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Résumé

La reconstruction précise d'une scéne 3D a partir de plusieurs caméras offre un contenu syn-
thétiqgue 3D a destination de nombreuses applications telles que le divertissement, la télévi-
sion et la production cinématographigue. Cette thése propose une nouvelle approche pour la
reconstruction 3D multi-vues basée sur I'enveloppe visuelle et la stéréovision multi-oculaire.
Cette approche nécessite en entré I'enveloppe visuelle et plusieurs jeux d'images rectifiées
issues de différentsnités multiscopiquesonstituées chacune de plusieurs caméras alignées

et équidistantes. Nos contributions se situent a différents niveaux. Le premier est notre méth-
ode de stéréovision multi-oculaire qui est fondé sur un nouvel échantillonnage de I'espace
scénique et fournit unearte de matérialitéexprimant la probabilité pour chaque point
d’échantillonnage 3D d’appartenir a la surface visible par I'unité multiscopique. Le sec-
ond est I'hybridation de cette méthode avec les informations issues de I'enveloppe visuelle
et le troisieme est la chaine de reconstruction basée sur la fusion des différentes enveloppes
creusées tout en gérant les informations contradictoires qui peuvent exister. Les résultats
confirment : i) I'efficacité de I'utilisation de la carte de matérialité pour traiter les problemes
qui se produisent souvent dans la stéréovision, en particulier pour les régions partiellement
occultées ; i) I'avantage de la fusion des méthodes de I'enveloppe visuelle et de la stéréovi-
sion multi-oculaire pour générer un modele 3D précis de la scéne.

Mots-clés: Reconstruction 3D a partir de multiples vues, Stéréovision multi-vue, En-
veloppe visuelle, Géométrie épipolaire paralléle décentrée, Reconstruction basée silhouette.






Abstract

Accurate reconstruction of a 3D scene from multiple cameras offers 3D synthetic content to
be used in many applications such as entertainment, TV, and cinema production. This thesis
is placed in the context of the RECOVER3D collaborative project, which aims is to provide
efficient and quality innovative solutions to 3D acquisition of actors. The RECOVER3D
acquisition system is composed of several tens of synchronized cameras scattered around
the observed scene within a chromakey studio in order to build the visual hull, with several
groups laid asnultiscopic unitsledicated to multi-baseline stereovision. A multiscopic unit

is defined as a set of aligned and evenly distributed cameras. This thesis proposes a novel
framework for multi-view 3D reconstruction relying on both multi-baseline stereovision and
visual hull. This method’s inputs are a visual hull and several sets of multi-baseline views.
For each such view set, a multi-baseline stereovision method yields a surface which is used
to carve the visual hull. Carved visual hulls from different view sets are then fused iteratively
to deliver the intended 3D model. Furthermore, we propose a framework for multi-baseline
stereo-vision which provides upon the Disparity Space (D®)ateriality mapexpressing

the probability for 3D sample points to lie on a visible surface. The results confirm i) the
efficient of using the materiality map to deal with commonly occurring problems in multi-
baseline stereovision in particular for semi or partially occluded regions, ii) the benefit of
merging visual hull and multi-baseline stereovision methods to produce 3D objects models
with high precision.

Keywords: Multiview 3D reconstruction, Multi-baseline stereovision, Visual hull, De-
centered parallel geometry, Shape from silhouette.
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Introduction generale

Le travail présenté dans ce manuscrit s’'inscrit dans le projet RECOVER3D (Realtime Envi-
ronnement for COmputational Video Editing and Rendering in 3D) labellisé dans le cadre
des « Investissements d’avenir » dont I'objectif est d’élaborer le premier systeme intégré
de vidéo virtuelle pour le marché de la télévision et du cinéma. L'innovation apportée par
RECOVERS3D vise a libérer la création d’'images vidéo des contraintes matérielles clas-
sigues liées a la prise de vue multi-caméras grace a un nouveau systeme de « clonage virtuel
» d'acteurs et de décor, basé sur des captures vidéo 3D intelligentes délivrant nativement
une information de profondeur. L'université de Reims Champagne-Ardenne, via le labora-
toire CReSTIC, participe au projet RECOVER3D en partenariat avec son porteur, la société
XD-Production. L'objectif majeur de cette thése vise a 'amélioration des solutions de re-
construction 3D de la scéne.

D’une part, la reconstruction 3D d’'une scene a partir de plusieurs images est depuis
longtemps un probléme majeur de la recherche en vision par ordinateur et de nombreuses
approches telles que la reconstruction basée silhouette, stéréovision ou scanner 3D a lu-
miere structurée ont été proposées. Elles sont généralement classées en deux groupes prin-
cipaux : « active » et « passive ». Les méthodes dites « active » nécessitent une acquisition
avec un matériel autre qu’'une caméra comme un laser ou un vidéoprojecteur pour celles
basées lumiere structurées. Bien que la reconstruction obtenue soit de meilleure qualité que
pour celles dites « passives », elles ont pour principaux inconvénients d'imposer des con-
traintes sur I'éclairage de la scene, de restreindre le champs de déplacement des éléments
dynamiques de la scéne et de géner I'acquisition des textures réelles. Face au contexte de
RECOVERS3D, la restriction des mouvements des acteurs et une illumination contrdlée ne
sont pas envisageables et cela nous améne donc a exclure toutes les méthodes dites « ac-
tives ».

D’autre part, préalablement a ce projet, la société XD-Production a développé un sys-
téme de reconstruction 3D basé silhouette a partir de plusieurs cameras monoscopiques (a
un seul point de vue) afin de modéliser une scéne 3D. A lissue de cette reconstruction,
I'enveloppe visuelle obtenue est texturée avec les informations colorimétriques extraites
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des images acquises. L'objectif majeur de cette thése vise dgroposer une nouvelle
approche dite « passive » de reconstruction 3D d’'une scene mono ou multi-objets acquise
dans un studio dédié. Ce studio est composé de plusieurs caméras placées en cercle, sur deux
niveaux, tout autour de la scene et regroupées en unité monoscopique (une seule caméra)
et multiscopique (plusieurs caméras). Notre approche se base sur I'exploitation d’une part
des techniques « basées silhouette » [64] et d’autre part de celles liées a la stéréovision
multi-vues [73].

La reconstruction 3D baseée silhouette est tres utilisée dans les environnements multi-
caméras. Elle est simple a implémenter, robuste, efficace et délivre une surface fermée.
Cependant ses principaux désavantages sont le manque de précision du modele et son inca-
pacité a retrouver les zones concaves. En revanche la reconstruction 3D basée stéréovision
produit une modélisation de haute résolution (zones convexes et concaves incluses) mais elle
est plus complexe a implémenter et manque de robustesse. Ainsi les méthodes de stéréovi-
sion et les méthodes de silhouette s’averent étre complémentaires. Bien que la littérature pro-
pose déja des méthodes fusionnant ces deux techniques, nous présentons, dans cette thése,
un nouveau procédé pour les fusionner. Tout d’abord, nous commencerons par décrire une
nouvelle méthode de stéréovision multi-vues, basée sur un systeme de capture aux centres
optiques alignés que représente une unité multiscopique du studio RECOVER3D. Spéci-
figuement construite pour profiter du contexte multi-oculaire en géométrie paralléle décen-
trée, et en exploiter la géométrie multi-épipolaire simplifiée et réguliere. Ensuite, nous en
proposerons une hybridation, capable d’exploiter les informations des silhouettes, amélio-
rant ainsi sa robustesse et son efficacité. Enfin nous terminerons par la description de la
méthode de fusion des techniques « silhouettes » et « stéréovision » attendue par le projet
RECOVERS3D. Ces contributions sont exposées dans les chapitres 3 et 4 du manuscrit.

Ce manuscrit est constitué de 4 chapitres. Le chapitre 1 présente le projet RECOVER3D
ou nous détaillerons les spécificités du studio vidéo 3D et la problématique industrielle. Le
chapitre 2 introduit le systéme de capture utilisé et la géométrie qui y est liée. Il revient
sur le modele sténopé d’'une cameéra et sur la géomeétrie épipolaire dans un contexte binoc-
ulaire avant d’étendre ces notions a la géométrie épipolaire multiple dans notre contexte de
capture multi-oculaire. Une fois ces notions introduites, nous présenterons un état de I'art
sur les techniques existantes de reconstruction basée stéréovision, basée silhouette et celles
basées sur une fusion de ces deux approches. Le chapitre 3 aborde la reconstruction 3D
partielle de la scéne avec les informations issues d’'une seule unité multiscopique. Il est
consacré a notre méthode de reconstruction stéréovision multi-vues basée sur un systeme
de capture multi-oculaire aligné et paralléle. Contrairement aux techniques existantes, notre
approche délaisse I'espace image pour travailler principalement dans I'espace 3D et repose



sur notre carte de matérialité. Cette derniere exprime, poaque des points 3D de la
scene, la probabilité d’appartenir a la surface reconstruite. Notre méthode de stéréovision
multi-vues est dite basée scene. Le chapitre 4 traite de la reconstruction entiére de la scéne.
Dans la premiére partie, une hybridation de notre méthode de stéréovision multi-vues basée
sur un systeme de capture multi-oculaire aligné et paralléle est présentée. Cette hybrida-
tion se fait par la prise en compte des informations de I'enveloppe visuelle. La deuxieme
partie est consacrée a une nouvelle approche pour la fusion des modéles reconstruits nés
des informations de chacune des unités multiscopiques et de I'enveloppe visuelle. Enfin
la deniére partie est dédiée a la présentation des résultats obtenues suivi d'une comparai-
son avec d’autres méthodes existantes et d’'une discussion. Le chapitre 5 résume et conclut
ce manuscrit et apporte quelques pistes et perspectives concernant nos travaux dans et en
dehors du contexte RECOVERS3D.






Chapter 1

| ntroduction

According to the increasing fragmentation of the TV audience due to the multiplication
of channels and the appearance of new consumption behaviors (VOD, Internet ...), broadcast-
ers and producers seek differentiated and content of quality, produced in optimal economic
conditions. Among all paths considered in this regard, the use of 4D reconstruction stu-
dios are a sound alternative in the sense that it provides controlled environments generally
based around a large room with uniform background equipped with multiple synchronized
calibrated video cameras and appropriate illumination. The main application areas of 4D stu-
dios are currently dedicated to computer games, movies, TV productions, interactive media
and motion analysis. The "4D studios" term refers to the spatio-temporal domain where 3D
reconstructions of non-rigid moving objects are calculated. Most of these systems require
a temporal sequence of simultaneous image shots from multiple viewpoints in addition to
suitable software solutions to produce a static set of 3D models at each time step.

1.1 Context
This thesis presents the 3D reconstruction part of a broader project called RECOVER3D

(acronym for Real-time Environment for COmputational Video Editing and Rendering in
3D). This project is born to fulfill needs of the broadcast industry of economically sustain-
able 3D post-production capabilities. More precisely, it aims at providing a new "virtual
cloning" system of actors based on smart multi-video capture, natively delivering full 4D
textured models of actors’ performance. The RECOVER3D consortium is based on the
partnership between academic researchers in computer vision and industrial integrators and
producers from the broadcast world. Together, we designed and implemented a prototype
of what could be a suitable shooting facility for the industrial production of 4D images. The
constraint is not only to improve the overall esthetical quality of the resulting models, but
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also to produce them in real time or in a reduced post proagsi&iay, providing a credible
alternative to standard 2D studios.

Figure 1.5 shows the pipeline of the RECOVERS3D project for 4D reconstruction system

purpose. It consists in four blocks, identified by four different colors in figure 1.5.

» The blocks with gray color in figure 1.5 represent the "Studio setting". This latter de-
livers a convenient studio whose layout is optimized according to the scenarist needs
concerning useful scenic space where the actors and objects can be moved without
leaving the intersection of all viewing frustum cameras. The studio setting begins
with an interactive virtual configuration yielding a convenient layout. Then, the real
configuration step places each camera in the studio according to this specification.
Afterwards, the calibration process delivers extrinsic, intrinsic, and deformation pa-
rameters for each camera. These parameters are mandatory for the incoming shooting
and reconstruction processes.

* In the red color block, the capture system provides synchronized corrected videos
from all cameras for each rush.

* The modules in blue blockes implement the reconstruction of one 3D model of a scene
for each frame. At each time-stamp, they combine reconstructed visual hull with the
results of our multi-baseline stereovision.

» The sequence of these 3D models is then transmitted to the last blocks "4D model
tracking” (green modules) in which motion flows are estimated in order to animate a
dynamic mesh.

This thesis focuses on the 3D reconstruction from visual hull and multi-baseline stereovision
methods. It concerns two blue blocks in figure 1.5 "Multi Stereo Matching" and "Fusion".

1.2 Problem statement

Reconstructing 3D objects from multiple views has long been a major research prob-
lem in computer vision. Many techniques such as multi-stereovision, shape from silhouette,
shape from shading, and structured-light 3D scanner have been proposed for 3D reconstruc-
tion. They are usually classified as active or passive reconstruction. The active ones require
controlled illumination such as a laser or a structured light. The passive ones rely only on the
information contained in captured images. The main advantages of passive approaches are
less restriction on the movement of the actors and the possibility of capturing actual textures.
A main disadvantage is the lower visual quality of the 3D modeling compared to the preci-
sion obtained from some active approaches. Our project has to use passive reconstruction as
live shooting of actual performances makes controlled illumination not desirable for our 4D
textured model reconstruction. In this thesis, we propose a new multi-view passive approach
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Fig. 1.1 Pipeline of the RECOVER3D project.

whose aim is to reach the visual quality and the precision of active approaches. Our method
merges results from shape from silhouette and multi-baseline stereovision reconstructions.

Multiocular stereovision methods such as [39][60] conveniently reconstruct surface de-
tails and concave regions. However, they fail for textureless surfaces or repetitive textures
because their core computational process relies on image texture. Shape from silhouette
methods such as [13][68] are very useful in a multi-camera environment [12] and handle con-
veniently textureless and specular surfaces. However, their reconstruction quality is some-
how limited as the produced visual hull (VH) cannot recover concave regions laying inside
the optical beam passing through the silhouette for each camera. Thus, multi-stereovision
and shape from silhouette are complementary to each other and numerous hybrid methods
have already been published as we will describe in details in the next chapter. In this thesis,
we propose a novel framework for 3D reconstruction combining both approaches using our
proposed acquisition system and a novel multi-baseline stereovision framework.

1.3 Multi-camera Systems for 3D Video Production

One of the most important design factor of a 3D video studio is how to determine their
spatial arrangement to achieve high 3D shape reconstruction accuracy. In general, the cam-
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eras are spaced uniformly around the object(s) so that thareabhmages cover the entire
object surface. If we do not have any specific knowledge about the object shape or motion,
or if we want to capture a variety of objects in the same studio, one reasonable solution is to
employ a circular ring camera arrangement, where a group of cameras placed evenly along
the ring observes the object performing actions at the ring center. We may call it a converg-
ing acquisition system. Figure 1.2 illustrates three typical acquisition systems: diverging
multi-camera arrangement for omni-directional image capture in 1.2c, parallel multi-camera
arrangement for multi-baseline stereo and lightfield modeling 1.2a, and converging multi-
camera arrangement 1.2b. Many research laboratories and companies are equipped with
studio containing multiple cameras in converging acquisition system. Among those, the Ki-
novis room at INRIA Rhoéne-Alpes [7] is illustrated in figure 1.3a. A similar multi-camera
system is also deployed at Surrey University in London [66] (see figure 1.3b). Note that it is
often hard to satisfy a requirement of full observation coverage of the object surface. Some
parts of the surface are occluded by others even when capturing a single object. Moreover,
heavy occlusions become unavoidable when capturing multiple objects in action. Thus in
order to produce a 3D video, there is a need for methods that cope with self and mutual
occlusions. Many methods for 3D shape reconstruction from a set of multi-view images
have been developed. One of the most popular methods is silhouette-based reconstruction.
As pointed out before, since this method utilizes only silhouette information, many concave
parts of the object cannot be reconstructed as we will describe in the next chapter. Contrary
to existing studios, we propose to work with a novel acquisition system (see figure 1.4) that
is composed of two typical multi-camera arrangements: parallel and converging which per-
mits to exploit two kinds of reconstruction methods: i) multi-baseline stereovision, ii) visual
hull.

(a) (b) )

Fig. 1.2 Acquisition systems for multi-view camera: a) parallel arrangements, b) converging,
and c) diverging.
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(b)

Fig. 1.3 Chromakey studios: a) Kinovis capture studio at INRIA Rhéne-Alpes b) Capture
studio of the university of Surrey.

1.3.1 RECOVERS3D studio layout and processing

The RECOVERS3D studio is installed in the premises of the industrial partner XD Pro-
ductions. It is a green chromakey studio of 100 square meters, which is 4.5 meter high.
The results shown in this thesis were produced by 24 full HD cameras (1920x1080 pix-
els), at 25 frames per second, but the system is designed to be scalable up to 40 cameras,
recording 60 frames per second. The combination of visual hull (VH) and multi-baseline
stereovision requires views from a wide variety of angles for visual hull extraction and from
distinct but close points of view for stereo matching. The project thus relies on a studio
composed of many synchronized and time-stamped cameras. As we mentioned previously,
our acquisition system consists in converging cameras in order to build the VH cedleat
scopiccameras and several groups of multi-camera arrangements pallédcopic units
and each dedicated to one multi-baseline stereovision reconstruction. Multiscopic units (see
figures 1.5, 1.4) are laid with aligned and evenly distributed optical centers. We chose to
group four cameras per multiscopic unit which seems, according to experience, a good com-
promise between robustness, relying on views redundancy, and computational efficiency
[50]. The cameras are calibrated in geometry and colorimetry in a pre-shooting step. For
each time stamp, every image is matted thanks to pre-calibrated chromakey (RGB space re-
lated to background in views) and resulting silhouettes are used to compute the VH. For each
multiscopic unit, captured images are then rectified to match simplified epipolar geometry
[43].

1.4 Contributions of this thesis

This thesis makes two major contributions. The first one is a novel scene-based frame-
work for direct multi-view stereovision reconstruction. Our proposition aims at building a
newmateriality maypon the disparity space to optimize it according to a relevant energy func-
tion and finally to use its optimized content for deciding where the reconstructed surfaces
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Fig. 1.5 RECOVERS3D studio at XD-production company with mutiigic and monoscopic
units.

lie in the disparity space (DS). The second contribution is a novel framework for multi-view
3D reconstruction relying on both multi-baseline stereovision and visual hull. This method’s
inputs are a visual hull and several sets of multi-baseline views. For each such view set, a
multi-baseline stereovision method yields a surface which is used to carve the visual hull.
Carved visual hulls from different view sets are then fused iteratively to deliver the intended

3D model.

1.5 Layout of this thesis

This thesis is organized by the following chapters :

» Chapter 2 presents the state of art of 3D reconstruction methods. Firstly, we describe
the geometry for one camera and multiple cameras. Different geometry constraints
are exploited. In this chapter we explain in details two methods for the 3D reconstruc-
tion, multi-stereovision and shape from silhouettes. Secondly, we propose to classify
the methods merging the silhouette-based and stereovision-based reconstruction into
three groups: i) stereovision guided by visual hull methods, ii) collaborative methods
applying simultaneously criteria borrowed from both visual hull and stereovision, iii)
separate application of both methods with further merging of their results.
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» Chapter 3 describes a novel method for multi-baseline stesiea. We introduce the
concept of materiality map to represent the probability of the 3D points (called target
points) to belong to the reconstructed surface. The method consists of different steps
which can be summarized as follows:

— scene sampling to determine the digital domain where the objects can be recon-
structed.

— identification the similarity, confidence, and visibility for each target point.

— definition of the cost function and application of gradient descent as optimization
method.

— binarization of the materiality values of each target points in order to extract the
reconstructed surface.

» Chapter 4 proposes an innovative framework of 3D reconstruction from fusion of
silhouette-based reconstruction and multiple results of our chapter 3 multi-baseline
stereovision approach. It first enhances multi-baseline stereovision process thanks to
visual hull data. Then it merges different volumes resulting from multiple multiscopic
units. The goal of this method is then to produce a single 3D model representing the
3D pose of the object to reconstructed.

» Chapter 5 presents a detailed summary and conclusion of the thesis, and discusses
opened problems to tackle in future work.
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1.6 Reésumé : Introduction et contexte

Dans un contexte de fragmentation de I'audience TV due & la multiplication du nombre
de chaines et a la concurrence de nouveaux modes de consommation (VOD, Internet, ...), les
diffuseurs et les producteurs sont plus que jamais a la recherche de contenu différencié de
qualité, produit dans des conditions économiques optimales. Cette these présente la partie de
la reconstruction 3D d’un projet plus vaste appelé RECOVER3D (Real-time Environnement
for COmputational Video Editing and Rendering in 3D) qui développe, pour les industries
du cinéma et de la télévision, un systeme complet allant de la capture de performances
d’acteurs ou d’autre objets en médias 4D de haute qualité a leurs utilisations multiples et var-
iées (duplication, édition spatiale, géométrique, temporelle, texturale, ré-éclairement, ...) en
régie virtuelle. Le systeme d’acquisition proposé pour la reconstruction de la scéne, repose
sur un studio multi-caméras spécifique. Le studio chromakey développé comprend jusqu’a
40 caméras HD synchronisées réparties, autour et au dessus de I'espace scénigue désiré,
isolément (unités monoscopigues), ou par bloc de 4 (unités multiscopiques). Les caméras
d’une unité multiscopiques sont disposées avec des centres optiques alignés et équidistants
pour permettre, par rectification, de délivrer des vidéos 4-vues en géométrie épipolaire sim-
plifiee. Lensemble de ces unités est utilisé dans un premier temps, via une méthode basée
silhouette, a reconstruire I'enveloppe visuelle de la scéne. Dans cette thése, nous proposons
tout d’abord une nouvelle méthode de stéréovision multi-vue alignée appliquée sur les im-
ages acquises par chaque unité multiscopique. Puis nous décrivons comment améliorer sa
robustesse et son efficacité en intégrant des informations issues des silhouettes. Enfin, dans
I'objectif de générer un modele 3D de précision de la scene, nous présentons une hybri-
dation de notre méthode multiscopique et notre pipeline de reconstruction 3D multi-vues,
intégrant les résultats issus de I'enveloppe visuelle et la stéréovision multi-vue.



Chapter 2

M ultiview 3D reconstruction: a review

In this chapter, we present the concept of 3D scene modeling from multiple images and
some of its applications. In section 2.1, we present the geometrical models and tools im-
plied in multi-view computer vision. Starting with the monocular pinhole camera model,
we further focus on binocular and multiocular geometries. In section 2.2, we describe ex-
isting 3D reconstruction techniques that use multiple views. We introduce the concept of
binocular stereovision and describe the multi-view stereovision and shape-from-silhouettes
methods. Since we work within the RECOVER3D project which aims at hybridizing shape
from silhouettes and multi-view stereovision, we propose in section 2.3 to classify such hy-
brid techniques into three major groups: i) stereovision guided by visual hull methods, ii)
collaborative methods applying simultaneously criteria borrowed from both techniques, iii)
separate application of both methods with further merging of their results.

2.1 Multiple view geometry: definitions and notations

Before discussing the multiview 3D reconstruction, it is important to know how the
images are obtained. In this section, we describe the single camera shooting geometry
and geometric constraints existing between multiple views of a same scene with no prior
constraint on layout of cameras.

2.1.1 Monocular geometry

The process of evaluating the relationship between the scene and captured image co-
ordinates is called camera calibration. It is a necessary step for many computer vision
applications especially for the 3D reconstruction methods. It requires some parametrical
model of the coordinate transformation process which relies on the projection model used
for the camera. The most usual perspective camera model corresponds to the pinhole camera
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model expressing a perfect projective camera with infimt@siand instantaneous aperture.
Such an ideal model yields a simple mathematical relationship between the coordinates of
a 3D point in a reference frame tied to the camera and its projection onto the planar image
domain indexed in pixel coordinates. The more global relationship between the 3D scene co-
ordinates and their corresponding image coordinates is usually expressed using two groups
of parameters:

» Extrinsic camera parameters: they define the relative position and orientation of the
scene frame in the camera frame. They describe the positioning of the 3D scene in
the camera frame (see section 2.1.1.1).

* Intrinsic camera parameters : they relate to internal geometric and optical character-
istics of the camera. They are linked to the projection step and given by the pinhole
model (see section 2.1.1.2).

Thank to the definition of intrinsic (section 2.1.1.1) and extrinsic (section 2.1.1.2) camera
parameters, we will identify the projection matrix in section 2.1.1.3.

2.1.1.1 Intrinsic camera parameters

The usual pinhole camera model expresses a perfect perspective camera (see figure 2.1a)
in which a visible 3D pointM is projected onto the 2D poimh of the image plane via a
single optical ray passing through the optical cefteT he intrinsic camera reference frame
of the pinhole camera is usually positionned on the optical center (projection center) with
Z°¢ axis orthogonal to the image plane and oriented towards the scen€ axis parallel to
sensor rows. The sensor plane is set at focal distériicem the optical center. The perfect
perspective projection of poid with coordinatesVl; = (X, e, Z)! in camera frame onto
the image plane poirfip, yp)' is expressed by:

X foo0o0)(™
xp:fg yp:f>£<:> yo |~ o fool]?” 2.1)
1 0010){7

It should be noted that the symbelrefers to the equality of vectors with a nonzero scaling
factor (this is due to the use of homogeneous coordinates).
The conversion of metric coordinatés,,y,)! in sensor plane to pixel coordinategu,v)'
in the image depends on sensor geometry and position (see figure 2.1.b). These sensor
parameters encompass:
« its horizontalp, = w/ncand verticalp, = h/nr pitches expressing the distances be-
tween adjacent columns and rows, or their invekges pgl andk, = p;l;
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» a column biag/ taking into account the fact that row and column may not be orthogo-
nal due to some manufacturing skew error;

« the pixel coordinateéu, Vp)! of the intersectiort of the optical axis with the image
plane.

These parameters yield the needed conversion:

u kn v U Xp
vi|i~|l0 k v Yo |- (2.2)
1 0O 0 1 1

Using the equations 2.1 and 2.2, pixel coordinates are then obtained from metric coordinates
in the camera frame by:

u ki ¥ U f O 0O X
v i~lo kw]||lofool]? 2.3)
1 o0o1/\oo0o1o0 T
The equation 2.3 can be re-written as:
u au S Ww O X
~1 0 ay vo9 O Ye ,
1 o 0o 1 0/(* (2.4)
with: ay=k, f, ay=k,f, s=yf.
Introducing the 3x3 identity matriks, equation 2.4 becomes:
Xc
u ay S W
~[0o aw [(150) Ye (2.5)
Z
1 0O 0 1 L

In short hand notation, we write equation 2.5 as:

<T)~K<b0><¥0> (2.6)
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JL M = (2, Ys, Ys) M: 3D point
M )
M., = (I(': Yes Z(‘)
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Fig. 2.1 Pinhole camera: a) Perspective projection, b) Transformation from metric
coordinates in sensor plane to pixel coordinates.

wherem represents the pixel coordinat&sjs the perspective projection matrix, akt} is

the vector of coordinates of a point measured in the camera frame. The parametass

S, Up, andvp do not depend on the orientation and the position of the camera in the scene.
Therefore, they are called intrinsic parameters.

2.1.1.2 Extrinsic camera parameters

The relationship between the scene and camera frames , respe@i¥ety, Y=, Z°) and
(CC, XC, Y€, Z%), both supposed orthonormal and direct, is defined as a rigid transformation.
This is described by a translation, which represents the displacement between origins of
the scene and camera frames, and by a rotation, which defines the scene frame orientation
with respect to the camera frame. WKk and V. expressing the coordinates of vector
V respectively in scene and camera fran@Ssreferring to optical center translation from
camera to scene frame written in camera frame, @¥d Y2 Z3) representing the rotation
of scene frame into camera frame, we obtain:

(Me— )= (X5 Y3 23 )(Ms— CF).

0 h ;Y g ~
R 2.7)
MC - R MS—R t
T=C?

Finally, from equation 2.7, we obtained the scene/camera transformation:

EORCHIC I
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2.1.1.3 Projection matrix

Combining equations 2.6 and 2.8, we get the transformation from scene coordinates to
pixel coordinates (see equation 2.9).

u X

R T
v :K<I3 o)( 1) 32’5 . (2.9)
1 13

This transformation relies on@ojection matrixP which includes intrinsic and extrinsic
camera parameters defined as follows:

P~K(l3 o>< R _|1?t ) (2.10)

P can be re-written:

P~ (KR —KRt)

P~KR(l3 —t). (211

Finaly the equation 2.9 can be written in short notation as follows:

B e

Using the projection matri described in 2.10 yields an irreversible loss of local depth (in
camera frame) information. One possibility to overcome this problem is, as we will show
in the next chapter, to add some depth related value to pixel coordinates in order to get a
square and invertiblexpanded projection matrix.

2.1.1.4 Calibration process

In order to achieve 3D reconstruction, one has to evaluate the projection matrix param-
eters to quantify the projection of 3D points to pixels. The calibration process of a single
camera thus estimates its extrin8R, T) and intrinsic matrices (K) from actual views. The
rotation matrixR, although consisting of 9 elements, has only 3 degrees of freedom as it
has to fulfill 6 constraints linked to its orthonormality. The translation ve€tabviously
has 3 parameters. Therefore, this leads in total to 11 unknown parameters: 6 extrinsic and 5
intrinsic.
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Fig. 2.2 Multi-planar chessboard 3D reference object-baaéldration, source: [85].

In order to compute these unknowns, one has to build equations from relations between
some values measured in image space (coordinates, distances,...) and corresponding values
known in 3D scene space. The parametric relation between these values rely on the projec-
tion matrix P which has 12 unknown parameters. The overall process of compiRirig)
andK usually uses two steps: (i) computing the projection ma@&which best satisfies
the equations provided by the relations between the chosen sets of corresponding values in
image and scene spaces and (ii) extrackndr, andT from P according to equation 2.11
and properties dk ( upper triangular ), an& ( orthonormal ).

2.1.1.4.1 First step: computing projection matrix
We needne > 12 scalar equations to obtain a solution for the projection m&trix\Ve
propose to classify calibration methods into two major groups according to their choice of
corresponding values yielding the necessagquations:
» 3D reference object-based calibration: a reference object (see figure 2.2) with distin-
guishable and calibrated 3D feature points is placed in a known pose in scene space
(for instance two or three orthogonal planes laid as material representation of the cho-
sen scene frame). The coordindtegof each 3D feature point in scene space and the
corresponding pixels are thus known and measurable. After finding for each point of
the set of 3D feature points, its coordinates in scene fristpand its corresponding
pixel in image coordinate systemi, we can write the following equation for aland
then compute:

. P .
(m )N‘(KR KT)<MS>; (2.13)
1 > %\

* rigid pattern-based calibration: a rigid planar pattern (chessboard) shown at a few
different orientations [10] or a rigid set of collinear points moved around a fixed point
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provide unknown but related 3D points [10]. Thus, in order nal #, for each frame
with such a pattern in unknown poggorientationR, and translatio p), we define

the following equation for each feature point indexedi liy the pattern. Using the
(:oordinatesMi0 of the feature point in the pattern frame and those of its corresponding
pixel mP! in posep gives the following equation:

(rlnp’i>~P<Rp Tp)(z/'iO). (2.14)

2.1.1.4.2 Second step: decomposing projection matrix

The left 3x3 sub-matriXA (defined in 2.13) of projection matriR is a product of upper-
triangular matrixK and orthogonal matrilR. Any non-singular square matri@ can be
decomposed into the product of an upper-triangular m&rand an orthogonal matri®
using the RQ factorization [56]. When this factorization has yieldeandR, T is easily
computed a§ = K ~1B.

2.1.2 Binocular geometry

The relative geometry of two different perspective views of the same 3D scene is called
epipolar geometry. The two perspective views may be acquired simultaneously, for exam-
ple in a stereo rig, or sequentially if the scene is static, for example by a moving camera.
In this section, we expose and describe the geometrical relationship existing between cor-
responding pixels in two images of the same scene. This relationship depends only on the
intrinsic parameters of the two cameras and their relative translation and rotation which may
be obtained from their extrinsic parameters. It expresses that both points are projections of
a single visible 3D point of the scene and, thus, that their optical rays must intersect each
other on this 3D point. We introduce the concept of epipolar geometry in section 2.1.2.1
and simplified epipolar geometry in section 2.1.2.2.

2.1.2.1 Epipolar Geometry

2.1.21.1 Concept

If a point of the scene is seen by two different cameras, then consequently a geometrical
relationship is defined between the 3D point and its projections in the images. The rela-
tionship introduces a constraint between matching points in thé )edind right(r) images

called epipolar constraint. It represents the necessary coplanarity of the 3D\Vpaibst
projections onto both images; andm, and the optical centeiS; andC; of both cameras.
The epipolar constraint reduces the search space dimension for any leftnpiteethe 1D
intersection of the plangC,, C;, m;) with the other right image plane and therefore the time
spent searching for matching points between two images.
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Let's consider for example the system illustrated in figui@ @mposed of two cameras.
Pointsg ande represent thepipolar centergor epipoles) defined as the intersections of

the straight line passed through,(@,) with each image plane. The epipde(or g re-
spectively) refers to the position in its image plane where the projection cénter C;)

of the other image is observed. Consideringa pixel of the left image, the point" is

the projection on right image plane of the vanishing pdAt of the ray ofm;. Moreover,

the 3D pointM projected orm;, is necessarily located on the ray passing throGghand

m,. Its projectionm, on the right image is thus mandatory on the plé@g C;,m,) called
epipolar planeof m;.

We can therefore restrict the search for matching points of any left pixeVithin the in-
tersection of its epipolar plane with the right image plane. Moreover, we notice that the 3D
point projected om, lies on half ling[C;, V™). The associated right rays sweep the area of
the epipolar plane limited by half ling€;,C,) and[C,,V™). Corresponding right pixels

lie on the intersection of this plane with the right image. This definegpi@lar segment
[er,vr"'] of m;. The line extending the epipolar segmeniufis called theepipolar lineof

my.

If two left pixels m; andmj are aligned with the epipole, they define the same epipolar
plane and thus share the same right epipolar line. Their epipolar segments differ only ac-
cording to their right ends;" andvﬁn'/. One may thus think of epipolar geometry as a set

of epipolar planes rotating around the baseli@g C,) and defining couples of associated
epipolar lines in both images. For every pixel lying on one of these epipolar lines, one has to
search its homologue on the associated line. Therefore, it is important to define the epipolar
line corresponding to a given pixel in the other image. One needs a dedicated and practical
tool to ease the identification of this search space. This tool is usually provided fynthe
damental matrixas we will show in the next section.

However, when the image planes are parallel to the baseline, epipoles are at infinity in
baseline direction and epipolar lines are then also both parallel to the baseline. This configu-
ration facilitates the matching process and is introduced by the simplified epipolar geometry
explained in details in the section 2.1.2.2.

2.1.2.1.2 Fundamental matrix

As previously mentioned, the epipolar geometry expresses a mandatory geometrical rela-
tionship between corresponding pixels in separate views. The epipolar constraint reduces
the research space for homologous pixels to 1D epipolar segments or lines where these ho-
mologous must be located. Therefore, it is important to identify the specific epipolar line

or segment corresponding to a given pixel of an image. In this section, we describe the
mathematical construction of an epipolar line equation from the given pixel coordmates
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Fig. 2.3 Schematic representation of the epipolar geometnyesponding poinn, of
pixel m; has to lie on segmenfgy,vi"'], intersection of its image plane with half planar
stripe(C;,Cr, V™).

choosing for convenience the left image as reference. This equation will be expressed by
forcing to be zero the dot product between homogeneous right pixel coordinagtes )t

and a 3D vectot,(m;) containing the equation coefficients wi epipolar line. We will

then note that this coefficient vector is linearly expressed ffonn 1) thanks to a matrix

F which depends only on extrinsic and intrinsic camera parameters and thus can be precom-
puted only once for all pixels. This implies that homologous pixels have to verify a bi-linear
equation built fromF. This shows thalf contains the whole epipolar geometry. This matrix

F is called thfundamental matrix.

Let us consider that the given left pixal, is the projection of a 3D poir¥l, which is also
projected onto the right image the pixel. Based on the equation 2.11, these projections
are expressed as follows:

(T) ~ P (T) with: P =K|R|(I3 —t)), (2.15)
M) op (M) with: P —KRe(15 —t (2.16)
1 ~ Py 1 . r = N\r I’( 3 — I’)- '

The epipolar line equation is derived from the expression that the unknown 2Drpoiat
(ur,vy)! is aligned with two known points; andv;"'. This is achieved by expressing the
zero value of the determinant of the matrix composed of those three points in homogenous

coordinates as follows:
m
Det((er> ( ) (m)) _o. (217
1 1 1
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The first known point expressed &8 1) can be easily defined since this right epipole
represents the projection of the left optical cef@einto the right image:

(i{) ~P, (i) — KRty —t;). (2.18)
-

G

The second known point expressed(:ﬁ%‘It 1)t is defined as the projection in the right
image of the vanishing poirt™ onm ray, expressed as follows:

@) P (VO') —KR(l5 —t) <V0'> — KRV, (2.19)

vm Rk (2.20)
1

Using 2.20, the point expressed(arg‘It 1)t is written as follows:

m| le
(Vfl ) ~P, ( . ) — KR V™ = K,R,RIK; 1 (”I') (2.21)

After defining two known points using 2.18 and 2.21, the determinant 2.17 which describes
the epipolar line equation is written using the triple product:

(mt 1) ((?) x (‘T)) 0, (2.22)

(m! 1) ((Krer —t7)) % (K(ReRIK; 2 (T‘))) = 0. (2.23)

Using the rule(Aa) x (Ab) ~ A7'(ax b), we can write the equation which defines the
epipolar line:

(m; 1) (KRp)™ ((n —tr) x (RfKﬁ( T' ))) =0, (2.24)

Ir(m|)5(;b c)eR3

(mt D)l;(m)=0 < au+bw+c=0. (2.25)
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Using the notation of 3D cross produgt b with anti-symetrical matriXal x asax b =
[a] «b, we can express the vector of the line equation coefficigty ) linearily according
to (m} 1) as follows:

N 1

a

le(m) = | b| = (KR)™[t _tr]xR}Kl_l <m|> : (2.26)
Cc F ’

In the equation 2.26, one can note that the marignly depends on the extrinsic and

intrinsic parameters of both cameras. As such, it may be precomputed once for all left

pixelsm;. As we mentioned previously, the pomt corresponding ton; should be located

on the line of coefficientt. Therefore, the dot product betweem andl, should be zero

(mt 1).I(m;) = 0. The epipolar constraint mentioned in the section 2.1.2.1 is defined by

the equation 2.25. Transposing this equation provides a symmetrical equation expressing

that a left pixelm; lies on the epipolar line of a right pixeh,, identified by its coefficients

ly(my) (see equation 2.27). Thus the precomputed fundamental nratortains the whole

epipolar geometry as it builds epipolar line equations for any pixel of both images as follows:

(mt 1)F (T) —0 < (m 1F (T) —0. (2.27)

Iy (my) I (my)

In the case of unavailable camera parameters, the fundamental fatax be com-
puted using the equation 2.27 by identifying a set of corresponding points between different
images using feature-based or intensity-based methods. One of important computer vision
applications which need the fundamental matrix is structure-from-motion (SfM). SfM esti-
mates three-dimensional structure from image sequences using the fundamental matrix as
geometry constraint.

2.1.2.2 Simplified Epipolar Geometry
2.1.2.2.1 Concept

If image planes are both parallel to the baseline, the epipolar planes then intersect the
images at epipolar lines which are also parallel to the baseline. Moreover, if the image
rows are parallel to the baseline, the epipolar lines are the image rows. If, furthermore, the
image planes are identical (parallel one to the other with the same focal length) and sensors
have the same vertical pitch and centering, epipolar couples are composed of rows of same
rank of both images in binocular geometry. The homologous point search in the second
image is thus limited to a horizontal line of the second image located at the same ordinate.
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Fig. 2.4 Relationship between dispardy= u, — u, and deptiZ.

In this configuration, the epipolar geometry is called "simplified". No fundamental matrix
is required to yield the epipolar equation & v;) while the epipolar segment is easily
identified in this row:u, € [0,u] asvi™ = m;. Moreover, a practical tool, the disparity, is
usually used to index possible matches as we will show in the next section.

2.1.2.2.2 Disparity
In simplified epipolar geometry, the homologoe = (uy,V;) on the right image of a left
pixel m; = (u;,Vv) is identified by its coordinateg andv, = v; in image frame. It is then
common to keep thdisparity d = u; — u; as a relative identifier since this simple matching
result directly relates to the depihof the projected 3D poinM (see below) which thus
greatly simplifies the triangulation step. Given a 3D p&hand its projectionsn; andm;
onto image planes (see figure 2.4Y), C,,C,) and (M, m;,m;) are similar triangles. The
depthZ is then defined as follows:

b—-9o fb

b
2_2° Z—
> &

- & © z3=fb (2.28)

Thanks to this disparity-depth relationship, some authors express their stereovision results
as disparity maps defined as gray scale images where the intensity of each pixel is its dis-
parity o related to the depth of the associated 3D point thanks to equation 2.28. Given a
disparity mapD; computed from two images, the pixel intensidy(u;,Vv;) of this map can

be described by:

D|(U|,V|) = 5:U| — Ur.

The disparity map defined above is computed considering the left image as reference image.
Using the right image as reference, we should fulfill the coherence relationship between the
two disparity maps which expresses that both homologues should have same disparity as
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Fig. 2.5 Evolution of epipolar line (blue line): a) in source images and b) after rectification
process, in rectified images.

follows:
Di(u,vi) = Dr(u — Dy (u,v),v). (2.29)

One should note that depth reconstruction is much easier thank to equation 2.28 in sim-
plified geometry than in generic epipolar geometry which requires a triangulation process.
Indeed the intersection of two optical rays implies some optimality issues tackled by multi-
ple proposals such as Mid-point method or Direct Linear Transformation (DLT) [1]. This

is the main reason why numerous authors propose to switch from generic actual shooting
geometry to virtual simplified geometry thanks to a rectification process.

2.1.2.3 Rectification

In practice, it is difficult to have actual simplified camera geometry and the rectification
helps providing views in simplified geometry. It is possible through rectification [24] to
transfer from any geometry (figure 2.5.a) to simplified geometry (Figure 2.5.b) in order to
simplify the problems of matching points between images and triangulating their associated
3D points. The rectification approach consists of projecting imagek )((see figure 2.6)
from their optical center respectively (GC;) on a same planf]c parallel to the line of the
optical centers on virtual sensors whose rows are parallel to the baseline, of same pitch and
vertical alignment [24].

2.1.3 Multiocular geometry

2.1.3.1 Multiple epipolar geometries

2.1.3.1.1 Concept

Givenn > 2 images and homologous pixetsandm’ into images and j provides a 3D

point M, the projectionm” of M onto any other image plarkethen corresponds to the
matching pixelsm <+ m’ <+ m”. This procedure only requires projection information to
find m”. An alternative method which expresses timdtlies on epipolar lines ofn andm’

in imagek, is to apply the multifocal tensor (defined in the next section) to transfer the point
directly without an explicit 3D reconstruction.

However, if the centers of projection are aligned, these epipolar lines are then identical and
multifocal tensor is unpractical. In such case, multi-simplified epipolar geometry proposes
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Fig. 2.6 The rectification process.

aconvenient replacing tool. This section will briefly review some aspects of the multifocal
tensor and multi-simplified epipolar geometry.

2.1.3.1.2 Multifocal tensor

As mentioned in the section 2.1.2.1.2, the fundamental matrix represents the relationship
between matching points of two images of the same scene. Similar to the fundamental ma-
trix for two images, Faugeras et al. [21] [20] introduce trifocal tensor and quadfocal tensor
for three and four views respectively. The quadrilinear relations [21] are built as linear com-
binations of the bi-linear ones (expressed by fundamental matrices) and the trilinear ones
(expressed by trifocal tensors), and any higher multilinear relation can be obtained from the
bi-linear, trilinear and quadrilinear ones. This section will briefly review some aspects of
the trifocal tensor.

Considering three views, it is possible to group them in pairs to get the two view relation-
ships introduced in the section 2.1.2. Let us suppose, the 2D pojrdasadm, are matching

pixels within first and second image. Using the fundamental matrix equation 2.26, we can
compute the coefficientgs(ms) andlz3(m2) of the epipolar lines in a third image corre-
sponding tom1 andm, respectively. The point in the third image corresponding to both
pixels may be determined by the intersection of their epipolar lines (see figure 2.7). We
note that finding the matching point in the third image fails if the two lines are identical
(I13(m1) ~ I23(m32)). This case can occur if one of the pixetg, m, or mz is coplanar with

the three projection centers (called the trifocal plane) in which case the three homologous
pixels lie in this trifocal plane. One should note that when the cameras are aligned every
pixel of any image is coplanar with the three optical centers which implies that epipolar
lines in other images are identical for every corresponding couple.



2.1 Multiple view geometry: definitions and notations 27

image 1
[ J m;
Fis image 3
I3 mz)
image 2 m3
Lis(m1)
Fys
my
[

Fig. 2.7 Pixels matching through three images: the pixgin the third image
corresponding to the homologoos andmy has to lie on the intersection; andm,
epipolar lines ifmz image.

Thanks to the trifocal tensor, the matching pixel in the third image can be directly com-
puted even when matching pixels are coplanar with optical centers. We have worked with
multiscopic units composed of multiple aligned cameras within the RECOVERS3D project

(see chapter 1). While the multiscopic units are closed to simplified epipolar geometry, we
chose to rectify our views to benefit from this convenient geometry. The corresponding lines
within multiple images are rows of same index and we do not need to identify the tensor.

2.1.3.2 Multi-simplified epipolar geometry

2.1.3.2.1 Concept

In binocular case, the simplified epipolar geometry is introduced to avoid using fundamen-
tal matrix and to simplify 3D reconstruction through disparity evaluation instead of rays
triangulation. This geometry reduces the homologous pixel search to one dimension and
facilitates the matching process. The same concept is applied for multiocular geometry in
order to constrain matching search spaces in multiple imaged (n 1) without handling
multifocal tensors. Being able to use simplified epipolar geometry on any image couple
throughn > 2 images requires specific camera layout. Indeed, for any cameraensor

rows have to be parallel to the each baseline between caiard$ with j #i. The centers

of projection should thus be aligned ortammon baseline. Furthermore, sensors need to
be pairwise coplanar and parallel to the common baseline, which implies that they all lie on
a single sensor plane parallel to this baseline. They also have to share same vertical pitches
and alignments. Given two imageand j, thanks to the multi-simplified epipolar geometry,
their corresponding epipolar lines are rows of same ingex vj = v. Consequently, in



28 Multiview 3D reconstruction: a review

Ceonvergence Ceonvergence
*

A A
\
' ' ' A i
' ' ' \
: ! A
/ \
fo
K \\ | //
@ optical center A\ A\ 2 l
C C, i G 1 C. [ C C,
(a) b) (c)

ine of optical centers Co

C, c
(

Fig. 2.8 Aligned geometry: a) parallel, b) decentered pargikometry and c) aligned toed-
in geometry.

such multi-simplified geometry, rows of same rank= v in each image € {0,...,n—1}
define n-tuples of pairwise epipolar lines. Altogether, multi-simplified epipolar geometry is
characterized by:

« aligned centers on a common baseline;

» a common sensor plane parallel to the baseline, this implies parallel sensor normals
which are the camera optical axes;

» sensor rows parallel to the baseline;

 sensors of same vertical pitch and height with aligned top and bottom rows.

We propose to classify the camera layouts which verify such multi-simplified epipolar

geometry into two groups, according to the camera frustums as follows:

» Parallel geometry: this usual, natural case implies frustums horizontally centered on
the associated optical axiglp = ) (see figure 2.8a).

» Decentered parallel geometry:In this more unusual setting, frustums are not any-
more centered on their optical axes but laid with a median axis (passing through opti-
cal center and sensor’s center) converging on a 3D point at finite distanceailed
of convergencésee figure 2.8b).

In the case of toed-in geometry with optical axes of the cameras converging at a same point
in 3D space, if optical centers are aligned as illustrated in the figure (see figure 2.8c), multi-
simplified geometry is achievable through a rectification process. This process adjusts the
image planes into one single plane parallel to the baseline with conveniently laid virtual
sensors. This will be shown in the next section. RECOVERS3D uses this layout (see section
1.5b for justifications) and thus requires a rectification step.

2.1.3.2.2 Disparity

In binocular simplified geometry, we exposed in section 2.1.2.2.2 a convenient tool, the
disparity & of a pixel (uj,v;)!, which easily yields both its homologue coordinates =

u —d,vy = V)! and its associated depihthanks to equation 2.28. This section studies
the existence of such a tool in multi-simplified geometry. Obviously, as multi-simplified
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geometry implies binocular simplified geometry for each imaguple, we can start the
investigation from the multiple available binocular disparities as illustrated the figure 2.4.
Considering that a pixel;, vi) of imagei has homologougu;,vj = vi)! in the other images

j, itmay be given multiple disparitie® j = u; —uj. Moreover, the global disparity related to
depthZ of associated 3D point according to equation 2.28 is measured from image domains
centered on the optical axes. In case of parallel decentered geometry (see figure 2.10),
the global parallel disparityﬁ,:j =u — u’j is derived from the decentered views disparity

g,j = Ui — uj from cS,fj = 9§, + (a — aj) whereay stands for the horizontal distance from
optical axis of the center of imade This yields the depth to views disparity relation:

Zgj=1bjeZ(&j+d,) ="fhj (2.30)

Where&], the disparity correction for convergence is defined as the global disparity of
image centerscij = g — a; of the converging lines of sight passing through the centers
of views. In non decentered settirg= a; = 0 and d_, = 0 which returns to previous
equation 2.28 defined in the section 2.1.2.2.2. Furthermore, disparity asscriipwtﬂh

the convergence poiM ; is related to the depth; of M. by:

Zoj=fhjed;="Ff = (2:31)
Zc
Each of these view§ ; disparities relates to the same 3D point which is associated to pixel
(u,v)t. They are thus tied to the depthof this point through equations 2.32 whésg
stands for the baseline signed distance between catmanal:

V(i,j)€{0,...n—1}2 i#j Z&;="fb;—2&;
b 2 (2.32)
= f b j( _Z)'

Equations 2.28 and 2.32 clearly show that for any single fixels ), its compatible dis-
paritiesd; j are proportional to the implied baseline distanigigs This fact induces that one

of those disparities may be chosen as reference from which any other may be re-computed
thanks to equation 2.33, where we choose for conveniégcas the reference:

bi, |

V(i,j) €{0,...n—1} i#] & = &1

(2.33)
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Let us now express the baseline signed distances betweemagg icouple from the suc-
cessive baselines between adjacent cameras:

max(i,j)—1
V(l, J) € {07 cesnN= 1}2a i 7é J bi,j = Sgn(j - I) Z bk7k+1' (234)
k=min(i,j)
If optical centers are equidistant those baselines between adjacent cameras are identical
(Vi, bii+1 = bo 1) and the equation 2.34 is simplified:
¥(i,j) €{0,....n=1}% i#] bij=(j—i) boya. (2.35)

Finally binocular disparities may be expressed from reference disparity thanks to equations
2.33,2.34,and 2.35 as :

V('a J)7 I 7A J aj - 50,1 Bi,j; (236)
with N
SO 31 Dok eneric case
V(i 0), i#] Bij= Bo1 9 . (2.37)
(j—1) equidistant centers

These results clearly show that knowing that optical centers are equidistant and their com-
mon baselindyg ; or knowing their successive baselirigg 1 is enough to use for any pixel

m; = (u;,vi)! a single binocular disparity chosen as referencé & dp,1 for instance) to
express each of its disparitiés; through equation 2.36, each of its corresponding pixels

mj = (uj,vj = v)! thanks to equation 2.38 and its def@tk- f bg; 5L

V(i,j), i#] uj=u—9pB;. (2.38)

This section has thus proven that a reference disparityay be defined for any pixel

mi = (u;,vi)'. This reference disparity may then identify each of its matching pixgls-
(uj,vj= v))! thanks to equation 2.38 expressing their abscissa difference. This single scalar
disparity value actually expresses a multiple pixel matching across the whole set of images.
Indeed assigning reference dispadtyo pixel m; implies matching together the whole set

of pixels {mj|mj =m;— G 5 (10)'}.

Furthermore this reference disparity is even more straightforward and helpful in case of
equidistant centers as the binocular disparifigsare proportional to the index difference

of the two imageg —i asf3j = j —i.

We notice that the disparity computing using the equation 2.36 ensures that the homologous
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Fig. 2.9 Multi-simplified epipolar geometry with differenageline(s)

pixels of m; along all images represent the same 3D pbdintWe will show in chapter 3
how the disparity computing is integrated in our multi-baseline stereo framework.

2.1.3.3 Rectification

The multiple image rectification consists in fitting all image planes into one common
plane. This yields multi simplified geometry. Ayache and Hansen [3], Sun [69], and also An
et al. [2] present some methods to perform an image rectification over three views acquired
with cameras laid in right-angled triangle. They combine a horizontal image rectification
between the central image and the left image and a vertical image rectification between the
central image and bottom image. This approach is designed to extend depth from stereo
methods to three views. However this technique cannot be used for three (or more) aligned
cameras. Kang et al. [34] present an image rectification from multiple calibrated images.
They adapt the images orientation and focal such that the cameras share a common image
plane. The error derived from the rectification process of multiple images captured from
multiple cameras located on semi-circular cannot be ignored in 3D reconstruction purpose.
Therefore, the best manner to reduce the geometrical errors is to initially align the muilti
cameras and to set their optical axis parallel one to the other. Within the RECOVER3D
project, we worked with multiscopic units (see chapter 1) composed of multiple cameras de-
fined in aligned toed-in geometry. This layout facilitates the process of finding the matching
pixels, as we will see in the next chapter.

2.2 Multi-view methods

This thesis develops two 3D reconstruction methods: multi-baseline stereovision and
fusion of shape from silhouettes with multi-baseline stereovision. In this section, we intro-
duce a state of the art for multi-stereovision and shape from silhouettes. Before discussing
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the multi-view methods, it is important to give an overview of the compatible acquisition
systems with the RECOVERS3D project constraints as described in the following section.

2.2.1 Multi-view aquistion systems

An important assumption of any multi-view method lies in its required, compatible or
intended camera layout since various possibilities exist and may have an impact on the 3D
reconstruction strategy.

Most of multi-view methods (notably among those listed on the Middlebury stereo site [61])
are designed fon cameras freely laid out in space. Some apply binocular stereovision on
different couplegl;, 1) of views and then merge their separate binocular results [27].

The main difficulty in such approaches concerns regularizing the union of separate results,
especially in scene areas where reconstructions overlap. Common problems to be solved in
such areas are to reduce point density and to resolve ambiguities/inconsistencies.

Shape from silhouettes is one kind of multi-view 3D reconstruction methods which work
with converging acquisition systems composed of multiples cameras located around the
object(s) to reconstruct (see Figure 2.11). However this acquisition system may also be vir-
tually achieved with just one fix camera shooting an object turning on itself.

Some other multi-view methods, sometimes called multi-baseline stereovision methods, are
designed for the "parallel”, "aligned toed-in" or "decentered parallel" camera layouts previ-
ously discussed (see Figure 2.8). The RECOVERS3D studio is composed of multiscopic and
monoscopic units as described in the chapter 1. Multiscopic units contain multiple cameras
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Fig. 2.11 Camera layout: converging acquisition system lafaumnulti-stereovision
methods and shape from silhouettes.

shooted common area

shooted common area

line of optical centers

Fig. 2.12 Comparison of parralel (a) vs aligned toed-in (b)ngeties according to
common scene area.

in aligned toed-in geometry for two reasons: the first is to maximize as much as possible the
intersection of the view frustums (see Figure 2.12) ofriltameras; the second is that the
precision of the calibration for both multiscopic and monoscopic units is more robust when
aligned toed-in geometry is chosen for multiscopic units.

2.2.2 Binocular stereovision approaches

During the last fifty years, binocular stereovision has been studied extensively and many
matching methods have been proposed. They can be grouped into two different families:
local methods (section 2.2.2.3) and global methods (section 2.2.2.4 ). As mentioned previ-
ously RECOVER3D chose to rely on simplified epipolar geometry for its multi-stereovision
process. As such, we focus this state of the art study of binocular stereovision on the meth-
ods that rely on this assumption and thus usually use disparity. In order to get the 3D scene
information, most of those stereo matching algorithms consist of the following steps [60]:

* matching cost computation;

 cost aggregation;



34 Multiview 3D reconstruction: a review

« disparity computation and optimization;

* disparity refinement.
The matching cost is described by the squared difference, absolute difference, cross corre-
lation or any correlation criteria of intensity values at a given disparity, as we will present
in the section 2.2.2.2. Whereas cost aggregation is done by summing matching cost over
rectangle or square windows. The disparity computation and optimization step is repre-
sented for most of the local methods (section 2.2.2.3) by Winner-Talk-All (WTA) optimiza-
tion. The disparity is computed by selection of the minimal cost aggregation for each pixel.
Whereas the third step for stereo matching in global methods is often operated as the "dy-
namic programming”, "graph cut", "belief propagation” or any other optimisation function.
The literature gives far less attention to the last step. Ma et al. [44] proposed a method
for this step which uses the weighted median filtering. This section will introduce some
concepts that are common in stereovision algorithms. Moreover, local and global methods
will be presented in detail.

2.2.2.1 Matching constraints

The matching in binocular stereovision is a very difficult search procedure. In order to
minimize false matches, some matching constraints must be imposed. In the section 2.1.2.1,
we described in details one of the important epipolar constraint. Here we present a list of
the commonly used constraints:

* The uniqueness constraioan be defined as follows: a given pixel from one image
can match no more than one pixel from the other image;

» The ordering constraintneans that if a point in the scene appears to be to the right of
another point in the left image, the relative positioning should be the same in the right
image;

* The symmetric constrainassures the uniqueness constraint. This constraint means
that the correspondence between any two corresponding points is bidirectional as long
as there is no occlusion in one of the images.

These three constraints can help to limit the ambiguities generated by textureless areas,
repetitive textures or lighting changes between views. However, none of the constraints
discussed here can limit the effects of occluded regions. Different global and local methods
are proposed to overcome such difficulty as we well see in the sections 2.2.2.4 and 2.2.2.3.

2.2.2.2 Windows matching

The matching in binocular stereovision, involves finding couples of homologous points.
Figure 2.4 shows a 3D poiM of the scene, visible in both images (acquired in simplified
epipolar geometry) which is projected intg andm; of the left and right image respectively.
While the pixelsm; andm, of two images represent the same point in the scene, they are
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considered as homologous pixels. Binocular stereovisioftes dased on a window match-
ing working with pixel similarity or dissimilarity measuré@gs in order to compute some
aggregated matching score between two pixels. The dissimilarity and similarity measure re-
spectively increases and decreases as the likeness between two compared pixels decreases.
Given a pixel of left imagen, = (u;,v)! and a potential homologue pixel of the right im-
agem, = (ur,vr = V|)! (see Figure 2.13), the aggregated matching sdov&m;, m;) (e.g.,
Normalized Cross-Correlation (NCC), Sum of Squared Difference (SSD) or Normalized
Sum of Squared Difference (NSSD)) can be computed betwgemdm, considering indi-
vidual matching scores througtis of their neighboring pixels according to some window
'W.Figure 2.13 shows in red pixels a matching window around a blue reference pixel. We
look then for the corresponding pixel in the right image by observing the neighborhood of
each pixel located in the same horizontal line. The aggregated matching scamg fior; )
can be defined in a generic way by the equation 2.39.

> M8 [my +v],Ir[my +v])

VEWm, my

(2.39)

A me = N (me.mi, W) ’

with:
W Reference window of size [Width{eighf]

Wm,m, Window W truncated in order not to extend beyond (2.40)
image borders while applied aroung andm,

MS8(pi,pj) matching score between two color pixgisand p;:
3

s (pi[c]— pj[c])? Squared component Difference
c=0
3
> |pile] - pjc]| Absolute component Difference
c30 (2.41)
> k=i, j(Pk[c] —ak[c]) Centered component
c=0
Cross-Correlation
: . Jx[My+V]
with A = ve Z carlc(j(\/\;(mi,mj)
mj,m;
N(m;,m;,;W) normalization function of the sum of neighbor scores
e number of neighbors used (SSD, SADY.= card(Wm; m;) = veWz 1
i (2.42)

NI

e nvx Standard deviation (NCC(I‘Ik e{i,ji} Y (Tx[mg+v]— ak)z)

VEWmi,mj
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Fig. 2.13 Schematic illustration of the local search for htogoe respecting simplified
epipolar geometry with WTA process.

2.2.2.3 Local Methods

The disparity map is obtained using only the information located in closest neighbors of
the studied pixels. Therefore the common approach for local methods is to assign indepen-
dently for each pixel of the reference image the disparity value that optimizes its matching
score. This is often referred as Winner-Talk-All (WTA) otpimization (see Figure 2.13). Fig-
ure 2.18d shows the disparity map obtained from images created by University of Tsukuba
(tsukuba) applying a traditional local method. In recent years, local methods experienced
tremendous progress. Yoon el al [84]. proposed to integrate the adaptive support weights.
The idea is to control the impact of neighboring pixels on final matching score according to
a similarity metric with respect to the studied pixel in reference view, most often based on
color and spatial similarity. The method of adaptive support weights is based on Gaussian
distribution considering similarity and proximity to the central pixel in the support window.
Hosni et al. [30] proposed another method close to [84] using geodesic distance to replace
the spatial proximity in order to overcome the problem of spatially close but distinct objects
influencing each other. Using the methods of Yoon et al. [84] or Hosni et al. [30], the local
methods provide better results than traditional local methods as described in Figure 2.18.
However, the computation of adaptive support weights is costly. To speed up the aggrega-
tion step it can be converted to an image filtering procedure. It turns out that the bilateral
weighting scheme of [84] is equivalent to applying a cross bilateral filter or derivations of it
to the (u,v) slices of a score volume [57] [58] [36] [31].
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Fig. 2.14 Process of global methods for stereo vision

2.2.2.4 Global methods

Contrary to the local methods that take into account only the neighborhood of each pixel,
the global methods optimize the global matching score over the whole image domain. As
illustrated in the scheme of Figure 2.14, global methods usually start with similarity criteria
mentioned in 2.2.2.2 to find the initial homologues. After calculating the disparity map, a
energy function is evaluated on the observed data (right and left images) and the unknown
data (the disparity map). The matching problem searches a disparity fud¢tion) over
the image domain that minimizes the following energy function:

E(5) = Eq(3) + aE(d)

wherekEy is the global matching score which sums aggregated matching s¢dtés,, m; —
(6(my),0)") for each pixeim, of the reference image, and wheigis the stabilization func-

tion favoring continuity and smoothness properties in the solution. The regularization coef-
ficient a controls the relative weight of smoothness and continuity with respect of global
matching score. Once the energy function is defined, some optimization algorithm is used
to find a solution close the global optimum. To this end, optimization methods such as
dynamic programming, belief propagation, and graph cut are among the most usually used
[73].

2.2.2.4.1 Dynamic programming
Dynamic programming (DP) was first used by Baker and Binford [4] for sparse stereovision
matching. They proposed an edge-based dynamic programming stereo matching. The basic
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Fig. 2.15 Dynamic programming for two images yields the optipath through matching
cost grid.

idea is to match the corresponding edges of two images of a stereo pair rather than pixels.
The disparities for the best edge matches are then interpolated over untextured regions. Un-
fortunately, the method presumes that the edges are accurately found in both stereo images.
More recent approaches have performed dense matching based on pixel intensity or color
values [73]. DP attempt to solve the shortest path problem through the matrix of all possible
matches between two corresponding scanlines. It is usually done in two passes running, re-
spectively, forward and backward [15]. The forward step constructs for each possible match
the optimal path leading to this match from left hand side of the scanlines, and stores in
matrix C its score computed as follows:

Vuhur C(U|,Ur) = min(C(U| - 1,Ur) +BaC(UI>Ur - 1) +B7

(2.43)
C(u—1,ur — 1) +M(uy,ur))

WhereM (u;, ur) = AM(m;,m,) is the aggregated matching score for pixais= (u;,Vv)!,

m, = (ur, V)t in left and right scanlines respectively a@¢u;, u;) indicates the cumulative

cost of the path from the matciy = 0,u, = 0) to the matcHu;, u;) € {0,..,nc— 1}* where

nc is the image width. The cog® of a horizontal/vertical move implying occlusions, is
preset to a chosen rather high valuglif( is expressed as a dissimilarity score or rather low
value elsewise. Note that only three moves are permitted according to [73]: an horizontal
occluding move, (new match occludes preceding one) a diagonal regular move and a verti-
cal, occluded move (new match is occluded by preceding one). The backward pass extracts
the optimal path from the matrix corresponding to the global minimum of the cost function
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from (u = nc—1,u, = nc—1) to the left most onéuy; = 0,u; = 0).

Figure 2.15 demonstrates the search grid for two scanlines with six pixels and a disparity
range [0,3]. Each () cell in this grid means a possible match between the pixgls
andmy in the left and right images respectively. The minimum cost path going down and
right from top-left corner of the grid to its bottom-right corner is found. Thus, the dynamic
programming method can be used to find the best possible match sequence between the start
and the end matches. A lot of matches are excluded thanks to the order and maximum al-
lowed disparity assumptions. For examplamif,, m;» of leftimage correspond respectively

to my1 andm;z on the right image andh;; is the left ofm;> (u1 < uj2) thenmy1 should

not be to the right ofn,, such that(u,1 < ur2). This heuristic order is mandatory as the
local best move is selected frofn1,0),(—1,—1) and (0,—1) neighbors. The cells of the
matching array corresponding to other forbidden matches are below the diagonal (marked
in gray in Figure 2.15) knowing that the two images respect the parallel geordetryy.

The three major problems of dynamic programming are:

* selection of convenient cogtfor occluded pixels;

* maintenance of the consistency between successive scanline(s);

» enforcement of the ordering constraint (see section 2.2.2.1), requiring that the relative
ordering of pixels on a scanline must be the same between the two views, which may
not be the case (for thin foreground objects containing images) in scenes containing
narrow foreground objects;

» enforcement of the uniqueness constraint (see section 2.2.2.1) meaning that two dis-
tinct 3D points cannot be projected in the same pixel of an image.

An alternative to traditional DP, introduced by [60] use recursive algorithm through Dispar-
ity Image Space DIS indexed lgyn;, &) in image domain and disparity range. Scanline op-
timization is a simple approach designed to assess different smoothness terms. The method
is asymmetric and does not utilize ordering constraints. This approach fills DIS as follows:

c(my,d) = AM(m;,m — (3 0)) —|—06;/)t (C(mi— (1 0},8)9(5-9")), (2.44)
where@ is some monotonical function of disparity difference. Accordinglfel definition
(see equation 2.39) as a dissimilarity (similarity) scqrés chosen increasing (respectively
decreasing) and the optimal search is a minimum (respectively maximum) search. The
global optimum can again be computed using DP; however, unlike in traditional (symmet-
ric) DP algorithms, the ordering constraint does not need to be enforced, and no occlusion
cost parameter is necessary. Scanline optimization can be done in several ways depending
on chosen the energy function. Some favor small movements between disparities while oth-



40 Multiview 3D reconstruction: a review

ers encourage wide disparity steps. The latter have the ty@f allowing all possible
displacements but tend to smooth the depth map in the case of locally small differences
in disparity. Both DP and Scanline optimization algorithms suffer from the well-known
difficulty of enforcing inter-scanline consistency, resulting in horizontal "streaks" in the
computed disparity map. On the other side, both algorithms require enforcing the unique-
ness constraint. However among different methods developped in DP, Veksler [76] impose
smoothness in both horizontal and vertical directions to obtain a disparity maps close to
ground truth.

2.2.2.4.2 Belief Propagation

The belief propagation algorithm was first formulated by Judea Pearl in 1982 [55], who
formulated this algorithm on trees. Trees are graphs that contain no loops. After that, it has
since been shown to be a useful approximate algorithm on general graphs like as Markov
Random Fields (MRF) models [79]. This latter is called "Loopy Belief Propagation” (LBP)
which is an iterative message passing algorithm. At each pass, for every pixel in the image,
the method computes a message for all 4-neighbors of that pixel at given digparity

The messages from each pixel in each direction (left, right, up, down d € Dy =

{(=1 0f,(0 —1),(1 Of, (0 1)\})are stored in four local vectorssg), indexed by dispar-

ity range|[Amin, ---, Omax- The message emitted from pixe| to its neighbmm{j =m;+dat

given disparityd is the estimated penalty for the neighbor taking the dispaityBP pro-

cess described in algorithm 1 starts by an initalisation of messages to 0 or 1 depending on the
chosen energy formulation. The choice of the message passing order (right, left, up, down
in the algorithm 1) is arbitrary. Let us formally define the message wsingproduct:

5max

msg;?jrd,(c‘i’)> : (2.45)
0'=%min

d'£deDy
whereEq(mj, d’) andEg(9d,d’) are data and smoothness function. The equation 2.45 repre-
sents message passing framto m?' = m; +d pixels about the disparity. These messages

then work to compute later messages at subsequent time steps [82]. The algorithm runs as
many steps as required, sometime for hundreds of iterations, and computes disparity values
for each pixel according to their belief. The belief for pixel about the disparity can be

written usingSum-product function as follows:

Belie fn (8) = e E(M:2) T msgd , 4(5) (2.46)

d64
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Algorithm 1: Loopy Belief Propagation algorithm
Data: Stereo images
Result: Disparity map
Initialize all messages

for t iterationsdo
at every pixel pass messages right through all dispa®ties
at every pixel pass messages left through all dispardties
at every pixel pass messages up through all dispadties
at every pixel pass messages down through all dispadties
find the best disparity at every pixed; by WTA on belief scores.

In the state of art, other fonctions like B&x-Product or Min-Sum are applied to compute

the messages and the belief [46]. The Figure 2.18g shows the results derived from LBP
described in algorithm 1 on Tsukuba images. The results show the ability of LBP to over-
come the inter-scanline consistency problem. However, LPB still lacks ability to preserve
the object edges in disparity maps and thin objects disparity as the lamp arms in the Figure
2.18.

2.2.2.4.3 Graph Cut

The local stereovision methods try to match pixels in the left image with their correspond-
ing pixels in the right image without considering the disparity values attributed to other
pixels. Although these methods are fast, they do not deal with neighboring inter-scanline
consistency. Pixels near each other usually should have close disparities, unless they lie on
different sides of an edge. For this reason, graph cut is used to formulate the stereovision
problem in term of energy minimization [9] using Markov Random Fields [79].

The generic graph cut method can be described in two steps. The first one builds a weighted
graphG = (E,V) consisting of a set of nodek C V (usually those nodes correspond to
pixels), a set of terminal node8= {s1,s,.....,} €V, and a set of edgeR’ C E that
connect pairs of nodes and are assigned some weight. The second step cuts the graph in
order to find the optimum classification ®f nodes ink classes identified by each € S.

This step is applied by using Multi-way cut (also known as k-way cut) which computes a set
C C E called "cut" of edges such that & (E —C,V), no node inT is backward connected

to more than one node @ The multi-way cut problem is defined as finding the cut where

| C |= YeccWeight(e) is minimal. Fork = 2, the problem is reduced to tise-t min-cut
method introduced by Ford and Fulkerson [22] and known to have a polynomial time solu-
tion. Thes—t min-cut method finds the edges which separate the source node from the sink
node and satisfy the two following conditions:
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» The sum of the weights of these cut edges is as small as posgitith implies a
maximum flow between the source and sinkffles) according the theorem of Ford
and Fulkerson[22].

* It no longer exists in the graph any path linking the source to the sink nodes.

In contrast, fork > 3, multi-way cut terminal problem is known to be NP-hard. Dahlhaus

et al [17] propose approximate multi-way cut for> 3: for each terminal, a minimum cut

that separates that terminal from every other terminal and union of these cuts yielding the
approximation of the multi-cut. The latter is considered as forward process and does not
undo the decision-making separating a previous terminal from others.

In the stereovision contexT, is usually considered as the set of pixels whergas rep-
resented by the set of disparities (see Figure 2.16). We can customize the objectives of
multi-way cut for stereovision purpose as follows:

 Every pixel (node inT') remains connected to one disparity nodeSjn

» Edges between neighboring nodediexist in the final graph only if those pixels are
connected to same disparity nodeSn

» Approximation of the multi-cut is run.

Roy [59] proposed to represent the stereovision problem using only two terminals as illus-
trated in the figure 2.17. ThE nodes are built from couples (pixel, disparity) arranged in
Disparity Image Space (DIS) grid. The source naglgsee Figure 2.17) is located at the
beginning side of the graph and connected to all nodes in the plane of minimum disparity,
and the sink nodd, is located at the end side of the graph and connected to all nodes in the
plane of maximum disparity. There are two types of edges between the nediegs and
n—links. t—links connect the neighbor nodes at same pixel and different disparity planes.
The weight oft—links [59] is equal to the mean value of matching costs of two nodes.
Whereas—links connect the neighbor nodes in the same disparity plane, and their weights
hold the smoothness energy. The graph cut will then separate the nodes in two sub-sets to
obtain the optimal disparity map. This map is constructed by the assignment of each pixel
with the maximum value of disparity for which the corresponding node is still connected to
the source.

When comparing the figures 2.18 e, f, and g, we observe that graph cut provides better
results than DP and belief propagation. However, the graph cut method suffers from a big
disadvantage. Unlike other inference algorithm (like as loopy belief propagation), it does
not provide any uncertainty measure associated with the produced solution. This is a seri-
ous drawback since researchers do not obtain any information regarding the credibility of a
particular disparity assignment in a graph cut solution.



2.2 Multi-view methods 43

(O pixels
O Disparities

Fig. 2.16 Representative scheme for stereovision problehimgtraph fork > 3 terminal
nodes.
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Fig. 2.17 Representative scheme for stereovision problemmgraph fork = 2 terminal
nodes.
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(a) | (b) (c)

(f) Graph cut, source: [9]. (g) Loopy Belief propagation.

- g

(h) Adaptive support-weight, source: (i) Geodesic support weight,
[84]. source:[30].

Fig. 2.18 f,b) Tsukuba synthetic stereo image of middlebury site, ¢) Ground truth disparity
map , d) to i) results of local method (SSD), Dynamic programming [6], Graph cut [9],
Loopy belief propagation, Adaptive support-weight approach [84] and Geodesic support
weights [30].
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2.2.3 Multi-view stereovision

The following section gives an overview of multi-view stereovision. The term multi-
view stereovision (MVS) refers to stereovision-based reconstructionrirorg views with
currently no a priori on the aligned of cameras.

While binocular stereovision [60, 37] enables to estimate depth, adding more images leads
to more robust and accurate 3D reconstruction thanks to information redundancy [52, 14,
74]. Unfortunately, the matching process becomes more complex and still lacks robustness
in regions either untextured, regularly textured, and/or totally occluded. Thus, the main
difficulties are occlusions, changes in appearance, and ambiguities.

MVS has been an active field of research for several decades and at this moment more than
seventy algorithms are listed on the Middlebury Multi-View Benchmark website [63]. This
benchmark provides a commonly accepted test suite to evaluate the quality of multi-view
stereo algorithms. MVS methods may also be categorized into three main groups :

» Scene-based methodttempt to recover photoconsistent models that minimize some
measure of the discrepancy between the different image projections of their surface
points. Space carving [40] algorithms represent the volume of space around the mod-
eled object by a grid of voxels, and erode this volume by carving away successive
layers of surface voxels with high photometric discrepancy.

* Image-based methoadompute a set of depth or disparity maps which are merged
later [48],[26] or to which they apply constraints [25], [72] to ensure a consistent 3D
scene reconstruction. Two major classes are distinguished, the first contains the meth-
ods that expect a more restrictive camera layout, typically multi-baseline (a synonym
for multi-simplified epipolar geometry with possibly non equidistant centers), directly
match n-tuples as multiscopic pixel sets [51], [33]. The second class composed of the
methods intended for a free camera layout. Some are more computationally intensive
techniques are dedicated to MVS from community photo collections (CPC) [26] and
have gained an increasing interest. They have to handle a large number of uncali-
brated views of a scene [26]. New difficulties then arise as such views are typically
shot at different times, with differing acquisition geometries (viewpoints, angles, focal
lengths, resolutions), and usually differing environmental conditions (weather, expo-
sure, occluding objects). This makes it necessary to restrict the matching to subsets
of views sharing similar exposure, and empower the methods to deal with significant
baselines (distances between the cameras).

» Feature-based methodsompute sparse correspondences by first matching feature
points which can be powerfully estimated and more robustly matched than regular
pixels. In a second step a surface model is fitted to the reconstructed features [75].
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Fig. 2.19 Silhouette-based reconstruction.

Classical solutions for 3D reconstruction from multi-baseline stereovision are usually image-
based (second group). They consist in matching algorithms that aim at finding homologous
pixels in different images, which represent the same 3D point in the real scene. The most
efficient of these methods match multiscopic pixel sets [51, 33] composed of one pixel per
image, pair-wise verifying epipolar constraints. However, these methods still suffer from
traditional binocular stereovision problems like occlusion and textureless zones.

Within the RECOVER3D project, we proposed a novel framework lying on scene-based
multi-baseline stereovision. Instead of searching matches for image pixels like most multi-
view stereovision methods, our method works completely in the disparity space exploiting
the geometry, similarity and other informations to yield precise reconstruction even in low
texture and semi occluded regions (as we will see in the next chapter).

2.2.4 Shape from silhouette

A silhouette is a binary mask associated with a given view that includes all pixels cor-
responding to the projection of a point of the 3D object to be reconstructed. In Figure 2.19
the colored pixels in the images taken by camé&gsC,, andCs correspond to silhouettes
of the 3D object in each view. Shape from silhouette [64] therefore involves estimating the
visual hull of the 3D object defined as the intersection of generalized cones built from each
optical center and associated silhouette. One slice of the polyhedral visual hull (described
in detail in the section 3) is represented by the red polygon in Figure 2.19.
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2.2.4.1 Silhouette extraction methods

The extraction of a silhouette involves isolating in an image the region of object pro-
jection to be reconstructed from the scene background. Several methods are proposed to
achieve this result, grouped according to the following categories:

 Color difference-based methodsgploit the knowledge of the background color. To
extract an object from the background, the technique uses colorimetric image dif-
ferences. To overcome the problem of variations in lighting in the background, the
"chroma keying" technique is often favored. "Chroma keying" is one of the most com-
mon and most frequently used semantic segmentation techniques within audiovisual
context. Video acquisition takes place against a "key color" background, generally
blue or green. The problem of shadowing in the background is solved using learning
technigues such as Gaussian mixture model or "k-means" [67, 86].

* Region based methodggregate, step-by-step, pixels with shared colorimetric prop-
erties. They establish region filling heuristics within an image by propagating local
criteria, often based on the image’s gradient (higher at the edges and lower in the mid-
dle of the area). The most commonly used methods in this category include histogram
segmentation, region growing and region merging. For a more detailed presentation
of region-based segmentation methods, Caillet’s doctoral thesis [11] is a clear and
useful resource.

» Contour-based methodisvolve extracting the connected components using a thresh-
old of the image gradient. Using these methods [35], the silhouette is characterized
by its edge with the background of the scene.

2.2.4.2 Visual Hull (VH) reconstruction methods

VH reconstruction methods are classified into two major groups: i) polyhedral approach
i) volumetric approach. Polyhedral approaches deduce the object’s visual hull as the sur-
face of the intersection of silhouette cones from each camera. The silhouette cone associated
with a camera (dotted line in Figure 2.19) is defined by the set of infinite triangles delimited
by half-lines connecting the optical center with two neighboring pixels in the contour of the
silhouette. These triangles are then segmented as polygones lying inside each other silhou-
ette cone. The reconstructed object is therefore described by its surface, usually represented
in the form of a triangular mesh [41]. Volumetric approaches subdivide the scene space
according to a regular grid of cells, known as voxels (volume elements) and labelled "in" or
"out". In these approaches, voxels are labelled "in" when they project into the silhouette for
each camera. The VH is then described by the set of "in" cells within the discrete grid [71].
In Figure 2.21, all voxels inside of the red polygon cells are labeled "in".
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2.3 Hybrid methods from stereo and silhouette
The objective of this this thesis is to propose to merge two 3D reconstruction methods:
silhouette-based and stereovision-based reconstruction. Modeling objects using these meth-
ods has been addressed by many different algorithms during the last decades. In this section,
we present a state of the art of methods merging these two techniques and propose to classify
them into three major groups:
 Stereovision methods guided by visual hull (section 2.3.1).
» Collaborative methods applying simultaneously criteria borrowed from both tech-
nigues (section 2.3.2).
» Separate application of both methods with further merging of their results (section
2.3.3).

2.3.1 Stereovision methods guided by visual hull

In this section, we focus on the guidance of stereovision by the results derived from
silhouettes based reconstruction. Space carving initialized by visual hull [16] is considered
as one of the efficient method for 3D reconstruction from multiple views which can be
classify in this category. Other methods are proposed to exploit the broad localisation results
(like the disparity range [42]) from shape from silhouettes in stereovision computing as we
will show in the next section.

2.3.1.1 Space carving initialized by visual hull

We mentioned in section 2.2.3 that space carving is one of scene-based methods of the
multi-view stereovision. However, the visual hull can be used to improve space carving. In
this section, we will explain in detail the space carving method and show the advantage of
working with visual hull. The space carving proposed by Kutulakos et al [40] is based on
the idea of voxel coloring as proposed by Seitz et al [62]. This latter assumes that cameras
are laid on a same side of the scene. Voxel coloring involves subdividing the regular grid
of voxels into successive layers, from the nearest to the furthest of this "camera side". The
serious drawback of this method is that the cameras should be placed on one side of the
object to be reconstructed. Voxel coloring is based on the hypothesis that a voxel on the sur-
face of an object must have the same color in each view in which it is not occluded, called
as a photo-consistent voxel. On the basis of this statement, the voxel coloring process is
written as described in Algorithm 2 and can effectively handles the occlusion problem. For
example, two voxels, taken from different layers, can be projected onto the same pixel in
a given view. The voxel from the nearest layer occludes the other. To solve this problem,
the method takes into account the fact that a voxel from a lliag&nnot occlude a validated
voxel from a layerj whenj < i, as illustrated in Figure 2.20. Therefore, the method com-
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Fig. 2.20 Identifying explicitly the occluded voxel thanksglane-sweeping from the
nearest to the furthest from the camerasCinthe blue voxel is occluded by a previously
validated red voxel [62].

Algorithm 2: Voxel coloring
Data: the sequence of calibrated images
Result: the volume of voxelSrepresenting the reconstructed object
Initialize a bounding box box containing the object and divide it into layers
Initial set of validated voxels is empy= {}
for each layerly from the nearest to the farthest from the camatas
for each voxelinly do
projection ofg on all the images where it is visible according3o
if gis photo-consisterthen
| addgtoS

putes the photo-consistency to voxghccording only within the set of images where it is
visible and not occluded by a previously validated voxel.

The disadvantage of voxel coloring method lies in its inability to completely reconstruct
the object due to the sidewise layout of cameras. The space carving algorithm, introduced
by Kutulakos et al. [40], can be seen as an extension of the previous method adapted to an
arbitrary camera arrangement. This is based like voxel coloring on the photo-consistency
of surface voxels. For example, the object in figure 2.21 shows a concavity ignored by the
silhouette-based reconstruction technique illustrated by the red polygon. Theyéoehd
on the visual hull, is projected on differently colored pixels in views taken from cameras 1
and 2.

The space carving relies on sweep planes normal to the three principal speegdz. Only

cameras behind the sweep plane are used to manage the occlusions and photo-consistency
measures. For example, in figure 2.22a, the voxels in the highlighted increasing plane ac-
cording tox axis are checked for visibility in the cameras 1 and 2, while for the decreasing
plane according ty axis in the figure 2.22b, voxels are checked in the cameras 3 and 4.
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Algorithm 3: Space carving guided by visual hull
Data: the sequence of calibrated images
Result: a volume of voxels representing the modeling object
Initialize the volume with visual hull
repeat
foreach sweep plane in the 6 main directiods
foreachvoxelg labelled "in" in the current planelo
projectg onto the cameras in the sweep plane background (where it is
visible)
if gis not photo-consisternhen
| gis labeled "out" in the volume

until no more voxels have been eliminated in last step;

According to Kutulakos et al. [40], a voxel is not visible by aneera if it is out of its

view frustum or if it is occluded. Therefore, they consider an x-increasing sweep plane, if
the voxelg; = (X1,Y1,21) occludes the voxal, = (X2,¥2,22) thenxy < X2. As g, is eval-

uated beforey,, the occluder is always validated before checking the occluded. The main
drawback of the original implementation described in [40], is the algorithm intialization. It

is often necessary to initialize the algorithm with a very large volume in order to ensure
that it completely encloses the surface. Each voxel must then be tested in turn for consis-
tency in the images which results in a high computational load. Cross et al [16] proposed
to use the visual hull as a starting point for the space carving algorithm (see algorithm 3).
The visual hull completely encloses the object surface. Therefore, using the visual hull at
the beginning of the space carving algorithm have many advantages i) easy to compute ii)
tight outer boundary iii) parts of visual hull already lie on the surface and should be already
photo-consistent.

2.3.1.2 Visual hull regularized stereo

Fan et al in 2008 [19] proposed another method to merge VH-based space carving and
stereovision. The acquisition system includes a single fixed camera. The modeling object
rotates on itself after each shot. The method consists of two steps:

» applying VH-based space carving

 applying binocular stereovision in global method for each couple of images and solve

the problem of global optimization using the information from VH-based space carv-
ing
As we saw in section 2.2.2.4, the matching problem using global method consists in finding
the disparity function which minimizes the following energy function:
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Fig. 2.21 Volumic VH : improvement by identifying concave esrfrom
photo-consistency.
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Fig. 2.22 Configuration of cameras for space carving initialized by visual hull method.
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E(8) = E4(8) + aEs(d) (2.47)

The equation 2.47 has been described in details in the section 2.2.2.4. Fan et al [19] have
proposed to add a term to the previous formula, which expresses a new constraint by inte-
grating the information derived from VH-based space carving. This term is dalleahd
defined as follows:

Esc(0) = Z 0 (Om;, 5p|’ed)7 (2.48)

whereao (Jm;, Opred) Calculates the difference between the disparity of the studied pixel and
the predicted disparity for the same pixel obtained from VH-based space carving. We can
then describe the energy function as following:

E(8) = Eq(8) + aEs(8) + AEse(), (2.49)

whereA is the regularization coefficient that controls the constriigt After defining the
function of energy, Fan et al [19] used dynamic programming to find a solution close the
global minimum. Their results show a more detailed depth variation than that obtained by
the visual hull based space carving or stereovision with dynamic programming method.
Ming Li et al [42] proposed also a method for improving the results of stereovision using the
visual hull obtained by polyhedral approach. Their acquisition system consists of six cam-
eras arranged around a scene and grouped in pairs connected to computers (called clients),
all those "client" computers being connected to a single server. Their method consists of
three steps for modeling an object. The silhouettes of the object are estimated on each client.
The server then computes the visual hull. Finally, these clients use the visual hull to guide
depth maps computing. The visual hull can accelerate the calculation of depth maps by
restraining the process to pixels belonging to silhouettes and not on the whole set of pixels.
The disparity search range is also reduced by calculating the limited disp&&tigsdmax}

of each pixem of the matching window. Then this interval (segmatin, dmax} of the ray
associated with the pixel) is projected in the other image in order to restrict the search space
on the associated epipolar segment. This stereovision algorithm is a local method and the
quality of the reconstruction suffers particularly in textureless or uniform areas.

2.3.2 Collaborative methods applying simultaneously criteria borrowed

from both techniques
In this section we present another group proposed of hybrid methods from stereo and sil-
houette. The methods classified in this group work with deformation methods (e.g., snake)
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Fig. 2.23 Example of camera layout and associated views from Hilton and Starck method
[29]

exploiting concurrently the information derived from silhouette-based reconstruction and
stereovision. Hilton and Starck [29] propose a model-based reconstruction method relying
on visual hull and stereovision information. The proposed acquisition system contains 13
cameras including 12 lateral cameras positioned around the object and one camera overhead
to constrain the visual hull as illustrated in figure 2.23a. The method requires prior knowl-
edge of the feature points of the modeled person. The proposed method optimizes a generic
human model mesh to satisfy an energy function. This function consists of threeBgrms

Es, andE; expressing respectively the constraints of the visual hull, stereovision and feature
points. The energy function is then written as follows:

Eglobal = Ev+ Es+E; (2.50)

The energy functioleg|ona Minimization is carried out using a gradient descent. Thanks
to their assumptions about the scene, the results (see figure 2.23b) show a coherent structure
for different frames of the sequence. Figure 2.24 shows that using two techniques produces
more robust and efficient results. The main disadvantage of this method is the restriction on
the scene content which is dedicated to human reconstruction.
Esteban et al. [28] proposed a 3D reconstruction method merging silhouette-based and
stereovision-based reconstruction. This method can be classified in this group and is ap-
plied to 36 images. The images are taken by a single camera. The object to be reconstructed
in 3D rotates on itself between each shot. The method reconstructs the object visual hull
thanks to a space carving method. Stereovision based multi-resolution is then applied using
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(b) (© (d) (e)

Fig. 2.24 Shape reconstruction, source:[29]: f) camera image b) visual-hull )
voxel-colouring d) merged stereo e€) model-based.

this initial reconstructed object. The method divides the images into different resolutions
(called layers). For the first layer, the method tries to find the depth for each pixel of each
image using the depth interval defined by the initial reconstructed object. For the next layer,
the depth interval defined in precedent layer works to constrain the depth search for current
pixel. A detailed description of Hernandez et al's greedy depth map estimation approach
is presented in [28]. After finding the best depth for a pixelthe related 3D positiov

is calculated. The method then adds the score of correlation to the voxel corresponding to
M. To merge all the information computed using visual hull and stereovision based multi-
resolution, a classical method of deformation (Snake) is proposed to obtain the mesh as
closest as possible to the actual surface of the object. The deformation method is considered
as an energy minimization problem and expressed by the following formula using a step
variablek for describing the evolution of the surfaSef R :

Vi € mesh vertex S = S+ At(F& oot FX+FED

A first estimateS® of the actual surface is found by space carving, the modeling object is
then subjected to three types of forces:

* Fipt @ims at maintaining the surface adequately smooth and is the regularization term.
Fint IS defined as a force pushing vertex numbef the mesh towards the gravity
center of its neighborhood :
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Fig. 2.25 Shape reconstruction, source:[28]: f) visual hull b) final model c) texture
mapping.
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whereng is the set of neighbor vertices Bf vertex, and/X is the 3D position oft"
vertex at stejk.
» The forceFstereo deforms the model in order to minimize its distance to the mesh
constructed by stereovision.
* Fj deforms the model to minimize the distance between the projection of the model
on each image and silhouettes of the images.
The result of the method [28] illustrated in figure 2.25 shows that the modeling object pro-
vides high quality reconstruction. However, their results are based on an acquisition system
composed of only one camera. This system allows to obtain images in a control environ-

ment (light, background ) provides the best results compared to the case of using more than
one camera around the object.

Vogiatzis et al [78] propose another method formulating photo-consistency as a global en-
ergy minimization, using volumetric graph cuts. Graph cuts extract an optimal surface from

a volumetric Markov Random Field. They first build a base surface (outer boundary) as
visual hull §yzseand an inner boundary surfa&g lying at a constant distance inside the
outer boundary which defines a voluieenclosed by5, andS,ase Voxels of this volume

VI become nodes in the flow graph. The photo-consistency measure determines the degree
of consistency of a point identified as center dflavoxel. Finally, optimal surface is ob-
tained as minimum cut solution of the weighted graph. The algorithm proposed uses the
visual hull of the scene to infer occlusions and as a constraint on the topology of the scene.
Figure 2.27c¢ shows that this method provides best result comparing to visual hull or space
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Fig. 2.26 Face reconstruction using Furukawa et al method [23] : a) one of the input image,
b, ) two views of texture-mapped reconstructed patches.

carving methods. The main problem of this method based on graph cut [78] is that for high
resolutions of voxel grid, the image footprints used for photo consistency measures become
very small which often produces noisy reconstructions in textureless regions.

Furukawa et al. [23] propose a flexible patch-based algorithm for calibrated muti-stereovison
using visual hull. The method starts by computing a dense set of small rectangular oriented
patches covering the surfaces visible in the images. Then the algorithm converts the re-
sulting patch model into an initial mesh deforming iteratively visual hull model towards
reconstructed patches. The deformation is performed applying forces depending on three
terms: 1)a smoothnesterm for regularization 2 photometric consistendgrm derived

from reconstructed patches, and finallya@8)im consistencyerm pulling the rim of the
deforming surface towards the corresponding visual cones. Figure 2.26 describes the face
reconstruction result using Furukawa et al [23] method. According to the authors, their re-
sults are better than those of Esteban’s method [28] especially at sharp concave structures
(the results of these methods and other are available on middlebury site [61]). However, in
the RECOVERS3D project, our acquisition system and multi-baseline stereovision method
described in the chapters 1 and 3 permit to exploit the information derived from silhouette-
based and stereovision-based reconstruction in a novel and powerful way as we will see in
chapter 4.

2.3.3 Separate application of both methods with further merging of

their results

In this section, another group to merge silhouette-based and stereovision-based recon-
structions is presented. Methods in this group start by applying the two methods indepen-
dently and then merge their results. As we have seen for space carving (section 2.3.1.1), the
visual hull is carved gradually until the photo consistency is satisfied. Matsuda et al [45]
propose another method to carve the visual hull directly using 8 cameras which are posi-
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(b)

Fig. 2.27 Face reconstruction by following methods, source:[78]: a) visual hull, b) space
carving, ¢) method proposed by [78].

(b) (©) (d)

Fig. 2.28 Object reconstruction following several methods: f) space carving, b)
stereovision, ¢) space carving + graph cut, d) method proposed by Matsuda et al. [45],
source [45]

tioned around an object. They construct two point clouds from stereovision and silhouettes
techniqgues. The proposed method maintains the constructed points from stereovision that
meet the following conditions:

» They are not near to VH surface,

* their normals are not significantly different from the nearest VH surface normal.
After identifying the acceptable reconstructed points by stereovision, the method removes
the voxels of VH volume that satisfy the condition of interrupting the lines between accept-
able stereovision points and optical centers of images. Figure 2.28 shows that the proposed
method by Mastuda et al [45] provides better results than those obtained by space carving.
However, we can note that above conditions determining whether the points derived from
stereovision are credible or not, are not always reliable. For example, if we want to recon-
struct an object with strong concavities, we can find points that belong to the surface of the
object far from the VH surface and whose normals are significantly different from the nor-
mal of the nearest surface of the VH. Another method proposed by Song et al. [65] merges
both techniques by separate application of both methods. Depth maps and VH are gener-
ated. The point cloud is then extracted from all the depth maps containing the outliers and
redundancy information. The outliers information are rejected in two steps. The first step is
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Fig. 2.29 The reconstruction steps for the Captain sequence: f) visual hull, b) stereovision
point cloud, c) points cloud extracted from third type voxels, From d) fusion b) and c), e)
reconstructed model using poisson surface reconstruction, f) texturing mapping to e),
source [65].

achieved by remove all the points of the cloud which are out of VH. A voting octree is built
for the point cloud and each voxel of this octree contains the sum of the individual corre-
lation scores derived from point cloud of stereovision. Therefore, the second step includes
deleting the voxels which involve aggregated correlation scores under a specific threshold
(see figure 2.29b). Afterwards, the authors classify the visual hull voxels into three groups:
(1) Type 1: voxels containing a point cloud from stereo; (2) Type 2: the voxels intersecting
the line between a point cloud from stereo and the optical center of an image (3) Type 3:
all remaining voxels. According to the authors, most of these remaining voxels are located
in textureless or occluded areas. Therefore, they extract the point cloud from the voxel of
third type (see figure 2.29c. At the end, a fusion between point cloud generated by depth
maps and those from the voxel of third type is performed to have a single point cloud like
as illustrated in figure 2.29d. The result of the fusion of the two point clouds produced by
stereovision and silhouettes is better than those obtained using the two techniques separately
as shown in figure 2.29e. However, their acquisition system is the same as for Esteban et
al's method [28] and this system provides control environment. One of the challenge of
applying this method is to determine the best threshold which works to delete the voxels
containing aggregated correlation scores under this threshold.

Recently, Narayan et al. [47] proposed to merge KinectFusion [49] and VH techniques
to recover detailed models for challenging objects with major transparencies and/or con-
cavities. Their method consists of the following steps: 1) computing the VH using RGB
images; 2) fusing depth maps into a single mesh using a variant of the KinectFusion algo-
rithm [49]; 3) refining depth maps using visual hull. At this step, they aim at constructing
a dense cloud whose points lie on the surface of the object and deforming the visual hull
towards this cloud. In particular, this dense point cloud will be a subset of the union of
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Fig. 2.30 Collections of scanned objects (with transparencies and concavities in first and

second row respectively) constructed by visual hull method (f,d), KinectFusion method

[49] (b,e), Narayan’'s method [47] (c,f), g) Color image, concave objects, h) Color image,
translucent objects, source [47].

the visual hull and KinectFusion mesh vertices; 4) fusion of the dense refined point cloud
with visual hull keeping voxels which verify the following condition: the distance between

a voxel and its nearest neighbor of point cloud is less than a specified threshold. Figure 2.30
presents reconstructions of objects with major translucencies or transparencies in first row
and objects with concavities in the second row, using VH method, KinectFusion [49], and
their approach.

Individually, the KinectFusion algorithm does poorly in reconstructing objects with major
transparencies but reconstructs concavities, while the visual hull does poorly in reconstruct-
ing concavities but reconstructs regions with major transparencies. Narayan’'s method re-
covers the majority of objects including concavities and translucencies zones. However,
this method depends on Kinect sensor to apply KinectFusion algorithm and this sensor has
a practical limiting range of1.2 to 35 m) distance. Within the RECOVERS3D project, this
sensor does not work efficiently to model actors which evolve at greater distance from the
cameras.
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2.4 Conclusion

In this chapter, we describe the monocular, binocular, and multiocular shooting geome-
tries for 3D reconstruction purpose. Among these geometries, the multi-simplified epipolar
geometry (described in section 2.1.3.2) provides an efficient and robust configuration for
3D object modeling thanks to disparity evaluation instead of rays triangulation. This geom-
etry reduces the corresponding pixel search to one dimension and facilitates the multiple
matching process. Our multi-baseline stereovision is based on this multi-simplified epipolar
geometry as we will show in the next chapter.
Different techniques for silhouette-based and stereovision-based 3D reconstruction are pre-
sented in details. Following our review of the literature, we notice that the 3D reconstruc-
tion techniques based on silhouettes are used in multi-camera environments and in real time
applications. The main advantages of silhouette-based techniques are robustness and sim-
plicity of implementation. However, the quality of reconstruction from such techniques is
limited. While stereovision approaches produce higher resolution, they are more complex
and lack computation and robustness. Both stereovision and silhouettes approaches thus
complement each other as shown in section 2.3, where different methods have been pre-
sented to merge them.
Moreover, we proposed to classify these methods into three majors groups i) Stereovision
guided by visual hull methods, ii) Collaborative methods applying simultaneously criteria
borrowed from both techniques, iii) Separate application of both methods with further merg-
ing of their results. The bibliographical study of scientific literature confirms the advantages
and the benefits of hybridizing the two methods for 3D scene reconstruction from multiple
views. Within RECOVERS3D the project we propose an original scheme for such fusion
of visual hull and multi-stereovision thanks to our multi-baseline stereovision framework
described in chapter 1 and to the configuration of our acquisition system composed of mul-
tiscopic and monoscopic units.
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2.5 Reésumé: Reconstruction 3D a partir de multiples vues

Dans ce chapitre, nous présentons le concept de la modélisation de la scene 3D a partir
de n vues et réalisons un bref état de I'art sur les principales approches existantes. Avant de
discuter de la reconstruction 3D multi-view, il est important de savoir comment les images
sont obtenues.

Dans la premiére partie de ce chapitre, nous revenons sur le modele sténopé et la géométrie
de prise de vue d’'une seule caméra. A la suite de cette étude « monoscopique », nous abor-
dons les contraintes géométriques existantes entre plusieurs vues d’'une méme scene sans
apriori sur la disposition des caméras dans un contexte binoculaire puis multi-oculaire.

Dans la deuxieme partie de ce chapitre, nous nous replacons dans le contexte du projet
RECOVERS3D et étudions spécifiquement les approches de reconstruction basées stéréovi-
sion et silhouette en évoquant les différentes méthodes existantes.

La modélisation 3D a partir de deux images de point de vue différent est appelée stéréovi-
sion. En général, une méthode de stéréovision est constituée des étapes suivantes : i) calcul
des colts d’appariement, ii) agrégation des codts, iii) optimisation et calcul des profondeurs,
iv) amélioration des disparités. Toutefois, la stéréovision multi-vue est une généralisation
de la stéréovision permettant une modélisation 3D a partir de plusieurs images chacune
issue d’un vue différent. La stéréovision multi-vue peut étre classée en trois groupes princi-
paux : i) méthode basée scene, ii) méthode basée image, iii) méthode basée sur des points
caractéristiques.

A la fin de cette partie, nous présentons aussi la reconstruction basées silhouettes. Cette
méthode, déja utilisée chez XDProduction, est 'une des techniques exploitées dans le pro-
jet RECOVERSD. Les silhouettes sont représentées par un masque binaire. Ce masque
représente la projection des points des objets a reconstruire. La distinction des objets de
I'arriere plan de la scéne est obtenue par I'exploitation du fond uni du studio chromakey
utilisé pour lors de I'acquisition des vues. L'ensemble des pixels blancs du masque forme
la silhouette de ces objets. A partir de celles-ci , une estimation de I'enveloppe visuelle
est réalisée pour reconstruire les objets. L'enveloppe visuelle d’un objet est 'ensemble des
points 3D de I'espace scénique qui se projettent dans toutes les silhouettes représentant
I'objet. Il existe deux approches pour réaliser cette estimation : I'approche « surfacique »,
qui consiste a construire la surface de l'intersection des cones des silhouettes et I'approche
« volumique », qui consiste a identifier par vérification les voxels qui se projettent dans
toutes les silhouettes.
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Dans le projet nous écartons la premiere au bénéfice de laaeenafin de garder le
méme type de représentation volumique entre nos différentes méthodes de reconstruction.
Pour conclure, nous proposons de regrouper ces approches en trois catégories : i) les méth-
odes de stéréovision guidée par I'enveloppe visuelle; ii) les méthodes collaboratives appli-
quant simultanément des critéres issus de ces deux méthodes; iii) les techniques fusionnant
uniquement les résultats aprés une application séparée de ces deux méthodes. Les méth-
odes de la premiere catégorie exploitent les informations issues de I'enveloppe visuelle afin
d’améliorer les résultats obtenus par une technique de stéréovision; Tandis que celles de la
2éme catégorie exploitent des méthodes de déformation comme les snakes, en les contraig-
nants avec les informations issues de la reconstruction basée silhouettes et basée stéréovi-
sion. Les méthodes de la derniere catégorie reconstruisent indépendamment la scene avec
chacune de ces deux approches et fusionnent ensuite uniqguement leurs résultats.



Chapter 3

M ulti-baseline stereovision framework

In this chapter, we present the multi-baseline stereovision framework that we developed
for RECOVER3D. In section 3.1, we describe our proposition and contributions. In section
3.2, we give an overview of the method algorithm and introduce the basic conceyat-of
teriality mapthat provides the probability of disparity space 3D samples of lying on actual
surface(s). We present in section 3.3 our scene space sampling scheme based on disparity
space [60] and its 3D samples that we ¢athet points. In sections 3.4, 3.5, and 3.6, we
explain the attributes provided for each target point: similarity, confidence, and visibility. In
section 3.7, we define the energy function using these attributes. In section 3.8 we describe
how to optimize the energy function while in section 3.9 we develop the basic algorithm of
the optimization engine. The last step of the methaa, extraction of the reconstructed
surface from the scene space, is presented in section 3.10. Finally, we show and discuss
experimental results.

3.1 Introduction

While binocular stereovision enables to estimate depth [60] [37], adding more images
leads to more robust and accurate 3D reconstruction thanks to information redundancy like
described by Niquin et al. [51]. Unfortunately, the matching process becomes more com-
plex and still lacks some robustness in regions either untextured, regularly textured, and/or
totally occluded. Thus, the main difficulties are occlusions, changes in appearance, and
ambiguities. The trade-off between easily finding correspondences (which favors camera
layouts with narrow baselines) and accuracy (which is more robust in case of a wide base-
line) has been alleviated using multi-baseline camera settings as illustrated by Okutomi et al.
[52]. Classical solutions for 3D reconstruction from multi-baseline stereovision are image-
based methods as we mentioned in the section 2.2.3. They consist in matching algorithms
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that aim at finding homologous pixels, in different imagesjolirepresent the same 3D
point in the scene. While the matching process relies on photo-consistency evaluation, this
often fails to handle untextured areas or repeated texture. In this chapter, we describe a
novel framework for multi-baseline stereovision exploiting the information redundancy to
deal with known problems related to occluded regions. Inputs are multiple images shot or
rectified in simplified geometry, which allows a convenient sampling scheme of scene space:
the disparity space as described by Scharstein et al. [60].

3.1.1 Contributions

In this chapter, we propose a novel framework for multi-baseline stereovision exploiting
the visual information redundancy to deal with known problems related to occluded regions.
Our main contributions are to propose and build a new materiality map on the Disparity
Space (DS) laid as a 3D array; to optimize this map according to some proposed relevant
energy function and finally to use the optimized map to decide where the reconstructed sur-
faceslie in DS. Instead of uniquely relying on image-space information like most multi-view
stereovision methods, we work directly in this discretized scene space. We use visibility rea-
soning and pixel neighborhood similarity measures in order to optimize a 3D discrete map
of materiality yielding precise reconstruction even in semi occluded regions. The mate-
riality map holds, for each 3D sample point, its probability about belonging to the scene
surface(s). Traditional multi-stereovision methods that depend only on RGB information
have some difficulties to solve the problem of ambiguity occuring in occluded regions. This
is the reason why the idea of using the materiality map is important, relying on geometrical
information like visibility of 3D point and RGB information in order to optimize materiality
map.

3.2 Overview of algorithm

Our framework aims at solving the problem of 3D reconstruction from multiple cameras
in equidistant multi-baseline layout that implies fully simplified multi-epipolar geometry as
shown in the section 2.1.3.2. Our algorithm works with- 2 imagesJj(nc,nr) as inputs
wherenc andnr are respectively the common height and width of the image. In the RE-
COVERS3D project, we use four cameras=i) but the proposed framework is designed
for a more generic assumption > 2). Our approach defines the useful natural scene space
as the discrete Disparity Space DS, a set of 3D sample points that we call target points. In
DS, a target point is defined by the intersection of pigrwith constant integral disparity
& with the ray that goes through a pixe| = (u;,v;)! of any imagd as illustrated in Figure
3.2. Hence, each target point may be indexed by a disparity spacetind@nt, ) giving
the indexm of the pixel on whicht projects in a chosen reference image (here, we have
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chosen,es = 0) and the integer dispariy associated to its constant depth plane. We want

to mention thafl refers to a target point in space whereastthiector contains its coordi-
nates in DS. A materiality map is defined on DS, as a 3D array containing the likelihood
for every sample of its existence on the reconstructed surface. This materiality map allows
deriving a visibility function, defined in detail in section 3.6, that answers two questions:

* “Is atarget point inside the frustum of every image?": this detects semi-occlusion that
identifies target points certainly not to be seen in every view because they lie out of
some view frustum(s).

* “do two target points lie on the same ray of an image?": this detects total occlusion.
The visibility function checks materiality values of each potential occluder, looking
for downstream (closer to the camera) material target points on the same ray.

Target points are then given some attributes: a materiality $dtire [0, 1], visibility scores
Vi(t) € [0,1] for each image derived from semi-occlusion and occluders materialities (see
section 3.6), and pre-computed neighborhood similarity sq@yés < [0,1] for each image
couple(i, j) in a given set.

Figure 3.1 shows our framework pipeline that consists of the following principal different
steps:

* Initialization: the scene is discretized to yield the effective scene space. The method
then computes the similarities (see section 3.4) and confidence (see section 3.5) for
each target point as described in section 3.4. It derives the initial materiality scores
from those image based information.

» Materiality map optimization: After initializing the attributes of target points, opti-
mization of the 3D discrete materiality map is driven by an iterative gradient descent
algorithm that minimizes a global energy term (see section 3.7) thanks to an iteration
of successive back and forth passes over disparity planes. The gradient of energy func-
tion E is computed from fadn, to neardy wheredy, anddy refer to constant disparity
planes respectively of minimum and maximum integer disparity values. The material-
ity map is then adjusted and visibilities, are updated for each target point from near to
far. The energy function is composed of a "data" term built from similarities, visibil-
ities, and materiality scores of each target point and a "smoothness" term promoting
desirable geometrical properties of the solution. This will be developed in section 3.7.

 Final materiality decision: once the optimization process reaches a pre-defined cri-
terion (number of passes, cost gain threshold,...), some proposed final materiality de-
cision method is applied to binarize materiality values and thus extract object surfaces
(see section 3.10).
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Fig. 3.1 Approach overview: pipeline of the proposed maligyienap framework.

3.3 Scene space sampling scheme

Contrarily to image-based approaches, the useful space defined by target points ex-
presses directly the solution domain where the scene can be reconstructed. Thanks to sim-
plified multiscopic geometry, the target points, defined as the intersections between pixel
rays from different cameras, lie on several planes of constant depths associated with integer
disparities. The target points are inside the union of each camera frustum and are projected
in every image frame on integer coordinates points (precisely on a pixel if inside this image
frustum) (see figure 3.2). The idea in this chapter is inspired by the proposition of Niquin
et al. [51] that aggregates homologous pixels over all images in a structure celtet
which is very closely related to our target points. Let’'s supposeages taken from differ-
ent equidistant viewpoints laid in simplified geometry as described in section 2.1.3.2(e.g.,
epipolar pairs are horizontal scanlines of same rank, and disparity fé&;toirstroduced in
the section 2.1.3.2 are of simplest expressipr i)). The visible scene surfaces are sup-
posed to be contained into a limited interval lying between two constant disparity planes of
integer disparity valueRy,, dv]. A target point is defined as the intersection of pixel rays
of different images (see figure 3.2). The indexin reference image domaih,, and the
integer disparityd describe the target poittying at depthfb/d on the optical ray of image
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Fig. 3.2 Set of target points in frustum: an efficient discret®nstruction space within DS.

iref @ssociated to pixeh. Each target poirttis then identified thanks to the integer disparity

d indexing its constant depth plane and the integer coordimate§its projection on the
frame of a reference imadg,,. A target pointt projects on the imagek andJ; respec-
tively atm; = (u;,vi)' andmj = (uj,vj = v;)'. As we described in section 2.1.3.2, knowing
that the optical centers are equidistant, the multi-simplifed epipolar geometry provides an
efficient way to compute the disparity between two pixels as follows:

Bij=j—1 & mj=mi+(i—j)o.u. (3.1)

Furthermore, given target poirtts= (mt, )t andt’ = (m", &’)! located on the same ray (see
figure 3.2) emitted through imadeand the projections; of t/, t in imagei, the pixelm;
can be written as follows:

Thank to equation 3.2, we defihg(t, &) yielding the target point’ of disparityd’ usingt:
i

hi(t,8)=t' = (m'+ (8 - 8)i.ut,8)' =t+(8'=3) | 0 (3.3)
1

Let’s now discuss of the choice gf¢ which is not obvious. As left part of equation 3.2
shows, target pointmt, 5)! projects on imagé at mj = m + (it —i)0.u . In order to
keep both target point and pixel coordinates as integer valg®)! ¢ Z3 andm; € Z?2,
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iref has to remain irZ. Considering actual geometrical properties of the disparity space
(DS) in scene space, it should be useful to propose a symmetrical sampling scheme without
lateral skew. As DS is built from optical rays of camexa, this implies thai,.s should

be the index of a camera set at the center of the multiscopic unit described in section 1.3.1
(iref = (Nn—1)/2). These two conditions{k € Z, iretf = (n—1)/2) are jointly fulfilled

for odd numbers of cameras. However, in the RECOVER3D project, this numbef
cameras is even (four) and the "central camera" is virtu@hasl) /2 ¢ 7Z. We thus choose

iref = O for coding efficiency but remain aware of the necessity of switching to more central
assumption if geometry becomes crucial. The efficiency of the proposed scene sampling
scheme lies in its ability to strictly avoid partially occluded points as samples lie precisely
on genuine optical rays associated to image pixels.

3.4 Similarity evaluation

Usually, in scene-based stereovision, the photo-consistency is defined as the similar-
ity of the pixels which represent the projections of a 3D point in the images. Whereas in
window matching-based stereovision, for each pirek (u;,v;) of imageJ;, the method
chooses its homologuaj = (uj,vj = Vj) in imageJ; according to aggregated matching
scoresAM(mj, mj) within a same neighborhodd of both pixels as described in Equation
2.39. We distinguish two groups of matching measure between pixels in binocular stere-
ovision. The first group is based on a similarity function as NCC described in the section
2.2.2.2. The best matching score corresponds to the maximum value of these functions. The
second group is based on a dissimilarity function like SSD, SAD described in the section
2.2.2.2. In contrast to the first group, the minimum value of dissimilarity function represents
the best matching score.
In this section, we will describe the methodology used to assign unit similarity scores
pij(t) € [0,1] to a target point for various couples of imagé€s j) from aggregated match-
ing scores using either similarity function or dissimilarity function. In sections 3.4.1, 3.4.2,
and 3.4.3, we will illustrate the general equation and concept to compute those scores. Im-
provement on similarity measurement is mentioned in sections 3.4.4, 3.4.5, and 3.4.7. At
the end of this section, we evaluate different methods for similarity computing in order to
integrate the best of them in our framework.

3.4.1 Set of similarity scores for each sample

In order to take into account the occlusion problem in a multi-baseline stereo context,
much work has been proposed using similarity/dissimilarity measures based on RGB in-
formation. Okutomi et al. [52] propose to use both narrow and wide baselines from a set
of cameras placed on a straight line with parallel optical axes. Their matching technique
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is based on the idea that global mismatches can be reducedimgalle sum of squared
difference (SSD) values from multiple stereo pairs, that is, SSD values are computed first
for each pair of stereo images. The resulting SSD functions from all stereo pairs are added
together to produce the sum of SSD, which they called SSSD. However, this method fails to
deal with semi-occluded objects and it does not take into account the visibility reasoning de-
scribed in section 3.2. Kang et al. [32] explicitly address occlusion in multi-baseline stereo.
For each pixel of the reference view, a subset of the cameras with the best matching scores is
selected under the assumption that the pixel may be occluded in the other images. Whereas
Niquin et al. [51] proposed to aggregate corresponding pixels over all images in a structure
calledmatch. Thanks to the definition of these "matches”, the similarities of mismatching
pixels are not integrated into the energy function used by [51].

While these approaches depend only on photometric matching to handle the occlusion prob-
lem, they are sensitive to shooting and lighting settings. As mentioned previously, our
framework uses both RGB and geometry information, therefore our method does not de-
pend only on similarity computation to deal with occlusion zones.

Beside, within our framework, the similarity scores are computed for & séfpairs of
images that we propose to choose either as "every image couple" as in equation (3.5) or
"consecutive images" as in equation (3.4):

r={(,i+1) | ie[o,n-1[}, (3.4)

or
r={(i,j) | ieo,n—1fjefi+1,n[}. (3.5)

We found in experimental results that computing similarity scgrgd)over every pair of
images may emphasize ambiguities due to the usual fact that local illumination deviation
between images grows with baseline width and, as such, with image indices diff¢rence
Whereas computing;; (t) over pairs of consecutive images yields more robust results and
is thus usually chosen for our experiments.

The setr of image pairs from which similarity scores will be computed being known, the
next section describes the similarity measggét) for a target point overi andj images.

3.4.2 Generic equation for similarity score

The optimization process that will be described in the section 3.9, uses unit similarity
scoresgjj (t) € [0,1] increasing with the likeness of pixels associated ito imagesi and
J. Those similarity scores are computed from aggregated matching measures using either
similarity or dissimilarity functions. We define a functiénto scale aggregated matching
score into unit similarity score. Two kinds of scaling functinan be exploited depending
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on the chosen matching function described in section 2.22o2der to represent the best
scores by the value 1.

The first kind concerns increasing functions (likeJ&g (t) = (1+tanh(At))/2 shown in

figure 3.3) used to scale aggregated similarity scores (SSD, SAD,..).

The second consists of decreasing functions scaling aggregated dissimilarity scores (SCC,
NCC....) (like asDSq (t) = 2~/ shown in figure 3.4).

Alike for different matching methods, computing unit similarity scopggt) implies sev-

eral choices that reinforce the flexibility of our framework concerning its main components:
matching function, aggregation support, normalizing factor, and scaling functions (see equa-
tion 3.6).

piy (1) =8 (msy' (1)) (3.6)
with:
S MS(Ji[mi+v],Jj[mj +V]) wij (t,v, W)
Vewmi.mj

with:

Wij weight function applied to each neighbor farj) couple

S scaling function (see figures 3.4, 3.3)

W, N, M8 other notations borrowed from equation 2.39

Vke{i,j} (mg,0) =hg(t,0)< mg=m-—Kkdou
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Fig. 3.3 Normalized increasing functidi$, (t) = (1+tanh(At))/2 to scale similarity
scores.
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Fig. 3.4 Normalized decreasing functiq k(t) = 2-(t/td)" tg scale dissimilarity scores.

The generic equation 3.6 is used to compute similarity scores. In our method, the match-
ing scoreMs§ can be the squared difference, absolute difference, or multiplication of cen-
tered intensity values. Aggregation consists of summing the matching scores over windows
W of size[Width,Height. The scaling functio§ shifts all the values into the rand@,1].

In order to use adaptive windows to enhance similarity scores, some weight fuwgtisn
applied on windows¥V as we will see in section 3.4.5. Computing unit similarity scores
thanks to Equation 3.6 permits to choose various options different types of matching cost as
described in section 3.4.3.

3.4.3 Non adaptive flat windows

We firstly propose to compute the similarity scores for a target pbiimt a simple
way without considering any improvementsrnp neighbors selection (remindam; is the
projection of the target poiritin the image). As described in section 3.4.1, a target point
is given similarity scoreg;j over pairs of image$i, j) € r using equation 3.4. Figure 3.5
shows an example of the behavior of similarity function, here applied on scanline 144 using
four Tsukuba images (source: web site of Middlebury University to stereovision [61]). We
developed our framework in a flexible way to permit to test different options for each of
its main components including matching score functions. Using the equation 3.6, similarity
scoregpjj (t) are computed without adaptive support weight for matching score aggregation
(wij (t, W) =1). According to the choice of matching scav&S, a decreasing or increasing
scaling functions is used as illustrated in table 3.1. The figure 3.5 shows one slice of
disparity space containing similarity computation for target points over three pairs of images.
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| Wit W) | N(t, W) | MS(a,b) | S \
SAD 1 s 1 [a—b[ | (*) DSax(t)
veWmi‘mj
SSD 1 s 1 (a—b)? | (*) DSqx(t)
VEWm; m;
NCC 1 <I‘Ik e{i,j} Wz (Tx[mg+ V] — ak)2> axb (**) I8 k(1)
with ay = meglmjewmi’mj Ik [mk +V]

(*) DSax(t) =2 M =l A k=12 A ="92

() 98, k(t) = (1+tanh(At))/2,A =1,2,...
Table 3.1 SAD, SAD, or NCC definition by components of the function described in the
equation 3.6.

We refer topps, P12, and pe3 by the red, green, and blue colors respectively. Therefore,
the target point with white color means that it is seen by the three pairs of images with
similarity scores higher than 0. We note that computing similarity using SSD and SAD
provides an initial description of the reconstructed surface more robust and reliable than
when using NCC (white zone in the figure 3.5). The final scores of similarity function
will be between [0,1], where 1 represents the best score. We will call in the next sections
the results of similarity evaluation on target poirds similarities attributes regardless of
whether they have been calculated using similarity or dissimilarity functions. We can notice
that the way of computing the similarity described in this section is the same as a traditional
multi-baseline method. However, our framework uses these similarity attripgytésin a
scene-based rather than image-based method, in order to improve and refine the materiality
map as we will see in the next sections. In addition, we propose to optimize the similarity
computation by using both the adapted window concept (see sections 3.4.4 and 3.4.5) and a
post-processing correction approach (see section 3.4.7).

3.4.4 Separate windows

One common issue in dissimilarity/similarity evaluation consists of tackling image areas
with large depth gaps. The origin of this problem is that the window matching considers the
whole neighborhood into account while it may contain pixels of different depth. Kang et
al. [32] propose to work with shiftable windows. The basic idea of shiftable windows is
to keep the best matching score among several windows that include the pixel of interest
instead of only the usual one centered at that pixel. This approach can improve the matching
of foreground objects near depth discontinuities. In our framework, we use this idea and
propose to separate the matching windows into two sub-windows (LgfR{ght (R)), or
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b,

(d) NCC

R

N

Fig. 3.5 Sample of slice through a 3D disparity space: a) Original Tsukuba image with
highlight on scanline 144 (source: [61]). b,c,d) similarity scores for epipolar plane 144 using
four Tsukuba images with disparity range [0,21] using SSD, SAD, and NCC respectively
with centered window of size of 13x9. Red, green, and blue colors represent respectively
similarities computingog 1(t), p12(t), andp23(t) over pairs of image$0,1), (1,2), and

(2,3).
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four sub-windows (Up-RightyR), Up-Left UL), Down-Right (DR), and Up-LeftYL))
according to the centered pixel (see figure 3.6) that we call (SP2) and (SP4) respectively.
The maximum similarity computed from those sub-windows is then chosen as the target
point similarity pjj (t).

For SP2 method: pij (t) = max(S(mg’ (t)),8(ms " (1)) (3.7)
with:
. th .
W, Wy of size + 1 x Height
For SP4 method: pjj(t) = max(S(m%’VUL(t)),S(msijDR(t)), (3.8)
S(ms;UR(1)), S(mgy (1)), |
with:

'Width F1x Height
2
Figure 3.7 shows the similarity behavior computation for the scanline 89 of a set of four
Tsukuba images (source: web site of Middlebury University to stereovision [61]) with and
without separate windows. In this figure, we have chosen the target panmdexed by
(m(139,89Y),9) : & € [0,21] where the projectiom = (u= 139,v = 89) with respect the
reference image is located at the edge of blue box object as shown in figure 3.7a. The
matching windowW aroundm contains then pixels with different depths. The figure 3.7a
shows that the best similarity target points is calculated at the dis@ea#ity for the pixelm.
According to the ground truth, the actual 3D point corresponding to piXeds at disparity
0 = 6 instead ofd = 5. Figure 3.7b shows the advantage of using separate windows. The
best similarity for the pixei is computed at the dispariy= 6. That is to say;n now has
a correct disparity.

Wru, Wip,Wku, Wrp rectangle windows of size +1

3.4.5 Weighted windows

In contrast to the idea that the global stereovision methods, such as graph cuts [39] or
belief propagation [70], always provide better results than local methods, Yoon and Kweon
proposed an alternative one called adaptive support weight [83]. Their approach is classi-
fied as a local method described in section 2.2.2.3 and yields results close to those of global
methods as discussed in section 2.2.2. The effectiveness of their technique is due to the
aggregation of large support-window sizes and to neighbors weight that adapts according to
similarity and distance to the central pixel in the support window.
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Fig. 3.6 Comparison of centered window and both SP2 and SP4atepaindows ap-
proaches.

We rewrite their technique using bilateral filtering described in [54] for an image processing
technigue smoothing images while preserving edges. It can be based on the Gaussian ker-
nel. Contrary to Gaussian filtering, the bilateral filtering depends not only on the euclidean
distance of pixels, but also on their color distance. This method handles depth differences
through the assumption that close pixels of similar colors should have high probabilities to
belong to the same object. It is thus to weight neighbor values according to the product
of Gaussian of their spatial and colors distances to the studied pixel. One should note that,
while spatial distance is common to all images, result of color distance computing may be
modified over several images. We chose to compute the color weight using a Gaussian
function applied to color distance of neighbor and central pixel. This color weight is com-
puted for both implied image@, j) and we keep the maximum value in order to penalize
neighbors in matching window with low similarity to central pixel in one image and high
similarity in the other image.

Like separate window method, the weighted window approach based on bilateral filtering is
able to assign the correct disparity to the pixek (139,89 as illustrated in figure 3.7. We

can integrate the weight based on bilateral filtering into the generic equation for similarities
measurement with the following weight using non normalized gaussian functions without
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any overall error according to the global normalizing factor

W(t, v, W) = G, (V) * MaKe i, 3 G (/| Ik[Mi + V] = T [mi] ||
N(t,W) = Zw(t,v, W)
Y ) (3.9)

With: Gs(x) = exp( ZXUZ)

Oe, Os: respectively, color and spatial standard deviations.

3.4.6 Evaluation and choice

To evaluate the different methods for similarity computing, the web site of Middlebury
University to stereovision [61] provides different datasets (Tsukuba, Teddy, Cones,....) iden-
tifying the discontinuities regions where there is a sudden change in the depth between
objects (see figure 3.10). We run different methods of similarity computing (non adaptive
flat windows (NAFW), separate windows (SP2), separate windows (SP4), and weighted
windows (WW)) over three datasets. We compare the results against the ground truth (see
Table 3.2) considering only the discontinuity regions and the following measures proposed
in [60]:

* The Root-Mean-Squared (RMS) error is computed between the disparit{sreapd

its ground trutHDigt by the following formula:

1 a o)
RMS= ( 53 (IDi(m)— DF(m)})? ), (3.10)
m
whereN is the total number of pixels in the image.
» The Percentage of Bad Matching (PBM) pixels provides the percentage of mismatch-

ing pixels between two disparity maps using the following formula:
1
PBM = Scard{m | |Di(m) =D (m)| > Gnreshold } (3.11)

whereN is the total number of pixels in an image, adgesholqiS the threshold for
evaluating bad matched pixels (usuadyreshoig= 1.0).

Table 3.2 compares each discussed approach for window matching using RMS error
and PBM measures on three datasets: Tsukuba, Teddy, and Cones. In order to facilitate the
interpretation, we propose in the table 3.3 to normalize the values derived from RMS and
PBM measures for each dataset dividing on the minimum values through different window-
ing approaches. The figures 3.8 and 3.9 illustrate these normalized values. We can note
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m (139, 89)

u
> I

(b) SSD

u

S —— e ——————

—139,v= 89,5 = 6)

—139,v=289,5 = 6)

Fig. 3.7 Evaluation of different similarity methods using only one image pair (0,1) to fa-
cilitate the visual comparison: a) Original Tsukuba image with highlight on scanline 89
source:[61], b, c, d) similarity scom, 1 for the image pair (0,1) using SSD, SP4, NV
methods with a disparity range of [0,21] and a matching windows size of 13x9.
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Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM
NAFW 44,9889 0.6025 17.9101 0.9128 21.8976 0.7766
SP2 43.8937 0.4273 16.8235 0.9056 19.47: 0.7687
SP4 38.1254 0.3124 15.6237 0.9032 18.8269 0.7719
wwi 38.0951 0.3437 51.3073 0.9690 18.4480 0.7847
WW? 44.3099 0.5528 17.9802 0.9146 22.7746 0.7778

Table 3.2 Comparing grounds truth against Tsukuba, Teddy,Games in discontinuity
regions using different methods: Non Adaptive Flat Windows (NAFW), Separate Windows
(L, R) (SP2), Separate Windows (LUD, RU, RD) (SP4), Weighted Windows(1)\{\W!)

with o5 = 3 andge = 0.05, and Weighted Windows(2Y\W?) with 0s = 6 andge = 0.2.

The results are obtained using a matching window size of 13x9 for each dataset.

Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM
NAFW 1,1809 1,928 1,1463 1,0106 1,1869 1,0102
SP2 1,1522 1,3677 1,0767 1,0026 1,055¢ 1.0
SP4 1,0007 1.0 1.0 1.0 1,0205 1.0004
wwl 1 1.1001 3.2839 1.0728 1.0 1.0208
WW?2 1.1631 1.7695 1.1508 1.0126 1.2345 1.0118

Table 3.3 Normalized results computed from Table 3.2 for elathset and for each measure
dividing by the minimum value for the different methods on this dataset.

that the SP4 method provides better results than other approaches over the three datasets.
Furthermore, by comparing the result&/8W! andWW?, we note that one of the problems

of WW method is the choice of the best valuessgfind oe over different datasets. For this
reason, the SP4 method is used in our framework to compute the similarities for each target
point.

3.4.7 Similarity correction

The goal of the similarity correction is to provide more reliable similarity scores. Fig-
ure 3.11 shows the similarity scores illustrated in figure 3.5 with and without correction for
the scanline 144 of Tsukuba images. We notice that, using a scaling fusctiescribed
in Table 3.1 with low value ofd (first column), reduces similarities both in mismatching
ambiguities areas (red rectangle in figure 3.11) and in some trust zones (green rectangle
in second column of figure 3.11). Therefore, we propose the similarity correction concept
in order to try and penalize mismatching similarities while maintaining the other zones as
shown in yellow rectangle in the third column of figure 3.11.
To realize this correction, we propose to check out each similarity ggpfer each target
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Fig. 3.9 Graph flowing normalized results derived from Table 3.3 applying RMS error.
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(@)

Fig. 3.10 a, b, ¢) Regions near depth discontinuities, occluded and border, and other regions
are indicated respectively by white, black, and gray color for Tsukuba, Teddy, and Cones
datasets, source:[61].

pointt according to best scores over rays of biofimd j images passing throudhlf pjj (t)
represents the maximum similarity score on one of these rays, the targetgbeinias high
probability to be one of the reconstructed points. We thus normalize the similarity scores
pij (t) according the lower of the maximum of similarity scopggt’) over respectivelyan

j rays passing through(t’ € ray(t), k €, j). In order to carry out the similarity correc-
tion for the pair of image$§; andJj, we first check the maximum similarity values through
rayi(t) andray;j(t). The minimum of the two maximum values is then used to normalize
pij (t). The whole correction yielding the normalized similarity scprgt) is expressed as
follows:

pij (1)
mir\(e{i,j} (ma)%’ (pij (hk(t7 5/))))

The results in Figure 3.11 show the importance of this approach to refine the similarity
scores and reduce the ambiguities similarities zones.

pi (t) = (3.12)

3.5 Confidence

One acknowledged problem in stereovision is associated to textureless regions. Pixels
in a textureless zone are subject to bad matches in many stereo matching methods. This
section will explain how we evaluate if the matching window is textured or not at similarity
computation step and how we quantify this evaluation in the confidence score in order to
reduce the influence of textureless zones in the materiality map optimization.

When the similarity score is computed through the matching windows, the varieances ™) (Tk, M)
of each of these windows are computed with:

2
var¥(7,m) = meaRcyw (3[”‘ +v]—moy" (3, m)) ’ (3.13)

with: moy"(J,m) = mearey (I[M+V)).
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Fig. 3.11 Sample slice through a 3D disparity space: sinylatores with and without
similarity correction for scanline 144 using four Tsukuba images with a disparity range
[0,21] using the scaling functio®§, \(t) = 2-t/d)* K — 1: wheretd is between 1 and

9 according to the first column. The red, green, and blue colors represent respgmgively
P12, andpzs.
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(c) Confidence

Fig. 3.12 a) Original Tsukuba image with highlight on scanline 144, b) similarity scores
for scanline 144 with disparity range [0,21], c) Confidence scores for scanline 144: white
points refer to high confidences values.

Our method assigns to each target point a confidence sodjjefor each pair of images
(i, j) € r (reminder :r is a set of pairs of images and is defined in section 3.4.1) using the
variances as described in equation 3.14

varM
cnfij(t) = 8(varM) <varm) ,

with varM = max; jyvar® (Jy, my), (3.14)
varm= minc jyvar"’ (Jx, my),
8(t) = (1+tanh(At))/2, A =1,2,...
Figure 3.12 shows the minimum confidence score (min cnf;j(t)) for the target points
for Tsukuba image scanline 144. Green rectangles outline the areas with low confidence.

In the zone which represents the lamp object, the confidence score indicates that the target
points lie on a textureless zone.
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3.6 Visibility function

In this section, we describe the visibility score for each target point thanks to the efficient
definition of the scene space geometry described in section 3.3. Our visibility definition is
close to the visibility function demonstrated by Szeliski et al. [74], which uses a recur-
sive front-to-back algorithm to build a visibility map. This method targets natural matting,
segmenting foreground from background without any special color screen. This visibility
function proposed by [74] is re-used by Kang et al. [33] in order to handle occlusions. From
a collection of images, this method computes multiple depth maps simultaneously and ex-
plicitly models the visibility map. This map is used by an energy function in order to weight
the correlation scores. In this section, we adapt the visibility function proposed by [74] to
our framework in order to evaluate, for each target phiits visibility scores in each image.

This evaluation permits to handle total occlusion and semi-occlusion illustrated in section
3.2. The proposed scene sampling scheme easily answers the two questions asked in section
3.2

» The question "(a) is a target point inside the frustum of every image?" by verifying
if the abscissa of the target point projection on the image plane lies in the scanline
domain (its ordinate mandatorily lies in image column domain as target points are
located on genuine epipolar planes).

» The question "(b) do two target points lie on the same ray of an image? " by taking
into account the materiality of each downstream target point (with higher disparity)
on the same ray. Downstream target point$ of imagei (as introduced in section
3.3), are identified a8 = h;(t,d) : {0’ > d,(m=m'+ (8 —9)i.u,d")}.

The visibilitiesV;(m, &) on the nearest plan@® = dv) are set to 1 for all the target points

in frustum of cameraand O for all other target points.

For the visibility termV;(m, &) on other disparity plane® < du) , a recursive formula is

then defined considering the non-materiality of the downstream target points. That is to say,
the visibility Vi(m, d) = 0, if there is a target poirit = (m, d’) located in the disparity plane

0’ > d and passed through raay; (t) and its materialityu[t] = 1. The visibility function of

[74] can be expressed in our framework as follows:

Vi(m,dm) =Fr(m—idy.u)

(3.15)
v& <om Vi(t) =Vi(h(t,8+1))(1- plhi(t,6+1)])
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with:
Fr(x)y=1 if xe W=10,nc[or O otherwise

The recursive equation 3.15 may be derived as follows:

Om
V8 € [om dul Vi(t) = Fr(h(t,0). [] (1-pulh(t.8)]) (3.16)

5'=0+1

with

Fr(x) 1 if xe W=10,nc|
~ |0 otherwise

Using this visibility definition, we propose a method to compute the target point visibility
scores from fady, to neardy disparity plans using Equation 3.15 and as illustrated in the
Algorithm 4. We call this method "Far-Near method".

Algorithm 4: Visibility computing for a target poirtt= ((u,v),d)"
if disparity is max(d == dv) then

foreachimage ido
if u—id € [0,nc[thenV;(t) = 1;

| elseVi(t)=0;

else
foreachimage ido
i
Vi(t) = (1—pult')«Vi(t) t'=t+ ( 0 ) =hj(t,0+1)
1

3.7 Energy function

The optimization process relies upon an energy function defined on the materiality map
U using, classically, two terms illustrated in equation 3.17. The first term "data" penalizes
inconsistencies between current solution and actual data (images). The second term "prop-
erties” penalizes undesirable properties of the current map. In our implementation, this term
is composed of density and thickness energies. The energy fuliGigya (1) is written as
follows:

Eglobal(“) = Eqata(1) + Eprop(H) (3.17)
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The data ternfegai4(11) cOmpares image and scene geometry content of the current solution.
Eqata(1) = ) C(U[t],V(t), p(1)) (3.18)
t

with:

C(u,V.p)= 3 T(ViViupi) (3.19)

(i,])er

The data term sums for each target point some cost function increasing for each pair of
images(i, j) € r with the inconsistency between the target point materiality and visibilities
on one side and its similarity scores on the other side. The underlying idea is that high
similarity scores for a target point should be explained, at least in textured areas, by high
materiality and high visibilities in the implied images. As every implied score is hormalized,
this term described in equation 3.18 penalizes the inconsistency between similarity scores
and product of materiality by related visibilities using some penalty funcXicmb).

The penalty functior (a,b) penalizes the discrepancy betweeandb. According to
the equation 3.19is considered as the reference value indicating whetbould be high
or low. This penalty can be expressed as the squared diffeterieeb) as follows:

Lo(a,b) = (a—b)? (3.20)

However, such function restrains the saturatiomaf b is not saturated, as illustrated in
Figure 3.14, which is not convenient. Another "anti-correlation" function likel@ga,b)
can be considered as the penalty functigia,b) and is written as follows:
1 1

AC(a,b) =—(a— 5)(b—§) (3.22)
This function always pulla towards saturation. HowevetC(a,b) will also tend to saturate
a even for close to averadevalues as illustrated in Figure 3.13. Therefore, we propose to
apply a function combining the advantages of the precedent .A@#a,b) and £,(a,b).
This function is considered as a weighted sumA@i(a,b) and £»(a,b) as illustrated in
Equation 3.22 and Figure 3.15, whepand( are the weights.

Tou (b) = @Lo(ab) + YAC(aD) = gla-bP - pla-)b-3)  (322)
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Therefore, the equation 3.19 can be written using 3.22 assl|

2 1 1
C(u,V.p)=5 @ (ViViu—pij)” —2¢. (ViVjIJ — 5) (Pij - 5) (3.23)
(i,])er
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Fig. 3.13 Behavior of penalty functioAC(a,b) according to variable for various reference
valuesb.

The properties tern&prop(u) described in the equation 3.17 is a weighted sum of two

terms:

Eprop(H) = aEdensit)(“) + BEthicknesé M), (3.24)
wherea, 3 are weighting factors '

* Egensiy( 1) tends to align the overall sum of materiality scores with the average num-
ber of target points in one constant disparity plane, approximately corresponding to
the reconstruction of one coherent frontal surface of the scene in the cameras frus-
tums (see Equation 3.25). This global cost is spread uniformly on each target point

for gradient computation. Thgensity 1) iS written as follows:

2
(3r0- 5%

Edensit;(ll) = card(DS) , (3.25)

where card(DS) is the total number of target points in DS.
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Fig. 3.15 Behavior of penalty functidgh(a,b) = £»(a,b) +.AC(a,b) according to variable
afor various reference valués
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* Enicknesé M) penalizes thick material areas as the expected solution is a frontal surface

that has to remain as thin as possible.The thickness energy leads to the best distribu-
tion of materiality through the domain. This energy thus aims to facilitate the final
step of our framework "Final materiality decision”, which binarizes materiality values,

as it helps reducing the number of target points with high materiality that doubtfully
belong to the reconstructed surface. The funclg(u) introduced in equation

3.26 can be expressed as:

EthickneséH) = > K[t [I(VH[)]? (3.26)
(t) au 2 au 2 au 2
(3) () (%)
The set of target points on which the materiality map is defined is both discrete and
bordered; thus the materiality values are available on a finite set of target points.
Therefore, we choose to work with a discrete approximation of the gradient of the
materiality map. The idea is typically to define the derivative components of the local
materiality gradient as symmetric finite differences rather than the usual continuous

derivatives. Therefore, while the set of target points is finite, the gradient computation
of the Ethicknesé M) €an be expressed as follows:

Ol ren — MU+l —plt’—u]
du [ ] - 2
VH[] =S %) = Mty (3.27)

Op e — M[U+da]—pt'—dy]+pt'+dp]—pt'—dy]
(35[ ] Z
1 0 2 1

with:u = 0 | ,v=| 1 |,di=| 0 |,d2=]| 0 (3.28)
0 0 1 1

In equation 3.28, the derivative with respectdamplies taking into account our
proposition to solve the problem of lateral skew of geometrical properties of Disparity
Space (DS) whenes = 0. This would lead tc% [t'] = “[t/+dl-5};“[t/’dl5] with dy 5 =

(15 0 1¥. Unfortunately these two implied point§+ d; 5 do not belong to DS.

We thus have to evaluate their materiality by interpolation of their nearest neighbors
of same disparity. For this reason, we apply the symmetric finite difference over two
couples of target points 4+ d; and,t’ &= d, to compute the derivative with respect to

0 according to a central point of view.

We can summarize our energy function as a sum of internal energy (density energy,

thickness energy) and external energy (the difference between the information derived from
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scene and that obtained from images) depending on unknovaegjoges of freedom which
are the materiality scores of the target points. To minimize the total energy, we use the
gradient descent method described in the following section.

3.8 Gradient descent based optimization

One of the simplest optimization algorithm for problems expressed as minimum energy
of a system with numerous degrees of freedom Y@®fQradient descent. The principle is
to start from a random point idof domain and to then move a small step in the direction
of the steepest slope of the energy according taltfe This steepest slope of the energy is
expressed by the energy gradient with respect taltdfe The norm of this gradient is the
local steepest slope, while its directionrdaf domain locally maximizes the energy increase
rate. By applying a number of iterations, the algorithm converges to a solution which is a
local minimum. Starting from a point close enough to optimum, this local minimum will be
global one.
In order to apply the gradient descent, we have to compute the energy derivative respective
to eachdof. For the external enerdiyata defined in section 3.7, we need to achieve the total
derivatives of Equation 3.23 with respect to all of the unknowns (the materiality scores). In
the algorithm, the materiality and visibilities will change during the process of optimization
while the similarities are computed in the initial step and kept constant afterwards.
We will define the total derivatives independently of the choice to the penalty function de-
scribed in Equation 3.22. This definition will be customized according to the chosen func-
tion.
We distinguish between two approaches to explain the derivatidiyfgy, local and global.
In naive thinking and without taking into account the efficiency of the scene geometry def-
inition, the local derivatived,;jEgata Of Egata With respect to one materiality scofet]
considers only direct expression of this score in the energy function. As such, its involve-
ment in visibility scores of upstream target points is ignored in local derivative. The global
derivatived,Eqata @dds these indirect implications through visibility scores. The local
and global derivatives dEyat5 are thus written as follows (in the following equations, we

simplify C(u[t], V(t), p(t)) = C(1) ):

OEgata(H) oc(t')dult’] de(1) as materiality scores
IEdata\l) _ - _ (3.29)
ault tZ ou duft] du  are independant unknowns,
dEgata(M)  9Egata(M) oe(t') dVi(t')

dull okl 22 oV aui #<0
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The materiality score dfis involved in visibility Vi computing for all their upstream target
points for image {hi(t,d')|d’ < d} (see equation 3.16). We propose then to compute the
global derivative ofEy4:5 cOnsidering two facts:

» The materiality computation is independent :

duft] Jo  ift#t
1 ift=t

 Vi(t') depends onu[t] only for upstream target pointse {hj(t,d’)|d’ < 8} of t on
ray;(t). As such, avi(t E]) will be zero for all other target points.

Using the two facts mentioned above, the global derivative&fgy, are described in the
equation 3.31.

dEgata(H) _ 0(3 (t, &) dVi(hi(t,8))
dult] +.z 0\7. duft

(3.31)
<o

According to equations 3.3 and 3.16, the upstream target point visibility may be written as:

Om
Vi(hi(t,8")) =Fr(hi(t,0)) [] (1—pufhi(t,8")]) (3.32)
5"=0"+1
As &’ < 9, it may be decomposed as:
Om o-1
Vithi(t,0") =Fr(hi(t,0)) [ @—phi(t,d"))A—puhit,8)]) [ @—plhit,o")])
. O"=d+1 ) 0"=0"+1
Vi(hi(t.5))
(3.33)
Ashi(t, ) =t, the equation 3.33 can be then simplified as follows:
Vi(hi(t, ') = |:| (t,3")]) (3.34)
5" 3+
The only term depending guit] in the above equation {4 — p[t]). As such
. (h: / —
W) _ v T (1t &) (3.35)
dU[t] ="+
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Using Equation 3.35, the global derivative Bfi;;a(see Equation 3.31) is then written as
follows:

dEaallt) _  9C() ¢ oe(hi(t,8)) T L s
G AU N e | I
dEgata(u) _ 9C(1) , J

- du<—vaoeT (3.36)
with :
. 0 0 = 0m
eIt = , (3.37)
{z&@0W$5” N3ty (- Hhi(t.8")]) &> 8y

This expression is still complex by the dependenceé’f on all upstream target points.
To facilitate the computatiofijt’i, the relation between the ter@9"' and its nearest up-
stream target poin@I™(-9-1! identifies a recursive expression derived in Equation 3.38.
To find this mathematical relation, instead of starting the sum operation in the equation 3.37
from &' < &, we begin withd’ < d — 1 and extract the value fa¥ = d — 1. We can then
get Equation 3.39:

9¢(hi(t,5— 1))

eIt = I
oe(hi(t,5')) 0-2 ) |
ra-phes-n) y PO T upeey) @39
§’<5 1 ! 0"'=0"+1 B
ejh.(t\,,—l)l

0C(hi(t,6 —1))
oV,

The equation 3.39 defines the recursive expression bet@@érand its nearest upstream

target point€I" (L0911  The recursive expression helps to find the global derivative effi-

ciently.

We want to remind the reader that the global derivatives defined in Equation 3.36 is generic

and does not depend on the choice of the penalty function. To customize this equation

according to the penalty function described in Equation 3.23, we compute the partial deriva-

tives with respect to the materiality and visibility as follows:

eoti — +(1— phi(t, 5 1)]).egno-D) (3:39)

Cu,V.p)= 5 T(UViVj,0ij)- (3.40)
(i.)er
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9C(u,V,p) T
= Y (UYL prg) ViV (3.41)
ou (i,%er\aa ~ -
=Dajj (1,V.p)
dC(ult], V(t),p(t
(ki (.)p())zu > ViDa;j(u,V,p), (3.42)
Vi ord(i, ]
J)er

with:

ord(i, j) = (min(i, ), max(, j)).

Algorithm 5: Computing derivative algorithm dEy44 fOr target point
Initialize the derivative resullr = du[t] using eq.3.41
if target pointt is located in the farthest disparity plardg, then
foreachimage numberdo
L et =0

else
foreachimage numberdo

Access to nearest upstream target ptiet h;(t, d — 1) according to image
ae(t

v

dr =dr—"V;(t)CJi(hi(t,0))

e3i(hi(t, 0)) = 250 + (1 )

As illustrated in section 3.7 the properties teBpop(H) is composed of two terms
Edensity( M) and Egnicknesé ). Therefore, to complete the computation of the derivative
global energy functiofigonal, We write firstly the derivative for density energy as follows:

dEdensitf ) 1 . card(DS)
duli “card(DS (tZ Hit= m) (849

Secondly, the derivative for thickness eneBj)icknesé ) is Written as follows

dEthickneséH) out'] N2 07 ut'] /
tdu—m - tZ <au[t] (VH[E)"+2pu[t] It vu[t]) (3.44)

withu=\] 0 |,v=| 1 |,di=| O |,do=| O
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gt = (ult)? =t
+pft—u] 2HLY) ' +u=t
u[t+u]d“ﬁ+u Nt —u=t
tult— ]a“ﬁv" It +v=t
u[t+v]‘9“ [t+v] It —v=t (3.45)
il ay e It fdp =t
St +dy) 205 Tt —di =t
Hault =g A dy =t
SRultrdg e Y- dp =t

Thanks to the global derivative &4t Which is described in Equation 3.36, we propose
to compute the derivative cost for each target point from far to near like described in the
algorithm 5. We call this proposition as Far-Near method which sweeps the disparity space
from &y to du. this method is convenient f@J"' computing using Equation 3.39.

Following the visibility reasoning and the global energy derivative, the basic algorithm
for computing and updating materiality map using gradient descent is described in section
3.9.

3.9 Basic algorithm of optimization engine

In this section, we describe the core of our algorithm to initialize and optimize the ma-
teriality map using gradient descent. The Far-Near method to compute the visibility of the
target points is proposed in section 3.6. By contrast, computation of the global derivation for
EgataiS based on Near-Far method as described in section 3.8. Thanks to these methods, we
propose a recursive scheme to compute the materiality map independently for each epipolar
planv. In order to apply our optimization method on only the target points that have the
possibility to be reconstructed, we determine the limitation-@xis of DS at each disparity
J as described in Algorithm 6.

In Algorithm 7, the first phase is to compute the similarity and initializes visibility for all
the target points. Furthermore we initialize the materiality map by the maximum similarity
scores multiplied by the minimum confidence score over all image couples.
The second phase of the algorithm is to optimize the materiality maps using gradient descent
by applying a specified number of iterations. We can divide the optimization process into
two consecutive major blocks:

» Near-Far method compute the energy function derivative sweeping the disparity plans

form om to du.
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» Far-Near method to update the materiality and compute sibiNties by sweeping
the disparity plans frondy to om.

Algorithm 6: Computingumin andumay of disparity planed
if & <0then
UmaX: I’]C
else

Umin =0

Figure 3.16 shows the behavior of the energy function meatian the previous section
and used to optimize the materiality map. Red rectangles outline thick or dense areas of high
similarity scores. In these areas, the optimized materiality map illustrated in figure 3.16.d
yields the right disparity, while the similarity map described in figure 3.16.c is ambiguous
and does not induce the right decision about defining the best local disparity. Therefore the
materiality map is more efficient than traditional similarity based stereo matching methods
[52, 74].

3.10 Final materiality decision

After its optimization, the materiality map is composed of valud®if]. In this section,
we propose a method to binarize the materiality map in order to extract the surface using
two different approaches: i) Adaptive scanline optimization, ii) Graph cut for materiality
map segmentation.

3.10.1 Adaptive scanline optimization

The last step of our method is to determine the target points which belong to the recon-
structed surface. Our main contribution in this section is applying scanline optimization for
multi-baseline stereovision. In section 2.2.2.4.1, we presented the dynamic programming
methods implemented for two images. Scharstein et al. [60] propose a recursive algorithm
through Disparity Space (DS) indexed by, d) using the left image domain and disparity
range. Unlike traditional (symmetric) dynamic programming, the ordering constraint does
not need to be enforced and no occlusion cost parameter is necessary using the scanline
optimization method.
In our framework, the same concept of scanline optimization [60] is applied to search the
optimal path for each scanline using two steps, forward and backward. In the forward step,
the optimal path cost for each target point is defineP@&Path), wherePath refers to
the set of connected target points starting from left side of disparity space until oncoming
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Algorithm 7: Initialization and optimization of the materiality map
t=(u,v,0)
foreach disparity planed from nearest to farthesto
Computeumin andumax
foreach epipolar planev do
for u= Ui to t0 Unaxdo
for (i,j)erdo
| Computep;j(t) (see eq.3.4)
for i €[0,n[do
| Compute visibilityVi(t) accordingi (see eq.3.16)
Ut = maxpi j(t) x mincnf;;(t)
(i,jer = (i,j)er ’

repeat
foreach disparity planed from farthest to nearesto
foreach each epipolar plane do
for U= Umjn t0 Unaxdo
L ComputeEgata, Edensity @NdEthickness
Compute global total derivative forusing alg.5, eq.3.43 and e€q.3.45
Update derivative value fdrneighbors using eq.3.45

oreach each disparity plane from nearest to farthesto
foreach each epipolar plane do
for U= Umjn tO0 Unaxdo

L for i €[0,n[do

—

| Compute visibilityVj(t)
Update materiality([m, ]

until Convergence(number of iteration, cost gain threshold, ...);
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Fig. 3.16 Sample slice through a 3D disparity space: a,b) one original Tsukuba image and its
ground truth disparity with highlight on scanline 144 drawn in yellow; c) similarity scores
for epipolar plane 144 using four Tsukuba images with disparity rdfige .,21}. Red,
green, and blue colors represent respectively similarities for pairs of inmages1», and

p23; d) slice of optimized materiality map through epipolar plane 144: white points refer
to high materiality values; d) total energybya)) derivative according to local materiality

for epipolar plane 144 with red, blue, and black points expressing respectively negative,

positive, and zero values.
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Fig. 3.17 Problem of scanline optimization in multi-stensaw. The figure is dedicated to
RECOVERS3D project (four cameras for each multiscopic unit) and illustrated with different
possibilities to choose neighbors for a target point.

the target point. Whereas in the backward step, the lowest cost path is extracted from the
target points on the right side of DS and yields the target points of the reconstructed surface.

In the RECOVER3D project, we worked with multiscopic units composed of four cam-
eras as we mentioned in section 1.3.1. Therefore, the method proposed here is customized
for four input images. One of the major challenges to implement this method is represented
by the following question: "which neighbors should be considered for each target point in
the forward step?". Figure 3.17 shows all considered neighbors for a target aoaurding
to the chosen reference image, taking into account the two following facts:

» Sweeping the disparity plane frodg, to dy allows to introduce, in the forward step,
a neighbort’ = (mt, 5 + 1)! for a target point = (mt, d)!. Exploiting this sweeping
mechanism provides the possibility to build optimal paklash; containing two target
points located on the same image ray and, thus reconstructing occluded surfaces.

» Favoring small disparity steps to smooth the final results , that is to say each target
pointt = (m, 5)! seeks the best path from three neighbors located at disparitids
dandd+ 1.

We mention that selecting ttig,J2, or J3 images as reference does not allow to access to
the direct neighbors of the target potnDirect neighbors fot do not generate holes in the
reconstructed surface caused by ignoring target points located betvaednts neighbors
(see figure 3.17 ). However, usifigas referencd,can be connected to its direct neighbors
as illustrated in figure 3.17. For this reason, the imageés considered as reference in



98 Multi-baseline stereovision framework

our approach. The neighbors for target pdian be identified byt + dir : dir € {(1—
building the scene space sampling as described in section 3.3.

3.10.1.1 Cost function

As we mentioned previously, our proposition is composed of two main steps: forward
and backward. In the forward step, the optimal path utPath) for epipolar planes
is built by sweeping from leftay;(to) to right rays (tmax) Of reference imagé; and from
nearest to farthest disparity planes.

Thus, we start from{tg = (Ug,V,d)! : Up = (1 — iref)d With: iref = 0} and end with
{tmax= (Umax V,O)! : Umax = NC+ (1 —iref)d With: ires = 0 andnc = image width} to be
certain to treat all target points of this epipolar plane. The path®@g&pPath) for any path
of connected points is recursively defined in equation 3.46. The algorithm minimizes the
global cost of pattPC(Path), which is the sum of non materiality penaltM€(t;) for each
constituting target point; and the connection cos&C(t;,dir;) between successive target
pointt; andt;_; = tj +dirj. The connection cost between two target points depends on the
similarity scores over set of images pdlg (see equation 3.49 ). When a target poinas
the same cosEC derived from its neighbors, the target point which has the best similarity
score is considered within the shortest path passing thrau@he set of image pairSy;
implied in €€ computation is identified depending on the neighboring direatiom order
to include every image couple for which a target point andlitsneighbor would not be
occluded by a local surface passing through them. For connection between target points at
same disparity = (m,d)! andt’ = (m’,&")! with & = &', the local surface is locally frontal
and the two target points are supposed to be seen in each image (see figure 3.17). Whereas,
if & > &’ (t nearer thart’), the couple of target points is seen by left most pair of cameras
(only the pair of image$0,1)). On the other side, whah< &' (t farther thart’), the target
point couple is viewed by right most pair of cameras (the (&i8)). This definition of per
neighbor set of relevant image pa@g;; permits to exploit the similarity information from
all images considering the occlusion geometry. We can then get the path cost as follows:

Pe(Path)= 5 MC(t)+ Y Ce(ti,diri) (3.46)
tiePath tiePath

diri=ti_1—tj dirj € Dir
Path= {tj(ui,v,&)| Ui € Ug,....,Unax & € Om,.....,OM}
MC(t) = 1— u(t) (3.47)
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(i, )Cqir ma><Pu( +dir), pij (1))

Ciasier01) =1(2,3)} €100 =1(0,1),(1,2),(2,3)} C(jpos—20,-1)=1(0,1)} (3.49)

The algorithm proceeds recursively and stores the besthsth leading to each target
pointt from the first rayray;(tp) of imagesJ;. To do this, the algorithm identifies and
stores among evaluated neighbors the chosen left foed(t) that minimizes the cost of
the optimal path ta. This can be done minimizingC(Path ;) + CC(t,dir) as described
in following equations:

ee(t,dir) = (3.48)

Vo to=(up,v,8) Prec(to) =(—-1,—1,—-1) Pe(Path,) = MC(to)

Prec(t) =t +argminy;, PC(Pathqir) + CC(t, dir)
Pe(Path) = PC (Pathyprec(r)) + CC(Prec(t,dir) + MC(t)

The final decision is the minimum cost path within right ray of imageasl (tmax):
Pathy, withtr = argming ay, (. PC(Patht). This optimal path can be retrieved backwards
from tr according to successive chosen left poiPtsc(t) up to the first point encountered
on left ray of image Tay;(to).

3.10.2 Graph cut for materiality map binarization

In spite of the efficient proposition of adaptive scanline optimization for multi-baseline
stereovision, the binary disparity map still suffers from stroke lines due to independent
handling of adjacent epipolar planes. In this section, we propose to use another approach
to binarize the materiality map. Our main idea is to segment our materiality map into two
classes thanks to a graph cut algorithm. The first class consists of the target points located
on or behind the reconstructed surface, whereas the second represents the target points in
front of the reconstructed surface. Our idea is inspired from one of the most famous use
of "graph cut" for image segmentation [8]. In chapter 2, we explained different methods
using graph cut as the matching method to solve the stereovision matching problem. Here,
our proposition differs from those since the graph cut works as the segmentation method.
Therefore, we start by building a weighted graphk= (E,N) that is composed of edgé&s
and noded as illustrated in figure 3.18. The nodes are the target points in addition to two
other nodes (source and sink dedicated respectively to class 1 and 2) like the traditional
graph cut method. Indeed, we can classify the e@gesthin the graphG into four majors
groupsEsink, Esource Es, andEs:

* Eqink between each node and the sink node;
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* Esurce between each node (except the nodes representing the non visible target points
that are considered out of reconstructed zones and connected only to the sink node)
and the source node;

* Es between each node and its four neighbors in the same disparity plane;

» E5 between each target poifi,v,d) and its neighbors located at dispardy- 1 ,

0 + 1 according to rays emitted from the second image. The second image choice
will be explained in detail later in this section.
Thanks to the rich information available in each target point, we can write the edge capacity
between each node and the source and sink nodes taking into account the following facts:

» The nodes representing the target points located in front of the surface should have
low materiality and high visibility scores on at least one image.

» The nodes representing the target points on the surface should have high visibility
scores (at least on one image) and high materiality scores.

» The nodes representing the target point behind the surface should have low visibility
scores.

Equation 3.50 expresses the previous facts into capacity s@d¢es, Ce,,,..) for the con-
nection edges between each target poartd sink or source nodes respectively as follows:

Cegnu(t) = (1—pt ])ma)ﬂe[o n[vl( ).
Cegoueet) = (L—maxc o nVi(t)) U[t] maxconVi(t).
=1—(1—uft)maxeonVi(t)).
= 1—Ceyp (1)

(3.50)

Moreover, the edge capaciBg, between a node and one of its four neighbors in the
same disparity plane helps to maintain the connection between the target points that have
the similar materiality values. The edge capaClgy is described as follows:

Ce,(t, ') = B (1—|u[t] — p[t']])

3.51
B: smoothing factor. ( )

Finally, theEs edges are connections between each node and its neighbors in adjacent dis-
paritiesd — 1 andd + 1. The main idea for computing their capacity is to keep high capacity

for edges except those between, the nodes belonging to the reconstructed surface and direct
neighbors of these nodes that are located in front of surface (at higher disparity).

In fact, our materiality map contaif®n: n is number of imagegonnections for each tar-

get point with other target points that are located in disparéiesl andd + 1. Since we
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(7
v
Disparity labels . Visible target point == == F (between different epipolar planes)
. Non visible target point E;
disparity plane Es

Fig. 3.18 Graph with two terminal nodes for materiality mapdsization

can not implement all the connections introduced for a target point according to all images
within the graphG, we choose one of the images as the reference. Between four available
images, the second or third image could be chosen as reference since they provide the best
description of the reconstructed scene and avoids the occluded zones. In our application,
we choose the second image and the edge capacity is computed from opposite of visibility
difference in image behind each neighbor as follows:

Ces(t) =1— (Vica(t) — Vica(t) (1—p[t])) = 1—pt] Viea(t) (3.52)

After building the graplG and assigning relevant capacities to the edgghes—t min-
cut method introduced by Ford and Fulkerson [22] is applied in order to find the optimum
classification as described in section 2.2.2.4. In our application, we implement the method
of Ford and Fulkerson [22] by using GridCut library

Lhitp://www.gridcut.com/



102 Multi-baseline stereovision framework

3.11 Experimental results

To study the properties of our multi-baseline stereovision method, we ran our program
over a set of three image sequences created by Middlebury College (Cones, Teddy) and
University of Tsukuba (Tsukuba) [61]. Figures 3.19, 3.20, and 3.21 show disparity maps de-
rived from existing methods (TreeDP[77], MultiResGC[53], DoubleBP[81], GC+occ [38],
AdaptAggrDP[80]) and those obtained from our materiality map results using adaptive scan-
line optimization and graph cut for materiality map binarization. The different comparison
methods are chosen according to two features: i) The methods have good scores of eval-
uation in web site of Middlebury University to stereovision [61], ii) they contain most of
widely known optimization processes for stereovision (bilateral filtering and dynamic pro-
gramming: AdaptAggrDP[80], Dynamic programming: TreeDP[77], Belief propagation:
DoubleBP[81], and Graph cut: GC+occ [38], MultiResGC[53]).

Figures 3.22, 3.23, and 3.24 show colored target point clouds derived from our materiality
map results. These target points are extracted from binarized materiality maps using adap-
tive scanline optimization or graph cut using four images of Tsukuba, Cones, and Teddy
datasets.

Our method fails to recover textureless regions as illustrated in Figures 3.21 and 3.23 using
the Teddy dataset. However, our method is able to reconstruct the repeated texture which
are one of the major problems in traditional stereovision, as illustrated in Figures 3.20 and
3.22 using the Cones dataset.

We intended to perform an online evaluation to compare ourselves with TreeDP[77], MultiResGC[53],
DoubleBP[81], GC+occ [38], and AdaptAggrDP[80]. However, the new version (3) of avail-
able datasets in the web site of Middlebury University to stereovision [61] provides only
two images in simplified epipolar geometry for each scene. For this reason, we compare
and evaluate off-line our results with the second data set version using Root-Mean-Squared
(RMS) and Percentage of Bad Matching (PBM) measures proposed by [60] and described in
section 3.4.5. RMS expresses the mean square between produced disparity map and ground
truth, whereas PBM produces the percentage of mismatching pixels between the two dispar-
ity maps.

The results show (see table 3.5) that our method with graph cut segmentation (MatGC) pro-
vides better results over the Tsukuba and Teddy datasets than the method with adaptive
scanline optimization (MatAS). However, MatGC and MatAS produce equivalent results
for the Cones dataset. The adaptive scanline optimization proposed in section 3.10.1 to find
independently the optimal path for each epipolar plane fails to deal with the scenes contain-
ing objects with soft edges (e.g. the background cupboard in Tsukuba scene) which require
a smoothing operation. Whereas the adaptive scanline optimization handles efficiently ob-
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Tsukuba Teddy Cones

RMS PBM RMS PBM RMS PBM
TreeDP [77] 18.8413 0.2301 14.0155 0.4226 18.0412 0.4580
MultiResGC [53] 11.6705 0.1580 4.5579 0.3828 7.9205  0.3893
DoubleBP [81] 12.3372  0.1902 3.6295  0.4037 8.1742  0.3724
GC+occ [38] 13.3261 0.0711 13.2708 0.4412 16.1577 0.3846
AdaptAggrDP[80] 15.1570 0.2547 7.7827  0.4144 9.3184  0.4152
MatGC* 15.4442 0.1253 6.9411  1.026 6.9290  0.3247
MatAS** 19.8674 0.1629 8.2013 0.4327 5.7821 0.3211

(*) MatGC: our method using graph cut
(**) MatAS: our method with adaptive scanline optimization
Table 3.4 RMS error and PBM measures over entire disparities maps for different methods.

Tsukuba Teddy Cones

RMS PBM RMS PBM RMS PBM
TreeDP [77] 1.614 3.236 3.861 1.103 3.120 1.426
MultiResGC [53] 1 2.222 1.255 1 1.369 1.212
DoubleBP [81] 1.057 2.675 1 1.054 1.413 1.159
GC+occ [38] 1.141 1 3.656 1.152 2.794 1.197
AdaptAggrDP[80] 1.298 3.582 2.144 1.082 1.611 1.293
MatGC 1.323 1.704 1.912 1.043 1.033 1.011
MatAS 1.702 2.291 2.259 1.130 1 1

(*) MatGC: our method using graph cut
(**) MatAS: our method with adaptive scanline optimization

Table 3.5 Normalized measures computed from table 3.4 for each datasets each measure is
divided by the minimum one for the dataset.

jects including sharp edges (e.g. the cones in Cones image). Table 3.5 shows the results
of the measures (RMS) and (PBM) using four images of the Tsukuba, Teddy, and Cones
datasets. The graphs 3.25 and 3.26 show that our method is competitive with others espe-
cially for the Cones dataset where there are no textureless regions. Moreover, one of our
main goals is to deal with semi-occluded regions. Therefore we focused our evaluation on
occluded regions (see the figure 3.29) for three datasets Tsukuba, Teddy, and Cones. The
graphs 3.27 and 3.28 show that our methods robustly deal with the occluded regions over
the three data sets. As mentioned in this section, our method still not handles some known
problems in stereovision like the textureless zones. Therefore, in chapter 4, we propose a
novel framework to merge the approach described in this chapter with visual hull using the
efficiency of our definition of scene geometry and the attributes of each target point (e.g.
confidence).
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(&) TreeDP [77]. (b) MultiResGC [53]. (c) DoubleBP [81].

(d) GC+occ [38]. (e) AdaptAggrDP [80]. (f) Our method MatGC.

(g) Our method MatAS. (h) Ground truth. (i) Tsukubaimage.

Fig. 3.19 Results (expressed as disparity maps) of several methods: a) [77], b) [53], c¢) [81],
d) [38], e) [80]. f, g) Disparity maps extracted from our binarized materiality map using
respectively graph cut and adaptive scanline optimization. h,i) Ground truth for disparity
map and original image of Tsukuba dataset, source: [61].

Tsukuba Teddy Cones

RMS PBM RMS PBM RMS PBM
TreeDP[77] 67.8856 0.4703 49.4163 0.9932 55.4218 0.8451
MultiResGC[53] 33.1759 0.3246 14.9494 0.6397 19.4809 0.7700
DoubleBP[81] 36.6243 0.3542 11.4229 0.6042 25.878( 0.7656
GC+occ [38] 53.9264 0.4513 51.9460 0.7606 45.3130 0.8600
AdaptAggrDP[80] 61.1417 0.9247 30.2555 0.9478 23.8277 0.9438
MatGC 23.8020 0.3636 14.268% 0.5578 11.8073 0.5665
MatAS 60.4967 0.6098 24.1590 0.6613 11.8886 0.5673

(*) MatGC: our method using graph cut
(**) MatAS: our method with adaptive scanline optimization
Table 3.6 RMS error and PBM measures over occluded regions for different methods
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d .¥ . [
(@) TreeDP [77]. (b) MultiResGC [53]. (c) DoubleBP [81].

Wit

(d) GC+occ [38]‘. (e) AdaptAggrDP [86].

= Ll s - —
(g) Our method MatAS. (h) Ground truth. (i) Conesimage.

Fig. 3.20 Results (expressed as disparity maps) of several methods: a) [77], b) [53], c¢) [81],
d) [38], e) [80], source: [61]. f, g) Disparity maps extracted from our binarized materiality
map using respectively graph cut and adaptive scanline optimization. h) Ground truth for
disparity map. h) Original image with highlights on regions with repeated textures drawn in
red for Cones dataset.
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(@) TreéDP [77]. (b) MuItiRésGC [53]. (c) DoubleBP [81].

(d) GC+occ [38]. (e) AdaptAggrDP [80]. (f) Our method MatGC

= =

(g) Our method MatAS. (h) Ground truth. (i) Teddy image.

Fig. 3.21 Results (expressed as disparity maps) of several methods: a) [77], b) [53], c¢) [81],
d) [38], e) [80], source: [61]. f, g) Disparity maps extracted from our binarized materiality
map using respectively graph cut and adaptive scanline optimization. h) Ground truth for
disparity map. h) Original image with highlights on textureless region drawn in yellow for

Teddy dataset.
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Fig. 3.22 Materiality map results: Three different views for target points extracted from
adaptive scanline optimization (first row) and segmentation by graph cut (second row) using
four images of Cones dataset.

(b) ()

(d) (€) (f)

Fig. 3.23 Materiality map results: Three different views for target points extracted from
adaptive scanline optimization (first row) and segmentation by graph cut (second row) using
four images of Teddy dataset.
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(d)

Fig. 3.24 Materiality map results: Three different views for target points extracted from
adaptive scanline optimization (first row) and segmentation by graph cut (second row) using
four images of Tsukuba dataset.
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Fig. 3.25 Normalized RMS results derived from table 3.5.
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Fig. 3.26 Normalized PBM results derived from table 3.5.
Tsukuba Teddy Cones
RMS PBM RMS PBM RMS PBM
TreeDP[77] 2,852 1,448 4,326 1,780 4,693 1,491
MultiResGC[53] 1,393 1 1,308 1,146 1,649 1,359
DoubleBP[81] 1,538 1,091 1 1,083 2,191 1,351
GC+occ [38] 2,265 1,390 4,547 1,363 3,837 1,518
AdaptAggrDP[80] 2,568 2,848 2,648 1,699 2,018 1,666
MatGC 1 1,120 1,249 1 1 1
MatAS 2,541 1,878 2,114 1,185 1,006 1,001

(*) MatGC: our method using graph cut
(**) MatAS: our method with adaptive scanline optimization

Table 3.7 Normalized measures computed from table 3.6 for each dataset: each measure is
divided by the minimum one for the dataset.
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Fig. 3.28 Normalized PBM results derived from table 3.7.
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(b)

Fig. 3.29 a, b, ¢) Non-occluded regions (white) and occluded and border regions (black) for
Tsukuba, Teddy and Cones datasets.

3.12 Conclusion

This chapter proposes several new ideas to solve some of multi-baseline stereovision
limitations. Using the disparity space as our sampling scheme for scene space domain, we
focus on the useful 3D reconstruction space while strictly avoiding any semi-occlusion and
simplifying handling of total occlusions. The proposed materiality map framework proves
efficient at reconstructing the scene by integrating visibility reasoning. We can summarize
the main framework concept as follows.
Visibility: the materiality map laid on Disparity Space (DS) delivers a direct and efficient
support for visibility reasoning with the function proposed by [39] and used in [74, 51]. This
function is in fact conveniently defined in the framework as the product of non-materialities
of all potentially occluding samples. The visibility function results may be laid as visibility
maps on DS and computed efficiently from near to far. DS ensures that each 3D sample
point (target point) precisely lies on a genuine pixel ray in each image of the multiscopic
unit for which it is inside the frustum. It thus intrinsically describes semi-occlusions (is
m; in camera frustum?) and also totally avoids complex treatment of inter-sample partial
occlusions because such occlusions often occurring in other scene-based methods do not in
DS.
Similarity and confidence: the materiality and visibilities of target points are evaluated for
input data according to pre-computed similarity scores of neighborhoods of their projections
in some pairs of images. This similarity computation is rather classical but encompasses (i)
confidence computation typically based on variances of the neighborhoods and (ii) a nor-
malizing step of similarities along pixel rays that yields final similarity scores in the range
[0,1].
Optimization and binarization: the materiality map is shaped by an optimization pro-
cess minimizing a dedicated energy penalizing any deviation from intended map properties
(such as density, thickness) and inconsistencies between materialities, visibilities, and sim-
ilarities. More precisely, for each sample, and each pair of images, a cost, weighted by
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the relevant confidence score, penalizes any deviation fotlowing assumptions: a good
normalized similarity of a target point for a given couple of views should be explained by
high materiality and visibilities on both images, whereas poor similarity should induce low
materiality or an occlusion (low visibility). After the materiality map has been optimized,

a binarization process delivers the final result, a binary materiality map standing as a volu-
metric direct model of the intended solution, whereas image-based methods usually deliver
disparity/depth maps that have to be processed to yield the reconstructed scene.

The results show (see section 3.11) that our proposition deals efficiently with repeated tex-
tures and occluded regions as compared to other methods over several datasets. However,
our approach does not handle textureless regions as shown in figure 3.21. We propose thus
to enhance our proposition here using the information derived from the silhouette based
reconstruction as we will describe in details in the chapter 4.
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3.13 Résumé : Stéréovision multi-oculaire en géométrie
parallele décentrée

Ce chapitre présente une formulation originale de la multi-stéréovision, spécifiquement
construite pour le contexte multi-oculaire en géométrie parallele décentrée, qui induit une
géométrie multi-épipolaire simplifiée et réguliére. Son objectif est de résoudre globalement
le probleme de reconstruction 3D a partir des n vues disponibles en explicitant préciséement
les redondances d’informations entre ces images afin d’en tirer avantage. Cette redondance
induite par la capture multi-oculaire est précieuse pour la robustesse de la reconstruction
mais elle implique aussi des combinatoires de recherche plus importantes qu’en stéréovi-
sion binoculaire. Pour résoudre ce probleme, une approche naturelle, basée image, consiste
a calculer simultanément les n cartes de disparités (entieres dans notre cas), tout en re-
spectant certaines contraintes afin d’assurer la cohérence de la géométrie de la scéne ainsi
reconstruite. Cette approche peut aussi étre vue comme une recherche de fonction de vis-
ibilité sur I'ensemble fini des points 3D de la scéne atteignables depuis les pixels par la
reconstruction en disparités entiéres que nous nommerons « points cibles ». Toutefois, cette
méme formalisation des points cibles peut étre exploitée dans une approche globale basée
scene, plus élégante, que nous proposons. Elle consiste a construire une carte discrete 3D
de « matérialité » sur cet ensemble de points. La notion de matérialité proposée exprime
un degré de croyance sur I'existence du point cible dans la scéne en tant que source lu-
mineuse ponctuelle (le plus souvent indirecte) captée par au moins I'une des caméras. Cette
carte de matérialité contient naturellement toutes les informations de redondance (multi-
projection d’un point matériel) et d’occultation (points matériels alignés sur un rayon de
projection sur un pixel). Nous présentons en détails dans la premiére partie de ce chapitre
I'échantillonnage de I'espace de la scene basée sur I'espace de disparité et de ses points
cibles. Ensuite, nous introduisons et expliquons les attributs associés a chaque point cible :
la similarité, la confiance, la visibilité et la matérialité. La similarité consiste a évaluer
la ressemblance colorimétrique entre les pixels a apparier. Nous proposons trois formules
pour le calcul de celle-ci. La premiére utilise une fenétre de voisinages non adaptative, la
deuxiéme une fenétre séparée et la derniére une fenétre pondérée. A la fin de cette section,
apres avoir évalué ces trois formulations, nous sélectionnons la deuxieme proposition pour
calculer I'attribut de similarité de nos points cibles dans notre framework.

Par la suite, un processus d’optimisation, basée sur la descente de gradient, est appliqué
sur la carte de matérialité. La derniere étape de la méthode est I'extraction de la surface
reconstruite a partir de I'espace de la scéne. Pour étudier les propriétés de notre méth-
ode de stéréovision multi-oculaire, nous avons appliqué notre méthode sur un ensemble de
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trois séquences d'images créée par Middlebury College (Cdeeésly) et I'Université de
Tsukuba (Tsukuba) [61]. En comparant nos résultats avec ceux obtenus par d’autres méth-
odes (TreeDP[77], MultiResGCJ[53], DoubleBP[81], GC+occ [38], AdaptAggrDP[80]), nous
constatons que notre approche traite efficacement les problemes issus de I'occultation entre
les objets et ceux liés a la présence de textures répétitives. Cependant, nous constastons
aussi que notre approche ne géere pas les régions sans texture comme le montre la figure
3.21. Par conséquent, nous proposons d’améliorer la méthode exposée dans ce chapitre
en utilisant les informationstibant de la reconstruction basée silhouette que nous allons
décrire en détail dans le chapitre 4.



Chapter 4

Fusion of silhouette and multi-baseline
stereovision for 3D object modeling

In the previous chapter, we presented our 3D reconstruction framework from multi-
ple cameras in equidistant multi-baseline layout. However, the RECOVERS3D project (de-
scribed in chapter 3) is based on the exploitation of two 3D reconstruction approaches:
multi-baseline stereovision and silhouette-based reconstruction. In this chapter, we explain
our proposed framework for 3D reconstruction from monoscopic and multiscopic units de-
scribed in chapter 1 using both approaches. In section 4.1, we introduce the different steps
of the proposed method and the 3D reconstruction pipeline. Our multi-baseline stereovision
method proposed in chapter 3 works in disparity space laid in front of a multiscopic unit
whereas the result of silhouette-based reconstruction is a visual hull expressed in a regular
3D grid set in scene reference frame. However, the results of the two approaches should be
expressed in the same coordinate frame in order to merge them. Therefore, in section 4.2,
we introduce the geometrical transformations between disparity space and 3D grid index
domain. In section 4.3, we explain the benefits of using the information derived from the
visual hull within our proposed multi-baseline stereovision method. In order to merge all
the results produced on each multiscopic unit by this multi-baseline stereovision process
guided by visual hull, we propose a volumetric approach. The input data to this approach
are carved volumes that are presented in section 4.4. We propose in section 4.5 a novel way
to merge the carved volumes in order to obtain a single 3D model representing the 3D pose
of the reconstructed object(s). Finally, we show the results of 3D reconstruction for virtual
and real data sets using our proposal.
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4.1 Introduction

In this chapter, we propose a novel framework for multi-view 3D reconstruction relying
on both multi-baseline stereovision and visual hull introduced in section 2.2.4.2 in order to
produce 3D object models with high precision. This method inputs are a visual hull (VH)
and several sets of views derived from multiscopic units. For each such set of views, a
multi-baseline stereovision method guided by VH yields a surface that is then used to carve
the VH. Multiple carved VH from different sets of views are then iteratively fused to deliver
the intended 3D model.

In chapter 2, we presented bibliographical study of different methods merging the stereovi-
sion and silhouette-based approaches. We classified them into three major classes: i) stere-
ovision guided by VH methods, ii) collaborative methods applying simultaneously criteria
borrowed from both techniques, iii) separate application of both methods with subsequent
merging of their results.

The proposed framework in this chapter is summarized in figure 4.1 and borrows ideas from
classes (i) and (iii). After VH computation, as in class (i), the VH guides each multi-baseline
stereovision process. Then VH carving from stereovision is performed for each multiscopic
unit similarily to class (iii) but relies on our multi-baseline stereovision result. Finally, mul-
tiple (one per multiscopic unit) VH/multi-stereovision results are merged in a single global
3D model.

Beyond its cross classification, our framework is innovative among each class as follows.
For each multiscopic unit, a global scene-based multi-baseline stereovision process is run
in DS which totally avoids partial occlusions and yields a robust stereovision result replac-
ing more local and noisy photo-consistency usually used in class (i) carving. However, the
proposed class (i) VH guidance is dedicated to our multi-baseline stereovision framework
proposed in the chapter 3, which it enhances in terms of domain size, outliers avoidance
and, more innovatively, robustness in multi-stereovision similarity. The class (iii) VH carv-
ing from stereovision relies on voxel classification usually based, for voxels occluding the
stereovision solution (group 2 in [65]), on rays from surface to reference image. Replacing
this image-based classification by a volumic one in disparity space brings more precision
and robustness to our solution. Furthermore, merging at the final stage multiple carved VH
involves to smartly handle reconstruction inconsistencies from separate multiscopic units,
which may conveniently correct some residual stereovision mismatches.

4.1.1 Contributions

The contributions of this chapter are threefold: (i) improvement of our multi-baseline
stereovision method (see chapter 3) thanks to visual hull guidance, (ii) carving of visual hull
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from an interpolated and smooth stereovision surface and (iii) merging differently carved
volumes in a suitable way in areas where they differ. This chapter shows that the proposed
approach helps recovering a high quality carved volume ( a 3D representation of objects
such as humans) even for small details and in concave areas subjected to occlusion.

4.2 VH-DS geometrical mapping

Hybridizing VH and multi-baseline stereovision involves mapping results of both meth-
ods in a same coordinate frame. Natively, VH is expressed in a regular grid in the scene
frame (attached to the capture studio), whereas multi-stereovision results are given in local
DS irregular in actual 3D space as their samples are not evenly spaced on fan-spread pixel
rays. The goal of this section is thus to produce, for any multiscopic unit, the mathematical
relationships between three different coordinate systems in scene space: voxel grid index
g= (w,h,d)! in VH, cartesian spatial coordinath, = (X, Yc, Z)! in the frame of the recti-
fied reference camerd,et = 0}, and indext = (u,v,d)! in DS. This is described in Figure
4.2 in a five steps transformation from VH index to DS index. It involves using:

* the VH grid parameters (origin, size and orientation in scene frame as well as cell size
or resolution) chosen at the VH extraction step.
This grid is spatially situated in scene space using, for instance, its reference corner
positionOs = (X, Y, Zv)", volume siz&W, H, D) or volume edges {WH, D} and res-
olution (ry, ry,rz). A 3D point’s coordinates in scene frarlveand associated volume
indexg are related by (4.1) using the transformation maBias illustrated with step
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1 in figure 4.2 considering that the scene and volume framethasame orientation

parameters:
W H D
Ms) o 9) wihgo [ ™ n e (.1)
1 1 0001

» calibration results for rectified cameras of the chosen multiscopic unit.
More precisely, we use the extrinsic (we call h&jeand intrinsicK matrices of the
rectified reference camefd. = 0} (see steps 2,3,4 in figure 4.2). These matrices
are described in detail in sections 2.1.1.1 and 2.1.1.2. We re-write these matrices and
the geometrical relationship between 3D point’s coordinates in camera araed
its projection into image plan® as:

Qu S W
R T

1

() -e(%) (5)x(so)(2)  wo

Using Equations 4.3 and 4.1, the relation betwlkyandg can be written as:

(Nic) ~E1G (2) (4.4)

Moreover, the relation between the projectmorandg is written using the Equations

4.3and 4.4 as:
m — g
<1>NK<|3 o)Ele(1> (4.5)

« conversion of local deptl from reference camerfes : with ref = 0} to disparity
0 such thaZ(d + 5) — f b« 26 =—258+ f bdescribed in section 2.1.2.2.2.
The DS index is thus obtained from equations 4.2, 4.3, and 4.4 by adding a conve-
nient row (the red row in Equation 4.7) K ( I3 O ) which addsd, computed from
equation 2.28, to its usuai= (m! = (u,v), 1)t output. We call this new matrik’ (see
step 5 in figure 4.2). Therefore, the equation 4.4 Witlyields the intended equations
and matriceDSfV andVIDS transforming respectively coordinates from VH to DS
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in equation 4.6 and vice versa in equation 4.7.
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4.3 Multi-baseline stereovision guidance by VH

Let us recall that our previous multi-baseline stereovision framework proposed in chap-
ter 2 was developed without any VH usage. This section exposes how VH guidance is added
to enhance its performances (see figure 4.3).
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4.3.1 Core principle

The core classical idea behind the VH guidance is the fact that the reconstruction solu-
tion is necessarily included in the visual hull as any point out of VH was labelled as such
because it was projected outside at least one silhouette. Handling this crucial information in-
volves mapping VH and target point spaces using equations 4.6 and 4.7. Furthermore, these
equations are likely to deliver homogeneous real coordinates in destination space which is
populated on a bounded discrete 3D grid. Evaluating a map defined in one space for a sam-
ple of the other space is thus achieved for the intended sample via tri-linear interpolation at
the resulting coordinates in map space. In order to keep notations simple we introduce three
different bracketing schemes dedicated to direct 3D integer indexing, tri-linear interpola-
tion and cross-space evaluation: angular bracketimgexpresses tri-linear interpolation at
3D real coordinates obtained using application of functiofsee equation 4.10) on results
of equation 4.6 or 4.7; round bracketifg) is reserved for cross-space evaluation in the
destination map; whereas direct map sample evaluation uses usual square bradketing

VH(t) = VH <u <VfDS x (i)) > (4.8)
DS(g)= Ds<u (DSfV « (2)) > (4.9)
U ((‘;)) —v/a (4.10)

4.3.2 Bounding DS domain

The multi-baseline stereovision framework proposed in chapter 2 works on a 3D grid
laid on disparity space DS and indexedtby (u,v,d)'. As such, this grid has to be bounded
as close as possible to useful areas where the solution is expected to lie. Without any such
prior information, which is usual in "pure” multi-view stereovision (i.e. without VH), some
lateral limits are easily set mmandv according to image frustums, but the disparity bounding
is more of an issue as disparities could theoretically be spread over a wide range. In most
methods, no information is available about the disparity limits and the disparity range is
usually required as an input parameter providing the missing DS boundaries.

As stated above, VH is defined in a bounded 3D grid and may be seen as a superset
of the actual solution. This information is crucial as it situates the solution (DS where a
scene can be reconstructed) in a finite and closed area of scene space usually close to the
actual solution. As such, this information yields opportunities to automize and optimize DS
bounding.
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Minimal and maximal DS coordinates of projections of the egrnersg; of the VH
grid, or even better, of the axis aligned bounding box (usually abbreviated AABB) of the
VH solution yields a AABB in DS domain in which the solution is necessarily included.
This AABB is identified by its min and max indiceg, ty in DS as follows:

)

min; u;
tm="floor | min_tj= | minv;
i=0,...,7 . & Ui
mi . i
n withti= | v | =u (DSfVX <9'>>
maxu; 1 1
tm = ceil | max tj = | maxyvi
i=0,...,
max & )

(4.12)
This step indeed automatizes the DS bounding as no user input is required to set disparity
limits. Furthermore, it even optimizes in lateral dimensions as the VH bounding box may
appear thinner than the available views. Nevertheless, this first AABB is further optimized
according to VH information. A sweeping process is run on each of its six faces, moving
them inwards as long as they contain only target points whose interpolation in VH are con-
sideredout. This supposes (i) that the VH is defined on the grid as a numericaMidap
with numerical values monotonically (let us suppose increasingly) associateduof, out
semantic labels and (ii) that some interpolation thresbaolgdis set. A target point indexed
byt is thus considered out of the VH according to its interpolatiovithusing the function
Out(t) defined as thresholding of cross-space evaluati&dHmmap as follows:

Out(t) = VH(t) > oug (4.12)

This double process reduces to optimal AABB the DS domain on which the different
maps are laid (allocated), which thus optimizes memory and computational efficiency.

4.3.3 Filtering target points according to VH
The previous VH guidance for DS bounding has an actual but rather low impact on recon-

struction quality as it eliminates some potential outliers outside the final AABB. Moreover,
many more outliers are to be avoided if we remember that the target points have to lie inside
VH volume.

A simple preprocessing step labels every target point in the optimized AABB as un-
doubtedly outside or possibly inside the solution according to its VH interpolétidgrt)
(equation 4.12). Target points labelled as outside (see figure 4.4 and details (1) in figure 4.4)
will neither be given similarity scores, nor be considered for matching in the multi-baseline
stereovision process. They will only be used as definitely non material pgiftis=( 0)
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for visibility reasoning purposes. These target points labelling enhances computational effi-
ciency. Moreover, it restricts the solution domain and avoids evaluation of potential outliers
lying in AABB but outside VH, which directly impacts reconstruction quality as illustrated

in figure 4.11.

4.3.4 Enhancing similarity quality

In section 3.4, we presented different methods to compute the similarity scores for each
target point describing the benefits of each of those methods: "non adaptive flat windows",
"separate windows", and "weighted windows". However, the similarity computation for a
target point can be enhanced using target point labelling: as this computation implies local
constant disparity assumption, it is reasonable to exclude neighboring target points in the
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volume and its mapping in disparity space frame, the rhombuses with black and white color
refer to the target pointsn" and"out" of visual hull respectively.

constant disparity plane which are labelled outside the VH. Such neighboring samples are
filtered out of the adaptative window before similarity computation. This ensures that neigh-

bors known as irrelevant do not hinder the similarity scores computation. Those similarity

scores are thus more relevant, enhancing the reconstruction quality and robustness.

4.4 Carving VH from stereovision

Our visual hull voxels are labelled &s, out, andsur f. However, multi-baseline stere-
ovision yields a surface composed of the 3D points valued 1 in the binary materiality map.
Each such point also has a final confidence score related to its confidence scores (illustrated
in section 3.5) associated to its similarities and possibly its comparison to other target points
on its pixel rays. Therefore, merging both models results in the intersection between the VH
and the complement of the space between the multiscopic unit and the reconstructed surface.
This corresponds to the subtraction or carving from VH of the space between multiscopic
unit and surface as illustrated in figure 4.5.
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voxels with gray, white, and green color respectively. The reconstructed target points are
colored from green to blue, according to their confidence score (see color table on top right).
Slice of carved VH consists dfn", "out" and"surf" voxels with different confidence for
the"surf" voxels derived from its corresponding target points in disparity space.

4.4.1 Stereovision surface coding

Precise definition of the spatketween'the reconstructed surface and the multiscopic
unit is not straightforward: this is a continuous space containing and interpolating, for every
view of the unit, every part of the ray going from the optical center to any solution point
which is not occluded in this view. Most of those rays are redundant across the different
views and we chose, for the sake of simplicity, to replace all these view dependent segments
by others, far less numerous and redundant, attached to the same solution points but coming
from a single center located at the middle of the multiscopic unit. A drawback of this
simplification may lie in a loss of solution points which could become occluded in this
virtual central view. However, as a solution point has to be seen in at least a couple of
successive views, this loss does not occur when5 because the occluding rays of a
solution point are limited to O tm — 2 extreme views. As such, the central ray cannot
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be flanked by two occluding rays €a 4) or be itself occluding the solution point éa 3).

This remark enforces our chosen compromise to maye4. As shown in section 3.3, we
choose the reference image; = 0 for coding efficiency. In this chapter, we decide to
build our surface representation according to a central and symmetrical sampling. This
domain is called Central Disparity Space, abbreviated as CDS, and indexed in reference
of the (virtual) central view (see figure 4.6). This central space is less biased in 3D space
than any other, and thus interpolation in CDS will be more relevant. According to the
multiscopic geometry (see chapter 2), this (virtual) central view corresponds to a camera
indexedic = (n—1)/2. Hence, a target point of indéx,v,d) in DS would project in the
central view at(ui.,Vi.) = (u+ (ip —ic)0,V) (see equation 3.1). In order to keep integer
indices whem is even (as for our choice = 4), we multiply the horizontal coordinate in
CDS byy=2—nmod2. These remarks lead to new matrices managing the transformations
between coordinates= (u,v,d)! in DS andc = (c,v,d) in CDS and between VH and CDS:

y y(io—ic)
c 1 t
— =2—-—nmod2 4.13
<1> 1 X <1> ;Y (4.13)
1
CiR
<C> ~ CfR x DSV x (g) , <9> ~ CDSFV L x <C> (4.14)
1] T —=""\1 1] T ==—"11
CDSfVv VICDS

In this CDS, we decide to represent the solution surface as a disparith Midagged by
a confidence ma@@M (see figure 4.6). This is achieved by assigning for each solution point
in DS, from far to near, at its CD@ixel coordinategc, V), its disparityd to DM (initialized
to —) and its associated final confidence scor€k. Whenn is even (which in the case
in RECOVER3D), gaps are induced between CDS neighbors by the horizontal stretching
in CDS. To fill those gaps, if two successive target points on a row of CS are both solution,
their middle point in CDS is assigned their common disparitipiM and mean confidence
in CM. As the solution in CS is computed in a way to ensure that its intersection with
any (u,d) plane is a continuous suite of adjacent target points that are of same or adjacent
disparities, no other gap may occur.

4.4.2 Carving VH from disparity map

Carving the VH according to the stereovision surface code®bly and CM is de-
scribed in Algorithm 8 and illustrated by Figure 4.7. Carving VH from disparity map
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Fig. 4.6 Building the solution surface as a disparity map amdidence map according to a
Central Disparity Space.

aims at filling a carved volume defined as a n@y laid over the VH grid and valued
in,surfo..sur fy, out. The differentsur f; values refer to increasing quantified confidence lev-
els for surface voxels. The lowest confidence |estalfy is reserved fosur f voxels of VH

that are either occluded or out of frustum for the current solution. The other levels are as-
sociated with voxels identified aur f in the stereovision solution: the effective levas
quantified according to the interpolat€d/ value of the voxel.

A key feature of this step for the latter fusion process is to yield a coherent topology
to our carved volumesin andout sets are considered in 6-connexity whsler fiy_q, is
considered in 27-connexity. With such topological evaluation, no direct 6-connexion should
occur betweeim andout voxels.
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Voxels in visual hull are looped over. Any voxel labelledt in VH is so labelled in
CV. Each voxelg = (w,h,d)! labelledin or surf in VH is projected ag = (c,v,d)! in
CDS. lIts disparityd is then compared to the disparity of the solution on the same central
ray & = DM {(c,v)!).

In order to handle the grid sampling while responding to the previous intended topolog-
ical property, point comparison in CDS is related to actual axis aligned distarigein
VH. Hence the interpolated solution pot= (c,v, &)! is projected back in VH to measure
its distance to initial voxe]|g— VfCDS x ¢s||,,. When this distance is no more thanglis
labelledsurf in the carved volume with a confidence level quantified from tri-linear inter-
polation resultCM < (c,v)! >. Otherwise, if the voxed is in front the surfaced > &),
it is labelledout in CV. In the remaining cases, the voxelaspriori labelledin or surfy
according to VH label but could be labell¢durf : i > 0} if it lies close enough of a steep
slope of the surface. In order to check this possibility, we evaluate if any of its 4 neighbors
in CDS c,v axes of same disparityy, at unitary distance in VH, are to be considemd
(with interpolated disparity lower thad). This evaluation consists in measuring the dis-
tancelg in VH from the initial voxel to a neighbong at unitary distance in CDS and then
interpolating disparityd, in DM at a neighbon. in same direction but distandg™2. If
on < 0, this neighbor is considerealit and the initial voxel is re-labelledgur f where the
confidence level is quantified from the disparity linear interpolationd&abf CM (n¢) at &,
andCM ((c,v)!) at ds.

4.4.3 Improving surface smoothness

The result of the multi-stereovision method leads to a discontinuous surface divided into
frontal planar patches with constant and integer disparity (see first and fourth rows of fig-
ure 4.12 ). Removing this effect is required for the visual quality of the 3D model result and
for a more accurate management of reconstruction incoherencies between different multi-
scopic units. To deal with this problem coming from the restriction to integer disparities in
reconstruction process, we propose to represent the solution surface previously €Med in
by a floating point derivated versi@®M,. The mapDM, is computed to ensure continuous
transitions between adjacent horizontal segments of constant disparities with a disparity gap
of 1. ComputingDM, consists in looping over rowg of DM that are thus scanned from
one end to the other to identify disparity steps between adjacent pixels of finite disparity.
When the disparity step is of magnitud€ 11,+1), a contact point (black point in figure
4.8) is placed in CDS in the middle of the two pixels with the mean of their disparity values
as illustrated in figure 4.8, and serves as end point of both segments. When a disparity gap
is more than 1 (notably infinite) as well as for first and last pixels, a single end point is
generated on the relevant pixel at its (finite) disparity. This process yields two end points
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Algorithm 8: Carving VH by central disparity map
C= (C,V,5) N4:{(_170)7(150)7(07_1)7(0’1)}
foreach gin VH domaindo
if VH[ g] isin or surf then
c=U(CDSfV x (¢!, 1))
if (c,v)in DM domainthen
&=DM ((c,v)}) gs=U(VICDS x (C,v,&,1)")
if (/9s—9dll) < 1then
| CVI[g] = surfouanicm ((cw)t))
else
if ds< 0 then
| CV]g] = out
else
if VH[ g] isin then
| CV[g]=in
else
| CV[g]=surfy
foreachn e [0,4]do
lg = |U(VIDS x ((c', 1) +(N4[n],0,0))") — g,
ne = (c,v)' +N4[n]/Ig
if nc in DM domain and &, = DM (n¢)) < & then
cnf=(CM {(c,v)!) (& — &)+
CM (n¢) (3s—9)) / (& — &)
CV[g| = sur fouantenf)

else
if VH[ g] isin then
| CV[g] =in
else
| CV[g|]=surfy

else
| CV[g] =out
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Fig. 4.7 pipeline of carving VH algorithm by disparity map.

per segment expressed in CD&, Vv, &) and(cy,V,d1). When a right end poinfcs, v, &)
is generated, the corresponding segment of initial constant dispaistfilled in DM, by a
dedicated interpolation scheme between the end points

DM, [(c,v)!] = 3+ (1—t)(2t —1)(3 — &) c—Co

+ t(2—1)(8—9) C1—Co

(4.15)

The interpolation function in equation 4.15 is ensured to pass through the central sample
(t:%) and both end points € {0,1} (see figure 4.8 where the black double lined curve
expresses the interpolation function that yields the interpolated disparitige i). When
& and &, are both under or both abow® or if one only of them equal$ (indicating
large disparity gap or start/end point), this interpolation is parabolic and the equation 4.15
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Fig. 4.8 Disparity interpolation: relation between dispamapDM (colored points) and in-
terpolated disparity malpM; illustrated in CDS by the interpolation function (black double
line curve). The results of this process are illustrated in the second and fifth rows of figure
4.12.

is written as follows:

d—(2t—12(5— &), o
DM [(cV)}] =4 0+ (1-t)(2—1)(6— &), o
d+t(2t—1)(8 —9), %

%
5 (4.16)
5

Whendy or &, is above and the other under, the interpolation is linear. Equation 4.15 is
thus written:

DM,[(c,V)l] =0+ (2t—1)s, & —-0=0—-=c€e{-1/2,1/2}. (4.17)

4.4.4 Smoothing using bilateral filter

The result of the disparity interpolation described in section 4.4.3 is a floating point dis-
parity map morecontinuousor smooth on each row but still presenting numerous vertical
depth steps. To handle this problem, a bilateral filter is applied on the disparitipMapo
compute a smoothed disparity mBM s as described in equation 4.18 and demonstrated in
figure 4.12. The centered operating window is chosen rectangular as regulating transitions
between segments implies a rather low width 2wiv but reducing vertical depth steps
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involves a much taller height 2wh1. Furthermore, as Equation 4.18 imply an overall nor-
malizing factory ,w W(p,n), we chose not to normalize each individual gaussian function
in individual weight computations.

DMS[p] _ ZI‘IGW DMr [p+ n] W(p7 n) (418)

Snew W(p,n)

with n = (dc,dv)l, W = [-ww ww] x [-wh,wh] and

W(p,n) = §o.(dc) Gg,(dv) wd(DM[p + n] — DM [p])
So(t) = exp(~t?/(20%))
wd a function decreasing from Tor example
wd(AS) = 03/(02 +Ad?)

4.5 Omnidirectional 3D modeling
4.5.1 Merging difficulty

The final step of the 3D reconstruction consists in merging carved VH vol@wgs
from multi-baseline stereovision results for all multiscopic unitésee figure 4.9) in order
to obtain a single 3D model representing the 3D pose of the reconstructed object(s).

Figure 4.12 illustrates that the result of each multiscopic unit provides information only
on visible surfaces facing the unit while other surface areas are derived from VH result.
Multiple carved VH from different multiscopic units spread around the scene thus yield
stereovision details for almost every surface area of the model.

However, parts of the model surface are to be seen and reconstructed by multiple mul-
tiscopic units and these independant reconstructions are usually partially inconsistent one
to another. Therefore, in such inconsistently reconstructed areas, we have to decide which
reconstruction is locally kept in the final solution. This decision is based on the confidence
attribute of surface voxels: as stated in section 4.4.2, surface vox€l¥ inbear differ-
ent labelssurf; indicating their quantified confidence level according to the stereovision
process.

4.5.2 Merging process

The overall principle of this final step is to initialize the final merged voluFWeto one
of the carved VH (FV= CVp,,) and then to iteratively merge each other carved O¥,
into FV according, in inconsistently labelled areas, to decisions based on confidence scores
of surface voxels.
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Fig. 4.9 Carved VH using multi-baseline stereovision methgalyang on 3 different mul-
tiscopic units. a) Initial VH and slice that represent the voxels with three label (‘onit;
and"surf"). b,c,d) Three different carved VH and slices that refer to the voxels with three
labels and the confidence level.

As VH is known to be a super-set of the solution, the process only evaluates voxels
labelledin or surf in VH. It thus loops over every voxed, treating each one for which
VH|(g] is notout according to its labelsV[g] andCV ny[g] (see figure 4.10):

» bothout: voxelg is keptoutin FV

* bothin: voxelgis keptin in FV

« surfi andsurfj: voxel g is kept the labeburf with the highest confidence level
FV[g] = surfmaxi, j)

« all other cases: voxegl has inconsistent labels, the global loop is suspended while an
inconsistency resolution process is run frgm

In the last case, to decide which label is to keep, we propose a global evaluation of the 6-
connected area implied in the detected inconsistency rather than a per voxel decision. Thus,
when a voxelg is detected as inconsistent in the global loop, a two pass process starts in
order to make a decision.

The first pass aims at collecting relevant information to help making the right decision.
It goes fromg through its inconsistent 6-connected area in order to compute each confidence
level histograms of the encountered surfaces of both volumes. These confidence histograms
for the two surfaces help making the decision on which vol&vieor CV , will transfer its
labels to the final solution in this 6-connected area. We propose to choose the volume with
the highest mean confidence level, but other competing scores could easily be proposed and
tested based on the confidence histograms.
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When the decision is made, a second pass is run. The same walkythis performed
over the area of 6-connected voxels with inconsistent labels in order to resolve the inconsis-
tency by copying labels of the chosen volume into the other. One could have thought that,
when the chosen volumed/, nothing needs to be done, but the first pass and the decision
making would then be repeated for every voxel of the area which is far from efficient. More-
over, during this second pass, when a voxel labedlad; andsur f; is encountered, its best
confidence levemax(, j) is kept in both volumes.

This process clearly relies on a consistent topology in both volumes. This point is en-
sured by the VH carving step described in section 4.4.2. This topological consistency further
permits to keep our 6-connected area walk-through topologically consistent: the process
starts from an inside position (or sur f;) in one of the volume¥; and an outside position
(out or surf) in the other volume/,. This per volume topological consistency has to be
ensured over the whole process by adding to the studied area only neighbor voxels with
different labels topologically consistent with the starting condition. No shift fromabel
to out label should occur in each volume across a 6-connection. Thus, ensuring topological
consistency consists in avoiding 6-connections transgressing initial inside/outside position
in each volume. This could occur Wy for voxels on surface connecteddat voxels as in
V,, for voxels on surface connecteditovoxels.

45.3 Refinements

The rough application of the section 4.5.2 process appears not totally successful as the
walked-through areas sometimes appear as several rather broad andldadiaof non
surface voxels connected by thin lines or surfaces. The decision is made once for the whole
area while it should be differenciated for each blob and connection line or surface. This
yields inconvenient decisions which need to be corrected.

In order to do so, we apply several times the merging process of section 4.5.2 (3 times in
the present implementation) with less and less restrictive conditions on inconsistent voxels:

1. Considered voxels have to be labeliedout or out/in. Furthermore a sufficient
part of their 6-neighbors has to be labelled in the same way (at least 40% in our
implementation). This step treats braadout blobs.

2. Considered voxels are the remainingout or out/in ones. This step treats rather
thin areas.

3. Considered voxels are any other inconsistent ones. This steps finalizes the resolution
and treats very thin areas with no madne, out) or (out,in) voxel.

Results from this refinement are illustrated in figures 4.13 and 4.14.
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Fig. 4.10 Merging two carved VH volumes: a,b) two slices of tdifferent carved vol-
umes representing the confidence levels for'thef" voxels and theéin", "out" voxels. c)
superposition of the two slices a,b exhibiting an area with inconsistent labels.

4.6 Results and discussion

To evaluate our framework described in figure 4.1, we used the studio layout scheme pre-
sented in section 1.3.1 both for real and virtual shooting and applied our software framework
to the views they produced. These experimental conditions apply to each result discussed in
this section.

Figure 4.11 illustrates that the VH guided stereovision method described in section 4.3
improves the materiality map derived from our previous multi-baseline stereovision method
(see chapter 3) by ridding it of outliers outside the visual hull. Moreover, in non specular
textured or concave areas, the materiality map solution proves to be more accurate than the
visual hull as illustrated in figures 4.12 a, which clearly shows that concavities such as eye
cavities are carved out by our stereovision method both for virtual and actual shootings.
Figures 4.12 show results of the carving process described in section 4.4 on two view sets:
the first one, of a virtual actor "Simon", shot under ideal calibration conditions by computer
graphics software, and the second one, of a real actor "Philippe"”, captured in our dedi-
caced studio. Comparing the carved volume to the point cloud on each row of these figures
gualitatively validates our carving method. The evolutions obtained on both figures from
each row to the next, demonstrate the relevance of the disparity interpolation and smooth-
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(b)

©

(€) (f) (9) (h)

Fig. 4.11 First row: point clouds obtained with integer disparity values without any VH
guidance for real actors. a, b) two different views for "Cédric". c, d) one view and its
zoom in the red area respectively for "Jacques". Second row: similar values of point clouds
obtained with integer disparity values with VH guided stereovision for the same data.

ing steps. The fusion of every multiscopic unit outcomes described in section 4.5 provides
robust reconstruction especially in the areas where two or more multiscopic units compete.
Figures 4.13 and 4.14 demonstrate this using results obtained respectively from a virtual
dataset and a real dataset. One should notice the results quality despite the low number of
used multiscopic units: 3 for actual shooting and 4 for the virtual one.

4.7 Conclusion

This chapter describes a new way of combining visual hull and multi-baseline stereovi-
sion in a fully automatic process. In section 4.3, we explained how to exploit information
from the visual hull to guide the materiality map optimization process in order to increase
its reconstruction accuracy, robustness and computational efficiency. It was demonstrated
that our materiality map framework can integrate the visual hull guidance in a powerful way
using its scene-based structure.

We also proposed in section 4.4 a new algorithm for VH carving from stereovision
surface coded as a disparity miapl. This process yields a topologically consistent volume,
which is crucial for many applications, including our further proposition of carved volumes
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Fig. 4.12 Results from one multiscopic unit for virtual actor "Simon" (3 top rows) and real
actor "Philippe" (3 bottom rows). From top to bottom, results with: initial integer valued
disparities; interpolated disparities according to 4.4.3; disparities smoothed by bilateral fil-
tering described in 4.4.4. On each row, from left to right: disparity map, point cloud, and
carved volume.
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Fig. 4.13 Results of the entire pipeline using VH and multiple multi-baseline stereovision
reconstructions: several views of the point cloud and carved volume obtained from VH and

four multiscopic units for virtual actor "Simon"

(b)

(d) (€) (f)

Fig. 4.14 Results of the entire pipeline: several views of the global point cloud obtained for
real actor "Jacques” from final volume resulting from VH and three multiscopic units. It
corresponds to the union of the projection, per multiscopic unit, of the initial point cloud on
the final volume.
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merging. We further showed on experimental examples bothltaithm results and the
relevance of our disparity interpolation and smoothing methods.

Moreover, we proposed in section 4.5 a novel framework to merge multiple carved vol-
umes obtained from different multiscopic units. We demonstrated the efficiency of the pro-
posed inconsistency handling on both virtual shootings and actual shootings.

Altogether, these contributions, added to our previous stereovision framework proposed
in chapter 3, yield a qualitative and robust omnidirectional 3D reconstruction tool to RE-
COVERS3D project. The proposed solution proves the advantages of using both multiscopic
and monoscopic cameras in a studio system as well as combining multi-baseline stereovi-
sion with VH approaches.
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4.8 Résume : Pipeline de fusion volumique des résultats is-
sus des reconstructions multiscopiques avec I'enveloppe
visuelle

Afin de reconstruire la globalité de la scene, nous proposons un pipeline de fusion a
deux niveaux. Le premier se focalise sur la fusion des résultats issus d’une unité multi-
scopique avec I'enveloppe visuelle, tandis que le deuxieme se charge de la fusion des résul-
tats de toutes les unités multiscopiques. Au préalable, en nous replacant dans le contexte
du projet RECOVER3D, nous proposons une hybridation de notre méthode de stéréovision
multi-oculaire tirant parti de la géomeétrie multi-épipolaire simplifiée et réguliere afin d’en
améliorer sa robustesse et son efficacité. En effet, notre méthode de stéréovision adaptée a
de multiples caméras alignées ne délivre pas des résultats uniformément fiables, notamment
dans les zones faiblement texturées ou avec un taux de redondance pauvre. La restriction de
la zone de recherche des points cibles en utilisant I'enveloppe visuelle comme guide permet
d’éliminer définitivement, en amont du processus de reconstruction, les points cibles candi-
dats n’appartenant pas a cette enveloppe. Appliquée a une unité multiscopique du systeme
de capture de RECOVER3D, nous obtenons une reconstruction 3D partielle de la scéne. La
surface obtenue est alors utilisée pour creuser I'enveloppe visuelle issue de la méthode basée
silhouette. Seule la zone du volume visible par I'unité de capture a été modifiee, sur les par-
ties arriére, I'enveloppe visuelle est conservée telle quelle. Ainsi, les différents résultats des
unités multiscopiques représentent des zones d’influence sur le modéle 3D assez distinctes
mais pouvant se chevaucher lorsque les unités sont situées I'une a coté de I'autre dans le
systeme de capture. Dans ces zones de chevauchement, une des deux reconstructions hy-
brides proposées peut étre plus pertinente que l'autre. Afin de quantifier cette pertinence,
nous utilisons un des attributs de notre carte de matérialité calculée lors du processus de re-
construction multiscopique proposé dans le chapitre 3. Cet attribut est le score de confiance
associé a chaque point cible. Afin d’obtenir & la fin du pipeline un modele 3D unique de la
meilleure qualité possible, les différences dans les zones de chevauchement des modeles par-
tiels issus des unités multiscopiques sont identifiées et traitées. Pour éviter une complexité
de résolution trop importante, nous avons opté pour un traitement incrémental des fusions
volumiques. Le principe est d'initialiser la solution par I'enveloppe visuelle creusée par une
premiere unité multiscopique, puis de fusionner itérativement la solution obtenue avec celle
d’'une autre unité multiscopique, avec un traitement approprié des zone ou elles différent, .
La derniere partie de ce chapitre, a travers quelques résultats, montre que I'approche pro-
posée permet de récupérer, sous forme d’'un volume creusé, une représentation 3D précise
de la scéne a modéliser. La qualité de ce volume permet de retrouver les petits détails et les
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zones concaves sujettes a occultation. En conclusion, feslmations de ce chapitre sont
triples : (i) une hybridation de notre méthode de stéréovision multi-vues grace au guidage
par I'enveloppe visuelle ; (ii) la sculpture de I'enveloppe visuelle a partir d’'une surface de
stéréovision interpolée et lissée; (iii) et enfin une fusion des volumes creusés d’'une maniére
appropriée dans les zones ou les informations différent.



Conclusion géneérale

Notre travail s’inscrit dans le project RECOVER3D (Real-time Environment for COm-
putational Video Editing and Rendering in 3D). Le but de ce projet est de fournir un nou-
veau systeme virtuel de clonage d’acteurs, basé sur une capture multi-vidéo de leurs perfor-
mances, et délivrant naturellement des modeéles 4D texturés en haute résolution. Ce projet
est basé principalement sur un partenariat entre des chercheurs académiques et des indus-
triels. La principale caractéristique de ce systéme est de regrouper les caméras en deux
types d’unité : les unités monoscopiques (une caméra) et les unités multiscopiques (quatre
caméras). Ces unités sont placées autour de la scene sur deux niveaux afin de maximiser
la zone de capture. Dans cette thése, nous présentons la partie de ce projet dédiée a la re-
construction 3D de scenes dynamiques exploitant, pour chaque pas de temps, ce systéme
d’acquisition illustre dans le chapitre 1. La reconstruction 3D d’'un objet a partir de sil-
houettes 2D est I'une des approches les plus répandues grace a sa simplificité de mise en
oeuvre. Les méthodes de reconstruction basée silhouettes sont généralement classées en
deux groupes : i) approche volumétrique ; ii) approche polyédrique. L'un des principaux
avantages de ces méthodes est leur capacité a reconstruire les zones sans texture, spéculaires
et méme transparentes. Toutefois, elles sont incapables de reconstruire les zones concaves,
et le modéle 3D reconstruit est de faible précision comparé a ceux obtenus par d’autres
approches comme la stéréovision. Beaucoup de travaux ont été proposés afin d’améliorer
les reconstructions basées silhouettes en utilisant la stéréovision, car ces deux approches
s’averent étre complémentaires. En effet, 'approche stéréovision est capable de reconstru-
ire les zones concaves et le modele 3D résultant est plus précis. Notre travail s’'inscrit dans
cette derniére catégorie. Dans le chapitre 2, nous avons proposé de classer les méthodes ex-
istantes pour la fusion de ces deux approches en trois grands groupes clarifiant les avantages
et les inconvénients de chacun d’eux : i) les méthodes de stéréovision guidée par I'enveloppe
visuelle ; ii) les méthodes collaboratives appliquant simultanément des criteres issus de ces
deux techniques ; iii) les techniques fusionnant uniquement les résultats apres une appli-
cation séparée de ces deux méthodes. Nous avons également présenté dans chapitre 2 la
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géométrie multi-épipolaire simplifiée et régulierementaesie qui est celle utilisée pour
exploiter les images acquises par les unités multiscopiques. Cette géométrie fournit une
configuration efficace et robuste pour la modélisation d’objets 3D grace a la réduction a une
seule dimension de I'espace de recherche pour les pixels correspondants.

D’un autre c6té, la reconstruction stéréovision multi-oculaire réalisée a partir de plus de
deux points de vue est une généralisation naturelle de la reconstruction en stéréovision binoc-
ulaire. L'avantage d’utiliser un nombre d’'images supérieur a deux est de pouvoir s’appuyer
sur la redondance d’informations, laquelle aide a éviter les mauvaises mises en correspon-
dance. Dans le chapitre 3, nous avons proposé une méthode de reconstruction multiscopique
exploitant une capture multi-oculaire parallele décentrée avec des centres optiques alignés et
équidistants. Cette méthode propose une solution aux problémes qui se posent couramment
en stéréovision tels que les régions partiellement occultées. La méthode proposée est dite
basée « scene », car elle s’appuie sur un nouvel échantillonnage de I'espace scénique adapté
a la géométrie multi-épipolaire. Elle consiste a construire une carte discrete 3D de « matéri-
alité » sur 'ensemble des points 3D que nous nhommerons « points cibles » et définissons
comme intersections des plans de disparités entiéres avec les rayons optiques des images.
Une matérialité est codée entre 0 et 1 et exprime la vraisemblance de I'hypothése que le
point appartienne a la surface de la scene acquise. Cette approche définit aussi une fonction
de visibilité sur I'ensemble fini des points cibles. En outre, notre proposition est bien adaptée
pour le parallélisme. En effet, 'optimisation de la carte de matérialité est indépendante pour
chaque plan épipolaire (voir le chapitre 3), cela nous permet ainsi de prévoir, dans une future
implémentation, une mise en ceuvre efficace sur GPU. Afin d’évaluer notre méthode, nous
I'avons confrontée aux résultats issus d’'approches existantes dans la domaine de stéréovi-
sion tel que TreeDP [77], MultiResGC [53], DoubleBP [81], GC+occ [38],et AdaptAggrDP
[80] en utilisant deux mesures proposées par Scharstein et al. [60], la moyenne quadratique
et le pourcentage de mauvaises mises en correspondance de pixels. Grace a I'exploitation de
la redondance des informations, de I'espace image et de notre nouvel espace géométrique de
la scene, les résultats montrent que notre méthode est capable de traiter les régions occultées
comme indiqué dans le tableau 3.7. Toutefois, ces résultats montrent aussi que notre méth-
ode mangue encore de robustesse dans les zones sans texture, comme nous I'expliquons dans
la section 3.11. Par conséquent, dans le chapitre 4, nous avons proposé une hybridation par
enveloppe visuelle de notre méthode de stéréovision multi-oculaire exploitant la géométrie
multi-épipolaire simplifiée et réguliére ainsi qu’une chaine compléete pour la reconstruction
3D adaptée au systéme de capture du projet. L’hybridation de la stéréovision et I'enveloppe
visuelle tire parti de leur complémentarité afin de résoudre leurs problémes individuels de
reconstruction 3D. Cette hybridation consiste, pour notre méthode de stéréovision multi-
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oculaire, arestreindre la zone de recherche des points&hlatilisant I'enveloppe visuelle

et ainsi a éliminer définitivement, en amont du processus de reconstruction, les points cibles
candidats n’appartenant pas cette enveloppe. Dans notre chaine de reconstruction, une fois
I'enveloppe visuelle calculée, et puis sculptée par les résultats de stéréovision multi-vues
pour chaque unité multiscopique, nous obtenons plusieurs volumes creusés pour la recon-
struction d’'un méme objet 3D. Nous avons donc proposé de fusionner tous ces résultats en
un modele unique. Les grandes étapes de cette fusion sont : i) initialiser la solution avec
la fusion de I'enveloppe visuelle et de la reconstruction issue d’une unité multiscopique

; i) fusionner itérativement la solution courante avec la reconstruction obtenue pour une
autre unité multiscopique. Ces fusions itératives nécessitent un traitement particulier sur les
zones avec des informations contradictoires entre les reconstructions multiscopiques. Nous
avons expeérimenté notre chaine sur des données réelles et sur des données virtuelles. Les
résultats montrent que la fusion des deux techniques permet d’obtenir de meilleurs résultats
que ceux obtenus séparément avec la stéréovision multi-oculaire ou I'enveloppe visuelle.
Apres avoir modélisé I'objet en 3D en chaque trame de la vidéo grace a notre proposition,
le projet RECOVER3D inclut un suivi temporel de modele 3D qui évalue le champ de
mouvements inter-trame par appariement de voxels. Ce champ est ensuite appliqué par dé-
formation pseudo-rigide au maillage du modele. Ce travail a été réalisé au sein d’une autre
thése [5] proposée par le laboratoire CReSTIC. Un perspective de notre travail pourrait étre
d’utiliser cette information de mouvement (e.g. les champs de vecteurs) afin d’affiner le
modele 3D reconstruit par notre chaine. Dans de futurs travaux, nous proposons d’élargir
le projet RECOVERS3D pour étre en mesure d’appliquer la reconstruction de la scene 3D
dynamique dans des environnements extérieurs. Cela revient a abandonner la technologie
du studio pour la remplacer par des méthodes de détourage adaptées aux environnements
non controlés. Cette proposition nécessite un systeme synchronisé de plusieurs caméras
portables et une méthode d’extraction du premier-plan en tenant compte des changements
de dynamiques dans les vues au fil du temps. Un autre aspect important de la reconstruction
au sein du projet RECOVER3D est la colorisation de I'objet 3D obtenu. En général, dans

le domaine de la reconstruction de scéne 3D, il existe deux grandes classes de colorisation
de la géométrie. La premiere suppose que la résolution de la discrétisation de la scene en
voxels est assez fine afin de pouvoir fournir une seule couleur pour chaque voxel, dérivée
de sa projection sur les images. La seconde est le « texture-mapping » qui revient & projeter
chaque vue disponible sur I'objet reconstruit. Dans cette derniére classe, un certain nombre
d’approches ont été développées, comme la méthode proposée par Debevec et al.[18] qui ap-
plique, apres la projection des images, sur chaque primitive de I'objet géométrique 3D (par
exemple sur chaque sommet), un processus d’interpolation et de mélange utilisant les vues
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les plus pertinentes et I'orientation locale de la surfaee.simplicité, nous avons choisi le

« voxel coloring », une méthode de la premiere classe. Une des évolutions possibles serait
de modifier ce choix et de mettre en ceuvre une approche de la seconde classe, comme [18],
afin d’obtenir des modeles texturés visuellement plus convaincants.



Chapter 5

Conclusions and perspectives

The 3D reconstruction of an object from multiple 2D silhouettes corresponding to dif-
ferent viewpoints has long been considered as to be a preferred approach. We distinguish
two major approaches of silhouette-based 3D reconstruction : i) volumetric, ii) polyhedral.
A major advantage is such approaches permit the reconstruction of textureless, specular, or
even transparent objects. However, they fail to reconstruct the concave zones, and they lack
precision in 3D object modeling compared with stereovision approaches. Recently, several
approaches were proposed to improve the silhouette-based 3D reconstruction with stereo-
vision. The stereovision and silhouette-based 3D reconstruction approaches complement
approaches complement one another since stereovision is able to reconstruct the concave
regions and produce highly detailed 3D reconstructions. In this thesis, we presented a part
of the RECOVERS3D project about the 3D reconstruction of an actor in multi-view studio,
coupling video cameras laid in both monoscopic and multiscopic units, We propose a 3D
reconstruction solution using both multi-baseline stereovision and silhouette-based 3D re-
construction.

In chapter 2, we proposed to classify existing methods that merge stereovision and
silhouette-based 3D reconstruction into three major groups clarifying the advantages and
disadvantages of each these methods i) Stereovision guided by visual hull methods, ii) Col-
laborative methods applying simultaneously criteria borrowed from both techniques, iii)
Separate application of both methods with further merging of their results. We also pre-
sented in the chapter 2, the multi-simplified epipolar geometry which provides an efficient
and robust configuration for 3D object modeling thanks to reduction to one dimension of
the search space for matching pixels.
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In chapter 3, we proposed a novel framework to deal with conynoccurring prob-
lems in multi-view stereovision such as semi or totally occluded regions. Furthermore, our
framework uses multiple images shot or rectified in multi-simplified epipolar geometry (see
section 2.1.3.2). Our approach relies on a new scene space sampling scheme fitted to this
simplified geometry. Rather than dealing with the full 3D scene, our method estimates the
effective 3D scene where the objects need to be reconstructed. However, the multi-view
stereovision relies only on information in the image space and sometimes has difficulties
to recover precise geometry, particularly in low texture regions. For this reason, we pro-
posed to optimize scene geometry with respect to image information in order to obtain a
high-accuracy 3D model of objects handling the semi and totally occluded regions. In ad-
dition to our scene geometry definition, the novelty of our approach lies in building 3D
discrete materiality map with values ranging between 0 and 1. These values express the
affiliation of target points in the useful scene to object surfaces. Compared with the re-
sults derived from other methods (TreeDP[77], MultiResGC[53], DoubleBP[81], GC+occ
[38], AdaptAggrDP[80]), our results show that our method is able to deal with occluded
regions thanks to exploitation of redundancy information and to rely on the image space
and geometry space information, as shown in table 3.7. However, we showed that results of
multi-baseline stereovision still lack robustness in low textured areas.

In chapter 4, we demonstrated the benefits of enhancing a multi-baseline approach with
visual hull guidance. Applying our multi-baseline approach on each multiscopic unit, we ob-
tain several carved volumes for a same 3D object. We proposed a novel framework to merge
these volumes. The overall principle to get full 3D modeling is to initialize the computation
by a reconstructed volume from a first multiscopic camera, then merge iteratively the cur-
rent solution with those of following multiscopic unit taking into account the (in)consistency
zones.

We applied our framework on a virtual scene composed of a virtual actor. The virtual scene
permits to validate our method in some perfectly known setting (i.e. without any calibration
error). This has significant impact on the final results. Afterwards, the framework proposed
in this thesis was implemented and experimented with RECOVERS3D real actors.

5.1 Perspectives

We identified several aspects of our work that could be improved in the near future as
well as in a long term perspective. In the following, we discuss those different suggestions
of future improvements:

» Using motion information: within the RECOVER3D project, after the reconstruction

step described in this thesis, we obtain a sequence of discrete volumes that represent
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the character's pose at each video frame. In traditional iraigitv reconstruction
pipelines, these volumes are transformed into a sequence of 3D textured meshes that
are successively loaded to memory for the rendering of each frame. Another goal
of the RECOVER3D project addressed within the CReSTIC laboratory [5] is to in-
troduce a dynamic representation of the character to free ourselves from this static
description of the scene in order to produce a single, temporally consistent, animated
model according to the character’s motion. Integration has not yet been performed
and could be a natural immediate step. As a more long term goal, we could envisage
using the motion information in order to refine the 3D shape reconstructed by silhou-
ettes and stereovision methods. Silhouette, texture and motion information thus could
be integrated to accurately fit the 3D mesh to the object surface.

» Texturing 3D object: another important aspect of 3D reconstruction within the RE-
COVERS3D project is the coloring of the obtained 3D object. In general, there are two
major classes for coloring 3D geometry for 3D reconstructed scene purposes. The first
assumes the voxel's object to be fine enough in order to provide a single color for each
voxel derived from their projections onto the images. The second is the texture map-
ping which expresses by the projection of each image onto the reconstructed object.
A number of approaches were developed like Debevec et al. [18] who apply, after
the image projection, an interpolation process on each primitive of the 3D geometric
object using a subset of nearest views according to the orientation of the primitive
surface. At the moment, in the RECOVERS3D project, the first class of methods was
chosen, for simplicity reasons, for surface coloring. In the future, the second class
should be considered instead in order to obtain texture-mapped models more visually
convincing.

» Handling scenes with multiple objects: Until now, our application is evaluated using
the scene containing one object. Manipulating multiple objects yields to ambiguity
in the 3D reconstruction scene using only VH. Therefore, we expect that the fusion
between VH and stereovision will solve most of collisions problem between 3D re-
constructed objects and refine the results of VH.

* Allowing outdoor capture: The RECOVER3D system is composed of cameras that
are fixed and calibrated and has a chromakey background. The current assumptions
would not allow to enable dynamic 3D scene reconstruction in outdoor environments.
A perspective project would be to extend the developed approaches to uncontrolled
environments. This proposition requires a synchronized portable multiple camera sys-
tem and a specific method for foreground extraction taking into account the dynamic
changes in appearance between views and over time.
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» Addressing realtime and high resolution data: In order toketethe RECOVER3D

system and software solution as a product for TV and film producers, the XD produc-
tion company would require an increase of resolution (4K) and realtime computations.
In our application, we work with an image resolution of 1920080 which has a di-

rect impact on the quality level of multi-baseline stereovision. One can easily figure
that higher image resolutions would provide more detailed results since the number
of the available target points to be reconstructed into the geometry scene is increased.
The approach proposed in this thesis could be implemented on the GPU in order to ad-
dress current market targeted images with high resolution images, like 4K resolution
of 3840x 2160. Since the materiality map optimization is independent (see chapter
3) for each epipolar plan, our proposition is well suited for parallelism, such that it
can implemented efficiently on GPU. However, the Gradient Descent algorithm is an
iterative process requiring many iterations in order to converge and find the minimum
energy. This implies difficulties of our method to reach the real time. Therefore,
an alternative to our materiality map using another optimization method should be
envisaged in order to improve the computing time.
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RECONSTRUCTION DE SCENE DYNAMIQUE A PARTIR DE PLUSIEURS VIDEOS MONO ET MULTISCOPIQUES PAR
HYBRIDATION DE METHODES « SILHOUETTES » ET « MULTI-STEREOVISION »

La reconstruction précise d’une scene 3D a partir de plusieurs caméras offre un contenu synthétique 3D a destination de nombreuses
applications telles que le divertissement, la télévision et la production cinématographique.

Cette thése propose une nouvelle approche pour la reconstruction 3D multi-vues basée sur I'enveloppe visuelle et la stéréovision multi-
oculaire. Cette approche nécessite en entré I'enveloppe visuelle et plusieurs jeux d’'images rectifiées issues de différents unités multiscopiques
constituées chacune de plusieurs caméras alignées et équidistantes. Nos contributions se situent a différents niveaux. Le premier est notre
méthode de stéréovision multi-oculaire qui est fondé sur un nouvel échantillonnage de I'espace scénique et fournit une carte de matérialité
exprimant la probabilité pour chaque point d’échantillonnage 3D d’appartenir a la surface visible par I'unité multiscopique. Le second est
I’hybridation de cette méthode avec les informations issues de I'enveloppe visuelle et le troisieme est la chaine de reconstruction basée sur la
fusion des différentes enveloppes creusées tout en gérant les informations contradictoires qui peuvent exister. Les résultats confirment :

1) I'efficacité de I'utilisation de la carte de matérialité pour traiter les problémes qui se produisent souvent dans la stéréovision, en particulier
pour les régions partiellement occultées ; Il) I'avantage de la fusion des méthodes de I'enveloppe visuelle et de la stéréovision multi-oculaire
pour générer un modele 3D précis de la scene

Reconstruction 3D a partir de multiples vues, Stéréovision multi-vue, Enveloppe visuelle, Géométrie épipolaire parallele décentrée,
Reconstruction basée silhouette.

3D SCENE RECONSTRUCTION BY SILHOUETTE AND MULTI-BASELINE STEREOVISION

Accurate reconstruction of a 3D scene from multiple cameras offers 3D synthetic content to be used in many applications such as
entertainment, TV, and cinema production. This thesis is placed in the context of the RECOVER3D collaborative project, which aims is to
provide efficient and quality innovative solutions to 3D acquisition of actors. The RECOVER3D acquisition system is composed of several tens of
synchronized cameras scattered around the observed scene within a chromakey studio in order to build the visual hull, with several groups laid
as multiscopic units dedicated to multi-baseline stereovision. A multiscopic unit is defined as a set of aligned and evenly distributed cameras.
This thesis proposes a novel framework for multi-view 3D reconstruction relying on both multi-baseline stereovision and visual hull. This
method’s inputs are a visual hull and several sets of multi-baseline views. For each such view set, a multi-baseline stereovision method yields a
surface which is used to carve the visual hull. Carved visual hulls from different view sets are then fused iteratively to deliver the intended 3D
model. Furthermore, we propose a framework for multi-baseline stereo-vision which provides upon the Disparity Space (DS), a materiality
map expressing the probability for 3D sample points to lie on a visible surface. The results confirm i) the efficient of using the materiality map
to deal with commonly occurring problems in multi- baseline stereovision in particular for semi or partially occluded regions, ii) the benefit of
merging visual hull and multi-baseline stereovision methods to produce 3D objects models with high precision.

Multiview 3D reconstruction, Multi-baseline stereovision, Visual hull, Decentered parallel geometry, Shape from silhouette.
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