Représentation probabiliste de type progressif d'EDP nonlinéaires nonconservatives et algorithmes particulaires.

par Anthony Le cavil

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Francesco Russo.

Le président du jury était Hasnaa Zidani.

Le jury était composé de Francesco Russo, Nadia Oudjane, Emmanuel Gobet, Ahmed Kebaier, Danielle Hilhorst.

Les rapporteurs étaient Benjamin Jourdain, Mireille Bossy.


  • Résumé

    Dans cette thèse, nous proposons une approche progressive (forward) pour la représentation probabiliste d'Equations aux Dérivées Partielles (EDP) nonlinéaires et nonconservatives, permettant ainsi de développer un algorithme particulaire afin d'en estimer numériquement les solutions. Les Equations Différentielles Stochastiques Nonlinéaires de type McKean (NLSDE) étudiées dans la littérature constituent une formulation microscopique d'un phénomène modélisé macroscopiquement par une EDP conservative. Une solution d'une telle NLSDE est la donnée d'un couple $(Y,u)$ où $Y$ est une solution d' équation différentielle stochastique (EDS) dont les coefficients dépendent de $u$ et de $t$ telle que $u(t,cdot)$ est la densité de $Y_t$. La principale contribution de cette thèse est de considérer des EDP nonconservatives, c'est-à- dire des EDP conservatives perturbées par un terme nonlinéaire de la forme $Lambda(u,nabla u)u$. Ceci implique qu'un couple $(Y,u)$ sera solution de la représentation probabiliste associée si $Y$ est un encore un processus stochastique et la relation entre $Y$ et la fonction $u$ sera alors plus complexe. Etant donnée la loi de $Y$, l'existence et l'unicité de $u$ sont démontrées par un argument de type point fixe via une formulation originale de type Feynmann-Kac.

  • Titre traduit

    Forward probabilistic representation of nonlinear nonconservative PDEs and related particles algorithms.


  • Résumé

    This thesis performs forward probabilistic representations of nonlinear and nonconservative Partial Differential Equations (PDEs), which allowto numerically estimate the corresponding solutions via an interacting particle system algorithm, mixing Monte-Carlo methods and non-parametric density estimates.In the literature, McKean typeNonlinear Stochastic Differential Equations (NLSDEs) constitute the microscopic modelof a class of PDEs which are conservative. The solution of a NLSDEis generally a couple $(Y,u)$ where $Y$ is a stochastic process solving a stochastic differential equation whose coefficients depend on $u$ and at each time $t$, $u(t,cdot)$ is the law density of the random variable $Y_t$.The main idea of this thesis is to consider this time a non-conservative PDE which is the result of a conservative PDE perturbed by a term of the type $Lambda(u, nabla u) u$. In this case, the solution of the corresponding NLSDE is again a couple $(Y,u)$, where again $Y$ is a stochastic processbut where the link between the function $u$ and $Y$ is more complicated and once fixed the law of $Y$, $u$ is determined by a fixed pointargument via an innovating Feynmann-Kac type formula.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Ecole Nationale Supérieure de Techniques Avancées. Centre de Documentation Multimédia.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.