Spectroscopy in fragile 2D materials : from Graphene Oxide to single molecules at hexagonal Boron Nitride

par Anna Tararan

Thèse de doctorat en Physique de la matière condensée

Sous la direction de Mathieu Kociak.

Soutenue le 02-12-2016

à Paris Saclay , dans le cadre de École doctorale Ondes et Matière (2015-.... ; Orsay, Essonne) , en partenariat avec Laboratoire de Physique des Solides (Orsay, Essonne) (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .

Le président du jury était Gérald Dujardin.

Le jury était composé de Mathieu Kociak, Gérald Dujardin, Cecilia Mattevi, Jeremy Sloan, Alberto Zobelli, Claudio Attaccalite.

Les rapporteurs étaient Cecilia Mattevi, Jeremy Sloan.

  • Titre traduit

    Spectroscopie de matériaux 2D fragiles : du graphène oxydé aux molécules isolées sur du nitrure de bore hexagonal


  • Résumé

    La spectroscopie de perte d’énergie des électrons (EELS) et la cathodoluminescence (CL) dans un microscope électronique en transmission à balayage (STEM) sont des techniques puissantes pour l’étude des nanostructures isolées. Cependant, des électrons rapides peuvent endommager fortement des échantillons minces et fragiles, ce qui limite la résolution spatiale et l’intensité des signaux spectroscopiques. Pendant cette thèse, nous avons dépassé cette restriction par le développement de protocoles d’acquisition spécifiques pour l’étude de certains archétypes de nanosystèmes fragiles. Dans la première partie de cette thèse, nous avons caractérisé des flocons minces de graphène oxydé (GO) et GO réduit (RGO) par EELS dans le STEM. Grâce aux spécificités techniques de notre microscope et à la définition des conditions d’illumination optimales, nous avons dérivé des cartes du contenu d’oxygène dans le (R)GO à une résolution spatiale inédite. Aussi, par l’analyse des pics EELS de structure fine, nous avons révisé les modèles atomiques proposés dans la littérature. Des molécules isolées constituent une autre classe de nanomatériaux fortement sensibles à l’irradiation et aussi à l’environnement chimique et physique. Nous avons conduit des expériences de CL sur des molécules individuelles, grâce à un choix avisé du substrat. Le nitrure de bore hexagonal (h-BN) est un matériaux bidimensionnel chimiquement inerte, qui participe activement au processus de CL en absorbant l’énergie incidente. Le transfert de l’excitation aux molécules et l’utilisation d’une routine innovante d’acquisition par balayage aléatoire ont permis de réduire les effets d’illumination. Ensuite, l’intérêt porté aux propriétés optiques du h-BN ont inspiré l’étude de sa phase cubique (c-BN), qui a été peu caractérisé auparavant à cause d’impuretés dans les cristaux. Nous avons analysé des cristaux de c-BN de haute pureté par EELS, en identifiant une bande interdite d’énergie plus grande que précédemment rapportée et plus proche des calculs les plus récents. Dans des cristaux moins purs, nous avons identifié et analysé plusieurs émissions associées à des défauts, en termes d’énergie caractéristique, distribution spatiale et temps de vie, par CL et interférométrie en intensité de Hanbury-Brown et Twiss.


  • Résumé

    Electron energy loss spectroscopy (EELS) and cathodoluminescence(CL) in a scanning transmission electron microscope (STEM) are extremely powerful techniques for the study of individual nanostructures. Nevertheless, fast electrons damage extremely sensitive thin specimens, imposing strong limitations on the spatial resolution and the intensity of spectroscopic measurements. During this thesis we have overcome this restriction by developing material-specific acquisition protocols for the study of some archetypical fragile nanosystems. In the first part of this thesis we have characterized graphene oxide (GO) and reduced graphene oxide (RGO) thin flakes by EELS spectroscopy in the STEM. Thanks to the particular setup of our microscope and by experimentally defining the optimal illumination conditions, we have derived oxygen quantification maps of (R)GO at an unprecedented spatial resolution. On the basis also of EELS fine structures analysis, we have revised the existing proposed atomic models for these materials. Another class of exceedingly sensitive nanometric systems is represented by individual molecules, which are strongly affected by both illumination and chemical/physical environment. We have performed the first CL-STEM investigation on the luminescence of isolated molecules, thanks to a watchful choice of the substrate. Hexagonal boron nitride (h-BN) is a flat, chemically inert 2D material, that actively takes part in the CL process by absorbing the incident energy. Excitation transfer from h-BN to molecules and the use of an innovative random scan acquisition routine in the STEM have allowed to considerably lower illumination effects and improve CL intensity. Afterwards, the attractive optical properties of h-BN have led to the study of its cubic phase (c-BN), which has been up to now hindered by the poor quality of the crystals. By EELS in the STEM we have analysed c-BN crystals of the highest available purity, identifying a wider optical band-gap with respect to previous experimental studies and in better agreement with recent calculations. In commercial crystals, several defect-related emissions have been identified and analysed in terms of characteristic energy, spatial distribution and lifetime using CL and Hanbury-Brown and Twiss intensity interferometry.



Le texte intégral de cette thèse sera accessible librement à partir du 01-01-2018


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.