Nouveaux états électroniques d'interface à partir d’isolants corrélés

par Mathieu Grisolia

Thèse de doctorat en Physique

Sous la direction de Manuel Bibes.

Soutenue le 26-09-2016

à Paris Saclay , dans le cadre de École doctorale Physique en Île-de-France (Paris) , en partenariat avec Unité mixte de physique CNRS/Thales (Palaiseau) (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .


  • Résumé

    Les oxydes de métaux de transition (Ti, Fe, Mn, Cu, etc) présentent une multitude de fonctionnalités tout en cristallisant dans un nombre réduit de structures. C’est le cas par exemple dans la famille des pérovskites qui arborent de nombreux ordres électroniques (isolants, métaux, supraconducteurs) et magnétiques (ferro- et antiferromagnétiques). La compatibilité structurale de ces différents composés permet de les combiner au sein d'hétérostructures multifonctionnelles mais aussi, dans certains cas, de faire émerger de nouvelles propriétés aux interfaces. Un exemple typique découvert en 2004 est celui du gaz électronique bidimensionnel se formant à l'interface entre deux isolants de bande, LaAlO₃ et SrTiO₃ .S’inspirant de ce résultat majeur, ce travail de thèse a pour but de générer de nouvelles phases électroniques et magnétiques aux interfaces, non à partir d'isolants de bande mais d'isolants de Mott et d'isolants à transfert de charge. A l'interface entre ces deux types de composés, l’alignement de bande est rendu plus complexe par la présence de fortes corrélations électroniques.Ainsi, les reconstructions d’interface peuvent donner lieu à une déstabilisation de l'état fondamental, et à la génération de nouvelles phases magnétiques, conductrices ou supraconductrices absentes du diagramme de phase du matériau massif.Dans un premier temps, lors de ce travail nous avons synthétisé, par ablation laser pulsé des couches minces d'isolants de Mott, les titanates de terre-rare (RTiO₃ ). Nous avons caractérisé leurs propriétés magnétiques, optiques et électroniques.Dans un second temps, nous avons également optimisé des couches minces d’isolants à transfert de charge, les nickelates de terre-rare (RNiO₃ ). Nous avons étudié en détail l’effet du rayon ionique de la terre-rare sur la structure électronique à basse température de ces composés.Le cœur de ce travail de thèse a été l'étude des propriétés de l’interface formée par ces deux constituants via une combinaison de plusieurs techniques de spectroscopie (absorption de rayonnement synchrotron, XAS, dichroïsme linéaire et circulaire, XMCD, et spectroscopie de perte d’énergie, STEM-EELS) en lien avec des calculs ab-initio.Après avoir démontré l’apparition d’une nouvelle phase ferromagnétique dans les nickelates, nous discutons du rôle des corrélations dans les nickelates sur le transfert de charge et sur la reconstruction magnétique, observés à l’interface avec GdTiO₃ .Enfin, nous mettons en évidence la possibilité d’utiliser un paramètre de contrôle externe comme la lumière pour altérer le niveau de covalence dans les nickelates sans modifier la terre-rare. Ces résultats ouvrent la voie à de nouveaux dispositifs tirant partie du contrôle actif du niveau de covalence dans les isolants à transfert de charge.

  • Titre traduit

    Novel interfacial electronic states between correlated insulators


  • Résumé

    Transition metal oxides (Ti, Fe, Mn, Cu, etc.) display a multitude of features while crystallizing in a reduced number of structures. This is the case for example of perovskites which exhibit many electronic (insulators, metals, superconductors) and magnetic (ferro- and antiferromagnetic) orders. Their structural compatibility offers a unique playground for combining them in the search for new interfacial properties. A typical example discovered in 2004 is LaAlO₃ and SrTiO₃ whose interface reveals a high-mobility electron gas although the parent constituents are two conventional band insulators.Following-up on this major achievement, this thesis aims at generating new electronic interfacial phases, not from band insulators but rather from Mott and charge transfer insulators. At the interface between these types of compounds, band alignment is made more complex by the presence of strong correlations between electrons.Hence, interfacial reconstructions can destabilize the ground state, and generate new phases absent from the phase diagrams of the two building blocks.Initially, we synthetized, by pulsed laser deposition, a typical Mott insulator, rare earth titanates (RTiO₃ ) in the form of thin layers, which were optimized and characterized on different substrates.Secondly, we also grew charge transfer insulators, rare earth nickelates (RNiO₃ ). We specifically studied the effect of the ionic radius of the rare earth on the electronic structure of these compounds at low temperature.The core of this thesis is to study the interface formed by these two constituents via a combination of spectroscopic techniques (synchrotron radiation-based absorption, XAS, linear and circular dichroism XMCD and energy loss spectroscopy, STEM-EELS) in connection with ab-initio calculations.After demonstrating the emergence of a new ferromagnetic phase in nickelates, absent of the bulk phase diagram, we discuss in particular the role of correlations in nickelates on the charge transfer and magnetic reconstruction, observed at the interface with GdTiO₃ .Finally, we will propose a new external knob, light, to alter the level of covalence in nickelates without changing the rare earth. These results open the way for new devices taking advantage of the active control of the level of covalence in charge transfer insulators.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.