Modèles de régression multivariés pour la comparaison de populations en IRM de diffusion

par Alix Bouchon

Thèse de doctorat en Traitement du signal et des images

Sous la direction de Fabrice Heitz.

Le président du jury était François Rousseau.

Le jury était composé de Vincent Noblet, Frédéric Blanc.

Les rapporteurs étaient Jean-François Mangin, Michel Dojat.


  • Résumé

    L'IRM de diffusion (IRMd) est une modalité d'imagerie qui permet d'étudier in vivo la structure des faisceaux de la substance blanche grâce à la caractérisation des propriétés de diffusion des molécules d'eau dans le cerveau. Les travaux de cette thèse se sont concentrés sur la comparaison de groupes d'individus en IRMd. Le but est d'identifier les zones de la substance blanche dont les propriétés structurelles sont statistiquement différentes entre les deux populations ou significativement corrélées avec certaines variables explicatives. L’enjeu est de pouvoir localiser et caractériser les lésions causées par une pathologie et de comprendre les mécanismes sous-jacents. Pour ce faire, nous avons proposé dans cette thèse des méthodes d'analyse basées voxel reposant sur le Modèle Linéaire Général (MLG) et ses extensions multivariées et sur des variétés, qui permettent d'effectuer des tests statistiques intégrant explicitement des variables explicatives. En IRMd, la diffusion des molécules d'eau peut être modélisée par un tenseur d'ordre deux représenté par une matrice symétrique définie-positive de dimension trois. La principale contribution de cette thèse a été de montrer la plus-value de considérer, dans le MLG, l'information complète du tenseur par rapport à un unique descripteur scalaire caractérisant la diffusion (fraction d’anisotropie ou diffusion moyenne), comme cela est généralement fait dans les études en neuro-imagerie. Plusieurs stratégies d’extension du MLG aux tenseurs ont été comparées, que ce soit en termes d’hypothèse statistique (homoscédasticité vs hétéroscédasticité), de métrique utilisée pour l’estimation des paramètres (Euclidienne, Log-Euclidienne et Riemannienne), ou de prise en compte de l’information du voisinage spatial. Nous avons également étudié l'influence de certains prétraitements comme le filtrage et le recalage. Enfin, nous avons proposé une méthode de caractérisation des zones détectées afin d’en faciliter l’interprétation physiopathologique. Les validations ont été menées sur données synthétiques ainsi que sur une base d’images issues d’une cohorte de patients atteints de Neuromyélite optique de Devic.

  • Titre traduit

    Multivariate regression models for group comparison in diffusion tensor MRI


  • Résumé

    Diffusion Tensor MRI (DT-MRI) is an imaging modality that allows to study in vivo the structure of white matter fibers through the characterization of diffusion properties of water molecules in the brain. This work focused on group comparison in DT-MRI. The aim is to identify white matter regions whose structural properties are statistically different between two populations or significantly correlated with some explanatory variables. The challenge is to locate and characterize lesions caused by a disease and to understand the underlying mechanisms. To this end, we proposed several voxel-based strategies that rely on the General Linear Model (GLM) and its multivariate and manifold-based extensions, to perform statistical tests that explicitly incorporate explanatory variables. In DT-MRI, diffusion of water molecules can be modeled by a second order tensor represented by a three dimensional symmetric and positive definite matrix. The main contribution of this thesis was to demonstrate the added value of considering the full tensor information as compared to a single scalar index characterizing some diffusion properties (fractional anisotropy or mean diffusion) in the GLM, as it is usually done in neuroimaging studies. Several strategies for extending the GLM to tensor were compared, either in terms of statistical hypothesis (homoscedasticity vs heteroscedasticity), or metrics used for parameter estimation (Euclidean, Log-Euclidean and Riemannian), or the way to take into account the spatial neighborhood information. We also studied the influence of some pre-processing such as filtering and registration. Finally, we proposed a method for characterizing the detected regions in order to facilitate their physiopathological interpretation. Validations have been conducted on synthetic data as well as on a cohort of patients suffering from Neuromyelitis Optica.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.