Modélisation et simulation des effets quantiques en dynamique moléculaire : application à l'étude de la conduction protonique

par Fabien Brieuc

Thèse de doctorat en Physique

Sous la direction de Hichem Dammak.

Le président du jury était Marie-Pierre Gaigeot.

Le jury était composé de Hichem Dammak, Marie-Pierre Gaigeot, Grégory Geneste, Marc Hayoun.

Les rapporteurs étaient Florent Calvo, Rodolphe Vuilleumier.


  • Résumé

    Cette thèse porte sur l'étude des effets quantiques en dynamique moléculaire (DM). La DM est une méthode numérique qui permet l'étude des propriétés de la matière condensée. Cependant, la méthode étant basée sur la mécanique classique, les effets quantiques associés à la dynamique des noyaux, tels que l'énergie de point zéro ou l'effet tunnel, ne sont pas pris en compte. Ces effets quantiques nucléaires peuvent cependant jouer un rôle majeur, en particulier aux basses températures et/ou dans les systèmes contenant des atomes légers comme l'hydrogène. La dynamique moléculaire par intégrales de chemins (PIMD) est souvent utilisée, dans ce cas, pour tenir compte de la nature quantique des noyaux. Cette approche fournit des résultats quantiques exacts, mais son coût en temps de calcul élevé limite son domaine d'application. La méthode du bain thermique quantique (QTB) a été proposée comme une alternative à la PIMD. L'approche QTB est particulièrement intéressante car son coût en temps de calcul est équivalent à celui de la DM standard permettant ainsi l'étude de systèmes complexes et de plus grande taille.La première partie de cette thèse est consacrée à l'étude de la méthode QTB. Nous avons étudié le comportement de la méthode sur différents systèmes modèles afin d'étudier ses limites. En particulier, le problème du "zero point energy leakage" est étudié en détail et nous montrons que l'augmentation du coefficient de friction du QTB permet de limiter ce problème. Nous avons également développé une combinaison de la méthode QTB avec la méthode PIMD. Cette méthode combinée QTB-PIMD permet de réduire le coût en temps de calcul des simulations PIMD standards.Dans une deuxième partie, nous avons utilisé ces méthodes pour étudier la conduction de l'hydrogène dans des matériaux pérovskites. Nous nous intéressons d'abord à l'impact des effets quantiques sur la diffusion de l'hydrogène dans BaZrO3, un matériau d'électrolyte potentiel pour piles à hydrogène. L'hydrogène étant l'élément le plus léger, un impact important des effets quantiques est attendu. Nous trouvons que les effets quantiques sont effectivement importants à basse température, mais leur impact sur la diffusion reste faible aux températures de fonctionnement typiques des piles à hydrogène. Enfin, nous avons étudié les mécanismes de diffusion de l'hydrogène dans GdBaCo2O5.5. Nous mettons en évidence une diffusion anisotrope dans ce matériau et deux mécanismes principaux de diffusion.

  • Titre traduit

    Modelling and simulation of quantum effects in molecular dynamics : application to the study of proton conduction


  • Résumé

    This thesis deals with the study of quantum effects in molecular dynamics (MD). MD is a powerful numerical method to investigate the properties of condensed matter systems. However, since the method is based on classical mechanics, quantum effects associated with the dynamics of the nuclei, such as zero-point energy or tunnelling, are not taken into account. These nuclear quantum effects can, however, play a major role in particular at low temperatures and/or in systems containing light atoms such as hydrogen. In these cases, a standard way to account for the quantum nature of the nuclei is to use path integral molecular dynamics (PIMD). This method provides exact quantum results however its high computational cost limits its range of applicability. The quantum thermal bath (QTB) method has been proposed as an alternative to PIMD. The QTB method is particularly appealing because of its computational cost that is equivalent to standard MD thus allowing to study large and complex systems.The first part of this thesis is devoted to the study of the QTB method. We have studied the behavior of the method in selected model systems in order to investigate its limitations. We have focused, in particular, on the zero-point energy leakage problem and found that increasing the friction coefficient of the QTB can significantly limit this problem. We also have developed another way to use the QTB method by combining it with PIMD. This combined QTB-PIMD method allows, in particular, to decrease the computational cost of standard PIMD simulations.In a second part, we have used these methods to study hydrogen conduction in perovskite materials. We have first investigated the impact of quantum effects on the diffusion of hydrogen in BaZrO3, a potential electrolyte material for hydrogen fuel cells. Since hydrogen is the lightest element, we expect quantum effects to have a significant impact on its dynamics. We find that quantum effects are indeed significant at low temperatures although their impact on the diffusion remains low at the typical working temperatures of hydrogen fuel cells. Finally, we have investigated the diffusion mechanisms of hydrogen in GdBaCo2O5.5. We evidence that the diffusion is anisotropic in this material and two main diffusion mechanisms.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : CentraleSupélec. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.