Continuous-time Martingale Optimal Transport and Optimal Skorokhod Embedding

par Gaoyue Guo

Thèse de doctorat en Mathématiques appliquées - Polytechnique

Sous la direction de Nizar Touzi.

Soutenue le 27-10-2016

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne) , en partenariat avec Centre de mathématiques appliquées-CMAP [Palaiseau, Essonne] (laboratoire) , École polytechnique (Palaiseau, Essonne) (établissement opérateur d'inscription) et de Centre de Mathématiques Appliquées - Ecole Polytechnique (laboratoire) .

  • Titre traduit

    Transport Optimal Martingale en Temps Continu et Plongement de Skorokhod Optimal


  • Résumé

    Cette thèse présente trois principaux sujets de recherche, les deux premiers étant indépendants et le dernier indiquant la relation des deux premières problématiques dans un cas concret.Dans la première partie nous nous intéressons au problème de transport optimal martingale dans l’espace de Skorokhod, dont le premier but est d’étudier systématiquement la tension des plans de transport martingale. On s’intéresse tout d’abord à la semicontinuité supérieure du problème primal par rapport aux distributions marginales. En utilisant la S-topologie introduite par Jakubowski, on dérive la semicontinuité supérieure et on montre la première dualité. Nous donnons en outre deux problèmes duaux concernant la surcouverture robuste d’une option exotique, et nous établissons les dualités correspondantes, en adaptant le principe de la programmation dynamique et l’argument de discrétisation initie par Dolinsky et Soner.La deuxième partie de cette thèse traite le problème du plongement de Skorokhod optimal. On formule tout d’abord ce problème d’optimisation en termes de mesures de probabilité sur un espace élargi et ses problèmes duaux. En utilisant l’approche classique de la dualité; convexe et la théorie d’arrêt optimal, nous obtenons les résultats de dualité. Nous rapportons aussi ces résultats au transport optimal martingale dans l’espace des fonctions continues, d’où les dualités correspondantes sont dérivées pour une classe particulière de fonctions de paiement. Ensuite, on fournit une preuve alternative du principe de monotonie établi par Beiglbock, Cox et Huesmann, qui permet de caractériser les optimiseurs par leur support géométrique. Nous montrons à la fin un résultat de stabilité qui contient deux parties: la stabilité du problème d’optimisation par rapport aux marginales cibles et le lien avec un autre problème du plongement optimal.La dernière partie concerne l’application de contrôle stochastique au transport optimal martingale avec la fonction de paiement dépendant du temps local, et au plongement de Skorokhod. Pour le cas d’une marginale, nous retrouvons les optimiseurs pour les problèmes primaux et duaux via les solutions de Vallois, et montrons en conséquence l’optimalité des solutions de Vallois, ce qui regroupe le transport optimal martingale et le plongement de Skorokhod optimal. Quand au cas de deux marginales, on obtient une généralisation de la solution de Vallois. Enfin, un cas spécial de plusieurs marginales est étudié, où les temps d’arrêt donnés par Vallois sont bien ordonnés.


  • Résumé

    This PhD dissertation presents three research topics, the first two being independent and the last one relating the first two issues in a concrete case.In the first part we focus on the martingale optimal transport problem on the Skorokhod space, which aims at studying systematically the tightness of martingale transport plans. Using the S-topology introduced by Jakubowski, we obtain the desired tightness which yields the upper semicontinuity of the primal problem with respect to the marginal distributions, and further the first duality. Then, we provide also two dual formulations that are related to the robust superhedging in financial mathematics, and we establish the corresponding dualities by adapting the dynamic programming principle and the discretization argument initiated by Dolinsky and Soner.The second part of this dissertation addresses the optimal Skorokhod embedding problem under finitely-many marginal constraints. We formulate first this optimization problem by means of probability measures on an enlarged space as well as its dual problems. Using the classical convex duality approach together with the optimal stopping theory, we obtain the duality results. We also relate these results to the martingale optimal transport on the space of continuous functions, where the corresponding dualities are derived for a special class of reward functions. Next, We provide an alternative proof of the monotonicity principle established in Beiglbock, Cox and Huesmann, which characterizes the optimizers by their geometric support. Finally, we show a stability result that is twofold: the stability of the optimization problem with respect to target marginals and the relation with another optimal embedding problem.The last part concerns the application of stochastic control to the martingale optimal transport with a payoff depending on the local time, and the Skorokhod embedding problem. For the one-marginal case, we recover the optimizers for both primal and dual problems through Vallois' solutions, and show further the optimality of Vallois' solutions, which relates the martingale optimal transport and the optimal Skorokhod embedding. As for the two-marginal case, we obtain a generalization of Vallois' solution. Finally, a special multi-marginal case is studied, where the stopping times given by Vallois are well ordered.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?