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Résumé

La reconstruction précise d’une scène 3D à partir de plusieurs caméras offre un contenu syn-

thétique 3D à destination de nombreuses applications telles que le divertissement, la télévi-

sion et la production cinématographique. Cette thèse propose une nouvelle approche pour la

reconstruction 3D multi-vues basée sur l’enveloppe visuelle et la stéréovision multi-oculaire.

Cette approche nécessite en entré l’enveloppe visuelle et plusieurs jeux d’images rectifiées

issues de différentsunités multiscopiquesconstituées chacune de plusieurs caméras alignées

et équidistantes. Nos contributions se situent à différents niveaux. Le premier est notre méth-

ode de stéréovision multi-oculaire qui est fondé sur un nouvel échantillonnage de l’espace

scénique et fournit unecarte de matérialitéexprimant la probabilité pour chaque point

d’échantillonnage 3D d’appartenir à la surface visible par l’unité multiscopique. Le sec-

ond est l’hybridation de cette méthode avec les informations issues de l’enveloppe visuelle

et le troisième est la chaîne de reconstruction basée sur la fusion des différentes enveloppes

creusées tout en gérant les informations contradictoires qui peuvent exister. Les résultats

confirment : i) l’efficacité de l’utilisation de la carte de matérialité pour traiter les problèmes

qui se produisent souvent dans la stéréovision, en particulier pour les régions partiellement

occultées ; ii) l’avantage de la fusion des méthodes de l’enveloppe visuelle et de la stéréovi-

sion multi-oculaire pour générer un modèle 3D précis de la scène.

Mots-clés : Reconstruction 3D à partir de multiples vues, Stéréovision multi-vue, En-

veloppe visuelle, Géométrie épipolaire parallèle décentrée, Reconstruction basée silhouette.





Abstract

Accurate reconstruction of a 3D scene from multiple cameras offers 3D synthetic content to

be used in many applications such as entertainment, TV, and cinema production. This thesis

is placed in the context of the RECOVER3D collaborative project, which aims is to provide

efficient and quality innovative solutions to 3D acquisition of actors. The RECOVER3D

acquisition system is composed of several tens of synchronized cameras scattered around

the observed scene within a chromakey studio in order to build the visual hull, with several

groups laid asmultiscopic unitsdedicated to multi-baseline stereovision. A multiscopic unit

is defined as a set of aligned and evenly distributed cameras. This thesis proposes a novel

framework for multi-view 3D reconstruction relying on both multi-baseline stereovision and

visual hull. This method’s inputs are a visual hull and several sets of multi-baseline views.

For each such view set, a multi-baseline stereovision method yields a surface which is used

to carve the visual hull. Carved visual hulls from different view sets are then fused iteratively

to deliver the intended 3D model. Furthermore, we propose a framework for multi-baseline

stereo-vision which provides upon the Disparity Space (DS), amateriality mapexpressing

the probability for 3D sample points to lie on a visible surface. The results confirm i) the

efficient of using the materiality map to deal with commonly occurring problems in multi-

baseline stereovision in particular for semi or partially occluded regions, ii) the benefit of

merging visual hull and multi-baseline stereovision methods to produce 3D objects models

with high precision.

Keywords: Multiview 3D reconstruction, Multi-baseline stereovision, Visual hull, De-

centered parallel geometry, Shape from silhouette.
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Introduction générale

Le travail présenté dans ce manuscrit s’inscrit dans le projet RECOVER3D (Realtime Envi-

ronnement for COmputational Video Editing and Rendering in 3D) labellisé dans le cadre

des « Investissements d’avenir » dont l’objectif est d’élaborer le premier système intégré

de vidéo virtuelle pour le marché de la télévision et du cinéma. L’innovation apportée par

RECOVER3D vise à libérer la création d’images vidéo des contraintes matérielles clas-

siques liées à la prise de vue multi-caméras grâce à un nouveau système de « clonage virtuel

» d’acteurs et de décor, basé sur des captures vidéo 3D intelligentes délivrant nativement

une information de profondeur. L’université de Reims Champagne-Ardenne, via le labora-

toire CReSTIC, participe au projet RECOVER3D en partenariat avec son porteur, la société

XD-Production. L’objectif majeur de cette thèse vise à l’amélioration des solutions de re-

construction 3D de la scène.

D’une part, la reconstruction 3D d’une scène à partir de plusieurs images est depuis

longtemps un problème majeur de la recherche en vision par ordinateur et de nombreuses

approches telles que la reconstruction basée silhouette, stéréovision ou scanner 3D à lu-

mière structurée ont été proposées. Elles sont généralement classées en deux groupes prin-

cipaux : « active » et « passive ». Les méthodes dites « active » nécessitent une acquisition

avec un matériel autre qu’une caméra comme un laser ou un vidéoprojecteur pour celles

basées lumière structurées. Bien que la reconstruction obtenue soit de meilleure qualité que

pour celles dites « passives », elles ont pour principaux inconvénients d’imposer des con-

traintes sur l’éclairage de la scène, de restreindre le champs de déplacement des éléments

dynamiques de la scène et de gêner l’acquisition des textures réelles. Face au contexte de

RECOVER3D, la restriction des mouvements des acteurs et une illumination contrôlée ne

sont pas envisageables et cela nous amène donc à exclure toutes les méthodes dites « ac-

tives ».

D’autre part, préalablement à ce projet, la société XD-Production a développé un sys-

tème de reconstruction 3D basé silhouette à partir de plusieurs cameras monoscopiques (à

un seul point de vue) afin de modéliser une scène 3D. A l’issue de cette reconstruction,

l’enveloppe visuelle obtenue est texturée avec les informations colorimétriques extraites



2 Introduction générale

des images acquises. L’objectif majeur de cette thèse vise donc à proposer une nouvelle

approche dite « passive » de reconstruction 3D d’une scène mono ou multi-objets acquise

dans un studio dédié. Ce studio est composé de plusieurs caméras placées en cercle, sur deux

niveaux, tout autour de la scène et regroupées en unité monoscopique (une seule caméra)

et multiscopique (plusieurs caméras). Notre approche se base sur l’exploitation d’une part

des techniques « basées silhouette » [64] et d’autre part de celles liées à la stéréovision

multi-vues [73].

La reconstruction 3D basée silhouette est très utilisée dans les environnements multi-

caméras. Elle est simple à implémenter, robuste, efficace et délivre une surface fermée.

Cependant ses principaux désavantages sont le manque de précision du modèle et son inca-

pacité à retrouver les zones concaves. En revanche la reconstruction 3D basée stéréovision

produit une modélisation de haute résolution (zones convexes et concaves incluses) mais elle

est plus complexe à implémenter et manque de robustesse. Ainsi les méthodes de stéréovi-

sion et les méthodes de silhouette s’avèrent être complémentaires. Bien que la littérature pro-

pose déjà des méthodes fusionnant ces deux techniques, nous présentons, dans cette thèse,

un nouveau procédé pour les fusionner. Tout d’abord, nous commencerons par décrire une

nouvelle méthode de stéréovision multi-vues, basée sur un système de capture aux centres

optiques alignés que représente une unité multiscopique du studio RECOVER3D. Spéci-

fiquement construite pour profiter du contexte multi-oculaire en géométrie parallèle décen-

trée, et en exploiter la géométrie multi-épipolaire simplifiée et régulière. Ensuite, nous en

proposerons une hybridation, capable d’exploiter les informations des silhouettes, amélio-

rant ainsi sa robustesse et son efficacité. Enfin nous terminerons par la description de la

méthode de fusion des techniques « silhouettes » et « stéréovision » attendue par le projet

RECOVER3D. Ces contributions sont exposées dans les chapitres 3 et 4 du manuscrit.

Ce manuscrit est constitué de 4 chapitres. Le chapitre 1 présente le projet RECOVER3D

où nous détaillerons les spécificités du studio vidéo 3D et la problématique industrielle. Le

chapitre 2 introduit le système de capture utilisé et la géométrie qui y est liée. Il revient

sur le modèle sténopé d’une caméra et sur la géométrie épipolaire dans un contexte binoc-

ulaire avant d’étendre ces notions à la géométrie épipolaire multiple dans notre contexte de

capture multi-oculaire. Une fois ces notions introduites, nous présenterons un état de l’art

sur les techniques existantes de reconstruction basée stéréovision, basée silhouette et celles

basées sur une fusion de ces deux approches. Le chapitre 3 aborde la reconstruction 3D

partielle de la scène avec les informations issues d’une seule unité multiscopique. Il est

consacré à notre méthode de reconstruction stéréovision multi-vues basée sur un système

de capture multi-oculaire aligné et parallèle. Contrairement aux techniques existantes, notre

approche délaisse l’espace image pour travailler principalement dans l’espace 3D et repose
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sur notre carte de matérialité. Cette dernière exprime, pour chaque des points 3D de la

scène, la probabilité d’appartenir à la surface reconstruite. Notre méthode de stéréovision

multi-vues est dite basée scène. Le chapitre 4 traite de la reconstruction entière de la scène.

Dans la première partie, une hybridation de notre méthode de stéréovision multi-vues basée

sur un système de capture multi-oculaire aligné et parallèle est présentée. Cette hybrida-

tion se fait par la prise en compte des informations de l’enveloppe visuelle. La deuxième

partie est consacrée à une nouvelle approche pour la fusion des modèles reconstruits nés

des informations de chacune des unités multiscopiques et de l’enveloppe visuelle. Enfin

la denière partie est dédiée à la présentation des résultats obtenues suivi d’une comparai-

son avec d’autres méthodes existantes et d’une discussion. Le chapitre 5 résume et conclut

ce manuscrit et apporte quelques pistes et perspectives concernant nos travaux dans et en

dehors du contexte RECOVER3D.





Chapter 1

Introduction

According to the increasing fragmentation of the TV audience due to the multiplication

of channels and the appearance of new consumption behaviors (VOD, Internet ...), broadcast-

ers and producers seek differentiated and content of quality, produced in optimal economic

conditions. Among all paths considered in this regard, the use of 4D reconstruction stu-

dios are a sound alternative in the sense that it provides controlled environments generally

based around a large room with uniform background equipped with multiple synchronized

calibrated video cameras and appropriate illumination. The main application areas of 4D stu-

dios are currently dedicated to computer games, movies, TV productions, interactive media

and motion analysis. The "4D studios" term refers to the spatio-temporal domain where 3D

reconstructions of non-rigid moving objects are calculated. Most of these systems require

a temporal sequence of simultaneous image shots from multiple viewpoints in addition to

suitable software solutions to produce a static set of 3D models at each time step.

1.1 Context
This thesis presents the 3D reconstruction part of a broader project called RECOVER3D

(acronym for Real-time Environment for COmputational Video Editing and Rendering in

3D). This project is born to fulfill needs of the broadcast industry of economically sustain-

able 3D post-production capabilities. More precisely, it aims at providing a new "virtual

cloning" system of actors based on smart multi-video capture, natively delivering full 4D

textured models of actors’ performance. The RECOVER3D consortium is based on the

partnership between academic researchers in computer vision and industrial integrators and

producers from the broadcast world. Together, we designed and implemented a prototype

of what could be a suitable shooting facility for the industrial production of 4D images. The

constraint is not only to improve the overall esthetical quality of the resulting models, but
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also to produce them in real time or in a reduced post processing delay, providing a credible

alternative to standard 2D studios.

Figure 1.5 shows the pipeline of the RECOVER3D project for 4D reconstruction system

purpose. It consists in four blocks, identified by four different colors in figure 1.5.

• The blocks with gray color in figure 1.5 represent the "Studio setting". This latter de-

livers a convenient studio whose layout is optimized according to the scenarist needs

concerning useful scenic space where the actors and objects can be moved without

leaving the intersection of all viewing frustum cameras. The studio setting begins

with an interactive virtual configuration yielding a convenient layout. Then, the real

configuration step places each camera in the studio according to this specification.

Afterwards, the calibration process delivers extrinsic, intrinsic, and deformation pa-

rameters for each camera. These parameters are mandatory for the incoming shooting

and reconstruction processes.

• In the red color block, the capture system provides synchronized corrected videos

from all cameras for each rush.

• The modules in blue blockes implement the reconstruction of one 3D model of a scene

for each frame. At each time-stamp, they combine reconstructed visual hull with the

results of our multi-baseline stereovision.

• The sequence of these 3D models is then transmitted to the last blocks "4D model

tracking" (green modules) in which motion flows are estimated in order to animate a

dynamic mesh.

This thesis focuses on the 3D reconstruction from visual hull and multi-baseline stereovision

methods. It concerns two blue blocks in figure 1.5 "Multi Stereo Matching" and "Fusion".

1.2 Problem statement
Reconstructing 3D objects from multiple views has long been a major research prob-

lem in computer vision. Many techniques such as multi-stereovision, shape from silhouette,

shape from shading, and structured-light 3D scanner have been proposed for 3D reconstruc-

tion. They are usually classified as active or passive reconstruction. The active ones require

controlled illumination such as a laser or a structured light. The passive ones rely only on the

information contained in captured images. The main advantages of passive approaches are

less restriction on the movement of the actors and the possibility of capturing actual textures.

A main disadvantage is the lower visual quality of the 3D modeling compared to the preci-

sion obtained from some active approaches. Our project has to use passive reconstruction as

live shooting of actual performances makes controlled illumination not desirable for our 4D

textured model reconstruction. In this thesis, we propose a new multi-view passive approach
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Fig. 1.1 Pipeline of the RECOVER3D project.

whose aim is to reach the visual quality and the precision of active approaches. Our method

merges results from shape from silhouette and multi-baseline stereovision reconstructions.

Multiocular stereovision methods such as [39][60] conveniently reconstruct surface de-

tails and concave regions. However, they fail for textureless surfaces or repetitive textures

because their core computational process relies on image texture. Shape from silhouette

methods such as [13][68] are very useful in a multi-camera environment [12] and handle con-

veniently textureless and specular surfaces. However, their reconstruction quality is some-

how limited as the produced visual hull (VH) cannot recover concave regions laying inside

the optical beam passing through the silhouette for each camera. Thus, multi-stereovision

and shape from silhouette are complementary to each other and numerous hybrid methods

have already been published as we will describe in details in the next chapter. In this thesis,

we propose a novel framework for 3D reconstruction combining both approaches using our

proposed acquisition system and a novel multi-baseline stereovision framework.

1.3 Multi-camera Systems for 3D Video Production
One of the most important design factor of a 3D video studio is how to determine their

spatial arrangement to achieve high 3D shape reconstruction accuracy. In general, the cam-
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eras are spaced uniformly around the object(s) so that the captured images cover the entire

object surface. If we do not have any specific knowledge about the object shape or motion,

or if we want to capture a variety of objects in the same studio, one reasonable solution is to

employ a circular ring camera arrangement, where a group of cameras placed evenly along

the ring observes the object performing actions at the ring center. We may call it a converg-

ing acquisition system. Figure 1.2 illustrates three typical acquisition systems: diverging

multi-camera arrangement for omni-directional image capture in 1.2c, parallel multi-camera

arrangement for multi-baseline stereo and lightfield modeling 1.2a, and converging multi-

camera arrangement 1.2b. Many research laboratories and companies are equipped with

studio containing multiple cameras in converging acquisition system. Among those, the Ki-

novis room at INRIA Rhône-Alpes [7] is illustrated in figure 1.3a. A similar multi-camera

system is also deployed at Surrey University in London [66] (see figure 1.3b). Note that it is

often hard to satisfy a requirement of full observation coverage of the object surface. Some

parts of the surface are occluded by others even when capturing a single object. Moreover,

heavy occlusions become unavoidable when capturing multiple objects in action. Thus in

order to produce a 3D video, there is a need for methods that cope with self and mutual

occlusions. Many methods for 3D shape reconstruction from a set of multi-view images

have been developed. One of the most popular methods is silhouette-based reconstruction.

As pointed out before, since this method utilizes only silhouette information, many concave

parts of the object cannot be reconstructed as we will describe in the next chapter. Contrary

to existing studios, we propose to work with a novel acquisition system (see figure 1.4) that

is composed of two typical multi-camera arrangements: parallel and converging which per-

mits to exploit two kinds of reconstruction methods: i) multi-baseline stereovision, ii) visual

hull.

(a) (b) (c)

Fig. 1.2 Acquisition systems for multi-view camera: a) parallel arrangements, b) converging,
and c) diverging.
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(a) (b)

Fig. 1.3 Chromakey studios: a) Kinovis capture studio at INRIA Rhône-Alpes b) Capture
studio of the university of Surrey.

1.3.1 RECOVER3D studio layout and processing
The RECOVER3D studio is installed in the premises of the industrial partner XD Pro-

ductions. It is a green chromakey studio of 100 square meters, which is 4.5 meter high.

The results shown in this thesis were produced by 24 full HD cameras (1920x1080 pix-

els), at 25 frames per second, but the system is designed to be scalable up to 40 cameras,

recording 60 frames per second. The combination of visual hull (VH) and multi-baseline

stereovision requires views from a wide variety of angles for visual hull extraction and from

distinct but close points of view for stereo matching. The project thus relies on a studio

composed of many synchronized and time-stamped cameras. As we mentioned previously,

our acquisition system consists in converging cameras in order to build the VH calledmono-

scopiccameras and several groups of multi-camera arrangements calledmultiscopic units

and each dedicated to one multi-baseline stereovision reconstruction. Multiscopic units (see

figures 1.5, 1.4) are laid with aligned and evenly distributed optical centers. We chose to

group four cameras per multiscopic unit which seems, according to experience, a good com-

promise between robustness, relying on views redundancy, and computational efficiency

[50]. The cameras are calibrated in geometry and colorimetry in a pre-shooting step. For

each time stamp, every image is matted thanks to pre-calibrated chromakey (RGB space re-

lated to background in views) and resulting silhouettes are used to compute the VH. For each

multiscopic unit, captured images are then rectified to match simplified epipolar geometry

[43].

1.4 Contributions of this thesis
This thesis makes two major contributions. The first one is a novel scene-based frame-

work for direct multi-view stereovision reconstruction. Our proposition aims at building a

newmateriality mapon the disparity space to optimize it according to a relevant energy func-

tion and finally to use its optimized content for deciding where the reconstructed surfaces
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Multiscopic unit
4 aligned and 

evenly distributed
convergent 

cameras
on a rig

Monoscopic unit: single camera

HPC facilities
1 PC for 4 cameras

Fig. 1.4 Dedicated multiview studio.

Fig. 1.5 RECOVER3D studio at XD-production company with multiscopic and monoscopic
units.

lie in the disparity space (DS). The second contribution is a novel framework for multi-view

3D reconstruction relying on both multi-baseline stereovision and visual hull. This method’s

inputs are a visual hull and several sets of multi-baseline views. For each such view set, a

multi-baseline stereovision method yields a surface which is used to carve the visual hull.

Carved visual hulls from different view sets are then fused iteratively to deliver the intended

3D model.

1.5 Layout of this thesis
This thesis is organized by the following chapters :

• Chapter 2 presents the state of art of 3D reconstruction methods. Firstly, we describe

the geometry for one camera and multiple cameras. Different geometry constraints

are exploited. In this chapter we explain in details two methods for the 3D reconstruc-

tion, multi-stereovision and shape from silhouettes. Secondly, we propose to classify

the methods merging the silhouette-based and stereovision-based reconstruction into

three groups: i) stereovision guided by visual hull methods, ii) collaborative methods

applying simultaneously criteria borrowed from both visual hull and stereovision, iii)

separate application of both methods with further merging of their results.
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• Chapter 3 describes a novel method for multi-baseline stereovision. We introduce the

concept of materiality map to represent the probability of the 3D points (called target

points) to belong to the reconstructed surface. The method consists of different steps

which can be summarized as follows:

– scene sampling to determine the digital domain where the objects can be recon-

structed.

– identification the similarity, confidence, and visibility for each target point.

– definition of the cost function and application of gradient descent as optimization

method.

– binarization of the materiality values of each target points in order to extract the

reconstructed surface.

• Chapter 4 proposes an innovative framework of 3D reconstruction from fusion of

silhouette-based reconstruction and multiple results of our chapter 3 multi-baseline

stereovision approach. It first enhances multi-baseline stereovision process thanks to

visual hull data. Then it merges different volumes resulting from multiple multiscopic

units. The goal of this method is then to produce a single 3D model representing the

3D pose of the object to reconstructed.

• Chapter 5 presents a detailed summary and conclusion of the thesis, and discusses

opened problems to tackle in future work.
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1.6 Résumé : Introduction et contexte
Dans un contexte de fragmentation de l’audience TV due á la multiplication du nombre

de chaînes et á la concurrence de nouveaux modes de consommation (VOD, Internet, ...), les

diffuseurs et les producteurs sont plus que jamais à la recherche de contenu différencié de

qualité, produit dans des conditions économiques optimales. Cette thèse présente la partie de

la reconstruction 3D d’un projet plus vaste appelé RECOVER3D (Real-time Environnement

for COmputational Video Editing and Rendering in 3D) qui développe, pour les industries

du cinéma et de la télévision, un système complet allant de la capture de performances

d’acteurs ou d’autre objets en médias 4D de haute qualité á leurs utilisations multiples et var-

iées (duplication, édition spatiale, géométrique, temporelle, texturale, ré-éclairement, ...) en

régie virtuelle. Le système d’acquisition proposé pour la reconstruction de la scène, repose

sur un studio multi-caméras spécifique. Le studio chromakey développé comprend jusqu’à

40 caméras HD synchronisées réparties, autour et au dessus de l’espace scénique désiré,

isolément (unités monoscopiques), ou par bloc de 4 (unités multiscopiques). Les caméras

d’une unité multiscopiques sont disposées avec des centres optiques alignés et équidistants

pour permettre, par rectification, de délivrer des vidéos 4-vues en géométrie épipolaire sim-

plifiée. L’ensemble de ces unités est utilisé dans un premier temps, via une méthode basée

silhouette, á reconstruire l’enveloppe visuelle de la scène. Dans cette thèse, nous proposons

tout d’abord une nouvelle méthode de stéréovision multi-vue alignée appliquée sur les im-

ages acquises par chaque unité multiscopique. Puis nous décrivons comment améliorer sa

robustesse et son efficacité en intégrant des informations issues des silhouettes. Enfin, dans

l’objectif de générer un modèle 3D de précision de la scène, nous présentons une hybri-

dation de notre méthode multiscopique et notre pipeline de reconstruction 3D multi-vues,

intégrant les résultats issus de l’enveloppe visuelle et la stéréovision multi-vue.



Chapter 2

Multiview 3D reconstruction: a review

In this chapter, we present the concept of 3D scene modeling from multiple images and

some of its applications. In section 2.1, we present the geometrical models and tools im-

plied in multi-view computer vision. Starting with the monocular pinhole camera model,

we further focus on binocular and multiocular geometries. In section 2.2, we describe ex-

isting 3D reconstruction techniques that use multiple views. We introduce the concept of

binocular stereovision and describe the multi-view stereovision and shape-from-silhouettes

methods. Since we work within the RECOVER3D project which aims at hybridizing shape

from silhouettes and multi-view stereovision, we propose in section 2.3 to classify such hy-

brid techniques into three major groups: i) stereovision guided by visual hull methods, ii)

collaborative methods applying simultaneously criteria borrowed from both techniques, iii)

separate application of both methods with further merging of their results.

2.1 Multiple view geometry: definitions and notations
Before discussing the multiview 3D reconstruction, it is important to know how the

images are obtained. In this section, we describe the single camera shooting geometry

and geometric constraints existing between multiple views of a same scene with no prior

constraint on layout of cameras.

2.1.1 Monocular geometry
The process of evaluating the relationship between the scene and captured image co-

ordinates is called camera calibration. It is a necessary step for many computer vision

applications especially for the 3D reconstruction methods. It requires some parametrical

model of the coordinate transformation process which relies on the projection model used

for the camera. The most usual perspective camera model corresponds to the pinhole camera
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model expressing a perfect projective camera with infinitesimal and instantaneous aperture.

Such an ideal model yields a simple mathematical relationship between the coordinates of

a 3D point in a reference frame tied to the camera and its projection onto the planar image

domain indexed in pixel coordinates. The more global relationship between the 3D scene co-

ordinates and their corresponding image coordinates is usually expressed using two groups

of parameters:

• Extrinsic camera parameters: they define the relative position and orientation of the

scene frame in the camera frame. They describe the positioning of the 3D scene in

the camera frame (see section 2.1.1.1).

• Intrinsic camera parameters : they relate to internal geometric and optical character-

istics of the camera. They are linked to the projection step and given by the pinhole

model (see section 2.1.1.2).

Thank to the definition of intrinsic (section 2.1.1.1) and extrinsic (section 2.1.1.2) camera

parameters, we will identify the projection matrix in section 2.1.1.3.

2.1.1.1 Intrinsic camera parameters

The usual pinhole camera model expresses a perfect perspective camera (see figure 2.1a)

in which a visible 3D pointM is projected onto the 2D pointm of the image plane via a

single optical ray passing through the optical centerC. The intrinsic camera reference frame

of the pinhole camera is usually positionned on the optical center (projection center) with

Zc axis orthogonal to the image plane and oriented towards the scene andXc axis parallel to

sensor rows. The sensor plane is set at focal distancef from the optical center. The perfect

perspective projection of pointM with coordinatesMc = (xc,yc,zc)
t in camera frame onto

the image plane point(xp,yp)
t is expressed by:

xp = f
xc

zc
yp = f

yc

zc
⇐⇒






xp

yp

1




∼






f 0 0 0

0 f 0 0

0 0 1 0













xc

yc

zc

1







. (2.1)

It should be noted that the symbol∼ refers to the equality of vectors with a nonzero scaling

factor (this is due to the use of homogeneous coordinates).

The conversion of metric coordinates(xp,yp)
t in sensor plane to pixel coordinatesm(u,v)t

in the image depends on sensor geometry and position (see figure 2.1.b). These sensor

parameters encompass:

• its horizontalph = w/ncand verticalpv = h/nr pitches expressing the distances be-

tween adjacent columns and rows, or their inversesku = p−1
h andkv = p−1

v ;
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• a column biasγ taking into account the fact that row and column may not be orthogo-

nal due to some manufacturing skew error;

• the pixel coordinates(u0,v0)
t of the intersectionc of the optical axis with the image

plane.

These parameters yield the needed conversion:






u

v

1




∼




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ku γ u0

0 kv v0

0 0 1











xp

yp

1




 . (2.2)

Using the equations 2.1 and 2.2, pixel coordinates are then obtained from metric coordinates

in the camera frame by:
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. (2.3)

The equation 2.3 can be re-written as:
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,

with: αu = ku f , αv = kv f , s= γ f .

(2.4)

Introducing the 3x3 identity matrixI3, equation 2.4 becomes:




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u

v

1


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. (2.5)

In short hand notation, we write equation 2.5 as:

(

m

1

)

∼ K
(

I3 0
)
(

Mc

1

)

, (2.6)
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M: 3D point

m: projected point
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of M

(b)

Fig. 2.1 Pinhole camera: a) Perspective projection, b) Transformation from metric
coordinates in sensor plane to pixel coordinates.

wherem represents the pixel coordinates,K is the perspective projection matrix, andMc is

the vector of coordinates of a point measured in the camera frame. The parametersαu, αv,

s, u0, andv0 do not depend on the orientation and the position of the camera in the scene.

Therefore, they are called intrinsic parameters.

2.1.1.2 Extrinsic camera parameters

The relationship between the scene and camera frames , respectively(Cs,Xs,Ys,Zs) and

(Cc,Xc,Yc,Zc), both supposed orthonormal and direct, is defined as a rigid transformation.

This is described by a translation, which represents the displacement between origins of

the scene and camera frames, and by a rotation, which defines the scene frame orientation

with respect to the camera frame. WithVs and Vc expressing the coordinates of vector

V respectively in scene and camera frames,Cc
s referring to optical center translation from

camera to scene frame written in camera frame, and(Xs
c Ys

c Zs
c) representing the rotation

of scene frame into camera frame, we obtain:

(Mc− Cc
c

︸︷︷︸

0

) =
(

Xs
c Ys

c Zs
c

)

︸ ︷︷ ︸

R

(Ms− Cc
s

︸︷︷︸

t

),

Mc = R Ms−R t
︸ ︷︷ ︸

T≡Cs
c

.
(2.7)

Finally, from equation 2.7, we obtained the scene/camera transformation:

(

Mc

1

)

=

(

R T

1

)(

Ms

1

)

. (2.8)
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2.1.1.3 Projection matrix

Combining equations 2.6 and 2.8, we get the transformation from scene coordinates to

pixel coordinates (see equation 2.9).
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u

v

1
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1







. (2.9)

This transformation relies on aprojection matrixP which includes intrinsic and extrinsic

camera parameters defined as follows:

P∼ K(I 3 0)

(

R −Rt

1

)

. (2.10)

P can be re-written:

P∼ (KR −KRt)

P∼ KR(I 3 − t).
(2.11)

Finaly the equation 2.9 can be written in short notation as follows:

(

m

1

)

= P

(

Ms

1

)

. (2.12)

Using the projection matrixP described in 2.10 yields an irreversible loss of local depth (in

camera frame) information. One possibility to overcome this problem is, as we will show

in the next chapter, to add some depth related value to pixel coordinates in order to get a

square and invertibleexpanded projection matrix.

2.1.1.4 Calibration process

In order to achieve 3D reconstruction, one has to evaluate the projection matrix param-

eters to quantify the projection of 3D points to pixels. The calibration process of a single

camera thus estimates its extrinsic(R,T) and intrinsic matrices (K) from actual views. The

rotation matrixR, although consisting of 9 elements, has only 3 degrees of freedom as it

has to fulfill 6 constraints linked to its orthonormality. The translation vectorT obviously

has 3 parameters. Therefore, this leads in total to 11 unknown parameters: 6 extrinsic and 5

intrinsic.
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Fig. 2.2 Multi-planar chessboard 3D reference object-basedcalibration, source: [85].

In order to compute these unknowns, one has to build equations from relations between

some values measured in image space (coordinates, distances,...) and corresponding values

known in 3D scene space. The parametric relation between these values rely on the projec-

tion matrixP which has 12 unknown parameters. The overall process of computing(R,T)

andK usually uses two steps: (i) computing the projection matrixP which best satisfies

the equations provided by the relations between the chosen sets of corresponding values in

image and scene spaces and (ii) extractingK, R, andT from P according to equation 2.11

and properties ofK ( upper triangular ), andR ( orthonormal ).

2.1.1.4.1 First step: computing projection matrix

We needne≥ 12 scalar equations to obtain a solution for the projection matrixP. We

propose to classify calibration methods into two major groups according to their choice of

corresponding values yielding the necessaryneequations:

• 3D reference object-based calibration: a reference object (see figure 2.2) with distin-

guishable and calibrated 3D feature points is placed in a known pose in scene space

(for instance two or three orthogonal planes laid as material representation of the cho-

sen scene frame). The coordinatesM i
s of each 3D feature point in scene space and the

corresponding pixels are thus known and measurable. After finding for each point of

the set of 3D feature points, its coordinates in scene frameM i
s and its corresponding

pixel in image coordinate systemmi, we can write the following equation for alli and

then computeP:

(

mi

1

)

∼

P
︷ ︸︸ ︷

(KR
︸︷︷︸

A

KT
︸︷︷︸

B

)

(

M i
s

1

)

; (2.13)

• rigid pattern-based calibration: a rigid planar pattern (chessboard) shown at a few

different orientations [10] or a rigid set of collinear points moved around a fixed point
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provide unknown but related 3D points [10]. Thus, in order to find P, for each frame

with such a pattern in unknown posep (orientationRp and translationTp), we define

the following equation for each feature point indexed byi in the pattern. Using the

coordinatesM i
o of the feature point in the pattern frame and those of its corresponding

pixel mp,i in posep gives the following equation:

(

mp,i

1

)

∼ P
(

Rp Tp
)
(

M i
o

1

)

. (2.14)

2.1.1.4.2 Second step: decomposing projection matrix

The left 3x3 sub-matrixA (defined in 2.13) of projection matrixP is a product of upper-

triangular matrixK and orthogonal matrixR. Any non-singular square matrixG can be

decomposed into the product of an upper-triangular matrixR and an orthogonal matrixQ

using the RQ factorization [56]. When this factorization has yieldedK andR, T is easily

computed asT = K−1B.

2.1.2 Binocular geometry
The relative geometry of two different perspective views of the same 3D scene is called

epipolar geometry. The two perspective views may be acquired simultaneously, for exam-

ple in a stereo rig, or sequentially if the scene is static, for example by a moving camera.

In this section, we expose and describe the geometrical relationship existing between cor-

responding pixels in two images of the same scene. This relationship depends only on the

intrinsic parameters of the two cameras and their relative translation and rotation which may

be obtained from their extrinsic parameters. It expresses that both points are projections of

a single visible 3D point of the scene and, thus, that their optical rays must intersect each

other on this 3D point. We introduce the concept of epipolar geometry in section 2.1.2.1

and simplified epipolar geometry in section 2.1.2.2.

2.1.2.1 Epipolar Geometry
2.1.2.1.1 Concept

If a point of the scene is seen by two different cameras, then consequently a geometrical

relationship is defined between the 3D point and its projections in the images. The rela-

tionship introduces a constraint between matching points in the left(l) and right(r) images

called epipolar constraint. It represents the necessary coplanarity of the 3D pointM, its

projections onto both imagesml andmr and the optical centersCl andCr of both cameras.

The epipolar constraint reduces the search space dimension for any left pixelml to the 1D

intersection of the plane(Cl ,Cr ,ml ) with the other right image plane and therefore the time

spent searching for matching points between two images.
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Let’s consider for example the system illustrated in figure 2.3 composed of two cameras.

Pointsel ander represent theepipolar centers(or epipoles) defined as the intersections of

the straight line passed through (Cl , Cr ) with each image plane. The epipoleer (or el re-

spectively) refers to the position in its image plane where the projection centerCl (or Cr )

of the other image is observed. Consideringml a pixel of the left image, the pointvml
r is

the projection on right image plane of the vanishing pointVml of the ray ofml . Moreover,

the 3D pointM projected onml , is necessarily located on the ray passing throughCl and

ml . Its projectionmr on the right image is thus mandatory on the plane(Cl ,Cr ,ml ) called

epipolar planeof ml .

We can therefore restrict the search for matching points of any left pixelml within the in-

tersection of its epipolar plane with the right image plane. Moreover, we notice that the 3D

point projected onml lies on half line[Cl ,Vml ). The associated right rays sweep the area of

the epipolar plane limited by half lines[Cr ,Cl ) and[Cr ,Vml ). Corresponding right pixels

lie on the intersection of this plane with the right image. This defines theepipolar segment

[er ,v
ml
r ] of ml . The line extending the epipolar segment ofml is called theepipolar lineof

ml .

If two left pixels ml andm′
l are aligned with the epipoleel , they define the same epipolar

plane and thus share the same right epipolar line. Their epipolar segments differ only ac-

cording to their right endsvml
r andv

m′
l

r . One may thus think of epipolar geometry as a set

of epipolar planes rotating around the baseline(Cl ,Cr) and defining couples of associated

epipolar lines in both images. For every pixel lying on one of these epipolar lines, one has to

search its homologue on the associated line. Therefore, it is important to define the epipolar

line corresponding to a given pixel in the other image. One needs a dedicated and practical

tool to ease the identification of this search space. This tool is usually provided by thefun-

damental matrixas we will show in the next section.

However, when the image planes are parallel to the baseline, epipoles are at infinity in

baseline direction and epipolar lines are then also both parallel to the baseline. This configu-

ration facilitates the matching process and is introduced by the simplified epipolar geometry

explained in details in the section 2.1.2.2.

2.1.2.1.2 Fundamental matrix

As previously mentioned, the epipolar geometry expresses a mandatory geometrical rela-

tionship between corresponding pixels in separate views. The epipolar constraint reduces

the research space for homologous pixels to 1D epipolar segments or lines where these ho-

mologous must be located. Therefore, it is important to identify the specific epipolar line

or segment corresponding to a given pixel of an image. In this section, we describe the

mathematical construction of an epipolar line equation from the given pixel coordinatesml
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V
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baseline

Fig. 2.3 Schematic representation of the epipolar geometry:corresponding pointmr of
pixel ml has to lie on segment[er ,v

ml
r ], intersection of its image plane with half planar

stripe(Cl ,Cr ,Vml ).

choosing for convenience the left image as reference. This equation will be expressed by

forcing to be zero the dot product between homogeneous right pixel coordinates(mt
r 1)t

and a 3D vectorlr(ml ) containing the equation coefficients ofml epipolar line. We will

then note that this coefficient vector is linearly expressed from(mt
l 1)t thanks to a matrix

F which depends only on extrinsic and intrinsic camera parameters and thus can be precom-

puted only once for all pixels. This implies that homologous pixels have to verify a bi-linear

equation built fromF. This shows thatF contains the whole epipolar geometry. This matrix

F is called thefundamental matrix.

Let us consider that the given left pixelml is the projection of a 3D pointM, which is also

projected onto the right image the pixelmr . Based on the equation 2.11, these projections

are expressed as follows:

(

ml

1

)

∼ Pl

(

M

1

)

with: Pl = K l Rl (I3 − t l ), (2.15)

(

mr

1

)

∼ Pr

(

M

1

)

with: Pr = K rRr(I3 − tr). (2.16)

The epipolar line equation is derived from the expression that the unknown 2D pointmr =

(ur ,vr)
t is aligned with two known pointser andvml

r . This is achieved by expressing the

zero value of the determinant of the matrix composed of those three points in homogenous

coordinates as follows:

Det

((

er

1

)(

vml
r

1

)(

mr

1

))

= 0. (2.17)
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The first known point expressed as(et
r 1)t can be easily defined since this right epipole

represents the projection of the left optical centerCl into the right image:

(

er

1

)

∼ Pr

(

t l

1

)

︸ ︷︷ ︸

Cl

= K rRr(t l − tr). (2.18)

The second known point expressed as(vml
r

t 1)t is defined as the projection in the right

image of the vanishing pointVml onml ray, expressed as follows:

(

ml

1

)

∼ Pl

(

Vml

0

)

= K l Rl (I3 − t l )

(

Vml

0

)

= K l Rl V
ml , (2.19)

Vml ∼ Rt
l K

−1
l

(

ml

1

)

. (2.20)

Using 2.20, the point expressed as(vml
r

t 1)t is written as follows:

(

vml
r

1

)

∼ Pr

(

Vml

0

)

= K rRrVml = K rRrRt
l K

−1
l

(

ml

1

)

. (2.21)

After defining two known points using 2.18 and 2.21, the determinant 2.17 which describes

the epipolar line equation is written using the triple product:

(mt
r 1)

((

er

1

)

×

(

vml
r

1

))

= 0, (2.22)

(mt
r 1)

(

(K rRr(t l − tr))× (K rRrRt
l K

−1
l

(

ml

1

)

)

)

= 0. (2.23)

Using the rule(Aa)× (Ab) ∼ A−t(a× b), we can write the equation which defines the

epipolar line:

(mt
r 1) (KrRr)

−t

(

(t l − tr)× (Rt
l K

−1
l

(

ml

1

)

)

)

︸ ︷︷ ︸

lr (ml )≡(a b c)t∈R3

= 0, (2.24)

(mt
r 1) lr(ml ) = 0 ⇔ aur +bvr +c= 0. (2.25)
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Using the notation of 3D cross producta×b with anti-symetrical matrix[a]× asa×b =

[a]×b, we can express the vector of the line equation coefficientslr(ml ) linearily according

to (mt
l 1)t as follows:

lr(ml )≡






a

b

c




= (K rRr)

−t [t l − tr ]×Rt
l K

−1
l

︸ ︷︷ ︸

F

(

ml

1

)

. (2.26)

In the equation 2.26, one can note that the matrixF only depends on the extrinsic and

intrinsic parameters of both cameras. As such, it may be precomputed once for all left

pixelsml . As we mentioned previously, the pointmr corresponding toml should be located

on the line of coefficientslr . Therefore, the dot product betweenmr andlr should be zero

(mt
r 1).lr(ml ) = 0. The epipolar constraint mentioned in the section 2.1.2.1 is defined by

the equation 2.25. Transposing this equation provides a symmetrical equation expressing

that a left pixelml lies on the epipolar line of a right pixelmr , identified by its coefficients

l l (mr) (see equation 2.27). Thus the precomputed fundamental matrixF contains the whole

epipolar geometry as it builds epipolar line equations for any pixel of both images as follows:

(mt
r 1)F

(

ml

1

)

︸ ︷︷ ︸

lr(ml )

= 0 ⇔ (mt
l 1)Ft

(

mr

1

)

︸ ︷︷ ︸

l l (mr )

= 0. (2.27)

In the case of unavailable camera parameters, the fundamental matrixF can be com-

puted using the equation 2.27 by identifying a set of corresponding points between different

images using feature-based or intensity-based methods. One of important computer vision

applications which need the fundamental matrix is structure-from-motion (SfM). SfM esti-

mates three-dimensional structure from image sequences using the fundamental matrix as

geometry constraint.

2.1.2.2 Simplified Epipolar Geometry

2.1.2.2.1 Concept

If image planes are both parallel to the baseline, the epipolar planes then intersect the

images at epipolar lines which are also parallel to the baseline. Moreover, if the image

rows are parallel to the baseline, the epipolar lines are the image rows. If, furthermore, the

image planes are identical (parallel one to the other with the same focal length) and sensors

have the same vertical pitch and centering, epipolar couples are composed of rows of same

rank of both images in binocular geometry. The homologous point search in the second

image is thus limited to a horizontal line of the second image located at the same ordinate.
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Fig. 2.4 Relationship between disparityδ = ul −ur and depthZ.

In this configuration, the epipolar geometry is called "simplified". No fundamental matrix

is required to yield the epipolar equation (vr = vl ) while the epipolar segment is easily

identified in this row:ur ∈ [0,ul ] asvml
r = ml . Moreover, a practical tool, the disparity, is

usually used to index possible matches as we will show in the next section.

2.1.2.2.2 Disparity

In simplified epipolar geometry, the homologuemr = (ur ,vr) on the right image of a left

pixel ml = (ul ,vl ) is identified by its coordinatesur andvr = vl in image frame. It is then

common to keep thedisparityδ ≡ ul −ur as a relative identifier since this simple matching

result directly relates to the depthZ of the projected 3D pointM (see below) which thus

greatly simplifies the triangulation step. Given a 3D pointM and its projectionsml andmr

onto image planes (see figure 2.4),(M, Cl ,Cr) and(M ,ml ,mr) are similar triangles. The

depthZ is then defined as follows:

b
Z
=

b−δ
Z− f

⇔ Z =
f b
δ

⇔ Z δ = f b. (2.28)

Thanks to this disparity-depth relationship, some authors express their stereovision results

as disparity maps defined as gray scale images where the intensity of each pixel is its dis-

parity δ related to the depth of the associated 3D point thanks to equation 2.28. Given a

disparity mapDl computed from two images, the pixel intensityDl (ul ,vl ) of this map can

be described by:

Dl (ul ,vl ) = δ = ul −ur .

The disparity map defined above is computed considering the left image as reference image.

Using the right image as reference, we should fulfill the coherence relationship between the

two disparity maps which expresses that both homologues should have same disparity as
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(a) (b)

Fig. 2.5 Evolution of epipolar line (blue line): a) in source images and b) after rectification
process, in rectified images.

follows:

Dl (ul ,vl ) = Dr(ul −Dl (ul ,vl ),vl ). (2.29)

One should note that depth reconstruction is much easier thank to equation 2.28 in sim-

plified geometry than in generic epipolar geometry which requires a triangulation process.

Indeed the intersection of two optical rays implies some optimality issues tackled by multi-

ple proposals such as Mid-point method or Direct Linear Transformation (DLT) [1]. This

is the main reason why numerous authors propose to switch from generic actual shooting

geometry to virtual simplified geometry thanks to a rectification process.

2.1.2.3 Rectification
In practice, it is difficult to have actual simplified camera geometry and the rectification

helps providing views in simplified geometry. It is possible through rectification [24] to

transfer from any geometry (figure 2.5.a) to simplified geometry (Figure 2.5.b) in order to

simplify the problems of matching points between images and triangulating their associated

3D points. The rectification approach consists of projecting images (Il , Ir ) (see figure 2.6)

from their optical center respectively (Cl , Cr ) on a same plane∏C parallel to the line of the

optical centers on virtual sensors whose rows are parallel to the baseline, of same pitch and

vertical alignment [24].

2.1.3 Multiocular geometry
2.1.3.1 Multiple epipolar geometries
2.1.3.1.1 Concept

Givenn > 2 images and homologous pixelsm andm′ into imagesi and j provides a 3D

point M, the projectionm′′ of M onto any other image planek then corresponds to the

matching pixelsm ↔ m′ ↔ m′′. This procedure only requires projection information to

find m′′. An alternative method which expresses thatm′′ lies on epipolar lines ofm andm′

in imagek, is to apply the multifocal tensor (defined in the next section) to transfer the point

directly without an explicit 3D reconstruction.

However, if the centers of projection are aligned, these epipolar lines are then identical and

multifocal tensor is unpractical. In such case, multi-simplified epipolar geometry proposes
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Fig. 2.6 The rectification process.

a convenient replacing tool. This section will briefly review some aspects of the multifocal

tensor and multi-simplified epipolar geometry.

2.1.3.1.2 Multifocal tensor

As mentioned in the section 2.1.2.1.2, the fundamental matrix represents the relationship

between matching points of two images of the same scene. Similar to the fundamental ma-

trix for two images, Faugeras et al. [21] [20] introduce trifocal tensor and quadfocal tensor

for three and four views respectively. The quadrilinear relations [21] are built as linear com-

binations of the bi-linear ones (expressed by fundamental matrices) and the trilinear ones

(expressed by trifocal tensors), and any higher multilinear relation can be obtained from the

bi-linear, trilinear and quadrilinear ones. This section will briefly review some aspects of

the trifocal tensor.

Considering three views, it is possible to group them in pairs to get the two view relation-

ships introduced in the section 2.1.2. Let us suppose, the 2D pointsm1 andm2 are matching

pixels within first and second image. Using the fundamental matrix equation 2.26, we can

compute the coefficientsl13(m1) and l23(m2) of the epipolar lines in a third image corre-

sponding tom1 andm2 respectively. The point in the third image corresponding to both

pixels may be determined by the intersection of their epipolar lines (see figure 2.7). We

note that finding the matching point in the third image fails if the two lines are identical

(l13(m1)∼ l23(m2)). This case can occur if one of the pixelsm1, m2 or m3 is coplanar with

the three projection centers (called the trifocal plane) in which case the three homologous

pixels lie in this trifocal plane. One should note that when the cameras are aligned every

pixel of any image is coplanar with the three optical centers which implies that epipolar

lines in other images are identical for every corresponding couple.
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Fig. 2.7 Pixels matching through three images: the pixelm3 in the third image
corresponding to the homologousm1 andm2 has to lie on the intersectionm1 andm2

epipolar lines inm3 image.

Thanks to the trifocal tensor, the matching pixel in the third image can be directly com-

puted even when matching pixels are coplanar with optical centers. We have worked with

multiscopic units composed of multiple aligned cameras within the RECOVER3D project

(see chapter 1). While the multiscopic units are closed to simplified epipolar geometry, we

chose to rectify our views to benefit from this convenient geometry. The corresponding lines

within multiple images are rows of same index and we do not need to identify the tensor.

2.1.3.2 Multi-simplified epipolar geometry

2.1.3.2.1 Concept

In binocular case, the simplified epipolar geometry is introduced to avoid using fundamen-

tal matrix and to simplify 3D reconstruction through disparity evaluation instead of rays

triangulation. This geometry reduces the homologous pixel search to one dimension and

facilitates the matching process. The same concept is applied for multiocular geometry in

order to constrain matching search spaces in multiple images (n−1> 1) without handling

multifocal tensors. Being able to use simplified epipolar geometry on any image couple

throughn> 2 images requires specific camera layout. Indeed, for any camerai, its sensor

rows have to be parallel to the each baseline between camerasi and j with j 6= i. The centers

of projection should thus be aligned on acommon baseline. Furthermore, sensors need to

be pairwise coplanar and parallel to the common baseline, which implies that they all lie on

a single sensor plane parallel to this baseline. They also have to share same vertical pitches

and alignments. Given two imagesi and j, thanks to the multi-simplified epipolar geometry,

their corresponding epipolar lines are rows of same indexvi = v j = v. Consequently, in
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Fig. 2.8 Aligned geometry: a) parallel, b) decentered parallel geometry and c) aligned toed-
in geometry.

such multi-simplified geometry, rows of same rankvi = v in each imagei ∈ {0, . . . ,n−1}

define n-tuples of pairwise epipolar lines. Altogether, multi-simplified epipolar geometry is

characterized by:

• aligned centers on a common baseline;

• a common sensor plane parallel to the baseline, this implies parallel sensor normals

which are the camera optical axes;

• sensor rows parallel to the baseline;

• sensors of same vertical pitch and height with aligned top and bottom rows.

We propose to classify the camera layouts which verify such multi-simplified epipolar

geometry into two groups, according to the camera frustums as follows:

• Parallel geometry: this usual, natural case implies frustums horizontally centered on

the associated optical axis,(u0 =
nc
2 ) (see figure 2.8a).

• Decentered parallel geometry:In this more unusual setting, frustums are not any-

more centered on their optical axes but laid with a median axis (passing through opti-

cal center and sensor’s center) converging on a 3D point at finite distance calledpoint

of convergence(see figure 2.8b).

In the case of toed-in geometry with optical axes of the cameras converging at a same point

in 3D space, if optical centers are aligned as illustrated in the figure (see figure 2.8c), multi-

simplified geometry is achievable through a rectification process. This process adjusts the

image planes into one single plane parallel to the baseline with conveniently laid virtual

sensors. This will be shown in the next section. RECOVER3D uses this layout (see section

1.5b for justifications) and thus requires a rectification step.

2.1.3.2.2 Disparity

In binocular simplified geometry, we exposed in section 2.1.2.2.2 a convenient tool, the

disparityδ of a pixel (ul ,vl )
t , which easily yields both its homologue coordinates(ur =

ul − δ ,vr = vl )
t and its associated depthZ thanks to equation 2.28. This section studies

the existence of such a tool in multi-simplified geometry. Obviously, as multi-simplified
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geometry implies binocular simplified geometry for each image couple, we can start the

investigation from the multiple available binocular disparities as illustrated the figure 2.4.

Considering that a pixel(ui ,vi) of imagei has homologous(u j ,v j = vi)
t in the other images

j, it may be given multiple disparitiesδi, j = ui −u j . Moreover, the global disparity related to

depthZ of associated 3D point according to equation 2.28 is measured from image domains

centered on the optical axes. In case of parallel decentered geometry (see figure 2.10),

the global parallel disparityδ ′
i, j = u′i − u′j is derived from the decentered views disparity

δi, j = ui −u j from δ ′
i, j = δi, j +(ai −a j) whereak stands for the horizontal distance from

optical axis of the center of imagek. This yields the depth to views disparity relation:

Z δ ′
i, j = f bi, j ⇔ Z (δi, j + δ̄i, j) = f bi, j . (2.30)

Where δ̄i, j , the disparity correction for convergence is defined as the global disparity of

image centers,̄δi, j = ai − a j of the converging lines of sight passing through the centers

of views. In non decentered settingai = a j = 0 and δ̄i, j = 0 which returns to previous

equation 2.28 defined in the section 2.1.2.2.2. Furthermore, disparity associatedδ̄i, j with

the convergence pointMc is related to the depthZc of Mc by:

Zc δ̄i, j = f bi, j ⇔ δ̄i, j = f
bi, j

Zc
. (2.31)

Each of these viewsδi, j disparities relates to the same 3D point which is associated to pixel

(ui ,vi)
t . They are thus tied to the depthZ of this point through equations 2.32 wherebi, j

stands for the baseline signed distance between camerasi and j:

∀(i, j) ∈ {0, . . . ,n−1}2, i 6= j Z δi, j = f bi, j −Zδ̄i, j

= f bi, j(1−
Z
Zc

).
(2.32)

Equations 2.28 and 2.32 clearly show that for any single pixel(ui ,vi)
t , its compatible dis-

paritiesδi, j are proportional to the implied baseline distancesbi, j . This fact induces that one

of those disparities may be chosen as reference from which any other may be re-computed

thanks to equation 2.33, where we choose for convenienceδ0,1 as the reference:

∀(i, j) ∈ {0, . . . ,n−1}2, i 6= j δi, j = δ0,1
bi, j

b0,1
. (2.33)
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Let us now express the baseline signed distances between any image couple from the suc-

cessive baselines between adjacent cameras:

∀(i, j) ∈ {0, . . . ,n−1}2, i 6= j bi, j = sgn(j − i)
max(i, j)−1

∑
k=min(i, j)

bk,k+1. (2.34)

If optical centers are equidistant those baselines between adjacent cameras are identical

(∀i, bi,i+1 = b0,1) and the equation 2.34 is simplified:

∀(i, j) ∈ {0, . . . ,n−1}2, i 6= j bi, j = ( j − i) b0,1. (2.35)

Finally binocular disparities may be expressed from reference disparity thanks to equations

2.33, 2.34, and 2.35 as :

∀(i, j), i 6= j δi, j = δ0,1 βi, j , (2.36)

with

∀(i, j), i 6= j βi, j =







sgn(j−i) ∑max(i, j)−1
k=min(i, j) bk,k+1

b0,1
generic case

( j − i) equidistant centers
. (2.37)

These results clearly show that knowing that optical centers are equidistant and their com-

mon baselineb0,1 or knowing their successive baselinesbk,k+1 is enough to use for any pixel

mi = (ui ,vi)
t a single binocular disparityδ chosen as reference (δ ≡ δ0,1 for instance) to

express each of its disparitiesδi, j through equation 2.36, each of its corresponding pixels

m j = (u j ,v j = vi)
t thanks to equation 2.38 and its depthZ = f b0,1 δ−1:

∀(i, j), i 6= j u j = ui −δ βi, j . (2.38)

This section has thus proven that a reference disparityδ may be defined for any pixel

mi = (ui ,vi)
t . This reference disparity may then identify each of its matching pixelsm j =

(u j ,v j = vi)
t thanks to equation 2.38 expressing their abscissa difference. This single scalar

disparity value actually expresses a multiple pixel matching across the whole set of images.

Indeed assigning reference disparityδ to pixel mi implies matching together the whole set

of pixels{m j |m j = mi −βi, j δ (1 0)t}.

Furthermore this reference disparity is even more straightforward and helpful in case of

equidistant centers as the binocular disparitiesδi, j are proportional to the index difference

of the two imagesj − i asβi, j = j − i.

We notice that the disparity computing using the equation 2.36 ensures that the homologous
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Fig. 2.9 Multi-simplified epipolar geometry with different baseline(s)

pixels of mi along all images represent the same 3D pointM. We will show in chapter 3

how the disparity computing is integrated in our multi-baseline stereo framework.

2.1.3.3 Rectification

The multiple image rectification consists in fitting all image planes into one common

plane. This yields multi simplified geometry. Ayache and Hansen [3], Sun [69], and also An

et al. [2] present some methods to perform an image rectification over three views acquired

with cameras laid in right-angled triangle. They combine a horizontal image rectification

between the central image and the left image and a vertical image rectification between the

central image and bottom image. This approach is designed to extend depth from stereo

methods to three views. However this technique cannot be used for three (or more) aligned

cameras. Kang et al. [34] present an image rectification from multiple calibrated images.

They adapt the images orientation and focal such that the cameras share a common image

plane. The error derived from the rectification process of multiple images captured from

multiple cameras located on semi-circular cannot be ignored in 3D reconstruction purpose.

Therefore, the best manner to reduce the geometrical errors is to initially align the multi

cameras and to set their optical axis parallel one to the other. Within the RECOVER3D

project, we worked with multiscopic units (see chapter 1) composed of multiple cameras de-

fined in aligned toed-in geometry. This layout facilitates the process of finding the matching

pixels, as we will see in the next chapter.

2.2 Multi-view methods
This thesis develops two 3D reconstruction methods: multi-baseline stereovision and

fusion of shape from silhouettes with multi-baseline stereovision. In this section, we intro-

duce a state of the art for multi-stereovision and shape from silhouettes. Before discussing
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and depthZ.

the multi-view methods, it is important to give an overview of the compatible acquisition

systems with the RECOVER3D project constraints as described in the following section.

2.2.1 Multi-view aquistion systems

An important assumption of any multi-view method lies in its required, compatible or

intended camera layout since various possibilities exist and may have an impact on the 3D

reconstruction strategy.

Most of multi-view methods (notably among those listed on the Middlebury stereo site [61])

are designed forn cameras freely laid out in space. Some apply binocular stereovision on

different couples(Ii , I j) of views and then merge their separate binocular results [27].

The main difficulty in such approaches concerns regularizing the union of separate results,

especially in scene areas where reconstructions overlap. Common problems to be solved in

such areas are to reduce point density and to resolve ambiguities/inconsistencies.

Shape from silhouettes is one kind of multi-view 3D reconstruction methods which work

with converging acquisition systems composed of multiples cameras located around the

object(s) to reconstruct (see Figure 2.11). However this acquisition system may also be vir-

tually achieved with just one fix camera shooting an object turning on itself.

Some other multi-view methods, sometimes called multi-baseline stereovision methods, are

designed for the "parallel", "aligned toed-in" or "decentered parallel" camera layouts previ-

ously discussed (see Figure 2.8). The RECOVER3D studio is composed of multiscopic and

monoscopic units as described in the chapter 1. Multiscopic units contain multiple cameras



2.2 Multi-view methods 33

Cn

C0

C3

C1

C2

Fig. 2.11 Camera layout: converging acquisition system layout for multi-stereovision
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Fig. 2.12 Comparison of parralel (a) vs aligned toed-in (b) geometries according to
common scene area.

in aligned toed-in geometry for two reasons: the first is to maximize as much as possible the

intersection of the view frustums (see Figure 2.12) of then cameras; the second is that the

precision of the calibration for both multiscopic and monoscopic units is more robust when

aligned toed-in geometry is chosen for multiscopic units.

2.2.2 Binocular stereovision approaches
During the last fifty years, binocular stereovision has been studied extensively and many

matching methods have been proposed. They can be grouped into two different families:

local methods (section 2.2.2.3) and global methods (section 2.2.2.4 ). As mentioned previ-

ously RECOVER3D chose to rely on simplified epipolar geometry for its multi-stereovision

process. As such, we focus this state of the art study of binocular stereovision on the meth-

ods that rely on this assumption and thus usually use disparity. In order to get the 3D scene

information, most of those stereo matching algorithms consist of the following steps [60]:

• matching cost computation;

• cost aggregation;
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• disparity computation and optimization;

• disparity refinement.

The matching cost is described by the squared difference, absolute difference, cross corre-

lation or any correlation criteria of intensity values at a given disparity, as we will present

in the section 2.2.2.2. Whereas cost aggregation is done by summing matching cost over

rectangle or square windows. The disparity computation and optimization step is repre-

sented for most of the local methods (section 2.2.2.3) by Winner-Talk-All (WTA) optimiza-

tion. The disparity is computed by selection of the minimal cost aggregation for each pixel.

Whereas the third step for stereo matching in global methods is often operated as the "dy-

namic programming", "graph cut", "belief propagation" or any other optimisation function.

The literature gives far less attention to the last step. Ma et al. [44] proposed a method

for this step which uses the weighted median filtering. This section will introduce some

concepts that are common in stereovision algorithms. Moreover, local and global methods

will be presented in detail.

2.2.2.1 Matching constraints
The matching in binocular stereovision is a very difficult search procedure. In order to

minimize false matches, some matching constraints must be imposed. In the section 2.1.2.1,

we described in details one of the important epipolar constraint. Here we present a list of

the commonly used constraints:

• The uniqueness constraintcan be defined as follows: a given pixel from one image

can match no more than one pixel from the other image;

• The ordering constraintmeans that if a point in the scene appears to be to the right of

another point in the left image, the relative positioning should be the same in the right

image;

• The symmetric constraintassures the uniqueness constraint. This constraint means

that the correspondence between any two corresponding points is bidirectional as long

as there is no occlusion in one of the images.

These three constraints can help to limit the ambiguities generated by textureless areas,

repetitive textures or lighting changes between views. However, none of the constraints

discussed here can limit the effects of occluded regions. Different global and local methods

are proposed to overcome such difficulty as we well see in the sections 2.2.2.4 and 2.2.2.3.

2.2.2.2 Windows matching
The matching in binocular stereovision, involves finding couples of homologous points.

Figure 2.4 shows a 3D pointM of the scene, visible in both images (acquired in simplified

epipolar geometry) which is projected intoml andmr of the left and right image respectively.

While the pixelsml andmr of two images represent the same point in the scene, they are
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considered as homologous pixels. Binocular stereovision is often based on a window match-

ing working with pixel similarity or dissimilarity measuresMS in order to compute some

aggregated matching score between two pixels. The dissimilarity and similarity measure re-

spectively increases and decreases as the likeness between two compared pixels decreases.

Given a pixel of left imageml = (ul ,vl )
t and a potential homologue pixel of the right im-

agemr = (ur ,vr = vl )
t (see Figure 2.13), the aggregated matching scoreAM(ml ,mr) (e.g.,

Normalized Cross-Correlation (NCC), Sum of Squared Difference (SSD) or Normalized

Sum of Squared Difference (NSSD)) can be computed betweenmr andml considering indi-

vidual matching scores throughMS of their neighboring pixels according to some window

W.Figure 2.13 shows in red pixels a matching window around a blue reference pixel. We

look then for the corresponding pixel in the right image by observing the neighborhood of

each pixel located in the same horizontal line. The aggregated matching score for(ml ,mr)

can be defined in a generic way by the equation 2.39.

AM(ml ,mr) =

∑
v∈Wml ,mr

MS(Il [ml +v],Ir [mr +v])

N(mr ,ml ,W)
, (2.39)

with:
W Reference window of size [Width,Height]

Wml ,mr WindowW truncated in order not to extend beyond

image borders while applied aroundml andmr

(2.40)

MS(pi , p j) matching score between two color pixelspi andp j :
3
∑

c=0
(pi [c]− p j [c])2 Squared component Difference

3
∑

c=0

∣
∣pi [c]− p j [c]

∣
∣ Absolute component Difference

3
∑

c=0
∏k=i, j(pk[c]−ak[c]) Centered component

Cross-Correlation

with ak = ∑
v∈Wmi ,m j

Ik[mk+v]
card(Wmi ,m j )

(2.41)

N(ml ,mr ,W) normalization function of the sum of neighbor scores

• number of neighbors used (SSD, SAD):nv= card(Wmi ,m j ) = ∑
v∈Wmi ,m j

1

• nv×Standard deviation (NCC):

(

Πk ∈ {i, j} ∑
v∈Wmi ,m j

(Ik[mk+v]−ak)
2

) 1
2

(2.42)
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Fig. 2.13 Schematic illustration of the local search for homologue respecting simplified
epipolar geometry with WTA process.

2.2.2.3 Local Methods

The disparity map is obtained using only the information located in closest neighbors of

the studied pixels. Therefore the common approach for local methods is to assign indepen-

dently for each pixel of the reference image the disparity value that optimizes its matching

score. This is often referred as Winner-Talk-All (WTA) otpimization (see Figure 2.13). Fig-

ure 2.18d shows the disparity map obtained from images created by University of Tsukuba

(tsukuba) applying a traditional local method. In recent years, local methods experienced

tremendous progress. Yoon el al [84]. proposed to integrate the adaptive support weights.

The idea is to control the impact of neighboring pixels on final matching score according to

a similarity metric with respect to the studied pixel in reference view, most often based on

color and spatial similarity. The method of adaptive support weights is based on Gaussian

distribution considering similarity and proximity to the central pixel in the support window.

Hosni et al. [30] proposed another method close to [84] using geodesic distance to replace

the spatial proximity in order to overcome the problem of spatially close but distinct objects

influencing each other. Using the methods of Yoon et al. [84] or Hosni et al. [30], the local

methods provide better results than traditional local methods as described in Figure 2.18.

However, the computation of adaptive support weights is costly. To speed up the aggrega-

tion step it can be converted to an image filtering procedure. It turns out that the bilateral

weighting scheme of [84] is equivalent to applying a cross bilateral filter or derivations of it

to the (u,v) slices of a score volume [57] [58] [36] [31].
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2.2.2.4 Global methods

Contrary to the local methods that take into account only the neighborhood of each pixel,

the global methods optimize the global matching score over the whole image domain. As

illustrated in the scheme of Figure 2.14, global methods usually start with similarity criteria

mentioned in 2.2.2.2 to find the initial homologues. After calculating the disparity map, a

energy function is evaluated on the observed data (right and left images) and the unknown

data (the disparity map). The matching problem searches a disparity functionδ (u,v) over

the image domain that minimizes the following energy function:

E(δ ) = Ed(δ )+αEs(δ )

whereEd is the global matching score which sums aggregated matching scoresAM(ml ,ml −

(δ (ml ),0)t) for each pixelml of the reference image, and whereEs is the stabilization func-

tion favoring continuity and smoothness properties in the solution. The regularization coef-

ficient α controls the relative weight of smoothness and continuity with respect of global

matching score. Once the energy function is defined, some optimization algorithm is used

to find a solution close the global optimum. To this end, optimization methods such as

dynamic programming, belief propagation, and graph cut are among the most usually used

[73].

2.2.2.4.1 Dynamic programming

Dynamic programming (DP) was first used by Baker and Binford [4] for sparse stereovision

matching. They proposed an edge-based dynamic programming stereo matching. The basic
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idea is to match the corresponding edges of two images of a stereo pair rather than pixels.

The disparities for the best edge matches are then interpolated over untextured regions. Un-

fortunately, the method presumes that the edges are accurately found in both stereo images.

More recent approaches have performed dense matching based on pixel intensity or color

values [73]. DP attempt to solve the shortest path problem through the matrix of all possible

matches between two corresponding scanlines. It is usually done in two passes running, re-

spectively, forward and backward [15]. The forward step constructs for each possible match

the optimal path leading to this match from left hand side of the scanlines, and stores in

matrixC its score computed as follows:

∀ul ,ur C(ul ,ur) = min(C(ul −1,ur)+β ,C(ul ,ur −1)+β ,

C(ul −1,ur −1)+M(ul ,ur))
(2.43)

WhereM(ul ,ur) ≡ AM(ml ,mr) is the aggregated matching score for pixelsml = (ul ,v)t ,

mr = (ur ,v)t in left and right scanlines respectively andC(ul ,ur) indicates the cumulative

cost of the path from the match(ul = 0,ur = 0) to the match(ul ,ur) ∈ {0, ..,nc−1}2 where

nc is the image width. The costβ of a horizontal/vertical move implying occlusions, is

preset to a chosen rather high value ifAM is expressed as a dissimilarity score or rather low

value elsewise. Note that only three moves are permitted according to [73]: an horizontal

occluding move, (new match occludes preceding one) a diagonal regular move and a verti-

cal, occluded move (new match is occluded by preceding one). The backward pass extracts

the optimal path from the matrix corresponding to the global minimum of the cost function
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from (ul = nc−1,ur = nc−1) to the left most one(ul = 0,ur = 0).

Figure 2.15 demonstrates the search grid for two scanlines with six pixels and a disparity

range [0,3]. Each (ul ,ur ) cell in this grid means a possible match between the pixelsml

andmr in the left and right images respectively. The minimum cost path going down and

right from top-left corner of the grid to its bottom-right corner is found. Thus, the dynamic

programming method can be used to find the best possible match sequence between the start

and the end matches. A lot of matches are excluded thanks to the order and maximum al-

lowed disparity assumptions. For example, ifml1, ml2 of left image correspond respectively

to mr1 andmr2 on the right image andml1 is the left ofml2 (ul1 < ul2) thenmr1 should

not be to the right ofmr2 such that(ur1 ≤ ur2). This heuristic order is mandatory as the

local best move is selected from(−1,0),(−1,−1) and (0,−1) neighbors. The cells of the

matching array corresponding to other forbidden matches are below the diagonal (marked

in gray in Figure 2.15) knowing that the two images respect the parallel geometry (δ > 0).

The three major problems of dynamic programming are:

• selection of convenient costβ for occluded pixels;

• maintenance of the consistency between successive scanline(s);

• enforcement of the ordering constraint (see section 2.2.2.1), requiring that the relative

ordering of pixels on a scanline must be the same between the two views, which may

not be the case (for thin foreground objects containing images) in scenes containing

narrow foreground objects;

• enforcement of the uniqueness constraint (see section 2.2.2.1) meaning that two dis-

tinct 3D points cannot be projected in the same pixel of an image.

An alternative to traditional DP, introduced by [60] use recursive algorithm through Dispar-

ity Image Space DIS indexed by(ml ,δ ) in image domain and disparity range. Scanline op-

timization is a simple approach designed to assess different smoothness terms. The method

is asymmetric and does not utilize ordering constraints. This approach fills DIS as follows:

C(ml ,δ ) =AM(ml ,ml − (δ 0)t)+opt
δ ′

(
C(ml − (1 0)t ,δ ′)φ(δ −δ ′)

)
, (2.44)

whereφ is some monotonical function of disparity difference. According toAM definition

(see equation 2.39) as a dissimilarity (similarity) score,φ is chosen increasing (respectively

decreasing) and the optimal search is a minimum (respectively maximum) search. The

global optimum can again be computed using DP; however, unlike in traditional (symmet-

ric) DP algorithms, the ordering constraint does not need to be enforced, and no occlusion

cost parameter is necessary. Scanline optimization can be done in several ways depending

on chosen the energy function. Some favor small movements between disparities while oth-
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ers encourage wide disparity steps. The latter have the advantage of allowing all possible

displacements but tend to smooth the depth map in the case of locally small differences

in disparity. Both DP and Scanline optimization algorithms suffer from the well-known

difficulty of enforcing inter-scanline consistency, resulting in horizontal "streaks" in the

computed disparity map. On the other side, both algorithms require enforcing the unique-

ness constraint. However among different methods developped in DP, Veksler [76] impose

smoothness in both horizontal and vertical directions to obtain a disparity maps close to

ground truth.

2.2.2.4.2 Belief Propagation

The belief propagation algorithm was first formulated by Judea Pearl in 1982 [55], who

formulated this algorithm on trees. Trees are graphs that contain no loops. After that, it has

since been shown to be a useful approximate algorithm on general graphs like as Markov

Random Fields (MRF) models [79]. This latter is called "Loopy Belief Propagation" (LBP)

which is an iterative message passing algorithm. At each pass, for every pixel in the image,

the method computes a message for all 4-neighbors of that pixel at given disparityδ .

The messages from each pixelmi in each direction (left, right, up, down :d ∈ D4 ≡

{(−1 0)t ,(0 −1)t ,(1 0)t ,(0 1)t}) are stored in four local vectorsmsgdmi
indexed by dispar-

ity range[δmin, ...,δmax]. The message emitted from pixelmi to its neighbormd
i ≡ mi +d at

given disparityδ is the estimated penalty for the neighbor taking the disparityδ . LBP pro-

cess described in algorithm 1 starts by an initalisation of messages to 0 or 1 depending on the

chosen energy formulation. The choice of the message passing order (right, left, up, down

in the algorithm 1) is arbitrary. Let us formally define the message usingsum-product:

msgdmi
(δ ) =

δmax

∑
δ ′=δmin

(

e−Ed(mi ,δ ′)e−Es(δ ,δ ′)× ∏
d′ 6=d∈D4

msg−d′
mi+d′(δ

′)

)

, (2.45)

whereEd(mi ,δ ′) andEs(δ ,δ ′) are data and smoothness function. The equation 2.45 repre-

sents message passing frommi to md
i =mi +d pixels about the disparityδ . These messages

then work to compute later messages at subsequent time steps [82]. The algorithm runs as

many steps as required, sometime for hundreds of iterations, and computes disparity values

for each pixel according to their belief. The belief for pixelmi about the disparityδ can be

written usingSum-product function as follows:

Belie fmi(δ ) = e−Ed(mi ,δ ) ∏
d∈D4

msg-dmi+d(δ ) (2.46)
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Algorithm 1: Loopy Belief Propagation algorithm
Data: Stereo images
Result: Disparity map
Initialize all messages
for t iterationsdo

at every pixel pass messages right through all disparitiesδ
at every pixel pass messages left through all disparitiesδ
at every pixel pass messages up through all disparitiesδ
at every pixel pass messages down through all disparitiesδ

find the best disparity at every pixelmi by WTA on belief scores.

In the state of art, other fonctions like asMax-Product or Min-Sum are applied to compute

the messages and the belief [46]. The Figure 2.18g shows the results derived from LBP

described in algorithm 1 on Tsukuba images. The results show the ability of LBP to over-

come the inter-scanline consistency problem. However, LPB still lacks ability to preserve

the object edges in disparity maps and thin objects disparity as the lamp arms in the Figure

2.18.

2.2.2.4.3 Graph Cut

The local stereovision methods try to match pixels in the left image with their correspond-

ing pixels in the right image without considering the disparity values attributed to other

pixels. Although these methods are fast, they do not deal with neighboring inter-scanline

consistency. Pixels near each other usually should have close disparities, unless they lie on

different sides of an edge. For this reason, graph cut is used to formulate the stereovision

problem in term of energy minimization [9] using Markov Random Fields [79].

The generic graph cut method can be described in two steps. The first one builds a weighted

graphG = (E,V) consisting of a set of nodesT ⊆ V (usually those nodes correspond to

pixels), a set of terminal nodesS= {s1,s2, .....,sk} ⊆ V, and a set of edgesE′ ⊆ E that

connect pairs of nodes and are assigned some weight. The second step cuts the graph in

order to find the optimum classification ofT nodes ink classes identified by eachsk ∈ S.

This step is applied by using Multi-way cut (also known as k-way cut) which computes a set

C⊂ E called "cut" of edges such that inG′(E−C,V), no node inT is backward connected

to more than one node inS. The multi-way cut problem is defined as finding the cut where

| C |= ∑e∈C weight(e) is minimal. Fork = 2, the problem is reduced to thes− t min-cut

method introduced by Ford and Fulkerson [22] and known to have a polynomial time solu-

tion. Thes− t min-cut method finds the edges which separate the source node from the sink

node and satisfy the two following conditions:
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• The sum of the weights of these cut edges is as small as possible which implies a

maximum flow between the source and sink (Snodes) according the theorem of Ford

and Fulkerson[22].

• It no longer exists in the graph any path linking the source to the sink nodes.

In contrast, fork ≥ 3, multi-way cut terminal problem is known to be NP-hard. Dahlhaus

et al [17] propose approximate multi-way cut fork ≥ 3: for each terminal, a minimum cut

that separates that terminal from every other terminal and union of these cuts yielding the

approximation of the multi-cut. The latter is considered as forward process and does not

undo the decision-making separating a previous terminal from others.

In the stereovision context,T is usually considered as the set of pixels whereasS is rep-

resented by the set of disparities (see Figure 2.16). We can customize the objectives of

multi-way cut for stereovision purpose as follows:

• Every pixel (node inT) remains connected to one disparity node (inS).

• Edges between neighboring nodes inT exist in the final graph only if those pixels are

connected to same disparity node inS.

• Approximation of the multi-cut is run.

Roy [59] proposed to represent the stereovision problem using only two terminals as illus-

trated in the figure 2.17. TheT nodes are built from couples (pixel, disparity) arranged in

Disparity Image Space (DIS) grid. The source node,s, (see Figure 2.17) is located at the

beginning side of the graph and connected to all nodes in the plane of minimum disparity,

and the sink node,t, is located at the end side of the graph and connected to all nodes in the

plane of maximum disparity. There are two types of edges between the nodes:t−links and

n−links. t−links connect the neighbor nodes at same pixel and different disparity planes.

The weight oft−links [59] is equal to the mean value of matching costs of two nodes.

Whereasn−links connect the neighbor nodes in the same disparity plane, and their weights

hold the smoothness energy. The graph cut will then separate the nodes in two sub-sets to

obtain the optimal disparity map. This map is constructed by the assignment of each pixel

with the maximum value of disparity for which the corresponding node is still connected to

the source.

When comparing the figures 2.18 e, f, and g, we observe that graph cut provides better

results than DP and belief propagation. However, the graph cut method suffers from a big

disadvantage. Unlike other inference algorithm (like as loopy belief propagation), it does

not provide any uncertainty measure associated with the produced solution. This is a seri-

ous drawback since researchers do not obtain any information regarding the credibility of a

particular disparity assignment in a graph cut solution.
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(a) (b) (c)

(d) Local (SSD). (e) DP, source: [6].

(f) Graph cut, source: [9]. (g) Loopy Belief propagation.

(h) Adaptive support-weight, source:
[84].

(i) Geodesic support weight,
source:[30].

Fig. 2.18 f,b) Tsukuba synthetic stereo image of middlebury site, c) Ground truth disparity
map , d) to i) results of local method (SSD), Dynamic programming [6], Graph cut [9],

Loopy belief propagation, Adaptive support-weight approach [84] and Geodesic support
weights [30].
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2.2.3 Multi-view stereovision

The following section gives an overview of multi-view stereovision. The term multi-

view stereovision (MVS) refers to stereovision-based reconstruction fromn> 2 views with

currently no a priori on the aligned of cameras.

While binocular stereovision [60, 37] enables to estimate depth, adding more images leads

to more robust and accurate 3D reconstruction thanks to information redundancy [52, 14,

74]. Unfortunately, the matching process becomes more complex and still lacks robustness

in regions either untextured, regularly textured, and/or totally occluded. Thus, the main

difficulties are occlusions, changes in appearance, and ambiguities.

MVS has been an active field of research for several decades and at this moment more than

seventy algorithms are listed on the Middlebury Multi-View Benchmark website [63]. This

benchmark provides a commonly accepted test suite to evaluate the quality of multi-view

stereo algorithms. MVS methods may also be categorized into three main groups :

• Scene-based methodsattempt to recover photoconsistent models that minimize some

measure of the discrepancy between the different image projections of their surface

points. Space carving [40] algorithms represent the volume of space around the mod-

eled object by a grid of voxels, and erode this volume by carving away successive

layers of surface voxels with high photometric discrepancy.

• Image-based methodscompute a set of depth or disparity maps which are merged

later [48],[26] or to which they apply constraints [25], [72] to ensure a consistent 3D

scene reconstruction. Two major classes are distinguished, the first contains the meth-

ods that expect a more restrictive camera layout, typically multi-baseline (a synonym

for multi-simplified epipolar geometry with possibly non equidistant centers), directly

match n-tuples as multiscopic pixel sets [51], [33]. The second class composed of the

methods intended for a free camera layout. Some are more computationally intensive

techniques are dedicated to MVS from community photo collections (CPC) [26] and

have gained an increasing interest. They have to handle a large number of uncali-

brated views of a scene [26]. New difficulties then arise as such views are typically

shot at different times, with differing acquisition geometries (viewpoints, angles, focal

lengths, resolutions), and usually differing environmental conditions (weather, expo-

sure, occluding objects). This makes it necessary to restrict the matching to subsets

of views sharing similar exposure, and empower the methods to deal with significant

baselines (distances between the cameras).

• Feature-based methodscompute sparse correspondences by first matching feature

points which can be powerfully estimated and more robustly matched than regular

pixels. In a second step a surface model is fitted to the reconstructed features [75].
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Fig. 2.19 Silhouette-based reconstruction.

Classical solutions for 3D reconstruction from multi-baseline stereovision are usually image-

based (second group). They consist in matching algorithms that aim at finding homologous

pixels in different images, which represent the same 3D point in the real scene. The most

efficient of these methods match multiscopic pixel sets [51, 33] composed of one pixel per

image, pair-wise verifying epipolar constraints. However, these methods still suffer from

traditional binocular stereovision problems like occlusion and textureless zones.

Within the RECOVER3D project, we proposed a novel framework lying on scene-based

multi-baseline stereovision. Instead of searching matches for image pixels like most multi-

view stereovision methods, our method works completely in the disparity space exploiting

the geometry, similarity and other informations to yield precise reconstruction even in low

texture and semi occluded regions (as we will see in the next chapter).

2.2.4 Shape from silhouette

A silhouette is a binary mask associated with a given view that includes all pixels cor-

responding to the projection of a point of the 3D object to be reconstructed. In Figure 2.19

the colored pixels in the images taken by camerasC1, C2, andC3 correspond to silhouettes

of the 3D object in each view. Shape from silhouette [64] therefore involves estimating the

visual hull of the 3D object defined as the intersection of generalized cones built from each

optical center and associated silhouette. One slice of the polyhedral visual hull (described

in detail in the section 3) is represented by the red polygon in Figure 2.19.



2.2 Multi-view methods 47

2.2.4.1 Silhouette extraction methods

The extraction of a silhouette involves isolating in an image the region of object pro-

jection to be reconstructed from the scene background. Several methods are proposed to

achieve this result, grouped according to the following categories:

• Color difference-based methodsexploit the knowledge of the background color. To

extract an object from the background, the technique uses colorimetric image dif-

ferences. To overcome the problem of variations in lighting in the background, the

"chroma keying" technique is often favored. "Chroma keying" is one of the most com-

mon and most frequently used semantic segmentation techniques within audiovisual

context. Video acquisition takes place against a "key color" background, generally

blue or green. The problem of shadowing in the background is solved using learning

techniques such as Gaussian mixture model or "k-means" [67, 86].

• Region based methodsaggregate, step-by-step, pixels with shared colorimetric prop-

erties. They establish region filling heuristics within an image by propagating local

criteria, often based on the image’s gradient (higher at the edges and lower in the mid-

dle of the area). The most commonly used methods in this category include histogram

segmentation, region growing and region merging. For a more detailed presentation

of region-based segmentation methods, Caillet’s doctoral thesis [11] is a clear and

useful resource.

• Contour-based methodsinvolve extracting the connected components using a thresh-

old of the image gradient. Using these methods [35], the silhouette is characterized

by its edge with the background of the scene.

2.2.4.2 Visual Hull (VH) reconstruction methods

VH reconstruction methods are classified into two major groups: i) polyhedral approach

ii) volumetric approach. Polyhedral approaches deduce the object’s visual hull as the sur-

face of the intersection of silhouette cones from each camera. The silhouette cone associated

with a camera (dotted line in Figure 2.19) is defined by the set of infinite triangles delimited

by half-lines connecting the optical center with two neighboring pixels in the contour of the

silhouette. These triangles are then segmented as polygones lying inside each other silhou-

ette cone. The reconstructed object is therefore described by its surface, usually represented

in the form of a triangular mesh [41]. Volumetric approaches subdivide the scene space

according to a regular grid of cells, known as voxels (volume elements) and labelled "in" or

"out". In these approaches, voxels are labelled "in" when they project into the silhouette for

each camera. The VH is then described by the set of "in" cells within the discrete grid [71].

In Figure 2.21, all voxels inside of the red polygon cells are labeled "in".
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2.3 Hybrid methods from stereo and silhouette
The objective of this this thesis is to propose to merge two 3D reconstruction methods:

silhouette-based and stereovision-based reconstruction. Modeling objects using these meth-

ods has been addressed by many different algorithms during the last decades. In this section,

we present a state of the art of methods merging these two techniques and propose to classify

them into three major groups:

• Stereovision methods guided by visual hull (section 2.3.1 ).

• Collaborative methods applying simultaneously criteria borrowed from both tech-

niques (section 2.3.2 ).

• Separate application of both methods with further merging of their results (section

2.3.3).

2.3.1 Stereovision methods guided by visual hull
In this section, we focus on the guidance of stereovision by the results derived from

silhouettes based reconstruction. Space carving initialized by visual hull [16] is considered

as one of the efficient method for 3D reconstruction from multiple views which can be

classify in this category. Other methods are proposed to exploit the broad localisation results

(like the disparity range [42]) from shape from silhouettes in stereovision computing as we

will show in the next section.

2.3.1.1 Space carving initialized by visual hull

We mentioned in section 2.2.3 that space carving is one of scene-based methods of the

multi-view stereovision. However, the visual hull can be used to improve space carving. In

this section, we will explain in detail the space carving method and show the advantage of

working with visual hull. The space carving proposed by Kutulakos et al [40] is based on

the idea of voxel coloring as proposed by Seitz et al [62]. This latter assumes that cameras

are laid on a same side of the scene. Voxel coloring involves subdividing the regular grid

of voxels into successive layers, from the nearest to the furthest of this "camera side". The

serious drawback of this method is that the cameras should be placed on one side of the

object to be reconstructed. Voxel coloring is based on the hypothesis that a voxel on the sur-

face of an object must have the same color in each view in which it is not occluded, called

as a photo-consistent voxel. On the basis of this statement, the voxel coloring process is

written as described in Algorithm 2 and can effectively handles the occlusion problem. For

example, two voxels, taken from different layers, can be projected onto the same pixel in

a given view. The voxel from the nearest layer occludes the other. To solve this problem,

the method takes into account the fact that a voxel from a layeri cannot occlude a validated

voxel from a layerj when j < i, as illustrated in Figure 2.20. Therefore, the method com-
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Fig. 2.20 Identifying explicitly the occluded voxel thanks to plane-sweeping from the
nearest to the furthest from the cameras: inC1, the blue voxel is occluded by a previously

validated red voxel [62].

Algorithm 2: Voxel coloring
Data: the sequence of calibrated images
Result: the volume of voxelsSrepresenting the reconstructed object
Initialize a bounding box box containing the object and divide it into layers
Initial set of validated voxels is emptyS= {}
for each layerly from the nearest to the farthest from the camerasdo

for each voxelg in ly do
projection ofg on all the images where it is visible according toS
if g is photo-consistentthen

addg to S

putes the photo-consistency to voxelg according only within the set of images where it is

visible and not occluded by a previously validated voxel.

The disadvantage of voxel coloring method lies in its inability to completely reconstruct

the object due to the sidewise layout of cameras. The space carving algorithm, introduced

by Kutulakos et al. [40], can be seen as an extension of the previous method adapted to an

arbitrary camera arrangement. This is based like voxel coloring on the photo-consistency

of surface voxels. For example, the object in figure 2.21 shows a concavity ignored by the

silhouette-based reconstruction technique illustrated by the red polygon. The voxelg1 found

on the visual hull, is projected on differently colored pixels in views taken from cameras 1

and 2.

The space carving relies on sweep planes normal to the three principal axesx, y andz. Only

cameras behind the sweep plane are used to manage the occlusions and photo-consistency

measures. For example, in figure 2.22a, the voxels in the highlighted increasing plane ac-

cording tox axis are checked for visibility in the cameras 1 and 2, while for the decreasing

plane according toy axis in the figure 2.22b, voxels are checked in the cameras 3 and 4.
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Algorithm 3: Space carving guided by visual hull
Data: the sequence of calibrated images
Result: a volume of voxels representing the modeling object
Initialize the volume with visual hull
repeat

foreachsweep plane in the 6 main directionsdo
foreachvoxelg labelled "in" in the current planedo

projectg onto the cameras in the sweep plane background (where it is
visible)
if g is not photo-consistentthen

g is labeled "out" in the volume

until no more voxels have been eliminated in last step;

According to Kutulakos et al. [40], a voxel is not visible by a camera if it is out of its

view frustum or if it is occluded. Therefore, they consider an x-increasing sweep plane, if

the voxelg1 = (x1,y1,z1) occludes the voxelg2 = (x2,y2,z2) thenx1 < x2. As g1 is eval-

uated beforeg2, the occluder is always validated before checking the occluded. The main

drawback of the original implementation described in [40], is the algorithm intialization. It

is often necessary to initialize the algorithm with a very large volume in order to ensure

that it completely encloses the surface. Each voxel must then be tested in turn for consis-

tency in the images which results in a high computational load. Cross et al [16] proposed

to use the visual hull as a starting point for the space carving algorithm (see algorithm 3).

The visual hull completely encloses the object surface. Therefore, using the visual hull at

the beginning of the space carving algorithm have many advantages i) easy to compute ii)

tight outer boundary iii) parts of visual hull already lie on the surface and should be already

photo-consistent.

2.3.1.2 Visual hull regularized stereo

Fan et al in 2008 [19] proposed another method to merge VH-based space carving and

stereovision. The acquisition system includes a single fixed camera. The modeling object

rotates on itself after each shot. The method consists of two steps:

• applying VH-based space carving

• applying binocular stereovision in global method for each couple of images and solve

the problem of global optimization using the information from VH-based space carv-

ing

As we saw in section 2.2.2.4, the matching problem using global method consists in finding

the disparity function which minimizes the following energy function:
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Fig. 2.21 Volumic VH : improvement by identifying concave zones from
photo-consistency.

(a) (b)

Fig. 2.22 Configuration of cameras for space carving initialized by visual hull method.
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E(δ ) = Ed(δ )+αEs(δ ) (2.47)

The equation 2.47 has been described in details in the section 2.2.2.4. Fan et al [19] have

proposed to add a term to the previous formula, which expresses a new constraint by inte-

grating the information derived from VH-based space carving. This term is calledEsc and

defined as follows:

Esc(δ ) = ∑
i

σ(δmi ,δpred), (2.48)

whereσ(δmi ,δpred) calculates the difference between the disparity of the studied pixel and

the predicted disparity for the same pixel obtained from VH-based space carving. We can

then describe the energy function as following:

E(δ ) = Ed(δ )+αEs(δ )+λEsc(δ ), (2.49)

whereλ is the regularization coefficient that controls the constraintEsc. After defining the

function of energy, Fan et al [19] used dynamic programming to find a solution close the

global minimum. Their results show a more detailed depth variation than that obtained by

the visual hull based space carving or stereovision with dynamic programming method.

Ming Li et al [42] proposed also a method for improving the results of stereovision using the

visual hull obtained by polyhedral approach. Their acquisition system consists of six cam-

eras arranged around a scene and grouped in pairs connected to computers (called clients),

all those "client" computers being connected to a single server. Their method consists of

three steps for modeling an object. The silhouettes of the object are estimated on each client.

The server then computes the visual hull. Finally, these clients use the visual hull to guide

depth maps computing. The visual hull can accelerate the calculation of depth maps by

restraining the process to pixels belonging to silhouettes and not on the whole set of pixels.

The disparity search range is also reduced by calculating the limited disparities{δmin,δmax}

of each pixelm of the matching window. Then this interval (segment{δmin,δmax} of the ray

associated with the pixel) is projected in the other image in order to restrict the search space

on the associated epipolar segment. This stereovision algorithm is a local method and the

quality of the reconstruction suffers particularly in textureless or uniform areas.

2.3.2 Collaborative methods applying simultaneously criteria borrowed

from both techniques
In this section we present another group proposed of hybrid methods from stereo and sil-

houette. The methods classified in this group work with deformation methods (e.g., snake)
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Fig. 2.23 Example of camera layout and associated views from Hilton and Starck method
[29]

exploiting concurrently the information derived from silhouette-based reconstruction and

stereovision. Hilton and Starck [29] propose a model-based reconstruction method relying

on visual hull and stereovision information. The proposed acquisition system contains 13

cameras including 12 lateral cameras positioned around the object and one camera overhead

to constrain the visual hull as illustrated in figure 2.23a. The method requires prior knowl-

edge of the feature points of the modeled person. The proposed method optimizes a generic

human model mesh to satisfy an energy function. This function consists of three termsEv,

Es, andEr expressing respectively the constraints of the visual hull, stereovision and feature

points. The energy function is then written as follows:

Eglobal = Ev+Es+Er (2.50)

The energy functionEglobal minimization is carried out using a gradient descent. Thanks

to their assumptions about the scene, the results (see figure 2.23b) show a coherent structure

for different frames of the sequence. Figure 2.24 shows that using two techniques produces

more robust and efficient results. The main disadvantage of this method is the restriction on

the scene content which is dedicated to human reconstruction.

Esteban et al. [28] proposed a 3D reconstruction method merging silhouette-based and

stereovision-based reconstruction. This method can be classified in this group and is ap-

plied to 36 images. The images are taken by a single camera. The object to be reconstructed

in 3D rotates on itself between each shot. The method reconstructs the object visual hull

thanks to a space carving method. Stereovision based multi-resolution is then applied using
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Fig. 2.24 Shape reconstruction, source:[29]: f) camera image b) visual-hull c)
voxel-colouring d) merged stereo e) model-based.

this initial reconstructed object. The method divides the images into different resolutions

(called layers). For the first layer, the method tries to find the depth for each pixel of each

image using the depth interval defined by the initial reconstructed object. For the next layer,

the depth interval defined in precedent layer works to constrain the depth search for current

pixel. A detailed description of Hernandez et al’s greedy depth map estimation approach

is presented in [28]. After finding the best depth for a pixelm, the related 3D positionM

is calculated. The method then adds the score of correlation to the voxel corresponding to

M. To merge all the information computed using visual hull and stereovision based multi-

resolution, a classical method of deformation (Snake) is proposed to obtain the mesh as

closest as possible to the actual surface of the object. The deformation method is considered

as an energy minimization problem and expressed by the following formula using a step

variablek for describing the evolution of the surfaceSof R3 :

∀i ∈ mesh vertex Sk+1
i = Sk

i +∆t(Fk i
stereo+Fk i

sil +Fk i
int )

A first estimateS0 of the actual surface is found by space carving, the modeling object is

then subjected to three types of forces:

• Fint aims at maintaining the surface adequately smooth and is the regularization term.

Fint is defined as a force pushing vertex numberi of the mesh towards the gravity

center of its neighborhood :
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Fig. 2.25 Shape reconstruction, source:[28]: f) visual hull b) final model c) texture
mapping.

Fk i
int =

1
card(ngi)

∑
j∈ngi

vk
j −vk

i

wherengi is the set of neighbor vertices ofith vertex, andvk
i is the 3D position ofith

vertex at stepk.

• The forceFstereo deforms the model in order to minimize its distance to the mesh

constructed by stereovision.

• Fsil deforms the model to minimize the distance between the projection of the model

on each image and silhouettes of the images.

The result of the method [28] illustrated in figure 2.25 shows that the modeling object pro-

vides high quality reconstruction. However, their results are based on an acquisition system

composed of only one camera. This system allows to obtain images in a control environ-

ment (light, background ) provides the best results compared to the case of using more than

one camera around the object.

Vogiatzis et al [78] propose another method formulating photo-consistency as a global en-

ergy minimization, using volumetric graph cuts. Graph cuts extract an optimal surface from

a volumetric Markov Random Field. They first build a base surface (outer boundary) as

visual hull Sbaseand an inner boundary surfaceSin lying at a constant distance inside the

outer boundary which defines a volumeVl enclosed bySin andSbase. Voxels of this volume

Vl become nodes in the flow graph. The photo-consistency measure determines the degree

of consistency of a point identified as center of aVl voxel. Finally, optimal surface is ob-

tained as minimum cut solution of the weighted graph. The algorithm proposed uses the

visual hull of the scene to infer occlusions and as a constraint on the topology of the scene.

Figure 2.27c shows that this method provides best result comparing to visual hull or space
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(a) (b) (c)

Fig. 2.26 Face reconstruction using Furukawa et al method [23] : a) one of the input image,
b, c) two views of texture-mapped reconstructed patches.

carving methods. The main problem of this method based on graph cut [78] is that for high

resolutions of voxel grid, the image footprints used for photo consistency measures become

very small which often produces noisy reconstructions in textureless regions.

Furukawa et al. [23] propose a flexible patch-based algorithm for calibrated muti-stereovison

using visual hull. The method starts by computing a dense set of small rectangular oriented

patches covering the surfaces visible in the images. Then the algorithm converts the re-

sulting patch model into an initial mesh deforming iteratively visual hull model towards

reconstructed patches. The deformation is performed applying forces depending on three

terms: 1)a smoothnessterm for regularization 2)a photometric consistencyterm derived

from reconstructed patches, and finally 3)a rim consistencyterm pulling the rim of the

deforming surface towards the corresponding visual cones. Figure 2.26 describes the face

reconstruction result using Furukawa et al [23] method. According to the authors, their re-

sults are better than those of Esteban’s method [28] especially at sharp concave structures

(the results of these methods and other are available on middlebury site [61]). However, in

the RECOVER3D project, our acquisition system and multi-baseline stereovision method

described in the chapters 1 and 3 permit to exploit the information derived from silhouette-

based and stereovision-based reconstruction in a novel and powerful way as we will see in

chapter 4.

2.3.3 Separate application of both methods with further merging of

their results
In this section, another group to merge silhouette-based and stereovision-based recon-

structions is presented. Methods in this group start by applying the two methods indepen-

dently and then merge their results. As we have seen for space carving (section 2.3.1.1), the

visual hull is carved gradually until the photo consistency is satisfied. Matsuda et al [45]

propose another method to carve the visual hull directly using 8 cameras which are posi-
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(a) (b) (c)

Fig. 2.27 Face reconstruction by following methods, source:[78]: a) visual hull, b) space
carving, c) method proposed by [78].

(a) (b) (c) (d)

Fig. 2.28 Object reconstruction following several methods: f) space carving, b)
stereovision, c) space carving + graph cut, d) method proposed by Matsuda et al. [45],

source [45]

tioned around an object. They construct two point clouds from stereovision and silhouettes

techniques. The proposed method maintains the constructed points from stereovision that

meet the following conditions:

• They are not near to VH surface,

• their normals are not significantly different from the nearest VH surface normal.

After identifying the acceptable reconstructed points by stereovision, the method removes

the voxels of VH volume that satisfy the condition of interrupting the lines between accept-

able stereovision points and optical centers of images. Figure 2.28 shows that the proposed

method by Mastuda et al [45] provides better results than those obtained by space carving.

However, we can note that above conditions determining whether the points derived from

stereovision are credible or not, are not always reliable. For example, if we want to recon-

struct an object with strong concavities, we can find points that belong to the surface of the

object far from the VH surface and whose normals are significantly different from the nor-

mal of the nearest surface of the VH. Another method proposed by Song et al. [65] merges

both techniques by separate application of both methods. Depth maps and VH are gener-

ated. The point cloud is then extracted from all the depth maps containing the outliers and

redundancy information. The outliers information are rejected in two steps. The first step is
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Fig. 2.29 The reconstruction steps for the Captain sequence: f) visual hull, b) stereovision
point cloud, c) points cloud extracted from third type voxels, From d) fusion b) and c), e)

reconstructed model using poisson surface reconstruction, f) texturing mapping to e),
source [65].

achieved by remove all the points of the cloud which are out of VH. A voting octree is built

for the point cloud and each voxel of this octree contains the sum of the individual corre-

lation scores derived from point cloud of stereovision. Therefore, the second step includes

deleting the voxels which involve aggregated correlation scores under a specific threshold

(see figure 2.29b). Afterwards, the authors classify the visual hull voxels into three groups:

(1) Type 1: voxels containing a point cloud from stereo; (2) Type 2: the voxels intersecting

the line between a point cloud from stereo and the optical center of an image (3) Type 3:

all remaining voxels. According to the authors, most of these remaining voxels are located

in textureless or occluded areas. Therefore, they extract the point cloud from the voxel of

third type (see figure 2.29c. At the end, a fusion between point cloud generated by depth

maps and those from the voxel of third type is performed to have a single point cloud like

as illustrated in figure 2.29d. The result of the fusion of the two point clouds produced by

stereovision and silhouettes is better than those obtained using the two techniques separately

as shown in figure 2.29e. However, their acquisition system is the same as for Esteban et

al’s method [28] and this system provides control environment. One of the challenge of

applying this method is to determine the best threshold which works to delete the voxels

containing aggregated correlation scores under this threshold.

Recently, Narayan et al. [47] proposed to merge KinectFusion [49] and VH techniques

to recover detailed models for challenging objects with major transparencies and/or con-

cavities. Their method consists of the following steps: 1) computing the VH using RGB

images; 2) fusing depth maps into a single mesh using a variant of the KinectFusion algo-

rithm [49]; 3) refining depth maps using visual hull. At this step, they aim at constructing

a dense cloud whose points lie on the surface of the object and deforming the visual hull

towards this cloud. In particular, this dense point cloud will be a subset of the union of
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Fig. 2.30 Collections of scanned objects (with transparencies and concavities in first and
second row respectively) constructed by visual hull method (f,d), KinectFusion method

[49] (b,e), Narayan’s method [47] (c,f), g) Color image, concave objects, h) Color image,
translucent objects, source [47].

the visual hull and KinectFusion mesh vertices; 4) fusion of the dense refined point cloud

with visual hull keeping voxels which verify the following condition: the distance between

a voxel and its nearest neighbor of point cloud is less than a specified threshold. Figure 2.30

presents reconstructions of objects with major translucencies or transparencies in first row

and objects with concavities in the second row, using VH method, KinectFusion [49], and

their approach.

Individually, the KinectFusion algorithm does poorly in reconstructing objects with major

transparencies but reconstructs concavities, while the visual hull does poorly in reconstruct-

ing concavities but reconstructs regions with major transparencies. Narayan’s method re-

covers the majority of objects including concavities and translucencies zones. However,

this method depends on Kinect sensor to apply KinectFusion algorithm and this sensor has

a practical limiting range of(1.2 to 3.5 m)distance. Within the RECOVER3D project, this

sensor does not work efficiently to model actors which evolve at greater distance from the

cameras.
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2.4 Conclusion
In this chapter, we describe the monocular, binocular, and multiocular shooting geome-

tries for 3D reconstruction purpose. Among these geometries, the multi-simplified epipolar

geometry (described in section 2.1.3.2) provides an efficient and robust configuration for

3D object modeling thanks to disparity evaluation instead of rays triangulation. This geom-

etry reduces the corresponding pixel search to one dimension and facilitates the multiple

matching process. Our multi-baseline stereovision is based on this multi-simplified epipolar

geometry as we will show in the next chapter.

Different techniques for silhouette-based and stereovision-based 3D reconstruction are pre-

sented in details. Following our review of the literature, we notice that the 3D reconstruc-

tion techniques based on silhouettes are used in multi-camera environments and in real time

applications. The main advantages of silhouette-based techniques are robustness and sim-

plicity of implementation. However, the quality of reconstruction from such techniques is

limited. While stereovision approaches produce higher resolution, they are more complex

and lack computation and robustness. Both stereovision and silhouettes approaches thus

complement each other as shown in section 2.3, where different methods have been pre-

sented to merge them.

Moreover, we proposed to classify these methods into three majors groups i) Stereovision

guided by visual hull methods, ii) Collaborative methods applying simultaneously criteria

borrowed from both techniques, iii) Separate application of both methods with further merg-

ing of their results. The bibliographical study of scientific literature confirms the advantages

and the benefits of hybridizing the two methods for 3D scene reconstruction from multiple

views. Within RECOVER3D the project we propose an original scheme for such fusion

of visual hull and multi-stereovision thanks to our multi-baseline stereovision framework

described in chapter 1 and to the configuration of our acquisition system composed of mul-

tiscopic and monoscopic units.
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2.5 Résumé: Reconstruction 3D à partir de multiples vues
Dans ce chapitre, nous présentons le concept de la modélisation de la scène 3D à partir

de n vues et réalisons un bref état de l’art sur les principales approches existantes. Avant de

discuter de la reconstruction 3D multi-view, il est important de savoir comment les images

sont obtenues.

Dans la première partie de ce chapitre, nous revenons sur le modèle sténopé et la géométrie

de prise de vue d’une seule caméra. À la suite de cette étude « monoscopique », nous abor-

dons les contraintes géométriques existantes entre plusieurs vues d’une même scène sans

apriori sur la disposition des caméras dans un contexte binoculaire puis multi-oculaire.

Dans la deuxième partie de ce chapitre, nous nous replaçons dans le contexte du projet

RECOVER3D et étudions spécifiquement les approches de reconstruction basées stéréovi-

sion et silhouette en évoquant les différentes méthodes existantes.

La modélisation 3D à partir de deux images de point de vue différent est appelée stéréovi-

sion. En général, une méthode de stéréovision est constituée des étapes suivantes : i) calcul

des coûts d’appariement, ii) agrégation des coûts, iii) optimisation et calcul des profondeurs,

iv) amélioration des disparités. Toutefois, la stéréovision multi-vue est une généralisation

de la stéréovision permettant une modélisation 3D à partir de plusieurs images chacune

issue d’un vue différent. La stéréovision multi-vue peut être classée en trois groupes princi-

paux : i) méthode basée scène, ii) méthode basée image, iii) méthode basée sur des points

caractéristiques.

À la fin de cette partie, nous présentons aussi la reconstruction basées silhouettes. Cette

méthode, déjà utilisée chez XDProduction, est l’une des techniques exploitées dans le pro-

jet RECOVER3D. Les silhouettes sont représentées par un masque binaire. Ce masque

représente la projection des points des objets à reconstruire. La distinction des objets de

l’arrière plan de la scène est obtenue par l’exploitation du fond uni du studio chromakey

utilisé pour lors de l’acquisition des vues. L’ensemble des pixels blancs du masque forme

la silhouette de ces objets. À partir de celles-ci , une estimation de l’enveloppe visuelle

est réalisée pour reconstruire les objets. L’enveloppe visuelle d’un objet est l’ensemble des

points 3D de l’espace scénique qui se projettent dans toutes les silhouettes représentant

l’objet. Il existe deux approches pour réaliser cette estimation : l’approche « surfacique »,

qui consiste à construire la surface de l’intersection des cônes des silhouettes et l’approche

« volumique », qui consiste à identifier par vérification les voxels qui se projettent dans

toutes les silhouettes.
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Dans le projet nous écartons la première au bénéfice de la deuxième afin de garder le

même type de représentation volumique entre nos différentes méthodes de reconstruction.

Pour conclure, nous proposons de regrouper ces approches en trois catégories : i) les méth-

odes de stéréovision guidée par l’enveloppe visuelle; ii) les méthodes collaboratives appli-

quant simultanément des critères issus de ces deux méthodes; iii) les techniques fusionnant

uniquement les résultats après une application séparée de ces deux méthodes. Les méth-

odes de la première catégorie exploitent les informations issues de l’enveloppe visuelle afin

d’améliorer les résultats obtenus par une technique de stéréovision; Tandis que celles de la

2ème catégorie exploitent des méthodes de déformation comme les snakes, en les contraig-

nants avec les informations issues de la reconstruction basée silhouettes et basée stéréovi-

sion. Les méthodes de la dernière catégorie reconstruisent indépendamment la scène avec

chacune de ces deux approches et fusionnent ensuite uniquement leurs résultats.



Chapter 3

Multi-baseline stereovision framework

In this chapter, we present the multi-baseline stereovision framework that we developed

for RECOVER3D. In section 3.1, we describe our proposition and contributions. In section

3.2, we give an overview of the method algorithm and introduce the basic concept ofma-

teriality mapthat provides the probability of disparity space 3D samples of lying on actual

surface(s). We present in section 3.3 our scene space sampling scheme based on disparity

space [60] and its 3D samples that we calltarget points. In sections 3.4, 3.5, and 3.6, we

explain the attributes provided for each target point: similarity, confidence, and visibility. In

section 3.7, we define the energy function using these attributes. In section 3.8 we describe

how to optimize the energy function while in section 3.9 we develop the basic algorithm of

the optimization engine. The last step of the method,i.e. extraction of the reconstructed

surface from the scene space, is presented in section 3.10. Finally, we show and discuss

experimental results.

3.1 Introduction
While binocular stereovision enables to estimate depth [60] [37], adding more images

leads to more robust and accurate 3D reconstruction thanks to information redundancy like

described by Niquin et al. [51]. Unfortunately, the matching process becomes more com-

plex and still lacks some robustness in regions either untextured, regularly textured, and/or

totally occluded. Thus, the main difficulties are occlusions, changes in appearance, and

ambiguities. The trade-off between easily finding correspondences (which favors camera

layouts with narrow baselines) and accuracy (which is more robust in case of a wide base-

line) has been alleviated using multi-baseline camera settings as illustrated by Okutomi et al.

[52]. Classical solutions for 3D reconstruction from multi-baseline stereovision are image-

based methods as we mentioned in the section 2.2.3. They consist in matching algorithms
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that aim at finding homologous pixels, in different images, which represent the same 3D

point in the scene. While the matching process relies on photo-consistency evaluation, this

often fails to handle untextured areas or repeated texture. In this chapter, we describe a

novel framework for multi-baseline stereovision exploiting the information redundancy to

deal with known problems related to occluded regions. Inputs are multiple images shot or

rectified in simplified geometry, which allows a convenient sampling scheme of scene space:

the disparity space as described by Scharstein et al. [60].

3.1.1 Contributions
In this chapter, we propose a novel framework for multi-baseline stereovision exploiting

the visual information redundancy to deal with known problems related to occluded regions.

Our main contributions are to propose and build a new materiality map on the Disparity

Space (DS) laid as a 3D array; to optimize this map according to some proposed relevant

energy function and finally to use the optimized map to decide where the reconstructed sur-

faces lie in DS. Instead of uniquely relying on image-space information like most multi-view

stereovision methods, we work directly in this discretized scene space. We use visibility rea-

soning and pixel neighborhood similarity measures in order to optimize a 3D discrete map

of materiality yielding precise reconstruction even in semi occluded regions. The mate-

riality map holds, for each 3D sample point, its probability about belonging to the scene

surface(s). Traditional multi-stereovision methods that depend only on RGB information

have some difficulties to solve the problem of ambiguity occuring in occluded regions. This

is the reason why the idea of using the materiality map is important, relying on geometrical

information like visibility of 3D point and RGB information in order to optimize materiality

map.

3.2 Overview of algorithm
Our framework aims at solving the problem of 3D reconstruction from multiple cameras

in equidistant multi-baseline layout that implies fully simplified multi-epipolar geometry as

shown in the section 2.1.3.2. Our algorithm works withn > 2 imagesIi(nc,nr) as inputs

wherenc andnr are respectively the common height and width of the image. In the RE-

COVER3D project, we use four cameras (n= 4) but the proposed framework is designed

for a more generic assumption(n> 2). Our approach defines the useful natural scene space

as the discrete Disparity Space DS, a set of 3D sample points that we call target points. In

DS, a target point is defined by the intersection of planπδ with constant integral disparity

δ with the ray that goes through a pixelmi = (ui ,vi)
t of any imagei as illustrated in Figure

3.2. Hence, each target point may be indexed by a disparity space indext ≡ (mt ,δ )t giving

the indexm of the pixel on whicht projects in a chosen reference imageire f (here, we have
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chosenire f = 0) and the integer disparityδ associated to its constant depth plane. We want

to mention thatT refers to a target point in space whereas thet vector contains its coordi-

nates in DS. A materiality mapµ is defined on DS, as a 3D array containing the likelihood

for every sample of its existence on the reconstructed surface. This materiality map allows

deriving a visibility function, defined in detail in section 3.6, that answers two questions:

• “is a target point inside the frustum of every image?": this detects semi-occlusion that

identifies target points certainly not to be seen in every view because they lie out of

some view frustum(s).

• “do two target points lie on the same ray of an image?": this detects total occlusion.

The visibility function checks materiality values of each potential occluder, looking

for downstream (closer to the camera) material target points on the same ray.

Target points are then given some attributes: a materiality scoreµ[t] ∈ [0,1], visibility scores

Vi(t) ∈ [0,1] for each imagei derived from semi-occlusion and occluders materialities (see

section 3.6), and pre-computed neighborhood similarity scoresρi j (t)∈ [0,1] for each image

couple(i, j) in a given set.

Figure 3.1 shows our framework pipeline that consists of the following principal different

steps:

• Initialization: the scene is discretized to yield the effective scene space. The method

then computes the similarities (see section 3.4) and confidence (see section 3.5) for

each target point as described in section 3.4. It derives the initial materiality scores

from those image based information.

• Materiality map optimization: After initializing the attributes of target points, opti-

mization of the 3D discrete materiality map is driven by an iterative gradient descent

algorithm that minimizes a global energy term (see section 3.7) thanks to an iteration

of successive back and forth passes over disparity planes. The gradient of energy func-

tion E is computed from farδm to nearδM whereδm andδM refer to constant disparity

planes respectively of minimum and maximum integer disparity values. The material-

ity map is then adjusted and visibilities, are updated for each target point from near to

far. The energy function is composed of a "data" term built from similarities, visibil-

ities, and materiality scores of each target point and a "smoothness" term promoting

desirable geometrical properties of the solution. This will be developed in section 3.7.

• Final materiality decision: once the optimization process reaches a pre-defined cri-

terion (number of passes, cost gain threshold,...), some proposed final materiality de-

cision method is applied to binarize materiality values and thus extract object surfaces

(see section 3.10).
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Fig. 3.1 Approach overview: pipeline of the proposed materiality map framework.

3.3 Scene space sampling scheme
Contrarily to image-based approaches, the useful space defined by target points ex-

presses directly the solution domain where the scene can be reconstructed. Thanks to sim-

plified multiscopic geometry, the target points, defined as the intersections between pixel

rays from different cameras, lie on several planes of constant depths associated with integer

disparities. The target points are inside the union of each camera frustum and are projected

in every image frame on integer coordinates points (precisely on a pixel if inside this image

frustum) (see figure 3.2). The idea in this chapter is inspired by the proposition of Niquin

et al. [51] that aggregates homologous pixels over all images in a structure calledmatch

which is very closely related to our target points. Let’s supposen images taken from differ-

ent equidistant viewpoints laid in simplified geometry as described in section 2.1.3.2(e.g.,

epipolar pairs are horizontal scanlines of same rank, and disparity factorsBi, j introduced in

the section 2.1.3.2 are of simplest expression( j − i)). The visible scene surfaces are sup-

posed to be contained into a limited interval lying between two constant disparity planes of

integer disparity values[δm,δM]. A target point is defined as the intersection of pixel rays

of different images (see figure 3.2). The indexm in reference image domainIire f and the

integer disparityδ describe the target pointt lying at depthf b/δ on the optical ray of image
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Fig. 3.2 Set of target points in frustum: an efficient discretereconstruction space within DS.

ire f associated to pixelm. Each target pointt is then identified thanks to the integer disparity

δ indexing its constant depth plane and the integer coordinatesm of its projection on the

frame of a reference imageIire f . A target pointt projects on the imagesIi andI j respec-

tively at mi = (ui ,vi)
t andm j = (u j ,v j = vi)

t . As we described in section 2.1.3.2, knowing

that the optical centers are equidistant, the multi-simplifed epipolar geometry provides an

efficient way to compute the disparity between two pixels as follows:

Bi, j = j − i ⇔ m j = mi +(i− j)δ .u. (3.1)

Furthermore, given target pointst = (mt ,δ )t andt′ = (m′t ,δ ′)t located on the same ray (see

figure 3.2) emitted through imagei and the projectionsmi of t′, t in imagei, the pixelmi

can be written as follows:

mi = m+(ire f − i)δ .u = m′+(ire f − i)δ ′.u ⇒ m′ = m+ i(δ ′−δ ).u, with: ire f = 0 (3.2)

Thank to equation 3.2, we definehi(t,δ ′) yielding the target pointt′ of disparityδ ′ usingt:

hi(t, δ ′)≡ t′ = (mt +(δ ′−δ )i.ut ,δ ′)t = t+(δ ′−δ )






i

0

1




 (3.3)

Let’s now discuss of the choice ofire f which is not obvious. As left part of equation 3.2

shows, target point(mt ,δ )t projects on imagei at mi = m+ (ire f − i)δ .u . In order to

keep both target point and pixel coordinates as integer values(mt ,δ )t ∈ Z
3 andmi ∈ Z

2,
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ire f has to remain inZ. Considering actual geometrical properties of the disparity space

(DS) in scene space, it should be useful to propose a symmetrical sampling scheme without

lateral skew. As DS is built from optical rays of cameraire f , this implies thatire f should

be the index of a camera set at the center of the multiscopic unit described in section 1.3.1

(ire f = (n− 1)/2). These two conditions (ire f ∈ Z, ire f = (n− 1)/2) are jointly fulfilled

for odd numbersn of cameras. However, in the RECOVER3D project, this numbern of

cameras is even (four) and the "central camera" is virtual as(n−1)/2 /∈ Z. We thus choose

ire f = 0 for coding efficiency but remain aware of the necessity of switching to more central

assumption if geometry becomes crucial. The efficiency of the proposed scene sampling

scheme lies in its ability to strictly avoid partially occluded points as samples lie precisely

on genuine optical rays associated to image pixels.

3.4 Similarity evaluation
Usually, in scene-based stereovision, the photo-consistency is defined as the similar-

ity of the pixels which represent the projections of a 3D point in the images. Whereas in

window matching-based stereovision, for each pixelmi ≡ (ui ,vi) of imageIi , the method

chooses its homologuem j ≡ (u j ,v j = vi) in imageI j according to aggregated matching

scoresAM(mi ,m j) within a same neighborhoodW of both pixels as described in Equation

2.39. We distinguish two groups of matching measure between pixels in binocular stere-

ovision. The first group is based on a similarity function as NCC described in the section

2.2.2.2. The best matching score corresponds to the maximum value of these functions. The

second group is based on a dissimilarity function like SSD, SAD described in the section

2.2.2.2. In contrast to the first group, the minimum value of dissimilarity function represents

the best matching score.

In this section, we will describe the methodology used to assign unit similarity scores

ρi j (t) ∈ [0,1] to a target pointt for various couples of images(i, j) from aggregated match-

ing scores using either similarity function or dissimilarity function. In sections 3.4.1, 3.4.2,

and 3.4.3, we will illustrate the general equation and concept to compute those scores. Im-

provement on similarity measurement is mentioned in sections 3.4.4, 3.4.5, and 3.4.7. At

the end of this section, we evaluate different methods for similarity computing in order to

integrate the best of them in our framework.

3.4.1 Set of similarity scores for each sample
In order to take into account the occlusion problem in a multi-baseline stereo context,

much work has been proposed using similarity/dissimilarity measures based on RGB in-

formation. Okutomi et al. [52] propose to use both narrow and wide baselines from a set

of cameras placed on a straight line with parallel optical axes. Their matching technique
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is based on the idea that global mismatches can be reduced by adding the sum of squared

difference (SSD) values from multiple stereo pairs, that is, SSD values are computed first

for each pair of stereo images. The resulting SSD functions from all stereo pairs are added

together to produce the sum of SSD, which they called SSSD. However, this method fails to

deal with semi-occluded objects and it does not take into account the visibility reasoning de-

scribed in section 3.2. Kang et al. [32] explicitly address occlusion in multi-baseline stereo.

For each pixel of the reference view, a subset of the cameras with the best matching scores is

selected under the assumption that the pixel may be occluded in the other images. Whereas

Niquin et al. [51] proposed to aggregate corresponding pixels over all images in a structure

calledmatch. Thanks to the definition of these "matches", the similarities of mismatching

pixels are not integrated into the energy function used by [51].

While these approaches depend only on photometric matching to handle the occlusion prob-

lem, they are sensitive to shooting and lighting settings. As mentioned previously, our

framework uses both RGB and geometry information, therefore our method does not de-

pend only on similarity computation to deal with occlusion zones.

Beside, within our framework, the similarity scores are computed for a setr of pairs of

images that we propose to choose either as "every image couple" as in equation (3.5) or

"consecutive images" as in equation (3.4):

r = {(i, i+1) | i ∈ [0,n−1[ }, (3.4)

or

r = {(i, j) | i ∈ [0,n−1[, j ∈ [i+1,n[ }. (3.5)

We found in experimental results that computing similarity scoresρi j (t)over every pair of

images may emphasize ambiguities due to the usual fact that local illumination deviation

between images grows with baseline width and, as such, with image indices differencej − i.

Whereas computingρi j (t) over pairs of consecutive images yields more robust results and

is thus usually chosen for our experiments.

The setr of image pairs from which similarity scores will be computed being known, the

next section describes the similarity measureρi j (t) for a target pointt over i and j images.

3.4.2 Generic equation for similarity score
The optimization process that will be described in the section 3.9, uses unit similarity

scoresρi j (t) ∈ [0,1] increasing with the likeness of pixels associated tot in imagesi and

j. Those similarity scores are computed from aggregated matching measures using either

similarity or dissimilarity functions. We define a functionS to scale aggregated matching

score into unit similarity score. Two kinds of scaling functionS can be exploited depending
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on the chosen matching function described in section 2.2.2.2in order to represent the best

scores by the value 1.

The first kind concerns increasing functions (like asISλ ,k(t) = (1+ tanh(λ t))/2 shown in

figure 3.3) used to scale aggregated similarity scores (SSD, SAD,..).

The second consists of decreasing functions scaling aggregated dissimilarity scores (SCC,

NCC,...) (like asDStd,k(t) = 2−(t/td)k shown in figure 3.4).

Alike for different matching methods, computing unit similarity scoresρi j (t) implies sev-

eral choices that reinforce the flexibility of our framework concerning its main components:

matching function, aggregation support, normalizing factor, and scaling functions (see equa-

tion 3.6).

ρi j (t) = S

(

msWi j (t)
)

, (3.6)

with:

msWi j (t) =

∑
v∈Wmi ,m j

MS(Ii [mi +v],I j [m j +v])wi j (t,v,W)

N(t,W)
,

with:

wi j weight function applied to each neighbor for(i, j) couple

S scaling function (see figures 3.4, 3.3)

W,N,MS other notations borrowed from equation 2.39

∀k∈ {i, j} (mk,0) =hk(t,0)⇔ mk = m−kδu
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Fig. 3.3 Normalized increasing functionISλ ,k(t) = (1+ tanh(λ t))/2 to scale similarity
scores.
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Fig. 3.4 Normalized decreasing functionDStd,k(t) = 2−(t/td)k to scale dissimilarity scores.

The generic equation 3.6 is used to compute similarity scores. In our method, the match-

ing scoreMS can be the squared difference, absolute difference, or multiplication of cen-

tered intensity values. Aggregation consists of summing the matching scores over windows

W of size[Width,Height]. The scaling functionS shifts all the values into the range[0,1].

In order to use adaptive windows to enhance similarity scores, some weight functionwi j is

applied on windowsW as we will see in section 3.4.5. Computing unit similarity scores

thanks to Equation 3.6 permits to choose various options different types of matching cost as

described in section 3.4.3.

3.4.3 Non adaptive flat windows
We firstly propose to compute the similarity scores for a target pointT in a simple

way without considering any improvements tomi neighbors selection (reminder:mi is the

projection of the target pointt in the imagei). As described in section 3.4.1, a target point

is given similarity scoresρi j over pairs of images(i, j) ∈ r using equation 3.4. Figure 3.5

shows an example of the behavior of similarity function, here applied on scanline 144 using

four Tsukuba images (source: web site of Middlebury University to stereovision [61]). We

developed our framework in a flexible way to permit to test different options for each of

its main components including matching score functions. Using the equation 3.6, similarity

scoresρi j (t) are computed without adaptive support weight for matching score aggregation

(wi j (t,W) = 1). According to the choice of matching scoreMS, a decreasing or increasing

scaling functionS is used as illustrated in table 3.1. The figure 3.5 shows one slice of

disparity space containing similarity computation for target points over three pairs of images.
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wi j(t,W) N(t,W) MS(a,b) S

SAD 1 ∑
v∈Wmi ,m j

1 |a−b| (*) DStd,k(t)

SSD 1 ∑
v∈Wmi ,m j

1 (a−b)2 (*) DStd,k(t)

NCC 1

(

Πk ∈ {i, j} ∑
v∈Wmi ,m j

(Ik[mk+v]−ak)
2

) 1
2

with ak = meanv∈Wmi ,m j
Ik[mk+v]

a∗b (**) ISλ ,k(t)

(*) DStd,k(t) = 2−(t/td)k
≡ e(−λ tk),k= 1,2, . . .λ ≡ log2

tdk

(**) ISλ ,k(t) = (1+ tanh(λ t))/2,λ = 1,2, . . .
Table 3.1 SAD, SAD, or NCC definition by components of the function described in the
equation 3.6.

We refer toρ01,ρ12, andρ23 by the red, green, and blue colors respectively. Therefore,

the target point with white color means that it is seen by the three pairs of images with

similarity scores higher than 0. We note that computing similarity using SSD and SAD

provides an initial description of the reconstructed surface more robust and reliable than

when using NCC (white zone in the figure 3.5). The final scores of similarity function

will be between [0,1], where 1 represents the best score. We will call in the next sections

the results of similarity evaluation on target pointt as similarities attributes regardless of

whether they have been calculated using similarity or dissimilarity functions. We can notice

that the way of computing the similarity described in this section is the same as a traditional

multi-baseline method. However, our framework uses these similarity attributesρi j (t) in a

scene-based rather than image-based method, in order to improve and refine the materiality

map as we will see in the next sections. In addition, we propose to optimize the similarity

computation by using both the adapted window concept (see sections 3.4.4 and 3.4.5) and a

post-processing correction approach (see section 3.4.7).

3.4.4 Separate windows

One common issue in dissimilarity/similarity evaluation consists of tackling image areas

with large depth gaps. The origin of this problem is that the window matching considers the

whole neighborhood into account while it may contain pixels of different depth. Kang et

al. [32] propose to work with shiftable windows. The basic idea of shiftable windows is

to keep the best matching score among several windows that include the pixel of interest

instead of only the usual one centered at that pixel.This approach can improve the matching

of foreground objects near depth discontinuities. In our framework, we use this idea and

propose to separate the matching windows into two sub-windows (Left (L), Right (R)), or
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Fig. 3.5 Sample of slice through a 3D disparity space: a) Original Tsukuba image with
highlight on scanline 144 (source: [61]). b,c,d) similarity scores for epipolar plane 144 using
four Tsukuba images with disparity range [0,21] using SSD, SAD, and NCC respectively
with centered window of size of 13x9. Red, green, and blue colors represent respectively
similarities computingρ0,1(t), ρ1,2(t), andρ2,3(t) over pairs of images(0,1), (1,2), and
(2,3).
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four sub-windows (Up-Right (UR), Up-Left (UL), Down-Right (DR), and Up-Left (UL))

according to the centered pixel (see figure 3.6) that we call (SP2) and (SP4) respectively.

The maximum similarity computed from those sub-windows is then chosen as the target

point similarityρi j (t).

For SP2 method: ρi j (t) = max(S(msWL
i j (t)),S(msWR

i j (t))) (3.7)

with:

WL,WR of size
Width

2
+1×Height

For SP4 method: ρi j (t) = max(S(msWUL(t)),S(msWDR
i j (t)),

S(msWUR
i j (t)),S(msWDL

i j (t))),
(3.8)

with:

WLU ,WLD,WRU,WRD rectangle windows of size
Width

2
+1×

Height
2

+1

Figure 3.7 shows the similarity behavior computation for the scanline 89 of a set of four

Tsukuba images (source: web site of Middlebury University to stereovision [61]) with and

without separate windows. In this figure, we have chosen the target pointT indexed by

(m(139,89)t ,δ ) : δ ∈ [0,21]where the projectionm = (u= 139,v= 89)t with respect the

reference image is located at the edge of blue box object as shown in figure 3.7a. The

matching windowW aroundm contains then pixels with different depths. The figure 3.7a

shows that the best similarity target points is calculated at the disparityδ = 5 for the pixelm.

According to the ground truth, the actual 3D point corresponding to pixelm lies at disparity

δ = 6 instead ofδ = 5. Figure 3.7b shows the advantage of using separate windows. The

best similarity for the pixelm is computed at the disparityδ = 6. That is to say,m now has

a correct disparity.

3.4.5 Weighted windows

In contrast to the idea that the global stereovision methods, such as graph cuts [39] or

belief propagation [70], always provide better results than local methods, Yoon and Kweon

proposed an alternative one called adaptive support weight [83]. Their approach is classi-

fied as a local method described in section 2.2.2.3 and yields results close to those of global

methods as discussed in section 2.2.2. The effectiveness of their technique is due to the

aggregation of large support-window sizes and to neighbors weight that adapts according to

similarity and distance to the central pixel in the support window.
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Fig. 3.6 Comparison of centered window and both SP2 and SP4 separate windows ap-
proaches.

We rewrite their technique using bilateral filtering described in [54] for an image processing

technique smoothing images while preserving edges. It can be based on the Gaussian ker-

nel. Contrary to Gaussian filtering, the bilateral filtering depends not only on the euclidean

distance of pixels, but also on their color distance. This method handles depth differences

through the assumption that close pixels of similar colors should have high probabilities to

belong to the same object. It is thus to weight neighbor values according to the product

of Gaussian of their spatial and colors distances to the studied pixel. One should note that,

while spatial distance is common to all images, result of color distance computing may be

modified over several images. We chose to compute the color weight using a Gaussian

function applied to color distance of neighbor and central pixel. This color weight is com-

puted for both implied images(i, j) and we keep the maximum value in order to penalize

neighbors in matching window with low similarity to central pixel in one image and high

similarity in the other image.

Like separate window method, the weighted window approach based on bilateral filtering is

able to assign the correct disparity to the pixelm= (139,89)t as illustrated in figure 3.7. We

can integrate the weight based on bilateral filtering into the generic equation for similarities

measurement with the following weight using non normalized gaussian functions without
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any overall error according to the global normalizing factorN:

w(t,v,W) = Gσe(v)∗maxk∈{i, j}Gσs(‖Ik[mk+v]− Ik[mk]‖)

N(t,W) = ∑
v

w(t,v,W)

With: Gσ (x) = exp(−
x2

2σ2)

σe, σs : respectively, color and spatial standard deviations.

(3.9)

3.4.6 Evaluation and choice

To evaluate the different methods for similarity computing, the web site of Middlebury

University to stereovision [61] provides different datasets (Tsukuba, Teddy, Cones,....) iden-

tifying the discontinuities regions where there is a sudden change in the depth between

objects (see figure 3.10). We run different methods of similarity computing (non adaptive

flat windows (NAFW), separate windows (SP2), separate windows (SP4), and weighted

windows (WW)) over three datasets. We compare the results against the ground truth (see

Table 3.2) considering only the discontinuity regions and the following measures proposed

in [60]:

• The Root-Mean-Squared (RMS) error is computed between the disparity mapDi and

its ground truthDgt
i by the following formula:

RMS=

(
1
N ∑

m
(|Di(m)−D

gt
i (m)|)2

) 1
2

, (3.10)

whereN is the total number of pixels in the image.

• The Percentage of Bad Matching (PBM) pixels provides the percentage of mismatch-

ing pixels between two disparity maps using the following formula:

PBM=
1
N

card{m
∣
∣ |Di(m)−D

gt
i (m)|> δthreshold

∣
∣}, (3.11)

whereN is the total number of pixels in an image, andδthreshold is the threshold for

evaluating bad matched pixels (usuallyδthreshold= 1.0).

Table 3.2 compares each discussed approach for window matching using RMS error

and PBM measures on three datasets: Tsukuba, Teddy, and Cones. In order to facilitate the

interpretation, we propose in the table 3.3 to normalize the values derived from RMS and

PBM measures for each dataset dividing on the minimum values through different window-

ing approaches. The figures 3.8 and 3.9 illustrate these normalized values. We can note
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(a)

(u= 139,v= 89,δ = 5)
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(u= 139,v= 89,δ = 6)
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(u= 139,v= 89,δ = 6)

u

δ
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Fig. 3.7 Evaluation of different similarity methods using only one image pair (0,1) to fa-
cilitate the visual comparison: a) Original Tsukuba image with highlight on scanline 89
source:[61], b, c, d) similarity scoreρ0,1 for the image pair (0,1) using SSD, SP4, andWW
methods with a disparity range of [0,21] and a matching windows size of 13x9.
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Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM

NAFW 44.9889 0.6025 17.9101 0.9128 21.8976 0.7766
SP2 43.8937 0.4273 16.8235 0.9056 19.47420.7687
SP4 38.1254 0.3124 15.6237 0.9032 18.8269 0.7719
WW1 38.0951 0.3437 51.3073 0.9690 18.4480 0.7847
WW2 44.3099 0.5528 17.9802 0.9146 22.7746 0.7778

Table 3.2 Comparing grounds truth against Tsukuba, Teddy, andCones in discontinuity
regions using different methods: Non Adaptive Flat Windows (NAFW), Separate Windows
(L, R) (SP2), Separate Windows (LU, LD, RU, RD) (SP4), Weighted Windows(1) (WW1)
with σs = 3 andσe = 0.05, and Weighted Windows(2) (WW2) with σs = 6 andσe = 0.2.
The results are obtained using a matching window size of 13x9 for each dataset.

Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM

NAFW 1,1809 1,928 1,1463 1,0106 1,1869 1,0102
SP2 1,1522 1,3677 1,0767 1,0026 1,0556 1.0
SP4 1,0007 1.0 1.0 1.0 1,0205 1.0004
WW1 1 1.1001 3.2839 1.0728 1.0 1.0208
WW2 1.1631 1.7695 1.1508 1.0126 1.2345 1.0118

Table 3.3 Normalized results computed from Table 3.2 for eachdataset and for each measure
dividing by the minimum value for the different methods on this dataset.

that the SP4 method provides better results than other approaches over the three datasets.

Furthermore, by comparing the results ofWW1 andWW2, we note that one of the problems

of WW method is the choice of the best values ofσs andσe over different datasets. For this

reason, the SP4 method is used in our framework to compute the similarities for each target

point.

3.4.7 Similarity correction
The goal of the similarity correction is to provide more reliable similarity scores. Fig-

ure 3.11 shows the similarity scores illustrated in figure 3.5 with and without correction for

the scanline 144 of Tsukuba images. We notice that, using a scaling functionS described

in Table 3.1 with low value oftd (first column), reduces similarities both in mismatching

ambiguities areas (red rectangle in figure 3.11) and in some trust zones (green rectangle

in second column of figure 3.11). Therefore, we propose the similarity correction concept

in order to try and penalize mismatching similarities while maintaining the other zones as

shown in yellow rectangle in the third column of figure 3.11.

To realize this correction, we propose to check out each similarity scoreρi j for each target
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Fig. 3.8 Graph flowing normalized results derived from Table 3.3 applying PBM.
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Fig. 3.9 Graph flowing normalized results derived from Table 3.3 applying RMS error.
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(a) (b) (c)

Fig. 3.10 a, b, c) Regions near depth discontinuities, occluded and border, and other regions
are indicated respectively by white, black, and gray color for Tsukuba, Teddy, and Cones
datasets, source:[61].

point t according to best scores over rays of bothi and j images passing throught. If ρi j (t)

represents the maximum similarity score on one of these rays, the target pointt then has high

probability to be one of the reconstructed points. We thus normalize the similarity scores

ρi j (t) according the lower of the maximum of similarity scoresρi j (t′) over respectivelyi an

j rays passing throught (t′ ∈ rayk(t), k ∈ i, j). In order to carry out the similarity correc-

tion for the pair of imagesIi andI j , we first check the maximum similarity values through

rayi(t) andray j(t). The minimum of the two maximum values is then used to normalize

ρi j (t). The whole correction yielding the normalized similarity scoreρ̄i j (t) is expressed as

follows:

ρ̄i j (t) =
ρi j (t)

mink∈{i, j}
(
maxδ ′(ρi j (hk(t,δ ′)))

) (3.12)

The results in Figure 3.11 show the importance of this approach to refine the similarity

scores and reduce the ambiguities similarities zones.

3.5 Confidence
One acknowledged problem in stereovision is associated to textureless regions. Pixels

in a textureless zone are subject to bad matches in many stereo matching methods. This

section will explain how we evaluate if the matching window is textured or not at similarity

computation step and how we quantify this evaluation in the confidence score in order to

reduce the influence of textureless zones in the materiality map optimization.

When the similarity score is computed through the matching windows, the variancesvarWmi ,m j (Ik,mk)

of each of these windows are computed with:

varW(I,m) = meanv∈W
(

I[m+v]−moyW(I,m)
)2

,

with: moyW(I,m) = meanv∈W (I[m+v]).
(3.13)



3.5 Confidence 81

td Without similarity correction With similarity correction

1

u

δ

u

δ
(a) (b)

2

u

δ

u

δ
(c) (d)

3

u

δ

u

δ
(e) (f)

4

u

δ

u

δ
(g) (h)

5

u

δ

u

δ
(i) (j)

6

u

δ

u

δ
(k) (l)

7

u

δ

u

δ
(m) (n)

8

u

δ

u

δ
(o) (p)

9

u

δ

u

δ
(q) (r)

Fig. 3.11 Sample slice through a 3D disparity space: similarity scores with and without
similarity correction for scanline 144 using four Tsukuba images with a disparity range

[0,21] using the scaling functionDSλ ,k(t) = 2−(t/td)k, k = 1; wheretd is between 1 and
9 according to the first column. The red, green, and blue colors represent respectivelyρ01,
ρ12, andρ23.
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(a)

u

δ

(b) Similarity

u

δ

(c) Confidence

Fig. 3.12 a) Original Tsukuba image with highlight on scanline 144, b) similarity scores
for scanline 144 with disparity range [0,21], c) Confidence scores for scanline 144: white
points refer to high confidences values.

Our method assigns to each target point a confidence scorecn fi j for each pair of images

(i, j) ∈ r (reminder :r is a set of pairs of images and is defined in section 3.4.1) using the

variances as described in equation 3.14

cn fi j (t) = S(varM)

(
varM
varm

)

,

with varM = maxk∈{i, j}varW(Ik,mk),

varm= mink∈{i, j}varW(Ik,mk),

S(t) = (1+ tanh(λ t))/2, λ = 1,2, ...

(3.14)

Figure 3.12 shows the minimum confidence score (min(i, j)∈r cn fi j (t)) for the target points

for Tsukuba image scanline 144. Green rectangles outline the areas with low confidence.

In the zone which represents the lamp object, the confidence score indicates that the target

points lie on a textureless zone.
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3.6 Visibility function

In this section, we describe the visibility score for each target point thanks to the efficient

definition of the scene space geometry described in section 3.3. Our visibility definition is

close to the visibility function demonstrated by Szeliski et al. [74], which uses a recur-

sive front-to-back algorithm to build a visibility map. This method targets natural matting,

segmenting foreground from background without any special color screen. This visibility

function proposed by [74] is re-used by Kang et al. [33] in order to handle occlusions. From

a collection of images, this method computes multiple depth maps simultaneously and ex-

plicitly models the visibility map. This map is used by an energy function in order to weight

the correlation scores. In this section, we adapt the visibility function proposed by [74] to

our framework in order to evaluate, for each target pointt, its visibility scores in each image.

This evaluation permits to handle total occlusion and semi-occlusion illustrated in section

3.2. The proposed scene sampling scheme easily answers the two questions asked in section

3.2:

• The question "(a) is a target point inside the frustum of every image?" by verifying

if the abscissa of the target point projection on the image plane lies in the scanline

domain (its ordinate mandatorily lies in image column domain as target points are

located on genuine epipolar planes).

• The question "(b) do two target points lie on the same ray of an image? " by taking

into account the materiality of each downstream target point (with higher disparity)

on the same ray. Downstream target points oft in imagei (as introduced in section

3.3), are identified ast′ = hi(t,δ ′) : {δ ′ > δ ,(m = m′+(δ −δ ′)i.u,δ ′)}.

The visibilitiesVi(m,δM) on the nearest plane(δ = δM) are set to 1 for all the target points

in frustum of camerai and 0 for all other target points.

For the visibility termVi(m,δ ) on other disparity planes(δ < δM) , a recursive formula is

then defined considering the non-materiality of the downstream target points. That is to say,

the visibilityVi(m,δ ) = 0, if there is a target pointt′ = (m,δ ′) located in the disparity plane

δ ′ > δ and passed through rayrayi(t) and its materialityµ[t] = 1. The visibility function of

[74] can be expressed in our framework as follows:

Vi(m,δM) =Fr(m− iδM.u)

∀δ < δM Vi(t) =Vi(h(t,δ +1))(1−µ[hi(t,δ +1)])
(3.15)
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with:

Fr(x) = 1 if x∈W= [0,nc[or 0 otherwise

The recursive equation 3.15 may be derived as follows:

∀δ ∈ [δm,δM] Vi(t) = Fr(h(t,0)).
δM

∏
δ ′=δ+1

(
1−µ[h(t, δ ′)]

)
(3.16)

with

Fr(x) =

{

1 if x∈W= [0,nc[

0 otherwise

Using this visibility definition, we propose a method to compute the target point visibility

scores from farδm to nearδM disparity plans using Equation 3.15 and as illustrated in the

Algorithm 4. We call this method "Far-Near method".

Algorithm 4: Visibility computing for a target pointt = ((u,v),δ )t

if disparity is max(δ == δM) then
foreach image ido

if u− iδ ∈ [0,nc[ thenVi(t) = 1;
else Vi(t) = 0 ;

else
foreach image ido

Vi(t) = (1−µ[t′])∗Vi(t′) t′ = t+





i
0
1



= hi(t,δ +1)

3.7 Energy function
The optimization process relies upon an energy function defined on the materiality map

µ using, classically, two terms illustrated in equation 3.17. The first term "data" penalizes

inconsistencies between current solution and actual data (images). The second term "prop-

erties" penalizes undesirable properties of the current map. In our implementation, this term

is composed of density and thickness energies. The energy functionEglobal(µ) is written as

follows:

Eglobal(µ) = Edata(µ)+Eprop(µ) (3.17)



3.7 Energy function 85

The data termEdata(µ) compares image and scene geometry content of the current solution.

Edata(µ) = ∑
t
C(µ[t],V(t),ρ(t)) (3.18)

with:

C(µ,V,ρ) = ∑
(i, j)∈r

T
(
ViV j µ,ρi j

)
(3.19)

The data term sums for each target point some cost function increasing for each pair of

images(i, j) ∈ r with the inconsistency between the target point materiality and visibilities

on one side and its similarity scores on the other side. The underlying idea is that high

similarity scores for a target point should be explained, at least in textured areas, by high

materiality and high visibilities in the implied images. As every implied score is normalized,

this term described in equation 3.18 penalizes the inconsistency between similarity scores

and product of materiality by related visibilities using some penalty functionT (a,b).

The penalty functionT (a,b) penalizes the discrepancy betweena andb. According to

the equation 3.19,b is considered as the reference value indicating whethera should be high

or low. This penalty can be expressed as the squared differenceL2(a,b) as follows:

L2(a,b) = (a−b)2 (3.20)

However, such function restrains the saturation ofa if b is not saturated, as illustrated in

Figure 3.14, which is not convenient. Another "anti-correlation" function like asAC(a,b)

can be considered as the penalty functionT (a,b) and is written as follows:

AC(a,b) =−(a−
1
2
)(b−

1
2
) (3.21)

This function always pullsa towards saturation. However,AC(a,b)will also tend to saturate

a even for close to averageb values as illustrated in Figure 3.13. Therefore, we propose to

apply a function combining the advantages of the precedent onesAC(a,b) andL2(a,b).

This function is considered as a weighted sum ofAC(a,b) andL2(a,b) as illustrated in

Equation 3.22 and Figure 3.15, whereφ andψ are the weights.

Tφ ,ψ (a,b) = φL2(a,b)+ψAC(a,b) = φ(a−b)2−ψ(a−
1
2
)(b−

1
2
) (3.22)
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Therefore, the equation 3.19 can be written using 3.22 as follows:

C(µ,V,ρ) = ∑
(i, j)∈r

φ .
(
ViV j µ −ρi j

)2
−2ψ.

(

ViV j µ −
1
2

)(

ρi j −
1
2

)

(3.23)

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

a

P
en

al
ty

b= 0.0
b= 0.2
b= 0.4
b= 0.6
b= 0.8
b= 1.0

Fig. 3.13 Behavior of penalty functionAC(a,b)according to variablea for various reference
valuesb.

The properties termEprop(µ) described in the equation 3.17 is a weighted sum of two

terms:

Eprop(µ) = αEdensity(µ)+βEthickness(µ),

whereα, β are weighting factors.
(3.24)

• Edensity(µ) tends to align the overall sum of materiality scores with the average num-

ber of target points in one constant disparity plane, approximately corresponding to

the reconstruction of one coherent frontal surface of the scene in the cameras frus-

tums (see Equation 3.25). This global cost is spread uniformly on each target point

for gradient computation. TheEdensity(µ) is written as follows:

Edensity(µ) =

(

∑
t

µ[t]− card(DS)
δM−δm+1

)2

card(DS)
, (3.25)

where card(DS) is the total number of target points in DS.
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Fig. 3.14 Behavior of penalty functionL2(a,b)according to variablea for various reference
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• Ethickness(µ) penalizes thick material areas as the expected solution is a frontal surface

that has to remain as thin as possible.The thickness energy leads to the best distribu-

tion of materiality through the domain. This energy thus aims to facilitate the final

step of our framework "Final materiality decision", which binarizes materiality values,

as it helps reducing the number of target points with high materiality that doubtfully

belong to the reconstructed surface. The functionEthick(µ) introduced in equation

3.26 can be expressed as:

Ethickness(µ) = ∑
(t)

µ[t] ∗ ‖(▽µ[t])‖2
︸ ︷︷ ︸

(
∂ µ
∂u

)2
+
(

∂ µ
∂δ

)2
+
(

∂ µ
∂v

)2

(3.26)

The set of target points on which the materiality map is defined is both discrete and

bordered; thus the materiality values are available on a finite set of target points.

Therefore, we choose to work with a discrete approximation of the gradient of the

materiality map. The idea is typically to define the derivative components of the local

materiality gradient as symmetric finite differences rather than the usual continuous

derivatives. Therefore, while the set of target points is finite, the gradient computation

of theEthickness(µ) can be expressed as follows:

▽µ[t′] =







∂ µ
∂u [t

′] = µ [t′+u]−µ [t′−u]
2

∂ µ
∂v [t

′] = µ [t′+v]−µ [t′−v]
2

∂ µ
∂δ [t

′] = µ [t′+d1]−µ [t′−d1]+µ [t′+d2]−µ [t′−d2]
4

(3.27)

with: u =






1

0

0




 ,v =






0

1

0




 ,d1 =






2

0

1




 ,d2 =






1

0

1




 (3.28)

In equation 3.28, the derivative with respect toδ implies taking into account our

proposition to solve the problem of lateral skew of geometrical properties of Disparity

Space (DS) whenire f = 0. This would lead to∂ µ
∂δ [t

′] = µ [t′+d1.5]−µ [t′−d1.5]
2 with d1.5 =

(1.5 0 1)t . Unfortunately these two implied pointst′± d1.5 do not belong to DS.

We thus have to evaluate their materiality by interpolation of their nearest neighbors

of same disparity. For this reason, we apply the symmetric finite difference over two

couples of target pointst′±d1 and,t′±d2 to compute the derivative with respect to

δ according to a central point of view.

We can summarize our energy function as a sum of internal energy (density energy,

thickness energy) and external energy (the difference between the information derived from
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scene and that obtained from images) depending on unknowns ordegrees of freedom which

are the materiality scores of the target points. To minimize the total energy, we use the

gradient descent method described in the following section.

3.8 Gradient descent based optimization
One of the simplest optimization algorithm for problems expressed as minimum energy

of a system with numerous degrees of freedom (dof) is gradient descent. The principle is

to start from a random point indof domain and to then move a small step in the direction

of the steepest slope of the energy according to thedof. This steepest slope of the energy is

expressed by the energy gradient with respect to thedof. The norm of this gradient is the

local steepest slope, while its direction indof domain locally maximizes the energy increase

rate. By applying a number of iterations, the algorithm converges to a solution which is a

local minimum. Starting from a point close enough to optimum, this local minimum will be

global one.

In order to apply the gradient descent, we have to compute the energy derivative respective

to eachdof. For the external energyEdata defined in section 3.7, we need to achieve the total

derivatives of Equation 3.23 with respect to all of the unknowns (the materiality scores). In

the algorithm, the materiality and visibilities will change during the process of optimization

while the similarities are computed in the initial step and kept constant afterwards.

We will define the total derivatives independently of the choice to the penalty function de-

scribed in Equation 3.22. This definition will be customized according to the chosen func-

tion.

We distinguish between two approaches to explain the derivation forEdata, local and global.

In naive thinking and without taking into account the efficiency of the scene geometry def-

inition, the local derivative∂µ [t]Edata of Edata with respect to one materiality scoreµ[t]
considers only direct expression of this score in the energy function. As such, its involve-

ment in visibility scores of upstream target points is ignored in local derivative. The global

derivativedµ [t]Edata adds these indirect implications through visibility scores. The local

and global derivatives ofEdata are thus written as follows (in the following equations, we

simplify C(µ[t],V(t),ρ(t)) ≡ C(t) ):

∂Edata(µ)
∂ µ[t]

= ∑
t′

∂C(t′)
∂ µ

dµ[t′]
dµ[t]

=
∂C(t)

∂ µ
as materiality scores

are independant unknowns,
(3.29)

dEdata(µ)
dµ[t]

=
∂Edata(µ)

∂ µ[t]
+∑

i
∑
t′

∂C(t′)
∂Vi

dVi(t′)
dµ[t]

. (3.30)
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The materiality score oft is involved in visibilityV i computing for all their upstream target

points for imagei {hi(t, δ ′)|δ ′ < δ} (see equation 3.16). We propose then to compute the

global derivative ofEdata considering two facts:

• The materiality computation is independent :

dµ[t′]
dµ[t]

=







0 if t 6= t′

1 if t = t′

• Vi(t′) depends onµ[t] only for upstream target pointst′ ∈ {hi(t,δ ′)|δ ′ < δ} of t on

rayi(t). As such,dVi(t)
dµ [t] will be zero for all other target pointst′.

Using the two facts mentioned above, the global derivatives forEdata are described in the

equation 3.31.

dEdata(µ)
dµ[t]

=
∂C(t)

∂ µ
+∑

i
∑

δ ′<δ

∂C(hi(t, δ ′))

∂Vi

dVi(hi(t,δ ′))

dµ[t]
. (3.31)

According to equations 3.3 and 3.16, the upstream target point visibility may be written as:

Vi(hi(t, δ ′)) = Fr(hi(t,0))
δM

∏
δ ′′=δ ′+1

(1−µ[hi(t,δ ′′)]) (3.32)

As δ ′ < δ , it may be decomposed as:

Vi(hi(t,δ ′)) = Fr(hi(t,0))
δM

∏
δ ′′=δ+1

(1−µ[hi(t,δ ′′)])

︸ ︷︷ ︸

Vi(hi(t,δ ))

(1−µ[hi(t,δ )])
δ−1

∏
δ ′′=δ ′+1

(1−µ[hi(t,δ ′′)])

(3.33)

As hi(t, δ ) = t, the equation 3.33 can be then simplified as follows:

Vi(hi(t,δ ′)) = Vi(t)(1−µ[t])
δ−1

∏
δ ′′=δ ′+1

(1−µ[hi(t, δ ′′)]) (3.34)

The only term depending onµ[t] in the above equation is(1−µ[t]). As such

dVi(hi(t,δ ′))

dµ[t]
=−Vi(t)

δ−1

∏
δ ′′=δ ′+1

(
1−µ[hi(t, δ ′′)]

)
(3.35)
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Using Equation 3.35, the global derivative ofEdata(see Equation 3.31) is then written as

follows:

dEdata(µ)
dµ[t]

=
∂C(t)

∂ µ
−∑

i
Vi(t) ∑

δ ′<δ

∂C(hi(t,δ ′))

∂Vi

δ−1

∏
δ ′′=δ ′+1

(
1−µ[h(t, δ ′′)]

)

dEdata(u)
dµ[t]

=
∂C(t)

∂ µ
−∑

i
Vi(t) CIt,i (3.36)

with :

CIt,i =







0 δ = δm

∑δ ′<δ
∂C(h(t,δ ′))

∂Vi
∏δ−1

δ ′′=δ ′+1(1−µ[hi(t,δ ′′)]) δ > δm

(3.37)

This expression is still complex by the dependence ofCIt,i on all upstream target points.

To facilitate the computationCIt,i, the relation between the termCIt,i and its nearest up-

stream target pointCIhi(t,δ−1),i identifies a recursive expression derived in Equation 3.38.

To find this mathematical relation, instead of starting the sum operation in the equation 3.37

from δ ′ < δ , we begin withδ ′ < δ −1 and extract the value forδ ′ = δ −1. We can then

get Equation 3.39:

CIt,i =
∂C(hi(t,δ −1))

∂Vi

+(1−µ[hi(t, δ −1)]) ∑
δ ′<δ−1

∂C(hi(t,δ ′))

∂Vi

δ−2

∏
δ ′′=δ ′+1

(
1−µ[hi(t, δ ′′)]

)

︸ ︷︷ ︸

CIhi(t,δ−1),i

(3.38)

CIt,i =
∂C(hi(t,δ −1))

∂Vi
+(1−µ[hi(t, δ −1)]).CIhi(t,δ−1),i (3.39)

The equation 3.39 defines the recursive expression betweenCIt,i and its nearest upstream

target pointCIhi(t,δ−1),i. The recursive expression helps to find the global derivative effi-

ciently.

We want to remind the reader that the global derivatives defined in Equation 3.36 is generic

and does not depend on the choice of the penalty function. To customize this equation

according to the penalty function described in Equation 3.23, we compute the partial deriva-

tives with respect to the materiality and visibility as follows:

C(µ,V,ρ) = ∑
(i, j)∈r

T(µViV j ,ρi j ). (3.40)
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∂C(µ,V,ρ)
∂ µ

= ∑
(i, j)∈r

∂T
∂a

(µViV j ,ρi j )
︸ ︷︷ ︸

≡Dai j (µ ,V,ρ)

ViV j . (3.41)

∂C(µ[t],V(t),ρ(t))
∂Vi

= µ ∑
ord(i, j)∈r

V jDai j (µ,V,ρ), (3.42)

with:

ord(i, j) = (min(i, j),max(i, j)).

Algorithm 5: Computing derivative algorithm ofEdata for target pointt
Initialize the derivative resultdr = ∂ µ[t] using eq.3.41
if target pointt is located in the farthest disparity planeδm then

foreach image number ido
CIt,i = 0

else
foreach image number ido

Access to nearest upstream target pointt′ = hi(t, δ −1) according to imagei
∂C(t′)

∂Vi

dr = dr−Vi(t)CIi(hi(t,0))
CIi(hi(t,0)) =

∂C(t′)
∂Vi

+(1−µ[t])

As illustrated in section 3.7 the properties termEprop(µ) is composed of two terms

Edensity(µ) and Ethickness(µ). Therefore, to complete the computation of the derivative

global energy functionEglobal, we write firstly the derivative for density energy as follows:

dEdensity(µ)
dµ[t]

= 2
1

card(DS)

(

∑
t′

µ[t′]−
card(DS)

δM −δm+1

)

(3.43)

Secondly, the derivative for thickness energyEthickness(µ) is written as follows

dEthickness(µ)
dµ[t]

= ∑
t′

(
∂ µ[t′]
∂ µ[t]

(
▽µ[t′]

)2
+2µ[t′]

∂ ▽µ[t′]
∂ µ[t]

▽µ[t′]
)

(3.44)

with u =






1

0

0




 ,v =






0

1

0




 ,d1 =






2

0

1




 ,d2 =






1

0

1




 .
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dEthickness(µ)
dµ [t] = (▽µ[t])2 // t′ = t

+µ[t−u]∂ µ [t−u]
∂u // t′+u = t

−µ[t+u]∂ µ [t+u]
∂u // t′−u = t

+µ[t−v]∂ µ [t−v]
∂v // t′+v = t

−µ[t+v]∂ µ [t+v]
∂v // t′−v = t

+1
2µ[t−d1]

∂ µ [t−d1]
∂δ // t′+d1 = t

−1
2µ[t+d1]

∂ µ [t+d1]
∂δ // t′−d1 = t

+1
2µ[t−d2]

∂ µ [t−d2]
∂δ // t′+d2 = t

−1
2µ[t+d2]

∂ µ [t+d2]
∂δ // t′−d2 = t

(3.45)

Thanks to the global derivative ofEdata which is described in Equation 3.36, we propose

to compute the derivative cost for each target point from far to near like described in the

algorithm 5. We call this proposition as Far-Near method which sweeps the disparity space

from δm to δM. this method is convenient forCIt,i computing using Equation 3.39.

Following the visibility reasoning and the global energy derivative, the basic algorithm

for computing and updating materiality map using gradient descent is described in section

3.9.

3.9 Basic algorithm of optimization engine
In this section, we describe the core of our algorithm to initialize and optimize the ma-

teriality map using gradient descent. The Far-Near method to compute the visibility of the

target points is proposed in section 3.6. By contrast, computation of the global derivation for

Edata is based on Near-Far method as described in section 3.8. Thanks to these methods, we

propose a recursive scheme to compute the materiality map independently for each epipolar

plan v. In order to apply our optimization method on only the target points that have the

possibility to be reconstructed, we determine the limitation onu-axis of DS at each disparity

δ as described in Algorithm 6.

In Algorithm 7, the first phase is to compute the similarity and initializes visibility for all

the target points. Furthermore we initialize the materiality map by the maximum similarity

scores multiplied by the minimum confidence score over all image couples.

The second phase of the algorithm is to optimize the materiality maps using gradient descent

by applying a specified number of iterations. We can divide the optimization process into

two consecutive major blocks:

• Near-Far method compute the energy function derivative sweeping the disparity plans

form δm to δM.
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• Far-Near method to update the materiality and compute the visibilities by sweeping

the disparity plans fromδM to δm.

Algorithm 6: Computingumin andumax of disparity planeδ
if δ < 0 then

umin = (n−1)δ
umax= nc

else
umin = 0
umax= (n−1)δ +nc

Figure 3.16 shows the behavior of the energy function mentioned in the previous section

and used to optimize the materiality map. Red rectangles outline thick or dense areas of high

similarity scores. In these areas, the optimized materiality map illustrated in figure 3.16.d

yields the right disparity, while the similarity map described in figure 3.16.c is ambiguous

and does not induce the right decision about defining the best local disparity. Therefore the

materiality map is more efficient than traditional similarity based stereo matching methods

[52, 74].

3.10 Final materiality decision
After its optimization, the materiality map is composed of values in[0,1]. In this section,

we propose a method to binarize the materiality map in order to extract the surface using

two different approaches: i) Adaptive scanline optimization, ii) Graph cut for materiality

map segmentation.

3.10.1 Adaptive scanline optimization
The last step of our method is to determine the target points which belong to the recon-

structed surface. Our main contribution in this section is applying scanline optimization for

multi-baseline stereovision. In section 2.2.2.4.1, we presented the dynamic programming

methods implemented for two images. Scharstein et al. [60] propose a recursive algorithm

through Disparity Space (DS) indexed by(ml ,δ ) using the left image domain and disparity

range. Unlike traditional (symmetric) dynamic programming, the ordering constraint does

not need to be enforced and no occlusion cost parameter is necessary using the scanline

optimization method.

In our framework, the same concept of scanline optimization [60] is applied to search the

optimal path for each scanline using two steps, forward and backward. In the forward step,

the optimal path cost for each target point is defined asPC(Patht), wherePatht refers to

the set of connected target points starting from left side of disparity space until oncoming
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Algorithm 7: Initialization and optimization of the materiality map
t ≡ (u,v,δ )t
foreach disparity planeδ from nearest to farthestdo

Computeumin andumax

foreachepipolar planev do
for u= umin to to umax do

for (i, j) ∈ r do
Computeρi j (t) (see eq.3.4)

for i ∈ [0,n[ do
Compute visibilityVi(t) accordingi (see eq.3.16)

µ[t] = max
(i, j)∈r

ρi, j(t) ∗ min
(i, j)∈r

cn fi, j(t)

repeat
foreach disparity planeδ from farthest to nearestdo

foreach each epipolar plane vdo
for u= umin to umax do

ComputeEdata, Edensity, andEthickness

Compute global total derivative fort using alg.5, eq.3.43 and eq.3.45
Update derivative value fort neighbors using eq.3.45

foreach each disparity planeδ from nearest to farthestdo
foreach each epipolar plane vdo

for u= umin to umax do
for i ∈ [0,n[ do

Compute visibilityVi(t)
Update materialityµ[m,δ ]

until Convergence(number of iteration, cost gain threshold, ...);
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(a) (b)
u

δ
(c)

u

δ
(d)

u

δ
(e)

Fig. 3.16 Sample slice through a 3D disparity space: a,b) one original Tsukuba image and its
ground truth disparity with highlight on scanline 144 drawn in yellow; c) similarity scores
for epipolar plane 144 using four Tsukuba images with disparity range{0, . . . ,21}. Red,
green, and blue colors represent respectively similarities for pairs of imagesρ01, ρ12, and
ρ23; d) slice of optimized materiality map through epipolar plane 144: white points refer
to high materiality values; d) total energy (Eglobal) derivative according to local materiality
for epipolar plane 144 with red, blue, and black points expressing respectively negative,
positive, and zero values.
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δ = 0

δ = 1

δ = 2

δ = −1

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

t ≡ (m, δ)

t connection according couple of image

I0 I1=iref I2 I3

Ray associated with a pixel

Pixel

Visible target point

zone seen by reference image

(0,1) (1,2)(2,3)of image

Fig. 3.17 Problem of scanline optimization in multi-stereovision. The figure is dedicated to
RECOVER3D project (four cameras for each multiscopic unit) and illustrated with different
possibilities to choose neighbors for a target point.

the target pointt. Whereas in the backward step, the lowest cost path is extracted from the

target points on the right side of DS and yields the target points of the reconstructed surface.

In the RECOVER3D project, we worked with multiscopic units composed of four cam-

eras as we mentioned in section 1.3.1. Therefore, the method proposed here is customized

for four input images. One of the major challenges to implement this method is represented

by the following question: "which neighbors should be considered for each target point in

the forward step?". Figure 3.17 shows all considered neighbors for a target pointt according

to the chosen reference image, taking into account the two following facts:

• Sweeping the disparity plane fromδm to δM allows to introduce, in the forward step,

a neighbort′ = (mt ,δ +1)t for a target pointt = (mt ,δ )t . Exploiting this sweeping

mechanism provides the possibility to build optimal pathsPatht containing two target

points located on the same image ray and, thus reconstructing occluded surfaces.

• Favoring small disparity steps to smooth the final results , that is to say each target

point t = (m,δ )t seeks the best path from three neighbors located at disparitiesδ −1,

δ andδ +1.

We mention that selecting theI0,I2, or I3 images as reference does not allow to access to

the direct neighbors of the target pointt. Direct neighbors fort do not generate holes in the

reconstructed surface caused by ignoring target points located betweent and its neighbors

(see figure 3.17 ). However, usingI1 as reference,t can be connected to its direct neighbors

as illustrated in figure 3.17. For this reason, the imageI1 is considered as reference in
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our approach. The neighbors for target pointt can be identified by{t +dir : dir ∈ {(1−

ire f ,0,1)t ,(−1,0,0)t ,(ire f −2,0,−1)t with: ire f = 0}} knowing that we chooseire f = 0 for

building the scene space sampling as described in section 3.3.

3.10.1.1 Cost function

As we mentioned previously, our proposition is composed of two main steps: forward

and backward. In the forward step, the optimal path costPC(Path) for epipolar planev

is built by sweeping from leftray1(t0) to right ray1(tmax) of reference imageI1 and from

nearest to farthest disparity planes.

Thus, we start from{t0 = (u0,v,δ )t : u0 = (1− ire f)δ with: ire f = 0} and end with

{tmax= (umax,v,δ )t : umax= nc+(1− ire f)δ with: ire f = 0 andnc= image width} to be

certain to treat all target points of this epipolar plane. The path costPC(Patht) for any path

of connected points is recursively defined in equation 3.46. The algorithm minimizes the

global cost of pathPC(Path), which is the sum of non materiality penaltiesMC(t i) for each

constituting target pointt i and the connection costsCC(t i ,dir i) between successive target

point t i andt i−1 = t i +dir i. The connection cost between two target points depends on the

similarity scores over set of images pairsCdir (see equation 3.49 ). When a target pointt has

the same costCC derived from its neighbors, the target point which has the best similarity

score is considered within the shortest path passing throught. The set of image pairsCdir

implied inCC computation is identified depending on the neighboring directiondir in order

to include every image couple for which a target point and itsdir neighbor would not be

occluded by a local surface passing through them. For connection between target points at

same disparityt = (m,δ )t andt′ = (m′,δ ′)t with δ = δ ′, the local surface is locally frontal

and the two target points are supposed to be seen in each image (see figure 3.17). Whereas,

if δ > δ ′ (t nearer thant′), the couple of target points is seen by left most pair of cameras

(only the pair of images(0,1)). On the other side, whenδ < δ ′ (t farther thant′), the target

point couple is viewed by right most pair of cameras (the pair(2,3)). This definition of per

neighbor set of relevant image pairsCdir permits to exploit the similarity information from

all images considering the occlusion geometry. We can then get the path cost as follows:

PC(Path) = ∑
t i∈Path

MC(t i)+ ∑
t i∈Path

CC(t i ,dir i) (3.46)

dir i ≡ t i−1− t i dir i ∈ Dir

Path= {t i(ui ,v,δi)| ui ∈ u0, ....,umax,δi ∈ δm, .....,δM}

MC(t) = 1−µ(t) (3.47)
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CC(t,dir ) = ∑
(i, j)∈Cdir

∣
∣ρi j (t+dir)−ρi j (t)

∣
∣

max(ρi j (t +dir),ρi j (t))
(3.48)

C(1−ire f ,0,1) = {(2,3)} C(−1,0,0) = {(0,1),(1,2),(2,3)} C(ire f−2,0,−1) = {(0,1)} (3.49)

The algorithm proceeds recursively and stores the best pathPatht leading to each target

point t from the first rayray1(t0) of imagesI1. To do this, the algorithm identifies and

stores among evaluated neighbors the chosen left pointPrec(t) that minimizes the cost of

the optimal path tot. This can be done minimizingPC(Patht+dir)+CC(t,dir) as described

in following equations:

∀δ t0 = (u0,v,δ ) Prec(t0) = (−1,−1,−1)t PC(Patht0) = MC(t0)

Prec(t) = t+argmindirPC(Patht+dir)+CC(t,dir)

PC(Patht) = PC
(
PathPrec(t)

)
+CC(Prec(t,dir)+MC(t)

The final decision is the minimum cost path within right ray of image 1ray1(tmax):

Pathtr , with tr = argmint∈ray1(tmax)PC(Patht). This optimal path can be retrieved backwards

from tr according to successive chosen left pointsPrec(t) up to the first point encountered

on left ray of image 1ray1(t0).

3.10.2 Graph cut for materiality map binarization

In spite of the efficient proposition of adaptive scanline optimization for multi-baseline

stereovision, the binary disparity map still suffers from stroke lines due to independent

handling of adjacent epipolar planes. In this section, we propose to use another approach

to binarize the materiality map. Our main idea is to segment our materiality map into two

classes thanks to a graph cut algorithm. The first class consists of the target points located

on or behind the reconstructed surface, whereas the second represents the target points in

front of the reconstructed surface. Our idea is inspired from one of the most famous use

of "graph cut" for image segmentation [8]. In chapter 2, we explained different methods

using graph cut as the matching method to solve the stereovision matching problem. Here,

our proposition differs from those since the graph cut works as the segmentation method.

Therefore, we start by building a weighted graphG= (E,N) that is composed of edgesE

and nodesN as illustrated in figure 3.18. The nodes are the target points in addition to two

other nodes (source and sink dedicated respectively to class 1 and 2) like the traditional

graph cut method. Indeed, we can classify the edgesE within the graphG into four majors

groupsEsink, Esource, Es, andEδ :

• Esink between each node and the sink node;
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• Esourcebetween each node (except the nodes representing the non visible target points

that are considered out of reconstructed zones and connected only to the sink node)

and the source node;

• Es between each node and its four neighbors in the same disparity plane;

• Eδ between each target point(u,v,δ ) and its neighbors located at disparityδ − 1 ,

δ + 1 according to rays emitted from the second image. The second image choice

will be explained in detail later in this section.

Thanks to the rich information available in each target point, we can write the edge capacity

between each node and the source and sink nodes taking into account the following facts:

• The nodes representing the target points located in front of the surface should have

low materiality and high visibility scores on at least one image.

• The nodes representing the target points on the surface should have high visibility

scores (at least on one image) and high materiality scores.

• The nodes representing the target point behind the surface should have low visibility

scores.

Equation 3.50 expresses the previous facts into capacity scores(CEsink,CEsource) for the con-

nection edges between each target pointt and sink or source nodes respectively as follows:

CEsink(t) = (1−µ[t])maxi∈[0,n[Vi(t).

CEsource(t) = (1−maxi∈[0,n[Vi(t))µ[t] maxi∈[0,n[Vi(t).

= 1− (1−µ[t])maxi∈[0,n[Vi(t)).

= 1−CEsink(t).

(3.50)

Moreover, the edge capacityCEs between a node and one of its four neighbors in the

same disparity plane helps to maintain the connection between the target points that have

the similar materiality values. The edge capacityCEs is described as follows:

CEs(t, t
′) = β

(
1−|µ[t]−µ[t′]|

)

β : smoothing factor.
(3.51)

Finally, theEδ edges are connections between each node and its neighbors in adjacent dis-

paritiesδ −1 andδ +1. The main idea for computing their capacity is to keep high capacity

for edges except those between, the nodes belonging to the reconstructed surface and direct

neighbors of these nodes that are located in front of surface (at higher disparity).

In fact, our materiality map contains{2n : n is number of image}connections for each tar-

get point with other target points that are located in disparitiesδ −1 andδ +1. Since we
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Non visible target point
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v

Eδ
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t

disparity plane

δmin δmax

Visible target point Es (between different epipolar planes)

Fig. 3.18 Graph with two terminal nodes for materiality map binarization

can not implement all the connections introduced for a target point according to all images

within the graphG, we choose one of the images as the reference. Between four available

images, the second or third image could be chosen as reference since they provide the best

description of the reconstructed scene and avoids the occluded zones. In our application,

we choose the second image and the edge capacity is computed from opposite of visibility

difference in imagei behind each neighbor as follows:

CEδ (t) = 1− (Vi=1(t) − Vi=1(t) (1−µ[t])) = 1−µ[t] Vi=1(t) (3.52)

After building the graphG and assigning relevant capacities to the edgesE, thes−t min-

cut method introduced by Ford and Fulkerson [22] is applied in order to find the optimum

classification as described in section 2.2.2.4. In our application, we implement the method

of Ford and Fulkerson [22] by using GridCut library1.

1http://www.gridcut.com/
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3.11 Experimental results
To study the properties of our multi-baseline stereovision method, we ran our program

over a set of three image sequences created by Middlebury College (Cones, Teddy) and

University of Tsukuba (Tsukuba) [61]. Figures 3.19, 3.20, and 3.21 show disparity maps de-

rived from existing methods (TreeDP[77], MultiResGC[53], DoubleBP[81], GC+occ [38],

AdaptAggrDP[80]) and those obtained from our materiality map results using adaptive scan-

line optimization and graph cut for materiality map binarization. The different comparison

methods are chosen according to two features: i) The methods have good scores of eval-

uation in web site of Middlebury University to stereovision [61], ii) they contain most of

widely known optimization processes for stereovision (bilateral filtering and dynamic pro-

gramming: AdaptAggrDP[80], Dynamic programming: TreeDP[77], Belief propagation:

DoubleBP[81], and Graph cut: GC+occ [38], MultiResGC[53]).

Figures 3.22, 3.23, and 3.24 show colored target point clouds derived from our materiality

map results. These target points are extracted from binarized materiality maps using adap-

tive scanline optimization or graph cut using four images of Tsukuba, Cones, and Teddy

datasets.

Our method fails to recover textureless regions as illustrated in Figures 3.21 and 3.23 using

the Teddy dataset. However, our method is able to reconstruct the repeated texture which

are one of the major problems in traditional stereovision, as illustrated in Figures 3.20 and

3.22 using the Cones dataset.

We intended to perform an online evaluation to compare ourselves with TreeDP[77], MultiResGC[53],

DoubleBP[81], GC+occ [38], and AdaptAggrDP[80]. However, the new version (3) of avail-

able datasets in the web site of Middlebury University to stereovision [61] provides only

two images in simplified epipolar geometry for each scene. For this reason, we compare

and evaluate off-line our results with the second data set version using Root-Mean-Squared

(RMS) and Percentage of Bad Matching (PBM) measures proposed by [60] and described in

section 3.4.5. RMS expresses the mean square between produced disparity map and ground

truth, whereas PBM produces the percentage of mismatching pixels between the two dispar-

ity maps.

The results show (see table 3.5) that our method with graph cut segmentation (MatGC) pro-

vides better results over the Tsukuba and Teddy datasets than the method with adaptive

scanline optimization (MatAS). However, MatGC and MatAS produce equivalent results

for the Cones dataset. The adaptive scanline optimization proposed in section 3.10.1 to find

independently the optimal path for each epipolar plane fails to deal with the scenes contain-

ing objects with soft edges (e.g. the background cupboard in Tsukuba scene) which require

a smoothing operation. Whereas the adaptive scanline optimization handles efficiently ob-
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Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM

TreeDP [77] 18.8413 0.2301 14.0155 0.4226 18.0412 0.4580
MultiResGC [53] 11.6705 0.1580 4.5579 0.3828 7.9205 0.3893
DoubleBP [81] 12.3372 0.1902 3.6295 0.4037 8.1742 0.3724
GC+occ [38] 13.3261 0.0711 13.2708 0.4412 16.1577 0.3846
AdaptAggrDP[80] 15.1570 0.2547 7.7827 0.4144 9.3184 0.4152
MatGC* 15.4442 0.1253 6.9411 1.026 6.9290 0.3247
MatAS** 19.8674 0.1629 8.2013 0.4327 5.7821 0.3211

(*) MatGC: our method using graph cut
(**) MatAS: our method with adaptive scanline optimization

Table 3.4 RMS error and PBM measures over entire disparities maps for different methods.

Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM

TreeDP [77] 1.614 3.236 3.861 1.103 3.120 1.426
MultiResGC [53] 1 2.222 1.255 1 1.369 1.212
DoubleBP [81] 1.057 2.675 1 1.054 1.413 1.159
GC+occ [38] 1.141 1 3.656 1.152 2.794 1.197
AdaptAggrDP[80] 1.298 3.582 2.144 1.082 1.611 1.293
MatGC 1.323 1.704 1.912 1.043 1.033 1.011
MatAS 1.702 2.291 2.259 1.130 1 1

(*) MatGC: our method using graph cut
(**) MatAS: our method with adaptive scanline optimization

Table 3.5 Normalized measures computed from table 3.4 for each datasets each measure is
divided by the minimum one for the dataset.

jects including sharp edges (e.g. the cones in Cones image). Table 3.5 shows the results

of the measures (RMS) and (PBM) using four images of the Tsukuba, Teddy, and Cones

datasets. The graphs 3.25 and 3.26 show that our method is competitive with others espe-

cially for the Cones dataset where there are no textureless regions. Moreover, one of our

main goals is to deal with semi-occluded regions. Therefore we focused our evaluation on

occluded regions (see the figure 3.29) for three datasets Tsukuba, Teddy, and Cones. The

graphs 3.27 and 3.28 show that our methods robustly deal with the occluded regions over

the three data sets. As mentioned in this section, our method still not handles some known

problems in stereovision like the textureless zones. Therefore, in chapter 4, we propose a

novel framework to merge the approach described in this chapter with visual hull using the

efficiency of our definition of scene geometry and the attributes of each target point (e.g.

confidence).
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(a) TreeDP [77]. (b) MultiResGC [53]. (c) DoubleBP [81].

(d) GC+occ [38]. (e) AdaptAggrDP [80]. (f) Our method MatGC.

(g) Our method MatAS. (h) Ground truth. (i) Tsukuba image.

Fig. 3.19 Results (expressed as disparity maps) of several methods: a) [77], b) [53], c) [81],
d) [38], e) [80]. f, g) Disparity maps extracted from our binarized materiality map using
respectively graph cut and adaptive scanline optimization. h,i) Ground truth for disparity
map and original image of Tsukuba dataset, source: [61].

Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM

TreeDP[77] 67.8856 0.4703 49.4163 0.9932 55.4218 0.8451
MultiResGC[53] 33.1759 0.3246 14.9494 0.6397 19.4809 0.7700
DoubleBP[81] 36.6243 0.3542 11.4229 0.6042 25.8780 0.7656
GC+occ [38] 53.9264 0.4513 51.9460 0.7606 45.3130 0.8600
AdaptAggrDP[80] 61.1417 0.9247 30.2555 0.9478 23.8277 0.9438
MatGC 23.8020 0.3636 14.2685 0.5578 11.8073 0.5665
MatAS 60.4967 0.6098 24.1590 0.6613 11.8886 0.5673

(*) MatGC: our method using graph cut
(**) MatAS: our method with adaptive scanline optimization

Table 3.6 RMS error and PBM measures over occluded regions for different methods
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(a) TreeDP [77]. (b) MultiResGC [53]. (c) DoubleBP [81].

(d) GC+occ [38]. (e) AdaptAggrDP [80]. (f) Our method MatGC.

(g) Our method MatAS. (h) Ground truth. (i) Cones image.

Fig. 3.20 Results (expressed as disparity maps) of several methods: a) [77], b) [53], c) [81],
d) [38], e) [80], source: [61]. f, g) Disparity maps extracted from our binarized materiality
map using respectively graph cut and adaptive scanline optimization. h) Ground truth for
disparity map. h) Original image with highlights on regions with repeated textures drawn in
red for Cones dataset.
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(a) TreeDP [77]. (b) MultiResGC [53]. (c) DoubleBP [81].

(d) GC+occ [38]. (e) AdaptAggrDP [80]. (f) Our method MatGC.

(g) Our method MatAS. (h) Ground truth. (i) Teddy image.

Fig. 3.21 Results (expressed as disparity maps) of several methods: a) [77], b) [53], c) [81],
d) [38], e) [80], source: [61]. f, g) Disparity maps extracted from our binarized materiality
map using respectively graph cut and adaptive scanline optimization. h) Ground truth for
disparity map. h) Original image with highlights on textureless region drawn in yellow for
Teddy dataset.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.22 Materiality map results: Three different views for target points extracted from
adaptive scanline optimization (first row) and segmentation by graph cut (second row) using
four images of Cones dataset.

(a) (b) (c)

(d) (e) (f)

Fig. 3.23 Materiality map results: Three different views for target points extracted from
adaptive scanline optimization (first row) and segmentation by graph cut (second row) using
four images of Teddy dataset.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.24 Materiality map results: Three different views for target points extracted from
adaptive scanline optimization (first row) and segmentation by graph cut (second row) using
four images of Tsukuba dataset.
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Fig. 3.25 Normalized RMS results derived from table 3.5.
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Fig. 3.26 Normalized PBM results derived from table 3.5.

Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM

TreeDP[77] 2,852 1,448 4,326 1,780 4,693 1,491
MultiResGC[53] 1,393 1 1,308 1,146 1,649 1,359
DoubleBP[81] 1,538 1,091 1 1,083 2,191 1,351
GC+occ [38] 2,265 1,390 4,547 1,363 3,837 1,518
AdaptAggrDP[80] 2,568 2,848 2,648 1,699 2,018 1,666
MatGC 1 1,120 1,249 1 1 1
MatAS 2,541 1,878 2,114 1,185 1,006 1,001

(*) MatGC: our method using graph cut
(**) MatAS: our method with adaptive scanline optimization

Table 3.7 Normalized measures computed from table 3.6 for each dataset: each measure is
divided by the minimum one for the dataset.
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Fig. 3.27 Normalized RMS results derived from table 3.7.
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Fig. 3.28 Normalized PBM results derived from table 3.7.
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(a) (b) (c)

Fig. 3.29 a, b, c) Non-occluded regions (white) and occluded and border regions (black) for
Tsukuba, Teddy and Cones datasets.

3.12 Conclusion
This chapter proposes several new ideas to solve some of multi-baseline stereovision

limitations. Using the disparity space as our sampling scheme for scene space domain, we

focus on the useful 3D reconstruction space while strictly avoiding any semi-occlusion and

simplifying handling of total occlusions. The proposed materiality map framework proves

efficient at reconstructing the scene by integrating visibility reasoning. We can summarize

the main framework concept as follows.

Visibility: the materiality map laid on Disparity Space (DS) delivers a direct and efficient

support for visibility reasoning with the function proposed by [39] and used in [74, 51]. This

function is in fact conveniently defined in the framework as the product of non-materialities

of all potentially occluding samples. The visibility function results may be laid as visibility

maps on DS and computed efficiently from near to far. DS ensures that each 3D sample

point (target point) precisely lies on a genuine pixel ray in each image of the multiscopic

unit for which it is inside the frustum. It thus intrinsically describes semi-occlusions (is

mi in camerai frustum?) and also totally avoids complex treatment of inter-sample partial

occlusions because such occlusions often occurring in other scene-based methods do not in

DS.

Similarity and confidence: the materiality and visibilities of target points are evaluated for

input data according to pre-computed similarity scores of neighborhoods of their projections

in some pairs of images. This similarity computation is rather classical but encompasses (i)

confidence computation typically based on variances of the neighborhoods and (ii) a nor-

malizing step of similarities along pixel rays that yields final similarity scores in the range

[0,1].

Optimization and binarization: the materiality map is shaped by an optimization pro-

cess minimizing a dedicated energy penalizing any deviation from intended map properties

(such as density, thickness) and inconsistencies between materialities, visibilities, and sim-

ilarities. More precisely, for each sample, and each pair of images, a cost, weighted by
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the relevant confidence score, penalizes any deviation from following assumptions: a good

normalized similarity of a target point for a given couple of views should be explained by

high materiality and visibilities on both images, whereas poor similarity should induce low

materiality or an occlusion (low visibility). After the materiality map has been optimized,

a binarization process delivers the final result, a binary materiality map standing as a volu-

metric direct model of the intended solution, whereas image-based methods usually deliver

disparity/depth maps that have to be processed to yield the reconstructed scene.

The results show (see section 3.11) that our proposition deals efficiently with repeated tex-

tures and occluded regions as compared to other methods over several datasets. However,

our approach does not handle textureless regions as shown in figure 3.21. We propose thus

to enhance our proposition here using the information derived from the silhouette based

reconstruction as we will describe in details in the chapter 4.
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3.13 Résumé : Stéréovision multi-oculaire en géométrie

parallèle décentrée

Ce chapitre présente une formulation originale de la multi-stéréovision, spécifiquement

construite pour le contexte multi-oculaire en géométrie parallèle décentrée, qui induit une

géométrie multi-épipolaire simplifiée et régulière. Son objectif est de résoudre globalement

le problème de reconstruction 3D à partir des n vues disponibles en explicitant précisément

les redondances d’informations entre ces images afin d’en tirer avantage. Cette redondance

induite par la capture multi-oculaire est précieuse pour la robustesse de la reconstruction

mais elle implique aussi des combinatoires de recherche plus importantes qu’en stéréovi-

sion binoculaire. Pour résoudre ce problème, une approche naturelle, basée image, consiste

à calculer simultanément les n cartes de disparités (entières dans notre cas), tout en re-

spectant certaines contraintes afin d’assurer la cohérence de la géométrie de la scène ainsi

reconstruite. Cette approche peut aussi être vue comme une recherche de fonction de vis-

ibilité sur l’ensemble fini des points 3D de la scène atteignables depuis les pixels par la

reconstruction en disparités entières que nous nommerons « points cibles ». Toutefois, cette

même formalisation des points cibles peut être exploitée dans une approche globale basée

scène, plus élégante, que nous proposons. Elle consiste à construire une carte discrète 3D

de « matérialité » sur cet ensemble de points. La notion de matérialité proposée exprime

un degré de croyance sur l’existence du point cible dans la scène en tant que source lu-

mineuse ponctuelle (le plus souvent indirecte) captée par au moins l’une des caméras. Cette

carte de matérialité contient naturellement toutes les informations de redondance (multi-

projection d’un point matériel) et d’occultation (points matériels alignés sur un rayon de

projection sur un pixel). Nous présentons en détails dans la première partie de ce chapitre

l’échantillonnage de l’espace de la scène basée sur l’espace de disparité et de ses points

cibles. Ensuite, nous introduisons et expliquons les attributs associés à chaque point cible :

la similarité, la confiance, la visibilité et la matérialité. La similarité consiste à évaluer

la ressemblance colorimétrique entre les pixels à apparier. Nous proposons trois formules

pour le calcul de celle-ci. La première utilise une fenêtre de voisinages non adaptative, la

deuxième une fenêtre séparée et la dernière une fenêtre pondérée. À la fin de cette section,

après avoir évalué ces trois formulations, nous sélectionnons la deuxième proposition pour

calculer l’attribut de similarité de nos points cibles dans notre framework.

Par la suite, un processus d’optimisation, basée sur la descente de gradient, est appliqué

sur la carte de matérialité. La dernière étape de la méthode est l’extraction de la surface

reconstruite à partir de l’espace de la scène. Pour étudier les propriétés de notre méth-

ode de stéréovision multi-oculaire, nous avons appliqué notre méthode sur un ensemble de
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trois séquences d’images créée par Middlebury College (Cones,Teddy) et l’Université de

Tsukuba (Tsukuba) [61]. En comparant nos résultats avec ceux obtenus par d’autres méth-

odes (TreeDP[77], MultiResGC[53], DoubleBP[81], GC+occ [38], AdaptAggrDP[80]), nous

constatons que notre approche traite efficacement les problèmes issus de l’occultation entre

les objets et ceux liés à la présence de textures répétitives. Cependant, nous constastons

aussi que notre approche ne gère pas les régions sans texture comme le montre la figure

3.21. Par conséquent, nous proposons d’améliorer la méthode exposée dans ce chapitre

en utilisant les informations dŕivant de la reconstruction basée silhouette que nous allons

décrire en détail dans le chapitre 4.



Chapter 4

Fusion of silhouette and multi-baseline

stereovision for 3D object modeling

In the previous chapter, we presented our 3D reconstruction framework from multi-

ple cameras in equidistant multi-baseline layout. However, the RECOVER3D project (de-

scribed in chapter 3) is based on the exploitation of two 3D reconstruction approaches:

multi-baseline stereovision and silhouette-based reconstruction. In this chapter, we explain

our proposed framework for 3D reconstruction from monoscopic and multiscopic units de-

scribed in chapter 1 using both approaches. In section 4.1, we introduce the different steps

of the proposed method and the 3D reconstruction pipeline. Our multi-baseline stereovision

method proposed in chapter 3 works in disparity space laid in front of a multiscopic unit

whereas the result of silhouette-based reconstruction is a visual hull expressed in a regular

3D grid set in scene reference frame. However, the results of the two approaches should be

expressed in the same coordinate frame in order to merge them. Therefore, in section 4.2,

we introduce the geometrical transformations between disparity space and 3D grid index

domain. In section 4.3, we explain the benefits of using the information derived from the

visual hull within our proposed multi-baseline stereovision method. In order to merge all

the results produced on each multiscopic unit by this multi-baseline stereovision process

guided by visual hull, we propose a volumetric approach. The input data to this approach

are carved volumes that are presented in section 4.4. We propose in section 4.5 a novel way

to merge the carved volumes in order to obtain a single 3D model representing the 3D pose

of the reconstructed object(s). Finally, we show the results of 3D reconstruction for virtual

and real data sets using our proposal.
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4.1 Introduction
In this chapter, we propose a novel framework for multi-view 3D reconstruction relying

on both multi-baseline stereovision and visual hull introduced in section 2.2.4.2 in order to

produce 3D object models with high precision. This method inputs are a visual hull (VH)

and several sets of views derived from multiscopic units. For each such set of views, a

multi-baseline stereovision method guided by VH yields a surface that is then used to carve

the VH. Multiple carved VH from different sets of views are then iteratively fused to deliver

the intended 3D model.

In chapter 2, we presented bibliographical study of different methods merging the stereovi-

sion and silhouette-based approaches. We classified them into three major classes: i) stere-

ovision guided by VH methods, ii) collaborative methods applying simultaneously criteria

borrowed from both techniques, iii) separate application of both methods with subsequent

merging of their results.

The proposed framework in this chapter is summarized in figure 4.1 and borrows ideas from

classes (i) and (iii). After VH computation, as in class (i), the VH guides each multi-baseline

stereovision process. Then VH carving from stereovision is performed for each multiscopic

unit similarily to class (iii) but relies on our multi-baseline stereovision result. Finally, mul-

tiple (one per multiscopic unit) VH/multi-stereovision results are merged in a single global

3D model.

Beyond its cross classification, our framework is innovative among each class as follows.

For each multiscopic unit, a global scene-based multi-baseline stereovision process is run

in DS which totally avoids partial occlusions and yields a robust stereovision result replac-

ing more local and noisy photo-consistency usually used in class (i) carving. However, the

proposed class (i) VH guidance is dedicated to our multi-baseline stereovision framework

proposed in the chapter 3, which it enhances in terms of domain size, outliers avoidance

and, more innovatively, robustness in multi-stereovision similarity. The class (iii) VH carv-

ing from stereovision relies on voxel classification usually based, for voxels occluding the

stereovision solution (group 2 in [65]), on rays from surface to reference image. Replacing

this image-based classification by a volumic one in disparity space brings more precision

and robustness to our solution. Furthermore, merging at the final stage multiple carved VH

involves to smartly handle reconstruction inconsistencies from separate multiscopic units,

which may conveniently correct some residual stereovision mismatches.

4.1.1 Contributions

The contributions of this chapter are threefold: (i) improvement of our multi-baseline

stereovision method (see chapter 3) thanks to visual hull guidance, (ii) carving of visual hull
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Fig. 4.1 Proposed 3D reconstruction pipeline. Red blocks involve more specific contribu-
tions of the chapter

from an interpolated and smooth stereovision surface and (iii) merging differently carved

volumes in a suitable way in areas where they differ. This chapter shows that the proposed

approach helps recovering a high quality carved volume ( a 3D representation of objects

such as humans) even for small details and in concave areas subjected to occlusion.

4.2 VH-DS geometrical mapping
Hybridizing VH and multi-baseline stereovision involves mapping results of both meth-

ods in a same coordinate frame. Natively, VH is expressed in a regular grid in the scene

frame (attached to the capture studio), whereas multi-stereovision results are given in local

DS irregular in actual 3D space as their samples are not evenly spaced on fan-spread pixel

rays. The goal of this section is thus to produce, for any multiscopic unit, the mathematical

relationships between three different coordinate systems in scene space: voxel grid index

g= (w,h,d)t in VH, cartesian spatial coordinatesMc = (xc,yc,zc)
t in the frame of the recti-

fied reference camera{ire f = 0}, and indext = (u,v,δ )t in DS. This is described in Figure

4.2 in a five steps transformation from VH index to DS index. It involves using:

• the VH grid parameters (origin, size and orientation in scene frame as well as cell size

or resolution) chosen at the VH extraction step.

This grid is spatially situated in scene space using, for instance, its reference corner

positionOs= (Xv,Yv,Zv)
t , volume size(W,H,D) or volume edges {W,H, D} and res-

olution (rx, ry, rz). A 3D point’s coordinates in scene frameM and associated volume

indexg are related by (4.1) using the transformation matrixG as illustrated with step
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1 in figure 4.2 considering that the scene and volume frame havethe same orientation

parameters:

(

Ms

1

)

∼ G

(

g

1

)
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rz

Ov

0 0 0 1

)

(4.1)

• calibration results for rectified cameras of the chosen multiscopic unit.

More precisely, we use the extrinsic (we call hereE) and intrinsicK matrices of the

rectified reference camera{ire f = 0} (see steps 2,3,4 in figure 4.2). These matrices

are described in detail in sections 2.1.1.1 and 2.1.1.2. We re-write these matrices and

the geometrical relationship between 3D point’s coordinates in camera frameMc and

its projection into image planem as:
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(4.3)

Using Equations 4.3 and 4.1, the relation betweenMc andg can be written as:

(
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)

∼ E−1G
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(4.4)

Moreover, the relation between the projectionm andg is written using the Equations

4.3and 4.4 as: (

m

1

)

∼ K
(

I3 0
)

E−1G

(
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1

)

(4.5)

• conversion of local depthZ from reference camera{ire f : with re f = 0} to disparity

δ such thatZ(δ + δ̄ ) = f b⇔ Zδ =−Zδ̄ + f b described in section 2.1.2.2.2.

The DS indext is thus obtained from equations 4.2, 4.3, and 4.4 by adding a conve-

nient row (the red row in Equation 4.7) inK
(

I3 0
)

which addsδ , computed from

equation 2.28, to its usualt = (mt = (u,v),1)t output. We call this new matrixK ′ (see

step 5 in figure 4.2). Therefore, the equation 4.4 withK′ yields the intended equations

and matricesDSfV andVfDS transforming respectively coordinates from VH to DS
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Fig. 4.2 Transformation from VH coordinates to DS coordinates: a five steps mapping.

in equation 4.6 and vice versa in equation 4.7.
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)

with VfDS ≡ DSfV−1 (4.7)

4.3 Multi-baseline stereovision guidance by VH

Let us recall that our previous multi-baseline stereovision framework proposed in chap-

ter 2 was developed without any VH usage. This section exposes how VH guidance is added

to enhance its performances (see figure 4.3).
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4.3.1 Core principle
The core classical idea behind the VH guidance is the fact that the reconstruction solu-

tion is necessarily included in the visual hull as any point out of VH was labelled as such

because it was projected outside at least one silhouette. Handling this crucial information in-

volves mapping VH and target point spaces using equations 4.6 and 4.7. Furthermore, these

equations are likely to deliver homogeneous real coordinates in destination space which is

populated on a bounded discrete 3D grid. Evaluating a map defined in one space for a sam-

ple of the other space is thus achieved for the intended sample via tri-linear interpolation at

the resulting coordinates in map space. In order to keep notations simple we introduce three

different bracketing schemes dedicated to direct 3D integer indexing, tri-linear interpola-

tion and cross-space evaluation: angular bracketing〈 〉) expresses tri-linear interpolation at

3D real coordinates obtained using application of functionU (see equation 4.10) on results

of equation 4.6 or 4.7; round bracketing( ) is reserved for cross-space evaluation in the

destination map; whereas direct map sample evaluation uses usual square bracketing[ ]:

VH(t) ≡ VH

〈

U

(

VfDS×

(

t

1

))〉

(4.8)

DS(g)≡ DS

〈

U

(

DSfV×

(

g

1

))〉

(4.9)

U

((

v

a

))

= v/a (4.10)

4.3.2 Bounding DS domain
The multi-baseline stereovision framework proposed in chapter 2 works on a 3D grid

laid on disparity space DS and indexed byt = (u,v,δ )t . As such, this grid has to be bounded

as close as possible to useful areas where the solution is expected to lie. Without any such

prior information, which is usual in "pure" multi-view stereovision (i.e. without VH), some

lateral limits are easily set inu andv according to image frustums, but the disparity bounding

is more of an issue as disparities could theoretically be spread over a wide range. In most

methods, no information is available about the disparity limits and the disparity range is

usually required as an input parameter providing the missing DS boundaries.

As stated above, VH is defined in a bounded 3D grid and may be seen as a superset

of the actual solution. This information is crucial as it situates the solution (DS where a

scene can be reconstructed) in a finite and closed area of scene space usually close to the

actual solution. As such, this information yields opportunities to automize and optimize DS

bounding.
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Minimal and maximal DS coordinates of projections of the eight cornersgi of the VH

grid, or even better, of the axis aligned bounding box (usually abbreviated AABB) of the

VH solution yields a AABB in DS domain in which the solution is necessarily included.

This AABB is identified by its min and max indicestm, tM in DS as follows:

tm = f loor




 min

i=0,...,7
t i ≡






miniui

minivi

miniδi











tM = ceil




 max

i=0,...,7
t i ≡






maxiui

maxivi

maxiδi

















with t i =






ui

vi

1




= U

(

DSfV×

(

gi

1

))

(4.11)

This step indeed automatizes the DS bounding as no user input is required to set disparity

limits. Furthermore, it even optimizes in lateral dimensions as the VH bounding box may

appear thinner than the available views. Nevertheless, this first AABB is further optimized

according to VH information. A sweeping process is run on each of its six faces, moving

them inwards as long as they contain only target points whose interpolation in VH are con-

sideredout. This supposes (i) that the VH is defined on the grid as a numerical mapVH

with numerical values monotonically (let us suppose increasingly) associated toin,sur f,out

semantic labels and (ii) that some interpolation thresholdoutt is set. A target point indexed

by t is thus considered out of the VH according to its interpolation inVH using the function

Out(t) defined as thresholding of cross-space evaluation inVH map as follows:

Out(t)≡ VH(t )≥ outt (4.12)

This double process reduces to optimal AABB the DS domain on which the different

maps are laid (allocated), which thus optimizes memory and computational efficiency.

4.3.3 Filtering target points according to VH
The previous VH guidance for DS bounding has an actual but rather low impact on recon-

struction quality as it eliminates some potential outliers outside the final AABB. Moreover,

many more outliers are to be avoided if we remember that the target points have to lie inside

VH volume.

A simple preprocessing step labels every target point in the optimized AABB as un-

doubtedly outside or possibly inside the solution according to its VH interpolationOut(t)

(equation 4.12). Target points labelled as outside (see figure 4.4 and details (1) in figure 4.4)

will neither be given similarity scores, nor be considered for matching in the multi-baseline

stereovision process. They will only be used as definitely non material points (µ[t] = 0)
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Fig. 4.3 Guidance by VH of materiality map method: framework pipeline.

for visibility reasoning purposes. These target points labelling enhances computational effi-

ciency. Moreover, it restricts the solution domain and avoids evaluation of potential outliers

lying in AABB but outside VH, which directly impacts reconstruction quality as illustrated

in figure 4.11.

4.3.4 Enhancing similarity quality

In section 3.4, we presented different methods to compute the similarity scores for each

target point describing the benefits of each of those methods: "non adaptive flat windows",

"separate windows", and "weighted windows". However, the similarity computation for a

target point can be enhanced using target point labelling: as this computation implies local

constant disparity assumption, it is reasonable to exclude neighboring target points in the



4.4 Carving VH from stereovision 123

C0 C3C1 C2

fb z

πδ=k

Pixel

3D target point

Disparity space (DS){ }
Optical center Ci

Camera frustum limits

Pixel ray

Plane in which rectified

pixels at unit distance
views have adjacent

Constant depth plane

3D point out clipping

3D target point

in initial VH

out initial VH

Initial VH slice

Slice

Scene space

Initial VH
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volume and its mapping in disparity space frame, the rhombuses with black and white color
refer to the target points"in" and"out" of visual hull respectively.

constant disparity plane which are labelled outside the VH. Such neighboring samples are

filtered out of the adaptative window before similarity computation. This ensures that neigh-

bors known as irrelevant do not hinder the similarity scores computation. Those similarity

scores are thus more relevant, enhancing the reconstruction quality and robustness.

4.4 Carving VH from stereovision

Our visual hull voxels are labelled asin, out, andsur f. However, multi-baseline stere-

ovision yields a surface composed of the 3D points valued 1 in the binary materiality map.

Each such point also has a final confidence score related to its confidence scores (illustrated

in section 3.5) associated to its similarities and possibly its comparison to other target points

on its pixel rays. Therefore, merging both models results in the intersection between the VH

and the complement of the space between the multiscopic unit and the reconstructed surface.

This corresponds to the subtraction or carving from VH of the space between multiscopic

unit and surface as illustrated in figure 4.5.
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4.4.1 Stereovision surface coding

Precise definition of the space"between"the reconstructed surface and the multiscopic

unit is not straightforward: this is a continuous space containing and interpolating, for every

view of the unit, every part of the ray going from the optical center to any solution point

which is not occluded in this view. Most of those rays are redundant across the different

views and we chose, for the sake of simplicity, to replace all these view dependent segments

by others, far less numerous and redundant, attached to the same solution points but coming

from a single center located at the middle of the multiscopic unit. A drawback of this

simplification may lie in a loss of solution points which could become occluded in this

virtual central view. However, as a solution point has to be seen in at least a couple of

successive views, this loss does not occur whenn < 5 because the occluding rays of a

solution point are limited to 0 ton− 2 extreme views. As such, the central ray cannot



4.4 Carving VH from stereovision 125

be flanked by two occluding rays (n= 4) or be itself occluding the solution point (n= 3).

This remark enforces our chosen compromise to haven= 4. As shown in section 3.3, we

choose the reference imageire f = 0 for coding efficiency. In this chapter, we decide to

build our surface representation according to a central and symmetrical sampling. This

domain is called Central Disparity Space, abbreviated as CDS, and indexed in reference

of the (virtual) central view (see figure 4.6). This central space is less biased in 3D space

than any other, and thus interpolation in CDS will be more relevant. According to the

multiscopic geometry (see chapter 2), this (virtual) central view corresponds to a camera

indexedic ≡ (n−1)/2. Hence, a target point of index(u,v,δ ) in DS would project in the

central view at(uic,vic) = (u+ (i0 − ic)δ ,v) (see equation 3.1). In order to keep integer

indices whenn is even (as for our choicen= 4), we multiply the horizontal coordinate in

CDS byγ = 2−n mod2. These remarks lead to new matrices managing the transformations

between coordinatest = (u,v,δ )t in DS andc= (c,v,δ )t in CDS and between VH and CDS:

(

c

1

)

=








γ γ(i0− ic)

1

1

1








︸ ︷︷ ︸

CfR

×

(

t

1

)

, γ = 2−n mod2 (4.13)

(

c

1

)

∼ CfR×DSfV
︸ ︷︷ ︸

CDSfV

×

(

g

1

)

,

(

g

1

)

∼ CDSfV−1
︸ ︷︷ ︸

VfCDS

×

(

c

1

)

(4.14)

In this CDS, we decide to represent the solution surface as a disparity mapDM tagged by

a confidence mapCM (see figure 4.6). This is achieved by assigning for each solution point

in DS, from far to near, at its CDSpixel coordinates(c,v), its disparityδ to DM (initialized

to −∞) and its associated final confidence score toCM. Whenn is even (which in the case

in RECOVER3D), gaps are induced between CDS neighbors by the horizontal stretching

in CDS. To fill those gaps, if two successive target points on a row of CS are both solution,

their middle point in CDS is assigned their common disparity inDM and mean confidence

in CM. As the solution in CS is computed in a way to ensure that its intersection with

any(u,δ ) plane is a continuous suite of adjacent target points that are of same or adjacent

disparities, no other gap may occur.

4.4.2 Carving VH from disparity map

Carving the VH according to the stereovision surface coded byDM and CM is de-

scribed in Algorithm 8 and illustrated by Figure 4.7. Carving VH from disparity mapDM
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aims at filling a carved volume defined as a mapCV laid over the VH grid and valued

in,sur f0..sur fq,out. The differentsur fi values refer to increasing quantified confidence lev-

els for surface voxels. The lowest confidence levelsur f0 is reserved forsur f voxels of VH

that are either occluded or out of frustum for the current solution. The other levels are as-

sociated with voxels identified assur f in the stereovision solution: the effective leveli is

quantified according to the interpolatedCM value of the voxel.

A key feature of this step for the latter fusion process is to yield a coherent topology

to our carved volumes:in andout sets are considered in 6-connexity whilesur f{0...q} is

considered in 27-connexity. With such topological evaluation, no direct 6-connexion should

occur betweenin andout voxels.
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Voxels in visual hull are looped over. Any voxel labelledout in VH is so labelled in

CV. Each voxelg = (w,h,d)t labelled in or sur f in VH is projected asc = (c,v,δ )t in

CDS. Its disparityδ is then compared to the disparity of the solution on the same central

ray δs = DM 〈(c,v)t〉.

In order to handle the grid sampling while responding to the previous intended topolog-

ical property, point comparison in CDS is related to actual axis aligned distance‖ ‖∞ in

VH. Hence the interpolated solution pointcs= (c,v,δs)
t is projected back in VH to measure

its distance to initial voxel‖g−VfCDS×cs‖∞. When this distance is no more than 1,g is

labelledsur f in the carved volume with a confidence level quantified from tri-linear inter-

polation resultCM < (c,v)t >. Otherwise, if the voxelg is in front the surface (δ > δs),

it is labelledout in CV. In the remaining cases, the voxel isa priori labelledin or sur f0
according to VH label but could be labelled{sur fi : i > 0} if it lies close enough of a steep

slope of the surface. In order to check this possibility, we evaluate if any of its 4 neighbors

in CDS c,v axes of same disparityδ , at unitary distance in VH, are to be consideredout

(with interpolated disparity lower thanδ ). This evaluation consists in measuring the dis-

tancelg in VH from the initial voxel to a neighborn0 at unitary distance in CDS and then

interpolating disparityδn in DM at a neighbornc in same direction but distancelg−1. If

δn < δ , this neighbor is consideredout and the initial voxel is re-labelledsur fi where the

confidence leveli is quantified from the disparity linear interpolation atδ of CM 〈nc〉 at δn

andCM 〈(c,v)t〉 at δs.

4.4.3 Improving surface smoothness
The result of the multi-stereovision method leads to a discontinuous surface divided into

frontal planar patches with constant and integer disparity (see first and fourth rows of fig-

ure 4.12 ). Removing this effect is required for the visual quality of the 3D model result and

for a more accurate management of reconstruction incoherencies between different multi-

scopic units. To deal with this problem coming from the restriction to integer disparities in

reconstruction process, we propose to represent the solution surface previously saved inDM

by a floating point derivated versionDM r . The mapDM r is computed to ensure continuous

transitions between adjacent horizontal segments of constant disparities with a disparity gap

of 1. ComputingDM r consists in looping over rowsv of DM that are thus scanned from

one end to the other to identify disparity steps between adjacent pixels of finite disparity.

When the disparity step is of magnitude 1(−1,+1), a contact point (black point in figure

4.8) is placed in CDS in the middle of the two pixels with the mean of their disparity values

as illustrated in figure 4.8, and serves as end point of both segments. When a disparity gap

is more than 1 (notably infinite) as well as for first and last pixels, a single end point is

generated on the relevant pixel at its (finite) disparity. This process yields two end points
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Algorithm 8: Carving VH by central disparity map
c≡ (c,v,δ ) N4= {(−1,0),(1,0),(0,−1),(0,1)}
foreach g in VH domaindo

if VH[ g] is in or sur f then
c = U(CDSfV× (gt ,1)t)
if (c,v) in DM domainthen

δs= DM 〈(c,v)t〉 gs = U(VfCDS× (c,v,δs,1)t)
if (‖gs−g‖∞)≤ 1 then

CV[g] = sur fQuant(CM〈(c,v)t〉)

else
if δs< δ then

CV[g] = out
else

if VH[ g] is in then
CV[g] = in

else
CV[g]=sur f0

foreachn∈ [0,4[ do
lg = ‖U(VfDS× ((ct ,1)+(N4[n],0,0))t)−g‖∞
nc = (c,v)t +N4[n]/lg
if nc in DM domain and(δn = DM 〈nc〉)< δ then

cn f = (CM 〈(c,v)t〉(δ −δn)+
CM 〈nc〉(δs−δ )) / (δs−δn)

CV[g] = sur fQuant(cn f)

else
if VH[ g] is in then

CV[g] = in
else

CV[g]=sur f0

else
CV[g] = out
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per segment expressed in CDS(c0,v,δ0) and(c1,v,δ1). When a right end point(c1,v,δ1)

is generated, the corresponding segment of initial constant disparityδ is filled in DM r by a

dedicated interpolation scheme between the end points

DM r [(c,v)
t ] = δ +(1− t)(2t −1)(δ −δ0)

+ t·(2t −1)(δ1−δ )
, t =

c−c0

c1−c0
. (4.15)

The interpolation function in equation 4.15 is ensured to pass through the central sample

(t=1
2) and both end pointst ∈ {0,1} (see figure 4.8 where the black double lined curve

expresses the interpolation function that yields the interpolated disparities inDM r ). When

δ0 and δ1 are both under or both aboveδ , or if one only of them equalsδ (indicating

large disparity gap or start/end point), this interpolation is parabolic and the equation 4.15
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Fig. 4.8 Disparity interpolation: relation between disparity mapDM (colored points) and in-
terpolated disparity mapDM r illustrated in CDS by the interpolation function (black double
line curve). The results of this process are illustrated in the second and fifth rows of figure
4.12.

is written as follows:

DM r [(c,v)
t ] =







δ − (2t −1)2(δ −δ0), δ1 = δ0

δ +(1− t)(2t −1)(δ −δ0), δ1 = δ

δ + t(2t −1)(δ1−δ ), δ0 = δ

(4.16)

Whenδ0 or δ1 is above and the other under, the interpolation is linear. Equation 4.15 is

thus written:

DM r [(c,v)
t ] = δ +(2t −1)ε, δ1−δ = δ −δ0 = ε ∈ {−1/2,1/2}. (4.17)

4.4.4 Smoothing using bilateral filter
The result of the disparity interpolation described in section 4.4.3 is a floating point dis-

parity map morecontinuousor smooth on each row but still presenting numerous vertical

depth steps. To handle this problem, a bilateral filter is applied on the disparity mapDM r to

compute a smoothed disparity mapDMs as described in equation 4.18 and demonstrated in

figure 4.12. The centered operating window is chosen rectangular as regulating transitions

between segments implies a rather low width 2ww+ 1 but reducing vertical depth steps
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involves a much taller height 2wh+1. Furthermore, as Equation 4.18 imply an overall nor-

malizing factor∑n∈WW(p,n), we chose not to normalize each individual gaussian function

in individual weight computations.

DMs[p] =
∑n∈W DMr [p+n]W(p,n)

∑n∈WW(p,n)
(4.18)

with n = (dc,dv)t , W = [−ww,ww]× [−wh,wh] and

W(p,n) = Gσc(dc)Gσv(dv)wd(DM r [p+n]−DM r [p])

Gσ (t) = exp(−t2/(2σ2))

wd a function decreasing from 1,for example

wd(∆δ ) = σ2
δ /(σ

2
δ +∆δ 2)

4.5 Omnidirectional 3D modeling

4.5.1 Merging difficulty
The final step of the 3D reconstruction consists in merging carved VH volumesCVm

from multi-baseline stereovision results for all multiscopic unitsm (see figure 4.9) in order

to obtain a single 3D model representing the 3D pose of the reconstructed object(s).

Figure 4.12 illustrates that the result of each multiscopic unit provides information only

on visible surfaces facing the unit while other surface areas are derived from VH result.

Multiple carved VH from different multiscopic units spread around the scene thus yield

stereovision details for almost every surface area of the model.

However, parts of the model surface are to be seen and reconstructed by multiple mul-

tiscopic units and these independant reconstructions are usually partially inconsistent one

to another. Therefore, in such inconsistently reconstructed areas, we have to decide which

reconstruction is locally kept in the final solution. This decision is based on the confidence

attribute of surface voxels: as stated in section 4.4.2, surface voxels inCVm bear differ-

ent labelssur fi indicating their quantified confidence level according to the stereovision

process.

4.5.2 Merging process
The overall principle of this final step is to initialize the final merged volumeFV to one

of the carved VH (FV= CVm0) and then to iteratively merge each other carved VHCVm

into FV according, in inconsistently labelled areas, to decisions based on confidence scores

of surface voxels.
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Fig. 4.9 Carved VH using multi-baseline stereovision method applying on 3 different mul-
tiscopic units. a) Initial VH and slice that represent the voxels with three label ("in","out"
and"surf"). b,c,d) Three different carved VH and slices that refer to the voxels with three
labels and the confidence level.

As VH is known to be a super-set of the solution, the process only evaluates voxels

labelledin or sur f in VH. It thus loops over every voxelg, treating each one for which

VH[g] is notout according to its labelsFV[g] andCVm[g] (see figure 4.10):

• bothout: voxelg is keptout in FV

• both in: voxelg is keptin in FV

• sur fi and sur fj : voxel g is kept the labelsur f with the highest confidence level

FV[g] = sur fmax(i, j)

• all other cases: voxelg has inconsistent labels, the global loop is suspended while an

inconsistency resolution process is run fromg.

In the last case, to decide which label is to keep, we propose a global evaluation of the 6-

connected area implied in the detected inconsistency rather than a per voxel decision. Thus,

when a voxelg is detected as inconsistent in the global loop, a two pass process starts in

order to make a decision.

The first pass aims at collecting relevant information to help making the right decision.

It goes fromg through its inconsistent 6-connected area in order to compute each confidence

level histograms of the encountered surfaces of both volumes. These confidence histograms

for the two surfaces help making the decision on which volumeFV or CVm will transfer its

labels to the final solution in this 6-connected area. We propose to choose the volume with

the highest mean confidence level, but other competing scores could easily be proposed and

tested based on the confidence histograms.
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When the decision is made, a second pass is run. The same walk-through is performed

over the area of 6-connected voxels with inconsistent labels in order to resolve the inconsis-

tency by copying labels of the chosen volume into the other. One could have thought that,

when the chosen volume isFV, nothing needs to be done, but the first pass and the decision

making would then be repeated for every voxel of the area which is far from efficient. More-

over, during this second pass, when a voxel labelledsur fi andsur fj is encountered, its best

confidence levelmax(i, j) is kept in both volumes.

This process clearly relies on a consistent topology in both volumes. This point is en-

sured by the VH carving step described in section 4.4.2. This topological consistency further

permits to keep our 6-connected area walk-through topologically consistent: the process

starts from an inside position (inor sur fj ) in one of the volumesV i and an outside position

(out or sur fi) in the other volumeVo. This per volume topological consistency has to be

ensured over the whole process by adding to the studied area only neighbor voxels with

different labels topologically consistent with the starting condition. No shift fromin label

to out label should occur in each volume across a 6-connection. Thus, ensuring topological

consistency consists in avoiding 6-connections transgressing initial inside/outside position

in each volume. This could occur inV i for voxels on surface connected toout voxels as in

Vo for voxels on surface connected toin voxels.

4.5.3 Refinements

The rough application of the section 4.5.2 process appears not totally successful as the

walked-through areas sometimes appear as several rather broad and distantblobsof non

surface voxels connected by thin lines or surfaces. The decision is made once for the whole

area while it should be differenciated for each blob and connection line or surface. This

yields inconvenient decisions which need to be corrected.

In order to do so, we apply several times the merging process of section 4.5.2 (3 times in

the present implementation) with less and less restrictive conditions on inconsistent voxels:

1. Considered voxels have to be labelledin/out or out/in. Furthermore a sufficient

part of their 6-neighbors has to be labelled in the same way (at least 40% in our

implementation). This step treats broadin/out blobs.

2. Considered voxels are the remainingin/out or out/in ones. This step treats rather

thin areas.

3. Considered voxels are any other inconsistent ones. This steps finalizes the resolution

and treats very thin areas with no more(in,out) or (out, in) voxel.

Results from this refinement are illustrated in figures 4.13 and 4.14.
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Fig. 4.10 Merging two carved VH volumes: a,b) two slices of twodifferent carved vol-
umes representing the confidence levels for the"surf" voxels and the"in", "out" voxels. c)
superposition of the two slices a,b exhibiting an area with inconsistent labels.

4.6 Results and discussion
To evaluate our framework described in figure 4.1, we used the studio layout scheme pre-

sented in section 1.3.1 both for real and virtual shooting and applied our software framework

to the views they produced. These experimental conditions apply to each result discussed in

this section.

Figure 4.11 illustrates that the VH guided stereovision method described in section 4.3

improves the materiality map derived from our previous multi-baseline stereovision method

(see chapter 3) by ridding it of outliers outside the visual hull. Moreover, in non specular

textured or concave areas, the materiality map solution proves to be more accurate than the

visual hull as illustrated in figures 4.12 a, which clearly shows that concavities such as eye

cavities are carved out by our stereovision method both for virtual and actual shootings.

Figures 4.12 show results of the carving process described in section 4.4 on two view sets:

the first one, of a virtual actor "Simon", shot under ideal calibration conditions by computer

graphics software, and the second one, of a real actor "Philippe", captured in our dedi-

caced studio. Comparing the carved volume to the point cloud on each row of these figures

qualitatively validates our carving method. The evolutions obtained on both figures from

each row to the next, demonstrate the relevance of the disparity interpolation and smooth-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.11 First row: point clouds obtained with integer disparity values without any VH
guidance for real actors. a, b) two different views for "Cédric". c, d) one view and its
zoom in the red area respectively for "Jacques". Second row: similar values of point clouds
obtained with integer disparity values with VH guided stereovision for the same data.

ing steps. The fusion of every multiscopic unit outcomes described in section 4.5 provides

robust reconstruction especially in the areas where two or more multiscopic units compete.

Figures 4.13 and 4.14 demonstrate this using results obtained respectively from a virtual

dataset and a real dataset. One should notice the results quality despite the low number of

used multiscopic units: 3 for actual shooting and 4 for the virtual one.

4.7 Conclusion
This chapter describes a new way of combining visual hull and multi-baseline stereovi-

sion in a fully automatic process. In section 4.3, we explained how to exploit information

from the visual hull to guide the materiality map optimization process in order to increase

its reconstruction accuracy, robustness and computational efficiency. It was demonstrated

that our materiality map framework can integrate the visual hull guidance in a powerful way

using its scene-based structure.

We also proposed in section 4.4 a new algorithm for VH carving from stereovision

surface coded as a disparity mapDM. This process yields a topologically consistent volume,

which is crucial for many applications, including our further proposition of carved volumes



136 Fusion of silhouette and multi-baseline stereovision for 3D object modeling

(1) Initial
integer
valued dis-
parities

(b) (c) (d)

(2) Inter-
polated
disparities

(f) (g) (h)

(3) Dis-
parities
smoothed
by bilateral
filtering

(j) (k) (l)

(4) Ini-
tial in-
teger
valued
dispari-
ties

(n) (o) (p)

(5) Inter-
polated
dispari-
ties

(r) (s) (t)

(6) Dis-
parities
smoothed
by bi-
lateral
filtering

(v) (w) (x)

Fig. 4.12 Results from one multiscopic unit for virtual actor "Simon" (3 top rows) and real
actor "Philippe" (3 bottom rows). From top to bottom, results with: initial integer valued
disparities; interpolated disparities according to 4.4.3; disparities smoothed by bilateral fil-
tering described in 4.4.4. On each row, from left to right: disparity map, point cloud, and
carved volume.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.13 Results of the entire pipeline using VH and multiple multi-baseline stereovision
reconstructions: several views of the point cloud and carved volume obtained from VH and
four multiscopic units for virtual actor "Simon"

(a) (b) (c)

(d) (e) (f)

Fig. 4.14 Results of the entire pipeline: several views of the global point cloud obtained for
real actor "Jacques" from final volume resulting from VH and three multiscopic units. It
corresponds to the union of the projection, per multiscopic unit, of the initial point cloud on
the final volume.
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merging. We further showed on experimental examples both thealgorithm results and the

relevance of our disparity interpolation and smoothing methods.

Moreover, we proposed in section 4.5 a novel framework to merge multiple carved vol-

umes obtained from different multiscopic units. We demonstrated the efficiency of the pro-

posed inconsistency handling on both virtual shootings and actual shootings.

Altogether, these contributions, added to our previous stereovision framework proposed

in chapter 3, yield a qualitative and robust omnidirectional 3D reconstruction tool to RE-

COVER3D project. The proposed solution proves the advantages of using both multiscopic

and monoscopic cameras in a studio system as well as combining multi-baseline stereovi-

sion with VH approaches.
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4.8 Résumé : Pipeline de fusion volumique des résultats is-

sus des reconstructions multiscopiques avec l’enveloppe

visuelle
Afin de reconstruire la globalité de la scène, nous proposons un pipeline de fusion à

deux niveaux. Le premier se focalise sur la fusion des résultats issus d’une unité multi-

scopique avec l’enveloppe visuelle, tandis que le deuxième se charge de la fusion des résul-

tats de toutes les unités multiscopiques. Au préalable, en nous replaçant dans le contexte

du projet RECOVER3D, nous proposons une hybridation de notre méthode de stéréovision

multi-oculaire tirant parti de la géométrie multi-épipolaire simplifiée et régulière afin d’en

améliorer sa robustesse et son efficacité. En effet, notre méthode de stéréovision adaptée à

de multiples caméras alignées ne délivre pas des résultats uniformément fiables, notamment

dans les zones faiblement texturées ou avec un taux de redondance pauvre. La restriction de

la zone de recherche des points cibles en utilisant l’enveloppe visuelle comme guide permet

d’éliminer définitivement, en amont du processus de reconstruction, les points cibles candi-

dats n’appartenant pas à cette enveloppe. Appliquée à une unité multiscopique du système

de capture de RECOVER3D, nous obtenons une reconstruction 3D partielle de la scène. La

surface obtenue est alors utilisée pour creuser l’enveloppe visuelle issue de la méthode basée

silhouette. Seule la zone du volume visible par l’unité de capture a été modifiée, sur les par-

ties arrière, l’enveloppe visuelle est conservée telle quelle. Ainsi, les différents résultats des

unités multiscopiques représentent des zones d’influence sur le modèle 3D assez distinctes

mais pouvant se chevaucher lorsque les unités sont situées l’une à coté de l’autre dans le

système de capture. Dans ces zones de chevauchement, une des deux reconstructions hy-

brides proposées peut être plus pertinente que l’autre. Afin de quantifier cette pertinence,

nous utilisons un des attributs de notre carte de matérialité calculée lors du processus de re-

construction multiscopique proposé dans le chapitre 3. Cet attribut est le score de confiance

associé à chaque point cible. Afin d’obtenir à la fin du pipeline un modèle 3D unique de la

meilleure qualité possible, les différences dans les zones de chevauchement des modèles par-

tiels issus des unités multiscopiques sont identifiées et traitées. Pour éviter une complexité

de résolution trop importante, nous avons opté pour un traitement incrémental des fusions

volumiques. Le principe est d’initialiser la solution par l’enveloppe visuelle creusée par une

première unité multiscopique, puis de fusionner itérativement la solution obtenue avec celle

d’une autre unité multiscopique, avec un traitement approprié des zone où elles différent, .

La dernière partie de ce chapitre, à travers quelques résultats, montre que l’approche pro-

posée permet de récupérer, sous forme d’un volume creusé, une représentation 3D précise

de la scène à modéliser. La qualité de ce volume permet de retrouver les petits détails et les
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zones concaves sujettes à occultation. En conclusion, les contributions de ce chapitre sont

triples : (i) une hybridation de notre méthode de stéréovision multi-vues grâce au guidage

par l’enveloppe visuelle ; (ii) la sculpture de l’enveloppe visuelle à partir d’une surface de

stéréovision interpolée et lissée; (iii) et enfin une fusion des volumes creusés d’une manière

appropriée dans les zones où les informations diffèrent.



Conclusion générale

Notre travail s’inscrit dans le project RECOVER3D (Real-time Environment for COm-

putational Video Editing and Rendering in 3D). Le but de ce projet est de fournir un nou-

veau système virtuel de clonage d’acteurs, basé sur une capture multi-vidéo de leurs perfor-

mances, et délivrant naturellement des modèles 4D texturés en haute résolution. Ce projet

est basé principalement sur un partenariat entre des chercheurs académiques et des indus-

triels. La principale caractéristique de ce système est de regrouper les caméras en deux

types d’unité : les unités monoscopiques (une caméra) et les unités multiscopiques (quatre

caméras). Ces unités sont placées autour de la scène sur deux niveaux afin de maximiser

la zone de capture. Dans cette thèse, nous présentons la partie de ce projet dédiée à la re-

construction 3D de scènes dynamiques exploitant, pour chaque pas de temps, ce système

d’acquisition illustrè dans le chapitre 1. La reconstruction 3D d’un objet à partir de sil-

houettes 2D est l’une des approches les plus répandues grâce à sa simplificité de mise en

oeuvre. Les méthodes de reconstruction basée silhouettes sont généralement classées en

deux groupes : i) approche volumétrique ; ii) approche polyédrique. L’un des principaux

avantages de ces méthodes est leur capacité à reconstruire les zones sans texture, spéculaires

et même transparentes. Toutefois, elles sont incapables de reconstruire les zones concaves,

et le modèle 3D reconstruit est de faible précision comparé à ceux obtenus par d’autres

approches comme la stéréovision. Beaucoup de travaux ont été proposés afin d’améliorer

les reconstructions basées silhouettes en utilisant la stéréovision, car ces deux approches

s’avèrent être complémentaires. En effet, l’approche stéréovision est capable de reconstru-

ire les zones concaves et le modèle 3D résultant est plus précis. Notre travail s’inscrit dans

cette dernière catégorie. Dans le chapitre 2, nous avons proposé de classer les méthodes ex-

istantes pour la fusion de ces deux approches en trois grands groupes clarifiant les avantages

et les inconvénients de chacun d’eux : i) les méthodes de stéréovision guidée par l’enveloppe

visuelle ; ii) les méthodes collaboratives appliquant simultanément des critères issus de ces

deux techniques ; iii) les techniques fusionnant uniquement les résultats après une appli-

cation séparée de ces deux méthodes. Nous avons également présenté dans chapitre 2 la
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géométrie multi-épipolaire simplifiée et régulièrement espacée qui est celle utilisée pour

exploiter les images acquises par les unités multiscopiques. Cette géométrie fournit une

configuration efficace et robuste pour la modélisation d’objets 3D grâce à la réduction à une

seule dimension de l’espace de recherche pour les pixels correspondants.

D’un autre côté, la reconstruction stéréovision multi-oculaire réalisée à partir de plus de

deux points de vue est une généralisation naturelle de la reconstruction en stéréovision binoc-

ulaire. L’avantage d’utiliser un nombre d’images supérieur à deux est de pouvoir s’appuyer

sur la redondance d’informations, laquelle aide à éviter les mauvaises mises en correspon-

dance. Dans le chapitre 3, nous avons proposé une méthode de reconstruction multiscopique

exploitant une capture multi-oculaire parallèle décentrée avec des centres optiques alignés et

équidistants. Cette méthode propose une solution aux problèmes qui se posent couramment

en stéréovision tels que les régions partiellement occultées. La méthode proposée est dite

basée « scène », car elle s’appuie sur un nouvel échantillonnage de l’espace scénique adapté

à la géométrie multi-épipolaire. Elle consiste à construire une carte discrète 3D de « matéri-

alité » sur l’ensemble des points 3D que nous nommerons « points cibles » et définissons

comme intersections des plans de disparités entières avec les rayons optiques des images.

Une matérialité est codée entre 0 et 1 et exprime la vraisemblance de l’hypothèse que le

point appartienne à la surface de la scène acquise. Cette approche définit aussi une fonction

de visibilité sur l’ensemble fini des points cibles. En outre, notre proposition est bien adaptée

pour le parallélisme. En effet, l’optimisation de la carte de matérialité est indépendante pour

chaque plan épipolaire (voir le chapitre 3), cela nous permet ainsi de prévoir, dans une future

implémentation, une mise en œuvre efficace sur GPU. Afin d’évaluer notre méthode, nous

l’avons confrontée aux résultats issus d’approches existantes dans la domaine de stéréovi-

sion tel que TreeDP [77], MultiResGC [53], DoubleBP [81], GC+occ [38],et AdaptAggrDP

[80] en utilisant deux mesures proposées par Scharstein et al. [60], la moyenne quadratique

et le pourcentage de mauvaises mises en correspondance de pixels. Grâce à l’exploitation de

la redondance des informations, de l’espace image et de notre nouvel espace géométrique de

la scène, les résultats montrent que notre méthode est capable de traiter les régions occultées

comme indiqué dans le tableau 3.7. Toutefois, ces résultats montrent aussi que notre méth-

ode manque encore de robustesse dans les zones sans texture, comme nous l’expliquons dans

la section 3.11. Par conséquent, dans le chapitre 4, nous avons proposé une hybridation par

enveloppe visuelle de notre méthode de stéréovision multi-oculaire exploitant la géométrie

multi-épipolaire simplifiée et régulière ainsi qu’une chaîne complète pour la reconstruction

3D adaptée au systéme de capture du projet. L’hybridation de la stéréovision et l’enveloppe

visuelle tire parti de leur complémentarité afin de résoudre leurs problèmes individuels de

reconstruction 3D. Cette hybridation consiste, pour notre méthode de stéréovision multi-
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oculaire, à restreindre la zone de recherche des points cibles en utilisant l’enveloppe visuelle

et ainsi à éliminer définitivement, en amont du processus de reconstruction, les points cibles

candidats n’appartenant pas cette enveloppe. Dans notre chaîne de reconstruction, une fois

l’enveloppe visuelle calculée, et puis sculptée par les résultats de stéréovision multi-vues

pour chaque unité multiscopique, nous obtenons plusieurs volumes creusés pour la recon-

struction d’un même objet 3D. Nous avons donc proposé de fusionner tous ces résultats en

un modèle unique. Les grandes étapes de cette fusion sont : i) initialiser la solution avec

la fusion de l’enveloppe visuelle et de la reconstruction issue d’une unité multiscopique

; ii) fusionner itérativement la solution courante avec la reconstruction obtenue pour une

autre unité multiscopique. Ces fusions itératives nécessitent un traitement particulier sur les

zones avec des informations contradictoires entre les reconstructions multiscopiques. Nous

avons expérimenté notre chaîne sur des données réelles et sur des données virtuelles. Les

résultats montrent que la fusion des deux techniques permet d’obtenir de meilleurs résultats

que ceux obtenus séparément avec la stéréovision multi-oculaire ou l’enveloppe visuelle.

Après avoir modélisé l’objet en 3D en chaque trame de la vidéo grâce à notre proposition,

le projet RECOVER3D inclut un suivi temporel de modèle 3D qui évalue le champ de

mouvements inter-trame par appariement de voxels. Ce champ est ensuite appliqué par dé-

formation pseudo-rigide au maillage du modèle. Ce travail a été réalisé au sein d’une autre

thèse [5] proposée par le laboratoire CReSTIC. Un perspective de notre travail pourrait être

d’utiliser cette information de mouvement (e.g. les champs de vecteurs) afin d’affiner le

modèle 3D reconstruit par notre chaîne. Dans de futurs travaux, nous proposons d’élargir

le projet RECOVER3D pour être en mesure d’appliquer la reconstruction de la scène 3D

dynamique dans des environnements extérieurs. Cela revient á abandonner la technologie

du studio pour la remplacer par des méthodes de détourage adaptées aux environnements

non contrôlés. Cette proposition nécessite un système synchronisé de plusieurs caméras

portables et une méthode d’extraction du premier-plan en tenant compte des changements

de dynamiques dans les vues au fil du temps. Un autre aspect important de la reconstruction

au sein du projet RECOVER3D est la colorisation de l’objet 3D obtenu. En général, dans

le domaine de la reconstruction de scène 3D, il existe deux grandes classes de colorisation

de la géométrie. La première suppose que la résolution de la discrétisation de la scène en

voxels est assez fine afin de pouvoir fournir une seule couleur pour chaque voxel, dérivée

de sa projection sur les images. La seconde est le « texture-mapping » qui revient à projeter

chaque vue disponible sur l’objet reconstruit. Dans cette dernière classe, un certain nombre

d’approches ont été développées, comme la méthode proposée par Debevec et al.[18] qui ap-

plique, après la projection des images, sur chaque primitive de l’objet géométrique 3D (par

exemple sur chaque sommet), un processus d’interpolation et de mélange utilisant les vues
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les plus pertinentes et l’orientation locale de la surface. Par simplicité, nous avons choisi le

« voxel coloring », une méthode de la première classe. Une des évolutions possibles serait

de modifier ce choix et de mettre en œuvre une approche de la seconde classe, comme [18],

afin d’obtenir des modèles texturés visuellement plus convaincants.



Chapter 5

Conclusions and perspectives

The 3D reconstruction of an object from multiple 2D silhouettes corresponding to dif-

ferent viewpoints has long been considered as to be a preferred approach. We distinguish

two major approaches of silhouette-based 3D reconstruction : i) volumetric, ii) polyhedral.

A major advantage is such approaches permit the reconstruction of textureless, specular, or

even transparent objects. However, they fail to reconstruct the concave zones, and they lack

precision in 3D object modeling compared with stereovision approaches. Recently, several

approaches were proposed to improve the silhouette-based 3D reconstruction with stereo-

vision. The stereovision and silhouette-based 3D reconstruction approaches complement

approaches complement one another since stereovision is able to reconstruct the concave

regions and produce highly detailed 3D reconstructions. In this thesis, we presented a part

of the RECOVER3D project about the 3D reconstruction of an actor in multi-view studio,

coupling video cameras laid in both monoscopic and multiscopic units, We propose a 3D

reconstruction solution using both multi-baseline stereovision and silhouette-based 3D re-

construction.

In chapter 2, we proposed to classify existing methods that merge stereovision and

silhouette-based 3D reconstruction into three major groups clarifying the advantages and

disadvantages of each these methods i) Stereovision guided by visual hull methods, ii) Col-

laborative methods applying simultaneously criteria borrowed from both techniques, iii)

Separate application of both methods with further merging of their results. We also pre-

sented in the chapter 2, the multi-simplified epipolar geometry which provides an efficient

and robust configuration for 3D object modeling thanks to reduction to one dimension of

the search space for matching pixels.
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In chapter 3, we proposed a novel framework to deal with commonly occurring prob-

lems in multi-view stereovision such as semi or totally occluded regions. Furthermore, our

framework uses multiple images shot or rectified in multi-simplified epipolar geometry (see

section 2.1.3.2). Our approach relies on a new scene space sampling scheme fitted to this

simplified geometry. Rather than dealing with the full 3D scene, our method estimates the

effective 3D scene where the objects need to be reconstructed. However, the multi-view

stereovision relies only on information in the image space and sometimes has difficulties

to recover precise geometry, particularly in low texture regions. For this reason, we pro-

posed to optimize scene geometry with respect to image information in order to obtain a

high-accuracy 3D model of objects handling the semi and totally occluded regions. In ad-

dition to our scene geometry definition, the novelty of our approach lies in building 3D

discrete materiality map with values ranging between 0 and 1. These values express the

affiliation of target points in the useful scene to object surfaces. Compared with the re-

sults derived from other methods (TreeDP[77], MultiResGC[53], DoubleBP[81], GC+occ

[38], AdaptAggrDP[80]), our results show that our method is able to deal with occluded

regions thanks to exploitation of redundancy information and to rely on the image space

and geometry space information, as shown in table 3.7. However, we showed that results of

multi-baseline stereovision still lack robustness in low textured areas.

In chapter 4, we demonstrated the benefits of enhancing a multi-baseline approach with

visual hull guidance. Applying our multi-baseline approach on each multiscopic unit, we ob-

tain several carved volumes for a same 3D object. We proposed a novel framework to merge

these volumes. The overall principle to get full 3D modeling is to initialize the computation

by a reconstructed volume from a first multiscopic camera, then merge iteratively the cur-

rent solution with those of following multiscopic unit taking into account the (in)consistency

zones.

We applied our framework on a virtual scene composed of a virtual actor. The virtual scene

permits to validate our method in some perfectly known setting (i.e. without any calibration

error). This has significant impact on the final results. Afterwards, the framework proposed

in this thesis was implemented and experimented with RECOVER3D real actors.

5.1 Perspectives
We identified several aspects of our work that could be improved in the near future as

well as in a long term perspective. In the following, we discuss those different suggestions

of future improvements:

• Using motion information: within the RECOVER3D project, after the reconstruction

step described in this thesis, we obtain a sequence of discrete volumes that represent
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the character’s pose at each video frame. In traditional multi-view reconstruction

pipelines, these volumes are transformed into a sequence of 3D textured meshes that

are successively loaded to memory for the rendering of each frame. Another goal

of the RECOVER3D project addressed within the CReSTIC laboratory [5] is to in-

troduce a dynamic representation of the character to free ourselves from this static

description of the scene in order to produce a single, temporally consistent, animated

model according to the character’s motion. Integration has not yet been performed

and could be a natural immediate step. As a more long term goal, we could envisage

using the motion information in order to refine the 3D shape reconstructed by silhou-

ettes and stereovision methods. Silhouette, texture and motion information thus could

be integrated to accurately fit the 3D mesh to the object surface.

• Texturing 3D object: another important aspect of 3D reconstruction within the RE-

COVER3D project is the coloring of the obtained 3D object. In general, there are two

major classes for coloring 3D geometry for 3D reconstructed scene purposes. The first

assumes the voxel’s object to be fine enough in order to provide a single color for each

voxel derived from their projections onto the images. The second is the texture map-

ping which expresses by the projection of each image onto the reconstructed object.

A number of approaches were developed like Debevec et al. [18] who apply, after

the image projection, an interpolation process on each primitive of the 3D geometric

object using a subset of nearest views according to the orientation of the primitive

surface. At the moment, in the RECOVER3D project, the first class of methods was

chosen, for simplicity reasons, for surface coloring. In the future, the second class

should be considered instead in order to obtain texture-mapped models more visually

convincing.

• Handling scenes with multiple objects: Until now, our application is evaluated using

the scene containing one object. Manipulating multiple objects yields to ambiguity

in the 3D reconstruction scene using only VH. Therefore, we expect that the fusion

between VH and stereovision will solve most of collisions problem between 3D re-

constructed objects and refine the results of VH.

• Allowing outdoor capture: The RECOVER3D system is composed of cameras that

are fixed and calibrated and has a chromakey background. The current assumptions

would not allow to enable dynamic 3D scene reconstruction in outdoor environments.

A perspective project would be to extend the developed approaches to uncontrolled

environments. This proposition requires a synchronized portable multiple camera sys-

tem and a specific method for foreground extraction taking into account the dynamic

changes in appearance between views and over time.
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• Addressing realtime and high resolution data: In order to market the RECOVER3D

system and software solution as a product for TV and film producers, the XD produc-

tion company would require an increase of resolution (4K) and realtime computations.

In our application, we work with an image resolution of 1920×1080 which has a di-

rect impact on the quality level of multi-baseline stereovision. One can easily figure

that higher image resolutions would provide more detailed results since the number

of the available target points to be reconstructed into the geometry scene is increased.

The approach proposed in this thesis could be implemented on the GPU in order to ad-

dress current market targeted images with high resolution images, like 4K resolution

of 3840×2160. Since the materiality map optimization is independent (see chapter

3) for each epipolar plan, our proposition is well suited for parallelism, such that it

can implemented efficiently on GPU. However, the Gradient Descent algorithm is an

iterative process requiring many iterations in order to converge and find the minimum

energy. This implies difficulties of our method to reach the real time. Therefore,

an alternative to our materiality map using another optimization method should be

envisaged in order to improve the computing time.
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RECONSTRUCTION DE SCENE DYNAMIQUE A PARTIR DE PLUSIEURS VIDEOS MONO ET MULTISCOPIQUES PAR 
HYBRIDATION DE METHODES « SILHOUETTES » ET « MULTI-STEREOVISION » 

La reconstruction précise d’une scène 3D à partir de plusieurs caméras offre un contenu synthétique 3D à destination de nombreuses 
applications telles que le divertissement, la télévision et la production cinématographique. 
Cette thèse propose une nouvelle approche pour la reconstruction 3D multi-vues basée sur l’enveloppe visuelle et la stéréovision multi-
oculaire. Cette approche nécessite en entré l’enveloppe visuelle et plusieurs jeux d’images rectifiées issues de différents unités multiscopiques 
constituées chacune de plusieurs caméras alignées et équidistantes. Nos contributions se situent à différents niveaux. Le premier est notre 
méthode de stéréovision multi-oculaire qui est fondé sur un nouvel échantillonnage de l’espace scénique et fournit une carte de matérialité 
exprimant la probabilité pour chaque point d’échantillonnage 3D d’appartenir à la surface visible par l’unité multiscopique. Le second est 
l’hybridation de cette méthode avec les informations issues de l’enveloppe visuelle et le troisième est la chaîne de reconstruction basée sur la 
fusion des différentes enveloppes creusées tout en gérant les informations contradictoires qui peuvent exister. Les résultats confirment : 
I) l’efficacité de l’utilisation de la carte de matérialité pour traiter les problèmes qui se produisent souvent dans la stéréovision, en particulier 
pour les régions partiellement occultées ; II) l’avantage de la fusion des méthodes de l’enveloppe visuelle et de la stéréovision multi-oculaire 
pour générer un modèle 3D précis de la scène 

 

 

 

 

Reconstruction 3D à partir de multiples vues, Stéréovision multi-vue, Enveloppe visuelle, Géométrie épipolaire parallèle décentrée, 
Reconstruction basée silhouette. 

3D SCENE RECONSTRUCTION BY SILHOUETTE AND MULTI-BASELINE STEREOVISION 

Accurate reconstruction of a 3D scene from multiple cameras offers 3D synthetic content to be used in many applications such as 
entertainment, TV, and cinema production. This thesis is placed in the context of the RECOVER3D collaborative project, which aims is to 
provide efficient and quality innovative solutions to 3D acquisition of actors. The RECOVER3D acquisition system is composed of several tens of 
synchronized cameras scattered around the observed scene within a chromakey studio in order to build the visual hull, with several groups laid 
as multiscopic units dedicated to multi-baseline stereovision. A multiscopic unit is defined as a set of aligned and evenly distributed cameras. 
This thesis proposes a novel framework for multi-view 3D reconstruction relying on both multi-baseline stereovision and visual hull. This 
method’s inputs are a visual hull and several sets of multi-baseline views. For each such view set, a multi-baseline stereovision method yields a 
surface which is used to carve the visual hull. Carved visual hulls from different view sets are then fused iteratively to deliver the intended 3D 
model. Furthermore, we propose a framework for multi-baseline stereo-vision which provides upon the Disparity Space (DS), a materiality 
map expressing the probability for 3D sample points to lie on a visible surface. The results confirm i) the efficient of using the materiality map 
to deal with commonly occurring problems in multi- baseline stereovision in particular for semi or partially occluded regions, ii) the benefit of 
merging visual hull and multi-baseline stereovision methods to produce 3D objects models with high precision. 

 

 

 

 

 

Multiview 3D reconstruction, Multi-baseline stereovision, Visual hull, Decentered parallel geometry, Shape from silhouette. 
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