Homogenized and analytical models for the diffusion MRI signal

par Simona Schiavi

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Houssem Haddar.

Soutenue le 01-12-2016

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne) , en partenariat avec Centre de mathématiques appliquées-CMAP [Palaiseau, Essonne] (laboratoire) , École polytechnique (Palaiseau, Essonne) (établissement opérateur d'inscription) et de Centre de Mathématiques Appliquées - Ecole Polytechnique / CMAP (laboratoire) .

Le président du jury était Rachid Deriche.

Le jury était composé de Houssem Haddar, Maher Moakher, Jing-Rebecca Li, Bertrand Thirion.

Les rapporteurs étaient Gary Hui Zhang, Evren Özarslan.

  • Titre traduit

    Modélisation du signal de l’IRM de diffusion par des techniques analytiques et d’homogénéisation


  • Résumé

    L'imagerie par résonance magnétique de diffusion (IRMD) est une technique d'imagerie qui teste les propriétés diffusives d'un échantillon en le soumettant aux impulsions d'un gradient de champ magnétique. Plus précisément, elle détecte le mouvement de l'eau dû à la diffusion et s'avère donc être un outil puissant pour obtenir des informations sur la microstructure des tissus. Le signal acquis par le scanner IRM est une mesure moyennée sur un volume physique appelé voxel, dont la taille, pour des raisons techniques, est bien plus grande que l'échelle de variations microscopiques de la structure cellulaire. Ceci implique que les composants microscopiques des tissus ne sont pas visibles à la résolution spatiale de l'IRM et que les caractéristiques géométriques se trouvent agréger dans le signal macroscopique provenant du voxel. Une importante quantité mesurée par l'IRMD dans chaque voxel est le Coefficient de Diffusion Apparent (CDA) dont la dépendance au temps de diffusion est actée par de nombreuses expériences d'imagerie effectuées in vivo. Il existe dans la littérature un nombre important de modèles macroscopiques décrivant le CDA allant du plus simple au plus complexe (modèles phénoménologiques, stochastiques, géométriques, fondés sur des EDP, etc.), chacun étant valide sous certaines hypothèses techniques bien précises. Le but de cette thèse est de construire des modèles simples, disposant d'une bonne validité applicative, en se fondant sur une modélisation de la diffusion à l'échelle microscopique à l'aide d'EDP et de techniques d'homogénéisation.Dans un article antérieur, le modèle homogénéisé FPK a été déduit de l’EDP de Bloch-Torrey sous l'hypothèse que la perméabilité de la membrane soit petite et le temps de diffusion long. Nous effectuons tout d'abord une analyse de ce modèle et établissons sa convergence vers le modèle classique de Kärger lorsque la durée des impulsions magnétiques tend vers 0. Notre analyse montre que le modèle FPK peut être vu comme une généralisation de celui de Kärger, permettant la prise en compte de durées d'impulsions magnétiques arbitraires. Nous donnons aussi une nouvelle définition, motivée par des raisons mathématiques, du temps de diffusion pour le modèle de Kärger (celle impliquant la plus grande vitesse de convergence).Le CDA du modèle FPK est indépendant du temps ce qui entre en contradiction avec nombreuses observations expérimentales. Par conséquent, notre objectif suivant est de corriger ce modèle pour de petites valeurs de ce que l'on appelle des b-valeurs afin que le CDA homogénéisé qui en résulte soit sensible à la fois à la durée des impulsions et à la fois au temps de diffusion. Pour atteindre cet objectif, nous utilisons une technique d'homogénéisation similaire à celle utilisée pour le FPK, tout en proposant un redimensionnement adapté de l'échelle de temps et de l'intensité du gradient pour la gamme de b-valeurs considérées. Nous montrons, à l'aide de simulations numériques, l'excellente qualité de l'approximation du signal IRMD par ce nouveau modèle asymptotique pour de faibles b-valeurs. Nous établissons aussi (grâce à des développements en temps court des potentiels de surface associés à l'équation de la chaleur ou grâce à une décomposition de sa solution selon les fonctions propres) des résultats analytiques d'approximation du modèle asymptotique qui fournissent des formules explicites de la dépendance temporelle du CDA. Nos résultats sont en accord avec les résultats classiques présents dans la littérature et nous améliorons certains d'entre eux grâce à la prise en compte de la durée des impulsions. Enfin nous étudions le problème inverse consistant en la détermination d'information qualitative se rapportant à la fraction volumique des cellules à partir de signaux IRMD mesurés. Si trouver la distribution de sphères semble possible à partir de la mesure du signal IRMD complet, il nous est apparu que la mesure du seul CDA ne serait pas suffisante.


  • Résumé

    Diffusion magnetic resonance imaging (dMRI) is an imaging modality that probes the diffusion characteristics of a sample via the application of magnetic field gradient pulses. More specifically, it encodes water displacement due to diffusion and is then a powerful tool to obtain information on the tissue microstructure. The signal measured by the MRI scanner is a mean-value measurement in a physical volume, called a voxel, whose size, due to technical reasons, is much larger than the scale of the microscopic variations of the cellular structure. It follows that the microscopic components of the tissues are not visible at the spatial resolution of dMRI. Rather, their geometric features are aggregated into the macroscopic signal coming from the voxels. An important quantity measured in dMRI in each voxel is the Apparent Diffusion Coefficient (ADC) and it is well-established from imaging experiments that, in the brain, in-vivo, the ADC is dependent on the diffusion time. There is a large variety (phenomenological, probabilistic, geometrical, PDE based model, etc.) of macroscopic models for ADC in the literature, ranging from simple to complicated. Indeed, each of these models is valid under a certain set of assumptions. The goal of this thesis is to derive simple (but sufficiently sound for applications) models starting from fine PDE modelling of diffusion at microscopic scale using homogenization techniques.In a previous work, the homogenized FPK model was derived starting from the Bloch-Torrey PDE equation under the assumption that membrane's permeability is small and diffusion time is large. We first analyse this model and establish a convergence result to the well known K{"a}rger model as the magnetic pulse duration goes to 0. In that sense, our analysis shows that the FPK model is a generalisation of the K{"a}rger one for the case of arbitrary duration of the magnetic pulses. We also give a mathematically justified new definition of the diffusion time for the K{"a}rger model (the one that provides the highest rate of convergence).The ADC for the FPK model is time-independent which is not compatible with some experimental observations. Our goal next is to correct this model for small so called $b$-values so that the resulting homogenised ADC is sensitive to both the pulses duration and the diffusion time. To achieve this goal, we employed a similar homogenization technique as for FPK, but we include a suitable time and gradient intensity scalings for the range of considered $b$-values. Numerical simulations show that the derived asymptotic new model provides a very accurate approximation of the dMRI signal at low $b$-values. We also obtain some analytical approximations (using short time expansion of surface potentials for the heat equation and eigenvalue decompositions) of the asymptotic model that yield explicit formulas of the time dependency of ADC. Our results are in concordance with classical ones in the literature and we improved some of them by accounting for the pulses duration.Finally we explored the inverse problem of determining qualitative information on the cells volume fractions from measured dMRI signals. While finding sphere distributions seems feasible from measurement of the whole dMRI signal, we show that ADC alone would not be sufficient to obtain this information.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.