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1

Une méthode d’apprentissage multivariée et pénalisée pour l’inférence jointe des
niveaux d’expression et des réseaux de régulation génique

Entre plusieurs conditions biologiques, le comportement d’un gène peut être affecté
soit dans son niveau d’expression moyen, soit dans sa relation aux autres, caractérisée
par les covariances entre gènes. Ces deux questions sont généralement traitées de manière
indépendante en statistique, bien qu’elles soient clairement liées. Afin de palier à ces lim-
itations, cette thèse vise à proposer une modélisation unifiée de ces deux questions pour
identifier les gènes clés affectés dans leur moyenne et/ou dans leurs interactions. Le modèle
principal est le modèle graphique gaussien avec des pénalisations sur les paramètres de la
moyenne et de la matrice de précision.

Mots clés: Statistique et application en génomique; Apprentissage statistique; Analyse
multivariée; Méthodes pénalisées; Optimisation convexe; Transcriptome.
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A multivariate learning penalized method for a joined inference of gene
expression levels and gene regulatory networks

When comparing different biological conditions, the expression of a gene might shift. It
can be a change in terms of its average expression level characterized by its mean. Or it
can be a change in terms of its interactions with other genes characterized by the covariance
matrix. These two types of events are usually analysed independently even though they are
clearly related. In order to alleviate these limitations, we propose in this thesis a unified
strategy to address these two questions and identify key genes affected either in terms of
their mean or their interactions with other genes. The main statistical model is the Gaussian
graphical model with penalizations on the mean and precision matrix parameters.

Keywords: Statistic and genomic applications; Statistical learning; Multivariate analy-
sis; Penalized method; Convex optimization; Transcriptomic.
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Preface

My thesis started in October, 2013. It is a part of the project SONATA in Unité de Recherche
en Génomique Végétale (URGV) which is now Institute of Plant Sciences Paris-Saclay
(ISP2). This thesis was funded by Ecole doctorale des Génomes Aux Organismes (GAO)
of university Evry Val d’Essonne which has been united into Ecole doctorale Structure et
Dynamique des Systèmes Vivants (SDSV) of university Paris-Saclay since 2015.

During my thesis, I worked at unit UMR 518 at the Institut National de la Recherche
Agronomique (INRA) under the supervision of Ph.D Marie-Laure Martin-Magniette, leader
of the Genomic Networks group of ISP2 as well as Julien Chiquet, Assistant Professor at
university Evry Val-d’Essonne and Guillem Rigaill, Assistant Professor at university Evry
Val-d’Essonne.

Motivation

My thesis starts from a requirement to study the gene regulatory network of Arabidopsis
thaliana plant in different biological conditions. Reconstructing biological networks such
as gene regulatory networks is a very interesting and important question in biology. Indeed
such networks should help to better understand the regulatory mechanisms of genes or to
identify pathways or subset of genes involved in a particular biological function.

We have datasets about the expression level of Arabidopsis thaliana’s genes measured
by high-throughput technologies. The development of high-throughput technologies allows
to collect huge information on thousands of genes simultaneously. However, in most cases,
the number of samples is lower than the number of genes. This problem is known as the
“high dimensional problem”. In this new setting, standard statistical methods used to answer
network inference perform less effectively.

In transcriptomic experiments, differential analysis (looking at the mean expression level
of genes) and network inference are typically done separately. In this thesis, we propose
to answer both questions at the same time. We think that taking into account the mean
expression of genes could improve network inference. Conversely, the improvement in
terms of network inference may help to better understand the change of mean expression of
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genes between conditions which is also referred as the differential analysis question.
To tackle these two questions, we propose a model and an inference scheme to jointly

estimate the network and mean expression differences.

Contributions

The thesis has two main contributions:

1. In terms of theory, we provide a model and an inference scheme which can answer
the two questions of network inference and differential analysis simultaneously. Be-
sides, we demonstrate the consistency of our procedure in certain settings and provide
a computational strategy to estimate the parameters in practise.

2. In terms of application, we provide a procedure to help the identification of key re-
sponse genes changing in terms of mean or network connections. These genes may
involve in the adaptation of organism when environmental conditions change using
transcriptomic data.

Organisation

The thesis contains 5 chapters:

• Chapter 1: I present the context of my thesis and some standard methods to answer
network inference and differential analysis questions.

• Chapter 2: I present our model and some theoretical results.

• Chapter 3: I compare our model to standard methods which are used to answer dif-
ferential analysis and network inference.

• Chapter 4: I apply our model to two real datasets.

• Chapter 5: I give my conclusion and the perspective of my thesis.
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Chapter 1

Introduction

1 Biological context

1.1 DNA definition

DNA is the abbreviation of deoxyribonucleic acid. The structure of DNA is non-static, and
is made of two helical chains called strands. Each strand is a sequence of nucleotides. A
nucleotide is made of one or several phosphate groups, a five-carbon sugar and a nucleobase
among the four primary nucleobases which are Adenine (A), Thymine (T), Guanine (G) and
Cytosine (C). The nucleobases on one strand are complementary to the other:

• an A of the forward strand binds to a T of the reverse strand by two hydrogen bonds,

• a T of the forward strand binds to an A of the reverse strand by two hydrogen bonds,

• a G of the forward strand binds to a C of the reverse strand by three hydrogen bonds,

• a C of the forward strand binds to a G of the reverse strand by three hydrogen bonds.

The structure of DNA is shown in Figure 1.11.
For eukaryotic organisms, DNA is stored inside the nucleus of the cell. Unlike eukaryotic

organisms, prokaryote organisms store their DNA directly in their cytoplasm. For both types
of organism, DNA is the storage of all genetic information. It is transmitted to the offspring
during fertilization. In a cell, DNA is transcribed in ribonucleic acid (RNA) which is then
translated in protein by the ribosomal machinery.

The order of the nucleotides is non random. The sequence of nucleotides defines regions
in DNA. Some of the regions are transcribed in RNA and then translated in proteins, others
are called non coding regions. A simple view of the genome is to consider it as a succession
of coding genes and none coding regions.

1URL: http://slideplayer.com/slide/972373/
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Figure 1.1: Structure of DNA molecule

1.2 Processes for protein synthesis

Protein synthesis is composed of two steps: the transcription and the translation, see Fig-
ures 1.2, 1.32. Transcription is the process of copying genetic information from DNA into
ribonucleic acid (RNA). Translation is the process in which proteins are created from the
RNAs which are taken in charge by ribosomes. In practice, only genes encoding functional
RNAs produce proteins.

A gene can be schematically separated into three parts: a promoter, a coding region
which stores some genetic information and a termination site. To start the transcription
process of a gene, an RNA polymerase comes to the promoter site, and separates the two
strands of DNA. The RNA polymerase goes along one strand in the coding region, reads
and creates a complementary RNA strand called primary transcript. The primary transcript
has a composition very similar to the complementary DNA strand since only the Thymine
is replaced with an Uracil. When the RNA polymerase reaches the termination site, the
transcription is stopped, and an mRNA molecule is released. Then the RNA polymerase
leaves the DNA and the two strands bind again.

After the transcription process, the translation process starts. It consists in decoding
mRNA by a ribosome to produce a specific amino acid chain, or a polypeptide. To be
specific, the ribosome reads the mRNA three nucleotides at a time to produce an amino acid
from the first triplet AUG to a stop codon. When the ribosome reaches this latter, it stops
the production of amino acids and the protein is the chain of amino acids linked together.

2URL: http://www.lhsc.on.ca/
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Figure 1.2: Schematic view of transcription process

Figure 1.3: Schematic view of translation process
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1.3 Gene expression measurement

Transcriptome is the set of all the mRNA molecules present at a given time in a sample.
Since 1995, gene expression measurement is performed with high-throughput technologies
either by microarrays or RNA sequencing.

Microarrays is a biochip which collects DNA spots attached on a solid surface. Each
spot is a cloned DNA sequence corresponding to one gene. Parallely, RNAs are extracted
from biological samples, converted into complementary DNAs, amplified and labelled with
fluorescent dye. Then they are hybridized on the microarray where they could bind to
their complementary DNA presenting in spots. After the process, the abundance of each
transcript is measured through the quantification of the fluorescence signal of each spot on
the chip. Microarray technique could measure the expression level of thousands of genes
simultaneously.

A more recent technology is the RNA sequencing. Its principle is to sequence the tran-
scripts which are sequences of RNA produced by the transcription process. Millions of
short sequences with a size between 75 and 100 base pairs, called reads, are generated by
a sequencer. These reads are fragments of the transcripts. After a bioinformatics pipeline
aiming at attributing the best localization of each read on the genome, expression of each
gene is then measured as the number of reads in the genomic region defining the gene. The
technique has many advantages compared to microarray technique. For instance, while the
list of considered genes are fixed in a microarray, the list of genes is more flexible in RNA
sequencing. Therefore, RNA sequencing could detect and measure novel transcripts, or
study novel organisms.

In this thesis, we work only with data generated with the microarray technique.

1.4 Objectives of transcriptomic experiments

Thanks to the high-throughput technologies, biologists hope to better understand the role of
the genes by comparing several transcriptomes together. Briefly speaking, the comparisons
could be organized into two classes.

In the first class, a given condition is considered as a reference and the goal is to evaluate
the impact of an another condition on the transcriptome. As an example, plant biologists
often compare wild-type plants to a mutant plant in order to identify the role of the mutated
genes and how the absence of the mutated genes impacts the expression level of the other
genes. In medicine, the reference may be characterized by healthy persons. Their tran-
scriptomes are compared to the ones of ill persons in order to understand the impact of the
disease on the gene expression.

The second class of comparison is composed by studies where there is no reference con-
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dition. For plants, such studies allow to compare several tissues to identify genes that are
specific to a tissue and those which are ubiquitous. In medicine, the studies are used to
characterize more precisely subtypes of diseases such as cancer. As an example, in breast
cancer, there are several types of cancer defining different transcriptomic profiles. Tran-
scriptomic studies allow to identify genes that could be used to predict the response to the
treatment. Typically in cancer, it would be useful to predict which patient will respond to a
particular therapy.
Whatever the class of comparison, the two main questions asked by biologists are:

1. Which genes are characteristic of a condition? In other words, which genes are differ-
ently expressed between one condition and the others?

2. What are the relationships between genes in a given condition and do they change from
one condition to the next?

To answer the first question, one typically runs a differential analysis tool. The goal is to
identify if the expression of each gene is altered across the different investigated conditions.
Once these genes are identified, biologists collect all available information on these genes
in order to understand their role or formulate new biological hypotheses or plan new exper-
iments.
To answer the second question, one may identify relationships between genes by inferring
a gene regulatory network. From a biological point of view, a gene regulatory network is
composed of a set of genes where some genes called regulators control the expression of
other genes. A well-known set of regulators is the set of transcription factors. These genes
produce proteins which target the promoters of some other genes in order to activate or
repress their expression.

These two questions raise numerous issues in statistic. In the next section, we will present
a review about some statistical methods developed to analyse microarray data. These meth-
ods will address the two questions: differential analysis and network inference.

2 Methods for the differential analysis

Based on the expression level of genes in several conditions, our objective is to identify
which genes show a difference in expression across the conditions. We refer to this question
as “univariate differential analysis” when an analysis is performed per gene independently
of the other genes.

In some context, however, one wants to consider more than one gene and identify more
global changes involving a whole set of genes (typically, genes from a molecular pathway).
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We refer to this new question as “multivariate differential analysis”. There are many sta-
tistical tools to compare more than two conditions. It is usually easier to present the two
conditions case and the extension to multi-classes is straightforward. That is why in the
following, we describe the methods when measurements are performed in two conditions.

To answer both questions, a natural tool is the hypothesis testing methods which vary
according to the framework. In the next section, we describe some of the most widely used
methods.

2.1 Univariate analysis

Let Xk
j be a random variable for the expression of gene j in condition k. Let (xk1j , . . . , x

k
nkj

)

be nk observations of Xk
j . Assume that Xk

j is distributed according to a Gaussian distri-
bution N

(
(β∗)kj , ((σ

∗)kj )
2
)

and that the Xk
j are independent for j ∈ {1, .., p}, where p is

the total number of genes under study. For a gene j, the univariate differential analysis to
compare two conditions is formulated asH0j : (β∗)1

j = (β∗)2
j

H1j : (β∗)1
j 6= (β∗)2

j

It is a two-sided test which requires three steps to be performed:

1. The definition of a test statistic that quantifies the difference of expression between the
two conditions.

2. The comparison of the observed value of the test statistic to a distribution to which it
fits under the null hypothesis.

3. The definition of a decision rule based on this comparison to reject the null hypothesis
or not.

2.1.1 Standard Methods

2.1.1.1 Presentation of the Welch’s t-test and the t-test. Assume that the number of observations
is large enough for the two conditions to construct a test statistic based on the empirical
variances. Let β

k
j be the empirical estimator of the mean of gene j in condition k

β
k
j =

∑nk
i=1 x

k
ij

nk
.

Let (Skj )2 be the connected empirical variance

(Skj )2 =

∑nk
i=1(xkij − β

k
j )

2

nk − 1
.
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The Welch’s t-test assumes that the variances are different in the two conditions, then the
test statistic is

tj =
β

1
j − β

2
j√

(S1
j )2

n1
+

(S2
j )2

n2

.

Under the null hypothesis, tj follows a Student distribution with approximated degrees of
freedom given by: ( (S1

j )2

n1
+

(S2
j )2

n2

)2

(S1
j )4

n2
1(n1−1)

+
(S2
j )4

n2
2(n2−1)

.

The t-test assumes that the variances are equal across the two conditions. The test statistic
is then

tj =
β

1
j − β

2
j

Sj

√
( 1
n1

+ 1
n2

)
,

where

S2
j =

(n1 − 1)(S1
j )2 + (n2 − 1)(S2

j )2

n1 + n2 − 2
.

Under the null hypothesis, tj is distributed according to a Student distribution with (n1 +

n2 − 2) degrees of freedom.

2.1.1.2 Presentation of limma. The number of measurements is generally small in a microar-
ray experiment due to the cost of producing biological replicates. Hence the t-test or the
Welch’s t-test are not powerful. Numerous work have been done to propose alternatives.
The most popular method is limma proposed by G. Smyth [1]. In fact, limma could be
seen as a combination approach between linear model and Bayes method. To be more spe-
cific, it is a Bayesian approach used to squeeze the standard errors in the test statistics toward
a common value. The idea is to use a t-statistic with a Bayesian adjusted denominator. The
statistic is defined by

tj =
β

1
j − β

2
j

S̃j

√
1
n1

+ 1
n2

,

where

S̃j =
d0S

2
0 + djS

2
j

d0 + dj
,

dj =n1 + n2 − 2,

and s0, d0 are defined by some prior information assumed on the variance (σ∗j )
2:

1

(σ∗j )
2
∼ 1

d0s2
0

χ2
d0
.
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The estimation of s0, d0 is outside the scope of the introduction, see [1] for more details.
However, under the null hypothesis, tj follows a Student distribution with degree of freedom
dj + d0.

2.1.1.3 Presentation of SAM. SAM is a method proposed for microarray data by Tusher et al
[2]. In details, each gene j is assigned a statistic tj:

tj =
β

1
j − β

2
j

s0 + Sj

√
( 1
n1

+ 1
n2

)
,

where s0 is a constant, called fudge factor. Clearly, tj is very similar to the statistic of the
t-test. The only difference is the fudge factor. This additional term helps to compare the
statistics tj together. Indeed, without this fudge factor, tj depends on the expression level

of gene j. Since the value Sj
√

( 1
n1

+ 1
n2

) is often very small for genes with low expression
level and high for genes with high expression level, the objective of using s0 is to minimize
the variation of the set {t1, t2, . . . , tp} (See [2] for the implementation).

The genes are ranked according to the SAM statistics into descending order and the
observed value of the statistic is compared to the expected value. If the observed value is
greater, then SAM identifies a potentially significant change in the expression between the
two consider conditions.

2.1.1.4 Non-parametric approach: Wilcoxon test (paired version). Due to the small number of
measurements for each gene, one alternative is to use non-parametric test. Hence it is not
necessary to specify the distribution of the observations. A possibility is to use the Wilcoxon
test proposed by F. Wilcoxon [3]. This requires n1 = n2 = n. The idea is that if gene j
is not differently expressed between two conditions, then the difference between the pairs
(x1

1j − x2
1j), . . . , (x

1
nj − x2

nj) follows a symmetric distribution around zero. In detail, the
procedure is the following:

1. Calculate n pairs (x1
1j − x2

1j), . . . , (x
1
nj − x2

nj).

2. Remove all pairs which equal zero. Let nr be the reduced sample size.

3. Sort the remaining pairs from smallest absolute value to largest absolute value and let
Ri denote by the rank of pair i.

4. Compute the statistic Wj =
∑nr

i=1 sgn(x1
ij − x2

ij)Ri.

Under the null hypothesis, as nr increases, Wj tends to a normal distribution with mean 0

and variance nr(nr+1)(2nr+1)
6 . For small values of nr, the distribution of Wj is given in a
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reference table [3]. Due to its non-parametric nature, the Wilcoxon test is generally less
powerful than parametric approaches.

2.1.2 Global risk control in multiple testing

Given a statistical test, there are four possible results as in Table 1.1. In more details, type-I
error or false positive is the rejection of H0, while H0 is actually true. Type-II error or false
negative is the acception of H0, while H0 is actually false.

H0 Retained H0 Rejected Total

H0 True True Negative (TN)
False Positive (FP)
Type I Error T0

H0 False
False Negative (FN)
Type II Error True Positive (TP) T1

Total N P N+P = T0 +T1

Table 1.1: Possibilities in one hypothesis test

Whatever the test statistic used, a p-value is computed for each gene. The p-value is the
probability of obtaining a test statistic equal to or more extreme than the observed result
when the null hypothesis is true. Since several thousand of genes are tested, it is important
to control not only the individual risk but also the global risk. There are several ways for
defining the global risk among which the FWER (Family Wise Error Rate) is a natural way
for controlling the global risk.

2.1.2.1 Controlling FWER: Bonferroni correction. Among all the tests, FWER is by controlling
the probability for having at least one false positive. More precisely, from Table 1.2, we
have:

FWER = P{V ≥ 1}.

The Bonferroni correction is a method built to control the FWER. If one has p hypothe-
ses, then one way to maintain the FWER is to test each individual hypothesis at a statistical
significance level of 1/p times the desired maximum overall level. In details, let H1, . . . , Hp

be a family of hypotheses and v1, . . . , vp their associated p-values. The Bonferroni correc-
tion control the FWER at level α if we reject all the hypotheses Hj which satisfy vj ≤ α

p .

H0 is true H1 is true Total
Reject H0 Number of false positive (V) Number of true positives (S) R
Accept H0 number of true negatives (U) number of false negatives (T) p-R
Total m0 p-m0 p

Table 1.2: Possibilities in multiple testing
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The result is clear, and based on the Boole’s inequality:

FWER = P{V ≥ 1} = P{
p⋃
j=1

(vj ≤
α

p
)} ≤

p∑
j=1

P{vj ≤
α

p
} ≤ p

α

p
= α.

2.1.2.2 Controlling the FDR: Benjamini-Hochberg correction. Another type of global risk is the
FDR (False Discovery Rate). The FDR is defined by the expected proportion of false posi-
tives among the total number of positives. From Table 1.2, we have:

FDR = E[
V

R
].

Benjamini-Hochberg correction is a method built to control the FDR. In details, let
H1, . . . , Hp be a family of hypotheses and v1, . . . , vp their corresponding p-values. The
method controls the FDR at level α with the following procedure:

• Order the p-values increasingly. Denote them v(1), . . . , v(p), the corresponding hy-
potheses H(1), . . . , H(p), where v(j) is the jth smallest p-value.

• Find the largest k such that v(k) ≤ k
pα.

• Reject all H(1), . . . , H(k) and accept the others.

One can prove that FDR=E{FPP } ≤ α. There are many different variations of those methods
such as the Benjamini-Yekutieli procedure, the Simes procedure and the Sidak procedure
which are compared in a paper of Roquain [4]. The Benjamini-Hochberg correction is by
far the most popular.

2.1.3 Method comparison

In [5], Jeanmougin et al compare empirically, limma, t-test, Welch’s t-test, SAM, and
Wilcoxon in studying gene microarray data. At a fixed controlling level (5%), they mea-
sure the FDR and the power of each test. Final results show that limma performs better
than the other methods. In [1], Smyth explains that as follows: on the one hand, limma
estimates sample variances of genes towards a pooled estimate. On the other hand, the
other methods estimate the variance of each gene independently. Therefore, the estimator
of limma should be better when the number of observations is small. Indeed, if all variables
are totally independent, limma is not better than the other methods. However, the improve-
ment of using limma tells us that taking into account the correlation between variables is a
way to improve different analysis, especially, when these variables are truly related.
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2.2 Multivariate analysis

In some context, the detection of a change in expression level of one gene is expanded to
a set of genes. We refer to this problem as a “multivariate analysis” problem. To study
the problem, some methods performs directly a multivariate test on a set of genes such as
Hotelling’s T 2-test and Jacob et al’s test [6]. These approaches perform only one test with
the form: H0 : (β∗)1 = (β∗)2

H1 : (β∗)1 6= (β∗)2

where (β∗)1 and (β∗)2 are true values of two mean expression vectors in two conditions.

2.2.1 Standard methods

In this section, we represent Hotelling’s T 2-test and Jacob et al’s test.

2.2.1.1 Presentation of Hotelling’s T 2-test. Denote

xki =(xki1, . . . , x
k
ip),

β
k

=
1

nk

nk∑
i=1

xki = (β
k
1, β

k
2, .., β

k
p).

In the case of a homoscedastic test, we assume that (Σ∗)1 = (Σ∗)2. Hence, the pool covari-
ance matrix is estimated by:

Σ =
(n1 − 1)Σ1 + (n2 − 1)Σ2

n1 + n2 − 2
,

where Σ1,Σ2 are the two empirical covariance matrices:

Σk =
1

nk − 1

nk∑
i=1

(xki − β
k
)
′
(xki − β

k
); k ∈ {1, 2}.

With this assumption and under the null hypothesis, the following statistic F follows a
Fisher distribution:

F =
n1 + n2 − p− 1

p(n1 + n2 − 2)
T 2 ∼ Fp,n1+n2−p−1,

where
T 2 = (β

1 − β2
)T
(

Σ
( 1

n1
+

1

n2

))−1
(β

1 − β2
).

In the case of a heteroscedastic test, we assume that (Σ∗)1 6= (Σ∗)2. Denote:

T 2 = (β
1 − β2

)T
(Σ1

n1
+

Σ2

n2

)−1
(β

1 − β2
).
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In this case, T 2 follows the Hotelling’s T-squared distribution T 2
p,ν under the null hypothesis,

where

ν =
tr
[(

Σ1

n1
+ Σ2

n2

)(
Σ1

n1
+ Σ2

n2

)]
+
[
tr
(

Σ1

n1
+ Σ2

n2

)]2

tr

[(
Σ1

n1

)(
Σ1

n1

)]
+tr

[(
Σ1

n1

)]
n1−1 +

tr

[(
Σ2

n2

)(
Σ2

n2

)]
+tr

[(
Σ2

n2

)]
n2−1

.

Hotelling’s T 2-test is known to perform very well in low dimensional setting. However,
its power decreases quickly in high dimensional setting due to a poor estimation of the
covariance matrix. The reason is that the empirical estimation of the covariance matrix is
ill-conditioned and its inverse matrix is a poor estimator of Σ−1. It is a central problem in
GGM methods.

In the next section, we present a method trying to improve Hotelling T 2-test by reducing
the number of dimensions.

2.2.1.2 Presentation of Jacob et al ’s test. Jacob et al [6] try to relax and make Hotelling’s T 2-
test more powerful for high dimensional data such as transcriptomic data by using external
information.
In some specific situations, on top of the gene expression level, we may have some prior
information about existing interactions between genes. Indeed, many published databases
about gene networks can be used in differential analysis of genes such as Kyoto Encyclo-
pedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg) or NCI Pathway In-
tegration Database (NCI graphs; http://pid.nci.nih.gov). Although the difference in mean
expression between two groups of genes may not be totally related to the gene networks, it
should not be entirely contradictory with their structure. The approach of Jacob et al [6] is
based on this idea and can be summarized as follows:

1. Base on prior information about the gene network, the data is projected into a lower
dimension sub-space. As explained below, the sub-space is chosen such that most of
the distance between the expression measurements on vectors (β∗)1, (β∗)2 is preserved.

2. Apply the Hotelling’s T 2-test on the projected data.

More precisely, they consider a network of p genes, represented by a graphG = (V,E), with
the node set V and the edge set E. Let φ ∈ Rp denote the difference in mean expression:

φ∗ = (β∗)1 − (β∗)2.

Jacob et al [6] suppose that φ is coherent with the graph G, in the sense that it will minimize
an energy function EG(φ), which is defined on the graph G as follows:

EG(φ) =

p∑
j=1|dj 6=0

(
φj −

1

dj

∑
(j,a)∈E

Ajaφa

)2
,
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where

φ =(φ1, . . . , φp),

A =(Aja) is the adjacency matrix of the graph G,

dj =

p∑
a=1

Aja.

Then, they build a space of lower dimension capturing most of the low energy functions.
Assume that the sub-space has k dimensions. A base of the sub-space is made by the
following procedure:

• Find the vector u1 that minimizes the energy function:

u1 = arg min
φ∈Rd

EG(φ).

• For all j from 2 to k, find the vector uj such that:

uj =

 arg min
φ∈Rp

EG(φ)

such that uj ⊥ ua for all a < j.

Then the data are projected on a sub-space made by the k vectors, and the Hotelling’s T 2-
test is performed on the projected data. Denote U[k] the p× k matrix made by the k vectors
u1, . . . , uk. On this lower dimensional sub-space of dimension k, it is possible to perform a
Hotelling T 2-test. To do this, we introduce the two quantities:

N =
n1 + n2 − p− 1

(n1 + n2 − 2)p
,

T 2
k =

n1n2

n1 + n2
(β

1 − β2
)
′
U[k](U

′

[k]ΣU[k])
−1U

′

[k](β
1 − β2

).

Then, the statistic NT 2
k follows a F -distribution Fp,n1+n2−p−1.

Intuitively, the idea is similar to Principle Components Analysis (PCA). On the one hand,
PCA makes a k dimension sub-space totally based on the data. On the other hand, Jacob
et al make a k dimensional sub-space based on some prior information about the network.
Therefore, the choice of the network and the sub-space’s dimension play an important role
in their method.

3 Graphical model for identification of interactions

This section gives a background about graphical models and Gaussian graphical models.
They are used in many different frameworks such as image analysis, physics, economics.
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One of their applications is the construction of biological regulation networks. We refer to
this problem as “network inference” problem.

3.1 General graphical models

A graphical model is a probabilistic model for which a graph is used to represent the con-
ditional dependence structure between random variables. We remind that two random vari-
ables X and Y are independent conditionally on a variable Z if

P(X ≤ x, Y ≤ y|Z = z) = P(X ≤ x|Z = z)P(Y ≤ y|Z = z)

for all x, y and z such that P(Z = z) > 0.
In the following, I will consider the special case of random variables with a density

function as I will in the end only consider Gaussian Graphical Model. In this special case,
the conditional independence can also be defined as follows. Denote f(X) the density
function of a random variable X . Assume that all random variables X, Y and Z has a
density function. Hence, two random variables X and Y are independent conditionally on a
variable Z if

f(X, Y |Z) = f(X|Z) f(Y |Z).

Assume g is a graph with p nodes labelled {1, .., p}. For two nodes a, j, denote

a ∼ j ⇔ there is an edge between two nodes a and j in the graph g.

Hence, neighbours of node j is the set ne(j) = {a|a 6= j; a ∼ j}. In Figure 1.4, we have
ne(1) = {2, 3}.

Figure 1.4: An undirected graph.

The law of one random variable X = (X1, .., Xp) is a graphical model according to the
graph g if for all node j, Xj is independent of {Xb, b /∈ ne(j)

⋃
{j}}. We denote this relation
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as L(X) ∼ g. If the law of the random variable X has a density f , then f satisfies:

f(X1, . . . , Xp) =

p∏
j=1

f(Xj |Xne(j)),

where f(Xj |Xne(j)) is the conditional density of Xj given Xne(j).

3.2 Gaussian graphical model (GGM)

Let P := {1, ..., p} be the set of nodes andX = (X1, ..., Xp) be a random variable describing
a signal over this set. In the standard framework of Gaussian graphical model , X follows a
multivariate Gaussian distribution with unknown covariance matrix Σ∗ = (Σ∗ij)(i,j)∈P2:

X ∼ N (0p,Σ
∗).

The covariance matrix Σ∗ = E(XXT) is a positive definite symmetric matrix.
A GGM can be associated with the dependency structure between the p variables
{X1, ..., Xp} of a Gaussian random vector X . Conversely, the minimum graph g of X could
be read directly from the inverse of the covariance matrix Θ∗ := (Σ∗)−1, also called preci-
sion or concentration matrix. More precisely, the graph of X is defined by the symmetric
relation:

Two nodes a and j are linked⇔ Θ∗aj 6= 0.

3.3 Inference in GGM

One of the most usual goal of using GGM is to recover an interaction network between
variables. In the framework of GGM, the network could be read directly from the adjacency
matrix A of the precision matrix which is defined by:

Aij =

0 if Θ∗aj = 0

1 if Θ∗aj 6= 0

Therefore, the goal becomes inferring the precision matrix Θ∗.
In classical contexts where the number of observations n is much larger than the number

of variables p, the most usual way to infer the parameters is to use maximum likelihood
method. Assume that we have a sample {X1, ...,Xn} composed of n i.i.d. replications of X .
Denote X = (xij) as the data matrix of dimension n× p. The row i of matrix X is Xi. With
the empirical covariance matrix Sn = XTX/n, the maximal likelihood estimator (MLE) is:

Θ̂mle = arg min
Θ∈S+

p

L(Θ) = arg min
Θ∈S+

p

− log det(Θ) + Trace[ΘSn],
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where S+
p is the set of p × p positive definite matrices. When n ≥ p, this problem has a

unique solution which is (Sn)−1.
However, MLE does not work well in the high-dimensional setting. First, MLE gives

us more than one solution when n � p. Second, in some specific contexts, people usually
assume that the true set of direct relationships between variables is small. In other words, the
true interaction network of variables is sparse. However, MLE always gives back complete
networks where all variables are connected. Therefore, using MLE is not a good choice in
this specific context. To resolve this problem, many sparse methods have been introduced
for GGM.

3.3.1 Graphical-Lasso (Glasso)

Yuan and Lin [7]; Barnejee et al [8] propose the graphical-Lasso estimator:

Θ̂Glasso = arg min
Θ∈S+

p

EGlasso = arg min
Θ∈S+

p

L(Θ) + λ1

∑
1≤j<a≤p

|Θja|.

The tuning parameter λ1 controls the sparsity of Θ̂Glasso. The bigger λ1, the more sparse
the matrix Θ̂Glasso. When λ1 tends to zero, Θ̂Glasso tends to the MLE estimator Θ̂mle. The
graphical-Lasso estimator is always symmetric, positive definite which are nice and desir-
able properties of a precision matrix estimator.

3.3.2 Neighborhood selection (NS)

Meinshausen and Buhlmann [9] propose a method to fill the gap between GGM and lin-
ear regression model. They made the important remark that, in the GGM framework with
centered data, one has:

Xj =
∑
a6=j

(θ∗)jaXa + εj , (1.1)

where θ∗ja = −Θ∗ja/Θ
∗
jj and εj ∼ N (0, 1/Θ∗jj). By the definition of the adjacency matrix ,

we can recover the adjacency matrix of Θ∗ from entries (θ∗)ja.
Hence, For each random variable Xj , its set of neighbors is estimated by the support of
vector:

θ̂NSj = arg min
θj∈Rp−1

‖Xj −X\jθj‖2 + λ1‖θj‖1.

Indeed, θ̂NSj is the estimator of column j of matrix θ∗ deprived of its jth entry. A full
estimator of matrix θ∗ is then the combination of p optimization problems for p random
variables Xj .

Empirically, NS is better than Glasso at edge detection in some types of data [10] [11].
In addition, instead of solving a big lasso problem as Glasso, NS boils down to p smaller
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lasso problems. This is the reason why NS is better than Glasso from a computational
perspective. However, the NS estimator cannot guarantee the symmetric property of the
network. Meinshausen and Buhlmann suggest AND or OR rules which are both consistent
when n goes to infinity to solve the problem.

3.3.3 Sparse Partial correlation estimation (SPACE)

A variation of neighbourhood selection is SPACE proposed by Peng et al [12]. Note that,
the partial correlation (ρ∗)ij = −Θ∗ij/

√
Θ∗iiΘ

∗
jj . From equation 2.1, one has:

Xj =
∑
a6=j

(ρ∗)ja

√
Θ∗aa
Θ∗jj

Xa + εj .

Hence, they would like to estimate ρ∗ and diagonal elements of matrices Θ∗ by minimizing:

(ρ̂, Θ̂)space = arg min
θ∈S+

p

Θ11,Θ22,..,Θpp

Lspace(ρ,Θ11,Θ22, ..,Θpp) + λ1‖ρ‖1,

where

Lspace(ρ,Θ11,Θ22, ..,Θpp) =
1

2

n∑
i=1

p∑
j=1

(
xij −

p∑
a=1

ρja

√
Θaa

Θjj
xia

)2
.

Hence, the network is inferred from the support of ρ. In fact, the SPACE estimator could be
seen as a hybrid version of Glasso and NS estimators. It has the form of a linear regression
problem as NS. However, it guarantees a symmetric and positive definite estimator for the
covariance matrix. Moreover, it takes into account an estimation of the diagonal elements
of precision matrix Θ∗ as Glasso.

Although there are several differences between Glasso, NS and SPACE, the three meth-
ods are in a same framework of multivariate normal distribution.

3.4 Inference of a multiple GGM

In more complicated situations with multiple tasks or conditions, we may have multiple
networks, where each of them is associated to one task. In some situation, if we consider
that data in different tasks are totally independent, the associated networks will be inde-
pendent and usually much different. In that case, multi-task is not different from single
task. However, in most of the cases, there is always some kind of connections between
data and networks between tasks. For instance, we have data about expression level of a
set of genes in different experimental conditions. Even if the conditions are very different
the gene networks most probably share similarities. This is the reason why, beside of many
methods for GGM in single task framework, we also have many other methods for GGM in
the multi-task framework.
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3.4.1 Definition of a multi-task GGM

The framework of GGM in multi-task for centered data has been described by Chiquet et al
[13], Danaher et al [14], Mohan et al [15]. In this section, we describe again this framework.

Sometimes, data concerning the same variables could be collected from different sources.
For instance, gene expression levels are observed in different experimental conditions. Each
condition is equivalent to one task. Assume that we have K distinct tasks. Each observation
in a task k is the measurement of a p-dimensional Gaussian random vector Xk. Suppose
that all observations are independent. Moreover, if they are in the same task, they share the
same distribution. In other words,

Xk = (Xk
1 , X

k
2 , .., X

k
p ) ∼ N

(
0p, (Σ

∗)k
)
,

where (β∗)k ∈ Rp is the mean vector and (Σ∗)k is the p×p covariance matrix corresponding
to task k. With K tasks, one has K distinct matrices (Σ∗)k; k ∈ {1, .., K}. We denote:

Σ∗ =
(

(Σ∗)1, (Σ∗)2, .., (Σ∗)K
)
.

Each observation i of a random variable Xk has the form

xki = (xki1, x
k
i2, .., x

k
ip) ∈ Rp,

where i ∈ {1, .., nk}, and nk states for the number of observations in the task k. Hence, data
in task k is a nk × p matrix denoted by:

Xk =

 xk1
..

xknk

 ,

and the total number of observations is n = n1 + ..+ nK .
In this multi-task Gaussian framework, from the given data X = (X1, ..,XK), we

aim to infer K sparse graphs. Each graph corresponds to the conditional dependen-
cies among p variables of vector Xk in task k. Let Θ∗ =

(
(Θ∗)1, .., (Θ∗)K

)
=((

(Σ∗)1
)−1

, ..,
(
(Σ∗)K

)−1
)

be the precision matrices vector; for each task k, the non-zero

entries of (Θ∗)kaj describes a conditional dependency between the variablesXk
a andXk

j , thus
defining the graph Gk of conditional dependencies of Xk. In this framework, the maximal
likelihood estimator is

(β̂mle, Θ̂mle) = arg max
Θk∈S+

p

βk∈Rp

K∑
k=1

(
log det(Θk)− Trace[ΘkSkn]

)
, (1.2)
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where Skn is the empirical covariance matrix function:

Skn =
1

nk
(Xk)TXk. (1.3)

The equation 1.2 corresponds to the case where the inference is performed independently
within each condition.

3.4.2 Sparse methods for GGM in multi-task framework

In this section, we describe sparse methods in the multi-task framework. First of all, all
methods developed for single task framework could be used in the multi-task framework.
In the case where data in different tasks are independent, using these methods is straightfor-
ward.

However, in many cases, data in different tasks are not independent, for instance, gene
expression data in multiple tasks may share a very similar regulatory network. Therefore, if
we use data between tasks independently, we may lose information. This is a serious prob-
lem especially in the high-dimensional setting. In this section, we make a brief overview
of the Glasso and NS in this new framework. Then, we describe some more sophisticated
methods which share information between tasks.

3.4.2.1 Glasso. In the multi-task framework, the Glasso estimator is:

Θ̂Lasso = arg max
Θk∈S+

p

EGLasso = arg max
Θk∈S+

p

LLasso(Θ) + ΩLasso
1 (Θ),

where

LLasso(Θ) =

K∑
k=1

(
log det(Θk)− Trace{ΘkSkn}

)
,

ΩLasso
1 (Θ) =−

K∑
k=1

λ1k‖Θk‖1 = −
K∑
k=1

λ1k

∑
1≤j<a≤p

|Θk
ja|,

3.4.2.2 Neighborhood selection. Similar to the single GGM framework with centered data, in
the multi-task case we have:

Xk
j =

∑
a6=j

(θ∗)kjaX
k
a + εkj . (1.4)

Then we estimate θ∗ by:

θ̂NS = arg min
θ∈S+

p

ENS = arg min
θ∈S+

p

LNS(θ) + ΩNS
1 (θ),
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where

LNS(θ) =
1

2

K∑
k=1

nk∑
i=1

p∑
j=1

(
xkij −

∑
a6=j

θkjax
k
ia

)2
,

ΩNS
1 (θ) =

K∑
k=1

λ1k‖θk‖1.

3.4.2.3 Group Lasso. Based on [16], the Group− Lasso estimator in the multi-task is:

Θ̂group−lasso = arg max
Θk∈S+

p

Egroup−lasso = arg max
Θk∈S+

p

Lgroup−lasso(Θ) + Ωgroup−lasso
1 (Θ),

where

Lgroup−lasso(Θ) =

K∑
k=1

(
log det(Θk)− Trace{ΘkSkn}

)
,

Ωgroup−lasso
1 (Θ) =− λ1

∑
a6=j

( K∑
k=1

(Θk
aj)

2
)1/2

.

The Group− lasso is a mixed norm that encourages sparse solutions with respect to groups.
Each group contains K entries such as {Θ1

aj , ..,Θ
K
aj}. Either estimators of all entries in one

group are zero or all of them are non-zero.
The geometric interpretation of Group− lasso is shown in Figure 1.5 3.

3.4.2.4 Cooperative Lasso. Similar to the Group− Lasso estimator, we have:

Θ̂coop−lasso = arg max
Θk∈S+

p

Ecoop−lasso = arg max
Θk∈S+

p

Lcoop−lasso(Θ) + Ωcoop−lasso
1 (Θ),

where

Lcoop−lasso(Θ) =Lgroup−lasso(Θ),

Ωcoop−lasso
1 (Θ) =− λ1

∑
a6=j

( K∑
k=1

(Θk
aj)

2
)1/2

+
− λ1

∑
a6=j

( K∑
k=1

(−Θk
aj)

2
+

)1/2
,

where (u)+ = max(u, 0). The Cooperative − lasso not only encourages sparse solutions
with respect to groups as group lasso, but also encourage the similar sign of elements in
a same group. Moreover, to enable the inference of different networks, let say (k, c), we
must have some (a, j) such that Θk

aj 6= Θc
aj . This event occurs with probability zero with

the group-lasso [7]. Cooperative− lasso cures the problem by either shrink all the positive
(negative) elements in one group to zero, and keep the other negative (positive) elements.
The geometric interpretation of Cooperative− lasso is showed in Figure 1.64

3These figures are taken from Chiquet et al [13]
4These figures are taken from Chiquet et al [13].
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Figure 1.5: Representations of the admissible set for the Group-LASSO penalty for a problem with two tasks and
two features. Top row: cuts of the unit ball through (β

(1)
1 , β

(2)
1 , β

(1)
2 ) for various values of β(2)

2 , where β(1)
1 , β

(2)
1

span the horizontal plane, and β(1)
2 is on the vertical axis; bottom rows: cuts through (β

(1)
1 , β

(1)
2 ) for various values

of β(2)
1 and β(2)

2 .
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Figure 1.6: Representations of the admissible set for the Cooperative-LASSO penalty for a problem with two
tasks and two features. Top row: cuts of the unit ball through (β

(1)
1 , β

(2)
1 , β

(1)
2 ) for various values of β(2)

2 , where
β
(1)
1 , β

(2)
1 span the horizontal plane, and β(1)

2 is on the vertical axis; bottom rows: cuts through (β
(1)
1 , β

(1)
2 ) for

various values of β(2)
1 and β(2)

2 .
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3.5 Remarks about the implementation of the methods

Beyond the performance of the methods in terms of estimation, one important aspect of
these methods is their implementation. In this section, we describe several packages used
to solve these problems. I categorize these packages into two categories: general Lasso
estimation and GGM estimation.

3.5.1 Packages for general lasso estimation

1. glmnet

• Pros:

– Fast computation,

– Possible to put weights on each estimated parameter,

– Provides the solution path, where the solution path is the value of Lasso esti-
mator for each value of the tuning parameters.

• Cons:

– Single task package,

– Does not compute directly the GGM but a general form of the Lasso.

2. genlasso

• Pros:

– Provides the solution path,

– Takes into account complex design matrix,

– Possible to put weights on each estimated parameter.

• Cons:

– Single task package,

– Numerically unstable and slow computation,

– Does not directly compute the GGM.

3. elasticnet

• Pros:

– Fast computation,

– Provides the solution path.

• Cons:

– Single task package,

– Does not compute directly the GGM,

– Not possible to put weights on each estimated parameter.
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3.5.2 Packages for graphical Gaussian models

1. glasso

• Pros:

– Estimates parameters of Lasso and NS directly on GGM,

– Possible to put weights on each estimated parameter.

• Cons:

– Single task package,

– Does not provide the solution path.

2. huge

• Pros:

– Fast computation,

– Computes the GGM directly.

• Cons:

– Single task package,

– Not possible to put weights on each estimated parameter.

– Does not provide the solution path.

3. space

• Pros:

– Fast computation.

• Cons:

– Single task package,

– Dose not provide the solution path,

– Not possible to put weights on each estimated parameter,

4. simone

• Pros:

– Multi-task package,

– Computes the GGM directly,

– Provides the solution path.

• Cons:

– Slow computation.
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4 Fused ANOVA method - The beginning idea of the thesis

As we described above, the two questions of differential analysis and network inference are
solved independently. However, in many specific contexts, sharing information between the
two problems actually could improve them both. For instance, it is well-known that the
mean expression level of genes and the genes regulatory network have a strong relation.
The remaining challenge is how we can answer the two questions simultaneously.

The idea of this thesis started from a paper of Chiquet et al [17]. In this paper, they
rewrite hypothesis test methods under a regression form. Let us first give more details about
their method which is called Fused ANOVA.

In the method, the framework is slightly different compared to the original framework of
GGM. In fact, it is a classical one-way ANOVA setup:

Yik = βk + εik, εik ∼ N (0, σ2
ik),

where Yik is the intensity of a continuous random variable for samples i in condition k, and
βk is the mean parameter of condition k. Denote by K the number of conditions, nk the
number of sample in condition k and n =

∑
k nk the total sample size.

Their goal is to test the differences between βk from Yik. They rewrite the problem as a
minimization problem on the objective function :

E(β) =

K∑
k=1

nk∑
i=1

(Yik − βk)2 + λ
∑
k,l

wkl|βk − βl|,

where β = (β1, ..., βK) and the weights wkl may be interpreted as a prior on the differences
between the means of two conditions. This problem encourages the absolute differences
between βk to be small: the larger the λ is, the smaller the differences will be. But, what
is the link between this optimization problem and the hypothesis test method? The answer
stands at the “fusion time” of two mean parameters between two conditions. As we know,
when λ increases, mean parameter is getting closer, and the “first time” when two mean
parameters βk and βl are fused is:

λkl =
Y (k)
. − Y (l)

.

wkl(1/n1 + 1/n2)
,

where Y (k)
. =

∑nk
i=1 Y

(k)
ik /nk and Y (l)

. =
∑nl

i=1 Y
(l)
il /nl.

If we choose wkl = 1√
1/nk+1/nl

, we recognize the statistic of the t-test. Similarly, if

wkl =
√

s2
k+s2

l

1/nk+1/nl
, where s2

k and s2
l are empirical variances of the data in tasks k and l, we

can recover the Welch’s t-test. By changing wkl, we can recover many test statistics such as
Welch’s t-test, ANOVA. In short, finding the fusion time of the optimization problem equals
to finding the statistic test methods. There are other choices for the weights such as:



Chapter 1. INTRODUCTION 35

• Trivial weights: wkl = 1,

• Default weights: wkl = nknl,

• Exponential weights: wkl = nknlexp(−γ(Y (k)
. − Y (l)

. )2),

• Adaptive weights: wkl = nknl(Y
(k)
. − Y (l)

. )−γ .

However, they are used for different purposes (e.g. better visualization, oracle properties).
Therefore, we will not mention them here in details.

Our idea is to propose a unified framework in the context of multivariate Gaussian dis-
tributions. Similar to Fused ANOVA and penalised regression for GGM, our problem will
be under the form of one optimization problem and can be solved by an alternate convex
search algorithm.

In Chapter 2, we present our model and some theoretical results. In Chapter 3, using nu-
merical simulations, we compare our model to standard methods which are used to answer
differential analysis and network inference. In Chapter 4, we apply our model to two real
datasets. Finally, in Chapter 5, we give our conclusion and the perspective of this thesis.



Chapter 2

Statistical model for coupling network
inference and differential analysis

S uppose that we have a dataset with gene expression levels from multiple experimental
conditions with several replicates per condition. This dataset could be used to treat

either a problem of multiple network inference or a problem of differential analysis. In this
chapter, we introduce a statistical model to treat these two tasks jointly. After describing
the model, we develop a penalized strategy for the inference, accompanied with an effective
algorithm. We also prove the consistency of our estimator and show how it can be used to
answer two interesting problems of genomic data analysis introduced in Chapter 1.

1 Model description

Our model is built in a multi-task framework of GGM for uncentered data. More precisely,
we consider the setting in which one has access to observations from K distinct tasks. Each
observation in a task k is the measurement of a p-dimensional Gaussian random vector Xk.
We suppose that, all observations are independent. Moreover, if they are in the same task,
they have identical distribution. We have:

Xk = (Xk
1 , X

k
2 , .., X

k
p ) ∼ N

(
(β∗)k, (Σ∗)k

)
,

where (β∗)k ∈ Rp is the mean vector and (Σ∗)k is the p×p covariance matrix corresponding
to task k. With K tasks, one has K distinct couples (β∗)k and (Σ∗)k; k ∈ {1, .., K}. We
denote:

β∗ =
(

(β∗)1, (β∗)2, .., (β∗)K
)
,

Σ∗ =
(

(Σ∗)1, (Σ∗)2, .., (Σ∗)K
)
.

Each observation i of a random variable Xk is written:

xki = (xki1, x
k
i2, .., x

k
ip) ∈ Rp,

36
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where i ∈ {1, .., nk}, and nk states for the number of observations in task k. Hence, data in
task k is a nk × p matrix denoted by:

Xk =

 xk1
..

xknk

 .

The total data is X = (X1, ..,XK) and the total number of observations is n = n1 + ..+ nK .
Following these notations, the expression level of gene j in condition k is described by

the following bilinear model, arising from Gaussian vector analysis:

Xk
j = (β∗j )k +

∑
a6=j

(θ∗)kja

(
Xk
a − (β∗a)k

)
+ εkj , (2.1)

where (θ∗)kja = −
(

(Σ∗)−1
)k
ja
/
(

(Σ∗)−1
)k
jj

and εkj ∼ N (0, σ2), where σ is a positive un-

known constant.
In words, the expression level of gene j in condition k (or equivalently, task k) mainly de-
pends on two factors: first, its mean expression in the current condition, namely (β∗)k; sec-
ond, its relationships with the other genes in the same condition, namely

∑
a6=j(θ

∗)kja

(
Xk
a −

(β∗a)k
)

.
There are several motivations for this model. The multivariate Gaussian setting is flexible

enough to catch the most important trends of gene expression data. Moreover, the vectors
of means (β∗)k are directly interpretable in terms of expression and the matrices (θ∗)k are
interpretable in terms of interaction. Beside, most of the considered data are actually log
ratio data, for which the normality assumption holds.

This model has many advantages. On the bright side, it is pretty simple, easy to study
and inherits many results from previous works due to its similarity with the linear model.
However, the bilinear form of our model requires additional developments both in terms of
computation and estimation.

Let us now specify some additional notations for the purpose of statistical inference: we
consider nk observations of the vector Xk = (Xk

1 , . . . , X
k
p )T ∈ Rp in condition k. Let

xki = (xki1, x
k
i2, .., x

k
ip) be the ith observation. Hence, the data related to the condition k is a

nk × p matrix

Xk =

 xk1
..

xknk

 .

The total number of observations is n =
∑K

k=1 nk and the whole n × p data matrix is
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X = (X1, . . . ,XK). Note that, from equation 2.1, we have

xkij = (β∗j )k +
∑
a6=j

(θ∗)kja

(
xkia − (β∗a)k

)
+ εkij . (2.2)

In this setting, we address two biological-oriented problems by using estimated parameters
of the model.

1. For network inference, we aim to infer K sparse graphs. In each task k, the inferred
graph corresponds to the conditional dependencies among the p variables of the vector
Xk. Namely, non-zero entries of (θ∗)kja indicate the conditional dependency between
variables Xk

j and Xk
a , and thus define the graph Gk of conditional dependencies be-

tween a pair of variables in Xk. Hence, the K graphs describe K interaction networks
between genes in K different biological conditions.

2. For differential analysis, variables (X1
j , .., X

K
j ) are gene expression levels of gene j in

K different biological conditions. We aim to detect changes in the mean expression
of each gene in the K conditions. In terms of parameters of the model, this can be
measured by detecting differences between the K vectors {(β∗)1, . . . , (β∗)K}.

The next section introduces a strategy for estimating the parameters of the model in the high
dimensional setting.

2 Parameters estimation

The general idea to estimate (β∗)k and (θ∗)k is to optimize a criteria composed by a loss
function plus some penalties reflecting our priors on the parameters. Possible choices for
the penalties are numerous and were introduced in Chapter 1, Section 3.3 and Section 3.4.
In the data that we are considering, the interaction networks are sparse. Moreover, many
of the vectors {(β∗)1, . . . , (β∗)K} share similar elements. Therefore, we construct a penal-
ized criterion that encourages sparsity of the concentration matrix and similarities between
mean vectors. Our estimators are defined as the argmin of the following objective function
{(β̂kλ2

, θ̂kλ1
)}k=1,...,K = arg min

βk,θk
E(β, θ , λ1, λ2; X) with

E(β, θ , λ1, λ2; X) =
1

2

K∑
k=1

nk∑
i=1

p∑
j=1

(
xkij − βkj +

∑
a6=j

θkjaβ
k
j −

∑
a6=j

θkjax
k
ia

)2
+

λ1

K∑
k=1

p∑
k=1

∑
a6=j

ωkja|θkja|+ λ2

K∑
k,l=1
k<l

p∑
j=1

%klj |βkj − βlj |,
(2.3)
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where λ1, λ2 are well chosen tuning parameters corresponding to the two penalty parts, and
ωkja, %

kl
j are given weights. From a biological point of view, the first penalty controls the

sparsity of the interaction networks, while the second penalty controls the similarity of the
gene expression levels between the different biological conditions.

If not specified, we use trivial weights where all weights ωkja = 1 and all weights %klj = 1

except for some particular scenarios. From a computation point of view, with the trivial
weights, the objective function is simpler and easier to manipulate. In particular, it is easier
to minimize the objective function in that case. However, Zou [18] showed that, with these
trivial weights, Lasso and fused-Lasso estimators could give back inconsistent estimators.
Therefore, from the theoretical point of view, the choice of the weights is important and may
have some practical consequences. We will come back to this problem in the theoretical part
of this chapter (Section 3).

2.1 Optimization

In this paragraph, we discuss the optimization of Problem (2.3). Note that for a fixed couple
(λ1, λ2), the function E(β, θ , λ1, λ2; X) is biconvex (that is, convex in β for fixed θ and
convex in θ for fixed β). Hence, (β∗, θ∗) can be estimated by an alternate convex search
algorithm (ACS) [19]. The general idea of the algorithm can be summarized as follows.
We fix either all θk or all βk, then estimate the others and iterate the whole process. The
loop continues until the two sequences of estimators converge, with the stopping condition
defined by

K∑
k=1

p∑
j=1

p∑
a=1

∣∣(θ̂kja)(t+1) − (θ̂kja)
(t)
∣∣+

K∑
k=1

p∑
j=1

∣∣(β̂kj )(t+1) − (β̂kj )(t)
∣∣ < ε0,

where ε0 is a given small number, and
(

(θ̂kja)
(t), (β̂kj )(t)

)
are our estimators at the tth step.

The pseudo code of the algorithm is the following:

ACS - Algorithm
Initial values: (β̂kj )(0) = (

∑nk
i=1 xij)/nk for all j ∈ {1, .., p} and k ∈ {1, .., K}.

While (stopping criteria not met) do

• Fixed all β̂(t), estimate θ̂(t) = arg min
θ
E(θ; β̂(t)).

• Fixed all θ̂(t), estimate β̂(t+1) = arg min
β
E(β; θ̂(t)).

end
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2.1.1 Algorithm and discussion

In 2007, Jochen et al [26] showed the convergence of the ACS algorithm. However, they
also point out that ACS may reach a local optimum but not a global optimal value. To the
best of our knowledge, there is one algorithm to find the global optimal value called global
optimization algorithm (GOP). The algorithm is developed by Floudas and Visweswaran
[27]. However, it is almost hopeless to use it in high-dimensional data due to its running
time. Several improvement of GOP have been considered involving the structure of the
given biconvex problem, but there are many remaining challenges. Therefore, in this thesis
we use the ACS algorithm, and we should be aware that the output values of ACS may be
not the global optimal values.

We now explain in more details the estimations of β∗ and θ∗.

2.1.2 Estimation of θ∗

For fixed values of (λ1, λ2, β), our objective function is equivalent to

E1(θ) =
1

2

K∑
k=1

nk∑
i=1

p∑
j=1

[(
xkij − βkj

)
−
∑
a6=j

θkja
(
xkia − βka

)]2

+ λ1

K∑
k=1

p∑
k=1

∑
a6=j

ωkja|θkja|.

In this case, minimizing E1(θ) is a Lasso problem [16]. The default form of the weighted
Lasso problem is

arg min
Θ̃

1

2
‖ỹ −X Θ̃‖22 + λ‖ω̃ ◦ Θ̃‖1,

where ỹ is an observation vector, X is a given matrix, λ is the tuning parameter, Θ̃ is the
vector of variables, and “◦” is the element-by-element multiplication. Our purpose is to
explain to the reader what are the ỹ,X , Θ̃, ω̃, λ in our own problem. In fact, we have:

• ỹ = (x1
11 − β1

1 , . . . , x
1
1p − β1

p , . . . , x
1
n11 − β1

1 , . . . , x
1
n1p − β1

p , . . . , x
K
11 − βK1 , . . . , x

K
1p −

βKp , . . . , x
K
11 − βK1 , . . . , xKnKp − β

K
p ). We can view ỹ as a vector which is made from all

elements of all data matrices Xk after centring by β. Consequently, the size of vector
ỹ in our case is 1 by

(
n1p+ · · ·+ nKp

)
, or simply, 1 by (n× p);

• Θ̃ =
(
θ1

12, . . . , θ
1
1p, . . . , θ

1
p1, . . . , θ

1
p(p−1), . . . , θ

K
12, . . . , θ

K
1p, . . . , θ

K
p1, . . . , θ

K
p(p−1)

)
.

We can view Θ̃ as a vector which is made from all the off diagonal elements of all
matrices θk. Consequently, the size of vector Θ̃ in our case is

(
p(p− 1)K

)
by 1;

• λ = λ1;
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• ω̃ =
(
ω1

12, . . . , ω
1
1p, . . . , ω

1
p1, . . . , ω

1
p(p−1), . . . , ω

K
12, . . . , ω

K
1p, . . . , ω

K
p1, . . . , ω

K
p(p−1)

)
,

with the size 1 by
(
p× (p− 1)×K

)
;

• X is a (n×p) by (p(p−1)×K) matrix defined as follows. First, denote the row vectors

Akij := (xki1 − βk1 , . . . , xki(j−1) − β
k
j−1, x

k
i(j+1) − β

k
j+1, . . . , x

k
ip − βkp ).

These are 1 by (p−1) vectors. Then, we create p×(p−1)pmatrices from these vectors:

Bk
i =


Aki1 0 · · · 0

0 Aki2 · · · 0
... . . . ...
0 0 · · · Akip

 .
Then, we make K matrices of dimension (nkp)× (p(p− 1)) by stacking the Bk

i :

Ck =


Bk

1

Bk
2
...

Bk
nk


and we finally have the np× p(p− 1)K matrix

X =


C1 0 · · · 0

0 C2 · · · 0
... . . . ...
0 0 · · · CK

 .

We choose the R package huge [20] to minimize E1(θ; β). There are many good R packages
to solve the default Lasso problem such as huge [20], glmnet [21], LARS [22]. Among
them, the package huge has a simpler user interface for our problem due to the similar
framework. We only need to give the package huge the data matrix X as input value.

2.1.3 Estimation of β∗

For fixed values of λ1, λ2, θ, our objective function is equivalent to

E2(β) =
1

2

K∑
k=1

nk∑
i=1

p∑
j=1

([
xkij −

∑
a6=j

θkjax
k
ia

]
− βkj +

∑
a6=j

θkjaβ
k
a

)2
+

λ2

K∑
k,l=1
k<l

p∑
j=1

|βkj − βlj |.
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In this case, minimizing E2(β) boils down to a generalized-Lasso problem [23] (redefined
below). Particularly, if K = 2, the generalized-Lasso problem can be called Fused-Lasso.
To solve this problem, we use the genlasso package [24] or the FusedLasso package [25].
In the case K = 2, besides of using the two packages, we will show that minimizing E2(β)

(a Fused-Lasso problem) also can be seen as a Lasso problem. We consider this alternative
to optimize our problem as another option.

2.1.3.1 Estimating with K≥ 2. Similar to Section 2.1.1, we remind the reader of the form of a
generalized-Lasso with the original notations. Then we explain what are the corresponding
variables in our problem.

The default form of the generalized-Lasso problem is

arg min
β̃

1

2
‖ỹ −X β̃‖22 + λ‖Dβ̃‖1,

where ỹ is an observation vector, X is a given matrix, λ is the tuning parameter, β̃ is the
vector of coefficients and D is a given matrix. The problem is called generalized-Lasso also
because we can encourage others structural constraints on β through the matrix D, instead
of just pure sparsity as in the standard Lasso. Our problem is an example of a different type
of structure where some coefficients in β̃ tend to be very similar to each other. Here, we
have

• ỹ is a 1 by (n× p) vector:

ỹ = (x1
11 −

∑
a6=1

θ1
1ax

1
1a, . . . , x

1
1p −

∑
a6=p

θ1
pax

1
1a, . . . , x

1
n11 −

∑
a6=1

θ1
1ax

1
n1a, . . . ,

x1
n1p −

∑
a6=p

θ1
pax

1
n1a, . . . , x

K
11 −

∑
a6=1

θK1ax
K
1a, . . . , x

K
1p −

∑
a6=p

θKpax
K
1a, . . . ,

xKnK1 −
∑
a6=1

θK1ax
K
nKa, . . . , x

K
nKp −

∑
a6=p

θKpax
K
nKa);

• β̃ = (β1
1 , . . . , β

1
p , β

2
1 , . . . , β

2
p , . . . , β

K
1 , . . . , β

K
p ).We can view β̃ as a vector which is made

from all elements of all vectors βk. Therefore, the size of vector β̃ is
(
pK
)

by 1;

• λ = λ2;

• D is a (pK(K−1)/2)× (Kp) matrix defined as follows. First, we denote p+1 vectors:



Chapter 2. MODEL FOR COUPLING 43

e0 = ( 0, . . . , 0︸ ︷︷ ︸
p zero elements

) ; e1 = (1, 0, . . . , 0︸ ︷︷ ︸
p−1 zero elements

); . . . ; ep = ( 0, . . . , 0︸ ︷︷ ︸
p−1 zero elements

, 1). Then, we let

D1
j =


ej −ej e0 · · · e0

ej e0 −ej · · · e0
...

...
... . . . ...

ej e0 e0 · · · −ej


︸ ︷︷ ︸

K vectors of size p

}
K − 1 lines,

D2
j =


e0 ej −ej e0 · · · e0

e0 ej e0 −ej · · · e0
...

...
...

... . . . ...
e0 ej e0 e0 · · · −ej


︸ ︷︷ ︸

K vectors of size p

}
K − 2 lines,

...

DK−1
j =

[
e0 e0 · · · e0 ej −ej

]
︸ ︷︷ ︸

K vectors of size p

}
1 lines.

Then, we introduce the matrix Dj of dimension K(K − 1)/2×Kp

Dj =


D1
j

D2
j

...
DK−1
j

 ,
and we finally det the matrix D of dimension pK(K − 1)/2×Kp

D =


D1

D2
...
Dp

 ;

• X is a (np)× (Kp) matrix defined as follows. Let

Ak =


1 −θk12 · · · −θk1p
−θk21 1 · · · −θk2p

... . . . ...
−θkp1 −θkp2 · · · 1

 .
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Then, we make the matrix

Bk =


Ak

Ak

...
Ak


}
nk times,

and we finally have

X =


B1 0 · · · 0

0 B2 · · · 0
... . . . ...
0 0 · · · BK

 .
Thanks to this writing, we can use the R package genlasso or FusedLasso to solve our
problem.

2.1.3.2 The case of K = 2. The default form of a fused-Lasso problem is

arg min
β̃

1

2
‖ỹ −X β̃‖22 + λ

p∑
j=2

|β̃j − β̃j−1|.

Hence, the fused-Lasso problem equals a generalized-Lasso problem with matrix

D =


1 −1 0 · · · 0

0 1 −1 · · · 0
...

... . . . . . . ...
0 0 · · · 1 −1

 ,
of dimension p− 1× p.

Even if we can use the package genlasso or FusedLasso in this case, sometimes they do
not run really fast. Indeed, our own experience shows that a Lasso problem is solved faster
than a fused-Lasso problem. Hence, our idea is to rewrite the problem as a Lasso problem.
When K = 2, the loss function is:

E2(β) =
1

2

2∑
k=1

nk∑
i=1

p∑
j=1

([
xkij −

∑
a6=j

θkjax
k
ia

]
− βkj +

∑
a6=j

θkjaβ
k
a

)2
+ λ2

p∑
j=1

|β1
j − β2

j |.

The corresponding Lasso form is

arg min
β̃

1

2
‖ỹ −X β̃‖22 + λ‖ω̃ ◦ β̃‖1,

with
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• ỹ is 1 by (n× p) vector:

ỹ = (x1
11 −

∑
a6=1

θ1
1ax

1
1a, . . . , x

1
1p −

∑
a6=p

θ1
pax

1
1a, . . . , x

1
n11 −

∑
a6=1

θ1
1ax

1
n1a, . . . ,

x1
n1p −

∑
a6=p

θ1
pax

1
n1a, . . . , x

K
11 −

∑
a6=1

θK1ax
K
1a, . . . , x

K
1p −

∑
a6=p

θKpax
K
1a, . . . ,

xKnK1 −
∑
a6=1

θK1ax
K
nKa, . . . , x

K
nKp −

∑
a6=p

θKpax
K
nKa);

• β̃ is a 2p by 1 vector:

β̃ = (β1
1 , . . . , β

1
p , β

1
1 − β2

1 , . . . , β
1
p − β2

p).

Note that (β1
1 , . . . , β

1
p , β

2
1 , . . . , β

2
p) = Mβ̃, where

M =



1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

0 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · 0

1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

−1 0 · · · 0

0 −1 · · · 0
...

... . . . ...
0 0 · · · −1


is a 2p× 2p matrix. We need this remark to latter construct the matrix X ;

• λ = λ2;

• ω̃ is a 1 by (2p) vector:
ω = (0, . . . , 0︸ ︷︷ ︸

p elements

, 1, . . . , 1︸ ︷︷ ︸
p elements

).

With this vector, we only put weights to force the fusion but not the sparsity;

• X is a (np) by (2p) matrix defined as follows. Let

Ak =


1 −θ1

12 · · · −θ1
1p

−θ1
21 1 · · · −θ1

2p
... . . . ...
−θ1

p1 −θ1
p2 · · · 1

 .
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Then, we make the matrix

Bk =


Ak

Ak

...
Ak


}
nk times .

and we finally have:

X =

[
B1 0

0 B2

]
M.

Note that, using the procedure, we estimate the vector (β1
1 , . . . , β

1
p , β

1
1 − β2

1 , . . . , β
1
p − β2

p).

However, we can easily recover (β1
1 , . . . , β

1
p , β

2
1 , . . . , β

2
p) from it.

2.2 Calibration of the tuning parameters

Picking λ1 and λ2 (or the model selection issue) is a difficult and not new question, for
which many answers exist in the literature such as Bayesian information criterion (BIC),
rotation information criterion (RIC), stability approach to regularization selection (stars),
stability selection method by Meinchausen & Buhlman and cross-validation. Regarding our
own experience, there is no universal best choice. In some situations, a given procedure
works well, but easily fails in some others. Hence, we decide to access the performance
of our model on the full regularization path. This is a common practise in the literature.
Although the procedure takes much time, we have a better view on the performances that
our method can achieve and on its limit. We will go back to the model selection issue in
more details in Chapter 3, dedicated to numerical experiments.

3 Theoretical properties

In this section, we provide a sufficient condition to guarantee asymptotic normality and
selection consistency of our estimators when the number of observations n grows to infinity.

The main idea is to choose proper values for the weights and the tuning parameters.
Namely, let γ be a positive number, and let (β̃k, θ̃k) be a

√
nk-consistent estimators of

(βk, θk). For instance, we can use ordinary least square estimator (OLS) as in [18].
Besides, our choice of tunings parameters depends on the numbers of observations nk.

The choice λ2 depends only on the total number of observation n, while the choice λ1 is a bit
more complicated and depends on each individual value nk. In more detail, our estimators
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are defined as(
β̂n, θ̂n

)
:=
(
β̂1n, . . . , β̂Kn, θ̂n1 , . . . , θ̂nK

)
= arg min

θk,βk
E(β, θ, λ1nk , λ2n; X)

= arg min
θk,βk

1

2

K∑
k=1

nk∑
i=1

p∑
j=1

(
xkij − βkj +

∑
a6=j

θkjaβ
k
j −

∑
a6=j

θkjax
k
ia

)2
+

K∑
k=1

λ1nk

p∑
k=1

∑
a6=j

ωkja|θkja|+ λ2n

K∑
k,l=1

p∑
j=1

%klj |βkj − βlj |.

where ωkja = |(θ̃)kja|−γ , %klj = |(β̃)kj − (β̃)lj |−γ .
For appropriate choices of λ1nk and λ2n, our theorem guarantees the asymptotic normal-

ity and the selection consistency of our estimators. Before stating the theorem, we need
some additional notations to set the asymptotic (hypotheses) under which it is valid. In
details, we set

• (βk\j) the vector βk deprived of its jth element;

• β̂k, θ̂k our estimators when number of observations in the kth task is nk;

• βk the vector of empirical means;

• βS the vector formed by all elements different from zero of vector β which we call
support vector of vector β;

• M\j\j the matrix M deprived of its jth row and jth column, and M [i, .], M [, j] the ith

row, jth column of M ;

• Su = {j|j ∈ {1, .., p}, uj 6= 0} and SCu = {j|j ∈ {1, .., p}, uj = 0} for u any arbitrary
vector. In words, Su is the index set of elements in support set of vector u, while SCu is
the complement set of Su;

• S(θ∗)k = {(j, a, k)|j, a ∈ {1, .., p}; k ∈ {1, .., K}; (θ∗)kja 6= 0} and SC(θ∗)k =

{(j, a, k)|j, a ∈ {1, .., p}; k ∈ {1, .., K}; (θ∗)kja = 0};

• (θ∗)kS(β∗)k
the matrix (θ∗)k with rows and columns restricted to the support set of vector

(β∗)k;

• |S| the cardinality of S for S any arbitrary set.

• B =
{

(j, k, l)|(β∗)kj = (β∗)lj ; k, l ∈ {1, ..K}; j ∈ {1, .., p}
}

.

• Finally, let us introduce an important notation. We would like to rewrite the vec-
tor β∗ =

(
(β∗)1, .., (β∗)K

)
in a new and more comprehensive form. In details, for
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k, l ∈ {1, .., K} and j ∈ {1, .., p}, if we have (β∗)kj = (β∗)lj and k < l, we remove the
element (β∗)lj from vector β∗. After the process, we obtain a new vector β∗co. Moreover,
there exist an matrix Mβ such that

β∗ = β∗coMβ.

Denote M−1
β as the pseudo inverse matrix of Mβ .

With these notations, we assume that for all k, one has

(A1) n = cknk,

(A2) lim
nk→∞

1

nk

(
Xk − 1nk

(
(β∗)k

)T)T(Xk − 1nk
(
(β∗)k

)T)
= Ck,

where ck is a given positive real number and Ck is a semi positive definite matrix. Conse-
quently, we have

lim
nk→∞

1

nk

(
Xk − 1nk

(
(β∗)k

)T)T
\j\j

(
Xk − 1nk

(
(β∗)k

)T)
\j\j

= Ck\j\j .

Theorem 3.1 Let γ > 1 be a real positive number. For all k ∈ {1, .., K}, suppose that
λ1nk/

√
nk → 0, λ1nkn

(γ−1)/2
k → ∞, λ2n/

√
n → 0, λ2nn

(γ−1)/2 → ∞ and (A1), (A2) are
satisfied, then our estimators have the following properties

• Asymptotic normality

√
nk

(
(θ̂nk)kS(θ∗)k

−(θ∗)kS(θ∗)k

)
→ N

(
0, σ2


(Ck\1\1)−1

S(θ∗)k[1,.])
.. 0

.. .. ..

0 .. (Ck\p\p)
−1
S(θ∗)k[p,.])

).
√
n
(

(β̂n)− (β∗)
)
→
(
Mβ Θ MT

β

)−1
Mβ N

(
0, σ2Θ

)
MT
β , where

Θ = diag(Θ1, ..,ΘK) and
Θk = ck

[
Idp − (θ∗)k

]T [
Idp − (θ∗)k

]
.

• Selection consistency

lim
nk→∞

P
(
supp{θ̂nk} = supp{(θ∗)k}

)
= 1.

3.1 Sketch of the proof

Due to the length of our proof, we first describe informally its main lines:
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• We introduce a convex function V n(u, v) whose unique minimizer (ûn, v̂n) is the dif-
ference between our estimators and the true values (β∗, θ∗):

(ûn, v̂n) = (β̂n, θ̂n)− (β∗, θ∗).

The convex function V n(u, v) is composed by K sub convex functions, each of whom
corresponding to one task, with minimizer given by (ûkn, v̂nk). We will explain these
functions more clearly throughout the proof.

• Under the assumptions of the theorem, we study the asymptotic behavior of V n(u, v)

when all nk tends to infinity. We show that it converges to a convex function V (u, v)

whose optimal value can be defined in an explicit form.

• Applying results of Geyer [28], Knight and Fu [29], we show that (ûkn/
√
n, v̂nk/

√
nk),

the difference between the true values and our estimators for each k converges to the
optimum value of function V (u, v).

• Then, we prove that (ûkn, v̂nk) follows a normal distribution with known covariance
matrix. As a consequence, we obtain the asymptotic normality.

• Finally, we prove the selection consistency by means of the asymptotic normality.

3.2 Proof of Theorem 3.1

3.2.1 Asymptotic normality

Let

βkj = (β∗)kj +
ukj√
n
, θkja = (θ∗)kja +

vkja√
nk

and consider the function

Ψn(u, v) =Ln(u, v) + Ω1n(v) + Ω2n(u)

=

K∑
k=1

nk∑
i=1

p∑
j=1

∣∣∣xkij − ((β∗)kj +
ukj√
n

)
+
∑
a6=j

(
(θ∗)kja +

vkja√
nk

)(
(β∗)ka +

uka√
n

)

−
∑
a6=j

(
(θ∗)kja +

vkja√
nk

)
xia

∣∣∣2
2

+

K∑
k=1

λ1nk

p∑
j=1

∑
a6=j

wkja

∣∣∣(θ∗)kja +
vkja√
nk

∣∣∣
+ λ2n

K∑
k,l=1

p∑
j=1

%klj

∣∣∣(β∗)kj +
ukj√
n
− (β∗)lj −

ulj√
n

∣∣∣,
where, ωkja = |(θ̃)kja|−γ , %klj = |(β̃)kj − (β̃)lj |−γ and θ̃, β̃ are ordinary least square estimators
of θ∗ and β∗. Denote (ûn, v̂n) = (ûn1 , .., ûnK , v̂n1 , .., v̂nK ) as the argmin of Ψn(u, v), one has
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β̂kn = (β∗)k + ûn/
√
n and θ̂nk = (θ∗)k + v̂nk/

√
nk. (2.4)

Therefore, (ûn, v̂n) is also the argmin of function V n(u, v) defined by

V n(u, v) =Ψn(u, v)−Ψn(0, 0)

=

[
Ln(u, v)− Ln(0, 0)

]
︸ ︷︷ ︸

T 1(n)

+

K∑
k=1

p∑
j=1

∑
a6=j

[
λ1nk√
nk
wkja
√
nk

(∣∣∣(θ∗)kja +
vkja√
nk

∣∣∣− ∣∣∣(θ∗)kja∣∣∣)
]

︸ ︷︷ ︸
T 2
ja(nk)

+

K∑
k,l=1

p∑
j=1

[
λ2n%

kl
j

(∣∣∣(β∗)kj +
ukj√
n
− (β∗)lj −

ulj√
n

∣∣∣− ∣∣∣(β∗)kj − (β∗)lj

∣∣∣)].︸ ︷︷ ︸
T 3
j (n)

We will consider the behaviors of the three terms T 1(n), T 2
ja(nk), T

3
j (nk, nl) successively

when all nk and n tend to infinity.

3.2.1.1 T2
ja(nk). We note that

• If (θ∗)kja 6= 0, then ωkja −→
(

(θ∗)kja

)−γ
and
√
nk

(∣∣∣(θ∗)kja +
vkja√
nk

∣∣∣ − ∣∣∣(θ∗)kja∣∣∣) −→
vkjasign((θ∗)kja). By Slutsky’s theorem, T 2

ja(nk)
nk→∞−−−−→ 0.

• If (θ∗)kja = 0, using the
√
nk-consistency property of θ̃kja, we have

– If vkja = 0, then T 2
ja(nk)

nk→∞−−−−→ 0,

– If vkja 6= 0, then T 2
ja(nk)

nk→∞−−−−→ +∞.

3.2.1.2 T3
j (n). We now study T 3

j (n) term

• If (β∗)kj 6= (β∗)lj or
(

(β∗)kj = (β∗)lj and ukj = ulj

)
, then T 3

j (n)
n→∞,−−−−→ 0.

• Otherwise, T 3
j (n)

n→∞,−−−−→∞.

3.2.1.3 T1(n). Finally, we consider the first term T 1(n). Let

Mk
ij = −

ukj√
n
−
∑
a6=j

vkja√
nk
xkia +

∑
a6=j

(
(θ∗)kja

uka√
n

+
vkja√
nk

(β∗)ka +
ukav

k
ja√

nnk

)
.

Hence,

T 1(n) =

K∑
k=1

∑
i,j

Mk
ij

(
2εkij +Mk

ij

)
=

K∑
k=1

(∑
i,j

2εkij M
k
ij +

∑
i,j

(Mk
ij)

2
)
,
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where εkij is the values of εkj for the ith observation. We first study the term
∑

i,j ε
k
ij M

k
ij ,

then the term
∑

i,j(M
k
ij)

2. One has

∑
i,j

εkij M
k
i,j =

K∑
k=1

nk∑
i=1

p∑
j=1

εkij

(
−

ukj√
n
−
∑
a6=j

vkja√
nk
xkia +

∑
a6=j

[
(θ∗)kja

uka√
n

+
vkja√
nk

(β∗)ka +
ukav

k
ja√

nnk

])

=
∑
k,i,j

εkij

([
−

ukj√
n

+
∑
a6=j

(θ∗)kja
uka√
n

]
−
∑
a6=j

vkja√
nk

(
xkia − (β∗)ka

)
+
∑
a6=j

ukav
k
ja√

nnk

)

=
∑
k,i,j

εkij

[
−

ukj√
n

+
∑
a6=j

(θ∗)kja
uka√
n

]
︸ ︷︷ ︸

Sk1

+
∑
k,i,j

εkij

[
−
∑
a6=j

vkja√
nk

(
xkia − (β∗)ka

)]
︸ ︷︷ ︸

Sk2

+
∑
k,i,j

εkij

[∑
a6=j

ukav
k
ja√

nnk

]
︸ ︷︷ ︸

Sk3

=
∑
k

Sk1 +
∑
k

Sk2 +
∑
k

Sk3 .

We now compute the terms Sk1 , S
k
2 , S

k
3 successively.

For Sk1 terms, we note that

nk∑
i=1

εkij√
n
−→ N (0,

nkσ
2

n
) = N (0, ckσ

2)

In other words,
∑nk

i=1
εkij√
nk
∼ εkj = N (0, ckσ

2) . Hence

Sk1 =
∑
i,j

εkij

(
−

ukj√
n

+
∑
a6=j

(θ∗)kja
uka√
n

)
=

p∑
j=1

( nk∑
i=1

εkij√
n

) (
− ukj +

∑
a6=j

(θ∗)kjau
k
a

)

−→
p∑
j=1

εkj

(
− ukj +

∑
a6=j

(θ∗)kjau
k
a

)
−→ uk

(
Idp − (θ∗)k

)(
εk1, .., ε

k
p

)T
−→ ukN

(
0, σ2Θk

)
, (2.5)

where Θk = ck
[
Idp − (θ∗)k

]T [
Idp − (θ∗)k

]
.

For Sk2 , let Zk be the (p − 1)p-dimension vector formed by all elements of matrix vk
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except its diagonal elements. One has

Sk2 =
∑
i,j

εkij

(
−
∑
a6=j

vkja√
nk

(
xkia − (β∗)ka

))
=−

∑
i,j,a 6=j

εij
vja√
n

(
xkia − (β∗)ka

)
nk→∞−−−−→− ZkN

(
0, σ2Ck

)
, (2.6)

where

Ck =

C
k
\1\1 .. 0

.. .. ..

0 .. Ck\p\p

 is a (p− 1)p× np matrix,

and ε is the np-dimension vector formed by all elements εkij .

For Sk3 , with fixed values of (uka, v
k
ja) and note that

∑nk
i=1

εkij√
nnk
→ 0 when nk goes to

infinity, we have

Sk3 =

p∑
j=1

( nk∑
i=1

εkij
nk

)∑
a6=j

ukav
k
ja → 0. (2.7)

From (2.5)(2.6)(2.7), one has

2
∑
i,j

εkij M
k
ij = −2(uk, vk)T

(
W k

1

W k
2

)
, (2.8)

where

W k
1 = N

(
0, σ2Θk

)
, W k

2 = N
(

0, σ2Ck
)
.

Now, we compute
∑

i,j(M
k
ij)

2. One has

∑
i,j

(Mk
ij)

2 =
∑
i,j

( [
−

ukj√
n

+
∑
a6=j

(θ∗)kja
uka√
n

+
∑
a6=j

ukav
k
ja√

nnk

]
︸ ︷︷ ︸

T1kij

−
[∑
a6=j

vkja√
nk

(
xkia − (β∗)ka

)]
︸ ︷︷ ︸

T2kij

)2

=
∑
i,j

(
T1kij − T2kij

)2

=
∑
i,j

( T1kij)
2 − 2 T1kij T2kij + (T2kij)

2.

When nk grows to infinity, we have∑
i,j

(T1kij)
2 −→ ukΘk(uk)T ,

∑
i,j

2 T1kij T2kij −→ 0,
∑
i,j

(T2kij)
2 −→ ZkCk(Zk)T .
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Therefore, ∑
i,j

(Mk
ij)

2 −→ (uk, Zk)

(
Θk 0

0 Ck

)
(uk, Zk)T . (2.9)

From (2.8)(2.9), we have

T 1(n)
n→∞−−−→

K∑
k=1

(uk, Zk)

(
Θk 0

0 Ck

)
(uk, Zk)T − 2(uk, vk)

(
W k

1

W k
2

)
. (2.10)

3.2.1.4 Global behavior of Vn. From the behaviors of three terms T1(n), T 2
ja(nk) and

T 3
j (nk, nl), we see that V n(u, v) tends to a convex function V (u, v) defined by

• If vkja = 0 for all (j, a, k) ∈ SC(θ∗)k and ukj = ulj for all (j, k, l) ∈ B then

V (u, v) = (uM−1
β , Z1

S(θ∗)1
, .., ZKS(θ∗)K

)Mat1(uM−1
β , Z1

S(θ∗)1
, .., ZKS(θ∗)K

)T−2(uM−1
β , Z1

S(θ∗)1
, .., ZKS(θ∗)K

)Mat2,

where

Mat1 =



Mβ


Θ1

Θ2

. . .

ΘK

MT
β 0

0
CS(θ∗)1

CS(θ∗)2

. . .

CS(θ∗)K


,

Mat2 =


Mβ

 W 1
1

· · ·
WK

1

MT
β

(W 1
2 )S(θ∗)1

· · ·
(WK

2 )S(θ∗)K


,

and

CS(θ∗)k
=

(Ck\1\1)−1
S1

.. 0

.. .. ..

0 .. (Ck\p\p)
−1
Sp

 .

• Otherwise, V (u, v) = +∞.
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Because function V n(u, v) is convex and V (u, v) has unique optimal value which is

(û, v̂) = (ûk, v̂k) = (Mat1)−1Mat2.

More precisely,

û =
(
Mβ diag(Θ1, ..,ΘK) MT

β

)−1
Mβ(W 1

1 , ..,W
K
1 )TMT

β ,

v̂k =
(
v̂kS(θ∗)k

, v̂kSC
(θ∗)K

)
=
(

(CS(θ∗)k
)−1(W 1

2 )S(θ∗)k
, 0
)
.

We apply the epi-convergence results of Geyer(1994), Knight and Fu(2000), and we have

(ûn, v̂nSθ∗ )→ (û, v̂).

Hence, from equation (2.4) we have the asymptotic normality of our estimators.

3.2.2 Selection consistency

Now we prove the second part of the theorem which is the consistency of the support of our
estimators θ̂. From the asymptotic normality of the support part, for all (θ∗)kja 6= 0, we have
θ̂kja → (θ∗)kja. Hence, our estimators detect all the true different zero values (true edges).
Now we just have to show that, our estimators do not detect wrong edges. In other words,
for all variable Xk

b that do not belong to Skj -the neighbourhood set of Xk
j , we must verify

that
P (Xk

b ∈ S
k
j )→ 0, ∀b /∈ Skj .

Suppose that Xk
b ∈ S

k
j , hence, θ̂kjb 6= 0. Following the KKT conditions, we have

∂E(β, θ; X)

∂θkjb
(β̂, θ̂) = 0.

Hence,
nk∑
i=1

(
xkij − β̂kj −

∑
a6=j

θ̂kja
(
xkia − β̂ka

))
(xkib − β̂

k
b ) =λ1nkw

k
jb.

Consequently,

1
√
nk

nk∑
i=1

(
xkij − β̂kj −

∑
a6=j

θ̂kja
(
xkia − β̂ka

))
(xkib − β̂

k
b ) =

λ1nkw
k
jb√

nk
.

Now will we show that the left hand side is bounded while the right hand side tends to +∞.
This would be a contradiction, that would proof the selection consistency. For the right hand



Chapter 2. MODEL FOR COUPLING 55

side, from our initial hypothesis on λ1nk , one has

λ1nkw
k
jb√

nk
=
λ1nk√
nk
n
γ/2
k

1

|√nkθ̃kbj |γ
=∞× O(1)→∞.

On the other hands, note that xkij = (β∗)kj +
∑
a6=j

(θ∗)kja
(
xkia − (β∗)ka

)
+ εkij . Consequently, the

left hand side satisfies

1
√
nk

∣∣∣∣ nk∑
i=1

[
(β∗)kj − β̂kj +

∑
a6=j

(
(θ∗)kja − θ̂kja

)
xkia −

∑
a6=j

(
(θ∗)kja(β

∗)ka − θ̂kjaβ̂ka
)

+ εkij

](
xkib − β̂

k
b

)∣∣∣∣
=

1
√
nk

∣∣∣∣ nk∑
i=1

[
(β∗)kj − β̂kj +

∑
a6=j

(
(θ∗)kja − θ̂kja

)(
xkia − (β∗)ka

)
−
∑
a6=j

(
θ̂kja(β

∗)ka − θ̂kjaβ̂ka
)

+ εkij

] (
xkib − β̂

k
b

)∣∣∣∣
≤ 1
√
nk

∣∣∣∣((β∗)kj − β̂kj
) nk∑
i=1

(
xkib − β̂

k
b

)∣∣∣∣︸ ︷︷ ︸
Z1

+
1
√
nk

∣∣∣∣ nk∑
i=1

(∑
a6=j

(
(θ∗)kja − θ̂kja

)
(xkia − (β∗)ka)

)(
xkib − β̂

k
b

)∣∣∣∣︸ ︷︷ ︸
Z2

+
1
√
nk

∣∣∣∣∑
a6=j

(
θ̂kja(β

∗)ka − θ̂kjaβ̂ka
) nk∑
i=1

(
xkib − β̂

k
b

)∣∣∣∣︸ ︷︷ ︸
Z3

+
1
√
nk

∣∣∣∣ nk∑
i=1

εkij

(
xkib − β̂

k
b

)∣∣∣∣︸ ︷︷ ︸
Z4

.

We now show that the 4 terms Z1, Z2, Z3, Z4 are bounded. Using the asymptotic normality
results obtained in the Section 3.2.1, we have

• First term

Z1 =

∣∣∣∣√nk((β∗)kj − β̂kj
)∣∣∣∣ ∣∣∣∣∑nk

i=1(xkib − β̂
k
b )

nk

∣∣∣∣ −→ 0.

• Second term

Z2 =
∑
a6=j

∣∣∣√nk((θ∗)kja − θ̂kja
)∣∣∣ ∣∣∣(xkia − (β∗)ka

)∑nk
i=1(xkib − β̂

k
b )

nk

∣∣∣
−→

∑
a6=j

∣∣∣√nk((θ∗)kja − θ̂kja
)∣∣∣Ckab = N

(
0, C2

)
,where C2 is a constant.
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• Third term

Z3 =
∑
a6=j

∣∣∣√nk((β∗)kj − β̂kj
)∣∣∣ ∣∣∣θ̂kja∣∣∣ ∣∣∣∑nk

i=1(xkib − β̂
k
b )

nk

∣∣∣
−→

∑
a6=j

∣∣∣√nk((β∗)kj − β̂kj
)∣∣∣ ∣∣∣θ̂kja∣∣∣ 0 = 0.

• Fourth term

Z4 →
1
√
nk
N (0, 4

nk∑
i=1

‖xkib − (β∗)kb‖
2σ2).

Therefore, the left hand side go to infinity, while the right hand side is controlled. Hence,

P (Xk
b ∈ S

k
j ) ≤ P (

∂E(β, θ; X)

∂θkjb
(β̂, θ̂) = 0)→ 0.

As a conclusion, we have the selection consistency of our θ̂.

4 Usability towards gene expression analysis

In this section, we explain how our model can be used to answer both questions of differ-
ential analysis and network inference from a practical point of view. We explore in details
several set-ups arising naturally in genomics. First, when we consider one single gene,
independently of the other genes. Second, we consider a set of genes.

At the single gene level, we aim to answer the question that, given one gene and two
conditions, is the gene expressed differentially between the two conditions? We refer to
this question as “univariate differential analysis”. In case of more than two conditions, we
perform pairwise conditions tests for each gene. For instance, if one has data about one gene
in three conditions labelled 1, 2 and 3, we perform 3 tests to detect changes in the mean of
this gene between conditions 1 and 2, 2 and 3, 3 and 1.

In the more complicated case where we consider a set of genes, we wish to answer two
questions. First, is there any gene in the set whose mean expression changes between two
given conditions? This question could be stated in another way: are the two vectors formed
by the mean expression levels of all genes in the considered set different? We refer to this
question as “multivariate differential analysis”. Second, what is the interaction network
between the genes in this set? We call this question “network inference”.

The following part explains ways to answer these questions at the two corresponding
levels.
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4.1 Single gene analysis

4.1.1 Univariate differential analysis

To answer the univariate differential analysis, we choose to create a priority list. This list
consists of triplets (j, k, l) indicating that gene j changes its mean expressions between con-
ditions k, l with a given probability. We sort the list according to this probability. Actually,
for a fixed value of λ1, the priority list may be obtained from the ACS algorithm by varying
λ2 from infinity to zero. Note that, the bigger the λ2, the more the mean expression values
fuse between the conditions. For each triplet (j, k, l), we assign a value of λ2 called the
fusion time. The fusion time of (j, k, l) indicates the smallest values of λ2 making two esti-
mators of (β∗)kj and (β∗)lj equal. Therefore, if the fusion time of one triplet (j, k, l) is big, it
means that gene j has a high probability to differ between the two conditions (k, l). We can
sort the list base on the corresponding fusion times of triplets.

Note that this priority list is associated with a given λ1. In an easy scenario where
we know the covariance matrix or the network, there is nothing to do with θ and
its corresponding penalty part. Nevertheless, in most of the cases, prior information
about the network is very limited. Therefore, we would try every possible values of
λ1 to see which one leads to the best results. To sum up, we proceed as follows:

Procedure to find priority list for univariate analysis

1. Generate a list of λ1 from zero to infinity.

2. For each fixed value of λ1:

• Find the fusion times of all triplets by varying values of λ2 and using ACS algo-
rithm.

• Make the priority list of this λ1 based on sorting the fusion times in decreasing
order.

Final result will be several lists of triplets. Each list corresponds to one λ1. In each list, the
top triplets are the most important triplets.

4.2 Gene set analysis

4.2.1 Multivariate differential analysis

At this level, we provide a priority list of all the couples (k, l), where the first couple (k, l)

corresponds to a pair of conditions in which mean expression vectors of all genes in the set
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has the highest possibility to change among all the couples of two conditions. In term of fu-
sion time, the first couple (k, l) corresponds to the first value of λ2 making mean expression
level vector in one condition different from any other vectors in the remaining conditions.

Procedure to find the priority list for multivariate differential analysis is similar to the
univariate case. The major difference is that, instead of detecting one triplet by comparing
two mean values of one gene between two conditions, we now detect a couple by comparing
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two vectors of means of a set of genes in two conditions. The procedure is detailed here:

Procedure to find priority list for multivariate analysis

1. Generate a list of λ1 from zero to infinity.

2. For each fixed value of λ1:

• Find the fusion times of all couples by varying values of λ2 and using ACS algo-
rithm.

• Make the priority list of this λ1 based on sorting the fusion times in decreasing
order.

4.2.2 Network inference

Again, we build on the idea of a priority list, but now in terms of edge detection. For a
fixed value of λ2, we vary λ1 from zero to positive infinity. Note that, the bigger the λ1, the
less the edges in the network corresponding to (θ̂)k. For each triplet (j, a, k), we assign a
value of λ1 called the shrinking time. The shrinking time of (j, a, k) indicates the smallest
values of λ1 making estimator of (θ∗)kja equal to zero. Therefore, if the shrinking time of a
triplet (j, a, k) is big, it means that there is a high probability of link between genes (j, a)

in condition k. For each couple (λ1, λ2), we use ACS algorithm to estimate (θ∗)k. Hence,
we detect a new edge and add them into the priority list. An edge could be labelled by one
triplet (j, a, k) where j, a denote two genes and k a condition. Therefore, each value of λ2

gives us a priority list. This strategy avoids choosing λ2 which is known to be a difficult
problem. In detail, we derive the priority list as follows:

Procedure to find priority list in network inference

1. Generate a list of λ2 from zero to infinity.

2. For each fixed value of λ2:

• Find the shrinking times of all triplets by varying values of λ1 and using ACS
algorithm.

• Make the priority list based on sorting the shrinking times in decreasing order.
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5 Conclusion of Chapter 2

In Chapter 2, we described our model and proposed an algorithm to estimate its parameters.
From a theoretical perspective, we prove the consistency of our estimators. In practice, we
propose a procedure for using our model to answer the two questions of differential analysis
and network inference.



Chapter 3

Numerical experiments

T he goal of this chapter is to compare the performances of our method with some
other methods which are widely used to perform differential analysis and network

inference. We first describe our simulation protocol. Then we explain how we compare the
different methods and finish by discussing the results obtained.

1 Simulation procedure and experimental design

For both differential analysis experiment and network inference experiment, we simulate
data in a similar fashion. From one experiment to the next, we change the values of some
parameters such as the size of the data matrices or the number of tasks (or biological condi-
tions). We do this for three reasons.

First, we want to study the behavior of all methods when we give them more and more
information. This is a very standard goal in statistics, and we simply increase the number
of observations to do that.

Second, we need to vary these parameters to balance both the statistical and the compu-
tational complexity of the experiment. Depending on the goal of the experiment (network
inference or differential analysis), the studied data could be easy or very hard to analyse.
For example, in our experiments, the network inference task is usually more complicated
than the differential analysis task for two main reasons. First, the number of parameters
to estimate is much larger in network inference experiments. Second, differential analysis
methods such as the t-test and the ANOVA usually have simpler computation. These meth-
ods run fast even for datasets containing thousand of genes. On the other hand, methods
to infer network such as the graphical lasso and the neighbourhood selection usually use
an iterative algorithm and sometime have a long runtime, especially for datasets with large
number of genes. Therefore, a dataset containing thousands of genes can be relatively easy
to analyse in the context of differential analysis. However, it may turn to be very difficult to
analyse in the context of network inference.

61
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Third, we vary the simulation parameters to better compare and assess the differences
between the methods. For example, in our differential analysis experiments, in an easy
scenario when we have some prior information about the network, many methods work
well. In contrast, in some hard scenarios like when we do not have any prior information,
all considered methods fail. If we want to compare them, we have to find new settings in
which the differences between the methods are clearer and easier to evaluate.
In the following section, we describe the main steps to simulate our datasets. Detailed values
of the parameters in each experiment are summarized in Table 3.1.

1.1 Protocol to simulate data

Our protocol is in 4 steps:

1. Choose the number of tasks (conditions) K, and the number of variables (genes) p.

2. Choose the number of observations (samples) nk for each task k.

3. Generate a mean vector and a covariance matrix
(

(β∗)k, (Σ∗)k
)

for each task k.

• For the mean vectors, we always fix mean vector in the first condition to zero, i.e
(β∗)1 = 0. Then, we use a parameter µ to control the similarity between (β∗)1 and
the mean vectors of the other tasks (β∗)k. For instance, if µ equals 50%, half of the
elements of (β∗)k equal zero for all k 6= 1. For each task, the set of zero elements
is chosen randomly. All other elements of vector (β∗)k are set equal to 1/2.

• For the covariance matrices, all (Σ∗)k are set equal. We generate them using the
R package huge. As the choice of the network is also important, we consider 4
network types proposed by the huge R package which are called band, cluster,
hub, and random. An example of each network type is shown in Figure 3.1. In
detail, the covariance matrices are generated by the R function

(Σ∗)k ← huge.generator(2, p, type of network)$sigma.

We note that the number 2 in the above function could be replaced by any positive
integer number. In fact, the R function huge.generator is made to generate a
dataset following a centered normal distribution. The covariance matrix of this
normal distribution is a by-product of this function. The number of observations
of the simulated dataset is chosen by the first parameter in this function. In our
simulation, we only recover the covariance matrix generated by this function.

In fact, given the network (denoted by the adjacency matrix A) and its type, gen-
erating the corresponding covariance matrix is not a trivial work. In the huge

package, to obtain a positive definite precision matrix, the smallest eigenvalue of



Chapter 3. NUMERICAL EXPERIMENTS 63

0.3 × A is computed. We denote it as e. Then authors set the precision matrix
equal to 0.3×A+(|e|+0.1+0.1)I , where I is the identity matrix. The covariance
matrix is then computed to generate multivariate normal data.

4. We generate the simulated data for each task using a multivariate normal distribution
N ((β∗)k, (Σ∗)k). In R, we use the package mtvnorm with the following code:

Xk ← rmvnorm
(
nk,mean = (β∗)k, sigma = (Σ∗)k

)
.

1.2 Importance of the network type

In a network, the degree of a node is defined as the number of node directly connected
to it. The maximum degree of all nodes is usually called the sparsity parameter of the
network [30] and we denote it by d. A problem is in a ultra-high dimensional setting if
d[1 + log(p/d)] is larger than n/2. In [30], the author also demonstrated that any network
inference procedure fails for data in a ultra-high dimensional setting in the sense that their
minimax risks blow up in this setting. Therefore, the choice of parameters such as the
sparsity and the number of nodes for each network is very important. The value of d can
be controlled in the function huge.generator. In all of our simulations, we always choose d
less than 4 and avoid the ultra-high dimensional setting.

band
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3
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10

cluster

1
2 34

5
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7 8
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hub

1 2
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random

1

2

3

4

5

6 78

9
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Figure 3.1: Example of 4 types of network simulated by huge R package. Each of network contains 10 nodes. The
sparsity parameter of each network is less than 4.
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Another aspect we study is the type of network. As discussed, we choose 4 types of
network. The idea is to consider both structured networks such as band, cluster and hub;
and random networks. See Figure 3.1 for a graphical representation:

• The band network case is illustrated in Figure 3.1 (top left) with nodes labelled from
1 to 10. Each three consecutive nodes are connected and make a band. The sparsity
parameter d is 4 (for example, node 3 is connected to nodes 1, 2, 4 and 5).

• The cluster network case is illustrated in Figure 3.1 (top right). We have 3 different
clusters. In each cluster, all genes are connected. In Figure 3.1, we have d = 3 (the
node 8 for example is connected to nodes 7, 9 and 10).

• The hub network case is illustrated in Figure 3.1 (bottom left). We also have different
clusters. However, in each cluster, there is a central hub gene and all other genes are
linked to it. For instance, in the cluster, {1, 2, 3}, gene 1 is the central hub gene and
genes 2,3 are linked to it. In that case, we have d = 3 (for example, the node 7 is linked
to nodes 8, 9 and 10).

• The random network case is illustrated in Figure 3.1 (bottom right). Each node is
randomly linked to some other nodes. The nodes are chosen randomly but the number
of nodes must be less than 4. In Figure 3.1, we have d = 4 (the node 3 has the highest
degree. It is linked to nodes 1, 7, 8 and 10).

From a biological point of view, structured networks have received a lot of attention [31],
[32], [33]. That is why we consider them in our analysis. Even though it is thought that
“band” and “random” networks rarely appear in practice, we think that this case is interest-
ing at least as a reference.

In the next section, we consider two cases. Either the number of conditions K is equal
to 2 or greater than 2. In both cases, we analyse the data at two levels, single gene and gene
set in order to address either the gene differential analysis or network inference problems.
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2 Differential analysis

We consider the case where the number of conditions K is 2. In the case where K ≥ 3, we
obtain very similar results.

2.1 Results for one gene at a time analysis

In this section, we study the univariate gene differential analysis problem.

2.1.1 Experiment set up

In this experiment, we choose p = 50, all nk are equal and take a value in the set
{10, 20, 30, 50}, the similarity parameters µ = 50%. With 4 options for nk and 4 network
types, we consider a total of 16 cases. For each case, we simulated 100 datasets.

2.1.2 Competitors

We compare our method to five hypothesis testing methods, namely the Welch’s t-test, the
ANOVA, the limma, the Wilcoxon test and the SAM method. All these methods are intro-
duced in Chapter 1, Section 2.1. We compare the Receiver Operating Characteristic (ROC)
and Area Under the Curve (AUC) of all these methods for different types of simulated
datasets.

2.1.3 Three scenarios and prior information

To get more insights about the performance of our method and evaluate the importance of
knowing the network for the univariate differential analysis, we create the three following
scenarios:

• Scenario 1: The covariance matrices (Σ∗)k or the precision matrices ((Σ∗)k)−1 are
known. In this scenario, we have perfect prior knowledge about the gene network. Both
edges and amplitudes of interactions are known. Therefore, we know (θ∗)k directly
from (Σ∗)k:

(θ∗)kja =
(Θ∗)kja

(Θ∗)kjj
, where (Θ∗)k =

(
(Σ∗)k

)−1
.

Thus, we assign λ1 to zero and simply consider a grid of λ2 to infer (β∗)k. For each
value of λ2, we only estimate mean vectors (β∗)k. This scenario is a reference scenario.
It provides an upper bound on the performance of our method.
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• Scenario 2: The adjacency matrix of the precision matrix (i.e. the network) is known.
This scenario is a bit closer to what we usually have in practice. In this scenario, we
know exactly the positions of all edges in the network. Hence, we set λ1 equal to
1 and put very large weights on unconnected edges, and zero weights on connected
edges. More precisely, if Ak is the adjacency matrix corresponding to the network in
condition k, we choose

λ1 =1, ωkja =

+∞ if Akja = 0 (In our R code, we set it to 106)

0 if Akja = 1
.

Then, we make a grid of λ2. For each fixed value of λ2, we can estimate (β∗, θ∗).

In practice, we never have full information about the network, but possibly a part of it.
We consider this scenario as the second reference scenario. In this scenario, due to the
lack of information about amplitude of interactions, we expect our method to perform
worse than in the first scenario.

• Scenario 3: We have no prior information about the covariance matrix (or precision
matrix). This is the most difficult scenario. In practice, at least for small biologi-
cal networks, we are often somewhere between scenario 2 and 3. In this hard sce-
nario, we have to make a two dimensional grid for λ1 and λ2 as we need to infer both
((β∗)k, (θ∗)k). For each couple (λ1, λ2) on the grid, we get an estimator (β̂k, θ̂k).

2.1.4 Priority list

For each simulated dataset and each method, we order the genes in a priority list. For our
method, the priority list is made by ordering genes by fusion times in decreasing order.
The fusion times are created by the procedure described in Chapter 2, Section 4.1.1. Each
fusion time values is labelled by a triplet (j, k, l), where j is a gene and k, l are two biological
conditions (or tasks). For example, if the fusion time takes value 1, it means that the minimal
value of λ2 to fuse the two estimators of (β∗)kj and (β∗)lj is 1. The higher the fusion time is,
the higher the difference between the two estimators of (β∗)kj and (β∗)lj is. To be specific,
assume that we have two triplets (j1, k1, l1) with rank r1 and (j2, k2, l2) with rank r2. If r1 <

r2, then the difference of gene j1 between the two conditions k1 and l1 is considered more
significant than the difference of gene j2 between two conditions k2 and l2. Consequently,
if our method detects (β∗)k2

j2
6= (β∗)l2j2 , then automatically it will also detect (β∗)k1

j1
6= (β∗)l1j1 .

For the five hypothesis testing methods, the priority list is made by ordering the p-values
increasingly. Similar to our method, each p-value is assigned to a triplet (j, k, l). The main
difference is that the smaller the p-value is, the more significant the difference between the
two estimators of (β∗)kj and (β∗)lj .
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In what follows, we are in the case where K = 2 tasks, therefore we get only p scores, as we
only perform p tests. In the general case with arbitrary values of K, we perform pairwise
condition tests and obtain K(K − 1)p/2 scores.

2.1.5 ROC and AUC

Given a priority list of triplets, it is possible to make a ROC curve for each method. Each
triplet corresponds to a point on the ROC curve (that gives the performance of the approach
if this triplet is the last detected by the method). The horizontal coordinate of this point is
the false positive rate (FPR), and the vertical coordinate of this point is the true positive rate
(TPR). These coordinates are computed by the following procedure:

1. For each triplet (j, k, l), we consider all triplets in the priority list having higher rank
than (j, k, l) and itself as detected triplets by the method.

2. For this set of detected triplets, we compute

TPR(j, k, l) =
Number of detected triplets that are true

Number of triplets corresponding to a differential expression
,

FPR(j, k, l) =
Number of detected triplets that are wrong

Number of triplets corresponding to a non differential expression
.

From this, we make the ROC curves and compute the AUC of each curve as represented in
Figure 3.2 for instance. The AUC takes values in the range [0, 1]. The bigger the AUC of a
method, the better the detection.

Figure 3.2: Example of a ROC curve and its AUC. The AUC takes its value between 0 and 1. The dash line
presents the random guess.
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Note that each ROC curve corresponds to one simulated dataset. As we have 100 datasets,
we have 100 AUC values for each method. From that, we can make boxplots for the 6
methods.

We now look at the performances of all methods in the 3 different scenarios introduced
in Section 2.1.1.

2.1.6 Univariate analysis results

2.1.6.1 Results with known covariance matrix. In this scenario, we study the performance of our
method when full information about the covariance matrix is given. The results obtained
are very similar for all types of network. For the cluster network, results of the AUC for 4
choices of nk are shown in Figure 3.3.
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Figure 3.3: Scenario 1: covariance matrix (Σ∗)k is known. Here, we compare the AUC of 6 methods t-test,
ANOVA, wilcoxon, sam, limma and our method (fusion time). We simulated data with a number of observations
is nk ∈ {10, 20, 30, 50}. Each box represents the AUC of one method for one value of nk over 100 simulations.

Clearly, our method (the pink box) is better than the other methods for all choices of nk. This
is expected because our method has a big advantage in this scenario. More precisely, while
other methods only take into account the variance of each gene independently, our method
take into account the covariance matrices. We also see that the fewer the observations, the
higher the difference between the pink box and the others. This result somewhat justifies
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the importance of knowing the covariance matrix in complex situation as it improves gene
differential analysis.

As a conclusion, prior information on the network is important even for the univariate
differential analysis, especially when we have few observations. All methods are very good
when we have abundant observations. For other types of network, their results are shown in
Appendix A.

2.1.6.2 Result with known network. In this scenario, we study the performance of our method
when we provide the adjacency matrix of the precision matrix. For cluster networks, results
are shown in Figure 3.4.
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Figure 3.4: Scenario 2: network is known. Here, we compare the AUC of 6 methods t-test, ANOVA,
wilcoxon, sam, limma and our method (fusion time). We simulated data with a number of observations is
nk ∈ {10, 20, 30, 50}. Each box represents the AUC of one method for one value of nk over 100 simulations.

As expected, our method (the pink box) is still better than the others for every choices of nk.
Note that, the result of our method is a bit worse than in the first scenario. This is explained
by the lack information on the true value of each element in the covariance matrix.

These results emphasizes one more time the importance of the network in the univari-
ate differential analysis. The results for other types of network are similar and shown in
Appendix A.
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2.1.6.3 Results with no prior information about the covariance matrix. In the most difficult sce-
nario, we need to infer both the network and the mean expression vectors. To do this, we
create a grid of 8 values for λ1 following a log scale. For each dataset and each values of
λ1, we can compute an AUC . We compare these AUC to the AUC of limma since limma
is a standard method for this kind of problem. In addition, we use the AUC of our method
in the first scenario as another control. Hence, we have 10 boxes in a plot. Results for the
cluster network for nk ∈ {10, 20, 30, 50} are shown in Figures 3.5, 3.6, 3.7. Results of other
types of network are similar and shown in Appendix A.
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Figure 3.5: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison between
limma method, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8 values of
λ1 from zero to infinity. We are in the CLUSTER network setting. The number of observations nk is 10 and the
number of genes p is 50. The first figure is the AUC boxplot of all methods. The second figure is the difference
between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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(a) nk = 20
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(b) nk = 30

Figure 3.6: Scenario 3 with nk = 20 or nk = 30 : no prior information about the covariance matrix. AUC
comaprison between limma method, our method with given covariance matrix (Scenario 1), our method in Sce-
nario 3 for 8 values of λ1 from zero to infinity. We are in the CLUSTER network setting. The number of observa-
tions nk are 20 in figure (a) and 30 in figure (b); the number of genes p is 50.
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Figure 3.7: Scenario 3 with nk = 50: no prior information about the covariance matrix. AUC comaprison between
limma method, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8 values of
λ1 from zero to infinity. We are in the CLUSTER network setting. The number of observations nk is 50 and the
number of genes p is 50. The first figure is the AUC boxplot of all methods. The second figure is the difference
between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.

For all choices of nk, the first box (the result of our method in Scenario 1) is naturally
always the best boxplot. It is the best result which we could hope with our method. In
this third scenario, comparing our method with different values of λ1 to limma method is
difficult when we have too few observations nk = 10. There might be a small advantage to
our method but it is not very significant. However, in other cases where nk = {20, 30, 50},
there are always several values of λ1 for which our method works really well compared to
limma. In fact for nk = 50, the best result of our approach is not that far from the result
of our approach with given covariance matrix (the mean value of AUC is 0.85 compared to
0.92).

The value of λ1 for which we get the best results is 0.051 and is intermediate. This is a
good and expected result. From a technical point of view, recalling that our estimator is the
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minimizer of the loss function

E(β, θ) =
1

2

K∑
k=1

nk∑
i=1

p∑
j=1

(
xkij − βkj +

∑
a6=j

θkjaβ
k
j −

∑
a6=j

θkjax
k
ia

)2
+

λ1

K∑
k=1

p∑
k=1

∑
a6=j
|θkja|+ λ2

K∑
k,l=1
k<l

p∑
j=1

|βkj − βlj |.

It is clear that large values of λ1 lead us to very sparse networks, and large enough λ1 can
lead us to an empty network. Recall that limma assumes that all genes are independent, thus
the network is empty. Therefore, we expect that results of our approach should be close to
results of limma when the value of λ1 is large enough. This is also what we observe if
we look at the boxplots for extreme values of λ1 on the grid (0.719, 2.682 and 10) because
these values of λ1 lead us to an empty network. For any choice of nk, we can see that these
boxplots are very close to the boxplot of limma. In our simulations, we use a sparse but not
empty network. Therefore, we expect that for intermediate values of λ1, we recover part of
the true network and this should help differential analysis.

This result is very satisfying for two reasons. First, it emphasizes again the importance
of knowing the network for differential analysis. Second, it shows that this is the case even
when we have no prior knowledge about the network. Of course these are only numerical
simulations. We will illustrate in Chapter 4 the advantage of our approach on 2 real datasets.

2.2 Result for gene set analysis

In this section, we study the multivariate gene differential analysis problem.

2.2.1 Experimental set up

One of our competitor is the Hotelling-T 2 test. To perform the Hotelling-T 2 test, it is re-
quired that the total number of observations n =

∑K
k=1 nk must be greater than p. Therefore,

in this experiment we set the number of genes p smaller than the sum of all nk.
We choose p = 20, while all nk are equal and take a value in the set {12, 15, 20}. With 3
options of nk and 4 types of network, we consider a total of 12 cases. For each case, we
made 3000 simulated datasets where the mean vector is changed between the two condi-
tions

(
(β∗)1 6= (β∗)2

)
and 3000 simulated datasets where the mean vector is not changed(

(β∗)1 = (β∗)2
)
. In all experiments, the similarity parameters µ is always set to 50%

which means that in the case
(
(β∗)1 6= (β∗)2

)
, there is exact p/2 values of j such that(

(β∗)1
j = (β∗)2

j

)
for j ∈ {1, .., p}.
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2.2.2 Competitors

We compare our method to two hypothesis testing methods. One is the Hotelling-T 2 test
and one is the projection test of Jacob et al [13]. Recall that, when we perform Jacob et
al’s test, we have to choose the dimension (d) of subspaces in which the data is projected
(see Chapter 1, Section 2.2.1.2). We will perform Jacob et al’s test for three options of
d ∈ {2, 3, 4}. Hence, we actually have three versions of this test. We will first compare our
approach to the Hotelling-T 2 test then with Jacob et al’s test.

2.2.3 Scenarios

we consider the three scenarios that we considered for the the univariate analysis case intro-
duced in Section 2.1.3.

• Scenario 1: The covariance matrix is known.

• Scenario 2: The network is known.

• Scenario 3: We have no prior information about the network.

2.2.4 Priority list

In this multivariate differential analysis experiment, we have 6000 simulated datasets la-
belled by {1, 2, . . . , 6000}. For each simulated dataset, instead of finding a priority list for
each gene as in univariate analysis, we find only 1 fusion time. This value is obtained by
the procedure described in Chapter 2, Section 4.2.1. This fusion time is labelled by a triplet
(id, k, l), where id is the label of each simulated dataset and k, l are two conditions. For
example, in a simulated data, if the fusion time takes value 1, it means that the minimal
value of λ2 to fuse the two estimators of (β∗)k and (β∗)l is 1. Then, the priority list is made
by ordering these 6000 values decreasingly.
Similarly, for each of the other tests, the priority list is made by ordering the 6000 p-values
increasingly.

Note that we are in the case where K = 2 tasks. Therefore, we have 1 value for each
simulated dataset. In the general case with an arbitrary value for K, we perform pairwise
comparison for each method. Hence, we obtain K(K − 1)p/2 scores per simulated dataset.
For instance, if K = 3, we have three fusion times per simulated dataset: one for the fusion
time of the estimators of (β∗)1 and (β∗)2, one for the fusion time of the estimators of (β∗)1

and (β∗)3 and one for the fusion time of the estimators of (β∗)2 and (β∗)3.
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2.2.5 ROC

Unlike the procedure to compute ROC and AUC in the univariate analysis, our procedure in
the multivariate analysis only makes a ROC curve. The way we make ROC curves is fairly
similar to what we did for the univariate analysis case. More precisely,

• We assign each triplet (id, k, l) to a point on the ROC curve. Then we consider all
triplets having higher rank than (id, k, l) and itself in the priority list as detected triplets
by the method.

• We then compute the coordinate of this point as:

TPR(id, k, l) =
Number of detected triplets that are true

Number of triplets corresponding to a differential expression
,

FPR(id, k, l) =
Number of detected triplets that are wrong

Number of triplets corresponding to a non differential expression
.

From this, we make the ROC curve. In the next sections, we compare our method to each
test methods in different scenarios.

2.2.6 Comparison between Hotelling-T 2 test and our method

2.2.6.1 Result with known covariance matrix. In this scenario, we want to compare our method
to the Hotelling-T 2 test when the total information about the covariance matrix is given. In
this scenario, Hotelling-T 2 is used with the given covariance matrix instead of the empirical
covariance matrix. The results obtained depend on the network type. For band, cluster and
hub networks, the results are similar. Results of cluster network are shown in Figure 3.8.
Results of random network is different and shown in Figure 3.9.
Overall, our approach is better than the Hotelling-T 2 test. Clearer results are obtained for
band, cluster and hub; and the hardest case is the random one in which we observe a clear
difference only for sufficiently large nk.

These results show that taking into account the covariance matrix could improve the mul-
tivariate differential analysis. However, depending on the type of network and the number
of observations, the amplitude of the improvement could vary. With networks which do
not have a solid structure such as random network, the improvement is only clear when the
number of observations is large enough.

2.2.6.2 Result with known network. In this scenario, we want to compare our method and
Hotelling-T 2 test when only the adjacency matrix of the precision matrix is given. In this
scenario, the results obtained are only slightly different for different types of network. For
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Figure 3.8: Scenarion 1: covariance matrix is given. ROC of two methods Hotelling-T 2 and Fusion time for HUB
network. The number of observations nk takes a value in the set {12, 15, 20} and the number of genes is p = 20.
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Figure 3.9: Scenarion 1: covariance matrix is given. ROC of two methods Hotelling-T 2 and Fusion time for
RANDOM network. The number of observations nk takes a value in the set {12, 15, 20} and the number of is
genes p = 20.
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Figure 3.10: Scenario 2: network is given. ROC of two methods Hotelling-T 2 and Fusion time for CLUSTER
network. The number of observations nk takes a value in the set {12, 15, 20} and the number of genes is p = 20.

all choices of networks and nk, our method is still better than Hotelling-T 2 test. However,
our method performs worse than in the first scenario. This is expected because we give our
method less prior information about the covariance matrix. Results for cluster are shown in
Figure 3.10. Results for band and hub networks are similar. As expected, results for random
network is different and shown in Figure 3.11.

2.2.6.3 Results with no prior information about covariance matrix case. In this scenario, we want to
compare our method to Hotelling-T 2 test when we do not have any prior information about
the network. We choose a list of values of λ1 following a log scale to find the best result
obtained by our method.

We also add ROC curve of our method when we know the covariance matrix as a control.
For all type of network, results are similar. Results for cluster networks are shown in Figure
3.12.
Hotelling-T 2 test performs well in this scenario compare to our method. However, in the
case nk = 12 and nk = 20, our method work slightly better than Hotelling-T 2 test for some
values of λ1. It emphasizes the fact that Hotelling-T 2 test work well when we have many
observations but lose quickly its power in high dimensional setting. Compare to the given
covariance matrix scenario, the Hotelling-T 2 test performs worse. This is expected as we
give the method no information about the network. However, in general, the Hotelling-
T 2 test is clearly better than our method. Although our method does not perform as we
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Figure 3.11: Scenario 2: network is given. ROC of two methods Hotelling-T 2 and Fusion time for RANDOM
network. The number of observations nk takes a value in the set {12, 15, 20} and the number of genes is p = 20.
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Figure 3.12: Scenario 3: No prior information about the network. ROC of our method with given covariance
matrix, ROC of Hotelling-T 2 test and our method with different values of λ1. The number of observations nk
takes a value in the set {12, 15, 20} and the number of genes is p = 20.
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expected, we still find some good signals. More precisely, in all cases, the best choice of λ1

is an intermediate values on the grid. It suggests that our idea still works in this case, but the
choice of λ1 should be more sophisticated. For instance, we should take different values of
λ1 on different edges. Of course, a more sophisticated choice of tuning parameters requires
more computations, but in some real problems, we may have prior information about the
network. Therefore, the computations could be easier and our method may work much
better.

Recall that Hotelling-T 2 test requires the total number of observations n1 + n2 ≥ p.
This type of data is not high dimensional data. It is well known that in omics datasets, the
number of genes is usually much bigger than the total number of observations. Therefore,
in the next part, we consider a scenario where we also have no prior information about the
network, but the number of observations is such that n1 + n2 < p.

2.2.6.4 Results with no prior information about covariance matrix in high dimensional data. In this
setting, we set the number of genes p = 50, while the number of observations nk takes a
value in the set {10, 20}. Due to these new values, Hotelling-T 2 test cannot be performed.
Our goal in this setting is to measure the performance of our method in the high dimensional
setting. As usual, we add the result of our method with given covariance matrix as a control.
Results for four types of network are similar. The results of cluster network are shown in
Figure 3.13.

When we have few observations nk = 10, our method performs poorly for all choices
of λ1. However, if we increase the value of nk to 20, the blue curve corresponding to
λ1 = 0.02 performs much better compared to the other curves. This is a good and expected
result because it is an intermediate value.

2.2.6.5 Hotelling-T 2 test vs our method, the conclusion. Both Hotelling-T 2 test and our method
perform better when we provide them more prior information. In the two first scenarios,
when prior information about the covariance matrix are given to both methods, our method
outperforms Hotelling-T 2 tests. In the third scenarios, when we have no prior informa-
tion and many observations, Hotelling-T 2 outperform our method in most of the scenarios.
However, when we have few observations, only our method can perform on the dataset and
it works pretty well for some choices of λ1.
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Figure 3.13: Scenario 3: No prior information about the network. ROC of our method with given covariance
matrix and our method with different values of λ1. The number of observations nk takes a value in the set {10, 20}
and the number of genes is p = 50.

2.2.7 Comparison between Jacob et al’s test and our method

The method of Jacob et al can only be performed when we know the covariance matrix
(Scenario 1) or the network (Scenario 2). Therefore, in this comparison we only consider
Jacob et al’s test and our method in the two first scenarios. Recall that for Jacob et al’s
test, we choose d ∈ {2, 3, 4}, where d is the dimension of the subspace in which the data is
projected. In this comparison, results of different types of networks are different.

• For band networks, results are shown in Figure 3.14. All methods work very well in
this case. Our method is better than Jacob et al’ test when the covariance matrix is
provided, but it is worse when we only give it the network information.

• For cluster networks, results are shown in Figure 3.15. We obtain similar results to the
band network case.

• For hub networks, results are shown in Figure 3.16. In this case, our method is always
better than Jacob et al’s test. Moreover, the differences between the methods is clearer
and bigger than in the band network and in the cluster network cases.
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Figure 3.14: ROC curves of our method with given covariance matrix or given network methods and ROC curves
of Jacob et al’test. Type of network is BAND. The number of observations nk takes a value in the set {12, 15, 20}
and the number of genes is p = 20.
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Figure 3.15: ROC curves of our method with given covariance matrix or given network methods and ROC curves of
Jacob et al’test. Type of network is CLUSTER. The number of observations nk takes a value in the set {12, 15, 20}
and the number of genes is p = 20.
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Figure 3.16: ROC curves of our method with given covariance matrix or given network methods and ROC curves
of Jacob et al’s test. Type of network is HUB. The number of observations nk takes a value in the set {12, 15, 20}
and the number of genes is p = 20.

• For random networks, results are shown in Figure 3.17. We obtained similar results to
the hub network case. Our method is clearly better than Jacob et al’s test. However, as
expected, all methods do not work as good as in the other network case. It emphasizes
one more time that the random network case is a hard case.

2.2.7.1 Jacob et al’s test vs our method, the conclusion. Depending on the type of network, our
method could be better or worse than Jacob et al’s test. However, in the case where our
method performs worse, the results obtained are close to the results of Jacob et al’s test. On
the other hand, when our method performs better, the differences between the methods is
larger. Furthermore, the approach of Jacob et al requires the tuning of an extra parameters
d. If we choose d too small, the sub-space could not capture important information of the
data which leads to a poor differential analysis result. However, if d is too large, we fall
again into a high-dimensional setting. To our best knowledge, the choice of d is still an
open question.

2.3 Results in case of having more than 2 conditions

In this setting, to perform the experiments on the univariate analysis and the multivariate
analysis, we actually do it pairwise on conditions. Then, we combine all the results. Hence,
the results obtained is not different compared to the case where K = 2.
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Figure 3.17: ROC curves of our method with given covariance matrix or given network methods and ROC curves
of Jacob et al’s test. Type of network is RANDOM. The number of observations nk takes a value in the set
{12, 15, 20} and the number of genes is p = 20.

3 Network inference

3.1 Inference network when having 2 conditions

3.1.1 Experiment set up

In the experiment, we choose p = 50, while all nk are equal and take a value in the set
{5, 10, 20}. The similarity parameters µ is always set to 50% in all experiments. With 3
options of nk and 4 types of network, we consider 12 cases. For each case, we create 100
simulated datasets.

3.1.2 Competitors

We compare our method to the graphical lasso method. The graphical lasso is used on
centered data. Therefore, we create two scenarios. First, we have no prior information
about the mean vector. Therefore, to use the graphical lasso, we normalize data with the
empirical mean vector. Second, we know the true value of the mean vector. Hence, we can
use the graphical lasso on data normalized by the true mean vector.
We expect that results of the first approach are worse than results of the second approach.
Results of the two approaches can also be considered as a reference and we expect that
results of our method are in between results of the two scenarios.
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3.1.3 Priority list

In this experiment, we choose a grid of 8 values for λ2 following a log scale. For each value
of λ2 in the grid and for each simulated dataset, we order the edges of the network in a
priority list. For our method, the priority list is made by ordering shrinking times of edges
in the network. The shrinking times are created by the procedure described in Chapter 2,
Section 4.2.2. Each shrinking time values is labelled by a triplet (j, a, k), where j, a are
two genes and k is a condition. For example, if the shrinking time of (j, a, k) is 1, it means
that the minimal value of λ1 to shrink to zero the estimator of (θ∗)kja is 1. The bigger
the shrinking time is, the less probability (θ∗)kja shrinks to 0. Therefore, if we have two
triplets (j1, a1, k1) with rank r1 and (j2, a2, k2) with rank r2 and r1 < r2, then the shrinking
probability of (θ∗)k1

j1a1
is smaller that the shrinking probability of (θ∗)k2

j2a2
. Consequently,

if our method detects one edge (θ∗)k2

j2a2
6= 0, then automatically it will detect the edge

(θ∗)k1

j1a1
6= 0. In other words, if (j2, a2, k2) is detected, then (j1, a1, k1) is also detected. For

the two approaches with graphical lasso, we create a similar priority list.

3.1.4 ROC and AUC

Again, given a priority list of triplets, it is possible to make the ROC curve for each method.
Each triplet corresponds to a point on the ROC curve. The horizontal coordinate of this
point is the false positive rate (FPR), and the vertical coordinate of this point is the true
positive rate (TPR). These coordinates are computed by the following procedure:

• For each triplet (j, a, k), we consider all triplets in the priority list having higher rank
than (j, a, k) and itself as detected triplets by the method.

• We then compute the coordinate of this point as

TPR(j, a, k) =
Number of detected triplet that are true

Number of edges
,

FPR(j, a, k) =
Number of detected triplet that are wrong

Number of blank edges
,

where (j, k, l) is a blank edge if (θ∗aj)
k = 0.

From this, we make the ROC curve. Because we have 100 simulated data, we obtain 1200
ROC curves. From them, we can make 12 boxplots for the 12 methods. Result of the
graphical lasso approach on normalized data by the true mean (resp. empirical mean) is
the first boxplot (resp. the second boxplot). Result of the graphical lasso approach on
normalized data by the empirical mean is the second box. Results of our methods with 8
different values of λ2 from zero in infinity are the 8 last boxplots.
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3.1.5 The results

For all simulated data with different sizes and types of network, results are very similar.
Results of the cluster network are shown in Figure 3.18.

Obviously, the graphical lasso with true mean is better than all others, while our method
is just equivalent to the graphical lasso with empirical mean for some values of λ2. In fact,
the results of the graphical lasso with the true mean is not too far from the others. It means
that in this setting, the value of the mean vectors does not have a big role regarding network
inference.
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AUC comparison between methods
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Figure 3.18: AUC of different methods in band network case. Graphical lasso approach with data normalized by
the true mean (first box) have the best result. Results of other methods are very close. The first figure is AUC
values, the second figure is AUC values of all method minus AUC of Graphical lasso with data normalized by the
empirical mean (second box). The number of observations is nk = 20. The number of genes is p = 50.

3.2 Results when having more than 2 conditions

Here we study the network inference problem when we have more than 2 conditions. In this
setting, we found that the mean vector becomes more important for network inference.
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3.3 Role of mean vectors in inferring network

To get a clearer picture about the impact of mean vectors on network inference when the
number of conditions K vary, we try different values of K ∈ {2, 5, 8, 10} with p = 50, while
nk depends on the number of tasks. Namely,

• If K = 2, we choose all nk = 20.

• If K = 5, we choose all nk = 8.

• If K = 8, we choose all nk = 5.

• If K = 10, we choose all nk = 4.

Hence, whatever the number of tasks, the total number of observations is always 40. For
each type of network, and each value of K, we create 100 simulated datasets. Results for
all types of network are similar. Results for cluster network case are shown in Figure 3.19.
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Figure 3.19: Results of graphical lasso with true and empirical means for different values of K. The number of
tasks takes a value in the set {2, 5, 8, 10}. The number of total observations is n = 40 for all choices of K.

Clearly, when we increase the number of conditionsK, the difference between the graph-
ical lasso with the true mean vector and the graphical lasso with the empirical mean vector
is larger. For all choices of K, results of the graphical lasso with the true mean vector are
similar, because the number of total observations is always 40. However, when we use the
graphical lasso with the empirical mean vector, the results obtained become much worse.
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The bigger the number of conditions, the less accurate the empirical estimator of mean vec-
tor since we have less observations for each task. In figure ??, we can see that mean vectors
has some impacts on network inference experiments. However, the effect of estimating the
mean on the estimation of the network seems small compare to the effect of estimating the
network on the estimation of the mean as illustrated in differential analysis experiments. I
think that the main reason is because of the number of parameters. The total parameters of
mean vectors is K ∗ p while the total number parameters of network is K ∗ p ∗ (p − 1)/2.
Therefore, maybe we need to increase K to obtain clearer impacts of mean vector on the
network.

3.4 Inference network when having 10 conditions

Because the difference between using the true mean vector and the empirical mean vector
is very clear when we choose K big enough, we will consider the case where K = 10. We
choose a number of genes p = 50 and all nk equal to 2. Among all values of λ2 on the grid,
we make the boxplot for the best choice of λ2 = 0.1. The results for all types of network
are similar. Results for cluster network are shown in Figure 3.20. Results for other types of
network are shown in Appendix A.
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Figure 3.20: AUC of different methods in CLUSTER network case. Graphical lasso approach with data normalized
by the empirical mean (first boxplot), Graphical lasso approach with data normalized by the true mean (second
boxplot), and our method with the best choice of λ2 = 0.1 (third boxplot). The total number of observations is
n = 40. The number of genes is p = 100.
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With a good choice of λ2, our method works better than the graphical lasso with the
empirical mean. Although the difference is only about 3%, in term of network inference,
we think that it is a good result. In genomic datasets, it contains thousand of genes. Even
when we only consider a sub network of hundreds of genes, the number of possible edges
is about ten thousands. Hence, our approach gives a better estimator result for 300 edges.

4 Conclusion of Chapter 3

In this chapter, we try to evaluate the performance of our method for differential analysis
and network inference. In my opinion, there is no fair comparison. It is always possible
to find a setting in which one method performs better than another. However, we tried to
simulate typical settings and simple scenarios. From the results obtained, we expect that
our method could work well on high dimensional data. Moreover, it could improve both
differential analysis and network inference compared to previous methods.



Chapter 4

Application to real data

T he goal of this chapter is to illustrate how our method work on real datasets. We
consider two publicly available datasets, one on breast cancer (Guedj et al [34]) and

one on Arabidopsis thaliana (CATdb, Gagnot et al [35]). Using these two datasets, we try
to illustrate that looking at both the mean transcription level and the network of genes using
our model is useful and could lead to interesting biological conclusions. In particular, genes
whose behaviour change both in mean and network between two biological conditions could
be very interesting.

1 General goals and set up

1.1 Our goal

Our model could be used to infer both mean expression and gene interactions. When com-
paring two biological conditions we can thus hope to detect two type of differences: changes
in the mean or in the gene network. From this, we define four types of genes as illustrated
by the Table 4.1.

Change in Mean expression No change in Mean expression
Change in
Network

MN (change in both Mean
and Network )

0N ( no change in Mean
but change in Network )

No change in
Network

M0 (Change in Mean expression
but no change in Network)

00 (no change in both Mean
and Network)

Table 4.1: 4 groups of genes categorized by our method.

1.2 Statistical tools

For both datasets, we have two biological conditions. Therefore, we denote the dataset
X = (X1,X2). Assume that X1 ∼ N ((β∗)1, (Σ∗)1), X2 ∼ N ((β∗)2, (Σ∗)2). In the two
conditions, the vectors (β∗)1, (β∗)2 are the mean expression vectors of genes, while the two

90



Chapter 4. APPLICATION TO REAL DATA 91

covariance matrices are (Σ∗)1, (Σ∗)2 and their inverse matrices can be interpreted as the
interaction between genes. By estimating parameters

(
(β∗)1, (β∗)2, (Σ∗)1, (Σ∗)2

)
, we aim

to build measures in order to evaluate the changes between the two conditions at the gene
level.

1.2.1 Building the measures

In our model, we need to select a value for both λ1 and λ2. This is a different question.
Therefore, we consider a different approach to overcome this issue. Essentially, we measure
the differences between estimators in different condition for each fixed couple (λ1, λ2).
Then we integrate these differences over a large grid of λ1 and λ2. This has the disadvantage
of being computationally intensive. However, we do not have to select values for tuning
parameters (λ1, λ2). More precisely, our procedure is as follows:

1. We create a two dimensional grid of (λ1, λ2).

2. For each couple (λ1, λ2), we perform the ACS algorithm (Chapter 2, Section 2.1) to es-
timate

(
(β∗)1, (β∗)2, (Σ∗)1, (Σ∗)2

)
, then we measure the mean change and the network

change of each gene (we will explain in more details this step in the next part).

3. The overall change of each gene is the integration of results obtained with each couple
(λ1, λ2).

In the next sections, we give more details about each step in this procedure.

1.2.1.1 Building the grid. For our approach, the denser the grid, the better it is. However, we
do not want to consider a too dense grid due to the running time. Therefore we make a grid
G which is:

• Dense enough. A good grid should capture most status of the network and the fusion
of the mean vectors. For instance, the status of the network should be from almost
empty (no edge) to complete (full edge). Similarly, the status of the fusion should be
from complete fusion (all genes are fused) to almost no fusion (no genes are fused).

• Avoid too dense graphs (corresponding to small λ1) because this is not expected (we
expect a sparse network) and the running time is particularly long for these values.

Following these principles, we choose an 8 by 8 grid for each dataset. For both datasets, we
fixed the exact range of the grid manually looking at how dense the network was depending
on the values of λ1.
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1.2.1.2 Building measures with fixed values of (λ1, λ2)

1.2.1.2.1 Mean change measure. For a fixed value of (λ1, λ2) and a gene j, we have an
estimation of its mean expression for the two conditions. We measure the change in the
mean expression of gene j as the absolute difference:

l1.fused(j, λ1, λ2) = |β̂1
j − β̂2

j |.

We could also have considered other measures such as l0 or l2 based measures:

l0.fused(j, λ1, λ2) = |sign(β̂1
j − β̂2

j )|,

l2.fused(j, λ1, λ2) = (β̂1
j − β̂2

j )2.

In practice, we found that results on mean change were not too dependent on this choice.
Hence, we use only the l1-based measure.

1.2.1.2.2 Network change measures. Similarly, we measure the change in network of gene
j by:

l1.shrink(j, λ1, λ2) =

p∑
a=1,a6=j

|θ̂1
ja − θ̂2

ja|.

For the network, we also consider the l0 version as it gives substantially different results in
practice.

l0.shrink(j, λ1, λ2) =
∣∣∣ p∑
a=1
a6=j

|sign(θ̂1
ja)| −

p∑
a=1
a6=j

|sign(θ̂2
ja)|
∣∣∣.

Overall, the network change measures for gene j will be higher or lower depending if the
interaction of gene j with other genes varies a lot or not.

1.2.1.3 Integral Measures. The integral measure is the sum of all measures corresponding to
the couples (λ1, λ2) on the grid. In details, for each gene j, we have three measures:

l1.fused.integration(j) =
∑

(λ1,λ2)∈G

l1.fused(j, λ1, λ2),

l1.shrink.integration(j) =
∑

(λ1,λ2)∈G

l1.shrink(j, λ1, λ2),

l0.shrink.integration(j) =
∑

(λ1,λ2)∈G

l0.shrink(j, λ1, λ2).

The three measures will be used to interpret our results in a two dimensional graph.
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1.2.2 Discussion about the measures

For the network inference, we proposed two difference measures based on either l0 norm
or l1 norm. We believe that they do not give exactly the same information. Using l0 based
measure, we put more emphasis on the network topology. We want to identify genes whose
neighbors have change between the two conditions. This measure is interesting but we
might miss important variation in the amplitude of the interactions. In order to have more
specific detections based on these quantities, we also consider an l1 based measure.

In the next sections, we will study two real datasets. We start with breast cancer data.

2 Breast cancer data

The breast cancer dataset was well studied in [34]. Furthermore, several papers have
been published on breast cancer and genes interactions is relatively well characterized (e.g
[36],[37],[38]). With our method, we expect to replicate these well-known results and
maybe find some other interesting genes.

2.1 Biological context

2.1.1 Breast cancer

Breast cancer is a type of cancer developing from breast tissue. There are many causes
of breast cancer involving genetic, environment, nutrition. One of the genetic reason is
involving the female sex hormone called oestrogen. Oestrogen is responsible for mediating
breast development. Many breast cancers rely on supplies of the hormone oestrogen to
grow. Oestrogen can control the procedure by activating oestrogen receptors (ERs). ERs
are a group of proteins. Once activated by oestrogen, the ERs bind to DNA in the nucleus
and regulate the activity of some genes. Hence, ERs are also called transcription factors.
ERs are encoded either by the gene ESR1 or the gene ESR2, resulting in two forms ERα
and ERβ. In about 70% of breast cancer cases, ERs are over-expressed. The breast cancer
cases are referred as “ER-positive”. The rest are referred as “ER-negative”.

Many analyses have been done on breast cancer and the goal of these analyses are very
different. One typical problem people want to study is to characterize the differences be-
tween different groups of breast tumours, typically ER- and ER+. Looking at the mean
expression, one can get thousands of differentially expressed genes. Biological interpreta-
tion of so many differences is difficult. Our hope is that looking at the network will help
to pin-point important genes or important interactions that are changing between the two
conditions.
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2.1.2 Description of the dataset

The dataset [34] comprises 537 primary breast cancer transcriptomes on Affymetrix U133-
Plus2.0 arrays. For each sample, the expression level of 54,675 genes are measured. Among
these 537 tissues, 375 tissues are ER-positive and 162 tissues are ER-negative. The gene
expression was normalized by Robust Multi-array Average (RMA) method [39] .

However, we do not consider the whole set of genes, but just a small subset for two
reasons. First, running the code on the whole gene set is possible but it takes a very long
running time. Second, Verzelen [30] shows that inference of a network on so many genes is
not possible. Because of these practical and theoretical reasons, we only study a set of 200
genes.
This subset of genes contains the 160 genes with the highest variance and 40 genes chosen
randomly. We make 10 subsets of gene like this. All subsets share the same 160 top genes,
but the 40 remaining genes are not the same. On the one hand, taking the most variant
genes is fairly common in gene expression analysis, typically to perform sample clustering.
Therefore, we fix the list of 160 highest variance genes in all subsets. Hopefully, genes
with high variance are biologically relevant. On the other hand, by selecting some genes at
random, we do not expect enrichment for biologically relevant genes. In some sense, the
scores which we get with those random genes can be used as a reference or a control.

Another well-known approach for selecting genes is “lossy screening” [40] but we do
not consider it here.

2.2 Set up and results

2.2.1 Building the grid

In our R code, we create an 8×8 grid. The values of λ1 and λ2 are chosen by the R functions:

lambda1.list← 10∧seq(0, log10(1e− 2), len = 8)

lambda2.list← 10∧seq(−2, log10(1e− 4), len = 8)

In more details, we have

lambda1.list ={1, 0.51, 0.26, 0.13, 0.07, 0.03, 0.019, 0.01},

lambda2.list ={0.01, 0.005, 0.002, 0.001, 0.0007, 0.0003, 0.00019, 0.0001}.

With this grid, we capture most statuses of the network and the fusion status of the mean
vectors. In details, all genes are fused when λ2 equals 10−2; while half of the genes are
fused when λ2 equals 10−4. Regarding the network aspect, we capture most status of θ1, θ2

from all their elements equal zero (no edge) to 10266 edges presence over p × (p − 1)/2 =
19900 possible edges. It is about 51% of edge presence.
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2.2.2 Results

We apply our strategy to the ten subsets of genes. The obtained results are very similar. The
result of one subset is shown in Figures 4.1. Results of some other subsets are in Appendix
B. In each figure, I split the genes in four categories: 00, M0, 0N and MN as illustrated in
Table 4.1. Indeed, choosing important genes is also a selection problem. In this context,
because we knew some important genes such as ESR1, we decide to select genes whose
measurements are close to the measurements of those important genes. We have several
comments on the results:

Figure 4.1: The roles of genes evaluated by different types of measure.

1. Most of random genes are concentrated on the left of Figure 4.1. Although their net-
work measurement is quite high, they almost do not change their mean expression
between the two conditions. The concentration of random genes shows their similar
behaviors and guarantees that they do not affect too much the genes on the top right
of the figure (which we think that they are important genes). However, we detect sev-
eral highly variant genes in the bottom left of the figure. It suggests that, some highly
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variant genes may not be important in both term of mean expression and interaction.

2. It is not surprising that ESR1 is one of the most significant genes in both terms (mean
and interaction). Besides, we also detect

• AGR3 which is significantly associated with oestrogen α [36].

• FABP7 which is an inhibitor of proliferation of breast tumour cells [37].

• CPB1 about which we do not have any biological information.

3. In term of network interaction, the most significant genes are:

• SCUBE2 which is a breast tumour suppressor [38].

• NAT1 which have a positive correlation with ER+ [41].

• FOXA1 and AGR2 which are involved in ER regulation [42].

4. Denote the network score of gene j in the condition k as

network.score(j, k) =

p∑
a=1,a6=j

(|θ̂kja|).

We found that important genes tends to make more interactions with other genes when
ER appears. This change is shown in Figure 4.2.

The fact that our approach is able to pint-point some well-known regulators and interaction
in breast cancer data is very satisfying and suggest that indeed looking at both mean and
variance might be a key to investigate new genomic datasets.

In the next section, we use our approach again on the Arabidopsis thaliana dataset.

3 Arabidopsis thaliana data

3.1 Biological context

3.1.1 Arabidopsis thaliana

Arabidopsis thaliana is a plant which has been widely studied in genetics and genomics.
This plant is small (25 cm tall), has a short life cycle (60 days) and a fairly small genome
(about 135 megabase pairs). It is a model organism.
Our study is a part of a project of the team “Genomic networks” which started in 2010 at
INRA. The main goal of this project is to identify biological functions of genes in Arabidop-
sis thaliana. Due to the huge number of genes, it is impossible to consider all of them at the
same time. Therefore, a priority list of genes should be given before we start an in-depth
study for a subset of genes. Our goal is to propose a priority list of genes by statistical
methods.
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Figure 4.2: Network scores of top genes in the two conditions. Each sub figure corresponds to one
gene. In each sub figure, the horizontal axis presents the order of couples (λ1, λ2) (e.g the first couple is
(lambda1.list[1], lambda2.list[1]), the second couple is (lambda1.list[1], lambda2.list[2]), etc). For each point
on the horizontal axis, we plot the network score of this gene under the ER- condition in red and under the ER+
condition in blue.

3.1.2 Description of the dataset

The dataset comprises 70 Arabidopsis thaliana transcriptomes. For each tissue, we have the
log ratio expression level of 24,576 genes. Among the 70 tissues, 35 are leaf and 35 are
root. The log ratio expression level were measured as follows. Each log-ratio is obtained as
a comparison of Arabidopsis thaliana developped under the nitrogen starvation condition.
The dataset were extracted from CATdb (see Gagnot et al [35]) and the co-expression was
studied in Zaag et al [43]. The gene expressions were measured with a 2 color microarray
and technical biases were removed with a LOWESS correction [44]. Nevertheless, in this
study, they did not consider the dataset according to the tissues. In our study, the goal is to
identify genes which are different between roots and leaves of Arabidopsis thaliana at the
mean expression, network interaction or both levels.

Similar to the breast cancer dataset, we only consider a subset of 500 genes with the
highest variance. Besides, we try a re-sampling method: cross-validation to assess the
reproducibility of our approach. From the dataset of 500 genes, we create 20 sub datasets
by removing five random observations in each condition. Hence, we consider a total of 21
datasets.
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3.2 Set up and results

3.2.1 Building the grid

Similar to the grid of breast cancer data, we choose a grid with size 8 × 8 grid. The values
of λ1 and λ2 are chosen by the R functions:

lambda1.list← 10∧seq(1, log10(1e− 2), len = 8)

lambda2.list← 10∧seq(−3, log10(1e− 6), len = 8)

In more details, we have

lambda1.list ={10, 3.72, 1.38, 0.51, 0.19, 0.07, 0.02, 0.01},

lambda2.list ={10−3, 3.10−4, 10−4, 5.10−5, 10−5, 7.10−6, 2.10−6, 10−6}.

Most status are also captured with the grid. In details, all genes are fused when λ2 equals
10−3; while half of genes are fused when λ2 equals 10−6. In the network aspect, we capture
most status of θ1, θ2 from all their elements equal zero (no edges) until 19250 edges presence
over p× (p− 1)/2 = 124750 possible edges. It is about 15% of the edge presence.

3.2.2 Results

Using our approach for the 21 datasets, our obtained results are coherent. We give the result
for the whole datasets with two types of network change measures in Figures 4.3 and 4.4.
Results of some other datasets are in Appendix B.

Similar to the case of breast cancer dataset, we spilt the genes in four categories: 00,
M0, 0N and MN. In this context, because we do not have prior information. In Figure 4.3,
we decide to select genes whose measurements are higher than one half of the maximum
measurements of all genes. In Figure 4.4, we select genes whose measurements in terms
of mean are higher than one half of the maximum measurements of all genes and genes
whose measurements in terms of network are higher than three quarters of the maximum
measurements of all genes. We consider red genes in the figures as important genes. For
two network change measures, the results obtained are different. However, they still share
some same detections such as genes 14, 20 and 44. Therefore, we also count the number of
a gene detected by our method in the 21 datasets by either l0 or l1 measure. The results are
shown in Figures 4.5.

Notably, three genes 14 (AT1666390), 20 (AT1634060) and 44 (AT5607990) are detected
by our method in every dataset or by any type of measure. Unfortunately, we do not have any
prior information about these genes yet. However, we expect that these genes are important
and should be analysed furthermore.
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(a)

Figure 4.3: The roles of genes evaluated by l0 network change measure and l1 mean change measure.

(a)

Figure 4.4: The roles of genes evaluated by l1 network change measure and l1 mean change measure.
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Figure 4.5: Percentage of detecting as a significant gene of top genes.

4 Conclusion of Chapter 4

In this chapter, we apply our method on two real datasets. For breast cancer dataset, we
obtained similar results as previous methods. This is what we expected. For the Arabidopsis
thaliana method, we obtain a list of several genes which are highly different compared to
the others both in terms of mean expression level and in terms of network. We expect that
these genes take important roles in the functioning of leaf and root at Arabidopsis thaliana.
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Conclusion

During the 3 years of my thesis, I mainly focused on sparse regularization methods for high-
dimensional data. The goal is to find a method which improves both differential analysis
and network inference in transcriptomic data. The more I tried to improve the results, the
more I realize that how hard to get close to the true result. Why is that?

In my opinion, the core of sparse regularization methods is the method Lasso. Since the
publication of Lasso in 1996, many Lasso’s variations have been created. I category the
variations into two classes. The first class of methods were created in order to fit Lasso
with each individual studying context. Using only Lasso penalty part is not enough in these
contexts and people add some other penalty parts to address specific requirements. For in-
stance, they are Fused Lasso, elasticnet, group-Lasso and cooperative-Lasso. A motivating
example of using the Fused Lasso is in gene expression studying. In the research, people
expect that the mean expression level of some given genes are close. Hence, they add the
fused part beside the Lasso part. The second class of methods was created to improve Lasso
in a very original context. They are methods such as adaptive Lasso, adaptive Fused Lasso.
These methods improve Lasso in the statistical sense. For instance, theoretically, adaptive
Lasso will give consistent estimators, while Lasso may not.

However, no matter how all of these variations of Lasso change, the core idea is using an
l1 − norm regularization part which is very sensitive to the change of the data, especially
in the high-dimensional setting. Therefore, we should forget about quantitative estimations
of parameters. Instead of that, qualitative estimators is something which is much more
realistic to do. This thesis proposes a novel approach which aims to that goal. As discussed
in Chapters 3 and 4, if we have a dataset about genes. We do not try to answer questions
such as what is the mean expression level of one genes or what is the exact relations between
genes? Instead of that, we provide a procedure which helps to visualize the importance of
genes both in terms of mean expression and interaction. This is the second main contribution
of this thesis.
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The first main contribution of this thesis is a new model which can solve differential
analysis and network inference for multi-task datasets. This model is raised from studying
gene expression data in multiple conditions and aims to address two very standard questions
in biology. Because it is generalized from the original graphical Gaussian model, this model
could be well adapted to many other types of data. We also implemented the model in an R
package which is available soon.

In term of theory, by using the new model, we showed the importance and correlation
between the mean vector and the covariance matrix in terms of estimating. This is the third
contribution of this thesis.

In conclusion, getting a picture about variables’ structure in high-dimensional data is a
challenging work. I believe that we never have enough information, but we have enough
sources of data. Our work is to create a link between the sources. Although the data from
different sources will be heterogeneous and hard to find the relation, if we may find them,
we will obtain a better view on the problem.



Appendix A

I give the results for simulated data in Chapter 3.
2.1.6 Univariate analysis results
2.1.6.1 Results with known covariance matrix
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Figure 5.1: Scenario 1: covariance matrix (Σ∗)k is known. Here, we compare the AUC of 6 methods t-test, anova,
wilcoxon, sam, limma and our method (fusion time). We are in the CLUSTER network setting. We simulated data
with a number of observations is nk ∈ {10, 20, 30, 50}. Each box represents the AUC of one method for one value
of nk over 100 simulations.
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Figure 5.2: Scenario 1: covariance matrix (Σ∗)k is known. Here, we compare the AUC of 6 methods t-test, anova,
wilcoxon, sam, limma and our method (fusion time). We are in the RANDOM network setting. We simulated data
with a number of observations is nk ∈ {10, 20, 30, 50}. Each box represents the AUC of one method for one value
of nk over 100 simulations.
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2.1.6.2 Results with known network
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Figure 5.3: Scenario 2: network is known. Here, we compare the AUC of 6 methods t-test, anova, wilcoxon, sam,
limma and our method (fusion time). We are in the BAND network setting. We simulated data with a number of
observations is nk ∈ {10, 20, 30, 50}. Each box represents the AUC of one method for one value of nk over 100
simulations.

2.1.6.3 Results with no prior information about the covariance matrix
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Figure 5.4: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison between
limmamethod, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8 values of λ1
from zero to infinity. We are in the BAND network setting. The number of observations nk is 10 and the number
of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is the difference
between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.5: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison between
limmamethod, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8 values of λ1
from zero to infinity. We are in the BAND network setting. The number of observations nk is 20 and the number
of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is the difference
between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.6: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison between
limmamethod, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8 values of λ1
from zero to infinity. We are in the BAND network setting. The number of observations nk is 30 and the number
of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is the difference
between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.7: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison between
limmamethod, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8 values of λ1
from zero to infinity. We are in the BAND network setting. The number of observations nk is 40 and the number
of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is the difference
between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.8: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison between
limma method, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8 values of
λ1 from zero to infinity. We are in the HUB network setting. The number of observations nk is 10 and the number
of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is the difference
between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.9: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison between
limma method, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8 values of
λ1 from zero to infinity. We are in the HUB network setting. The number of observations nk is 20 and the number
of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is the difference
between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.10: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison
between limma method, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8
values of λ1 from zero to infinity. We are in the RANDOM network setting. The number of observations nk is 10
and the number of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is
the difference between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.11: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison
between limma method, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8
values of λ1 from zero to infinity. We are in the RANDOM network setting. The number of observations nk is 20
and the number of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is
the difference between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.12: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison
between limma method, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8
values of λ1 from zero to infinity. We are in the RANDOM network setting. The number of observations nk is 30
and the number of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is
the difference between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.
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Figure 5.13: Scenario 3 with nk = 10: no prior information about the covariance matrix. AUC comaprison
between limma method, our method with given covariance matrix (Scenario 1), our method in Scenario 3 for 8
values of λ1 from zero to infinity. We are in the RANDOM network setting. The number of observations nk is 50
and the number of genes p is 50. The picture first picture is the AUC boxplot of all methods. The second picture is
the difference between the AUC of all methods and the AUC of limma. Therefore, the second boxplot is zero.

3.4 Inference network when having 10 conditions
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Figure 5.14: AUC of different methods in BAND network case. Graphical lasso approach with data normalized
by the empirical mean (first boxplot), Graphical lasso approach with data normalized by the true mean (second
boxplot), and our method with the best choice of λ2 = 0.1 (third boxplot). The total number of observations is
n = 40. The number of genes is p = 100.



Chapter 5. CONCLUSION 110

0.7

0.8

0.9

empi true 0.1

AUC of methods

0.0

0.1

0.2

empi true 0.1

AUC difference

empi true  λ2=0.1

Figure 5.15: AUC of different methods in HUB network case. Graphical lasso approach with data normalized
by the empirical mean (first boxplot), Graphical lasso approach with data normalized by the true mean (second
boxplot), and our method with the best choice of λ2 = 0.1 (third boxplot). The total number of observations is
n = 40. The number of genes is p = 100.
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Figure 5.16: AUC of different methods in RANDOM network case. Graphical lasso approach with data normalized
by the empirical mean (first boxplot), Graphical lasso approach with data normalized by the true mean (second
boxplot), and our method with the best choice of λ2 = 0.1 (third boxplot). The total number of observations is
n = 40. The number of genes is p = 100.



Appendix B

I give the results for two real datasets in Chapter 4.
2 Breast cancer data
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Figure 5.17: The roles of genes evaluated by different types of measure.
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Figure 5.18: The roles of genes evaluated by different types of measure.
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Figure 5.19: The roles of genes evaluated by different types of measure.
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Figure 5.20: The roles of genes evaluated by different types of measure.
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Figure 5.21: The roles of genes evaluated by different types of measure.



Chapter 5. CONCLUSION 114

3 Arabidopsis thaliana data

13

14

17

20

43

44

800

1200

1600

2000

2400

0 10 20 30 40
Mean differences, measured by L1 norm

N
et

w
or

k 
di

ffe
re

nc
es

, m
ea

su
re

d 
by

 L
0 

no
rm

gene

Significant

Unsignificant

Role of genes in term of mean and interaction

Figure 5.22: The roles of genes evaluated by different types of measure.
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Figure 5.23: The roles of genes evaluated by different types of measure.
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Figure 5.24: The roles of genes evaluated by different types of measure.
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Figure 5.25: The roles of genes evaluated by different types of measure.
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Figure 5.26: The roles of genes evaluated by different types of measure.
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Figure 5.27: The roles of genes evaluated by different types of measure.
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Figure 5.28: The roles of genes evaluated by different types of measure.
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Figure 5.29: The roles of genes evaluated by different types of measure.
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Titre : Une méthode d’apprentissage  multivariée et pénalisée pour l'inférence jointe des 

niveaux d’expression et des réseaux de régulation génique 
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Résumé : Entre plusieurs conditions 

biologiques, le comportement d’un gène 

peut être affecté soit dans son niveau 

d’expression moyen, soit dans sa relation 

aux autres, caractérisée par les covariances 

entre gènes. Ces deux questions sont 

généralement traitées de manière 

indépendante en statistique, bien qu’elles 

soient  clairement liées. 

Afin de palier à ces limitations, cette thèse 

vise à proposer une modélisation unifiée de 

ces deux questions pour identifier les gènes 

clés affectés dans leur moyenne et/ou dans 

leurs interactions. Le modèle principal est le 

modèle graphique gaussien avec des 

pénalisations sur les paramètres de la 

moyenne et de la matrice de précision.  
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Abstract : When comparing different 

biological conditions, the expression of a 

gene might shift. It can be a change in 

terms of its average expression level 

characterized by its mean. Or it can be a 

change in terms of its interactions with 

other genes characterized by the covariance 

matrix. These two types of events are 

usually analysed independently even  

though they are clearly related. 

In order to alleviate these limitations, we 

propose in this thesis a unified strategy to 

address these two questions and identify 

key genes affected either in terms of their 

mean or their interactions with other genes. 

The main statistical model is the Gaussian 

graphical model with penalizations on the 

mean and precision matrix parameters. 
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