Mécanisme de formation du complexe de démarrage de la traduction chez les Archées

par Auriane Monestier

Thèse de doctorat en Biologie

Sous la direction de Emmanuelle Schmitt.

Soutenue le 14-10-2016

à Paris Saclay , dans le cadre de École doctorale Approches interdisciplinaires : fondements, applications et innovation (Palaiseau, Essonne) , en partenariat avec Laboratoire de biochimie (Palaiseau, Essonne) (laboratoire) , École polytechnique (Palaiseau, Essonne) (établissement opérateur d'inscription) et de Laboratoire de Biochimie de l'Ecole polytechnique (laboratoire) .

Le président du jury était Yves Mechulam.

Le jury était composé de Emmanuelle Schmitt, Soumaya Laalami.

Les rapporteurs étaient Pascale Romby, Carine Tisné.


  • Résumé

    Une cellule est soumise à différents stimuli internes et externes. Pour remplir ses fonctions, elle doit donc s’adapter rapidement. Cela implique une régulation fine de l’expression génique. Celle-ci s’effectue au niveau transcriptionnel, mais également au niveau traductionnel. La traduction comprend trois phases : le démarrage, l’allongement et la terminaison. C’est au cours du démarrage de la traduction que s’effectue la sélection du codon de démarrage et donc le choix du cadre de lecture de l’ARNm. D’un point de vue cinétique, le démarrage de la traduction est l’étape limitante. Ainsi, il apparait comme une cible privilégiée pour le contrôle traductionnel.Chez les archées, le démarrage de la traduction met en jeu un complexe macromoléculaire formé de la petite sous-unité du ribosome, d’un ARNm, d’un ARN de transfert initiateur méthionylé (Met-ARNtiMet) et de trois facteurs de démarrage de la traduction (aIF1, aIF1A et aIF2). De manière intéressante, ces trois facteurs de démarrage ont chacun un orthologue eucaryote.Les ARNti archées et eucaryotes possèdent une paire de bases très conservée A1-U72, au sommet de la tige acceptrice. Cette paire de base a été montrée importante pour la discrimination des ARNt initiateurs et élongateurs. De plus, des travaux suggèrent l’importance de la géométrie de la paire A1-U72 pour l’identité initiatrice de ces ARNts. Cependant, au début de ma thèse, aucune donnée structurale n’était disponible pour expliquer comment les caractéristiques de la paire A1-U72 participaient à la sélection de l’ARNt initiateur. Dans un premier temps, mon travail de thèse a consisté en la construction d’une souche bactérienne d’E.coli utilisant comme seul source d’ARNti un variant d’ARNt initiateur bactérien (ARNtfMet) possédant une paire de base A1-U72 (ARNtfMetA1-U72). L’utilisation de cette souche nous a permis d’obtenir de grandes quantités d’ARNtfMetA1-U72 purifié. De plus, la structure cristallographique de cet ARNtA1-U72 a pu être déterminée à 2.8 Å de résolution. Un arrangement inhabituel des bases A1 et U72 a été observé.Tous les acteurs du démarrage de la traduction de l’archée P. abyssi étant disponibles au laboratoire, une étude du complexe de démarrage de la traduction archée par cryo-microscopie électronique a pu être réalisée. L’étude a permis d’identifier deux conformations de l’ARNti dans le complexe de démarrage, IC0-Premote (5.3 Å de résolution) et IC1-Pin (7.5 Å de résolution). Ces deux conformations permettent de proposer un modèle pour l’accommodation de l’ARNt initiateur lors de l’appariement au codon de démarrage.Finalement, je me suis également intéressée au rôle du facteur aIF1. La disponibilité de structures 3D et de modèles d’assemblage, ainsi que les alignements des séquences aIF1 d’archées ont permis de proposer des régions ou acides aminés pouvant être impliqués dans la liaison au ribosome et/ou dans la sélection des ARNt initiateurs lors de la formation du complexe de démarrage. Afin de pouvoir étudier l’implication de ces régions ou acides aminés, j’ai mis au point une méthode d’étude de la liaison d’aIF1 à la petite sous-unité du ribosome par anisotropie de fluorescence. Cette étude met en évidence deux résidus basiques d’aIF1 impliqués dans la liaison au ribosome. D’autre part, les rôles d’aIF1 dans la sélection du codon de démarrage de la traduction et dans la stabilisation du complexe de démarrage sur l’ARNm sont étudiés par la méthode d’empreinte du ribosome ou toeprint.

  • Titre traduit

    Study of Archeal translation initiation complex


  • Résumé

    A cell is subjected to different internal and external stimuli and must adapt quickly to fulfill its functions. This involves a fine regulation of gene expression. This occurs at the transcriptional level, but also at the translational level. Translation has three phases: initiation, elongation and termination. Selection of the start codon and therefore the choice of the mRNA reading frame is performed during translation initiation. From a kinetic point of view, translation initiation is the rate limiting step. Thus, it appears as a prime target for translational control.In archaea, initiation of translation involves a macromolecular complex containing the small subunit of the ribosome, mRNA, an initiator methionyl tRNA (Met-tRNAiMet) and three initiation factors (aIF1, aIF1A and aIF2). Interestingly, each of three initiation factors has an ortholog in eukaryotes.Archaeal and eukaryotic tRNAi have highly conserved bases A1-U72, at the extremity of the acceptor stem. This base pair was shown to be important for discrimination of initiator tRNAs from elongator tRNAs. In addition, other studies suggest the importance of the geometry of the A1-U72 pair for the initiator identity of those tRNAs. At the beginning of my thesis, no structural information was available to explain how the characteristics of the A1-U72 pair were involved in the selection of the initiator tRNA. At first, my thesis work involved the construction of an E. coli strain using as only source of tRNAi, a bacterial variant of tRNA initiator (tRNAfMet) having a base pair A1-U72 (tRNAfMetA1-U72). The use of this strain allowed us to obtain large quantities of purified tRNAfMetA1-U72. In addition, the crystal structure of this tRNAfMetA1-U72 has been determined at 2.8 Å of resolution. An unusual arrangement of bases A1 and U72 was observed.All archaeal translation initiation actors being available in the laboratory, a study of the archeal translation initiation complex by cryo-electron microscopy was achieved. The study identified two conformations of the tRNAi. In the first complex, both conformations (IC0-Premote (5.3 Å resolution) and IC1-Pin (7.5 Å resolution)) allowed us to propose a model for the accommodation of the initiator tRNA during start codon recognition.Finally, I was also interested in the role of the aIF1 factor. Availability of 3D structures, assembly models and alignments of the archeal aIF1 sequences allowed us to identify amino acids or regions that could be involved in ribosome binding and/or in the selection of initiator tRNA. In order to study the involvement of these regions, I have developed a method to study the binding of aIF1 to the small ribosomal subunit using fluorescence anisotropy. This study highlights two basic residues of aIF1 involved in binding to the ribosome. On the other hand, the roles of aIF1 in the selection of the start codon and in the stabilization of initiation complex on the mRNA were studied by the ribosome footprint method also called « toeprint ».


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.