Conduite d'expériences par apprentissage actif pour l'identification de systèmes dynamiques biologiques : application à l'estimation de paramètres d'équations différentielles ordinaires

par Adel Mezine

Thèse de doctorat en Informatique

Le président du jury était Jean-Christophe Janodet.

Le jury était composé de Nathalie Leblanc - Fournier.

Les rapporteurs étaient Pierre Geurts, Grégory Batt.


  • Résumé

    Ces dernières années, les progrès continuels des techniques de criblage et de séquençage à haut débit ont nourri la biologie des systèmes, ouvrant la voie à l’identification de systèmes dynamiques biologiques tels que des réseaux de régulation génique. Cependant, l’insuffisance et la mauvaise qualité des données expérimentales se traduisent trop souvent par des estimations incertaines des paramètres d’intérêt des systèmes étudiés : ces incertitudes peuvent être levées en produisant de nouvelles données dans des conditions expérimentales variées, ce qui implique un coût potentiellement élevé. Dans cette thèse, nous proposons un nouvel algorithme d’apprentissage actif, destiné à recommander de manière séquentielle les expériences les plus utiles à l’identification de systèmes dynamiques biologiques modélisés par des équations différentielles. Le problème est formulé sous la forme d’un jeu à un joueur : le joueur se voit attribuer un budget dédié aux expérimentations, et un coût spécifique est affecté à chaque expérience ; à chaque tour, il est amené à choisir une, voire plusieurs expériences réalisées sur le système étudié dans le but de maximiser la qualité de l’estimation, une fois le budget épuisé. Notre approche, intitulée « ExperimentalDEsign for Network inference » (EDEN), s’appuie sur la classe d’algorithme UCT (Upper Confidence bounds for Trees search) qui allie la souplesse de la recherche arborescente de Monte-Carlo à l’efficacité des algorithmes de bandits multi-bras pour parcourir l’ensemble des séquences d’expériences possibles en privilégiant surtout celles qui sont les plus prometteuses. EDEN présente le grand avantage d’anticiper les expériences suivantes en sélectionnant à chaque tour des expériences sachant qu’elles seront suivies par un certain nombre d’autres expériences. Illustrée sur deux cas d’étude, le réseau de signalisation JAK/STAT et un des réseaux de régulation génique proposé dans la compétition internationale DREAM7, EDEN, entièrement automatique, obtient de très bonnes performances pour un budget limité et un large choix d’expériences (perturbations, mesures).

  • Titre traduit

    Design of experiments by active learning for the identification of dynamical biological systems


  • Résumé

    Continuous progress in screening and high-throughput sequencing techniques in recent years paves the way for the identification of dynamic biological systems such as gene regulatory networks. However, the scarcity of the experimental data often leads to anuncertain estimation of parameters of interest. These uncertainties can be solved by generating new data in different experimental conditions, which induces additional costs. This thesis proposes a general active learning approach to develop tools of sequential experimental design for the identification of dynamical biological systems. The problem is formulated as a one-player game : the player has a budget dedicated for his experiments, each experiment has a different cost ; at every turn, he chooses one or more experiments to be performed on the system with the ultimate aim of maximizing the quality of the estimate, until the available budget is exhausted. The proposed approach called Experimental DEsign for Network inference (EDEN), is based on UCT (Upper Confident bounds for Trees) algorithm which combines Monte-Carlo tree search algorithms with multi-arm bandits to perform an effective exploration of the possible sequences of experiments. A strong point of the approach is anticipation : an experiment is selected at each round, knowing that this round will be followed by a number of other experiments, according to the available budget. This generic approach is rolled out in parameter estimation in nonlinear ordinary differential equations using partial observations. EDEN is applied on two problems : signaling network and gene regulatory network identification. Compared to the competitors, it exhibits very good results on a DREAM7 challenge where a limited budget and a wide range of experiments (perturbations, measurements) are available.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Evry-Val d'Essonne. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.