nice linear dependence is observed, where
the slope of the linear fit gives a value 1/Latt. For this value of the magnetic
field we found an attenuation length of 2 µm.

As for the case of group velocity, we then analyze the variation of the
attenuation length as a function of the magnetic field. The results are plotted
in Fig. 5.4. For all film thicknesses a notable decay of Latt withH is observed.
At zero field extrapolation, one also notes a monotonous decrease of the
attenuation length with reducing film thickness. Strongly different values of
attenuation length were measured for 4 nm Py films in a contact with Pt or
Ti overlayer, that indicates the different damping factor α in these systems.
Indeed, from the definition of the attenuation length

Latt = vgT2 =
ωMωefft

4ω
e−2kt 1

α(ω0 + ωM/2)
, (5.2.3)

we find that an agreement between the theoretical and experimental values of
Latt may be observed if α is assumed to be thickness and interface dependent.
To verify this point and to determine the damping coefficient of Py(t)/Pt
and Py/Ti films, we now analyze directly the spin wave relaxation rate.

Relaxation rate

As shown in Eq. (5.2.3), the group velocity and the attenuation length
are related by the spin relaxation time T2, which is inversely proportional
to the damping factor. Since Latt and vg are related to the amplitude and
the period of the oscillating signal, we can determine the relaxation rate
Γ = 1/T2 directly from the amplitude decay as a function of the propagation
time τ as

A = A0exp(−Γτ). (5.2.4)

Therefore, by plotting -ln(A) as a function of τ [squares in Fig. 5.2(d)] we can
directly extract the value of Γ from the slope of the corresponding linear fit.
The obtained values are plotted in Fig. 5.5, where the corresponding values of
damping factor are shown in the right y-axis. To account for the thickness
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Figure 5.4: Attenuation length dependence on the magnetic field for the
same film thicknesses as in Fig. 5.3. The theoretical values (solid lines) are
calculated with the parameters used for vg analysis and accounting for a
thickness dependent damping factor.

dependence of the saturation magnetization, Γ is plotted as a function of
1/µ0Mst. One can see, that (i) Γ exhibits a linear dependence on the inverse
of the ferromagnetic film thickness and does not depend on the thickness
of nonmagnetic layer [since no obvious deviation between bilayers with 10
nm of Pt (tPy = 10, 15 nm) and these with 5 nm of Pt (tPy = 4, 7, 20 nm)];
(ii) Γ significantly differs between 4 nm Py films capped with a Pt or a Ti
layer. These two facts are consistent with the spin pumping process, which
takes place when a nonmagnetic metal with a strong SOC is adjacent to a
ferromagnetic film.

Spin pumping

In the spin pumping theory (see section 2.3.2) the increase of the dynamic
magnetic loss is proportional to the spin pumping efficiency. Our spin wave
measurements can be therefore used to quantify the spin mixing conductance
G↑↓

eff, which is a characteristics of the NM/FM interface governed by the spin
pumping process. For this purpose, we use:

α = α0 + αSP = α0 +
gµBG

↑↓
eff

4πMst
. (5.2.5)
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Figure 5.5: Relaxation rate/damping factor versus 1/µ0Mst (symbols). Solid
line is a corresponding linear fit.

Using the measured dependence of α = Γ/(ω0+ωM/2) on 1/µ0Mst, one can
determine the spin-mixing conductance from the slope of the corresponding
linear fit, which gives us G↑↓

eff = 3.2 · 1019 m−2. The fit intercept corresponds
to α0 = 0.008, which is the typical value of damping factor for Py films [49].
This value is also close to the value α = 0.009 measured for the Ti/Py(4)/Ti
reference film, for which the spin pumping is expected to be very small.

In Table 5.2 we collected some of the values of G↑↓
eff for the Py/Pt interface

reported in literature deduced from the ST-FMR or ISHE techniques. In the
former case the spin-mixing conductance is extracted from the enlargement
of the FMR line width due to the enhancement of Gilbert damping in Py,
while in the latter case it is measured from the dc voltage generated in
Pt by means of the inverse spin Hall effect. We first note that the value
we measured at k = 7 µm−1 is the same order of magnitude than the one
measured with other techniques for which a k = 0 FMR mode is used. This is
in agreement with the theoretical expectation, since the effect is not expected
to be k dependent. However, in principle, the efficiency of spin current
generation by the spin waves can be improved by enhancing the coupling of
the conduction electrons with the dynamic magnetization [110, 74, 95]. The
latter can be achieved by using surface spin wave with a pronounced mode
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Reference Method G↑↓
eff, 1019 m−2 G↑↓

eff, 1015 Ω−1m−2

Our PSWS 3.2 1.2
[144] ST-FMR 3.96 1.5
[7] ISHE 2.4 0.91
[93] ST-FMR 2.1 0.8

[97]
ST-FMR

dc-tuned ST-FMR
3

2.1
1.1
0.8

[81] ab-initio calculation 2.5 0.95

Table 5.2: Comparison of the values of spin-mixing conductance of Py/Pt
films extracted by different techniques.

localization at the surface that can be possible by increasing the thickness of
magnetic film. The difference between our result and the reported ones may
be due to the different experimental techniques used, which are more or less
sensitive to additional interfacial scattering process or interfacial spin-orbit
effects, which give rise to an enhancement of the damping. As shown in [97],
the spin-mixing conductance conventionally extracted from the difference
between damping factor with and without adjacent heavy metal is greater
(G↑↓

eff = 3 · 1019 m−2) than that determined from dc-tuned ST-FMR (ST-
FMR combined with a dc bias current) (G↑↓

eff = 2.1 · 1019 m−2), for which
these additional interfacial effects are assumed not to contribute.

Note that applications usually require one to minimize the magnetization
losses while maximizing the spin current transmission across the FM/NM. A
way to fulfill this condition is to add a nonmagnetic material, which doesn’t
exhibit strong SOT, as an interlayer between the FM and HM layers [97, 109,
107]. It was shown [109], that the Cr and Al metals with a large spin-diffusion
length used as a spacers between Pt and Py layers limit the enhancement of
damping, but at the same time do not prevent the spin pumping process.

5.3 Spin wave propagation at non-zero current

Let us now analyze the propagating characteristics of spin wave under the
effect of an external electric field. In Fig. 5.6 the inductive signals measured
in the 15/10 nm Py/Pt bilayer with w = 10 µm and D = 1 µm at µ0H = 36
mT are plotted for different values of dc current (to simplify the graph only
the imaginary part of ∆L21 is shown). The presence of dc current leads
to several modifications of mutual inductance spectrum. First, we observe
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an enhancement or a reduction of the signal amplitude depending on the
current direction. The difference in amplitude ∆A between the signals mea-
sured at −Idc and +Idc increases with increasing magnitude of dc current.
Second, we note a slight decrease of the signal period fper with increasing
Idc (not really visible from this graph), which is independent on the cur-
rent direction [fper(−Idc) = fper(+Idc)]. Third, we observe a frequency shift
∆f between the signals measured at positive and negative current, which
increases monotonously with the Idc. And finally, for large values of electric
current, a significant decrease of the resonance frequencies for the two current
polarities is observed. Each of these modifications is the result of different
current induced effects, namely SHE-STT, Joule heating, Oersted field, and
current induced Doppler shift, which simultaneously affect the propagating
spin wave. The effect of SHE-STT is to modify the amplitude of the signal,
the effect of Joule heating and Oersted field is to change the resonance fre-
quency and the period of the signal, and the spin wave Doppler shift reveals
as a small non-reciprocal current-induced frequency shift.

5.3.1 Detailed analysis for Py(15)/Pt(10) devices

Consider first the effect of SHE-STT on spin wave parameters Γ, vg, and Latt.
For this, we perform the same procedure as described in section 5.2, i.e., we
look at the variation of the amplitude and period of the transmitted signal
as a function of D for different values of Idc (from -50 mA to +50 mA). For
each value of Idc, we extract the group velocity from the dependence of the
period on D, the attenuation length from the dependence of the amplitude
on D, and the spin relaxation rate from the dependence of the amplitude on
the period. The results are shown in Fig. 5.7. We observe a linear variation
of Γ as a function of current [Fig. 5.7(a)], that is a clear evidence of the
SHE-induced spin transfer torque effect. Indeed, when an electric current is
applied into the Pt layer it generates a transverse spin current by the SHE,
which is injected into the Py layer and modifies its magnetization precession
via the spin transfer torque. Since for the surface spin wave configuration
the spin transfer torque is collinear with the damping torque it leads to
an enhancement or reduction of the spin relaxation rate depending on the
current polarity. As one can see from the graph, by applying Idc = ±50 mA
the relaxation rate (and the damping) changes by up to 14%. This is the
main result of this chapter, which will be analyzed later.

Before that, let us now look at the current-dependence of vg and Latt.
As shown in Fig. 5.7(b), no significant changes of group velocity is observed
for a current less than ±20 mA. With further increasing the magnitude of
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Figure 5.6: Current induced modification of the transmitted signal measured
in a 15/10 nm Py/Pt strip with w = 10 µm and D = 1 µm at µ0H = 36
mT. The change of amplitude ∆A, period fper, resonance frequency shift
fres, and the frequency shift ∆f between the signals measured at I > 0 and
I < 0 are defined on the graphs.
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Figure 5.7: Influence of the electrical current on the spin-wave relaxation
rate Γ (a), the group velocity vg (b), and the attenuation length Latt (c).
The right-scale in panel (a) gives the conversion of Γ in effective Gilbert
damping parameter αeff. The solid line in (a) is a linear fit. The dashed
line in (b) shows the values of vg calculated accounting for Joule heating
(see text). Solid diamonds in (c) are the raw Latt data. Open diamonds are
obtained after subtraction of the Joule contribution and the solid line is a
linear fit of these corrected data. The dashed line is obtained by combining
the vg affected by Joule heating with the Γ affected by STT.
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electric current the group velocity drastically decreases and at maximum
applied current of ±50 mA falls down to 1.87 km/s that corresponds to a
change of 14% with respect to zero current. As for attenuation length [filled
symbols in Fig. 5.7(c)], we also observe the decrease of Latt at high current
values, but contrary to group velocity, which symmetrically decays at −Idc

and +Idc, the attenuation length shows an asymmetric dependence on Idc.
Such current-dependence of vg and Latt is associated with the effect of

Joule heating and Oersted field, which become important at high current.
To analyze these effects, we rely on the variation of the spin-wave resonance
frequency fres with current. As was shown in Fig. 5.6 the resonance fre-
quency decreases for both current polarities with respect to the zero current
reference waveform, with a significantly larger decrease for a negative cur-
rent than for a positive one. The overall variation of fres is best seen by
plotting the frequency of the maximum of |∆L21| as a function of I [squares
in Fig. 5.8]. This variation may be decomposed into odd and even con-
tributions, f even/odd

res (I) = fres(0) + (fres(I) ± fres(−I))/2, where the odd
contribution [circles in Fig. 5.8] is attributed to the Oersted field and the
even contribution [triangles in Fig. 5.8] is attributed to the Joule heating.

By applying an electric current into the Py/Pt film the current will par-
tially flow in Py and Pt layers creating an Oersted field around each layer.
The Oersted field induced frequency shift can be estimated by differentiating
the Damon-Eshbach dispersion relation with respect to the field

fodd
res =

∂fres

∂H
HOe, (5.3.1)

where HOe = IPt/(2w) is the Oersted field generated by the fraction of the
current IPt that flows in the Pt layer. Therefore, using this relation and the
linear dependence of fodd

res on Idc with a slope of 1.5 × 10−3 GHz/mA, we
estimate the fraction of the current IPt to be 45% of the total current. This
value is consistent with that extracted from resistivities of individual Pt and
Py films by means of four probe measurements (see section 5.3.3).

Let us now analyze the contribution of Joule heating to the resonance
frequency shift. The current induced Joule heating yields a decrease of the
saturation magnetization Ms(I) , which can be calculated by differentiating
the Damon-Eshbach dispersion relation with respect to Ms

f even
res =

∂fres

∂Ms
Ms(I). (5.3.2)

f even
res (I) may be fitted to a polynomial law fres(0) − aI2 − bI4, where a =
1.18× 10−4 GHz.mA−2 and b = 1.9× 10−8 GHz.mA−4. From the frequency
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Figure 5.8: Variation of the SW resonance frequency fres with the dc current.
The squares are the experimentally measured data, whereas the circles and
the triangles represent, respectively, the odd and even parts of fres(I).

decrease of 5% observed for |I| = 50 mA, we can therefore estimate a sat-
uration magnetization decrease of 7%, and the corresponding temperature
increase, which is about 150 K. A very similar temperature increase is esti-
mated by monitoring the resistance of the strip, which varies from 31.4 Ω at
small current to 39.5 Ω at ±50 mA, and by using an average temperature
coefficient of 0.2%/K for the bilayer resistance.

The consequence of the Joule heating and Oersted field induced variation
of the resonance frequency is the variation of group velocity vg = ∂ω/∂k and
as a result the variation of the attenuation length. Thus, using the Damon-
Eshbach expressions of vg [Eq. 5.2.1] and evaluated fres(I) and Ms(I) de-
pendencies we calculate the change in group velocity expected from Joule
heating and Oersted field [dashed line in Fig. 5.7(b)], which accounts quan-
titatively for the measured variation. We can note, that the group velocity
decay at high current values is mostly caused by Joule heating, whereas the
contribution from Oersted field is very small. If we now combine the change
in group velocity induced by Joule heating with the change in relaxation rate
induced by the SHE-STT, we can account for the measured variation of Latt

[dashed line in Fig. 5.7(c)]. After subtracting out the effect of Joule heat-
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Figure 5.9: Mutual-inductance spectrum measured in a Py(15)/Pt(10) strip
with w = 10 µm and D = 1 µm at µ0H = −36 mT and at Idc = ±15 mA
for both positive and negative wave vectors.

ing, the remaining variation of Latt is found to be linear (open diamonds),
as expected for a purely SHE-STT-induced effect. This confirms that our
analysis is self-consistent.

As expected for SHE-STT, the effect is reversed when the magnetic field is
reversed. For a negative applied field an enhancement of the signal amplitude
is observed at a positive current, while a negative current leads to a reduction
of amplitude (Fig. 5.9). We also observed, that SHE-STT works in the same
manner for positive and negative wave vector, i.e. it either amplifies or
damps the spin wave depending on the current polarity but independently
the spin wave propagation direction. Indeed, we extracted similar values of
Γ(I) from the ∆L12 and from the ∆L21 mutual inductance spectra.

5.3.2 Analysis for the Ti/Py(t)/Pt series

In a next step, we carried out a similar analysis for Ti/Py/Pt samples.
Fig. 5.10 shows typical mutual-inductance spectra measured under current
for the thinnest (4 nm) and the thickest (20 nm) film of the series. For the
same value of the current, one observe a pronounced change of the amplitude
signal for 4 nm film, while for 20 nm the effect of dc current is less visible. To



5.3. SPIN WAVE PROPAGATION AT NON-ZERO CURRENT 113

quantify the SHE-STT for this films, we used a simplified method of analy-
sis. Instead of following systematically the mutual-inductance as a function
of the distance (which was not always possible due the lack of working sam-
ples), we concentrate on the quantity, which gives the more direct access to
the SHE-STT, namely the current induced change of Γ. For this purpose,
we write the mutual-inductance as |∆L21|max = ∆L0 exp(−Γτ). Comparing
the measurements taken at positive and negative currents, and assuming the
current dependence to be dominated by that of Γ one obtains:

|∆L+
21|max

|∆L−
21|max

= exp−∆Γτ (5.3.3)

and

∆Γ = Γ+ − Γ− = −1

τ
ln(

|∆L+
21|max

|∆L−
21|max

), (5.3.4)

where |∆L+
21|max and |∆L−

21|max are the maximum amplitude measured at
positive and negative current, respectively, and τ is deduced from the period
of the oscillations. The advantage of this expression is that it provides the
current-induced change of relaxation rate from a pair of measurements (+I
and −I) on a single device. To compare the effect obtained on the same
films, but for different values of I, w or D, we calculate a normalized value
of current-induced change of relaxation rate ∆Γ/E. Here E = V/L is the
electric field and V is the voltage measured at the inner pads separated
by the distance L. As expected, we obtain similar values for this quantity
when comparing different measurements and devices for the same film. In
Fig. 5.11 the change of the relaxation rate ∆Γ/E as a function of Py thickness
is shown, where ∆Γ shows a rapid increase by decreasing Py film thickness.

5.3.3 Spin transfer torque induced by spin Hall effect

Let us now analyze quantitatively the observed SHE-STT effect, for which
the relevant quantity is the spin-wave relaxation rate Γ. To do this we use the
Landau-Lifshitz equation of motion with the additional term corresponding
to spin transfer torque

dM

dt
= −γM×Heff +

αM

Ms

dM

dt
+

Js
Mst

(M× σ ×M), (5.3.5)

After performing the linearization procedure (M = Meq +m) we can write
the LLG equation for the surface spin wave configuration in as

dm

dt
= −iω0m− Γ0m+

Js
Mst

m, (5.3.6)
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Figure 5.10: Mutual-inductance spectrum measured at Idc = ±10 mA (a) in
Py(4)/Pt(5) film with w = 20 µm and D = 0.5 µm at µ0H = −5 mT and
(b) in Py(20)/Pt(5) film with w = 20 µm and D = 1 µm at µ0H = 36 mT.
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Figure 5.11: Measured change of relaxation rate ∆Γ induced by STT-SHE
per unit of electric field versus Py thickness (symbols). The line is a guide
for the eyes.

where ω0 is the SW oscillation frequency determined in the absence of damp-
ing and STT. The solution of this equation can be simply expressed as
ω = ω0 − iΓ, where the imaginary part of the oscillation frequency is given
by the relaxation rate Γ = Γ0 − ξIdc. Here, Γ0 is the natural relaxation
rate governed by the Gilbert damping. Therefore, the SHE-STT translates
directly into a current-induced change of the spin wave relaxation rate

∆ΓSTT = θSTT
SH

µB
eMstPy

JPt, (5.3.7)

where θSTT
SH is the effective spin Hall angle (SHA) of the Pt film including

possible losses of angular momentum in the interface region, µB is the Bohr
magneton, e is the electron charge and JPt is the current density in the Pt
layer.

To calculate the ratio of the currents flowing in the two films of our Py/Pt
bilayers, we use the 4 wires electrical resistance measurements of our strips.
From the resistance R measured with a voltage probe we extract the sheet
conductance Gs = (1/R)(L/w), where L is the spacing between the probes.
In Fig. 5.12 the dependence of the sheet conductance Gs on tPy is plotted.
For a given Pt thickness Gs is expected to scale linearly with tPy, where the
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intercept corresponds to the sheet conductivity of the Pt layer and the slope
corresponds to the "bulk" conductivity of Py. For the set of Py(t)/Pt(5) films
we found Gs,P t5 = 0.025 S (σPt5 = 4 · 106 S/m) and σPy = 2.5 · 106 S/m.
Assuming the same Py conductivity for our Py(10)/Pt(10) film and for the
Py(15)/Pt(10) films provided by the Thales group, the conductivity of the
10 nm Pt film grown at IPCMS is found to be higher (Gs,P t10 = 0.065 S,
σPt10 = 6 · 106 S/m) than that of the 10 Pt film grown at Thales (Gs,P t10 =
0.045 S, σPt10 = 4 · 106 S/m). From the ratio of the conductances of the
individual layers we calculate the ratio between the currents flowing in the
Py and Pt layers. The result is shown in Fig. 5.13 as diamonds. We observe
a gradual decrease of IPt/Idc from 0.85 for the 4 nm films down to 0.3 for
the 20 nm one.

Now, using the value IPt/Idc we calculate JPt and using the measured
current-induced changes of the relaxation rate we deduce from Eq. (6.4.7) the
effective spin Hall angle. We found a value θSTT

SH = 0.10 ± 0.02, which does
not dependent significantly on the magnetic film thickness (see Fig. 5.14),
as it is expected from the spin transfer torque induced by spin Hall effect.
The oscillation around the value 0.1 can be associated with the estimation
of the fraction of current flowing in Pt layer, which is not very accurate (see
the dispersion of the data points in Fig. 5.13).

To avoid the problem with the estimation of the value IPt/Idc, the SHE-
STT can be quantify by means of spin Hall conductivity σSH, which is defined
as σSH = Js/E. In this case, the current-induced changes of the relaxation
rate can be written as

∆ΓSTT = σSTT
SH

µB
eMstPy

E. (5.3.8)

Using this relation we extract the spin Hall conductivity, which is found to
be ∼ 4·105 S/m. In Fig. 5.14 we plot the spin Hall conductivity as a function
of Py thickness. As in the case of spin Hall angle, the spin Hall conductivity
remains almost constant within the studied thickness range.

5.3.4 Discussion

Let us now comment the obtained values of the effective spin Hall angle and
spin Hall conductivity. To account for the spin backflow effect (chapter 2)
the effective spin Hall angle can be written as θSTT

SH = TθSH, where θSH is
the intrinsic SHA and T is the interfacial transparency, which is the ratio of
the spin current density is transmitted into the Py film to the spin current
density generated on the Pt side [144, 101]. For a film much thicker than the
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Figure 5.12: Dependence of the electrical conductance on Py thickness for 5
and 10 nm Pt film

Figure 5.13: The fraction of current flowing in Pt layer extracted from the
Oersted field measurements (hexagons) and from the four points probe mea-
surements (diamonds) as a function of Py thickness.
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Figure 5.14: Dependence of the effective spin Hall angle (a) and correspond-
ing spin Hall conductivity (b) versus Py film thickness.



5.3. SPIN WAVE PROPAGATION AT NON-ZERO CURRENT 119

spin diffusion length (which is our case, as tPt = 4− 20nm > λsd = 1.4 nm),
the interfacial transparency can be calculated as a ratio between the effective
spin mixing conductance G↑↓

eff extracted from the damping enhancement and
the spin conductivity of the Pt layer GPt = σPt/λsd, T = 2G↑↓

eff/GPt. Using
λsd = 1.4 nm [101, 99], the value of G↑↓

eff found in section 5.2, and the values
of conductivity for different Pt thicknesses given in Fig. 5.13, we obtain an
interfacial transparency in the range 0.55 ≤ T ≤ 0.9, which translates into
an intrinsic spin Hall angle 0.11 ≤ θSH ≤ 0.2.

Referring to the literature, one finds a very large range for the reported
values of the spin Hall angle 0.0037 ≤ θSH ≤ 0.20 [120, 144, 78], which takes
its origin from both the theoretical analysis and the experimental method
used (mainly ISHE and ST-FMR).

The iSHE technique is based on the detection of the charge current in
NM generated by the spin current pumped from FM by means of the inverse
spin Hall effect. From the measured potential difference at the sides of NM,
one estimates the efficiency of spin-to-charge current conversion governed by
the spin Hall angle, as

Jc
Js

=
2e

h
θISHE
SH

λsd

tNM
tanh(

tNM

2λsd
). (5.3.9)

As one can note, depending on the value of λsd for a given material, the
value of θISHE

SH extracted from the measured charge current will vary. As
was emphasized in [107], since the values of spin-diffusion length used in
literature differ by one order of magnitude, naturally the values of spin Hall
angle is also scattered within a large range. As was also pointed out in the
aforementioned paper, the spin current absorption at the interface is usually
neglected, that may also give rise to an incorrect estimation of the spin Hall
angle.

In the ST-FMR technique one deals with voltage measurements arising
from the anisotropic magnetoresistance (AMR): an oscillating spin current
injected from a heavy metal into a ferromagnet exerts a spin torque induc-
ing the magnetization precession, that in turn induces an oscillation of the
resistance due to the anisotropic magnetoresistance. In this geometry, the
external magnetic field is applied at an oblique angle from the strip axis.

In our opinion, the propagating spin wave spectroscopy enables measur-
ing quite directly the spin transfer torque induced by the direct spin Hall
effect and extracting the spin Hall angle by accurately measuring the vari-
ation of the spin relaxation rate as a function of the dc current. We avoid
most of the complication appearing in ISHE and ST-FMR measurements:
difficulty to determine the microwave current (both techniques), uncertainty
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on λsd (on which the ISHE depends strongly), and complex oblique measure-
ment geometry (ST-FMR). From that perspective, the most relevant points
of comparison are measurements of SHE-STT induced changes of damping
in Py/Pt by cavity-FMR [6] and micro-BLS [27], which are performed in
the same geometry as our PSWS experiments but at k = 0. By analyzing
these data using Eq. (6.4.7), we obtain effective spin Hall angles of 0.05-0.09.
Our value for k = 7 µm−1 is comparable to, and even larger than these esti-
mates. In the linear regime of excitation investigated here, i.e., far below the
self-oscillation threshold, the only effect of the SHE-STT is to change the
magnetization relaxation rate and, as expected from the form of the STT
term [Eq. (6.4.7)], we find that the process is as efficient for a propagating
spin-wave with finite k as for the FMR mode or for the thermally excited
spin-wave manifold [28].

Let us now discuss the value of the spin Hall conductivity (SHC). The in-
terest to identify this quantity is that it can be compared with the values ob-
tained from ab-initio calculations. Until recently, only the intrinsic spin Hall
conductivity related to the electronic band structure could be calculated from
first principle [45, 44]. Recently, the calculation was extended to account for
the extrinsic contribution to spin Hall conductivity [42, 83]. The value of
intrinsic SHC calculated for Pt was found to be about 4× 105 S/m [44, 83],
which is very close to that obtained from our experimental measurement.
Moreover, in Ref. [83], the presence of impurity electron scattering was found
to reduce slightly the total spin Hall conductivity. Therefore, based on these
numerical calculations, we can assume that the dominant mechanism of the
SHE in our Pt film is the intrinsic one.

5.3.5 Current induced frequency shift

The additional torques which can appear when the dc current is injected
into the Py/Pt film are the torques induced by the Oersted field and the
Doppler effect. The fraction of the current flowing in Py film exerts an in-
plane torque on the magnetization, which in the adiabatic limit leads to a
modification of the precession frequency. This effect is known as a current
induced spin wave Doppler shift (CISWDS). Additionally, the charge current
flowing across the strip generates an Oersted field, which also leads to a
frequency shift. Contrary to CISWDS, the Oersted field does not depend
on the sign of the wave vector. Therefore, the contribution of each effect
to the frequency shift can be distinguished by following the corresponding
symmetry in k.

In Fig. 5.15(b) the current induced frequency shift measured for Idc =
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±15 mA in the Py(15)/Pt(10) bilayer is shown for k > 0 and k < 0. As one
can see from the graph, a positive/negative current decreases/increases the
frequencies of both k > 0 and k < 0 signals, with a slightly higher frequency
shift δfij = fij(+I) − fij(−I) for ∆L21 than for ∆L12. As follows from
the symmetry of each contribution to the frequency shift, the Oersted field
induced shift can be calculated as δfOe = (δf12 + δf21)/4 and the Doppler
shift can be calculated as δfdop = (δf12 − δf21)/4. The simplest way to
determine δfij is to measure the difference between the curves at +I and
−I at the intercept with the horizontal axis, as shown in Fig. 5.15(b). A
more accurate way to measure small current induced frequency shifts is based
on the extraction of the phase change from differential mutual inductance
signals [49].

Fig. 5.16 shows the values of δfOe and δfdop extracted for different values
of electrical current. One observes a linear dependence of both δfOe and
δfdop for I ≤ 30 mA. For data extracted using the phase shift method, one
observes a deviation from linearity for higher current values (filled symbols).
This is explained by the fact that this method becomes unapplicable for
frequency shifts much larger than the period of the signal, which occurs
for large enough current (see Fig. 5.6). By evaluating the frequency shift
directly from the curves at +I and −I one observes a linear scaling of δfOe

with dc current (open symbols) within all measured range, as expected for
an Oersted induced frequency shift. Due to the fact, that the magnitude of
Doppler induced frequency shift is much smaller than that induced by the
Oersted field (δfdop = 9 MHz and δfOe = 100 MHz at Idc = 50 mA), the
"manual" extraction of δfdop is not very accurate and the corresponding data
is not shown. The smallness of the Doppler induced frequency shift justifies
the fact that CISWDS was not accounted in the analysis of the resonance
frequency shift given in section 5.3.1. Indeed, the fres dependence on +I and
−I, was decomposed into odd and even functions, where the odd function
was attributed to the effect of Oersted field. Strictly speaking, the odd part
of the frequency shift also contains a contribution from the current-induced
spin-wave Doppler shift. But as we demonstrate here, due to its relatively
small magnitude, this contribution could be neglected.

From similar measurements carried out in Ti/Py(t)/Pt films we extract
the dependence of δfdop and δfOe on Idc for each film thickness (Fig. 5.17).
As discussed in section 2.3.1, the current induced Doppler shift can be used to
determine the degree of spin polarization. Using Eq. (6.3.3) and following the
variation of δfdop as a function of the current flowing in Py layer, we deduce
values of spin polarization in the range 0.4-0.75. The values are quite similar
to the ones found for Py/Al2O3 films [50]. This indicates that the electrical
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Figure 5.15: Mutual-inductance spectrum measured for Py(15)/Pt(10) film
at µ0H = −36 mT, Idc = ±15 mA for both positive and negative wave
vectors. The inset shows the whole spectrum and the main panel panel shows
its zoomed part, where the frequency shift δfij induced by the Oersted field
and Doppler effect is shown for k > 0 and k < 0.
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Figure 5.16: Doppler induced- and Oersted field induced frequency shift
dependence on the current (squares and diamonds, respectively) measured at
µ0H = −36 in Py(15)/Pt(10) film. Filled symbols correspond to the values
extracted from the phase change using the method described in Appendix
A, and open symbols correspond to the values extracted directly from the
curves intercept with horizontal axis.
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current remains highly spin polarized despite the spin-flip scattering induced
by the Pt layer. However, we did not observe any obvious dependence of the
spin polarization on the Py thickness. We also extracted a small degree of
spin polarization in the Py(4)/Ti film (P = 0.3), which may be caused by
the important interface effects leading to the depolarization of current at
such small thickness.

From the dependence of δfOe on Idc (Fig. 5.17), we estimate the fraction
of current flowing in Py and Pt layers. We calculate the theoretical values
of frequency shift by differentiating the Damon-Eshbach dispersion relation
with respect to the field [Eq. (5.3.1)] and adjust the coefficient IPt/Idc to
put the theoretical values in agreement with the experimental ones. The
dependence of the ratio IPt/Idc on tPy is plotted in Fig. 5.13 by full-filled
symbols. We found the same trend as was deduced from the conductivity
measurements, i.e. a gradual decrease of IPt/Idc by increasing the Py film
thickness (half-filled symbols in Fig. 5.13). The larg difference is observed for
the 20 nm Py film, where the IPt/Idc extracted from Oersted field calcula-
tions is 2 times smaller than that extracted from conductivity measurement.
This divergence may originate from a non-trivial current distribution inside
the Py film making more complicated the Oersted field calculation. For the
thinnest 4 nm film the Oersted field is even found to be higher than the one
expected assuming that all current flows in Pt. Such high value of apparent
Oersted field can be explained by an additional source of field-like torque
such an out-of-plane STT-induced by SHE. Nevertheless, the Oersted field
calculations confirm the value of the fraction of current flowing in both mate-
rials deduced from conductance measurements at intermediate film thickness
(7-15 nm).

5.4 Conclusion

In conclusion, we have demonstrated that the presence of a heavy metal ad-
jucent to a ferromagnet can induce several spin-orbit phenomena resulting in
a significant modification of the propagation of spin waves. On one hand, we
have shown that, due to the spin pumping process, the spin wave relaxation
rate notably increases. By analyzing the thickness dependence of Γ we have
deduced the value of the spin-mixing conductance, which is a characteristic
of the FM/NM interface. On the other hand, we have demonstrated that
by applying a dc current the spin wave relaxation rate can be enhanced if
the perpendicularly injected spin current, generated via SHE, possesses a
polarization opposite to the local magnetization. By estimating the corre-
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Figure 5.17: (a)Oersted field- and (b) Doppler-induced frequency shift as a
function of current. The measurements are carried out in Py(t)/Pt(d) films
of the width w = 20 µm at µ0H = 36 mT.



126 CHAPTER 5. SPIN WAVE PROPAGATION IN PY/PT

sponding torque and spin Hall angle, we have shown that the spin transfer
torque induced by the spin Hall effect modifies the relaxation rate of a finite
k spin wave as efficiently as it does in the case of an uniform precession mode.
From a more general point of view, we proposed a new technique, which can
be used to study the direct spin Hall effect.



Chapter 6

Spin wave propagation and its
modification by an electrical
current in Fe/MgO films

In this section, we study the spin wave propagation in pure crystalline iron
films. As a preliminary, we perform reflection measurements to character-
ize the magnetic film (sec. 6.1). Based on transmission measurements, we
first analyze the frequency non-reciprocity and then extract the propaga-
tion parameters of the spin wave, namely attenuation length, group velocity
and relaxation rate (sec. 6.2). Finally, by applying a dc current along the
direction of propagation of spin wave, we perform current-induced Doppler
shift measurements in order to extract the degree of spin polarization of the
electrical current (sec. 6.3).

6.1 Reflection measurements

The spin waves are studied in 10 and 20 nm thick Fe(001)/MgO films, where
the Fe[100] easy axes are rotated by 45◦ with respect to the MgO[100]
axes (Fig. 6.1). Three sets of samples are investigated: Fe(10)/MgO/Ti,
Fe(20)/MgO/Ti and Fe(20)/MgO film without Ti capping layer (see stack
composition and growth conditions in chapter 3). The measurements are
performed for the magnetostatic surface spin wave configuration, i.e. with a
magnetic field H applied in the film perpendicularly to the wave vector k.
In order to examine the efficiency of spin wave excitation and to determine
the magnetic properties of the Fe films reflection measurements have been
performed first. They was carried out for two geometries: when the spin
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Figure 6.1: Design of the PSWS devices used for investigating spin wave
propagation in Fe. The Fe[100] easy axis is rotated by 45◦ with the respect
to MgO[100] axis and the magnetic field is applied along Fe[010] easy axis.

wave propagates along the easy axis [100] (as shown in Fig. 6.1) and along
the hard axis [110]. In the latter case, other devices are used, where the Fe
stripe is patterned along the Fe[110] axis and the field is still applied in the
MSSW configuration (H ‖ [1− 10]).

Fig. 6.2(a) and (b) show the imaginary parts of the self-inductance mea-
sured at µ0H = 13.6 mT (H ‖ [010]) for the 10 nm and 20 nm Fe/MgO/Ti
films, respectively. For both thicknesses, one observes two peaks in the
frequency range 10-20 GHz, which, according to Fourier transform (see
Fig. 3.9), correspond to the MSSW mode with wave vectors of 3.9 µm−1

and 1.5 µm−1. We note that the intensity of the main peak kM scales with
the film thickness and reaches 30 pH for the 20 nm film. This amplitude is
about two times larger than that measured in Py films of the same thickness
for the same frequency range. (Note, that at µ0H = 13.6 mT, the resonance
frequency measured in 20 nm Fe and Py films are 17.5 GHz and 7.8 GHz,
respectively, so a field of about 200 mT is needed to obtain a resonance fre-
quency of 15-20 GHz in Py). In the 20 nm Fe film we also observe a low
intensity peak at higher frequency, which corresponds to the first perpen-
dicular standing spin wave (PSSW1) mode with an in-plane wave vector of



6.1. REFLECTION MEASUREMENTS 129

3.9 µm−1 [Fig. 6.2(b)]. This mode has an antisymmetric profile across the
film thickness. The peak intensity is 270 times smaller than the intensity
of the main peak, which we attribute to the very small overlap between the
microwave field (mostly uniform across the film thickness) and PSSW1 mode
(mostly antisymmetric across the film thickness). Because of such tiny inten-
sity the PSSW1 mode with lower wave vector ks was not observed. Since the
position of this peak is primarily governed by the exchange energy, which is
in the limit of small k scales as 1/t2, the PSSW1 mode in the 10 nm Fe film
can not be observed due to the limited frequency range of our experimental
set-up.

Fig. 6.2(c,d) show the field dependence of the frequencies for the 10 nm
and 20 nm film, respectively. The open squares correspond to the MSSW
peak with ks = 1.5 µm−1 and the filled squares to the MSSW peak with kM =
3.9 µm−1. Panel (c) and (d) show the measurements carried out in 10 and 20
nm film, respectively. The dependence of the PSSW1 peak frequency on H is
plotted as diamonds in Fig. 6.2(d). In all cases a monotonous increase of fres

with H is observed. We fit the MSSW peak frequency using the dispersion
relation for the magnetostatic regime [Eq. 1.5.7], where the effective field
Heff = H −Hd+HK includes both the demagnetizing field Hd associated to
the finite width of the strip and the magnetocrystalline cubic anisotropy field
HK [solid lines in Fig. 6.2(c,d)]. From the fitting parameters we extract the
magnetic parameters of films, namely γ/(2π) = 29 GHz/T, µ0Ms = 2.15 T,
and µ0HK = 58 mT, corresponding to Kc = 5 ·104 J/m3, which are the same
for the 10 and 20 nm thick films. The effective magnetization µ0Meff slightly
differs for different film thickness and equals 1.9 T and 2.08 T for the 10 and
20 nm films, respectively. From the difference between the saturation and
the effective magnetization, we deduce an out-of-plane uniaxial anisotropy,
which is attributed to the surface anisotropy. For the 10 nm and 20 nm film
we obtain

∑
Ks = 2 mJ/m2 and

∑
Ks = 1.2 mJ/m2, respectively.

Contrary to MSSW, the PSSW1 is strongly influenced by the exchange
interaction. With that respect, the high frequency dispersion branch is fitted
using the dipole-exchange dispersion relation for PSSW1 (Eq.[1.6.22]), where
the exchange term Λ2k2 can be neglected due to its smallness (of the order
of 10−12), and only the out-of-plane quantization exchange term (Λπ/t)2 is
kept:

f21 = (γµ0)
2[H2

eff + HeffMeff(2(Λπ/t)
2 + 1) (6.1.1)

+ MsMeff(P11 − P 2
11 + (Λπ/t)2 + ((Λπ/t)2)2)]

Using the values of magnetic parameters defined above we obtain a value
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of exchange length Λ = 3.1 nm that corresponds to an exchange constant
A = 19.1 pJ/m2. Note that the result of this analytical formula in excellent
agreement with result from numerical calculations [55].

To illustrate directly the influence of the cubic anisotropy, we performed
the same measurements for devices containing a strip aligned along a Fe[110]
in-plane hard axis with the magnetic field applied along the other in-plane
hard axis Fe[1-10] [see sketch in the inset of Fig.6.2(c)]. The field dependence
of the peak frequencies measured for both ks and kM in 10 and 20 nm films
are shown in Fig. 6.2(c) and (d) by open and filled hexagons, respectively.
In this case, when increasing the field, the resonance frequency starts to de-
crease up to a field of about 58 mT with a subsequent increase for higher
field. The observed decrease of fres is associated with the rotation of the
magnetization vector M to the field direction, where the minimum of the
spectrum indicates the value of the field needed to align M along H, which
is the value of the cubic anisotropy field HK. Numerical calculations of the
MSSW frequency performed for this hard axis geometry with the magnetic
parameters indicated above are in excellent agreement with the measured
data [solid lines in Fig. 6.2(c,d)]. This confirms our determination of the cu-
bic magnetic anisotropy. Note that all the magnetic parameters determined
for our Fe thin films are almost the same as those reported for the bulk
material [59, 20].

6.2 Transmission measurements

In the next step, we perform transmission measurements in order to analyze
the propagating properties of the spin waves. The measurements were carried
out for the devices in which the strip is along an easy axis. In Fig. 6.3(a) the
mutual-inductance spectra measured at µ0H = 58 mT in a Fe(20)/MgO/Ti
device is shown. From the envelop of the signal one distinguishes two main
peaks. The high and low frequency packets of oscillation correspond to the
main and secondary spin-wave wave vector, respectively. The high ampli-
tude signal ∆L21 depicts the wave moving in one direction (k > 0) and the
low amplitude signal ∆L12 corresponds to the opposite wave (k < 0). A
first important observation which can be done from these spectra, is the
remarkable frequency non-reciprocity.

6.2.1 Frequency non-reciprocity

In Fig. 6.3(b) and (c) the frequency shifts between the imaginary parts of
the inductance signals ∆L12 and ∆L21 are shown for kM = 3.9 µm−1 and
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Figure 6.2: Imaginary part of the self-inductance signal measured at µ0H =
36 mT with H ‖ [010] for 10 nm (a) and 20 nm (b) Fe stips with w = 10 µm.
The two peaks at low frequency correspond to MSSW mode ks and kM and
the peak at high frequency in panel (b) corresponds to the PSSW1 mode.
(c)-(d) Resonance frequency as a function of H for the 10 and 20 nm film,
respectively. Full and open symbols correspond to the main and secondary
MSSW peak, respectively. Diamonds are for the PSSW1 mode. Peak fre-
quencies marked by squares and hexagons represent the measurements car-
ried out for different devices with (k ‖ [100], H ‖ [010]) and (k ‖ [110],
H ‖ [1− 10], respectively [see sketches in panel (c)].
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ks = 1.5 µm−1, respectively. We measure a frequency shift fNR = f21−f12 =
84 MHz for kM and 35 MHz for ks. We note that the observed frequency
shift is much larger than that measured in Py films for the same thickness
and wave vectors. By following the frequency non-reciprocity as a function
of magnetic field, we observe a slight decrease of fNR with increasing H
for both wave vectors [symbols in Fig. 6.4(a)]. The same measurements
performed in the 10 nm Fe film show that the values of the frequency non-
reciprocity for kM and ks are almost two times smaller than the respective
values obtained in the 20 nm film [Fig. 6.4(b)]. At 10 nm no clear field
dependence is observed.

In Fig. 6.5 the frequency non-reciprocity is plotted as a function of the
wave vector k for the 10 and 20 nm Fe films capped by Ti (filled circles and
diamonds, respectively). As was discussed in chapter 4, in a magnetic film
sandwiched between two oxide layers a frequency non-reciprocity can occur
as a result of different surface anisotropy at the top and bottom surfaces.
We thus account for the observed values of fNR by means of the dipole-
exchange theory, in which asymmetric surface anisotropies are included as
a perturbation (see section4.1.2). Using formula (4.1.7), we deduce a dif-
ference in surface anisotropy ∆Ks = 0.7 mJ/m2 and 1 mJ/m2 for the 10
and 20 nm films, respectively. Numerical calculations confirm these values
of ∆Ks. Moreover, the numerical simulations [solid lines in Fig. 6.4] are in
good agreement with the H-dependent behavior obtained experimentally:
a pronounced decrease with increasing magnetic field for the 20 nm film
(with a more rapid decrease for kM than for ks), and a weak dependence
on magnetic field for the 10 nm. From the estimation of the difference and
the sum of the top and bottom surface anisotropies, we can determine the
uniaxial anisotropy of individual interfaces, which is found to be high for
the bottom surface (Kbot

s = 0.9− 1.4 mJ/m2) and small for the top surface
(Ktop

s = −0.1− 0.7 mJ/m2).
Interestingly, the frequency non-reciprocity measured in the 20 nm Fe

film covered by a single MgO layer without Ti capping layer was found to
be significantly larger than that observed in Fe(20)/MgO/Ti films (open
diamonds in Fig. 6.5). For a wave vector of 3.8 µm−1 the frequency shift
between two counter-propagating spin waves reaches 120 MHz and for ks =
1.55 µm−1 is 40 MHz. The difference of the fNR measured in films of the
same thickness is attributed to the different state of the top interface, which
induce different surface anisotropy. The observed fNR corresponds to ∆Ks =
1.4 mJ/m2.

The different surface anisotropy for the two nominally identical inter-
faces in MgO/Fe/MgO is attributed to the partial oxidation of interfacial Fe
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Figure 6.3: (a) Mutual-inductance spectrum measured at µ0H = 58 mT in
the Fe(20)/MgO/Ti strip with w = 10 µm and D = 4 µm. (b) and (c) show
the frequency shifts between the imaginary parts of the inductance signals
∆L12 and ∆L21 for kM = 3.9 µm−1 and ks = 1.5 µm−1, respectively.
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Figure 6.4: Frequency non-reciprocity as a function of magnetic field mea-
sured in 20 nm (a) and 10 nm (b) thick films for a wave vector of 3.8 µm−1

(diamonds) and 1.55 µm−1 (circles). Solid lines are the numerical calcula-
tion done for the following parameters: γ/(2π) = 29 GHz/T, µMs = 2.15
T, A = 19.1 pJ/m2, Kc = 5 · 104 J/m3. In (a) ∆Ks = 1 mJ/m2 and∑
Ks = 0.8 mJ/m2. In (b) ∆Ks = 0.7 mJ/m2 and

∑
Ks = 2.1 mJ/m2.

atoms, which is not the same for Fe/MgO and MgO/Fe interfaces. Indeed,
an experimental study by Mossbauer spectroscopy [90] showed, that the two
interfaces are not equivalent. In particular, at the MgO/Fe interface (Fe is
deposited on MgO) a larger amount of interfacial Fe atoms is oxidized (86%)
than at the Fe/MgO interface (63%). The ab-initio calculations reported in
[52] showed an influence of the surface oxidation on the perpendicular mag-
netic anisotropy. The oxidation process is known to depend on the growing
conditions, such as for example annealing temperature [139, 100]. Since MgO
is quite sensitive to environmental and thermal degradation, in the samples
without protective Ti layer one may expect a hydroxydation of the top MgO
layer, that can also cause a chemical or structural change at the top Fe/MgO
interfaces.

These structural and chemical effects might therefore explain the results
we obtain by probing the magnetic asymmetries with the help of propagating
spin waves.
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Figure 6.5: Frequency non-reciprocity as a function of wave vector. The cir-
cles are the values measured in the Fe(10)/MgO/Ti film, the full and open
diamonds are for the Fe(20)/MgO/Ti and Fe(20)/MgO films, respectively.
The solid lines are the values simulated with the parameters given in the cap-
tion of Fig. 6.4 for Fe(t)/MgO/Ti films. For Fe(20)/MgO, ∆Ks = 1.4 mJ/m2

is used.
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6.2.2 Propagating characteristics of spin waves in a Fe film

Let us now determine the spin wave propagation parameters in the Fe(20)/MgO/Ti
film. As in the study of Py/Pt films, the propagation was analyzed by us-
ing devices with different distances D between antennas and by comparing
the transmitted signal. In Fig. 6.6(a-c) we plot the imaginary part of the
mutual-inductance signal corresponding to a wave vector of 3.8 µm−1 for
the devices with D = 2, 3, 4 µm, respectively. The measured waveform is
characterized by two parameters: the period of the oscillation [the half of
which is marked by a solid arrow in Fig. 6.6(a-c)] and the maximum ampli-
tude |L21|max. By increasing the distance D one observes a decrease of both
signal period and maximum amplitude. As was discussed in section 5.2, the
period of the signal can be identified to the inverse of the group delay time
τ = (D+D0)/vg, where D0 is an offset accounting for the finite width of the
antenna. By plotting the dependence of the propagation time τ as a func-
tion of D we extract the value of the group velocity vg [circles in Fig. 6.6(d)].
The amplitude of the signal is related to the spin wave attenuation length
Latt as A = A0exp(−(D+D0)/Latt), where A is the maximum amplitude of
the transmitted signal normalized by the amplitude of the reflected ones. To
evaluate the attenuation length we thus plot −ln(A) as a function of D. The
slope of the linear fit corresponds to 1/Latt [squares in Fig. 6.6(d)]. We can
also evaluate the spin wave relaxation rate Γ from the dependence of −ln(A)
on τ [diamonds in Fig. 6.6(d)]. Therefore, based on mutual-inductance sig-
nals obtained for devices with different D, we directly determine the values
of Latt, vg and Γ for a given magnetic field.

Repeating the same measurements for different values of external mag-
netic field we analyze the H-dependence of the main spin wave propagation
characteristics. Let us first comment on the group velocity, which is plotted
in Fig. 6.7 for kM = 3.8 µm−1 (top panel) and ks = 1.5 µm−1 (bottom
panel) for both propagation directions (k > 0 and k < 0). One observes
a monotonous decrease of vg with increasing H, which reproduce well the
behavior expected from theory (solid lines). However, the calculated vg for
both kM and ks are about 15% larger than the measured ones and we do
not have any explanation for this behaviour at the moment. As one can see
from both measured and calculated values, the group velocity is larger for
the small wave vector (vg = 7.5 km/s at µ0H = 14 mT) than for the high
one (vg = 5 km/s). Due to the large frequency nonreciprocity measured in
this samples, the group velocities of the counter-propagating spin waves are
expected to be slightly different, but because of the smallness in the differ-
ence between vg(k > 0) and vg(k > 0), it is rather difficult to identify it
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Figure 6.6: Imaginary part of the mutual-inductance spectra measured in
the Fe(20)/MgO/Ti strip with w = 10 µm in devices with an edge-to-edge
distance D = 2µm (a), D = 3 µm (b), D = 4µm (c) at a field µ0H =
58 mT. (d) Dependence of the logarithm of the normalized amplitude A
(black diamonds) and of the propagation time τ (red circles) on the distance;
dependence of −ln(A) on τ (blue squares)
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Figure 6.7: Dependence of the group velocity on the magnetic field for the
main (top panel) and secondary (bottom panel) SW wave vectors measured
for Fe(20)/MgO/Ti film. Symbols are the experimental values extracted
for both propagation directions k > 0 and k < 0 and the dashed lines are
polynomial fit guided for the eyes. Solid lines are the theoretical values
calculated for k > 0 and k < 0 with the parameters given in the caption of
Fig. 6.4

experimentally.

In Fig. 6.8(a) the effective damping parameter is plotted as a function
of magnetic field for both wave vectors. The values of damping factor were
extracted from the measured Γ by using the relation appropriate for the
surface spin wave geometry, namely Γ = αeff(ω0 + ωM/2). One can see,
that αeff decreases with increasing H and reaches an asymptotic value of
0.0025 at high field. Because the intrinsic Gilbert damping of metals which
arises mainly due to the interaction of spin waves with conduction elec-
trons [114, 37], is frequency independent, the observed dependence of αeff on
H is attributed to the presence of extrinsic damping due to sample defects.
This is supported by the broadband ferromagnetic resonance measurements
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performed on a plain film of the same composition [1]. In Fig. 6.8(b) the
FMR linewidth µ0∆H is plotted as a function of resonance frequency. By
fitting this data using the expression µ0∆H = µ0∆H0 + α2πf

γ , we find an
intrinsic damping constant α = 0.0025 and an inhomogeneous broadening
µ0∆H0 = 0.9 mT. The high field extrapolate of the SW effective damp-
ing is therefore in good agreement with the damping evaluated by FMR,
which is also in line with the values measured in bulk Fe [12, 132] and in
good quality epitaxial films [112, 131]. The increase of effective damping ob-
served at low field could have the same origin as the observed inhomogeneous
broadening extracted from FMR, which can be attributed the influence of
the lattice defects such as atomic network dislocations [112, 138]. In this
in-plane configuration, such defects are likely to give rise to two magnon
scattering [138, 73]. According to the theory of this process [102, 16, 73], a
spin wave mode can scatter off the lattice defects into degenerate spin wave
mode with higher wave vector leading to an additional relaxation process,
which enhances the measured relaxation rate/linewidth.

In metallic film, eddy current can also contribute to an increase of damp-
ing, which scales quadratically with the film thickness as [112]

Geddy =
σ

12
(4πMsγ)

2(
t

c
)2. (6.2.1)

Here, Geddy is relaxation rate in cgs units (Hz), σ = 9.11 · 1016 Hz is the
conductivity and c is the speed of light in vacuum. For the 20 nm film the
magnitude of the eddy current relaxation rate is about 5 MHz, which is
much smaller than the effective relaxation rate of 80 MHz converted from
αeff measurements as Geff = αeffγMs. The influence of eddy current can be
therefore neglected in our case.

Finally, in Fig. 6.9 we plot the dependence of the attenuation length
(symbols) on magnetic field. The data show a nearly constant values of
Latt of about 6 µm and 9 µm for kM = 3.8 µm−1 and ks = 1.55 µm−1,
respectively. These results differ from the theoretical values (dashed lines)
calculated using the expression Latt = vgT2 with a constant value of damping
of 0.0025. The observed dependence of Latt on H can be understood by
taking into account a decrease of vg and a field dependence of αeff (dashed
lines in Fig. 6.7 and Fig. 6.8, respectively). A similar situation was observed
in the 10 nm Fe films, where the attenuation length keeps almost constant
at low field with the values of about 3 µm and 5 µm for kM = 3.8 µm−1 and
ks = 1.55 µm−1, respectively. As in the case of the 20 nm film, these values
are almost two times smaller than the theoretically expected ones.

Despite this deviation, the attenuation are quite high compared to other
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Figure 6.8: (a) Dependence of the effective damping on the magnetic field for
the same 20 nm film. Dashed line is a polynomial fit showing the decrease of
αeff with H approaching to the bulk value of 0.0025. (b) Dependence of FMR
linewidth (full width with at half maximum) on the frequency measured on
a similar film by broadband ferromagnetic resonance.

materials. For example, for a wave vector of 3.8 µm−1 and a film thickness
of 20 nm, the attenuation length found to be of the order of 1 µm in both
Py (α = 0, 008) and YIG (α = 0, 0004) for a frequency of 18 GHz. Note, to
reach such a frequency, the external field should be increased to 0.3 and 0.6
T, respectively.

To summarize, spin waves propagating in a single crystal iron film in-
duces inductive signals with stronger amplitude and much higher frequency
as compared to Permalloy films for the same conditions. The damping fac-
tor measured in our thin films is close to the value measured in bulk Fe at
high frequency and increases by about 35% at low frequency. This value of
damping is of the same order than the one measured in Co-based Heusler
alloys [115] and almost 3 times smaller than that of Py films. Moreover, due
to the high saturation magnetization of Fe, the spin wave group velocity in
this material is found to be much higher comparing to other material. Due
to this low damping and high group velocity, spin waves can propagate in Fe
films over long distances (ten micrometers).



6.2. TRANSMISSION MEASUREMENTS 141

Figure 6.9: Dependence of the attenuation length on the magnetic field for
main (top panel) and secondary (bottom panel) SW wave vectors for the
same 20 nm Fe film. Symbols are the experimental values for k > 0 and
k < 0. Dashed lines are the theoretical values calculated using the expression
Latt = vgT2 with a constant value of damping of 0.0025. Solid lines are the
values calculated using the same expression but accounting a field dependent
increase of αeff and vg. Calculations were done for the parameters noted in
caption of Fig. 6.4



142 CHAPTER 6. SPIN WAVE PROPAGATION IN FE/MGO

Figure 6.10: (a) Mutual-inductance spectra measured on the 20 nm film with
D = 4 µm and kM = 3.8 µm−1 under an applied field µ0H = 120 mT and
a DC electrical current Idc = ±10 mA. Blue and cyan lines are the signals
measured at +Idc and −Idc for k < 0, respectively, and the magenta and
red lines represent respectively the signal at +Idc and −Idc for k > 0. (b)
A zoom of waveforms allowing to visualize the current-induced frequency
shifts.

6.3 Spin polarized electrical transport

6.3.1 Current induced spin wave Doppler shift measurements

In order to investigate the spin polarized electrical transport in our Fe films,
we perform current induced Doppler shift measurements. In the configura-
tion sketched in Fig. 6.1, the DC current flows along Fe[100] axis and the
magnetic field is along the Fe[010] axis. As was already mentioned in sec-
tion 2.3.1, flowing through the continuously variable magnetization distribu-
tion of the spin wave, the conduction electrons interact adiabatically with the
local magnetization via spin transfer torque. The result of this interaction is
a spin wave frequency shift δω = uk, where u = PµBJ/(eMs) is related to the
degree of spin polarization of the electrical current P = (J↑ − J↓)/(J↑ + J↓).

Fig. 6.10(a) shows the imaginary part of the mutual-inductance measured
for the main MSSW peak for k > 0 (∆L21) and k < 0 (∆L12) under a dc
current of ±10 mA in the Fe(20)/MgO/Ti film. We measure the frequency
shift by comparing the frequency for positive and negative current at the
curve intersection with the x-axis. As one can see from Fig. 6.10(b), where
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a zoomed part of the graph (a) is plotted, the frequency shift between the
∆L12(+Idc) (blue line) and ∆L12(−Idc) (cyan line) differs from the frequency
shift between ∆L21(+Idc) (magenta line) and ∆L21(−Idc) (red line) (for the
latter case the frequency shift is too small to be visible on this scale). As
already explained in section 5.3.5, this difference is due to the combination
of the Doppler shift with an additional contribution due to the Oersted field,
which has a distinct symmetry in k. Indeed, the Doppler effect leads to
a frequency shift +δfdop for the current moving in the direction opposite
to the spin wave propagation direction and to a frequency shift −δfdop for
the inverse situation. On the contrary, the Oersted field, which does not
average strictly to zero due to some asymmetries across a film thicknesses
(e.g. different probabilities of diffuse electron scattering on the two film
surfaces) results in the same current-induced frequency shift for both spin
wave propagation directions. Therefore, the frequency shift for k > 0 is
δf21 = 2(δfOe−δfdop), while the frequency shift for k < 0 is δf12 = 2(δfOe+
δfdop). The Doppler shift and Oersted field contributions can be therefore
calculated as

δfdop = (δf21 − δf12)/4 (6.3.1)

δfOe = (δf21 + δf12)/4 (6.3.2)

In Fig. 6.11(a),(b) the Oersted field- and Doppler induced frequency shifts
are plotted for the 10 and 20 nm films. Both contributions are found to be
of the order of few MHz. Following the variation of δfdop/k as a function of
applied dc current [Fig. 6.11(b)], we can estimate the degree of spin polar-
ization using the relation

δfdop =
µ0µB

2πeµ0Ms

I

wt
kP, (6.3.3)

where µ0µB/(πe) = 23 · 10−12 m3.T.A−1.s−1, and w and t are the width
and the thickness of the ferromagnetic stripe. From the slope of the fit
and by using the geometric and magnetic parameters of the strip we can
deduce the degree of spin polarization. For both film thicknesses and for
wave vectors kM and ks we obtain a value of P = 0.83 ± 0.05. Note that
a very similar value was also deduced from the current-induced shift for
an external field of different magnitude and sign, which is an indication
that artifacts have been correctly accounted for by our extraction procedure.
The nonreciprocal Oersted field induced frequency shift, which arises due
to the asymmetric spin-wave modal profile [51], and which about one order
of magnitude smaller that the reciprocal Oersted field, was also taken into
account.
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The value P = 0.83 we measure on our Fe film at room temperature (RT)
can be compared to values determined using the same technique on different
materials. The spin polarization measured in Py are P=0.5-0.7 [135, 50, 117]
and P=0.85-0.95 for the Heusler alloy CoFe1−xGex [145]. In these two exam-
ples the large spin-polarizations are attributed to a strong spin-asymmetry
of the electron scattering induced by the random alloy disorder [88, 9]. How-
ever, in a pure metal such alloy disorder scattering is absent. With this
respect, the high value of spin polarization has to be related to a more in-
trinsic source of electron scattering. Before analyzing its origin, we will first
review the values of spin polarization measured for Fe using other techniques,
insisting on the definition of spin polarization relevant in each case.

6.3.2 Degree of spin polarization of the electrical current in
Fe

In spin polarized photoemission experiments, the quantity of emitted elec-
trons depends primarily on the density of state [61]. The spin-polarization
measured is therefore that of the electron density

PN =
N↑(EF )−N↓(EF )

N↑(EF ) +N↓(EF )
. (6.3.4)

The reported values for Fe spread in a range between −0.8 and −0.2 showing
the domination of minority electrons at the Fermi energy [25, 26, 75]. PN can
be calculated numerically using ab-initio methods, which yield the values of
about 0.4-0.5 [130, 146].

Another experimental method to probe the degree of spin polarization
is to use Andreev reflection measurements [24, 123]. In such experiments
the current flowing through the interface between a ferromagnet (FM) and
a superconductor (S) is measured: when an electron reflects from the FM/S
interface as a hole it creates a Cooper pair flowing into the superconductor.
For interface S/normal metal [where N↑(EF ) = N↓(EF )], each up electron
will combines with one down electron increasing the conductance by a frac-
tion of two. Since in a ferromagnet the number of spin-up and spin-down
electrons is not the same, the electrons incoming into the superconductor will
not necessarily find a partner to form the pair with, thus reducing or enhanc-
ing the conductance depending on the ratio N↓(EF )/N↑(EF ). Depending on
the size of the point contact two transport regimes are distinguished. If
the size of the point is smaller that the electron mean free path, the elec-
tron flows ballistically through the contact. In such a case, the conductivity
for each channel depends on the average of the product of DOS and Fermi
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Figure 6.11: Oersted field (a) and Doppler (b) induced frequency shift as
a function of DC current measured in Fe(10)/MgO/Ti and Fe(20)/MgO/Ti
films with w = 10 µm at µ0H = 36 mT and µ0H = 120 mT, respectively.
In (b) the red squares corresponds to the main peak and the black diamonds
are for the secondary peak. The measured frequency are normalized to the
wave vector.
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Figure 6.12: Electronic density of state of bcc iron. Figure from Ref. [130]

velocity [87], and the spin-polarization is then written as:

PNv =
〈N(EF )v〉↑ − 〈N(EF )v〉↓
〈N(EF )v〉↑ + 〈N(EF )v〉↓

. (6.3.5)

In the case when the size of the point contact is bigger that the electron
mean free path, the electron travels diffusively through the contact. For this
regime the conductance is proportional to the square of the Fermi velocity.
Assuming a spin-independent electron relaxation time, the spin-polarization
is written as

PNv2 =
〈N(EF )v

2〉↑ − 〈N(EF )v
2〉↓

〈N(EF )v2〉↑ + 〈N(EF )v2〉↓
. (6.3.6)

The degree of spin polarization deduced from Andreev reflection measure-
ments in ballistic regime is P = 0.45 [122, 123]. It is clear that for materials
with different Fermi velocity for up and down electrons the polarization PN ,
PNv and PNv2 will differ. The difference in velocity can be related with the
band character near the Fermi energy, because s-electrons have much higher
velocity than d ones [146].

6.3.3 Spin dependent diffusive electrical transport in Fe

In propagating spin wave spectroscopy, the relevant degree of spin polar-
ization that of the electrical current is the diffusive regime, as described in
section 2.2.1. Using the expression of conductivity derived from the classical
Boltzmann transport theory one gets [3]:

P =
〈N(EF )v

2〉↑τ↑ − 〈N(EF )v
2〉↓τ↓

〈N(EF )v2〉↑τ↑ + 〈N(EF )v2〉↓τ↓
, (6.3.7)
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where τ↑(↓) is the relaxation time for spin up (down), and 〈N(EF )v
2〉σ is

defined as [87]

〈N(EF )v
2〉σ =

1

(2π)3

∑

α

∫
vkασdSF. (6.3.8)

Here, vkασ is the velocity of an electron in the band α with the wave vec-
tor k, and dSF is the area of the Fermi surface. Therefore, in addition to
band structure [N(EF )v

2], we recognize a direct influence of the electron
scattering process trough τ↑(↓). Among the different spin-dependent scat-
tering processes listed in Ref. [50], we can consider only the contribution of
the thermal disorder, namely that of the phonons (thermal disorder of the
lattice) and the magnons (thermal disorder of the local magnetization), as
well as the contribution from the surface scattering. Indeed, both random
alloy disorder and grain boundary scattering can be neglected because we
use a single-crystal pure material.

Consider first the electron scattering by the film surface. From mag-
netotransport measurements of spin-valve structures (F-N-F), it was shown
that the change in the magnetoresistance is related to the different mean-
free paths of majority and minority electrons [32, 47]. It was found that in
Fe the mean-free paths of majority and minority electrons are of the order
of 1-2 nm [47], which is much smaller our film thickness. Therefore, the
contribution of the surface scattering to resistivity can be neglected.

In Ref. [106], the electron-magnon scattering was studied by performing
high field (up to 40 T) magnetoresistance measurements in large temperature
lange (4 to 500 K). A high magnetic field leads to an upward energy shift of
spin waves and thus reduces the electron-magnon collision. In Fig. 6.13 the
magnon resistivity dependence on the magnetic field for different tempera-
ture is shown. One can note that this resistivity reduces when the magnetic
field increases and when the temperature decreases. From these measure-
ments, authors estimated the contribution of spin-flip scattering via magnon
to be 2 µΩcm, which is about 15% of the total resistivity.

We are left with the contribution of electron-phonon scattering, which
seems to be dominant at room temperature. To calculate the spin-dependent
electron-phonon interaction a theoretical approach based on the transport
spectral function α2

trF (w) is used. It was fist proposed by Allen in the
superconductivity theory [4] and then implemented in ab-initio calculations
by Savrasov et al. [111]. The function α2

trF (w) is the phonon density of
states weighted by the scattering matrix, which describes the scattering of
an electron from k to k

′

state on a phonon with frequency ω [2]. It is directly
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Figure 6.13: Magnon resistivity dependence on the applied pulsed magnetic
filed measured at different temperature for Fe(80 nm)/MgO films. Figure
from Ref. [106]

related to the resistivity as a function of temperature:

ρ(T ) =
πΩkBT

N(EF)〈v2x〉

∫ ∞

0

dω

ω

x2

sinh2 x
α2

trF (w) (6.3.9)

where x = ω/(2kBT ), 〈v2x〉 is the average square of the x component of
the Fermi velocity. The integral over the transport spectral function defines
the transport electron-phonon coupling constant λtr. For a high enough
temperature, Eq. (6.3.9) can be rewritten as

ρ(T ) =
πΩkBT

N(EF)〈v2x〉
λtr, (6.3.10)

where λtr is the transport electron-phonon coupling constant, obtained by
integrating the transport spectral function. The spin-dependent electron-
phonon coupling constants for ferromagnetic Fe were calculated in Ref. [133],
as λtr↑ = 0.102 and λtr↓ = 0.199. The difference between the two electron-
phonon coupling can be explained by the electronic state at the Fermi energy:
since the majority electrons lie in the end of the d band, the electron-phonon
coupling is weaker comparing with that of minority electrons located in the
middle of the d band. Form the Eq. (6.3.10), one can extract the spin
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polarization as

P =
〈N(EF )v

2〉↑/λtr,↑ − 〈N(EF )v
2〉↓/λtr,↓

〈N(EF )v2〉↑/λtr,↑ + 〈N(EF )v2〉↓/λtr,↓
. (6.3.11)

Combining the ratios λtr,↑/λtr,↓ and 〈N(EF )v
2〉↑/〈N(EF )v

2〉↓ [146], we
find a spin polarization of the current of the order of 0.6, which is quite close
to the value we measure.

We can thus conclude, that in Fe at room temperature, the phonon con-
tribution to the electron resistivity is quite strongly spin-polarized, while the
magnon contribution remains moderate.

6.4 Conclusion

We have shown that a single-crystal iron film is a suitable medium for the
propagation of spin waves. Thank to the large saturation magnetization and
small damping factor, the spin waves propagate in Fe with a large attenuation
length and a relatively high velocity. These results qualify Fe as a very
promising candidate for future magnon devices operating at high frequency,
since the propagation distance is a crucial factor in information transport
and signal processing. We have also shown that diffusive electron transport
in iron at room temperature is strongly spin-polarized, which is attributed to
a significant spin-asymmetry of the electron-phonon coupling. This indicates
that, despite the absence of spin-polarized impurity or surface scattering, a
pure material such as iron can be efficient for the generation of spin currents.
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General conclusion

In this thesis, the spin dynamics and its modification by a spin current has
been studied in different magnetic systems, namely Py/Al2O3, Py/Pt and
Fe/MgO films, using propagating spin wave spectroscopy. The aim of this
study was to find the optimal conditions and/or materials for efficient spin
wave propagation and spin current generation.

By analyzing the spin wave propagation in both Py-based and Fe-based
devices, we have observed a much more efficient spin wave generation and
propagation in crystalline iron film than in Py. The reason is the small
Gilbert damping of Fe, which enables to propagate the spin wave over long
distances, and its high saturation magnetization, which translates into a high
group velocity. Moreover, the high degree of spin polarization of the electrical
current measured in Fe indicates its good ability to generate a spin-polarized
current. However, the origin of such high spin polarization remains unclear
and requires additional studies.

The measurements of spin dynamics in Py/Pt devices enables us to study
different spin-orbit related phenomena, such as interfacial Dzyaloshinskii-
Moria interaction, spin pumping and spin transfer torque driven by spin
Hall effect. In chapter 4, the strength of iDMI interaction was studied by
measuring the frequency non-reciprocity of counter-propagating spin waves.
However, we have shown, that in moderately thin magnetic films the fre-
quency non-reciprocity is actually due to the combined influence of iDMI
and magnetic asymmetry across a film thickness. Using a theoretical model
developed in sec. 4.1, we could quantify the magnitude of both effects.

We have also shown that the spin wave can be efficiently used to probe
different types of spin transfer torque arising when an electrical current is
injected into a FM/HM bilayer. We distinguish two types of STT: (i) the
interfacial STT, which arises at the FM/HM interface due to the transfer of
spin momentum from the conduction electron to local magnetization (SHE-
STT) and the volume STT (current-induced spin wave Doppler shift). We
have demonstrated, that the effect of interfacial STT is to modify the spin
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wave relaxation rate, while the effect of adiabatic volume STT is to modify
the resonance frequency. From the current-induced change of the relaxation
rate we could extract the spin Hall angle, which is the quantity governed by
the efficiency of the spin transfer torque induced by the spin Hall effect. Our
study shows that the SHE-STT is as efficient for a non-uniform excitation
as for an uniform one, and can thus be used to control electrically the spin
wave propagation. From another point of view, our studies on Py/Pt bilayers
shows that the spin wave can be used as a very accurate probe to study
different spin-orbit related phenomena.

Perspectives

Electrical control of damping in Py/Pt devices

From the practical point of view, the electrical control of spin wave damp-
ing in FM/HM films by using spin Hall induced spin transfer torque remains
a challenging goal. The main problem arising for such systems is the damp-
ing enhancement due to spin pumping. Indeed, before reducing the natural
Gilbert damping of the FM by SHE-STT, one should compensate the in-
crease of α due to spin pumping. Recently, a full compensation of damp-
ing was reported for YIG/Pt films, enabling one to reach auto-oscillation
regime [53, 22]. For Py/Pt films the threshold current is quite high and
could be reached only in strongly confined geometries [30] (the limitation
of the current density which can be injected in Py/Pt, is due to the strong
heating of the samples). Therefore, one could try to engineer the interface
using suitable metal interlayer in order to limit the magnetization losses but
maintain an efficient SHE-STT at a reasonable current density [97].

Spin polarization of electrical current in Fe/MgO films

Performing current-induced Doppler shift measurements in Fe/MgO films
we found an unexpectedly high degree of spin-polarization of the electrical
current of 0.83 at room temperature. This high value of P is attributed
to a strong spin-dependence of electrons scattering on phonons. As was
discussed in sec. 2.2.1, the scattering mechanism in the metal can be ana-
lyzed by following the resistivity change of a binary alloy with temperature,
where the total resistivity is a combination of the resistivity of the pure
metal (which is assumed to be temperature dependent) and the resistiv-
ity due to the impurities (which is temperature independent). In the same
spirit we propose to perform temperature dependent Doppler shift measure-
ments in Fe1−xVx/MgO films. Measuring the deviation from Matthiessen’s
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rule within each channel we should be able to quantify the contribution of
both electron-phonon and electron-magnon scattering. Preliminary results
indicate a room temperature degree of spin polarization of 0.55 and 0.4 for
x = 2 and 8%, respectively. These measurements should be extended to low
temperature to proceed further with the analysis of the electron scattering
mechanisms
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Appendix A

In Fig. 6.14 and 6.15 the dependencies of the frequency on the magnetic field
are plotted for Py(40)/Al2O3 and for Py(t)/Pt(d) films, where t = 4−20 nm
and d = 5, 10 nm, respectively. In the magnetostatic regime, this dependency
is given by the following expression:

f2 = (γµ0)
2[(H2

eff +HeffMeff +
MsMeff

4
(1− e−2kt)]. (6.4.1)

The fieldHeff = H−Hd is the effective field accountin for the in-plane demag-
netizing field Hd = 2t

πwMs, Meff = Ms −HK is the effective magnetization,
which accounts for an uniaxial surface anisotropy HK = 2

∑
Ks/(µ0Mst),

and Ms is the saturation magnetization.
We fit the dependence of the frequency on the field by using a second

order polynomial fit:

f2 = A(µ0Heff)
2 +B(µ0Heff) + C. (6.4.2)

From the fitting parameters A, B and C we extract the magnetic parameters
of the film:

• the gyromagnetic ration γ/(2π) is given by the square root of A,

• the effective magnetization is defined as µ0Meff = B/A,

• the saturation magnetization is deduced from the relation
µ0Msµ0Meff(1− e−2kt) = 4C/A.

For Py(t)/Al2O3 and Py(t)/Pt(d) films we found the similar parameters:
γ/(2π) = 30± 1 GHz/T, µ0Ms = 1.02− 0.92, µ0Meff = 0.99− 0.83 T for

t = 40− 6 nm, and
∑
Ks = 0.1± 0.1 mJ/m2.
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Figure 6.14: The dependence of the spin wave frequency on the magnetic
field for k1 = 3.86 µm−1 (triangles down) and k2 = 1.55 µm−1 (triangles up)
for Py(40)/Al2O3. The lines are second order polynomial fits.

Figure 6.15: Dependence of the frequency on the magnetic field measured in
Py(t)/Pt film with t=4-20 nm and in Py(4)/Ti films for k = 7 µm−1
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Par analogie avec l’électronique traditionnelle, où la charge de l’électron est
utilisée pour transférer et stocker information, l’électronique de spin cherche
à utiliser le moment cinétique de l’électron, appelé spin, comme un degré de
liberté supplémentaire pour réaliser des dispositifs de mémoire et de logique.
Deux possibilités pour coder et transporter l’information sont d’utiliser les
ondes de spin et le courant polarisé en spin. La propagation des ondes de
spin dans un matériau ferromagnétique (FM) est caractérisée par la vitesse
de propagation et la distance sur laquelle elles peuvent se propager, cette dis-
tance étant limitée par leur facteur d’amortissement. La recherche de matéri-
aux avec un faible coefficient d’amortissement et une vitesse de propagation
élevée est donc d’un intérêt particulier. Les paramètres caractéristiques des
ondes propagatives dépendent fortement du matériau utilisé et de nombreux
facteurs externes, tels que la direction et la valeur du champ magnétique
appliqué ou un éventuel courant électrique continu. En particulier, pour la
configuration d’ondes de spin de surface, où l’aimantation est dans le plan
et perpendiculaire au vecteur d’onde, un comportement non-réciproque est
observé (l’amplitude et la fréquence ne sont pas les mêmes pour les ondes de
spin qui se propagent dans les sens inverse). En injectant un courant élec-
trique dans un matériau magnétique un autre décalage de la fréquence de
l’onde de spin dépendant de la direction du courant se présente. Ce décalage
est dû au transfert de spin entre les électrons de conduction et l’aimantation
dynamique, et il permet de mesurer la polarisation en spin du courant (effet
Doppler d’onde de spin [136]).

Par ailleurs, les ondes de spin peuvent être considérablement influencées
par d’autre effets liés au couplage spin-orbite, tels que l’interaction Dzyaloshinskii-
Moriya (DMI) et le transfert de spin induit par l’effet Hall de spin (SHE-
STT, pour Spin Hall induced spin transfer torque), lesquels apparaissent
quand le couche ferromagnétique est en contact direct avec le métal lourd
(ML). Dans tels système FM/ML le DMI provoque un décalage en fréquence
entre les ondes propageant dans les sens inverses [10] et le SHE-STT cause
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une modification du taux de relaxation des ondes de spin propagatives [29].
Dans le cadre de ma thèse, j’étudie l’influence de ces différents effets sur la
propagation des ondes de spin, en utilisant différent systèmes magnétiques
tels que les bicouches permalloy (Py=Ni80Fe20)/Al2O3, Py/Pt et Fe/MgO,
où les système Py/Al2O3 et Py/Pt sont utilisés pour étudier les effets lié
au couplage spin-orbite, et le système Fe/MgO est utilisé pour sonder la
capacité de ce matériau de propager les ondes de spin et le courant polar-
isé en spin. Pour réaliser ces études, une technique expérimentale appelée
spectroscopie d’ondes de spin propagatives (PSWS pour Propagating Spin
Wave Spectroscopy) a été utilisée [136]. Dans cette technique, les ondes
de spin sont excitées et détectées par couplage inductif à des antennes fab-
riquées sur le ruban ferromagnétique (Fig. 6.16). Nous mesurons ainsi deux
types de signal: un signal réfléchis généré par une variation d’inductance sur
l’antenne émettrice (auto-inductance) et un signal transmis généré par une
variation d’inductance sur l’antenne réceptrice (inductance mutuelle). Le
signal réfléchi porte une information sur l’efficacité de l’excitation des ondes
de spin, tandis que le signal transmis donne une information sur l’efficacité
de la propagation des ondes de spin.

Propagation non-réciproque d’ondes de spin

Nous avons d’abord étudié la propagation non-réciproque d’onde de spin.
C’est une particularité des ondes de spin de surface qui se manifeste par
différentes amplitudes et fréquences quand deux ondes de spin se propagent
en sens inverse. Tandis que la non-réciprocité en amplitude, qui est liée au
couplage entre le champ d’excitation et l’aimantation dynamique, est bien
connue, l’origine de la non-réciprocité en fréquence était mal comprise. Pour
étudier l’origine de la non-réciprocité en fréquence nous avons effectué une
série de mesures dans des couches Al2O3(21 nm)/Py(t)/Al2O3(5 nm) pour
différentes épaisseurs de couche de Py (t = 6 − 40 nm) et pour différentes
valeurs de vecteur d’onde de l’onde de spin k.

Les résultats expérimentaux ont montré la forte dépendance de la non-
réciprocité en fréquence en fonction de vecteur d’onde et de l’épaisseur [voir
la Fig. 6.17(a)] [40]. Les différences de fréquence mesurées ont pu être at-
tribuées à la combinaison de deux facteurs : une non-réciprocité intrinsèque
du profil du mode et une asymétrie des propriétés du matériau ferromagné-
tique, en l’occurrence une différence d’anisotropie magnétique de surface en-
tre la face supérieure et la face inférieure du film. La non-réciprocité du profil
du mode est due à l’asymétrie du champ dipolaire généré par l’aimantation
dynamique, qui se traduit par une localisation du mode près de différentes
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Figure 6.16: Une représentation schématique de dispositif de spectroscopie
d’onde de spin. Des profils de mode d’ondes de spin asymmetriques à travers
l’epaisseur du film sont montré pour k > 0 et k < 0.

surfaces pour des ondes se propageant dans des sens opposés (Fig. 6.16).
Par conséquence, l’onde ayant une amplitude plus grande près de la face
supérieure est plus sensible à l’anisotropie de surface de la face supérieure,
tandis que l’onde localisée près de la face inférieure est influencée davantage
par l’anisotropie de surface de la face inférieure, ce qui amène à une différence
de fréquence pour des ondes se propageant en sens inverse. En utilisant la
théorie des ondes de spin dans le régime dipôle-échange et en introduisant
l’anisotropie de surface comme une perturbation, nous avons développé un
modèle permettant de prédire la valeur de la différence de fréquence fNR en
fonction des constantes d’anisotropie de surfac Kbot

s et Ktop
s :

fNR ≃ 8γ

π3
Kbot

s −Ktop
s

Ms

k

1 + Λ2π2

t2

, (6.4.3)

où γ est le rapport gyromagnétique, Ms est l’aimantation à saturation et Λ
est la longueur d’échange. Cette formule asymptotique indique une dépen-
dance linéaire de la non-réciprocité en fréquence en fonction du vecteur
d’onde et une dépendance presque quadratique en fonction de l’épaisseur du
film. Ce modèle théorique décrit bien les résultats expérimentaux obtenus
pour différentes épaisseurs du film et différents vecteurs d’onde [lignes con-
tinues sur la Fig. 6.17(a)].

Dans un deuxième temps, pour étudier l’effet de DMI sur le spectre
d’onde de spin, nous avons analysé la propagation des onde de spin dans les
bicouches Py(t)/Pt, avec t = 4 − 20 nm, où la présence d’un métal lourd
avec un fort couplage spin-orbite induit une forte interaction d’échange an-
tisymétrique appelée interaction Dzyaloshinskii-Moriya interfaciale (iDMI).
La présence de iDMI amène un décalage de fréquence entre les ondes de spin
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qui se propagent dans les sens inverses qui peut être calculé comme

fNR = [ω(−k)− ω(+k)]/(2π) =
2γDs

πMst
k. (6.4.4)

où Ds est la constante iDMI.
Nous avons mesuré une forte non-réciprocité en fréquence induite par

iDMI dans les couches ultra-mince qui se réduit considérablement en aug-
mentant l’épaisseur du film et change même de signe pour le film le plus
épais [symboles sur la Fig. 6.17(b)]. Cette dépendance observée dévie du
modèle théorique de iDMI qui prédit une décroissance de la non-réciprocité
en fréquence en 1/t [courbe rouge pointillée sur la Fig. 6.17(b)] [10]. Cette
déviation est liée à la présence de l’asymétrie magnétique à travers l’épaisseur
du film qui induit la non-réciprocité additionnelle. En utilisant Py/Al2O3

comme un système de référence et en utilisant le modèle théorique développé,
nous avons extrait l’amplitude des deux effets (la différence d’anisotropie de
surface ∆Ks = Kbot

s −Ktop
s = −0.1 mJ/m2 et une constante iDMI Ds = 0.3

pJ/m qui est une caractéristique de l’interface FM/ML) et donc évalué la
contribution de ces deux effets dans la non-réciprocité en fréquence. Nous
avons montré que dans les couches très minces la contribution dominante est
due à iDMI, tandis qu’en augmentant l’épaisseur du film l’anisotropie de sur-
face entre en jeu [courbe vert sur la Fig. 6.17(b)]: elle compense totalement
la non-réciprocité en fréquence induit par la DMI pour t = 15 nm (courbe
noire) et induit un changement du signe de la non-réciprocité pour t = 20
nm.

Ainsi, notre étude sur la propagation des ondes de spin dans les matériaux
Py/Al2O3 et Py/Pt permet de comprendre comment la non-réciprocité en
fréquence est influencée par les différents effets surfaciques pouvant coexister
sur une même interface et d’évaluer l’amplitude de ces effets.

Amplification des ondes de spin

La propagation des ondes de spin dans un métal ferromagnétique est
limitée par le facteur d’amortissement qui, si il est trop élevé, se traduit
par une courte distance de propagation. Un moyen pour diminuer le facteur
d’amortissement (et par conséquence augmenter la distance de la propaga-
tion) est le modifier par le transfert de spin induit par l’effet Hall de spin.
Cet effet se présente dans une bicouche FM/ML pendant qu’un courant élec-
trique est appliqué: en circulant dans un métal lourd avec un fort couplage
spin-orbite un courant longitudinal de charges se transforme en un courant
transverse de spin (effet Hall de spin) [34]. Une fois transféré dans une couche
ferromagnétique adjacente, ce courant de spin interagit avec l’aimantation



APPENDIX B 161

Figure 6.17: (a) Non-réciprocité en fréquence mesurée dans des films
Al2O3/Py(t)/Al2O3 en fonction du vecteur d’onde pour t = 6 nm (car-
rés), t = 10 nm (triangles vers le bas), t = 14 nm (triangles vers le haut),
t = 20 nm (cercles) et t = 40 nm (diamants). Les lignes continues montrent
les résultats théoriques. La ligne pointillé est obtenue en prenant en compte
iDMI. (b) Les points noirs montrent la non-réciprocité en fréquence mesurée
en fonction de l’épaisseur de Py dans des bicouches Py(t)/Pt. Courbes rouge
et verte montrent la non-réciprocité en fréquence induite par iDMI et par
la différence d’anisotropie de surface, respectivement. La courbe noire est
obtenue en additionnant les contributions des deux effets.
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dynamique en modifiant le temps de relaxation de la précession [79]. Nous
avons étudié l’influence d’un tel courant de spin sur la propagation des ondes
de spin dans des couches de Py(t)/Pt, avec t = 4 − 20 nm, à l’aide de la
technique PSWS.

Tout d’abord, le taux de relaxation Γ ainsi que la vitesse de groupe vg et
la longueur d’atténuation Latt ont été analysés sans application de courant
DC et en utilisant des dispositifs avec different distances entre antennes.
La figure 6.18(a) montre une spectre d’inductance mutuelle mesuré dans
Py(15)/Pt(10) avec une largeur de ruban w = 10 µm et des distances entre
antennes D = 1, 3, 5 µm. Comme on peut le voir, l’amplitude et la période
du signal transmis décroissent rapidement lorsque la distance entre antennes
augmente. Ces deux quantités sont reliées aux paramètres essentiels de prop-
agation Latt, vg et Γ par les relations

A = exp(−Deff/Latt)

A = exp(−Γτ) (6.4.5)

τ = Deff/vg

où Deff = D0 +D, D0 étant la largeur effective de l’antenne, τ est le temps
de propagation de l’onde de spin et A = ∆L21/(∆L11∆L22) est l’amplitude
maximale de l’inductance mutuelle normalisée à celle de l’auto-inductance.
Ainsi, à courant nul nous extrayons la valeur de Latt en traçant -ln(A) en
fonction de D, la valeur du vg en traçant τ en fonction de D, et la valeur du Γ
en traçant -ln(A) en fonction de τ [39]. Nous avons trouvé une diminution de
Latt et vg avec la diminution de l’épaisseur du film magnétique, comme est
prévu de la relation de dispersion. Nous avons également observé une aug-
mentation de Γ en 1/t qui est due au pompage de spin. Le pompage de spin
apparait à l’interface FM/ML. Il est induit par la précession d’aimantation
dans le métal ferromagnétique et se manifeste par un transfert de spin de
l’aimantation locale aux électrons de conduction dans le métal lourd. Ce
transfert de spin est accompagné par une perte de moment angulaire et donc
par l’augmentation du taux de relaxation. En analysant la dépendance de
Γ en fonction du l’epaisseur du couche magnétique t, nous avons extrait
l’efficacité du pompage de spin définie par la conductance avec mélange de
spin G↑↓

eff = 3 · 1019 m−2. Cette valeur est comparable avec les valeurs dé-
duites par autre techniques expérimentales [144, 97, 7] et par les calculs
numériques [81].

En appliquant le courant DC nous avons observé une augmentation ou
une diminution de l’amplitude et de la période du signal de propagation
d’onde de spin selon la direction du courant (un exemple d’un spectre d’inductance
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mutuelle modifié par le courant dc dans Py(15)/Pt(10) est montré dans
l’insert de la Fig. 6.18). En réalisant la même analyse qu’à courant nul,
nous extrayons la variation du temps de relaxation, de la vitesse de groupe
et de la longueur d’atténuation. En soustrayant l’effet Joule qui amène à
une variation additionnelle de Latt et vg, nous observons une dépendance
linéaire du taux de relaxation en fonction de courant [Fig. 6.18(b)]. C’est
une manifestation claire du transfert de spin induit par l’effet Hall de spin:
le courant de spin généré par SHE dans le Pt est injecté dans le Py et modifie
la précession de l’aimantation via le transfert de spin, ce qui se traduit par
une augmentation ou une diminution du taux de relaxation selon la direction
du courant.

L’efficacité du transfert de spin induit par l’effet Hall de spin peut être
quantifié à l’aide de l’équation de Landau et Lifshitz en introduisant le terme
qui correspond au transfert de spin:

dM

dt
= −γM×Heff +

αM

Ms

dM

dt
+

Js
Mst

(M× σ ×M), (6.4.6)

où Js est la courant de spin et σ est la direction du moment magnétique des
électrons injectés.

Pour les ondes de spin de surface, où la composante statique de l’aimantation
est colinéaire avec le courant de spin injecté, le transfert de spin agit directe-
ment sur le taux de relaxation comme

∆ΓSTT = θSTT
SH

µB
eMstPy

JPt = σSTT
SH

µB
eMstPy

E, (6.4.7)

où θSTT
SH est l’angle de Hall effectif, JPt est la fraction de courant qui circule

dans le Pt et σSTT
SH est la conductance de Hall. Pour évaluer la valeur de

l’angle de Hall effectif, nous avons d’abord estimé la fraction de courant qui
circule dans le Pt. Pour cela nous avons utilisé des mesures 4 points de la
résistance des bicouches de Py/Pt. Nous avons ensuite estimé les conductiv-
ités des couches individuelles et les fractions de courant qui circulent dans
le Py et Pt. En se basant sur la dépendance de ∆ΓSTT en fonction de JPt

mesurée expérimentalement, nous avons déduit un angle de Hall effectif de
0.1, qui ne dépend pas significativement de l’épaisseur du Py. Pour éviter
le problème lié à l’estimation de la fraction de courant qui circule dans le
Pt, l’effet Hall de spin peut être quantifié à l’aide de la conductance de Hall
σSTT

SH , laquelle est définie comme σSTT
SH = Js/E, où E = V/L est le champ

électrique et V est la tension mesurée sur les contacts intérieurs séparés par
la distance L. Comme dans le cas de l’angle de Hall, nous avons trouvé
que la conductivité de Hall reste pratiquement constante dans la gamme
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Figure 6.18: (a) Spectres d’inductance mutuelle mesurés à µ0H = 37 mT
dans une bicouche Py(15 nm)/Pt(10 nm) avec w = 10 µm, D = 1, 3, 5 µm.
(b) Taux de relaxation de l’onde de spin en fonction du courant appliqué.
(insert en bas) Signal mesuré à I = ±50 mA.
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d’épaisseur étudiée et vaut environ 4 · 105 S/m. Cette valeur est comparable
à la valeur de la conductance de Hall intrinsèque calculée pour le platine par
méthode ab-initio [44, 83], ce qui nous permet de supposer que le mécanisme
dominant est le SHE intrinsèque.

En conclusion, nous avons pu montrer qu’une onde de spin propagative
peur être considérablement amplifiée par le transfert de spin induit par effet
Hall de spin. Nous avons quantifié l’efficacité de SHE-STT en montrant que
SHE-STT modifie le taux de relaxation d’une onde de spin avec un vecteur
d’onde k fini aussi efficacement qu’un mode uniforme avec k = 0 [6]. Une
amplification encore plus significative demanderait une optimisation de la
multicouche utilisée.

Propagation des ondes de spin dans des couches minces epitax-
iées de Fe

Une autre façon d’obtenir une propagation d’onde de spin sur une longue
distance est d’utiliser un matériau possédant un facteur d’amortissement
intrinsèque faible, comme le fer. Malgré les propriétés particulièrement
prometteuses de Fe, telles qu’une aimantation à saturation élevée et un
faible coefficient d’amortissement de la précession, la propagation des on-
des de spin dans le fer pur n’avait jamais été étudiée. Nous avons étudié les
couches minces de Fe(001) de 10-20 nm qui ont été déposées sur des substrats
de MgO par épitaxie à jet moléculaire.

Dans un premier temps, nous avons effectué des mesures en réflexion
pour sonder les propriétés magnétique du matériau. Pour cela, nous avons
mesuré la variation de la fréquence de résonance des ondes de spin (Fig. 6.19).
Deux valeurs de vecteur d’onde (kM = 3.9 µm−1 et ks = 1.5 µm−1) et
deux géométries (k ‖ [100],H ‖ [010] et k ‖ [110],H ‖ [1 − 10]) ont été
utilisées. D’après les courbes obtenues, nous avons pu extraire une aiman-
tation effective µ0Meff = 2.08 T, ainsi qu’un champ d’anisotropie cubique
HK = (2K1)/(µ0Ms) = 58 mT où K1 = 5 · 104 J/m3 est la constante
d’anisotropie cubique. D’après la fréquence mesurée pour le mode PSSW1
(first perpendicular standing spin wave, diamants sur la Fig 6.19), qui pos-
sède un profil antisymetrique à travers l’epaisseur du film, nous avons déter-
miné une constante d’échange A = 19 pJ/m. Tous les paramètres magné-
tiques déterminés dans notre film sont en excellent accord avec ceux rap-
portés pour le fer massif [20, 59].

Dans un deuxième temps, nous avons effectué des mesures en trans-
mission pour étudier la propagation des ondes de spin en analysant les
paramètres principaux de la propagation tels que la vitesse de propagation, la
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Figure 6.19: Dépendance en champ magnétique de la fréquence mésuré dans
une couche de Fe de 20 nm. Les symboles pleins et ouverts correspondent
respectivement au pic principal (kM = 3.9 µm−1) et au pic secondaire (kM =
1.5 µm−1). Les carrés et hexagones montrent la fréquence du mode MSSW
dans deux configurations: (k ‖ [100],H ‖ [010]) et (k ‖ [110],H ‖ [1 − 10]),
respectivement; les diamants montrent la fréquence du mode PSSW1 dans
la première géométrie.
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Figure 6.20: Propagation des ondes de spin dans un film
MgO/Fe(20nm)/MgO. Dépendance de la vitesse de groupe (a), de
l’amortissement (b) et de la longueur d’atténuation (c) en fonction du
champ magnétique. Les points correspondent aux données expérimentales;
les lignes continues représentent le modèle théorique; les lignes pointillés sur
(a) et (b) sont des fits polynomiaux, la ligne pointillée sur (c) est déduite en
utilisant ces fits selon la relation Latt = vg/Γ.
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longeure d’attenuation et le facteur d’amortissement. Pour ce faire, la méth-
ode d’analyse décrite dans le cas de Py/Pt a été utilisé, i.e. nous avons com-
paré les spectres d’inductance mutuelle mesurés pour différentes distances de
propagation et nous avons analysé la dépendance en distance de l’amplitude
et de la période des signaux de propagation. Les résultats sont montrés sur la
figure 6.20. Nous avons mesuré une vitesse de groupe de 5 km/s à µ0H = 36
mT qui décroît avec le champ magnétique [Fig. 6.20(a)], ce qui est en rela-
tivement bon accord avec la dépendance théorique calculée en utilisant les
paramètres magnétiques cités plus haut. L’amortissement de l’onde de spin
αeff a été estimée à partir de la mesure du taux de relaxation, en utilisant la
relation Γ = αeff(ω0+ωM/2) avec ω0 = γµ0(H+HK) et ωM = γµ0Ms. Nous
avons observé que αeff décroît significativement en fonction de H et atteint
une valeur asymptotique de 0.0025 à champ élevé [Fig. 6.20(b)]. Cette valeur
est une valeur typique pour le Fe massif [12, 132] et pour des couches minces
épitaxiales de bonne qualité [112, 131]. L’augmentation de l’amortissement
à champ faible est attribuée à d’autres sources de relaxation des ondes de
spin s’ajoutant à l’amortissement de Gilbert conventionnel [138]. Finale-
ment, nous avons analysé la variation de la longueur d’atténuation en fonc-
tion du champ [Fig. 6.20(c)]. Les mesures montrent que Latt a une valeur
presque constante de 6 µm. Cette valeur est significativement plus petite que
celle calculée théoriquement en prenant compte le facteur d’amortissement
constant de 0.0025. Néanmoins, la longueur d’atténuation mesurée dans
la couche mince de Fe reste assez élevée en comparaison avec les valeurs
mesurées dans d’autres matériaux.

Dans un troisième temps, nous avons analysé la capacité de ce matériau
à conduire un courant polarisé en spin. Pour cela, nous avons effectué des
mesures d’effet Doppler d’onde de spin induit par un courant électrique [136].
L’effet se manifeste par un décalage de la fréquence de l’onde de spin dû à
l’interaction entre les électrons de conduction et l’aimantation dynamique
via le transfert de spin adiabatique. Ce décalage en fréquence est propor-
tionnel au produit du vecteur d’onde k et de la vitesse effective des électrons
u, δfdop = k · u, où u = µB/(eMs)PJ, P étant le degré de polarisation en
spin du courant. La figure 6.21 montre le décalage en fréquence mesuré en
inversant le sens du courant (I = ±10 mA). Ce décalage a été mesuré pour
les deux sens de propagation (δ12 correspond à k < 0 et δ21 correspond à
k > 0). La différence entre ces deux décalages en fréquence (|δ12|<|δ21|) est
due au fait que les quantités δ12 et δ21 contiennent le décalage en fréquence
induit par l’effet Doppler (impair en k), mais aussi le décalage en fréquence
induit par le champ d’Oersted (pair en k) [50]. Le décalage Doppler peut
être donc déterminé comme δfdop = (δ21 − δ12)/4. En mesurant le décalage
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Figure 6.21: Spectres d’inductance mutuelle mesurés sur un film MgO/Fe(20
nm)/MgO à µ0H = 120 mT et à courant électrique I = ±10 mA. Les
décalages en fréquence sont montré pour un vecteur d’onde positif (k21) et
pour un courant I > 0 (courbe rose) et I < 0 (courbe rouge), ainsi que pour
un vecteur d’onde négatif (k12)et pour un courant I > 0 (courbe cyan) et
I < 0 (courbe bleue).
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Doppler en fonction du courant nous avons pu extraire le degré de polari-
sation en spin du courant P qui atteint une valeur de 83% à température
ambiante. Cette valeur est nettement plus élevée que les valeurs mesurées
dans le permalloy [50] et également plus élevé que d’autres valeurs de po-
larisation prédites théoriquement ou mesurées par d’autres techniques dans
le fer [146, 123]. Cette valeur élevée du degré de polarisation peut être at-
tribuée à une forte asymétrie en spin de la diffusion des électrons par les
phonons [133].

Ainsi, nous avons montré qu’une couche mince epitaxiée de fer est un
milieu approprié pour la propagation des onde de spin grâce à son faible
amortissement et à sa forte aimantation à saturation. De plus, nous avons
montré que le transport électrique dans le fer à température ambiante est
fortement polarisé en spin, ce qui est attribué à une significative asymétrie
en spin du couplage électron-phonon.

Conclusion

Les systèmes magnétiques Py/Al2O3, Py/Pt et Fe/MgO ont été étudiés
par spectroscopie d’ondes de spin. En analysant la propagation des ondes de
surface dans les couches Py/Al2O3 et Py/Pt, nous avons montré que la non-
réciprocité en fréquence, qui est généralement présente pour ce mode d’onde
de spin, est induite par deux sources, l’interaction Dzyaloshinskii-Moriya
interfaciale et l’asymétrie des anisotropies magnétiques de surface. La pre-
mière domine dans les couches ultra-minces et la deuxième domine dans les
couches épaisses. En injectant un courant électrique dans les couches Py/Pt
nous avons observé une modification du taux de relaxation des ondes de spin
due au transfert de spin induit par effet Hall de spin. Nous avons montré
que cet effet est aussi efficace pour une excitation non-uniforme que pour un
mode uniforme, et donc qu’il peut être utilisé pour controler électriquement
la propagation des ondes de spin.

D’autre part, nous avons montré que dans une couche épitaxiée de fer les
ondes de spin peuvent se propager sur des distances beaucoup plus longues
que dans Py (dizaines de µm) principalement grâce au faible coefficient
d’amortissement mesuré dans ce matériau. Nous avons aussi trouvé une
valeur élevée du degré de polarisation en spin de courant qui atteint 83% à
température ambiante. Ces propriétés font du fer un candidat très promet-
teur pour des développements futurs de dispositifs magnoniques.
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Olga GLADII 

Spin wave propagation and its modification by an 
electrical current in Py/Al2O3, Py/Pt and Fe/MgO films

Résumé 

Des mesures d’ondes de spin propagatives ont été réalisées pour caractériser deux effets de 
l’interaction spin-orbite ainsi que le transport électrique dépendant du spin. Les effets du couplage 
spin-orbite ont été étudiés dans des bicouches nickel-fer/platine.  Dans ces films, les fréquences de 
deux ondes de spin contre-propageantes ne sont pas les mêmes, ce qui est attribué à l’effet 
combiné d’une interaction magnétique chirale appelée interaction Dzyaloshinskii-Moriya et d’une 
asymétrie dans l’épaisseur du film magnétique. En appliquant le courant électrique dans ce système 
nous avons observé une modification du taux de relaxation de l’onde de spin qui est attribuée au 
transfert de spin induit par effet Hall de spin. D’autre part, les études de propagation d’ondes de spin 
dans une couche mince de fer épitaxié  à température ambiante ont montré une polarisation en spin 
du courant électrique de 83%, ce qui est attribué à une forte asymétrie du couplage électron-phonon. 

Mots-clés: interaction Dzyaloshinskii-Moriya, transfert de spin induit par effet Hall de spin, transport 
polarisé en spin, onde de spin 

Résumé en anglais 

Propagating spin wave measurements were realised to characterize two spin-orbit related 
phenomena, as well as spin dependent electrical transport. The effects of spin-orbit coupling have 
been studied in nickel-iron/platinum bilayers. It has been shown that in these films the frequencies of 
two counter-propagating spin waves are not the same, which is attributed to the combined effects of 
a chiral magnetic interaction named Dzyaloshinskii-Moriya interaction and an asymmetry of the 
magnetic properties across the film thickness.  By applying an electrical current in such system we 
have observed a modification of the spin wave relaxation rate due to the spin transfer torque induced 
by spin Hall effect. On the other hand, from the study of spin wave propagation in thin epitaxial iron 
films at room temperature, a degree of spin polarization of the electrical current of 83% was 
extracted, which is attributed to a significant spin-asymmetry of the electron-phonon coupling. 

Keywords: Dzyaloshinskii-Moriya interaction, spin Hall induced spin transfer torque, spin-polarized 
transport, spin wave 


