Analyse hautes fréquences pour les équations des ondes de surface

par Quang Huy Nguyen

Thèse de doctorat en Mathématiques fondamentales

Sous la direction de Nicolas Burq.

Soutenue le 05-07-2016

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne) , en partenariat avec Université Paris-Sud (établissement opérateur d'inscription) et de Laboratoire de mathématiques d'Orsay (laboratoire) .

Le président du jury était Hajer Bahouri.

Le jury était composé de Nicolas Burq, Hajer Bahouri, David Lannes, Claude Zuily, Jean-Claude Saut.

Les rapporteurs étaient David Lannes, Steve Shkoller.


  • Résumé

    Cette thèse est consacrée à l'analyse mathématique de l'équation d'Euler incompressible à surface libre. On se concentre sur la propriété dispersive et sur la théorie de Cauchy à faible régularité. Une grande part de la thèse est consacrée à l'étude de l'équation des ondes de gravité-capillarité. On établit des critères d'explosion et la persistance de régularité dans les espaces de Sobolev. En démontrant les estimations de Strichartz pour les solutions à faible régularité, on obtient des théories de Cauchy pour les données initiales dont la vitesse peut être non-lipschitzienne. Dans une autre part de la thèse, on étudie la propriété dispersive des équations des ondes de surface. Plus précisément, on s'intéresse aux estimations de Strichartz. On démontre que, pour les solutions raisonnablement régulières, les équations des ondes de surface non linéaires obéissent aux mêmes estimations de Strichartz comme dans le cas des équations linéarisées.

  • Titre traduit

    High frequency analysis for water waves systems


  • Résumé

    This dissertation is devoted to the mathematical analysis of the water waves systems. We focus on the dispersive property and the Cauchy problem for rough initial data. One of the main objects of study is the gravity-capillary water waves system. We establish blow-up criteria and the persistence of Sobolev regularity. By proving Strichartz estimates for rough solutions, we obtain Cauchy theories for non-Lipschitz initial velocity. In another part of the dissertation, we study the dispersive property of the fully nonlinear water waves systems. More specifically, we are interested in Strichartz estimates. We prove for sufficiently smooth solutions that the nonlinear systems obey the same Strichartz estimates as their linearizations do.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.