Joint Spectrum and Large Deviation Principles for Random Products of Matrices

par Cagri Sert

Thèse de doctorat en Mathématiques fondamentales

Sous la direction de Emmanuel Breuillard.

Soutenue le 01-12-2016

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne) , en partenariat avec Laboratoire de mathématiques d'Orsay (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .

Le président du jury était Marc Peigné.

Le jury était composé de Emmanuel Breuillard, Marc Peigné, Yves Guivarc'h, Jean-François Quint, Frédéric Paulin, Jean-François Le Gall.

Les rapporteurs étaient Yves Guivarc'h, Jean-François Quint.

  • Titre traduit

    Spectre joint et principes de grandes déviations pour les produits aléatoires des matrices


  • Résumé

    Après une introduction générale et la présentation d'un exemple explicite dans le chapitre 1, nous exposons certains outils et techniques généraux dans le chapitre 2.- dans le chapitre 3, nous démontrons l'existence d'un principe de grandes déviations (PGD) pour les composantes de Cartan le long des marches aléatoires sur les groupes linéaires semi -simples G. L'hypothèse principale porte sur le support S de la mesure de la probabilité en question et demande que S engendre un semi-groupe Zariski dense. - Dans le chapitre 4, nous introduisons un objet limite (une partie de la chambre de Weyl) que l'on associe à une partie bornée S de G et que nous appelons le spectre joint J(S) de S. Nous étudions ses propriétés et démontrons que J(S) est une partie convexe compacte d'intérieur non-vide dès que S engendre un semi -groupe Zariski dense. Nous relions le spectre joint avec la notion classique du rayon spectral joint et la fonction de taux du PGD pour les marches aléatoires. - Dans le chapitre 5, nous introduisons une fonction de comptage exponentiel pour un S fini dans G, nous étudions ses propriétés que nous relions avec J(S) et démontrons un théorème de croissance exponentielle dense. - Dans le chapitre 6, nous démontrons le PGD pour les composantes d'Iwasawa le long des marches aléatoires sur G. L'hypothèse principale demande l'absolue continuité de la mesure de probabilité par rapport à la mesure de Haar.- Dans le chapitre 7, nous développons des outils pour aborder une question de Breuillard sur la rigidité du rayon spectral d'une marche aléatoire sur le groupe libre. Nous y démontrons un résultat de rigidité géométrique.


  • Résumé

    After giving a detailed introduction andthe presentation of an explicit example to illustrateour study in Chapter 1, we exhibit some general toolsand techniques in Chapter 2. Subsequently,- In Chapter 3, we prove the existence of a large deviationprinciple (LDP) with a convex rate function, forthe Cartan components of the random walks on linearsemisimple groups G. The main hypothesis is onthe support S of the probability measure in question,and asks S to generate a Zariski dense semigroup.- In Chapter 4, we introduce a limit object (a subsetof the Weyl chamber) that we associate to a boundedsubset S of G. We call this the joint spectrum J(S)of S. We study its properties and show that for asubset S generating a Zariski dense semigroup, J(S)is convex body, i.e. a convex compact subset of nonemptyinterior. We relate the joint spectrum withthe classical notion of joint spectral radius and therate function of LDP for random walks on G.- In Chapter 5, we introduce an exponential countingfunction for a nite S in G. We study its properties,relate it to joint spectrum of S and prove a denseexponential growth theorem.- In Chapter 6, we prove the existence of an LDPfor Iwasawa components of random walks on G. Thehypothesis asks for a condition of absolute continuityof the probability measure with respect to the Haarmeasure.- In Chapter 7, we develop some tools to tackle aquestion of Breuillard on the rigidity of spectral radiusof a random walk on a free group. We prove aweaker geometric rigidity result.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.