Gap en graphène sur des surfaces nanostructurées de SiC et des surfaces vicinales de métaux nobles

par Arlensiú Eréndira Celis Retana

Thèse de doctorat en Physique

Sous la direction de Antonio Tejeda et de Amina Taleb.

Soutenue le 10-11-2016

à Paris Saclay , dans le cadre de École doctorale Physique en Île-de-France (Paris) , en partenariat avec Laboratoire de physique des solides (Orsay, Essonne) (laboratoire) , Université Paris-Sud (établissement opérateur d'inscription) et de Synchrotron SOLEIL (laboratoire) .

Le président du jury était Odile Stephan.

Le jury était composé de Antonio Tejeda, Amina Taleb, Odile Stephan, Jean-Marc Themlin, Francine Solal, Edward Conrad, Laurence Magaud, Muriel Sicot.

Les rapporteurs étaient Jean-Marc Themlin, Francine Solal.


  • Résumé

    L'électronique basée sur le graphène fait face à un verrou technologique, qui est l'absence d'une bande interdite (gap) permettant une commutation entre les états logiques allumé et éteint. Les nano-rubans de graphène rendent possible l'obtention de ce gap mais il est difficile de produire de tels rubans avec une largeur précise à l'échelle atomique et des bords bien ordonnés. Le confinement électronique est une façon élégante d'ouvrir un gap et peut en principe être réglé en ajustant la largeur des nano-rubans. Cette thèse est consacrée à la compréhension de l'ouverture du gap par nano-structuration. Nous avons suivi deux approches: l'introduction d'un potentiel super-périodique sur le graphène par des substrats vicinaux de métaux nobles et le confinement électronique dans des nano-rubans sur des facettes artificielles du SiC. Des potentiels super-périodiques ont été introduits avec deux substrats nano-structurés: l'Ir(332) et un cristal courbé de Pt(111) multi-vicinale. Le graphène modifie les marches initiales des substrats et les transforme en une succession de terrasses (111) et de régions d'accumulation de marches, observés par STM. La nano-structuration du substrat induit alors un potentiel super-périodique dans le graphène entraînant l'ouverture de gaps sur la bande π du graphène observée par ARPES, ce qui est cohérent avec la périodicité structurale observé par STM et LEED. Les gaps peuvent être convenablement expliqués par un modèle de type hamiltonien de Dirac; ce dernier nous permet de retrouver la force du potentiel à la jonction entre les terrasses (111) et la région d'accumulation des marches. La force du potentiel dépend du substrat, de la périodicité associée à la surface et du type de bord des marches (soit type A ou B). Nous avons aussi changé le potentiel de surface en intercalant du Cu sur l'Ir(332), qui reste préférentiellement au niveau de l'accumulation des marches. La surface présente des régions dopées n alors que les régions non-intercalées restent dopées p, conduisant à une succession de rubans dopés n et p pour une même couche de graphène continue. La seconde approche pour contrôler le gap est par confinement électronique dans des nanorubans de graphène synthétisés sur du SiC. Ces rubans sont obtenus sur des facettes du SiC ordonnées périodiquement. Comme l'ouverture d'un gap d'origine inconnue avait été observée par ARPES, nous avons réalisé les premières études atomiquement résolues par STM. Nous démontrons la régularité et la chiralité des bords, nous localisons précisément les nanorubans de graphène sur les facettes et nous identifions des mini-facettes sur du SiC. Afin de comprendre le couplage entre le graphène et le substrat, nous avons étudié une coupe transversale par STEM/EELS, en complément des études par ARPES et STM/STS. Nous observons que la facette (1-107) où le graphène se trouve présente un sub-facettage sur les extrémités haute et basse. Le sub-facettage comprend des mini-terrasses (0001) et des mini-facettes (1-105). Le graphène s'étend tout au long du la région sub-facettée, et est couplé au substrat dans les mini-terrasses (0001), ce qui le rend semi-conducteur. En revanche, le graphène au-dessus des mini-facettes (1-105) est découplé du substrat mais présente un gap observé par EELS, et compatible avec les observations faites par ARPES. L'origine du gap est expliquée par le confinement électronique sur des nano-rubans de graphène de 1 - 2 nm de largeur localisés sur ces mini-facettes (1-105).

  • Titre traduit

    Gap opening in graphene on nanostructured SiC and vicinal noble metal surfaces


  • Résumé

    The major challenge for graphene-based electronic applications is the absence of the band-gap necessary to switch between on and off logic states. Graphene nanoribbons provide a route to open a band-gap, though it is challenging to produce atomically precise nanoribbon widths and well-ordered edges. A particularly elegant method to open a band-gap is by electronic confinement, which can in principle be tuned by adjusting the nanoribbon width. This thesis is dedicated to understanding the ways of opening band-gaps by nanostructuration. We have used two approaches: the introduction of a superperiodic potential in graphene on vicinal noble metal substrates and the electronic confinement in artificially patterned nanoribbons on SiC. Superperiodic potentials on graphene have been introduced by two nanostructured substrates, Ir(332) and a multivicinal curved Pt(111) substrate. The growth of graphene modifies the original steps of the pristine substrates and transforms them into an array of (111) terraces and step bunching areas, as observed by STM. This nanostructuration of the underlying substrate induces the superperiodic potential on graphene that opens mini-gaps on the π band as observed by ARPES and consistent with the structural periodicity observed in STM and LEED. The mini-gaps are satisfactorily explained by a Dirac-hamiltonian model, that allows to retrieve the potential strength at the junctions between the (111) terraces and the step bunching. The potential strength depends on the substrate, the surface periodicity and the type of step-edge (A or B type). The surface potential has also been modified by intercalating Cu on Ir(332), that remains preferentially on the step bunching areas, producing there n-doped ribbons, while the non-intercalated areas remain p-doped, giving rise to an array of n- and p- doped nanoribbons on a single continuous layer. In the second approach to control the gap, we have studied the gap opening by electronic confinement in graphene nanoribbons grown on SiC. These ribbons are grown on an array of stabilized sidewalls on SiC. As a band-gap opening with unclear atomic origin had been observed by ARPES, we carried-out a correlated study of the atomic and electronic structure to identify the band gap origin. We performed the first atomically resolved study by STM, demonstrating the smoothness and chirality of the edges, finding the precise location of the metallic graphene nanoribbon on the sidewalls and identifying an unexpected mini-faceting on the substrate. To understand the coupling of graphene to the substrate, we performed a cross-sectional study by STEM/EELS, complementary of our ARPES and STM/STS studies. We observe that the (1-107) SiC sidewall facet is sub-faceted both at its top and bottom edges. The subfacetting consists of a series of (0001) miniterraces and (1-105) minifacets. Graphene is continuous on the whole subfacetting region, but it is coupled to the substrate on top of the (0001) miniterraces, rendering it there semiconducting. On the contrary, graphene is decoupled on top of the (1-105) minifacets but exhibits a bandgap, observed by EELS and compatible with ARPES observations. Such bandgap is originated by electronic confinement in the 1 - 2 nm width graphene nanoribbons that are formed over the (1-105) minifacets.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.