Couplages magnéto-électriques dans le système multiferroïque artificiel : BaTiO₃ / CoFe₂O₄

par Thomas Aghavnian

Thèse de doctorat en Physique

Sous la direction de Antoine Barbier et de Rachid Belkhou.

Soutenue le 03-10-2016

à Paris Saclay , dans le cadre de École doctorale Physique en Île-de-France (Paris) , en partenariat avec Université de Paris-Sud (établissement opérateur d'inscription) , Service de physique de l'état condensé (Gif-sur-Yvette, Essonne) (laboratoire) et de Synchrotron SOLEIL (laboratoire) .

Le président du jury était Jacques Jupille.

Le jury était composé de Antoine Barbier, Rachid Belkhou, Jacques Jupille, Éric Beaurepaire, Stefania Pizzini, Jean-Baptiste Moussy.

Les rapporteurs étaient Éric Beaurepaire, Stefania Pizzini.


  • Résumé

    Les matériaux magnetoélectriques multiferroïques sont particulièrement attrayants dans le domaine de l’électronique de spin, notamment dans la perspective de contrôler l’aimantation d’un matériau à partir d’un champ électrique. Les multiferroïques dits artificiels, constitués de phases ferroélectriques et magnétiques séparées, permettent de contourner la rareté de matériaux multiferroïques intrinsèques. S’ils peuvent présenter des valeurs de couplage plus élevées les mécanismes en jeu sont encore mal compris. Leur compréhension requiert l’étude d’échantillons parfaitement cristallisés et maitrisés. L’association en films minces (entre 3 et 20nm) épitaxiés de BaTiO₃, ferroélectrique de référence et de CoFe₂O₄, ferrimagnétique très magnétostrictif et à haute température de Curie, constitue un système modèle bien adapté à une telle étude. Dans cette thèse, nous réalisons des films minces de grande qualité cristalline de CoFe₂O₄ / BaTiO₃ sur substrat SrTiO₃ (001) par épitaxie par jets moléculaires sous plasma d’oxygène atomique. Dans un premier temps, nous étudions indépendamment pour chaque phase les propriétés individuelles de chimie, structure, magnétisme et ferroélectricité, notamment via des techniques de synchrotron. Forts de cette base, nous mettons en place différentes expériences d’étude du couplage magnétoélectrique direct et indirect, avec l’application d’une polarisation électrique et une mesure d’aimantation, et vice versa. Nous observons l’existence d’un couplage magnétoélectrique, notamment grâce la forte interaction des couches de CoFe₂O₄ et BaTiO₃. En revanche, les mécanismes indirects dominent, et impliquent des modifications structurales et chimiques via des mouvements ioniques. Ces mécanismes ioniques créent des modifications réversibles de résistance à température ambiante ouvrant la voie, au-delà des propriétés multiferroïques, à de possibles applications pour les RAM résistives.

  • Titre traduit

    Magnetoelectric coupling in the artificial multiferroic system : BaTiO₃ / CoFe₂O₄


  • Résumé

    Magnetoelectric multiferroics are of particular interest in the field of spintronics, especially for the possible control of the magnetization using an electric field. The lack of intrinsic multiferroics can be circumvented by using artificial multiferroics, made with individual ferroelectric and magnetic phases. Although they may exhibit higher coupling values, the precise coupling mechanisms involved are still not well understood. Getting insights in the understanding of these phenomena requires studying well mastered and crystallized samples. The combination of BaTiO₃ thin films (3 to 20nm), the prototypical ferroelectric, and of CoFe₂O₄ ones, a highly magnetostrictive ferromagnet with a high Curie temperature, constitutes a suitable model system well suited for such a study. In this thesis, we realized CoFe₂O₄ / BaTiO₃ thin films of high crystalline quality by oxygen plasma assisted molecular beam epitaxy on a SrTiO₃ (001) substrates. First, we study independently for each phase the individual properties of chemistry, structure, magnetism and ferroelectricity, using in particular a range of synchrotron techniques. Based on those fundamental results, we set up direct and indirect magnetoelectric coupling experiments, where we apply an electric polarization to measure a change in magnetization, and vice versa. We manage to observe the magnetoelectric coupling, mainly through the strong interaction of the CoFe₂O₄ and BaTiO₃ films. The indirect mechanisms dominate however and involve structural as well as chemical modifications through ion displacement. Those ion displacements create reversible changes in resistance at room temperature. These results imply that, in addition to the evidenced multiferroic properties, the system makes also promise for resistive RAM devices applications.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.