Contribution aux opérateurs arithmétiques GF(2m) et leurs applications à la cryptographie sur courbes elliptiques

par Jérémy Métairie

Thèse de doctorat en Informatique

Sous la direction de Arnaud Tisserand et de Emmanuel Casseau.


  • Résumé

    La cryptographie et la problématique de la sécurité informatique deviennent des sujets de plus en plus prépondérants dans un monde hyper connecté et souvent embarqué. La cryptographie est un domaine dont l'objectif principal est de ''protéger'' l'information, de la rendre inintelligible à ceux ou à celles à qui elle n'est pas destinée. La cryptographie repose sur des algorithmes solides qui s'appuient eux-mêmes sur des problèmes mathématiques réputés difficiles (logarithme discret, factorisation des grands nombres etc). Bien qu'il soit complexe, sur papier, d'attaquer ces systèmes de protection, l'implantation matérielle ou logicielle, si elle est négligée (non protégée contre les attaques physiques), peut apporter à des entités malveillantes des renseignements complémentaires (temps d’exécution, consommation d'énergie etc) : on parle de canaux cachés ou de canaux auxiliaires. Nous avons, dans cette thèse, étudié deux aspects. Le premier est l'apport de nouvelles idées algorithmiques pour le calcul dans les corps finis binaires GF(2^m) utilisés dans le cadre de la cryptographie sur courbes elliptiques. Nous avons proposé deux nouvelles représentations des éléments du corps : la base normale permutée et le Phi-RNS. Ces deux nouveautés algorithmiques ont fait l'objet d'implémentations matérielles en FPGA dans laquelle nous montrons que ces premières, sous certaines conditions, apportent un meilleur compromis temps-surface. Le deuxième aspect est la protection d'un crypto-processeur face à une attaque par canaux cachés (dite attaque par «templates»). Nous avons implémenté, en VHDL, un crypto-processeur complet et nous y avons exécuté, en parallèle, des algorithmes de «double-and-add» et «halve-and-add» afin d'accélérer le calcul de la multiplication scalaire et de rendre, de par ce même parallélisme, notre crypto-processeur moins vulnérable face à certaines attaques par canaux auxiliaires. Nous montrons que le parallélisme seul des calculs ne suffira pas et qu'il faudra marier le parallélisme à des méthodes plus conventionnelles pour assurer, à l'implémentation, une sécurité raisonnable.

  • Titre traduit

    Contributions to GF(2m) Operators for Cryptographic Purposes


  • Résumé

    Cryptography and security market is growing up at an annual rate of 17 % according to some recent studies. Cryptography is known to be the science of secret. It is based on mathematical hard problems as integers factorization, the well-known discrete logarithm problem. Although those problems are trusted, software or hardware implementations of cryptographic algorithms can suffer from inherent weaknesses. Execution time, power consumption (...) can differ depending on secret informations such as the secret key. Because of that, some malicious attacks could be used to exploit these weak points and therefore can be used to break the whole crypto-system. In this thesis, we are interested in protecting our physical device from the so called side channel attacks as well as interested in proposing new GF(2^m) multiplication algorithms used over elliptic curves cryptography. As a protection, we first thought that parallel scalar multiplication (using halve-and-add and double-and-add algorithms both executed at the same time) would be a great countermeasure against template attacks. We showed that it was not the case and that parallelism could not be used as protection by itself : it had to be combined with more conventional countermeasures. We also proposed two new GF(2^m) representations we respectively named permuted normal basis (PNB) and Phi-RNS. Those two representations, under some requirements, can offer a great time-area trade-off on FPGAs.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.