Matériaux d'Interface Thermique Nanostructurés

par Joffrey Daon

Thèse de doctorat en Sciences des Matériaux

Sous la direction de Jinbo Bai et de Laurent Divay.

Soutenue le 06-12-2016

à Paris Saclay , dans le cadre de Sciences mécaniques et énergétiques, matériaux, géosciences , en partenariat avec CentraleSupélec (établissement opérateur d'inscription) et de Laboratoire mécanique des sols, structures et matériaux (Châtenay-Malabry, Hauts de Seine) (laboratoire) .

Le président du jury était Bruno Palpant.

Le jury était composé de Jinbo Bai, Zoubir Khatir.

Les rapporteurs étaient Didier Delaunay, Philippe Olivier.


  • Résumé

    Dans le domaine de la microélectronique de puissance, les progrès de miniaturisation ne cessent de s’accroître. En effet, le nombre de composants par unité de surface a suivie durant de nombreuses années la loi de Moore. Cette évolution implique une augmentation de la densité d’énergie à évacuer sous forme de chaleur, ce qui rend le contrôle de la température de fonctionnement difficile et a pour effet de diminuer la fiabilité des systèmes électroniques.C’est pourquoi, le management thermique des matériaux d’interface thermique est indispensable pour pérenniser le bon fonctionnement des dispositifs de puissance dans leur environnement. L’utilité de ces matériaux est d’améliorer l’évacuation de la chaleur des composants électroniques vers le milieu environnant via un dissipateur thermique (radiateur, fluide caloporteur). Pour tenter de répondre à ces besoins, ce sujet de thèse est basé sur l’utilisation de nanotubes de carbone verticalement alignés, associée à des polymères fonctionnels. Les études se sont portées sur l’ensembledes résistances de contact existantes au sein d’un matériau d’interface thermique, depuis les nanotubes decarbone / Polymère / jusqu’au substrat de cuivre.L’optimisation des interactions est portée sur l’étude de différents polymères ayant la capacité d’engendrer des liaisons covalentes avec les nanotubes de carbone et avec le substrat de cuivre. L’intérêt de ces liaisons covalentes est d’améliorer le transfert de la chaleur via les phonons. Enfin, l’augmentation de la conductivité thermique intrinsèque des polymères est envisagée.Concernant les résultats obtenus, il apparait une nette diminution de chacune des résistances de contact étudiées. Afin de mieux comprendre ces résultats, des études de ces interfaces in-situ ont été réalisées.

  • Titre traduit

    Thermal Interface Materials Nanostructured


  • Résumé

    With progress in microelectronics, the miniaturization of devices is a current issue and the component density on a device follows Moore’s law. As a consequence the power density reaches levels that challenge device reliability. New heat dissipation strategies are needed to efficiently drain heat.Thermal interface materials (TIMs) are used to transfer heat across interfaces, for example between the device and its packaging. However, to meet microelectronics requirement, commercials TIMs still need to be highly thermally conductive.In order to achieve these requirements, this work is focused on the use of vertically aligned carbon nanotubes (VACNTs) and functional polymers. All thermal contact resistances existing in TIMs, from VACNTs / Polymer / to substrate are studied.Interaction optimizations are based on the study of different polymers which are specially designed to develop covalent bonding with the CNTs sidewalls and/or metallic surface. The interest of these covalent bondings is to improve the thermal transfer by phonons. Finally, the increase of the intrinsic thermal conductivity of the polymer is considered.Regarding the results, a decrease of all thermal contact resistances is shown. In order to have a better understanding of these results, the thermal interfaces obtained are analyzed in situ.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : CentraleSupélec. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.