Méthode des éléments finis inversés pour des domaines non bornés

par Keltoum Kaliche

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Tahar Zamène Boulmezaoud.

Soutenue le 16-02-2016

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne) , en partenariat avec Laboratoire de Mathématiques de Versailles (laboratoire) et de Université de Versailles-Saint-Quentin-en-Yvelines (établissement opérateur d'inscription) .

Le président du jury était Yvon Maday.

Le jury était composé de Christophe Chalons, Patrick Courilleau, Luc Robbiano.

Les rapporteurs étaient Ulrich Jerry Razafison, Kais Ammari.


  • Résumé

    La méthode des éléments finis inversés est une méthode sans troncature qui a été introduite pour résoudre des équations aux dérivées partielles en domaines non bornés. L’objective de cette thèse est d’analyser, d’adapter puis d’implémenter cette méthode pour résoudre quelques problèmes issus de la physique, notamment lorsque le domaine géométrique est l’espace R3 tout entier. Dans un premier temps, nous présentons de manière détaillée les aspects et les principes fondamentaux de la méthode. Ensuite, nous adapterons la méthode à des problèmes de type div-rot et de potentiels vecteurs posés dans R3. Après avoir analysé la convergence de la méthode, on montrera quelques résultats numériques obtenus avec un code tridimensionnel. On s’intéresse ensuite au problème de calcul de l’énergie magnétostatique dans des problèmes de micromagnétisme, où on développe avec succès une approche numérique utilisant les éléments finis inversés. Dans la dernière partie, on adapte la méthode à un problème provenant de la chimie quantique (modèle de continuum polarisable) pour lequel on prouve qu’elle donne des résultats numériques très prometteurs. La thèse comporte beaucoup de résultats numériques issus de codes tridimensionnels écrits ou co-écrits, notamment lorsque le domaine est l’espace tout entier. Elle comporte aussi des résultats théoriques liés à l’utilisation des espaces de Sobolev à poids comme cadre fonctionnel. On apporte en particulier une preuve constructive de quelques inégalités de type div-rot dans des domaines non bornés.

  • Titre traduit

    Inverted finite elements method for unbounded domains


  • Résumé

    Inverted finite element method (IFEM) is a non runcature method which was introduced for solving partial differential equations in unbounded domains. The objective of this thesis is to analyze, to adapt and to implement IFEM for solving several problems arising in physics, especially when the domain is the whole space R3. We first give a presentation in which we detail the principles and the main features of the method. Then, we adapt IFEM for solving some div-curl systems and vector potential problems in the whole space. In a second part, we successfully develop an IFEM based approach for computing the stray-field energy in micromagnetism. In the last part, we are interested in the study of the polarizable continuum model arising in quantum chemistry. The manuscript contains a large number of numerical results obtained with some 3D codes, especially when the domain is the whole space R3. It also contains some theoretical results in relation with weighted Sobolev spaces. We give in particular a constructive proof of some div-curl inequalities in unbounded domains.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Versailles Saint-Quentin-en-Yvelines. Service Commun de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.