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Abstract

4D multi-view reconstruction technologies are more and more used in media production
due to their abilities to produce a virtual clone of an actor from a simple video acquisition
performed by a set of multi-viewpoint cameras. This approach is a major advance for the
composition of animations which mix virtual and real images, and also o�ers new possi-
bilities for the rendering of such complex hybrid scenes. The work described in this thesis
takes parts in the RECOVER 3D project which aims at developing an innovative industrial
framework for TV production, based on multi-view reconstruction, from studio acquisition
to broadcasting. The major drawback of the methods used in this context is that they are
not adapted to the reconstruction of dynamic scenes. The output are time series which
describe the successive poses of the actor, �gured as a sequence of static objects. The goal
of this thesis is to transform these initial results into a dynamic 3D object where the actor
is �gured as an animated character. The research detailed in this manuscript presents two
main contributions. The �rst one is centered on the computation of a motion �ow which
represents the displacements occurring in the reconstructed scene between two consecutive
poses. The second one presents a mesh animation process that leads to the animation of
a 3D model from one pose to another, following the motion �ow. This two-step operation
is repeated throughout the entire pose sequence to �nally obtain a single animated mesh
that matches the evolving shape of the reconstructed actor. Results show that our method
is able to produce a temporally consistent mesh animation from various sequences of visual
hulls.

Keywords: multi-view reconstruction, animation, mesh deformation, motion �ow, as-
rigid-as-possible, dynamic scene, volume, voxel matching, temporal consistency.
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Résumé

Les technologies de reconstruction multi-vues permettent de réaliser un clone virtuel
d'un acteur à partir d'une simple acquisition vidéo réalisée par un ensemble de caméras à
partir de multiples points de vue. Cette approche o�re de nouvelles opportunités dans le
domaine de la composition de scènes hybrides mélangeant les images réelles et virtuelles.
Cette thèse a été réalisée dans le cadre du projet RECOVER 3D dont l'objectif est de
développer une chaîne de production TV complète, de l'acquisition jusqu'à la di�usion,
autour de la reconstruction multi-vues. Cependant la technologie utilisée dans ce contexte
est mal adaptée à la reconstruction de scènes dynamiques. En e�et, la performance d'un
acteur est reproduite sous la forme d'une séquence d'objets 3D statiques qui correspondent
aux poses successives du personnage au cours de la capture vidéo. L'objectif de cette thèse
est de développer une méthode pour transformer ces séquences de poses en un modèle
animé unique. Les travaux de recherches menés dans ce cadre sont répartis en deux étapes
principales. La première a pour but de calculer un champ de déplacements qui décrit les
mouvements de l'acteur entre deux poses consécutives. La seconde étape consiste à animer
un maillage suivant les trajectoires décrites par le champ de mouvements, de manière à
le déplacer vers la pose suivante. En répétant ce processus tout au long la séquence, nous
parvenons ainsi à reproduire un maillage animé qui adopte les poses successives de l'acteur.
Les résultats obtenus montrent que notre méthode peut générer un modèle temporellement
cohérent à partir d'une séquence d'enveloppes visuelles.

Mots-clés: reconstruction multi-vues, animation, déformation de maillage, champ de
déplacements, as-rigid-as-possible, scène dynamique, volume, appariement de voxels, cohé-
rence temporelle.
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Introduction générale

Reconstruction multi-vues

Avec l'amélioration constante des technologies de synthèse d'images, la production de
médias audiovisuels tend à mélanger de plus en plus les images issues de prises de vues
réelles à celles générées par ordinateurs. Cependant, les techniques actuelles utilisées pour
la composition de ces images hybrides restent limitées, notamment lors de la capture vidéo
des acteurs que l'on souhaite placer dans un environnement virtuel. En e�et, la prise de
vues des personnages réels, e�ectuée en studio, et la modélisation de décors numériques sont
réalisées séparément et doivent respecter des contraintes fortes (angles de vues, trajectoires
des caméras, position des éléments de la scène ...) pour que ces di�érentes sources puissent
être assemblées lors de la post-production. La solution alors envisagée pour contourner ces
limitations consiste à réaliser une capture en trois dimensions de l'acteur de manière à
pouvoir en réaliser un modèle numérique. Ce clone virtuel peut ensuite être utilisé, comme
n'importe quel objet 3D numérique, lors de la modélisation et de l'animation d'une scène
virtuelle. Cependant les méthodes actuelles, comme la capture de mouvements, ne sont
pas adaptées à un tel usage. Ce type d'approche est plutôt destiné à capturer les gestes
d'un acteur, via des méthodes le plus souvent invasives, de manière à les transposer sur
un modèle numérique qui peut ainsi être animé de manière réaliste. Dans ce contexte,
les technologies de reconstruction multi-vues présentent des propriétés intéressantes. Ce
type d'approche consiste à capturer la surface d'un objet à partir d'acquisitions vidéo
non-invasives. Ces acquisitions sont réalisées par un ensemble de caméras disposées à de
multiples positions autour de la scène à reconstruire. Cette approche est accessible à des
infrastructures réduites car elle emploie un matériel standard (caméras vidéo uniquement)
et peut être réalisée dans des studios de taille réduite (les dimensions de la zone de capture
sont limitées à la performance de l'acteur). Appliquées sur des acteurs, cette méthode
permet de produire un objet 3D qui représente l'acteur tel qu'il a été �lmé en studio,
avec costume et accessoire. Cet objet 3D peut ensuite être exporté vers un environnement
virtuel et être manipulé à l'aide de logiciel d'animation 3D. A ce stade, le rendu �nal est
e�ectué à partir d'une scène entièrement virtuelle. La prise de vues peut alors être e�ectuée
avec une caméra virtuelle qui n'est plus limitée aux contraintes physiques de la capture de
l'acteur en studio et peut de cette manière adopter des points de vue et des mouvements
totalement libres dans l'espace de la scène virtuelle. La représentation de l'acteur sous
forme de modèle 3D permet également d'appliquer diverses opérations telles que le clonage
des personnages ou le ré-éclairage par des sources lumineuses virtuelles.
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2 Introduction générale

RECOVER 3D

Le projet RECOVER 3D (Real-time Environment for COmputational Video Editing
and Rendering in 3D), �nancé par le programme Investissements d'Avenir dans le cadre
du Fonds national pour la Société Numérique (FSN), est issu d'une collaboration entre
di�érents acteurs industriels et académiques. L'objectif de ce projet est de concevoir et
développer une chaîne de production complète pour adapter la reconstruction multi-vues
à la production télévisuelle, de la captation vidéo jusqu'à la di�usion (voire Figure 1.5). le
consortium RECOVER 3D est formé de quatre partenaires :

� L'entreprise XD Productions est le leader du projet. Cette société basée à Issy-les-
Moulineaux (Paris) héberge le prototype du studio de capture vidéo multi-points de
vues et assume la direction technique.

� Le CReSTIC (Centre de Recherche en STIC) de l'Université de Reims Champagne-
Ardenne assure la direction scienti�que du projet. L'équipe SIC (Signal, Image et
Connaissance) a lancée deux sujets de thèse (dont celle décrite dans ce manuscrit)
portant sur l'amélioration des technologies de reconstruction multi-vues.

� Le groupe Euro Media apporte une expertise technique pour l'étape de di�usion des
résultats de la reconstruction. Cette entreprise a mis en place une solution logicielle
pour la manipulation des images issues de l'hybridation des décors virtuels et d'acteur
reconstruits.

� L'ILOI (Institut de l'Image de l'Océan Indien) est une école de production multimédia
basée à la Réunion. Elle accueille une seconde version du studio de reconstruction
multi-vues qui doit permettre la validation des technologies RECOVER 3D à échelle
réelle.

La technologie RECOVER 3D est basée sur un studio de capture où un ensemble
de caméras (24 pour le studio parisien) est disposé autour de la zone de capture où se
tient l'acteur. Ces caméras sont réparties en blocs monoscopiques (une seule caméra) et
multiscopiques (4 caméras alignées côte à côte). La méthode de reconstruction actuelle suit
une approche basée silhouettes : un masque correspondant à la silhouette de l'acteur est
extrait dans chaque image acquise simultanément par l'ensemble des blocs monoscopiques
grâce à un algorithme de chroma-keying. Pour chaque pixel du contour d'une silhouette,
un rayon peut être lancé à partir du centre optique de la caméra correspondante vers
ce pixel, ce qui permet d'obtenir une demi-droite sur laquelle se trouvent tous les points
de l'espace qui peuvent potentiellement correspondre à ce pixel. En répétant l'opération
pour chaque pixel du contour de la silhouette, l'ensemble des demi-droites obtenues forme
un cône de silhouette. L'intersection des cônes de silhouettes obtenus à partir de chaque
point de vue permet de calculer l'enveloppe visuelle de l'acteur. Cette reconstruction est
opérée grâce à un algorithme volumique : l'espace de la zone de capture est discrétisé pour
former une grille 3D dont chaque élément, nommé voxel (Volume Element), est associé
à une valeur binaire (intérieur ou extérieur à la forme reconstruite). Ce volume discret
est creusé par les cônes de silhouettes (les voxels qui ne se trouvent pas à l'intérieur du
cône sont marqué extérieurs) jusqu'à ne conserver que le volume de l'enveloppe visuelle. Le
résultat de cette reconstruction est donc un volume qui représente la forme de l'acteur. Ce
type de reconstruction a l'avantage d'être rapide et peu complexe. Il présente cependant
des inconvénients, notamment son incapacité à reconstruire les concavités de la surface.
Pour améliorer le résultat de cette reconstruction, des travaux de recherches sont menés
dans le cadre du second sujet de thèse RECOVER 3D. L'objectif est d'utiliser les blocs
de caméras multiscopiques pour e�ectuer une reconstruction par stéréo-matching et de
la fusionner avec l'enveloppe visuelle pour obtenir une reconstruction plus précise et de
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meilleure qualité. Les travaux décrits dans ce manuscrit sont cependant basés uniquement
sur des reconstructions basées silhouette.

Problématique

L'inconvénient des méthodes de reconstruction par enveloppe visuelle ou par stéréo-
matching est leur incapacité à représenter une forme dynamique évoluant au cours du
temps. En e�et ces méthodes sont initialement utilisées pour reconstruire des objets sta-
tiques à partir d'un ensemble de photos multi-points de vues. Pour reconstruire la per-
formance d'un acteur, on utilise un ensemble de caméras synchronisées. A chaque pas de
temps de l'acquisition, on dispose ainsi d'une image pour chaque point de vue, ce qui
permet d'e�ectuer la reconstruction. Ce processus est répété tout au long des séquences
vidéo de la capture. Le résultat est une série d'objets 3D statiques qui correspondent aux
poses successives de l'acteur au cours de l'acquisition vidéo. Pour e�ectuer le rendu de
cette reconstruction, chaque pose de cette séquence doit être a�chée à la frame (image)
correspondante. Ce mode de fonctionnement n'est pas adapté aux logiciels d'animation et
empêche toute interaction entre le clone numérique du personnage et son environement
virtuel. L'objectif des travaux de cette thèse est de transformer ces séquences d'ojets 3D
statiques en un unique modèle animé. Le résultat souhaité est un maillage animé et tem-
porellement cohérent. La forme de l'acteur est dé�nie par un maillage triangulé dont la
connectivité et la topologie restent constantes au cours de l'animation : seule la position
des sommets évolue au cours du temps. De plus, notre méthode doit être adaptée à tous
types de silhouette. En e�et, la technologie RECOVER 3D est amenée à e�ectuer la recons-
truction d'acteurs dans di�érentes situations et �lmés en conditions de tournage réelles,
c'est à dire en costume de scène. Les silhouettes ainsi capturées ne correspondent pas tou-
jours à des morphologies humaines (ensemble de membres articulés), notamment à cause
de l'utilisation de vêtements amples, de robes ou d'accessoires. Notre méthode ne pourra
donc pas être basée sur les modèles articulés habituellement utilisés pour la reconstruction
de mouvements humains, mais devra au contraire supporter les mouvements de surface de
types libres. L'approche décrite dans ce manuscrit est basée sur deux étapes principales :
l'extraction des mouvements de l'acteur puis la déformation d'un modèle de maillage selon
ces mouvements pour �nalement obtenir un personnage animé dont l'évolution au cours
du temps suit les poses décrites par la reconstruction initiale. Ce manuscrit est organisé
en cinq chapitres :

� Le chapitre 1 présente en guise d'introduction le contexte du projet RECOVER 3D
et les contraintes auxquelles sont soumis nos travaux.

� Le chapitre 2 propose une revue exhaustive des di�érentes approches de l'état de l'art,
usuelles ou expérimentales, existant actuellement pour la reconstruction de formes
dynamiques et en particulier les performances d'acteurs.

� Le chapitre 3 détaille la méthode que nous avons développée pour extraire un �ot de
mouvements qui dé�nit les gestes de l'acteur au cours de la capture.

� Le chapitre 4 décrit ensuite notre méthode de déformation de maillage guidée par le
�ot de mouvements et basée sur des approches pseudo-rigides.

� Le chapitre 5 présente les résultats de l'ensemble de notre méthode et la manière
dont ils peuvent être utilisés dans le cadre d'une chaîne de production télévisuelle.

� Le chapitre 6 conclue ce manuscrit en faisant le bilan de nos travaux et en proposant
des pistes pour poursuivre ces recherches.
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Résumé

Ce chapitre d'introduction présente le contexte de nos travaux de recherche ainsi que
la problématique de ce sujet de thèse. Dans un premier temps, nous donnons un aperçu
de la technologie de reconstruction multi-vues ainsi que de son usage dans le cadre de la
production audiovisuelle (cf. Section 1.1). Cette technique permet d'e�ectuer une recons-
truction de la surface d'un objet à partir d'un ensemble d'images prises de di�érents points
de vue répartis autour de la zone de capture. Les avantages de cette technologie sont d'uti-
liser uniquement des caméras vidéo et d'être non invasive. Appliquée à la reconstruction
d'acteurs, elle permet de capturer la performance d'un personnage �lmé en studio et de le
reproduire sous la forme d'un objet 3D virtuel.

Les méthodes de reconstruction multi-vues les plus répandues sont introduites dans la
Section 1.2. Nous décrivons brièvement les approches basées silhouettes et celles basées
stéréo (cf. Section 1.2.3). Ces techniques utilisent un ensemble d'images statiques pour
e�ectuer la reconstruction d'un objet. Dans le contexte de la production de contenu animé,
on utilise des caméras synchronisées pour �lmer un acteur en mouvement. On peut alors
extraire un ensemble d'images pour chaque frame des séquences vidéos et e�ectuer une
reconstruction statique au pas de temps correspondant. Une revue plus détaillée de ces
di�érentes approches est présentée au Chapitre 2 (cf. Sections 2.4.1 à 2.4.3).

Nous présentons ensuite le projet RECOVER 3D (cf. Section 1.3) dans le cadre duquel
se sont déroulés les travaux de recherche décrits dans ce manuscrit. Ce projet est issu
d'une collaboration entre di�érents partenaires industriels et académiques. Son objectif est
d'adapter les technologies de reconstruction multi-vues aux contraintes de la production
télévisuelle. Un procédé de reconstruction innovant a été développé, basé sur une approche
hybride mélangeant les approches silhouettes et stéréo. Cette reconstruction est adaptée
aux studios chroma-key de télévision. Le projet RECOVER 3D prévoit également la mise
en place d'un pipeline de production complet autour de cette méthode de reconstruction,
allant de la capture studio à la di�usion de contenus hybrides mélangeant clones numériques
d'acteurs et environnements virtuels.

La problématique identi�ée au cours de cette thèse (cf. Section 1.4) concerne la cohé-
rence temporelle des reconstructions. En e�et, les méthodes utilisées permettent de calcu-
ler une reconstruction indépendante pour chaque frame des captures vidéos. Le résultat
est une succession de poses statiques sous la forme d'objets 3D dépourvus de continuité
structurelle: chaque pose est un objet indépendant sans correspondance établie avec les
autres poses de la séquence. Ce mode de représentation n'est pas adapté aux traitements
de post-production et présente de nombreux inconvénients lors de l'utilisation des acteurs
reconstruits par des logiciels d'animation 3D (cf. Section 1.5). Nous décrivons ensuite les
données que nous avons utilisées lors de nos travaux et la manière dont elles sont générées
(cf. Section 1.6). Une description plus exhaustive de chaque jeux de données testé est dis-
ponible au Chapitre 5 (cf. Section 5.2). Nous détaillons dans la Section 1.7 les contributions
apportées par cette thèse. En�n, la Section 1.8 annonce le plan de ce manuscrit.
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(a) (c) (e)

Figure 1.1 � Temporal consistency issue in multi-view reconstruction: From a
markerless space-time capture of an actor (a), we automatically construct a 3D reconstruc-
tion (b) for each frame, which produces time-series of snapshot poses (c). Our goal is to
add temporal consistency to these dynamic reconstructions.

1.1 Context

The multi-view reconstruction technologies provide a mean to transform an actor per-
formance, shot from multiple viewpoints by a set of video cameras into an animated object
which represents the actor as a 3D time-varying model. This technique links traditional
video capture to new technologies of computer generated pictures. The reconstruction of
a scene and its evolution throughout time has several applications such as media content
production, human-machine interaction, motion analysis or virtual reality. The context of
our research is the media production. Due to the multiplication of channels and the appea-
rance of new consumption behaviors (VOD, Internet ...), the TV audience is increasingly
fragmented. Broadcasters and producers seek di�erentiated quality contents, produced in
optimal economic conditions. The use of 4D reconstruction studios is becoming a new pa-
radigm to perform the acquisition of a 3D scene and convert it into a digital representation,
suited to a 3D animation framework. These indoor infrastructures provide controlled en-
vironments generally based around a large room with uniform background equipped with
multiple synchronized calibrated video cameras and appropriate illumination.

The current evolution of actor's performance capture for media production is to avoid
the use of constraining and invasive components such as marker-based technologies. If the
capture of human motion is widely used for realistic animation, the recent trend is to digi-
tize the actor him/herself to enable the production of hybrid computer-generated images.
The actor is �lmed in a studio, in the same conditions as for a traditional indoor shooting.
The key idea is to perform a set of 2D video captures that will be used to compute a
three-dimensional representation of the actor. This reconstruction will be natively adapted
to the production of virtual scenes in computer-generated environments, instead of the
complex compositing operations currently applied.

The 3D reconstruction of static objects from a set of 2D pictures has already been
widely studied but the capture of animated contents is a challenging task that needs to
include a dynamic information into the usual models. The most intuitive reconstruction
approaches for an actor's performances can be described as a 3D extension of regular video
capture. They compute a static reconstruction of the scene's content at regular time steps
(which correspond to each frame of the shooting), such as a 2D video is a sequence (or
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time series) of snapshot pictures (see Figure 1.1). The animation is then �gured by succes-
sively rendering these poses, just as the frames of a video where the motion information
is not captured but simply interpreted by the human brain. However, this representation
is not well-suited for computer-animated production. The use of reconstructed actors in
media content needs a dynamic description of the scene. The reconstructed subject must
be structured as a 3D animated character to be included in a 3D modeling framework.
Usually, these systems exploit the high redundancy of video sequences while leveraging
the assumed continuity of movement. A review of recent trends in multi-view dynamic
scenes' reconstruction from videos identi�es two major building blocks required to, �rst,
reconstruct 3D volumetric or surface data and second, track feature points over time.

1.2 Multi-view reconstruction

We describe in this part the concept of multi-view reconstruction (see Section 1.2.1 and
the two main families of approaches to achieve it (see Section 1.2.2). We then introduce
the most usual techniques used in our context in Section 1.2.3.

1.2.1 Outline

As the computer generated images are increasingly used in the media industry, the
composition of pictures from various sources is a usual operation: cinema and video games
increasingly combine real images with computer-generated contents. More particularly, real
actors are commonly included in virtual environments. Technologies such as matte painting
allow to mix actor's appearances with digital backgrounds. This technique is massively used
by the cinema industry and also becomes more and more present in TV production as it
is an easy way to place the characters, shot in an indoor chroma-key studio, in any type of
scene. Chroma-keying is a video acquisition which takes place against a uniform key color
background (usually green or blue). Unfortunately, this compositing technology is hardly
constrained by the studio facilities. The camera viewpoint and motion for the rendering of
the �nal composed scene are limited by the degree of freedom of the real cameras which
shoot the actors, and by the dimensions of the studio. If most of the cinema production
teams get larger infrastructures which limit these problems, this is a critical drawback for
TV industry, where the production time and budget are reduced.

The motion capture (MoCap) is another common technology that registers the motions
of an actor and transfer them to a virtual character, leading to a realistic animation. The
registered motions are captured following a set of prede�ned key points which correspond
to the articulations of the virtual model. This model is then animated with a constraining
structure, most of the time a skeleton, which is itself driven by the captured motions.
The main limitation of this system is the lack of genericity: the articulated 3D model
have to be adapted to the motion capture system. Most of the MoCap systems use a set
of physical markers which have to be put on the performing actor, requiring an onerous
pre-production's manual step. The motions of these markers are then captured by a set of
multi-viewpoint cameras, usually infra-red cameras. Nevertheless, other systems perform
marker-free MoCap. Recently, new miniaturized systems, such as Kinect cameras (see
Section 2.2), bring marker-free MoCap to small infrastructures. However, these systems are
limited in the captured degrees of freedom and lack of precisions compared to traditional
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(a) (b) (c)

Figure 1.2 � Multi-view reconstruction principle: (a) multi-viewpoint video se-
quences, (b) reconstructed surface, (c) digital clones used as 3D characters in a computer
generated scene (source: XD Productions).

systems. But the main problem of MoCap technologies is that the shooting conditions
are heavily constrained as the actors have to wear adapted suits. The animated model
then represents a virtual character whereas our goal is to get a representation of the
actor him/herself. However, the output is an animated 3D model which is then inserted
into a virtual environment. This virtual scene presents the advantages we are looking for.
The rendering is performed by a virtual camera which has no constrains on viewpoints
and trajectories. The industrial use of motion capture requires a real-time visualization
of animations on shooting location. This allows directors to guide their actors accurately.
In the case of scenes which contain, for instance, virtual crowds or furnitures, the actors
can have a video feedback allowing them to better understand the environment they are
supposed to be in, and adapt their performance accordingly.

As an alternative to these technologies, the multi-view reconstruction uses a set of multi-
viewpoint cameras, shooting an indoor studio performance of an actor, to reconstruct a
3D representation of the character. The core idea is to mix the captured performance and
computer-generated images earlier in the production process, simultaneously to the studio
shooting. This way, producers can use a three-dimensional result to judge whether a scene
will appear in the �nal production and to guide actors as well allowing the performance to
be directly inserted into a traditional computer graphics production pipeline. The actors
perform with costumes and accessories and their virtual clone will then be transposed in a
virtual environment, as depicted in Figure 1.2. The advantage of this technique, compared
to simple chroma-keying, is that the virtual clone is transposed in the 3D space, as a usual
animated character. The rendering of the scene is then processed by a virtual camera in
the 3D scene. This unconstrained camera can move freely, allowing for example unrealis-
tic viewpoints or large plans. Another important advantage is that the virtual character
can be duplicated, thus creating crowds from a small dataset of reconstructed actors' per-
formances (see Figure 1.3). Finally, this multi-view reconstruction can be performed in
a reduced studio and therefore o�ers complex compositing operations to low-budget pro-
ductions. Using multi-view reconstruction �lming sets, seeking to reiterate what has been
done for motion capture, provides the same facilities to teams using lighter and generic
infrastructures. Section 1.2.2 and 1.2.3 of this introduction present a quick overview of
all these technologies. Details are given in Chapter 2. For in-depth studies of this wide
research area, one can refer to several comprehensive books [134, 107, 111, 129, 104].
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Figure 1.3 � Multi-view reconstruction example: A crowd scene released with the
reconstruction of a reduced set of actors, �lmed independently in a TV studio, wearing
their costume. The virtual clones are then duplicated and shifted in space and time. The
scene is rendered with a computer-generated environment and a virtual camera (source:
XD Productions).

1.2.2 Reconstruction approaches

Multi-view reconstruction approaches proposed until now can be split into two families
of methods:

� Model-based approaches use a reference geometric description (for example a trian-
gular mesh) of the character. This prior knowledge can be manually constructed as
a generic human body or obtained using an acquisition system (a 3D scanner for
instance). This input model is then animated in accordance with the motions of the
actor.

� Model-free methods that can be distinguished by the fact that no prior knowledge
(relating to the nature and number of objects, characters' morphologies) is provided
to the system. The vast majority of these techniques rely on a reconstruction of the
scene's content for each frame of the videos, independently from each other's. Due
to their general nature, these techniques often generate results without any temporal
coherence.

Chapter 2 presents a survey on these approaches (see Sections 2.4 and 2.4).

1.2.3 Usual techniques

This section gives a brief overview of the two most common methods of multi-view
reconstruction, which both belong to model-free category. More details on these techniques
are given in Chapter 2 (see Sections 2.4.1 and 2.4.3).

1.2.3.1 Visual Hull

The shape-from-silhouette (or silhouette-based) reconstruction approaches use the ac-
tor's contours, �lmed from several camera pictures around the scene, to compute a 3D
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Figure 1.4 � Silhouette-based reconstruction: the visual hull of the shape is de�ned
by the silhouettes extracted in the images of the cameras.

shape. This object, named visual hull, is a convex hull which contains the maximum vo-
lumes �lled by the objects in the scene. The projection of this shape in the pictures matches
the silhouettes. A silhouette is a binary mask associated with a given perspective which
includes all pixels corresponding to the projection of a point of the 3D object to be recons-
tructed. A set of multiple cameras, located at various viewpoints, generate a multi-view
pictures dataset. A mask of the actors is then extracted in each of these pictures. A silhouet-
te's pixel (i.e., which is lying on the contours of the actor's mask) and the optical center of
the corresponding camera are linked by a half-line. This half-line contains all the points in
the 3D scene which projects to this pixel, as shown by Figure 1.4. The set of all half-lines,
corresponding to every pixel from the silhouette, belongs to a surface referred to as the
silhouette cone. The visual hull, as de�ned by Laurentini [83], is the intersection of the
silhouette cones associated to all the cameras, as presented in Figure 1.4. Silhouette-based
reconstruction therefore involves estimating the visual hull of the 3D object, represented
by a polygon in Figure 1.4. Several approaches can be used to estimate this shape. The
volumetric methods compute the volume contained in this hull by successively carving the
whole scene's volume with the silouettes' projection in the 3D space and thus produce
a discretized volume. The polyhedral (or surface-based) approaches directly compute the
visual hull's surface by intersecting the silhouette cones, leading to a 3D mesh.

1.2.3.2 Stereo matching

The shape-from-stereo (or stereo-based) reconstruction approaches use several images
taken from di�erent cameras (or multi-sensors cameras, e.g., ZED camera 1) to estimate
the captured object. For each pixel of an image, we search its corresponding pixels in the
other images using correlation criteria. This correlation should establish a correspondence
between pixels from di�erent images that correspond to the same 3D point of the captured
scene. After �nding the matching pixels, a triangulation process is applied to compute the
3D position of the points in the captured scene. Using a simpli�ed epipolar geometry (see

1. https://www.stereolabs.com/zed/specs
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The RECOVER 3D process �ow is composed of several steps, described in Figure 1.5.
The �rst step is the indoor shooting of the actor by a set of multi-viewpoint cameras.
These cameras are distributed on two rings around the scene (the �rst one on the �oor
and the second one at the ceiling) and alternates monoscopic and multiscopic blocks of one
or four cameras, respectively. Next, the multi-viewpoint videos are used to compute the
3D reconstruction using an innovative approach where the usual silhouette-based method
is enhanced with a set of depth-maps computed from each multiscopic viewpoint. The
multi-view reconstruction can be performed either online or o�ine:

� Online Mode: the online mode enables the director to control the recording by a
real-time reconstruction of the actor at 25 fps, used as a pre-visualization tool.

� O�ine Mode: in the post-processing step, a higher quality reconstruction can be
computed once the data were stored on a server. This process may require several
minutes for each frame. The �nal result is a time series of textured meshes. These
sequences can then be used in 3D animation software thanks to ad hoc plugins.

The work described in this manuscript takes place in this o�ine process, as an impro-
vement of the model-free reconstruction previously described. The goal is to transform
the reconstructed pose sequences in a temporally consistent model to obtain an animated
virtual clone of the actor as �nal result. A virtual control room contains all the functiona-
lities allowing visualization and interactions with the reconstructed sequences for the TV
broadcasting, live or pre-recoded. It also supplies several tools to the directors for various
operations (which can be applied live during the acquisition in online mode):

� Integration of one or several reconstructed models in the software.
� Addition of a virtual scenery.
� Real-time rendering of the scene. This functionality is required for live broadcasting
and is also useful for pre-recorded programs where decisions must be quickly taken
about set setting and composition.

� Handling virtual cameras in the scene. In particular: adjusting camera position and
zoom.

� Perform camera motions (travelling, panoramic). The advantages of reconstruction
technologies are highlighted here: with virtual cameras and reconstructed 3D models,
any kind of trajectories is available without machinery additional cost (no crane shot
or camera dolly, lower labor force need).

� Allowing to switch to stereoscopic virtual cameras, in order to produce 3D videos.
The third dimension of the reconstructed models enables this operation from any
viewpoint, making stereoscopic 3D rendering natural.

1.3.2 Reconstruction process

The RECOVER 3D pipeline is based on the multi-view reconstruction system developed
by XD Production prior to the project starting date. This system contains a chroma-key
studio and a set of multi-viewpoint cameras which perform a model-free reconstruction.
This reconstruction uses a volumetric silhouette-based algorithm (see Section 2.4.1). The
3D scene is �rst discretized in a 3D voxel grid. The visual hull is carved in this grid, by
projecting the silhouette mask from each camera, leading to a volumetric representation of
the actor. The surface of this volume is then extracted to obtain a 3D mesh, which is �nally
textured by projecting the pixels from the multi-view images. This process is repeated at
each frame of the videos, leading to a time series of static 3D meshes corresponding to the
actor's pose at each frame. The goal of this reconstruction is to export the digital clone of
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Figure 1.6 � Architecture of the RECOVER 3D studio. The videos cameras are distributed
on two rings (�oor and ceiling) around the capture area and alternate monoscopic units
with multiscopic units.

the actor in a virtual environment. The quality of the results and the computing time both
depends on the resolution of the voxel grid. However, advantages of the volumetric visual
hull reconstruction are the low complexity and computing time. The captured animation
is thus constructed by successively rendering the meshes of the sequence, with the same
frame rate as the videos. The multi-view pictures are used for the texture mapping of
the 3D meshes. A texture patchwork is created, where each triangle corresponds to a
face of the mesh. For each point of this face, the normal vector is interpolated from the
vertices' normals. This vector is then used to select the best oriented cameras from which
the color of the pixel is deduced. This color is obtained by projecting the point toward
the cameras to get the corresponding pixels which are blended to give the �nal color of
the texel. This system already allows to performs a real-time reconstruction, with a 1283

voxel resolution. Thus, a previsualization of the reconstructed actor in his/her virtual
environment is available live, during the shooting of the scene. The actor can also have a
live feedback of his/her performance, seeing the live reconstruction on a screen. The o�ine
mode enables a better reconstruction, with a voxel grid resolution up to 5123. The meshes
obtained after the surface extraction are simpli�ed via a mesh decimation algorithm.

RECOVER 3D innovations The RECOVER 3D project takes place in the general
framework of VBR (Video-Based Rendering) video processing. The originality of the pro-
posed approach lies into the use of real-time reconstruction techniques. This approach
named SBVH (Stereo-Based Visual Hull) consists in a combination of stereo-based and
silhouette-based solutions. Concerning the stereo-based part, the project rely upon an
existing pipeline which hardware and software architecture have been previously deve-
loped by the CReSTIC. This approach is based on multiscopic shooting, using a set of
parallel axis cameras. The reconstruction system developed for the RECOVER 3D project
uses several stereoscopic blocks that supply a set of multi-viewpoint depth-maps which are
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Figure 1.7 � Architecture of the RECOVER 3D cyber-dome installed at ILOI (La
Réunion).

be used to enhance the silhouette-based reconstruction, leading to high-quality models.
The resulting 3D objects can be exploited afterwards in an innovative software system for
the broadcasting of the �nal composed videos.

A new studio architecture was developed for the RECOVER 3D project. This new
system distributes the viewpoints around the capture area, mixing multi-stereoscopic blocks
and monoscopic cameras, as presented in Figure 1.6. Two prototypes were installed in the
studios of XD Productions and ILOI.

� The Paris studio (XD Productions) is made of 24 full HD cameras (1920 × 1080
pixels) in a square room of 100m2 and 4.5m high. This studio is dedicated to expe-
rimental shooting. The datasets used in this thesis were produced in this studio.

� The Réunion studio (ILOI) is a cylinder with a 15-meter diameter and 6-meter
height as shown in Figure 1.7. This cyber-dome is dedicated to the production of
commercial content and is used for the validation of the project methods.

The CReSTIC research contributes to two main tasks, centered on two PhD thesis.
The �rst task is to develop a new hybrid model-free approach, using both visual hull and
shape-from-stereo, leading to a high quality model-free reconstruction (see Figure 1.5 TB2).
The second task, described in this manuscript, aims at computing a temporally consistent
animation from the reconstructed sequences (see Figure 1.5 TB3), as described in Section
1.4.

1.4 Problem statement

The reconstruction of a moving actor transforms a set of multi-view videos into a
3D time-evolving shape. This reconstruction is represented as a sequence of triangular
meshes (with the same frequency as the video source) and their associated textures. Since
a sequence of meshes can take a variety of forms, Arcila [15] proposed a formalism for
describing the di�erent types of time-varying meshes and identi�ed the following categories:
dynamic meshes, stable mesh sequences and unconstrained mesh sequences (see Figure
1.8). These distinctions are based on the existence of temporal coherence in meshes, both
at topological and structural level:

� Dynamic mesh: number of vertices, connectivity (neighbourhood relationships bet-
ween vertices) and topology stay unchanged during the sequence. It can be seen as a
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(a) (b)

(c)

Figure 1.8 � Di�erent types of mesh sequences: (a) Dynamic mesh ( c© 1996 Mi-
crosoft Corporation), (b) stable sequence, (c) unconstrained sequence (source: GRImage
INRIA Rhône-Alpes & 4DView Solutions 2)

time-consistent mesh where only the 3D coordinates of the vertices change through
time (Figure 1.8a).

� Stable sequence: the number of vertices and their connectivity may change during
the sequence. Therefore, the number of faces can also vary. The topology remains
unchanged (Figure 1.8b).

� Unconstrained sequence: the number of vertices, their connectivity and the topology
of the meshes may vary along the sequence (Figure 1.8c).

Model-free reconstruction methods generally produce stable or unconstrained mesh se-
quences. The content of the scene is reconstructed in each frame individually. In these
conditions, a geometric primitive (a vertex or a triangle) in a given frame does not have
any correspondence in the following frame. Topological events occur during a reconstruc-
tion due to self-intersections (collision between the limbs of the actor or with an accessory)
or occlusion artifacts. As the same method can lead, depending of the actor's motions and
clothing, to stable or unconstrained mesh sequences, we will only distinguish two kinds
of time-varying meshes, as in [16]: dynamic meshes and mesh sequences. The use of
mesh sequences in a traditional production process �ow is made di�cult by the volume
of data and their lack of temporal coherence. The surface of the object is represented
by a di�erent sampling at each pose. This means that the connectivity of the triangular
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meshes varies between two consecutive frames, which often causes �ickering in lighting and
shading. Finally, this lack of temporal coherence involves that a vertex cannot be tracked
throughout the animation. Thus, the displacement of any actor's body part (i.e., limb's
trajectories) are not known. This makes the collision detection of the character and vir-
tual object challenging and prevents the reconstructed avatar to interact with its virtual
environment (physic simulation for example). Indeed, only dynamic meshes can represent
the animation as a single time-evolving object, like an animated mesh made by a modeling
software. Therefore, the challenge of structuring the reconstructions through time involves
converting a sequence of meshes into a dynamic representation. This has a double objec-
tive: �rst, to provide logically organized meshes data to commercial production tools, in
order to relight or redress them and second, to insert them into a controlled virtual scene.

The work described in this manuscript has been conceived for a post-production tool.
The goal is to apply our algorithm on the results of the multi-view reconstruction in
order to export them to post-processing tools. This way, this approach is described as an
improvement of the o�ine reconstruction process. The online work�ow is still necessary for
other applications of the project, such as live onstage previsualization, but not concerned by
the temporal consistency constraint. However, this project takes part in a TV production
framework, which means that the whole process is sensitive to production length and that
the computing time is also an important criterion for our approach. This work uses as
input the result of the multi-view reconstruction, as stated in Section 1.3. Currently, the
sequences of reconstructed objects are rendered thanks to a marching cubes algorithm [98]
which extracts the surface of the volumes to obtains triangulated meshes. These meshes are
textured (see Section 1.3.2). The result is therefore an unconstrained sequence of textured
meshes. The stereo enhancement of the visual hull being another part of the RECOVER
3D project, lead simultaneously, our input is computed by the silhouette-based approach
described previously.

1.5 Objectives

Our objective is to develop a method that yields a dynamic description of a reconstruc-
ted digital actor initially provided by a model-free, time-inconsistent process as a sequence
of 3D static models. The output digital character must provide a spatio-temporal informa-
tion to represent the coherent evolution of the model throughout the time of the animation.
The silhouette-based reconstruction computed by the cyber-dome produces a sequence of
discrete volumes which are then be transformed into a sequence of 3D textured meshes.
As stated previously, these meshes are di�erent from each other as their reconstruction is
performed like a 3D snapshot of the scene, without considering the continuity with the
previous or successive poses. No correspondence can thus be established between the ver-
tices of two successive meshes. The vertex sampling, the topology and the connectivity
of the reconstructed surfaces at di�erent frames can be totally di�erent. Using these se-
quences in a 3D animation and production framework is challenging because the rendering
of a virtual scene containing a reconstructed character must be performed by loading the
corresponding pose at each frame of the video. The digitized character cannot be tracked
during the animation and therefore cannot interact with its virtual environment (collision
with virtual objects for instance). Instead, we seek for an animated model, generated from
these input time-series of visual hulls, which satis�es the following constraints:

1. Our output should be a unique, animated 3D model, with a time-invariant structure.
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That is to say a stable triangle mesh model with constant topology and connectivity,
where only the position of the vertices are moved during the animation. This repre-
sentation is the equivalent of an animated virtual character, as it could be created
by a 3D artist with a 3D animation software.

2. The mesh animation should be recovered from the sequences of reconstructed poses.
The motion characteristics should be extracted without invasive technology and wi-
thout additionnal capture operation. The complete process should be generic and
require no user's intervention.

3. The system should be able to handle inter-frame displacements with a high amplitude.
Indeed, large motions can be captured when the actor's performance includes fast
gestures.

4. The mesh animation model should deal with non-rigid displacements. The advantage
of multi-view reconstruction is to capture realistic motions of an actor, including his
clothes, to obtain a 3D avatar as close as possible from the ground-truth displa-
cements of a real character. Therefore, our work falls in the context of free-form
animation, meaning that the displacements of our model must not be driven by a
control structure. This way, the animation of the surface should not be restricted to
rigid motions (rotations and translations) like in an articulated model and thus not
constrained by a limited number of degrees of freedom.

5. The output mesh should not be a generic model with a prede�ned morphology. The
digitized surface of the character can strongly di�er from a human shape due to
the costumes and accessories. An articulated model is thus not general enough to
represent the characters we wish to reconstruct. The animated mesh should also be
initialized with the shape of the captured character and be animated by a generic,
free-motion method.

6. The complete process should be performed in manageable computing times. Even
though it is a post-production application, the TV broadcasting framework implies
limited time and ressources.

1.6 Input

As described in Sections 1.3.2 and 1.5, the input sequences are obtained by a volumetric
silhouette-based reconstruction. From a set of synchronized multi-viewpoint videos, a voxel
grid is carved to compute the visual hull at each frame of the capture. A 3D volume is
therefore reconstructed for each time step, resulting in a time series of static poses. The
surface of this volumes can then be extracted as triangulated meshes, leading to mesh
sequences. However, as explained in Chapters 3 and 4, the voxelized 3D objects will be
used as the main geometry descriptors. In the context of the RECOVER 3D project, the
initial videos are provided by the dedicated cyber-dome facilities. Nevertheless, in this
manuscript, we also use other datasets from various video-based multi-view reconstruction
architectures. In this case, we uses the original sequences of captures images and apply
the same volumetric visual hull computation to obtain volume poses, similar to the ones
generated by our own system.
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(a) (b)

Figure 1.9 � Input data. Left to right: sample of the multi-viewpoint images and
resulting volumetric visual hull after reconstruction.

1.6.1 Dataset

The input sequences used in this work were generated from various datasets of multi-
viewpoint synchronized video pictures. Several actor's performances were captured with
the RECOVER 3D cyber-dome. This architecture provides a set of 24-viewpoint videos.
The silhouettes were extracted from each picture through a chroma-key algorithm. These
silhouettes' masks were then used to compute a volumetric visual hull. After this initial
model-free reconstruction, the result is a sequence of binary digital volumes, synchronized
with the frames of the multi-view videos. Next, these volumes were textured using the
initial video pictures. Each voxel on the surface of the reconstructed object (i.e., voxels of
the object directly neighboring a void voxel) is colored with RGB values computed as the
average color of the pixels which correspond to the projection of this voxel in each picture
from the viewpoint that see this point, at the corresponding frame (see Figure 1.9a).

Other datasets were generated using the multi-viewpoint video dataset provided by
other multi-view reconstruction studios, such as GrImage 3 [8], University of Surrey 4 [141]
and MPI Informatik 5 [45] (see Chapter 2). Silhouettes masks are also provided with the
original pictures. These images were used to apply our volumetric reconstruction, as des-
cribed above. We thus generated the same type of volume time-series, yet with a lower
precision due to the reduced amount of viewpoints available in these datasets (see Figure
1.9b). All these input data are described more in depth in Chapter 5.

1.7 Contributions

Our contribution answers to objectives, facilities and constraints of the RECOVER 3D
project's industrial framework. Our method is described as an o�ine process to provide
a time-consistent animation from an initial model-free reconstruction. This reconstruction
is performed with a silhouette-based approach and already provides a real-time mode.
Therefore, the main representation of the geometric shape of the actor, used as input, will
be sequences of time-varying visual hull. The context of TV production and the facilities
available during the studio capture also brings limitations. Our method is thus conceived

3. http://grimage.inrialpes.fr/

4. http://cvssp.org/cvssp3d/

5. http://resources.mpi-inf.mpg.de/perfcap/
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to work on generic type of datasets. The goal of multi-view reconstruction technology is to
compute a 3D representation of the actor directly from video capture, which means that
the actor is �lmed with its costumes and accessories. In this case our method takes no
assumption about the shape to reconstruct and the type of motion. A speci�c template
model is also inappropriate is this context. Our process also needs as little as possible user's
intervention. Finally, the result must be compatible with usual post-production tools to
easily integrate the reconstructed character in a virtual scene. To satisfy these constraints,
our approach uses a motion estimation algorithm that does not need a priori knowledge
on the type of motion or any type of articulated structure. In the next step, the mesh
deformation allows non-rigid deformation and is not constrained by a speci�c morphology.
The work described in this manuscript brings contributions on two major points:

1. A motion �ow computation from a sequence of reconstructed volumetric objects. Our
method retreives the movement of the actor without the need of articulated structure
or speci�cally marked points. This approach is fully automatic and non invasive, with
no user intervention. It also handles non-rigid displacements and makes no assump-
tion on the gestures. The motion vectors are directly computed from the 3D infor-
mation, without the need of the original 2D pictures taken from the multi-viewpoint
cameras. Our method is based on an inter-frame voxel matching to establish an ini-
tial correspondence between successive poses. The initial vector �eld obtained from
this matching is then cleaned by a �ltering operation to yield a �nal regularized
estimation of the motion �ow.

2. A time-consistent mesh animation driven by the motion �ow. Our approach animates
a template mesh without skeleton and without a priori on the shape's morphology.
This method handles deformable surfaces and non-articulated displacements. It also
ensures the conservation of the mesh's triangulation during the animation and follows
a local rigidity prior. Our mesh deformation process is divided into several steps,
starting from a global pose �tting. The last step is a local optimization to closely
match the surface with the initial tracked data. This whole mesh processing method
also sensitively improves the quality of the animation by providing a constant and
stable triangulation and suppressing the noise and �ickering from the mesh sequences
used for online mode reconstruction.

The advantage of our time-consistent model is that each vertex can be tracked through
the whole animation. A virtual object can then be attached to the mesh and follow it during
its displacements (a virtual accessory or cloth for example). The 3D character could also
be immersed in a dynamic simulation, such as particles. Besides, the connectivity remains
unchanged during the motion. This enables us to work on a constant UV domain and
allows, for instance, texture modi�cation or relighting. In addition, the constant mesh
structure also improves the visual quality, whereas the rendering of a mesh sequence often
produces a �ickering e�ect. It is also a mean to compress the data as the moving character
is represented by a single mesh with vertices' trajectories, instead of a whole 3D object
for each frame. At last, the �nal output of our method is exported in a standard format
which is natively compatible with 3D animation software. The consistency of the mesh
during the animation enables the texture mapping, allows to track the vertices through
the deformation and allows to compute collision with virtual objects. A complete list of
publications and communications achieved during this thesis is available in appendix A.
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1.8 Overview

This manuscript is organized in 6 chapters:
� Chapter 2 provides an overview of the scienti�c background of multi-view recons-
truction technologies. In particular, we review the di�erent approaches which could
perform the 3D reconstruction of moving shapes throughout time and using video
pictures as input. We then describes more exhaustively the state-of-the-art methods
for generating temporally consistent models from the reconstruction of time-evolving
shapes.

� Chapter 3 presents the �rst step of our research, focused on the motion extraction
from sequences of time-varying shapes. e describe in this chapter our 3D motion �ow
computation steps: a point-based inter-frame matching and a regularization process,
leading to a regular motion �ow.

� Chapter 4 describes our mesh animation approach. We present in this chapter our
pseudo-rigid deformation method to animate a template mesh following the displa-
cements described by the motion �ow computed in the previous chapter. First, we
detail an achor's selection algorithm. Second, a mesh deformation is driven by these
anchors. Third, a local optimization leads to �nal results.

� Chapter 5 describes the complete process �ow that leads, from the original datasets,
to our time-consistent animated models. We show the �nal results obtained with
our approach. We also explore the exploitation of these results for the production of
computer-generated media contents.

� Chapter 6 �nally presents the conclusion of the research work described in this ma-
nuscript. We also discuss perspectives and future work.
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Résumé

Ce chapitre présente un état de l'art des di�érentes méthodes de reconstruction multi-
vues qui permettent de reproduire sous forme d'un modèle 3D la performance d'un acteur
�lmé par un ensemble synchronisé de caméras positionnées à di�érents points de vue.
Notre étude cible les méthodes non invasives (sans marqueurs tels que ceux utilisés par les
technologies de capture de mouvements) et utilisant des capteurs passifs (caméras vidéo
uniquement). Nous distinguons les résultats de ces di�érentes techniques de reconstructions
selon un critère de cohérence temporelle, à savoir :

� Les reconstructions temporellement incohérentes produisant une succession de mo-
dèles 3D au cours du temps sans qu'aucune correspondance ne soit établie entre leur
géométrie.

� Les reconstructions temporellement cohérentes générant au contraire des modèle 3D
animés et dont la structure reste stable au cours du temps. Il s'agit le plus sou-
vent d'un maillage dont la position des sommets évolue au cours du temps tout en
conservant la connectivité.

De plus, les méthodes de reconstruction multi-vues sont habituellement réparties en deux
catégories :

� Lesméthodes libres se distinguent par le fait qu'aucune connaissance a priori (nombre
et nature des objets, morphologie du ou des personnages) n'est fournie au système. Du
fait de leur généricité, ces techniques génèrent des résultats dépourvus de cohérence
temporelle : en e�et, une reconstruction statique est calculée pour chaque frame
indépendamment des autres.

� les méthodes basées modèle disposent d'une géométrie de référence (maillage triangu-
laire par exemple) de l'objet à reconstruire. La reconstruction consiste alors à faire
évoluer ce modèle préétabli en fonction des données issues de la capture multi-vues
(suivi de silhouettes ou de �ots optiques par exemple). Ces méthodes sont plus ro-
bustes que les méthodes libres et ont l'avantage de générer des données avec une
forte cohérence temporelle. Néanmoins, elles sont restreintes par la morphologie du
modèle.

Nos données d'entrées sont des séquences d'enveloppes visuelles issues de reconstructions
basées silhouettes (méthode libre) et dépourvues de cohérence temporelle. Notre objec-
tif est d'en extraire un maillage animé unique et temporellement cohérent. La plupart des
techniques permettant de générer de tels résultats sont des approches basées modèle qui uti-
lisent le plus souvent des géométries articulées [75, 17, 43] limitées au suivi de mouvements
rigides. Des modèles hybrides mélangent animation squelette et surfaces déformables pour
reconstruire également les mouvements libres tels que ceux des vêtements par exemple. A�n
de produire des résultats plus réalistes, d'autres méthodes utilisent un modèle spéci�que à
l'acteur �lmé [45, 164, 61]. Dans ce cas, une étape préliminaire est nécessaire a�n de générer
un modèle adapté à la morphologies et/ou au costume de l'acteur (via un scanner 3D par
exemple). Pour contourner les limitations des modèles articulés, certains modèles utilisent
des déformations par cage [56] ou des ensembles de patches [33]. En�n, des méthodes sans
modèle utilisent des algorithmes de recalages non-rigides [145, 126, 25]. Un ensemble de
correspondances permet alors de guider la déformation d'une surface de manière à suivre
une succession de poses issues de reconstructions temporellement incohérentes. La plupart
de ces méthodes sont cependant sensibles aux mouvements de grande amplitude.
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Figure 2.1 � Marker-based motion capture (source: 3IS - Institut International de l'Image
et du Son)

2.1 Introduction

This chapter presents the technical and scienti�c background of research on multi-view
reconstruction. It �rst describes the usual kind of motion capture and 3D reconstruction
technologies of animated objects in Section 2.2. Then, a review on the video-based methods
which reconstruct time-varying surfaces, using a set of multi-viewpoint video cameras, is
presented in Sections 2.3 and 2.4. Finally, the various state-of-the-art approaches which
produce time-consistent geometries of animated objects from unconstrained multi-view
captures are discussed in Section 2.5.

2.2 Reconstruction systems

We �rst provide an overview of the various types of 3D capture systems, starting with
usual marker-based motion-capture in Section 2.2.1. We then describe in Sections 2.2.2
and 2.2.3 several reconstruction systems which use active or passive sensors. We �nally
focus on video-based multi-view reconstruction with markerless, passive sensors systems in
Section 2.2.4. The RECOVER 3D system belongs to this last category.

2.2.1 Marker-based systems

Traditional motion capture relies on physical markers, positioned at a set of key points
on the actor wearing a neutral suit (see Figure 2.1). These markers are tracked in the
3D space by a set of speci�c cameras. Most of the time, the use of infra-red cameras and
infra-red re�ecting markers ensure that the capture will not be interfered by exposition
variations. The trajectories of the markers are then be transfered to a speci�c mesh model.
This mesh is therefore animated, following the captured motions of the actor. Skeleton-based
animation is one of the most widely used mesh animation method for human morphologies
[79, 89] and is particularly suited for marker-based motion capture. The mesh is skinned
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(a) (b) (c)

Figure 2.2 � Example of active sensor system: Kinect camera (a) kinect sensor,
(b) structured light infra-red pattern, (c) resulting depth-map (source: wikimedia).

to the skeleton, which means that the vertices are associated to the corresponding section
of the skeleton and move according to this bone. The displacement of each vertex is thus
interpolated from the skeleton's motion which is, in the case of MoCap, driven by the
markers displacements.

The same principle has been adapted for reconstruction of the face expression. Markers
are positionned on the actor's face (usually painted dots) and captured by a camera moun-
ted on helmet. This technology, referred to as perfcap(PERFormance CAPture), enables to
animate a facial model with prede�ned speci�c points which produce complex animation
of a surface [105], less constrained than a skeleton articulation. Park and Hodgins [119]
applied the same kind of method to a whole body capture. A set of more than 300 re�ective
markers are placed on the actor. The tracking of these points, associated with a speci�c
parametric human model, captures the motion of the skin itself (i.e., the actor's surface)
instead of just an articulated skeleton's pose.

All these systems use passive markers that only re�ect the information from the light
source. Other systems use active markers, made with LEDs, which emit their own light to
highlight their position in space.

2.2.2 Active sensors system

Other systems capture the actor's performance without marker constraints, using active
sensors. An active sensor sends itself a speci�c signal and captures the returned informa-
tion. Active cameras produce a speci�c type of light and interpret the returned image
accordingly. The �rst family of approaches is based on structured light [59]. Using a pro-
jector coupled with a camera, a prede�ned pattern image (lines or grid for example) is
projected on the object (i.e., the actor) of which the camera takes a picture. By analyzing
the deformation of the pattern in this picture, a 3D shape can be computed. A complete
reconstruction of the scene can be performed by repeating this operation from several view-
points. With this method, the reconstructed surface cannot be textured by a color capture
of the real scene. To avoid the pollution of the scene by this light in the visible spec-
trum, other systems use an infra-red projection, coupled with a speci�c infra-red sensor.
As an example, we can cite the well-known Microsoft Kinect 6 [175]. This device combines
an infra-red projector which produces a speckle pattern, an infra-red camera and a usual
color camera, as presented in Figure 2.2. The result of the infra-red reconstruction is a

6. https://dev.windows.com/en-us/kinect
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depth-map of the scene. The second type of active sensors are the Time-of-Flight cameras
which produce a light signal, with a known speed, and compute the di�erence between
the emission and the captured re�ection. It can be compared to LIDAR systems, except
that the whole scene is captured by the light pulse. During a LIDAR scanning, a set of
points are captured by sending a laser in the scene and computing the time of �ight in
the same way, leading to a point cloud reconstruction. The advantage of these systems is
that they natively produce a 3D reconstruction of the scene. However, the information is
produced in the form of point clouds or depth-maps, therefore the recovering of the surface
of the object may be subject to an interpretation process. The main disadvantage in our
case is that, in a multi-viewpoint system, each sensor produces a reconstruction as a depth
information from each viewpoint. The reconstruction of the whole scene then requires a
complex merging operation of these data, particularly as they may be noisy. A least, all
these active sensors needs a strongly controlled environment to avoid light pollution, and
are sensitive to specular elements.

Recently, new 3D scanner devices (e.g., Kinect) allow a fast reconstruction of dynamic
scenes, with a high frame rate but a limited spatial resolution [130, 172, 69]. This leads to
an important overlap in the adjacent frames of the resulting point-cloud time series. Other
systems with higher resolution produce more accurate data, but with signi�cantly larger
inter-frame deformation. All these scanning technologies produce partial point-clouds, since
each sensor can only provide a limited �eld of view, like shape-from-stereo reconstruction
(see Section 2.4). To compute a complete surface, several acquisitions, synchronized from
di�erent viewpoints, are performed simultaneously. The point-clouds reconstructed from
each capture unit can then be aligned (e.g., using an ICP algorithm [21, 37]) and merged to
produce a single object at each pose. The ICP algorithm minimizes the di�erence between
two point clouds by iteratively applying rigid transformations. These devices are often
used to reconstruct a dynamic scene and are the main alternative to video-based multi-
view approaches (see Section 2.4). An extensive number of state-of-the-art methods that
compute a dynamic reconstruction are based on these scanning technologies. Even if they
are not directly linked with our framework, these point-based approaches can often be
adapted and/or compared to other types of input data. As these reconstructions often
su�er from holes in the acquisition, the �ling of these inconsistencies is also an important
step to obtain a watertight surface (see Section 2.5). In the case of our framework, the
optical quality and image resolution of the usual depth-cameras are still lower than video
cameras, which is harmful for the quality of textures. In addition, the depth acquisition does
not exceed 10m and the accuracy noticeably decreases beyond 5m, which is not su�cient
for a 20-meter large studio as the one we use.

2.2.3 Passive sensors system

The multi-view reconstruction systems used in this project belong to the family of
passive sensors systems. In the case of video information, a passive sensor is a simple video
camera. The video reconstruction is made possible by using several viewpoints to shoot
the scene, as described in Section 1.2. The reconstruction can the achieved by several kinds
of methods, using photometric informations. The Virtualized Reality system developed by
Kanade et al. [73] is one of the oldest example (see Figure 2.3a). The most common and
generic ones use the silhouette pictures or stereo-matching to recover the shape of the
actor, as described in Section 2.4.
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(a) (b) (c)

Figure 2.3 � Video-based reconstruction systems (passive sensors): (a) Virtuali-
zed Reality, (b) Light Stage, (c) Tsinghua University

Others systems perform the reconstruction by recording the same scene under several
illumination conditions. For example, the Light Stage 7 system [165] contains height high
frequency cameras and a set of 1200 light sources (see Figure 2.3b). By acquiring the
actor under several illuminations in a highly reduced time, this methods computes a set of
normal maps by a shape-from-shading (or photometric stereo) algorithm, that are merged
into a single 3D shape by a multi-view matching. This system has been adapted in several
versions, allowing a complete reconstruction of the actor or a close capture of the face. It
has been used in the production of several movies. Another example is the Multi-camera
multi-lighting dome of Tsinghua University composed of 30 cameras (including 10 high-
speed cameras) and 310 LEDS divided in 31 directional lightings (see Figure 2.3c). This
structure is used for stereo-based point cloud reconstruction [96]. Other types of systems
are dedicated to marker-less facial motion capture by tracking a set of features, like lips
and eyes for example. The Digital Ira project (Activision and USC ICT [5]) is dedicated
to facial expression capture and uses the Light Stage X system. At last, Panoptic Studio 8

at Carnegie Mellon University is composed of 480 cameras, distributed on 20 panels of 24
cameras each.

2.2.4 Multi-view reconstruction system

The infrastructure of the reconstruction systems described in this section can be com-
pared to the RECOVER 3D cyber-dome. These systems are only based on a set of common
video cameras. The reconstruction of the objects' surface only uses the colorimetric infor-
mation (e.g., silhouettes, stereo-matching or optical �ow) without deducing informations
from other objects like light sources (as in shape-from-shading) or markers. Several projects
use such kind of virtual studios.

The University of Surrey 4DVT (4D Video Textures) project 9 10 [141] uses a set of
10 cameras, placed on a ring of 8-meter diameter and 2-meter height, with a blue-screen
backdrop. That provides a 4 × 4 × 2-meter volume capture (see Figure 2.4a). The MR-
PreViz 11 system (Kyoto University) [149] uses 12 cameras distibuted on two rings of 6m
diameter at heights of 1.2m and 2.2m, respectively, providing a 3 × 3 × 2-meter capture

7. http://gl.ict.usc.edu/LightStages/

8. http://www.cs.cmu.edu/~hanbyulj/14/visibility.html

9. http://www.cvssp.org/projects/4d/4DVT/

10. http://cvssp.org/projects/4d/HybridSurfaceMotionGraphs/

11. http://vision.kuee.kyoto-u.ac.jp/MR-PreViz/index.html
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(a) (b) (c) (d)

Figure 2.4 � Multi-view reconstruction systems: (a) University of Surrey (b) MR-
PreViz, (c) GrImage, (d) Kinovis

volume. Two other cameras are placed above the stage, at the ceiling. A last one is dedicated
to capture the face of the actor. We can also cite the GrImage platform 12 13 (Grenoble
University) [8]. The recent project Kinovis 14 is an evolution of this last system, using a
large set of 68 cameras in a 105m3 chroma-key studio (see Figure 2.4d).

The common elements of multi-view reconstruction studios are a set of video cameras,
which positions around the capture area maximize the viewpoints. The silhouette's ex-
traction is computed with a chroma-keying process or another method of background sub-
straction (or foreground detection, i.e., di�erence of the capture image with a background
model). Other silhouette extraction methods can also be employed, like contour-based me-
thods (using edges detection �lters, e.g., gradient thresholding) or region based methods
(e.g., histogram segmentation or region growing). Most of these systems use a silhouette-
based or a stereo-based reconstruction as the main prior for more advanced motion tracking
operations.

2.3 Classi�cation of multi-view reconstruction methods

In the following sections, we distinguish the multi-view reconstruction approaches ac-
cording to their temporal consistency:

� temporally-consistent reconstructions result in dynamic models which structure
stays unchanged during the animation. It is usually a dynamic mesh (see Section 1.4)
which connectivity remains constant.

� temporally-inconsistent reconstructions produce several 3D objects throughout
the time interval of the capture with no continuity in their structure. The result is
most of the time a mesh sequence (see Section 1.4) or time-series of point clouds.

These two type of reconstructions are detailed in Section 2.4 and 2.5, respectively. The
initial reconstruction performed by the RECOVER 3D studio, described in Section 1.3.2,
produces temporally inconsistent results. Our goal is to transform these mesh sequences
into temporally consistent mesh animations. The temporal consistency is also strongly
linked to the two main families in which multi-view reconstruction approaches are usually
split into:

� Model-free methods can be distinguished by the fact that no prior knowledge (re-
lating to the nature and number of objects, characters' morphologies) is provided to
the system. The most common techniques (shape-from-silhouettes and shape-from-

12. http://grimage.inrialpes.fr/

13. http://www.4dviews.com/

14. http://kinovis.inrialpes.fr/



34 Chapter 2. Previous work

stereo) belongs to this family. Due to their general nature, these techniques generate
results without any temporal coherence. Indeed, a reconstruction is calculated for
each frame independently of each other (see Section 2.4). These methods are also ef-
�cient in term of computing time. A real-time computation can even been reached for
low resolution reconstructions. More recent model-free methods have been proposed
to perform temporally consistent reconstructions, even if they loose the advantage of
e�cient computing due to their higher complexity (see Section 2.5).

� Model-based methods use a reference geometric model (for example a triangle
mesh) of the object to be reconstructed. This prior knowledge can be manually
constructed or obtained using an acquisition system (for example a 3D scanner).
Reconstruction involves evolving the reference model in relation to data taken from
multi-view capture (silhouettes, optical waves, etc.). These methods are more reliable
than model-free methods and exhibit the decisive advantage of generating data with
strong temporal coherence. However, due to the use of a reference model, they are,
in the majority of cases, restricted to reconstructing a single subject with human
morphology.

2.4 Temporally inconsistent reconstruction

The most common model-free approaches produce temporally inconsistent reconstruc-
tions. These methods are based on a static reconstruction, using pictures of an objects
from multiple viewpoints. Applied to performance capture of dynamic scenes, these me-
thods only repeat the same reconstruction process at each frame of the video sequences,
using a set of synchronized cameras. This reconstruction is performed at each frame, thus
reconstructing the pose of the actor at this time. The result is a sequence of static 3D
objects (usually textured meshes) which represent the successive poses of the actor. This
type of dataset is sometimes referred to as 3D video, as an analogy with the successive
static frames of a common video. These sequences can then be exported to a virtual scene,
like common 3D objects. The animation can be reproduced by successively loading and
rendering the poses, following the frame rate of the original videos. However, as described
in Section 1.4, theses time series do not have any temporal continuity. Since each pose is
reconstructed independently, the successive objects have di�erent structures (e.g., di�erent
numbers of vertices and di�erent connectivity). The topology of the shape may also vary
from one pose to another. Following the formalism given in Section 1.4, the result of this
kind of reconstruction is most of the time a stable or unconstrained mesh sequence. The
following sections describe these methods. The algorithms described in Sections 2.4.1 and
2.4.2 compute the maximum 3D shape which correspond to the captured images. Sections
2.4.3 and 2.4.4 present other methods using correspondences between the pixels in the
images taken from various viewpoints to recover the 3D position of the associated points.

2.4.1 Silhouette-based reconstruction

As stated in Chapter 1.2.2 (see Section 1.2.3), visual hull reconstruction methods often
belong to one of these two main families: volumetric approaches and surface-based ap-
proaches. Volumetric approaches are based on a discretization of the scene's space into a
3D grid, usually regular, where each cell is named a voxel (VOlume ELement). These voxels
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(a) Volumetric approach (b) Surface-based approach [58]

Figure 2.5 � Visual hull reconstruction

are binary labelled as internal or external according to their position, inside or outside the
�gured object. The group of internal voxels thus describes the volume of the object. In
a volumetric visual hull computation, this volume in iteratively carved according to the
silhouette masks extracted in the multi-view cameras [106, 40]. All the voxels are projected
toward a camera and compared to the associated silhouette picture. If a voxel is projected
on a pixel inside the silhouette, it is labelled as internal, otherwise, it is labelled as external.
The volume of the scene is thus carved according to the silhouette cone of this camera. By
repeating this operation with all the cameras and maintaining a voxel as external when it
has been labelled like this for at least one silhouette, the volume contained in the visual
hull is computed (see Figure 2.5a and 2.6a). Several improvements of this approach lead to
e�cient computation of a voxel-based representation (e.g., [146, 116, 39, 137]). The surface
of this volume can then be extracted, using for example a marching cubes algorithm [98],
to obtain a 3D mesh. The surface-based (or polyhedral) approach directly constructs a 3D
mesh by computing the intersection of the silhouette cone's surfaces [84]. Several proposed
techniques compute local surface patches [143] or strips [108]. More recent methods directly
compute a triangulation from the captured silhouettes' edges [58]. For each pixel of a sil-
houette's edge, the line that links this pixel with the optical center of the corresponding
camera contains all the potential positions of the corresponding point in the 3D scene.
The union of all these lines de�nes the silhouette cone of a silhouette. The intersection of
these silhouette cones is recovered by computing the intersection points between the lines
of di�erent silhouettes. A triangulation of this shape is computed afterwards (see Figures
2.5b and 2.6b).

The main strength of silhouette-based reconstruction is its simplicity. The basic me-
thods are easily implemented and accelerated, so that real-time reconstruction can be
reached. Although it only approximates the shape, the estimation it provides is suitable
for a number of purposes. Once textured, the visual hull o�ers a convincing rendering, espe-
cially for a static object. The main disadvantage of shape-from-silhouette is that it cannot
reconstruct some details on the object's surface. This type of reconstruction is unable to
recover the concave details of the surface which cannot be observed in a silhouette, re-
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(a) (b)

Figure 2.6 � Visual hull reconstruction: (a) Volumetric approach. From left to right:
raw voxel grid, marching cubes mesh, Adaptive Marching Cubes (solid and wireframe
rendering), (b) Surface-based approach (solid and wireframe rendering) � (source: XD
Productions).

Figure 2.7 � Visual hull limitations. Note the phantom volumes produced by occultations.

gardless of the viewpoint on the object. The quality of the reconstruction also depends
on the number of viewpoints. Several details on the surface of the object can be missed if
they do not appear on one of the silhouette. Similarly, self-occlusion (especially due to the
limbs in the case of actor's reconstruction) can lead to topology inconsistencies. If several
objects are present in the reconstructed scene, they may not be properly identi�ed in the
�nal shape. These limitations are illustrated in Figure 2.7. Another important limitation
is the lack of robustness of the visual hull computation to noisy input. Every erroneous
data appearing in at least one silhouette mask can lead to an artifact in the �nal surface.
The quality of the silhouettes' contour is therefore a critical element. Several techniques
have been developed to increase the robustness of silhouette-based reconstruction, using
for instance graph-cut optimization [29]. However, these more elaborate methods loose the
simplicity and real-time capability which make these approaches attractive.



2.4. Temporally inconsistent reconstruction 37

(a) Stereo triangulation (b) Epipolar geometry (c) Simpli�ed geometry

Figure 2.8 � Binocular geometry for stereo-based reconstruction.

2.4.2 Space carving

In order to �x the existing limitations of the shape-from-silhouette approaches, another
set of methods uses color information from each view to select the voxels within the boun-
ding volume (based on volumetric approaches). The voxel coloring technique, proposed by
Seitz and Dyer [136], involves subdividing the regular grid of voxels into successive layers,
from the nearest to the farthest in relation to the cameras (the cameras being set out in
a semicircle around the object to reconstruct). Voxel coloring is based on the hypothesis
that a voxel on the surface of an object must have the same color in each view, known as
a photo-consistent voxel. The space carving principle, introduced by Kutulakos et al. [81],
can be seen as an extension of voxel coloring adapted to an arbitrary camera setup. This
relies on sweep planes aligned with the three principal axes X, Y and Z. Only the cameras
behind the sweep plane are used to manage the occlusion. According to Kutulakos, a voxel
is not visible by a camera if it is out of the view frustum or if it is occluded.

2.4.3 Stereo-based reconstruction

Another important family of model-free reconstruction is the shape-from-stereo. These
methods are based on a pixel matching between images from di�erent viewpoints. These
pixels can then be replaced in the 3D space. As mentioned in Chapter 1, each pixel from
one image must be matched to a pixel in another image, according to a given correlation
criterion, e.g., Sum of Absolute Di�erences (SAD) or Sum of Squared Di�erences (SSD).
See [133] for a taxonomy of usual correspondence algorithms. Knowing the position of the
optical center of a camera and the projection of a point (i.e., pixel) on this camera, the
ray emitted from the optical center through the pixel de�nes an optical line. By repeating
this operation on two cameras, the intersection between the two resulting lines gives the
position of the 3D point using, for instance Mid-point or Direct Linear Transformation
(DLT) methods [1]. This operation is called triangulation. As depicted in Figure 2.8a,
given two video cameras with optical centers Cl and Cr, the point M from the captured
scene is projected toward Ml and Mr. The position of M is recovered by computing the
intersection of the lines (ClMl) and (CrMr). To simplify the matching process, the epipolar
geometry allows to reduce the dimension of the correspondence searching for each pixel
by �nding its corresponding epipolar line, which contains the potential position of the
homologue pixel, in other images. See [63] for details about multiple view geometries. As
shown in Figure 2.8b, the corresponding point ofMl in the right image lies on the epipolar
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(a) Parallel (b) Decentered parallel (c) Toed-in

Figure 2.9 � Di�erent types of multi-baseline geometries for multi-stero capture.

line, i.e., the projection of (ClMl) in the right image.

Thus, the result of the reconstruction can be represented as a point cloud or a depth-
map. In a multi-view reconstruction context, where multiple cameras are disposed around
the captured scene, several stereo reconstructions can be performed using pairs of cameras,
leading to a set of point clouds. These point clouds represent parts of the object, depending
on the acquisition viewpoint. These partial reconstructions can be merged afterwards to
de�ne a single 3D shape. The stereo capture can also be performed in a simpli�ed geometry
where image planes are parallel one to another with the same focal length and vertical
pitch (see Figure 2.8c). The matching pixels then have the same row ranks in both images.
This geometry is named binocular if it contains only two cameras. However, in the case
of multiocular geometries, we can extend this approach to a higher number of cameras
(more than two), leading to a multi-baseline geometry, as presented in Figure 2.9. These
multi-baseline geometries can be classi�ed in three types of layouts with aligned optical
centers:

� Parallel: the frustum is horizontally centered on the associated optical axis (see
Figure 2.9a).

� Decentered parallel: the frustum is not anymore centered on their optical axis. The
median axis converge at the same 3D point (see Figure 2.9b).

� Toed-in: the optical axis of the cameras converge at the same point in the 3D space
(see Figure 2.9c).

In the RECOVER 3D project, a complete reconstruction can also be obtained by using
several multiscopic units of cameras at di�erent positions around the object (see Chapter
1). These blocks are based on multi-baseline geometries and produce several point clouds
or depth-maps which then have to be merged to de�ne a single 3D shape.

The multi-view stereo reconstruction is a widely used approach to perform a recons-
truction from multiple viewpoint videos [135]. The shape-from-stereo is also very sensitive
to erroneous data. The quality of the reconstruction is directly linked to the quality of
input pictures. Depending on the chosen matching approach, wrong matching can be pro-
duced, due to exposition di�erence between the pictures for example. These errors lead
to noisy point clouds as output. The stereo-matching quality also depends on the redun-
dancy of the features in the pictures. It is therefore sensitive to poorly textured surfaces
(plane surfaces with uniform color). As the shape-from-silhouette provides a convex hull
which contains the objects, it can be seen as a good initialization for more precise recons-
truction algorithms such as shape-from-stereo. Therefore, many approaches are based on
a mix between these two technologies (e.g., [38, 57, 140]). The outliers of the point cloud
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obtained by stereo-based reconstruction can be removed if they are not contained in the
visual hull. A visual hull can also be directly carved by stereo reconstruction. This type of
hybrid reconstruction is considered in the RECOVER 3D project to produce a high quality
model-free reconstruction.

2.4.4 Other approaches

Other 3D reconstruction approaches, such as Structure-from-motion or Photogrammetry
algorithms also rely on multi-viewpoint geometry acquisitions and use triangulation opera-
tions to recover 3D points from a set of images. However, in these approaches, the camera
geometry is not prede�ned like in most of the methods previously described. Structure-
from-motion approaches usually extract 3D features from multiple images, acquired from
multiple viewpoints using, for instance, SIFT (Scale-Invariant Feature Transform [99]),
DOG (Di�erence-Of-Gaussians [100]) or SURF (Speeded Up Robust Features [20]) algo-
rithms. A correlation operation is applied to match these features from one image to
another. The result is a sparse set of correspondences which are used as landmarks to
recover an epipolar geometry. A dense reconstruction is then be computed through usual
triangulation techniques.

2.4.5 Application to dynamic reconstruction and limitations

Although these model-free systems have been �rst used for the reconstruction of sta-
tic scenes, using pictures taken from di�erent viewpoints, they have been applied to the
reconstruction of dynamic scenes, in particular for actor's performance capture. However,
the reconstruction process remains unchanged. The multi-view cameras are synchronized
in their framerate and a new reconstruction is performed at each frame from the corres-
ponding pictures at each viewpoint. The �nal result is a static reconstruction (mesh, point
cloud or volume) for each frame. The animation is represented by successively rendering
the poses of this sequence of 3D object (or 3D video). These sequences are most of the
time transformed to 3D meshes for a convenient rendering. These mesh sequences are also
named time-varying meshes because of the variations in the meshes' structure appearing
from one frame to another, since the actor is reconstructed at each frame without continuity
with the other poses.

2.5 Temporally consistent reconstruction

This section describes the reconstruction approaches that provide a single and stable
object throughout the time of the synchronized multi-viewpoint videos. The result of such
reconstruction contains a temporal information that allows to track an object or a feature's
position during the 3D animation. Many of these approaches focus the tracking of human
motion, for automatic action recognition or virtual reality for example. More advanced
techniques are merged with 3D acquisition to obtain a robust and realistic reconstruction
of a dynamic scene. We also discuss the viability of these techniques in the context of the
core contributions of our approach as stated in the introduction.
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Input

animation prior 3D scan (point-cloud
sequences)

3D video-based re-
construction (tem-
porally inconsistent
sequences)

multi-viewpoint videos
and/or depth-maps

Model-based
Articulated Kehl & Gool [75]

Horaud et al. [64]
Corazza et al. [42]
Corazza et al. [43]
Luo et al [102]
Vlasic et al. [164]
Gall et al. [61]
Liu et al. [97]

Plankers & Fua [125]
Carranza et al. [34]
Balan et al. [17]
De Aguiar et al. [46]
De Aguiar et al. [47]
Theobalt et al. [156]
Ahmed et al. [2]

Free-form Anguelov et al. [12]
Li et al. [90]

Kilner et al. [76]
Duveau et al. [56]
Cagniart et al. [33]
Allain et al. [7]

de Aguiar et al. [45]

Model-free
Articulated Zheng et al. [176]

Mukasa et al. [112]
Pekelny & Gotsman
[122]
Chang & Zwicker [36]

Free-form Mitra et al. [110]
Süÿmuth et al. [145]
Wand et al. [168]
Wand et al. [167]
Popa et al.[126]
Tevs et al. [153]
Li et al. [91]
Bonarrigo et al. [25]

Starck & Hilton [140]

Table 2.1 � Taxonomy: overview of temporally consistent reconstruction approaches
cited in this document (restricted to full-body capture and markerless methods).

Table 2.1 lists the methods described in Sections 2.5.1 to 2.5.4. Several kinds ofMarker-
less Motion Capture (MMC) have been developed recently, encouraged by the easy avai-
lability of Microsoft Kinect sensors. This technology provides, among other things, an
automatic human skeleton �tting on the videos and depth-maps natively captured by the
hardware. Table 2.1 shows that many methods use this type of 3D scan time series as
input. The second category works on sequences of video-based multi-view reconstructions
(e.g., visual hulls). The third family of approaches uses directly a set of multi-viewpoint
viedos and/or depth-maps as input.

2.5.1 Dynamic shape registration

Computing a correspondence in a time series of 3D objects can be seen as a shape
registration problem [161, 35]. In our case, since the input data is a sequence of a recons-
tructed object acquired at di�erent time steps, this is often called a dynamic registration
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or time-varying registration.

2.5.1.1 Rigid registration

The most usual registration methods, such as ICP, only rely on a rigid registration
[21, 37]. This algorithm is often used, for instance, to align and merge several point-
clouds that represent the same object acquired from di�erent viewpoints, like stereo-based
scanning in multi-view reconstruction. However, the dynamic shapes like the actors in our
case are not limited by a single rigid transformation (i.e., a static object which is only
translated and/or rotated) but deform their surface between the successive frames of the
reconstructed sequence. Therefore, the reconstruction of time-varying subjects assumes a
non-rigid registration (or deformable body registration).

2.5.1.2 Non-rigid registration

Several methods rely on non-rigid variants of rigid alignment algorithms (non-rigid
ICP) [62], by computing an explicit set of correspondences between the two shapes [110,
168] (point to point for example). For the registration of several poses over a complete se-
quence of time-varying shapes, some approaches use a template shape which is successively
matched with each shape [90]. Other template-free methods directly compute the corres-
pondences between adjacent frames [154, 126, 167]. For the sequences that contain large
deformations between consecutive poses (e.g., due to a fast motion or a low framerate), the
limited overlap of the adjacent shapes leads to make assumptions on the deformations, as
an a priori knowledge. For example, the captured subject can be supposed articulated. The
registration thus relies on rigidly moving clusters [10, 13]. More complex prior assumption
on the shape's motion can be represented by a complete template model speci�c to the
captured subject and given as input to the method (e.g., a human model for actors' re-
construction) [23, 121, 11]. More generally, the dynamic registration can be modeled like a
global energy minimization. This energy takes into account both a data matching term (or
�tting error) and a prior term (e.g., smoothness or local rigidity) [28]. Using this approach
allows to compute free-form registration without prior assumption on the time-varying
surface [92, 68].

2.5.2 Non-realistic model-based methods and motion tracking

The pose recognition of human bodies from videos is a widely studied domain (see, for
instance, [127, 171]). These methods can be extended to 3D motion tracking in a multi-
viewpoint context. The technologies described in this section can be related with marker-
less motion capture given that their goal is not to compute a realistic reconstruction of an
actor but recovering the pose and motion of a human subject.

2.5.2.1 Skeleton-based pose-tracking

Many methods rely on a generic human body parametric model, taken as an input.
Mukasa et al. [112] described a method to recover a kinematic structure from a sequence
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(a) Kehl and Gool [75] (b) Balan et al. [17] (c) Corazza et al. [43]

Figure 2.10 � Examples of model-based methods. Left: video picture of the captured
pose. Right: reconstruction by model �tting.

of visual hulls. A Reeb graph [54, 159] is extracted in each pose. The frames are then
segmented in groups of topologically identical graphs. Articulated skeletons are extracted
with a motion-based clustering of the graphs. Next, A unique consensus kinematic structure
is �tted with the successive skeletons. This method results in the tracking of a skeleton
only. Another type of skeleton-based 3D pose tracking is achieved by Ukita and al. [160].
The pose of a human body is estimated from a visual hull series, using pose regression
[155]. This method involves an o�ine learning step with a set of re�ned body volumes and
their associated skeleton pose.

2.5.2.2 Parametric human models

Plankers and Fua [125] use an articulated template made of a set of 230 metaballs
(or soft objects) [51] attached to a skeleton. A set of implicit surfaces (for each limb) are
computed from these metaballs whereas explicit surfaces are used for the head, hands
and feet. The shape of this model is then estimated from video sequences by �tting in
each frame a disparity map, obtained by stereo matching, and a silhouette constraint.
Carranza et al. [34] described a marker-free motion capture which employs an articulated
generic human body model initialized using the silhouette images that show the actor in an
initialization pose. The tracking throughout the video sequences is performed afterwards by
�nding the model pose parameters which maximize the overlap between projected model
silhouettes and the silhouettes of the actor captured by the cameras. Kehl and Gool [75]
proposed a method to follow the movements of an actor using a discrete volume obtained
by a visual hull reconstruction (see Figure 2.10a). A basic human model, composed by
superellipsoid limbs, is linked to a skeleton. This articulated body is then matched with
3D (volumetric reconstruction) and 2D cues (multi-view images edges) through a Stochastic
Meta Descent (SMD). A similar approach is described by Miki¢ et al. [109] who used a
parametric model, representing a simpli�ed human boyd, to track a sequence of volumetric
multi-view reconstruction through an Extended Kalman Filter (EKF). Horaud et al. [64]
use an articulated model of 21 ellipsoids. An implicit surface is de�ned as a blending of these
ellipsoids. This articulated implicit surface is then �tted to a set of 3D points, computed
from a visual hull reconstruction, through an Expectation-Maximization (EM) algorithm.
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2.5.2.3 Hybrid models

To reconstruct the actor's shape with a higher �delity, a pure articulated template
model is not adequate, a free-form surface is required in addition. One of the earliest me-
thod to capture skin deformation was described by Sand et al. [132]. This approach is
a mix of traditional Mocap and multi-view reconstruction. A skeleton is �rst �tted with
the actor's poses by a marker-based motion capture process. A set of segments (needles)
are rigidly and perpendicularly attached to the skeleton's bones. The intersection between
these needles and the multi-viewpoint silhouettes de�ne a sampling of the skin surface
that is then modeled by a set of deformable primitives. The human body model contains
several of these primitive for each limb. This method is still limited by the usual motion
capture inconvenient (the actor wears speci�c neutral clothes and markers) and the re-
construction is thus restricted to this speci�c acquisition setup. De Aguiar et al. [46] use a
skeleton-based model with body segments composed by b-splines surfaces. After a global
articulated deformation to �t the silhouettes, the surface is locally deformed to match the
photo-inconsistent parts of the body's geometry. Balan et al. [17] use the SCAPE model
(Shape Completion and Animation of People [13]) as a template (see Figure 2.10b). This
is a parametric human model, synthetized from scanner acquisition of several subjects,
which includes both articulated and non-rigid deformations. This model can be used for
marker-based motion capture but is here animated by matching, for each frame, the mesh
projections towards multi-view cameras with silhouette pictures of the actor. Zhang et
al. [174] used a model-based approach for marker-less facial reconstruction. Their method
tracks a human face template over point cloud series, obtained from structured light and
multiple viewpoints capture. Here, the use of a template shape is also a way to deals with
gaps in point cloud capture and to obtain a full reconstruction of the face during the whole
capture.

2.5.2.4 Subject-speci�c models

The more recent methods usually build a template model from a direct acquisition of
the actor. The template is then more adapted to the morphology of the tracked character
and also gives more realistic results. These approaches still often rely on an articulated
template. To automatically attach a template skeleton to a mesh, several methods have
been developed. The algorithms proposed by Baran and Popovi¢ [18] and Tadano et al.
[148] (which uses Reeb graph [54]) are widely used.

The Marker-less Motion Capture method by Corazza et al. [42] takes as template a
laser scan of the subject, manually segmented into a kinematic model, to track visual hull
point cloud series through a stochastic approach (simulated annealing). Follow-up work
[43] uses a subject-speci�c model from a laser scan (or a visual hull reconstruction) of
the actor (see Figure 2.10c). This model is tracked over a time series of visual hulls by
a kind of articulated ICP method [49, 113]. Luo et al [102] construct their template by
a visual hull reconstruction. Next, this model is segmented and �tted to a skeleton using
a modi�ed version of the Tadano et al. algorithm. The human motion is then captured
by tracking a sequence of visual hulls. Finally, the model's surface is deformed according
to a silhouette constraint to �t the captured data. Kilner et al. [76] perform an action
matching for sport broadcasting. Their motion tracking is applied on outdoor sportive
scenes. Instead of traditional 2D pose estimation technique from a single camera, this
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(a) Vlasic et al. [164] (b) de Aguiar et al. [45] (c) Gall et al. [61]

Figure 2.11 � Examples of model-based methods. Left: video picture of the captured
pose. Right: reconstruction by model �tting.

matching is performed by comparing a 3D reconstruction with a 3D library of human key
poses, using volumetric shape histograms[67]. Even if this approach deals with very small
silhouettes and therefore lacks of precision, this method is one of the few dealing with
multiple actors' reconstruction. The initial 3D reconstruction is performed by Conservative
Visual Hull (CVH) [77] that is similar to usual visual-hull reconstruction, except that the
silhouette masks are expanded by n pixels to avoid truncation involved to calibration errors
(even if this operation may introduce phantom volumes).

2.5.3 Realistic model-based methods

Derived from the methods described in the previous section, a lot of more recent tempo-
rally consistent multi-view reconstructions use a model-based approach. However, instead
of a simple motion tracking, these techniques have to reconstruct the shape of the subject
in a realistic way.

2.5.3.1 Subject-speci�c articulated models

A lot of methods use a full body scanner to obtain a detailed 3D mesh of the actor. De
Aguiar et al. [47] compute an automatic segmentation of this mesh, based on a convexity
criterion, to get a regular sampling of the surface. The centers of theses clusters are used as
markers and connected to build a graph. They also compute the optical �ows which describe
the motions over the multi-view video sequences. The markers are animated following this
displacement �ow, and, this way, drive the motion of the graph. The whole mesh is �nally
deformed, following the graph through a Laplacian deformation framework. As we noticed
in the previous section, the purely articulated models (skeletons or other types of control
structures) are unable to reconstruct a realistic sequence, especially when they contain
free-form surfaces such as loose clothes. Theobalt et al. [156] and Ahmed et al. [2] use a
kinematic template model with smooth and neutral surface and add on this surface thin
details (e.g., wrinkles) captured by a shape-from-shading approach. However, the global
shape of the reconstruction is still strongly limited by the template model. Anguelov et
al. [12] use a probabilistic model for the registration of non-rigid 3D surfaces. A template
detailed mesh is deformed to match and complete the data, made of partial scans, without
making assumptions about object shape or dynamics. Vlasic et al. [164] use a scanned
articulated template mesh as input (see Figure 2.11a). A skeleton is automatically �tted
to each frame of a visual hull reconstruction (a user intervention may be necessary for



2.5. Temporally consistent reconstruction 45

uncertain cases due to complex poses or occultations. The template is deformed by a
Linear Blend Skinning (LBS) [89] algorithm to match the new pose of the skeleton. At
last, local deformations allow to closely �t the silhouettes. Like in [47], these deformation
are based on a Laplacian coordinates conservation framework that ensure the preservation
of the surface details. Gall et al. [61] use a similar approach, except that the deformation
os the template is guided by photometric constraints (2D silhouettes extracted from the
multi-view videos) rather than a 3D reconstruction (see Figure 2.11c).

2.5.3.2 Non-articulated models

Most of the recent approaches are based on such a mix of articulated pose-matching
and local free-form deformations. Nevertheless, some authors developed model-based ap-
proaches that use less constraining deformation process. Duveau et al. [56] use a cage-based
animation [95] instead of a skeleton-based method to track a time series of visual hulls. In
a relevant method [45], de Aguiar et al. transform the scanned template mesh into a tetra-
hedral mesh animated by a volumetric deformation (see Figure 2.11b). This procedure is
based on a linear Laplacian deformation, like the As-Rigid-As-Possible deformation [138]
except that it is applied on the tetrahedral structure instead of a triangulated mesh. This
approach seems close to [26]. The motion of the actor is estimated in the multi-view videos
with a feature matching based on the SIFT algorithm [99]. The tetrahedral mesh is then
deformed according to this point-based constraints. Finally, the vertices are locally displa-
ced to match the silhouette pictures and stereo depth-maps extracted from each viewpoint.
Cagniart et al. [33] and follow-up work by Allain et al. [7] employ a dynamic surface, based
on a deformable tile set, initialized with the �rst frame of the sequence. This mesh is then
deformed to �t the subsequent poses. For each pose, the patches are matched to the cor-
responding part of the surface in the next frame according to a distance function between
the two surfaces. The authors also propose a volumetric approach [6] based on Centroidal
Voronoi Tesselations (CVT) [55] which cells are similarly clustered in rigid patches. This
template is �tted with the data through a probabilistic approach, following an EM process
[50].

The main advantage of this family of techniques is the temporally-coherent animation
they produce and the visual quality of the result. Nevertheless, the use of a template
model restricts their generality. Model-based methods are often limited to a single human
model, even if some variants allow the tracking of several actors. For instance, Liu et
al. [97] extended the method of Gall et al. [61] to track two characters in the same scene.
However, assuming a speci�c template model like in this �rst family of methods is often too
restrictive to capture arbitrary motion sequences: for instance, skeleton-based approaches
lead to strong limitations when applied to actors wearing loose costumes (dresses, coats)
or accessories (bags, hats) if no extra local optimization is performed.

Nonetheless, several of these techniques, despite the visual quality of the results (due to
the high precision scanner reconstruction of the template) roughly matches the actor's pose
but with a low adaptation to the tracked surface, such as the clothes' deformations (e.g.,
[45]). The reconstruction approaches based on an articulated model representing a generic
human body can be considered closer to a marker-less motion capture technology. These
methods are not well suited for �lm production because the results are poorly realistic.
However, the visual quality of these approaches can be sensitively improved by using a
template model built from the �lmed actor (for example by making a 3D scan acquisition
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(a) Starck and Hilton [140]
From left to right: visual hull,

stereo cues and �nal merged reconstruction

(b) Li et al. [91]
Left: input scan.

Right: �nal watertight
reconstruction.

Figure 2.12 � Examples of model-free methods.

of the actor before the shooting). Therefore, this requires a heavier preliminary processing
and reduces the genericity of the system.

2.5.3.3 Point-cloud sequences completion

Many methods based on scanned point-cloud series also �t a template geometry to
ensure a consistent reconstruction and �ll the holes that appear in this kind of reconstruc-
tion [30]. For example, one of the earliest method by Allen et al. [9] �ts a skeleton which
controls a template surface to compute correspondences between di�erent range scans. In
follow-up work [10], this articulated prior is enhanced by local deformations, similar to
[144]. Li et al. [90] compute a non-articulated template model by a static subject-speci�c
acquisition. This template is deformed through a non-rigid ICP algorithm to match and �ll
a series of partial scans, reconstructed by a real-time structured light stereo reconstruction
(see Figure 2.12b). The thin details of the surface are aggregated over the animation, even
if they only appear on a few frames. The main limitation of the model-based methods are
that the details of the surface are limited to those contained in the template. The more
realistic methods give convincing result due to actor speci�c template acquisition and local
optimization step. Moreover, these templates often contain richer details than the input
reconstructed poses. It is thus a way to produce a �ne and detailed animation from a low
resolution reconstruction, but it may lead to inconsistencies between the �nal animation
and the original captured data. It can then be seen as marker-less motion capture, rather
than a real reconstruction of the observed scene. However, the free-form motion tracking
remains limited. Another general problem is the inability to deal with changing topology.
In the case of such changes in the reconstructed time series (i.e., due to collisions), they are
often considered as reconstruction artifacts, the topology of the actor being not supposed
to change during the animation.

2.5.4 Temporally consistent model-free methods

Even if the temporally coherent reconstruction is usually associated with model-based
approaches, some techniques allow to compute a time-consistent mesh without a prede�ned
template shape.
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2.5.4.1 Dynamic surface from mesh sequences

Starck and Hilton [140] proposed a model-free method based on visual hull and stereo
reconstruction, enhanced by feature-matching through a graph-cut [29] process. A spherical
parameterization is then operated on the object, following the method described by Braun
and Hoppe [128] (see Figure 2.12a). This restricts the process to work only on single closed
surfaces. The authors bypass this problem by using a mesh cutting operation [142]. The
inter-frame consistency is ensured via this spherical domain embedding, by resampling the
mesh on a uniform domain [177]. The whole process is still sensitive to complex surfaces
with narrow extremities.

2.5.4.2 Articulated tracking of point-cloud sequences

Zheng et al. [176] developed a method to transform a time series of point clouds,
acquired by a structured light scanner, into a unique animated object. They �rst extract
a skeleton from each frame of a scanned sequence. They then compute a unique consensus
skeleton matching the successive poses, to derive a time-consistent reconstruction (following
the same kind of approach as Mukasa et al. [112]). Similarly, Pekelny and Gotsman [122]
accumulate a time series of partial scans, taken by a single depth video camera, to compute
an optimal articulated object. The points of the whole reconstructed object are segmented
and skinned to a skeleton (this requires a manual segmentation of the �rst frame and
speci�cation of the skeleton connectivity). Nevertheless, these approaches are limited to
clearly articulated shapes, which is not compatible with our goal. Chang and Zwicker [36]
propose another registration of range scans of deforming shapes, but their method is also
limited to subjects which presents articulated motions only.

2.5.4.3 Non-articulated tracking of point-cloud sequences

Mitra et al. [110] proposed a method for dynamic registration of scanned surfaces by
computing rigid transformations. A space-time surface is computed by the accumulation
of the points cloud acquisition in a single four dimensional space (3D+ t). Next, a normal
vector is estimated in each point of this surface. The rigid motion between two poses
should be perpendicular to the normal �eld (kinematic constraint). Therefore, the velocity
vector between consecutive frames is computed by minimizing the di�erence between this
vector and the tangential planes of each point. The authors then propose an extension
for deformable bodies, noticing that their transformations can be considered as locally
rigid. However, their methods seems sensitive to fast motions and important inter-frame
deformations. Süÿmuth et al. [145] describe a similar approach where the point clouds
captured by a fast 3D scanner are accumulated in a single time-space surface. This surface
is approximated by a single 4D implicit function which �rst time-step is used to compute
a template polygonal mesh. This mesh is then deformed along the time axis with an as-
rigid-as-possible deformation [138].

Wand et al. [168] compute a dynamic shape and its deformation from fast scanner
series, using a statistical framework. The transformation is based on a geometric alignment
of adjacent scans (using a variant of non-rigid ICP [62]), with a temporal smoothness
constraint, via a global optimization scheme. A more recent approach [167] employs a
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subspace deformation technique to compute a complete surface model from partial input
data. However, it is still sensitive to large time steps. Popa et al. [126] describe a template-
free reconstruction to iteratively compute correspondences between adjacent frames, using
optical �ows as hint, and produce temporally local consistent frame sequences until they get
a �nal animation over the whole time series. However, these techniques cannot handle fast
motions and are still sensitive to large time steps. Tevs et al. [153] match a set of landmarks
correspondences that are used to compute a dense mapping over a scanned sequence. The
accumulated partial scans then results in an animated model. We can also mention Li et
al. [91] who developed a temporally consistent completion of scanned meshes' sequences,
using a deformation graph to establish pairwise correspondences between adjacent frames
(see Figure 2.12b). This registration integrates a template-free, non-rigid ICP algorithm,
extended from [90]. Nevertheless, this method is applied to high de�nition meshes (despite
the scan holes) whereas our visual hull surfaces are less trustworthy.

Bonarrigo et al. [25] use a patch-based approach to compute the registration of scanned
point-cloud series, with large motion and, thus, a low overlapping between the successive
frames. The scanned surfaces are sampled as a set of nodes that de�ne partially overlap-
ping patches. A rigid transformation is computed for each patch by minimizing an objective
function. A �tting term matches the nodes of the two consecutive surfaces, according to
the nodes' radius of in�uence, whereas a regularization term penalizes the di�erence bet-
ween neighboring nodes' transformations. The transformation of each point of the surface
is �nally interpolated from the nodes' displacements, leading to an as-rigid-as-possible
deformation.

2.6 Conclusion

As a conclusion, we �rst discuss the various approaches presented in this chapter (see
Section 2.6.1) and then present an overview of the approach we propose (see Section 2.6.2).

2.6.1 Discussion

Our goal is to get a temporally coherent representation of a 3D scene from a sequence of
time-varying 3D objects made by a silhouette-based multi-view reconstruction. In this case,
several model-based approaches seem relevant. However, the model-free reconstruction me-
thods (especially shape-from silhouette and shape from-stereo) are the most generic and
present the advantage of being able to reconstruct any type of scene without assumption
about its content or preprocessing speci�c to the actor. They are also less complex and can
be processed in a reduced computing time. For all these reasons, a model-free reconstruction
can be used to compute an initial sequence of reconstructions which can then be consi-
dered as input data for a pose-tracking approach. In RECOVER 3D, a silhouette-based
reconstruction is used for real-time reconstruction of the actor. The resulting sequence of
rigid poses is then used as input to compute a time-consistent animation. Many state-of-
the-art techniques are based on a motion tracking of a pose sequence, using a template
body. Most of these methods use an articulated shape and a prede�ned template surface
(see Table 2.1). This requires a generic skeleton and human shape as input. For a realistic
rendering, this shape must be constructed from a prerequisite reconstruction of the �lmed
actor. These constraining inputs are a major drawback in our framework. Indeed, we aim
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at developing a generic process that should deal with various types of characters. Since our
application domain is TV production content, these characters could wear costumes and
accessories. Future application may also include non-human bodies (animals for instance).
In most of these situations, a skeleton �tting is challenging, and inappropriate to animate
the captured surface (with a dress for example), even if these skeleton-based reconstruction
often include a non-articulated surface optimization. A free-form tracking approache will
be necessary. However, several of these techniques su�er from a high complexity. Moreover,
most of template-free mesh registration methods are limited to small displacements. In the
case of multi-view reconstruction of real actors, captured by video cameras only, the ve-
locity of the motions and the reduced frame-rate can lead to large displacements between
two consecutive poses. The deformation of a surface from one pose to another thus should
have to be driven by a motion information. This motion can be extracted from the input
information and then applied to the mesh through an adapted deformation prior.

2.6.2 Our approach

Our approach is inspired from all these di�erent classes of methods while resolving some
of their limitations. As in model-based approaches we deform a template mesh in order
to match the captured time series of visual hulls. Our objective is to track the surface
of these successive poses. In this case, most of the state-of-the-art methods use a model-
based approach (see Table 2.1). However, we seek for a generic process and thus cannot
be limited by the morphology of a �xed template. Our production framework also cannot
produce a subject-speci�c template like the most robust approaches described in Sections
2.5.2.4 and 2.5.3. Accordingly, our template surface will be the mesh reconstructed from
the �rst frame of the sequence, so that we do not need an input model nor an initial pose.
Most of model-based techniques use articulated templates, which are not adapted to our
objectives (see Section 1.5). Instead, our approach is based on a non-rigid tracking (see
Section 2.5.3.2). The template mesh is taken from the initial model-free reconstruction
to avoid a complex pre-processing operation of template building which could be time-
consuming and/or require speci�c hardware. Our approach could be compared to the non-
rigid tracking approaches described in Section 2.5.4, except that these methods are often
adapted to high-frequency 3D scans and therefore sensitive to large displacements. Our
surface tracking will thus be guided by a preliminary motion estimation to drive the global
deformation of the template, as in several model-based approaches (see Sections 2.5.2
and 2.5.3), while maintaining the non-articulated prior. Motion �ows could be considered
limited due to the amplitude of the movements but they can help managing any type
of model and work on volumes. The motion vectors drive the global deformation of the
template shape more e�ciently that an approach only based on a pose convergence which
could be sensitive to large displacements or remain stuck in local minima. This pseudo
rigid deformation thus enables both a free-form matching and a local rigidity. At last,
a �nal optimization step may be necessary to deal with the complex cases such as local
variations of the surface or reconstruction artifacts, as proposed by most of the hybrid
model or free-form approaches (see Sections 2.5.2.3 and 2.5.4.3).
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Résumé

Nous décrivons dans ce chapitre la première étape de notre méthode de suivi de poses
qui consiste à calculer un champ de déplacements décrivant les mouvements de l'acteur.
Nous utilisons comme données d'entrée les séquences de volumes discrets obtenus après
une reconstruction basée silhouette. Ces volumes sont représentés sous formes de grilles 3D
régulières de voxels (Volume Elements). Chaque voxel correspond à une valeur qui dé�nit
s'il est à l'intérieur ou à l'extérieur de l'objet. Une transformée en distance euclidienne
(EDT ) est aussi préalablement calculée pour chaque volume. L'EDT est une grille de
même résolution que le volume où chaque voxel est dé�ni par une valeur correspondant à
la distance euclidienne au carré entre le voxel et la surface (zone de contact entre voxels
intérieurs et extérieurs) la plus proche.

A�n d'estimer la trajectoire des mouvements e�ectués entre deux poses successives
de la séquence, nous commençons par calculer un appariement entre les voxels des deux
volumes correspondants. Soit deux volumes V n et V n+1 consécutifs correspondants aux
poses n et n+1 d'une série de N volumes. On souhaite réaliser un appariement V n →
V n+1. Commençons par dé�nir comme voxels de surface les voxels intérieurs qui sont en
contact avec au moins un voxel extérieur. Ces voxels de surface sont caractérisés par une
couleur au format RGB (texture issue des image multi-vues) et un vecteur normal à la
surface en ce point. On cherche à associer chaque voxel de surface vni ∈ V n au voxel de
surface vn+1

j ∈ V n+1 qui lui correspond le mieux. On juge que l'appariement de deux
voxels est satisfaisant lorsqu'il minimise la fonction distance décrite par l'équation 3.3.
Cette expression est une somme pondérée de trois critères : proximité (cf. Section 3.4.1),
orientation (cf. Section 3.4.2) et colorimétrie (cf. Section 3.4.3).

Pour chaque voxel de surface vni , on parcourt les voxels de surface de V n+1 qui se
trouvent dans un voisinage �xé (cf. Section 3.5) et l'on retient le voxel vn+1

j qui correspond
au plus petit résultat renvoyé par la fonction de distance. Le vecteur dé�ni par la position
des deux voxels vni et vn+1

j est ajouté au champ de vecteurs en vni . Ce champ de vecteurs
a la même structure que la grille de voxels. Chaque position peut contenir un ou plusieurs
vecteurs. La même opération est répétée une seconde fois, en cherchant cette fois pour
chaque vn+1

j le voxel de surface vni le plus proche. Les vecteurs retenus sont à leur tour
ajoutés au champ de vecteurs en vni . Ce second passage permet de retrouver une partie du
mouvement qui pourrait avoir été ignoré lors du premier appariement. On s'assure ainsi
que chaque voxel de surface de V n et V n+1 est associé à au moins un vecteur.

L'étape précédente nous permet de récupérer un champ de vecteurs initial qui décrit le
mouvement de l'objet entre V n et V n+1. Cependant de nombreux appariements peuvent
être erronés et cet ensemble de vecteurs est trop irrégulier pour être exploitable. Une
opération de lissage est donc ensuite e�ectuée en appliquant un �ltre gaussien 3D sur
le champ de vecteurs initial. Le résultat �nal est un champ de vecteurs qui donne une
estimation du déplacement de la surface entre deux poses consécutives. l'opération est
répétée pour chaque couple de poses (V n, V n+1) tout au long de la séquence (de n = 0 à
n = N − 1) pour obtenir une description des mouvements sur l'ensemble de l'animation.
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3.1 Introduction

This chapter describes the �rst step of our method. We �rst give an overview of 3D
motion estimation principle in Section 3.2. Our approach is detailed in Section 3.3 to 3.6.
Section 3.7 presents preliminary results and outlines a motion �ow-driven mesh animation
approach.

3.2 Positioning in the context of previous work

Our goal is to get an estimation of the motions that happen in a 3D scene reconstructed
from a moving actor's performance. An initial model-free technique performed a volumetric
reconstruction from each frame of the initial multi-viewpoint video streams. Given that
our application should be used as an o�ine, post-production tool, our input data are the
reconstructed sequences alone. Our approach does not use the multi-view pictures from
the original videos. Indeed, we thus avoid dealing with voluminous data that may not have
been stored after the initial reconstruction process or could be hardly transferred to the
system. This overview provides an introduction to motion estimation (see Section 3.2.1)
and a brief review of previous work in 3D motion tracking (see Section 3.2.2). We introduce
our approach in Section 3.2.3.

3.2.1 Motion estimation

The estimation of the motion that appears in a captured scene is a widely studied
problem. The most common techniques compute an optical �ow between the consecutive
pictures of a video, throughout the whole sequence. An optical �ow is a set of 2D vectors,
one for each pixel, that represent the displacement of the corresponding point as seen
from the camera viewpoint. Among the various approaches to compute the optical �ow,
two noteworthy methods have been described by Lucas and Kanade [101] and Horn and
Schunck [65]. They both rely on the principle that, in a stable environment with a constant
lighting, the intensity of a captured point remains unchanged between two consecutive
snapshots. This leads to the brightness constancy constraint formulated by the following
equation:

IxVu + IyVv = −It (3.1)

where Ix, Iy and It are the partial derivatives of the image I along the spatial axis x and
y and time t, respectively. V (u, v) is the velocity vector which de�nes the displacement
between two images. The equation 3.1 can be rewritten in the matrix form:

[
Ix Iy

]
·
[
Vu
Vv

]
= −It

which becomes:
∇IT · ~V = −It (3.2)

where ∇I is the spatial derivative, or gradient , of I. This equation contains two unknowns
and its solving is therefore challenging. This is linked with the aperture problem of the
optical �ow algorithms: the motion of an edge seen through an aperture is ambiguous and
may be consistent with many di�erent motions. All optical �ow computation methods thus
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introduce additional constraints to �nd a solution. The Lucas-Kanade [101] approach is
a di�erential method that relies on the assumption that the velocity is localy constant. For
each pixel qi, a local equation system, built by applying the equation 3.1 for each pixel
in a �xed window around qi, is solved by a least-square approach. The Horn-Schunck
[65] method assumes a global smoothness of the �ow through the whole image. The �ow
is formulated as a global energy to minimize.

These approaches are often sensitive to large displacements that could occur between
consecutive frames. Other types of methods are based on a block-matching approach [93,
178, 115]. This consists in tracking the point between two adjacent frames by searching,
for each pixel at a �xed time t, for a similar pixel in the next frame t + 1. This principle
is similar to a feature matching algorithm. A pixel and its close neighborhood form a
block. The algorithm looks for a block with the same properties in the next picture and
then matches the pixels at the center of these two blocks together. The block matching
algorithms are, for example, widely used in video compression. It should also be noticed
that the optical �ow does not describe a 3D motion but 2D motion as seen from the capture
viewpoint, i.e., the 3D displacement projected toward the camera.

3.2.2 3D motion tracking

These techniques described in Section 3.2.1 can be applied to 3D motion recovery in
a multi-camera context, with multiple viewpoints. In a relevant article [163], Vedula et al.
de�ned the concept of scene �ow by the 3D equivalent of the optical �ow. The optical �ow
describes an instantaneous motion �eld in an image. In the same way, the scene �ow is a
three-dimensional �ow �eld which describes the motion at every point in the scene. Vedula
and coworkers compute the 3D motions vectors of this scene �ow, in the real scene space,
by merging the optical �ows computed from multiple viewpoints around the stage. In the
context of multi-view reconstruction, a motion �ow computation can be considered by
working on the poses of a reconstructed sequence of static 3D objects. This representation
of the animated scene can be compared to a 3D equivalent of a video as it is composed
of static snapshots without registration of the movements. Many scene �ow computation
technologies are based on stereo-based reconstruction and depth-maps [170, 86, 166] or
surface patches (surfel) photo-consistency in multi-viewpoint environments [114, 70].

Several motion-tracking approaches have been proposed to achieve a reconstruction
with temporal consistency from time series of static objects that typically results from
model-free reconstructions. Various types of methods perform a mesh-tracking, applied on
meshes obtained through multi-view reconstruction. Several meshes can be matched ac-
cording to curvature, texture criteria, photo-consistency, or various types of features [173]
from which one can compute the motion �ow describing the movements of an actor bet-
ween two frames [124]. These methods �rst match two meshes by tracking 3D features on
the reconstructed surfaces, eventually mixed with 2D features from the multi-viewpoint
videos. These sparse correspondences are then propagated through the whole surface to
�nally obtain a dense matching. Starck and Hilton [139] track surface point features, using
a set of edges, corners, and region descriptors. The correspondences for all vertices are com-
puted through MRF energy minimization afterwards. Tung and Matsuyama [158] propose
a similar algorithm, with an initial correspondence matching based on geodesic distances
of the vertices. Varanasi et al. [162] mix image and mesh features, using SURF descriptor
and geodesic integral, respectively. The motion �eld is obtained through Laplacian dif-
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fusion. Furukawa and Ponce [60] deal with meshes reconstructed from multi-view stereo
acquisition. They use photometric photo-consistency to compute the local motion of the
vertices, regularized according to the mesh's adjacency.

Our meshes are provided by a volumetric silhouette-based reconstruction which pro-
duces digital volumes sequences, that are then transformed into meshes with a surface
extraction algorithm. In our case, however, the visual hull reconstruction usually creates
signi�cant artifacts (e.g., phantom volumes) which prevents us from using such a mesh-
tracking approach directly. Therefore, the surface of the same object in di�erent frames
may highly di�er, both in topology and surface details. This way, a mesh tracking ap-
proach using mesh features or surface properties may fail to establish a robust matching.
Instead, we use a volumetric approach to compute a motion �ow based on a voxel matching
algorithm applied to the input sequence. Anuar and Guskov [14] proposed to compute a
3D optical �ow, based on a hierachical adaptation of the Lucas-Kanade approach, on a
voxel grid. A distance transform is used as a 3D image, with distance values instead of
intensities. The motion �ow can then be used to animate a mesh over time. Nobuhara
and Matsuyama [117] use a voxel-matching algorithm between the successive poses of a
volumetric visual hull sequence. This algorithm establishes correspondence according to
Euclidean distances. A template is obtained by a marching cubes triangulation of the �rst
frame volume and then animated following the displacement vectors. However, the motion
�ows computed in this method are simply obtained by matching each voxel to the closest
one in another frame, thus producing motion vectors which lack accuracy. Destelle et al.
[53] describe a motion �ow computation from point clouds, using a multiresolution voxel
grid. The voxels from each of the two poses are associated with a voxel from the opposite
pose, in a back-and-forth matching based on a distance function which includes a Euclidean
distance and a normal vector angular di�erence. This algorithm penalizes the matching of
voxels from surfaces which do not have the same orientation. This raw motion �ow is then
�ltered by computing the gradient of the vector �eld and removing the outliers according
to a �xed threshold.

3.2.3 Our approach

As described in Chapter 1, we take as input sequences of visual hulls obtained through
a volumetric silhouette-based reconstruction (see Section 2.4). We assume that the input
is a binary 3D array which represents a sequence of poses generated by this reconstruction
process along with the colors captured by the video. These volumes are usually transformed
into a sequence of 3D textured meshes, successively loaded for the rendering of each frame.
In this constrained industrial framework, our goal is to introduce a dynamic representation
of the captured character, that adds a temporally consistent description of the scene.
Our ultimate goal is to generate a single, time-evolving triangle mesh representing the
motion of the actor in the capture sequence. This technology should be used to perform the
reconstruction of various types of scenes, involving actors wearing costumes and accessories,
or even animals. This requirement prevents the use of most existing methods which assume
rigidly articulated models. This project is oriented towards broadcast and TV markets,
that is why rapid computations are favored to match the constraints of short production
deadlines.

To answer these requirements, we developed a new method which uses a feature-based
volume tracking to identify the actor's motions and then apply a surface matching algo-
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(a) Volume (b) EDT

Figure 3.2 �Volume processing. (a) An example of colored reconstructed volume issued
from multi-view reconstruction. (b) A sliced representation of the corresponding EDT .

3.3.1 Volume series

The reconstructed volumes we use as input are simple digital volumes, represented by
a regular 3D grid of isotropic binary voxels (0 for void voxels and 1 for voxels covering
or intersecting the object). Voxels straddling the surface (i.e., those that are not void, yet
direct neighbors of void voxels) are assigned a color extracted from the multi-view video
frames: the color associated to a voxel is interpolated from the multi-viewpoint images
which contains this point. Each surface voxel is then associated to a RGB color (see Figure
3.2a). Note that for simplicity of our data structure, we implement a volume as an RGBA
array, where the alpha channel is set to 0 for void voxels, 1 for internal voxels, and 0.5 for
surface voxels.

3.3.2 Distance volume coding

We then compute another representation of these volumes by using a Euclidean distance
transform (EDT), as described by Saito and Toriwaki [131]. This transform is computed by
applying a forward and backward path to compute, for each point, the minimum distance
to the closest surface point. This two-step operation is repeated for each axis of the 3D
grid to update the distance values, following the generalized Pythagorean theorem (the
square of the distances on each axis equals the squared Euclidean distance). At the end of
the process, each voxel is assigned to the smallest squared distance to the closest surface
voxel. The algorithm is given in appendix B.1. We obtain an unsigned distance volume,
represented by a 3D grey-level voxel grid, as shown in Figure 3.2b. Each voxel is assigned
to a positive value which corresponds to the Euclidean distance to the closest boundary of
the object. This volume description can be considered as a grey-level 3D picture. Thus, we
are able to compute a derivative estimation of this picture. It will be used to compute the
normal vectors (see Section 3.4.2) and gradient values. To compute the spatial derivative,
we use a set of Sobel-like �lters which estimate, in a 33 window around each voxel, the
EDT variations for each spatial axis. A temporal derivative is also computed on the same
neighborhood by the di�erences of the values between two consecutive frames.
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Figure 3.3 � Voxel matching between two consecutive volumes. The voxel (1) from the
V n volume matches better the voxel (2) from the V n+1 volume than the voxel (3). The
neighboring voxels are represented with their colors. Normal vectors are depicted by arrows.

3.4 Voxel matching

Given two adjacent volumes V n and V n+1 which correspond to frames tn and tn+1,
our goal is to compute a matching V n → V n+1 representing the scene �ow. We de�ne as
surface voxels the voxels which belong to the object and have at least one void voxel in
their direct neighborhood. These surface voxels are characterized by an RGB color and a
surface's normal vector. We want to match each surface voxel vni ∈ V n to another surface
voxel vn+1

j ∈ V n+1 minimizing the following distance function:

D(vni , v
n+1
j ) = ωpδi,j + ωnϕi,j + ωcσi,j (3.3)

where δi,j , ϕi,j and σi,j are normalized and correspond respectively to a proximity criterion
(see Section 3.4.1), an orientation criterion (see Section 3.4.2) and a colorimetric criterion
(see Section 3.4.3). ωp, ωn and ωc are weighting terms, �xed by the user. In our experi-
mentations we used ωp = 0.3, ωn = 0.45 and ωc = 0.25. These criteria allow to match the
voxels which correspond to the same part of the surface, identi�ed by an orientation and
a texture. In case of large motions, the color is the most invariant feature. The proximity
should only be a discriminating characteristic when several voxels satisfy the other terms
of the distance function.

We immerse the binary volume V 0in the EDT grid of V 1, so that the EDT value
associated to each surface voxel of V 0 represents its distance to the next pose at time
t1. This distance is used to automatically de�ne a search radius which corresponds to
the maximum amplitude of the motion. For each surface voxel vni we look through the
surface voxels of V n+1 contained in this neighborhood and we select the voxel vn+1

j which
corresponds to the smallest result of the equation 3.3. Figure 3.3 shows an example of voxel
matching. The positions of voxels vni and vn+1

j de�ne a 3D vector. This vector is added
to a vector �eld at the vni position. This vector �eld is represented by the same structure
as the voxel grid. Each square could contain one or several vectors. The same operation is
repeated, looking this time, for each vn+1

j , for the matching surface voxel vni . The resulting
vectors are added to the vector �eld at vni position. This backward pass allows us to �nd
a part of the motion which could have been ignored by the forward matching process (see
Figure 3.5, top). Thus, we ensure that each surface voxel in V n and V n+1 is associated to
at least one vector.
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(a) (b)

Figure 3.4 � Examples of inaccurate matching between two surfaces: (a) without normal
criterion, the matching is not robust to large motions, (b) without colorimetric criterion,
the matching is sensitive to tangential displacements.

3.4.1 Proximity criterion

The proximity criterion corresponds to the Euclidean distance between the two voxels:

δi,j =
∥∥∥pn+1

j − pni
∥∥∥

with pni and p
n+1
j being the 3D positions of vni and vn+1

j . This criterion allows us, if several
voxels satisfy the other criteria, to select the closest one (see Figure 3.9b).

3.4.2 Orientation criterion

The orientation criterion represents the di�erence between the normal vectors of the
two voxels:

ϕi,j = 1− nni · nn+1
j

with nni and nn+1
j being respectively the normal vectors at vni and vn+1

j . As illustrated in
Figures 3.4a 3.9c, this criterion penalizes the matching of two voxels which belong to back
facing surfaces. For example, in �gure 3.3, the voxel (1) is matched with voxel (2) which
normal vector has a closer orientation.

3.4.3 Colorimetric criterion

The colorimetric criterion is similar to a block matching algorithm, as used for motion
estimation in digital video processing. We compare the colorimetric di�erence between two
voxels as well as between their direct neighborhoods:

σi,j =
∥∥∥vn+1

j − vni
∥∥∥
RGB

+
∥∥∥Bn+1

j −Bn
i

∥∥∥
RGB

Bn
i and Bn+1

j are the blocks which correspond to the surface voxels contained in a neigh-

borhood of �xed size b around vni and vn+1
j , respectively:

Bn
i =

b∑
k=1

vni+k
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(a) (b)

(c) (d)

Figure 3.5 � Top: forward (a) and backward (b) matching between the two volumes.
Bottom: Gaussian �lter (in grey) applied to the raw vector �elds (c) and �nal motion �eld
(d).

if vni+k belongs to the surface. This constraint favors the matching of two voxels which
belong to close color blocks corresponding to the same object's part (see Figures 3.4b and
3.9d).

3.5 Motion �ow regularization

The voxel matching step, explained in Section 3.4, results in a 3D vector �eld which
roughly describes the motion of the volumetric object between V n and V n+1. We name
this initial vector �eld D1. However, several inconsistent matches remain and the global
motion is too irregular to be used. That is why a smoothing step is performed to get a
coherent motion �ow, as shown in Figure 3.5 (bottom). We apply a Gaussian �lter on the
initial vector �eld. For each surface voxel, we compute a single vector which is an average,
weighted by Gaussian coe�cients, of all the vectors in a de�ned neighborhood. This new
vector �eld is named D2. Each vector D2i ∈ D2 is computed by the following equation:

D2i =
M∑
j=0

GD1j (3.4)

M being the neighborhood around D1i. G is a Gaussian function:

G = exp

(
−(xi − xj)2 − (yi − yj)2 − (zi − zj)2

σ2

)
(3.5)

where (xi, yi, zi) and (xj , yj , zj) are the 3D coordinates in the grid of voxels vi and vj ,
respectively (i.e., the squares which contains vectors D1i and D1j). Each vector D2i is
thus obtained by computing a weighted average of the vectors in D1 in the neighborhood
M (a �xed size window centered on the voxel D1i). This convolution is therefore applied
as a discrete linear �lter on the 3D grid. The value of σ is automaticaly deduced from the
size of the kernel window, which is �xed by the user, as described in appendix C.1.

After this convolution, we obtain a smooth 3D motion �eld where each surface voxel
is associated with a single motion vector. This �ltering operation regularizes the vector
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set to produce a coherent motion description where each surface voxel is associated to a
single motion vector. The size of this �lter (the window M) depends on the dimension
of the volumes and must be de�ned by the user. The �lter can also be applied several
times to enhance the smoothing e�ect. In our case, we usually apply from 3 to 7 iterations,
depending on the dataset (see Section 3.7.1).

3.6 Implementation and improvements

The previous sections described the brute force algorithm. We now present several
enhancements which improve the quality and regularity of the initial matching (see Section
3.6.1) and the computing time (see Section 3.6.2).

3.6.1 Limitation of multiple matchings

In order to avoid as much as possible the multiple matching, the initial matching
proceeds in two steps. In the �rst step, for each voxel vni ∈ V n, we look for the best
matching voxel vn+1

j ∈ V n+1. If vn+1
j is already matched with another voxel vnk from V n,

we compare the distances (vni , v
n+1
j ) and (vnk , v

n+1
j ) (corresponding to the equation 3.3).

If the distance (vni , v
n+1
j ) is the smallest, these two voxels are matched together and the

voxel vnk is unmatched. In the other case, vnk stays matched with vn+1
j .

At the end of this �rst stage, we obtain a partial matching between the surface voxel
of V n and V n+1 without any multiple association. However, some surface voxels remain
unmatched. In the second step, these unmatched voxels must be linked to a surface voxel
of the other frame. For each unmatched voxel vni , we go through its neighborhood N(i).
We note vnl the surface voxels of V n which belongs to N(i). For each voxel vnl which is
matched with a voxel vn+1

m ∈ V n+1, we compute the distance (vni , v
n+1
m ). The unmatched

voxel vni is then matched with the voxel vn+1
m which minimizes this distance.

3.6.2 Prediction

Considering that, at a time ti, the motion �ow between ti and ti + 1 should be a
continuity of the previous motion vectors (between ti−1 and ti), we improve our voxel
matching algorithm once the motion vectors between the �rst two frames of the sequence
has been estimated. Each surface voxel at ti uses the motion vector previously estimated
between ti−1 and ti to predict the position of the matching voxel in ti+1. We then search
for the best matching voxel in ti+1 using a noticeably reduced radius around the predicted
position, o�ering a highly e�cient speedup of 60% compared to the brute force algorithm
(see Section 3.7). This prediction is repeated for the next matching phases throughout the
whole sequence.
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(a) Girl (b) short Cheerleader (c) Astronaut

(d) Dancer (e) Capoeira

Figure 3.6 � Accumulated motion �ows through several frames of �ve test sequences
(motion vectors are oriented from blue to red).

3.7 Results

We evaluate our method on several datasets obtained through volumetric visual hull
reconstruction. The girl dataset contains simple motions, with a woman slowly moving her
arms. The visual hull volume has a 73× 132× 43 voxels resolution and is reconstructed for
30 frames. The �rst mesh, used as a template, contains 11912 vertices. We also applied our
algorithms on several reconstructions of actors' perfomances described in Chapter 5 (see
Section 5.2). The short cheerleader and astronaut sequences both contain 25 volumes, with
an average 180×270×170 voxel resolution. The astronaut contains a nearly-rigid but large
motion of the arms. The cheerleader is more challenging due to the free-moving shapes
of the pom-pom, the skirt, and the large motions of the arms. These two datasets were
generated by the RECOVER 3D studio. We also used the dancer and capoeira sequences,
reconstructed from multi-view videos acquired by other infrastructures (GrImage 15 and
MPI Informatik 16, respectively. See Section 5.2 for details). The dancer dataset represents
a quick dancing motion, with large motions of the arms and a dress, with a lower quality of
the visual hull. The capoeira sequence contains fast motions, especially for the legs, which
lead to large inter-frame displacements. The quality of these visual hulls also su�ers from
the low resolution, number of viewpoints, and the inconsistencies of silhouettes' masks. All
timings were measured on a 64 bit Intel Core i7 CPU 2.20 GHz.

15. http://4drepository.inrialpes.fr/
16. http://resources.mpi-inf.mpg.de/siggraph08/perfcap/
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(a) (b)

Figure 3.7 � Motion �eld regularization. (a) result of the voxel matching step. (b) vector
�eld after regularization (vectors are oriented from blue to red).

Sequence Cheerleader (short) Astronaut Dancer Capoeira Girl

Voxel-matching step 19s 42s 40s 230s 7s
Regularization step 18s 17s 9s 18s 3s

Table 3.1 � Average motion �ow computing times between two consecutive poses.

3.7.1 Evaluation of the motion �ow reconstruction

When evaluating the motion �ow on these datasets, we obtain a satisfying motion �eld
due to the regularization step, where each surface voxel is associated to a displacement
vector (see Figure 3.7). Figure 3.6 presents the results obtained after computing the inter-
frame motion �ows throughout the complete sequences. The computing times are presented
in Table 3.1. One can observe the noticeably longer time required for the voxel-matching
step with the capoeira sequences, due to the fast inter-frame motion. As described in Section
3.6.2, using the previous motion �ow as a prediction to reduce the search radius allows to
substantially decrease the computing time. For instance, the voxel matching between the
�rst two poses (without prediction available) of the short cheerleader is computed in 51s
whereas it is reduced to 17s between poses 2 and 3. We then apply the regularization step
(see Section 3.5) with a 73 window and 5 iterations. The computing time for this second
step, presented in the last row of Table 3.1, depends on the parameters of the �letring
and on the volumes' resolution (not on the motion's amplitude). As we applied similar
parameters, the timings are almost similar for the sequences which have comparable voxel
resolutions.

We compared our approach with our own implementations of two 3D-adapted optical
�ow algorithms as presented in [19]: the �rst one is based on the Lucas and Kanade me-
thod [101] and the second one on the variational approach by Horn and Schunck [65]. For
comparison, the method described in [14] is using a similar approach to the Lucas-Kanade
version, applied on a discrete distance function, as our EDT (see appendix C.3). Our ex-
periments show that for similar settings, the Lucas-Kanade approach is faster (less than
5 seconds for girl) but displacement vectors are not oriented correctly (see an example of
results in Figure 3.8a for a close-up on the girl's upper body). It was expected as this kind
of image warping approach is not well suited to large displacements. One common impro-
vement to avoid this problem would be to implement a coarse-to-�ne computation. The
Horn-Schunck algorithm is signi�cantly slower (5 minutes on the same dataset) and does
not give convincing results with displacement distances not corresponding to the actual mo-
vement (see Figure 3.8b). With the other datasets, these limitations of our Horn-Schunck
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(a) Lucas-Kanade (b) Horn-Schunck

Figure 3.8 � Result of the two 3D optical �ow computation between two frames of the
girl sequence.

implementation are increased, due to the higher resolution of the volumes. We thus com-
pared our motion �ow computing with the Lucas-Kanade �ows. Results are presented in
the Table 3.2 for three datasets. With the other sequences, the motion's amplitude bet-
ween two consecutive frames is too large to get a consistent �ow with the Lucas-Kanade
implementation. Instead, our back and forth voxel matching ensures that the motion �ow
covers the whole displacements, independently from their amplitude. The Euclidean dis-
tance volume, used as a 3D picture, does not seem to provide a su�cient information
to compute a consistent motion information. Despite its high algorithmic complexity, our
voxel matching method provides a better representation of the motion. While it is mostly
only possible to evaluate visually the motion �ows, a quantitative evaluation was perfor-
med on the mesh itself (see Section 3.7.3) which con�rms our observations on the �ows.
Finally, compared to the 3D optical approaches, our method gives more consistent motion
vectors by considering all the color information and orientation, instead of just the EDT.
The computing time is satisfying (between the two other approaches). We also note that
our voxel-matching step is only performed on surface voxels, while the 3D optical �ows are
computed on the complete EDT grid, which makes our method more appropriate to the
data and more e�ective for higher resolutions.

3.7.2 Discussion on the chosen parameters

The method introduced by Nobuhara and Matsuyama [117], which uses only Euclidean
distance (meaning, in our case, ωn = ωc = 0) is less e�cient than the results we obtain
with our multiple criteria approach. Figure 3.9 shows the in�uence of the three criteria
(proximity, orientation, color) for voxel matching, de�ned by weights ωp, ωn, and ωc (see
Eq.(3.3)), de�ned by the user. Figure 3.9b shows that without the proximity criterion
(ωp = 0), most of the matched voxels are too distant. The matching could associate two
voxels which seem identical but do not correspond to the same part of the surface. The
same problem appears if the orientation criterion's weight (ωn) is set to zero. As illustrated
in Figure 3.9c, most of the voxels are matched with another voxel which is close but
corresponds to a backfacing surface. Figure 3.9d shows the lack of precision in the matching
computed without colorimetric criterion (ωc = 0). The e�ciency of this criterion increases
when the volume is highly textured (i.e., there are lots of variations in the voxels' colors).
At last, Figure 3.9e shows that these criteria do not have the same in�uence, depending
on the dataset used, and most of the time, di�erent weights are chosen by datasets. These
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(a) (b) (c) (d) (e)

Figure 3.9 � In�uence of the matching criteria. Results, before and after regularization,
of the left hand's voxel matching: (a) with ωp = 0.3, ωn = 0.45 and ωc = 0.25, (b) without
proximity criterion (ωp = 0), (c) without orientation criterion (ωn = 0), (d) without
colorimetric criterion (ωc = 0), and (e) with all weights set to 1.

results show that this voxel-based approach can be made drastically more robust for visual
hulls if one considers orientation and texture of the voxels for matching and proper �ltering.
It is really the combination of the three criteria that improves the quality of the matching
process. Note that in case of highly textured data (varied color patterns on the surface),
the colorimetric criterion helps to stick to a proper voxel matching. Therefore, the weight
ωc should be increased. On the contrary, in case of poorly textured volumes (uniform
colors), the orientation criterion should be the main hint for the matching. In any case, the
proximity criterion should have the lower weight as it is only a discriminating term in front
of the other criteria. The size of the Gaussian �lter and the number of iterations could
be increased for the processing of volume sequences with a higher voxel resolution. Note
that increasing the size of the window or applying several iterations leads to a equivalent
smoothing e�ect. We thus keep the �lter's size �xed with a constant value (between 5 and
9) and the user should only vary the number of iterations according to the data (we never
used more than 10 iterations in our tests). At last, note that the successive iterations of
the Gaussian regularization could also leads to an unnecessary over-smotting e�ect (we
show in Chapter 4 that the �nal motion �ow can be considered as a rough description of
the displacements).

3.7.3 Mesh animation

After the motion �ow is �ltered, we use it to match a chosen template mesh (one of
the sequence frames) to the sub-sequent meshes by pairs of frames, regularized using a
mass-spring system in an iterative approach, in order to create a unique mesh, animated
over time. The mesh animation is computed by a simple advection of the vertices by
the motion �ow (each vertex is moved according to the closest motion vector). A mesh
regularization algorithm is eventually applied in order to maintain a consistent surface
geometry. The template generation and the mesh regularization are described in Sections
4.4.1 and 4.5.1.2, respectively.

To measure the matching quality of the deformed template and the target pose, we
used as metric the Hausdor� distance, which represents the distance between the deformed
template and a mesh obtained by visual hull reconstruction of the same frame (this value
is computed with respect to the diagonal of the bounding box). We used the MeshLab 17

implementation, based on several distance computations between sampled surfaces and
returning an average value. We evaluated the whole process with motion vectors obtained
by our method (voxel matching) and by 3D optical �ow with the same mesh regularization

17. http://meshlab.sourceforge.net/
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(a) (b) (c)

Figure 3.10 � Overview of the mesh animation process. Template mesh (in grey) in initial
pose (a). The same mesh after the application of the motion vectors towards the next visual
hull in yellow (b). The �nal result after mesh regularization (c).

parameters. The Table 3.2 presents the evolution of this matching metric during three
sequences. We see that after several frames, the Hausdor� distance increases for the Lucas-
Kanade approach whereas it stays stable with our method. These divergences correspond
to the inconsistencies that appear in the mesh after several frames, due to a inaccurate
motion �ow. If the Lucas-Kanade approach and ours give similar results for the �rst poses,
the results di�er signi�cantly from the real visual hull after several frames. With Lucas-
Kanade, the mesh animation stays robust for 23 frames of the girl sequence. With our voxel
matching approach, we obtain consistent results during the complete sequence. With the
dancer dataset, the shape matching, using Lucas-Kanade, starts to produce inconsistent
results after only 3 frames. Similar results are obtained with the short cheerleader where the
mesh animation becomes inconsistent after 5 frames (see Figure 3.13b). Whereas with our
motion �ow, the Hausdor� distance stays stable (see Figure 3.11). The girl dataset is the
only one where the mesh matching stays robust during the whole sequence using the two 3D
optical �ow approaches, even if the visual mesh consistency is quickly lost, because of the
low motion's amplitude. With the other sequences, the 3D Lucas-Kanade implementation
fails to maintain a consistent mesh animation after a few frames. The consistency of the
matching between the animated mesh and the visual hulls is also measured by comparing
the color of the voxels which correspond to each vertex during the sequence. We compute
the distance in the colorimetric space between the closest voxels of a vertex in two adjacent
frames and repeat this for each pair of frames through the whole sequence. The resulting
values are normalized with respect to the maximum color di�erence (between black and
white). The average di�erence is 0.042 for the dancer dataset (with a standard deviation
of 0.059) and 0,039 for the short cheerleader sequence (with a standard deviation of 0.058).
These values shows that, despite the regularization of the mesh, the moving vertices stay
globally associated with the same parts of the surface during the animation. The maximum
di�erences are logically observed in the regions animated by the largest motions, as shown
in Figure 3.12.
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Girl Dancer Cheerleader (short)

Frame Lucas-Kanade Voxel Matching Lucas-Kanade Voxel Matching Lucas-Kanade Voxel Matching

2 0.00157 0.00157 0.007325 0.003321 0.002224 0.001772

3 0.00157 0.00157 0.008143 0.003091 0.002180 0.001846

4 0.00157 0.00157 0.007863 0.003061 0.002558 0.001914

5 0.00160 0.00160 0.006692 0.002173 0.002914 0.002244

6 0.00167 0.00167 0.006649 0.002682 0.002564 0.002196

7 0.00172 0.00173 0.006525 0.002569 0.002709 0.002054

8 0.00171 0.00173 0.007404 0.002431 0.002872 0.002150

. . . . . . . . . . . . . . . . . .

12 0.00175 0.00177 0.003065 0.003166 0.001854

. . . . . . . . . . . . . . . . . .

16 0.00180 0.00183 0.007644 0.003232 0.002061

. . . . . . . . . . . . . . . . . .

20 0.00171 0.00174 0.005482 0.003198 0.002085

. . . . . . . . . . . . . . . . . .

24 0.00177 0.00175 0.003628 0.002930 0.001945

. . . . . . . . . . . .

28 0.00206 0.00191 0.002933

Table 3.2 � Mesh matching measurement (average Hausdor� distance) between animated
mesh and visual hull of the target pose.

(a) (b)

Figure 3.11 � Evolution of the average Hausdor� distance during the girl and short
cheerleader sequences.

3.7.4 Limitations

The algorithms described in this chapter allow to compute a good estimation of the
motion that occur between consecutive poses. However, these vectors rely on a set of cor-
respondences that cannot ensure a perfect matching of the two shapes. Indeed, the motion
�ow gives a global information on the displacements but may locally include inaccurate
vectors due to, for instance, outlier matches or inconsistent results caused by the regulari-
zation. Due to these limitations, the basic mesh animation described in Section 3.7.3 may
leads to inconsistent displacements of the vertices. The other main problem of this system
is that these vertices are moved independently, without assumption about the global mo-
tion of the surface. This often leads to inconsistencies on the mesh with the divergence or
collapsing of the vertices during the animation. To handle these problems, an appropriate
mesh animation procedure should both be able to follow the free-form motions of the mo-
tion �ow and maintain a consistent surface. Our proposal for such a system is described
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(a) (b)

Figure 3.12 � Representation of the texture matching metric on the animated mesh
for the short cheerleader (a) and dancer (b) sequences. Each vertex is associated with a
color which represents the colorimetric di�erence of the closest voxels in two consecutive
frames. A good matching corresponds to a small value. The minimum value is 0 (blue) and
maximum is 0.7 (red).

(a) (b)

Figure 3.13 � Stress case. (a) Example of small details where the mesh slowly degrades
over time by lack of dense enough information. (b) Other type of mesh drift occurs when
the motion �ow does not correctly match the new pose of the actor. Here is an example
with the short cheerleader dataset, animated with the 3D Lucas-Kanade motion �ow.

in the Chapter 4. Figure 3.13a shows an example on a synthetic dataset which contains
thin details such as �ngers. As described in Section 3.7.3, the animated mesh may be-
come inconsistent if the motion �ow does not properly match the successive actor's poses.
These problems often occurs when we use the 3D Lucas-Kanade approach (as presented
in Figure 3.13b) instead of our voxel matching algorithm, but can also occur after several
frames even using our method, especially due to large displacements between two frames.
A mesh animation based on an ARAP deformation [138], guided by the motion vectors,
could ensure a better conservation of the mesh structure during the sequence and lead to
more robust results. The datasets on which we evaluated our method are around 30-frame
long. We wish to work on longer sequences in our future improvements. Another issue is
the number of parameters which have to be de�ned by the user or empirically determined
(weighting coe�cients for voxel matching and mesh regularization, Gaussian �lter radius,
and number of iterations) and that may not be robust for all the sequence. These problems
prevent us from computing e�ciently an animation from long and complex sequences.
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3.8 Conclusion

The proposed method allows us to compute a voxel matching for motion �ow estima-
tion. This correspondence is established without a priori knowledge about the nature of
the volumes, except that they are of course supposed to represent the same object and
belong to the same sequence. Our method �rst establishes an inter-frame correspondence,
associating the voxels of two adjacent volumes from a time series of reconstructed poses.
The correspondences are computed according to a matching function that relies on several
criterions: the Euclidean distance, the texture color and the normal vector's orientation.
These di�erent measures ensure to associate voxels which belong to a similar point of the
surfaces to match. The initial vectors �eld is then regularized by applying a Gaussian �lter
on it. The �nal result is a regular motion �ow which describes the displacements of the
reconstructed character between two consecutive poses. By applying this method between
each pair of adjacent frames throughout the complete sequence, we obtain a 3D descrip-
tion of the actor's motion during the whole captured performance. Note that the motion
�ow may be used, as a descriptor of the actor's movements, in other applications such as
interaction of the reconstructed character with its virtual environment. Compared to other
methods, we demonstrated that our approach was generally more e�cient and more robust
when considering complex motion and long sequences.
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Résumé

Dans ce chapitre, nous décrivons une méthode d'animation guidée par le champ de
déplacements obtenu précédemment dans le Chapitre 3. Notre objectif est d'appliquer
des déformations, guidées par les vecteurs de mouvements, sur un maillage initialisé à
la première pose de l'acteur a�n de l'aligner avec les poses successives de la séquence
d'enveloppes visuelles. Nous utilisons comme maillage de référence la pose de l'acteur
reconstruite à partir du premier volume de la séquence, à l'état t0 (cf. Section 4.4.1). Nous
partons du principe que la position initiale de l'acteur exclut toute ambiguïté topologique
a�n de nous assurer une surface de référence adaptée à la morphologie du personnage. La
surface de l'acteur est triangulée grâce à un algorithme de marching cubes appliqué sur
le volume puis régularisée pour obtenir un template. Au cours de l'étape d'animation, le
maillage initial est plongé dans le champ de mouvements pour appliquer les déplacements.
Nous utilisons la méthode de déformation de maillage dite ARAP décrite par Sorkine et
Alexa [138] car elle permet de déformer un maillage en restant �dèle à la forme initiale : la
surface est déformée tout en minimisant de manière globale la di�érence entre le maillage
de la pose de référence et la nouvelle position du personnage.

On sélectionne à la pose ti un ensemble de sommets qui doivent servir de points d'an-
crages. On extrait à cette �n les sommets qui sont associés aux vecteurs de mouvements
de plus forte amplitude. Cette sélection est e�ectuée sur un ensemble réduit de sommets
préalablement échantillonnés de manière uniforme sur la surface (Poisson disk sampling).
On récupère ensuite le vecteur de mouvement correspondant à chacun de ces sommets,
ainsi que la valeur du matching qui lui est associée (cf. Chapitre 3). Cette valeur est utili-
sée comme score pour dé�nir le poids de ce point d'ancrage lors de l'étape de déformation
globale suivante. Etant donné que le �ot de mouvements peut être fortement bruité, nous
utilisons une méthode variationnelle en cherchant à déformer un maillage M ′ par l'appli-
cation de transformations localement rigides, tout en conservant autant que possible la
position des points clés (cf. Figure 4.6).

Nous cherchons à minimiser l'expression suivante : E(M ′) = EARAP (M ′) +EANC(M ′)
où EARAP est l'énergie de la déformation As-Rigid-As-Possible (cf. Section 4.4.3). La mi-
nimisation de ce terme permet de conserver les coordonnées di�érentielles des sommets
du maillage au cours de l'animation. On s'assure ainsi que la déformation de la surface
n'altère pas la structure des triangles (contrainte de cohérence temporelle). EANC est une
énergie quadratique appliquée sur les points d'ancrages qui permet d'adapter l'in�uence
des points d'ancrage sur la déformation globale en fonction de leur poids. A partir des
conditions d'optimalité des énergies ci-dessus, on déduit des expressions précédentes un
système linéaire. La résolution du système (cf. Equation 4.4) s'e�ectue alors de manière
itérative (cf. Section 4.4.3.2). L'étape précédente nous a permis de déformer le maillage ini-
tial pour lui faire adopter la pose suivante. Cependant, après cette transformation globale,
une étape d'optimisation locale est encore nécessaire pour que le maillage soit parfaitement
adapté à la silhouette de la nouvelle pose (cf. Section 4.5.2). En e�et certaines sections de
la surface de l'objet sont animées de mouvements libres qui n'ont pas été détectés lors des
étapes précédentes. Pour aligner le maillage avec l'enveloppe visuelle et pour supprimer les
irrégularités qui peuvent survenir lors de la déformation, nous appliquons un algorithme
basée sur une minimisation d'énergie comparable à celle de la déformation globale : une
énergie EDATA entraine chaque sommet vers la surface de l'enveloppe visuelle tandis que
l'énergie EARAP assure toujours la contrainte de rigidité locale.
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4.1 Introduction

In this chapter, we describe our proposed solution for the mesh animation process.
Using the motion �ow which describes the movements of the actors (see Chapter 3), the
next step is to animate a template mesh according to these displacements, leading to a
dynamic mesh. Our goal is to develop a mesh animation method which deforms a template
mesh from one pose to the successive one, �tting the input data given by the input visual
hulls (see Chapter 3, Figure 3.1). Our surface deformation should also handle free-form
motions while maintaining a consistent mesh structure throughout the animation. We �rst
give a brief overview of the mesh animation methods that can be used in the context of
multi-view reconstruction (see Section 4.2). We then describe a pseudo-rigid deformation
method (see Section 4.3), based on as-rigid-as-possible processing, driven by a reduced set
of anchors which lead the displacement of the whole surface (see Section 4.4), following
the hint of the motion �ow. The last step is a local optimization that handle the inter-
frame surface details evolution (see Section 4.5). A summary of the preliminary results is
described in Section 4.6.

4.2 Positioning in the context of previous work

Several types of mesh animation approaches could be applied in the context of multi-
view reconstruction. Skeleton-based animation techniques have been shown especially e�ec-
tive for motion capture. The skeleton is a set of articulated segments that drive the motions
of a surface, by analogy with the bones that articulate the limbs of a body. Each segment is
animated by rigid transformations (translations and rotations) and linked to one or several
other bones at its extremities. Limited degrees of freedom de�ne the articulation (joint)
between two segments. The surface mesh is then associated with the skeleton. The motion
of each vertex is interpolated from the motion of the closest bones. This operation is named
skinning. The most basic way to perform it is to use a linear interpolation according to the
distance between the vertex and each bone. This method is named Linear Blend Skinning
(LBS) or Skeletal Subspace Deformation and has been �rst described by Lewis et al. [89].
Other skinning algorithms were proposed, such as Multi-Weight Enveloping (MWE) [169].
However, skeleton-based reconstruction cannot handle complex, non-rigid motions, such as
free-form displacements.

For this purpose, cage-based animation is seemingly more appropriate [157]. A cage is a
set of simple polygons (acting as exo-skeletons) in which the model is embedded. From the
motion of the cage, the displacements of the mesh vertices are directly interpolated. Cage
animation can be described as a kind of a space deformation technique where a polygon
is manipulated with a reduced set of control point and deforms the space it contains.
Each point inside the cage is expressed as the a�ne sum of the cage's vertices, using,
for instance, Mean Value Coordinates (MVC) [72], Harmonic coordinates [71], or Green
coordinates [95]. This leads to a shape-preserving deformation, less constrained than a
skeleton-based animation. It is a good way to modify the global shape of an object, with
no alteration of the surface details. However, it is unable to apply local deformations on
the surface, unless building a sensibly more complex cage model.

Keyframes are sometimes used instead in, e.g., facial animation [88] to represent key
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poses of a model. Mesh vertices are interpolated as linear combinations of keyframes. This
approach is only valid when the range of motion of a model is known and limited, making
it impractical for our case in which actors can move arbitrarily. This method can also be
seen as a morphing between two adjacent frames. Morphing is a blending operation that
transforms a source shape into a target one. It can be processed through interpolation if the
two shapes are close from each other and share the topology and number of vertices. The
mapping of two shapes can also be processed with a parameterization of the two surfaces on
a common domain. For topological spheres (genus 0 surfaces), the manifolds are naturally
embedded into the unit sphere [3]. For more complex shapes, a segmentation of the surface
into several pieces may be required, the di�erent parts being then mapped separately
and morphed locally. However, the morphing of 3D objects with di�erent topology and
connectivity is a challenging task which may involve a remeshing of the shapes.

Active contour models are another way to track non-rigid moving objects, using a de-
formable mesh to match a surface de�ned by an implicit function. Terzopoulos [151] was
the �rst to describe geometric curves, constrained by physical forces, to �t a data in an
image. In follow-up work by Kass et al. [74], the snakes are synthetized as curve models, for
extracting a contour in 2D pictures. They are based on two energies: an internal energy for
regularization and an external energy for data �tting. Next, an iterative algorithm updates
the shape of the snake by a physical simulation. The points of the curve are pushed to
the contour, according to the external energy, while the internal energy retains the shape's
consistency. The many implementations of snakes can be separated in two approaches: im-
plicit representations [118] and explicit representation (e.g., deformable models [152, 41]).
In explicit approaches, the deformable model is initialized with a starting shape, modeled
as an elastic surface which vertices are submitted to several forces. The vertices' position
are then iteratively updated following these constraints, through a physical simulation, to
match the target shape de�ned by the data. Several methods were proposed to develop
snake models that can modify their topology during the deformation [48]. Particularly,
δ-snake models [82, 22] update their connectivity to match the target surface with a trian-
gulated mesh, eventually changing their topology. Snake models are limited by the locality
of the data: the external energy is provided by the region of the data where are located the
snake's points. The snake's position is then updated according to these data to start a new
iteration. This way, the model may fall into local extrema, especially in the case of large
distance between the initial position and the target shape. It can also be di�cult to adjust
the in�uence of each energy (regularisation vs data), especially in case of noisy data.

Kilner et al. [77] addresses these limitations with a dual-mode deformable model. This
snake works with two modes: a search mode which seeks out a consistent set of data points
to perform the reconstruction and a �tting mode with a usual snake algorithm (with a
much weaker regularization force as most of the outliers have already been discarded by
the previous mode). Such deformable models have already been used to merge silhouette-
based reconstruction with stereo-matching constraints in several model-free reconstruction
approaches [57]. However, in our case, the goal is to deform a given shape to the next frame's
pose and in case of large motions, active surface are not suited to match a far target surface.
Moreover, these dynamic models typically modify the mesh connectivity in time to match
the target pose, which prevents us from keeping a consistent mesh throughout the whole
animation.

Recently, As-Rigid-As-Possible (ARAP) surface modeling [138] o�ered an interesting
alternative allowing to globally deform a mesh with �xed connectivity with local geometric
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Figure 4.1 � 3D registration.

transformations that are as close to rigid as possible. A set of anchor points drive the
global deformation of the mesh through a non-linear, but simple energy minimization.
This approach is usually employed in a geometric modeling framework [123], but also
presents suitable properties for animation [103] and we can adapt its use to our context.

4.2.1 3D non-rigid registration

The goal of a pairwise registration is to align a source model onto a target model.
In our case, the model is a 3D discretized surface, e.g., a triangulated mesh. The goal
of the registration is to �nd a deformation that aligns the source with the target, driven
by a set of correspondences computed between the two models. The source is denoted
X = {x0, . . . , xn} and the target Y = {y0, . . . , yn}. A new surface Z = {z0, . . . , zn} is
described as the deformed version of X. As the registration is most of the time an iterative
process, the surface Z is initialized with the geometry of X and iteratively deformed until it
matches the target Y . The registration of a surface can be generalized as the minimization
of an energy:

ER(Z) = EMATCH(Z) + EPRIOR(Z), (4.1)

As described in [28], ER is the sum of a matching energy EMATCH that measures the
displacement distance between the source and the target (i.e., data �tting term) and a
prior energy EPRIOR that represents the geometrical properties that the surface must
respect during the deformation. The most usual 3D registration algorithms compute a
rigid transformation to align static models, like in the ICP algorithms for instance. With
dynamic surfaces, a non-rigid alignment is necessary. In this case, the matching energy is
de�ned by a set of correspondences computed between the source and the target which
de�ne a non-rigid alignment. The prior energy then de�nes the way the source surface can
be deformed to match the target. To keep a consistent shape, this deformation behavior
often respects a local rigidity constraint (opposed to the global rigidity of ICP). This prior
can follow an articulated scheme, like in skeleton-based animation for instance. The Figure
4.1 describes the registration process. The initial surface X is deformed to match the
target Y . The transformation R can follow a rigidity prior. In this case, a single (R, t)
transformation (rotation + translation) is applied on the complete surface. In case of free-
form deformation, a transformation Ri is associated to each of the n points xi, i ∈ [0, n],
of the initial surface. The transformation is driven by a set of correspondences between the
transformed shape of X, noted Z, and Y .
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(a) (b)

Figure 4.2 � Laplacian vector on a triangle mesh.

4.3 Pseudo-rigid deformation

We now present our proposed non-articulated 3D registration (see Section 4.3.1) applied
for inter-frame mesh deformation. We also describe the di�erential coordinates (see Section
4.3.2) and how it can be used as local rigidity prior (see Section 4.3.3).

4.3.1 Concept

Articulated prior cannot handle free-form motions. This kind of deformation can be
managed with per-vertex animation. However, in this case, a deformation prior has to
ensure that the structure of the surface will not be damaged by the displacement of the
vertices. A local rigidity is often desired. Among several types of linear variational surface
deformation methods [27], Laplacian-based approaches present the interesting properties in
the conservation of the local rigidity of the deformed mesh and their robustness to several
type of displacements. In our case, the initial geometry X is a triangle mesh M containing
n vertices vi with i ∈ [0, n]. For this kind of discretized surface, a local rigidity behavior
can be de�ned by the conservation of di�erential coordinates, as de�ned in the family of
as-rigid-as-possible surface deformation approaches.

4.3.2 Di�erential coordinates

Considering a mesh M with a set of n vertices noted vi as M = {v0, . . . vn}. The di�e-
rential coordinates of the vertex vi are computed with the di�erence between the absolute
coordinates of vi and the center of mass (or barycenter) of its immediate neighborhood
(see Figure 4.2):

δi =
1

di

∑
j∈N(i)

(vi − vj)

with N(i) the direct neighborhood of vi and di the valence of vi (i.e., the size of N(i)).
These coordinates can be viewed as the discretization of the continuous Laplace-Beltrami
operator applied on the mesh (i.e., a discretized surface). The di�erential coordinates
are invariant under translation but sensitive to linear transform (e.g., rotations). It can
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(a) (b) (c)

(d) (e) (f)

Figure 4.3 � Inter-frame animation process. Starting from two consecutive frames in
a sequence of colorized volumes (a), we �rst compute a motion �ow (b). We then sample
a set of anchor vertices (c) on the current mesh (in grey). To deform the current mesh
toward the next visual hull in yellow (d), we perform a global deformation of the mesh
based on the displacements of the anchors (e), before applying a local optimization on the
mesh to �nely match the target visual hull (f). This process is repeated through the whole
sequence to match successive poses.

be represented as a 3D vector between the position of vi and the barycenter of its 1-
neighbors, named Laplacian vector . The Laplacian vector represents the details of the
surface locally. One notices that this vector way be used as a mesh smoothing operator
(i.e., high frequencies removal), often named Umbrella operator [78]. The Laplacian matrix
L can be considered as the Laplacian operator applied on the mesh (i.e., a discretized
surface).

4.3.3 As-Rigid-As-Possible mesh processing

The ARAP algorithm de�nes a locally rigid deformation behavior based on the conser-
vation of the di�erential coordinates of the vertices: in the ARAP deformation process, the
registration is applied with the prior term focused on the conservation of the di�erential
coordinates. The matching term relies on the set of anchors which drive the deformation.
The term EPRIOR from the equation 4.1 can thus be written in the following form:

EARAP (Z) =

n∑
i=1

∑
j∈N(i)

‖(zi − zj)−Ri(xi − xj)‖2

with xi ∈ X and zi ∈ Z. In the usual ARAP deformation applications, the anchors are
manually moved and are thus considered as a strong constraint. In our case, these anchors
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(a) (b)

Figure 4.4 � First volume of the long cheerleader sequence (a) and associated template
mesh (b).

must be automatically relocated.

4.4 Animation process

Our animation process, summarized in Figure 4.3, starts with the initialization of the
template surface (see Section 4.4.1). The anchor vertices are then sampled on the mesh
(see Section 4.4.2) and advected with motion vectors. The mesh deformation is driven by
these anchors afterwards (see Section 4.4.3). These two last steps are repeated for each
pair of pose throughout the complete sequence.

4.4.1 Template mesh

As described above, the 3D reconstruction used for our input data is a silhouette-based
approach. Indeed, our mesh tracking algorithm has to successively match a sequence of
volumetric visual hulls. We construct an initial (template) mesh based on the �rst volume
of the sequence by extracting it using a marching cubes algorithm over the alpha value.
A Laplacian smoothing [150] and a mesh simpli�cation [94, 32] are then applied. The
resulting triangle mesh may also be cleaned up through edge collapse simpli�cation to
ensure that each triangle is non-degenerate, and will thus not create numerical artifacts in
our subsequent tracking (see Figure 4.4b). The objective is to use the surface extraction
method already applied to compute the mesh sequences, as described in Chapter 1 (see
Section 1.3.2).

4.4.2 Anchors' selection

We select a set of vertices at time ti to be anchor points. These anchors are distributed
over the surface. In an initial implementation, we selected the vertices to be anchors if
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(a) (b) (c)

Figure 4.5 � Anchor vertices selection: vertices automatically selected using the EDT
criterion only (a). Poisson disk sampling on the complete mesh (b). Anchors selection
applied only on sampled subset of vertices (c).

they belong to a high curvature area of the surface. The surface's curvature is computed
using the method described in [120] via spectral analysis of the covariance matrix of the
one-ring neighborhood. Nevertheless, this strategy was not adapted to our data and often
led to select points associated with artifacts and/or details of the surface which were not
convincing as anchors.

Instead, as these anchors must drive the global deformation of the character, we select
the vectors associated with the largest displacements. Note that a few anchors in static
regions are also essential to guarantee that the immobile parts of the actor's body are not
deformed. We use the ti+1 EDT grid to identify a set of vertices associated with the largest
EDTi+1 values. The mesh's vertices at ti are ordered according to their corresponding
EDTi+1 values. Next, we select a �xed percentage of the highest ones. These vertices,
being the most distant from the next pose, will naturally correspond to a large motion. The
number of anchors is empirically �xed to 5% of the total number of vertices in the mesh (4%
associated to maximal values and 1% of nonmoving vertices associated to minimal values).
The mesh deformation could then be more or less constrained with respectively higher or
lower number of anchors. In the same way, we also select a random subset of nonmoving
vertices to avoid the over-deformation previously described. The correspondence score of
the anchors, de�ned by the matching function described in Chapter 3, equation 3.3, will
then be used as weights to adjust how strong we enforce the matching of these anchors in
the global deformation step. Note that while this anchors' sampling method is particularly
suited to our context, it could easily be adapted to other model-based approaches.

The result of this anchor vertices' sampling is shown in Figure 4.5a where anchors
are �gured by red dots. It can be noticed that theses anchors are actually located on
the mesh's sections which undergo displacements. However, our algorithm leads to a high
concentration of anchors where the mesh is associated with important motions (here the
hands and pom-poms). Instead we would like the anchors to be more widely distributed
on the surface to cover all the motions occurring on the shape (e.g., arms and skirt).
We implemented a Poisson disk sampling algorithm [31] to obtain a subset of anchors
regularly distibuted on the surface. This algorithm allows to select a sample of vertices
that cover the whole surface. Each sampled vertex is the center of a disk of �xed radius
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(5 times of a voxel's size in the example presented in Figure 4.5) where no other vertex
is sampled. This criterion ensure the regularity of the sampling. Our implementation uses
the 3D grid structure of the volume to distribute the samples on the mesh and is described
in appendix B.2. The result of this sampling is presented in Figure 4.5b. By applying our
anchors' automatic selection on the subset of the vertices sampled with the Poisson disk
algorithm, we �nally obtain a set of anchors that correspond to the moving sections of
the mesh while avoiding the anchors redundancy in the extremums of the motion �ow (see
Figure 4.5c). This process is detailed in Algorithm 1. Note that the Poisson sampling is
processed only once, on the template mesh. The anchors' selection is then performed on
this constant set of sampled vertices, at each pose of the sequence.

Data: mesh, EDT 3D grid
Result: list of anchor vertices
Create distanceList, vertSampList, anchorList;
nbVertices ← mesh.getNbVertices();
// get the result of vertices' sampling in the vertSampList

vertSampling ← PoissonSampling(mesh);
// fill distanceList with EDT values of sampled vertices

foreach element v of vertSamplist do distanceList.add(EDT[vx][vy][vz]) ;
// sort distanceList into ascending order

Sort(distanceList);
compteur ← 0;
i ← 0;
// get 3 percents of the vertices associated to the minimal values

while compteur < nbVertices∗0.03 AND i < distanceList.size() do
anchorList.add(distanceList[i]);
compteur ++;
i ++;

end
compteur ← 0;
i ← distanceList.size();
// get 2 percent of the vertices associated to the maximal values

while compteur < nbVertices∗0.02 AND i > 0 do
anchorList.add(distanceList[i]);
compteur ++;
i ++;

end
return anchorList;

Algorithm 1: Anchors' selection

4.4.3 Pseudo-rigid mesh animation

The template mesh at ti needs to be advected in the motion �ow. We proceed in two
main steps: a global deformation of the mesh derived from the sparse set of anchors (see
Figure 4.6), followed by a �ne adjustment of its vertices. The motion �ow provides a global
deformation �eld to be applied on the template but not a precise motion to apply on each
vertex. We thus only consider the displacement of the reduced set of sampled anchors. In
order to be resilient to noisy motion �ows, we use a variational method to our anchor-
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(b) (c)

(d) (e)

Figure 4.6 � Pseudo-rigid mesh deformation. Template mesh of the astronaut se-
quence at the initial pose ti (b) and motion �ow (vectors oriented from blue to red) com-
puted between ti and ti+1 (c). Motion applied to anchors vertices only (red dots) (d). New
pose of the template after the anchor-driven as-rigid-as-possible deformation (e).

based global mesh deformation by searching for a deformed mesh M ′ with locally rigid
transformations, while retaining as much as possible the �nal positions of anchor points
(see Figure 4.6e).

4.4.3.1 Formulation

We minimize the following energy:

E(M ′) = EARAP (M ′) + EANC(M ′),

where EARAP is the as-rigid-as-possible energy

EARAP (M ′) =
n∑
i=1

∑
j∈N(i)

wij
∥∥(p′i − p′j)−Ri(pi − pj)

∥∥2
, (4.2)

with N(i) denoting the one-ring neighborhood of i. The terms pi and p′i represent the
3D positions of the vertex i, before and after applying the local transformation Ri. The
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weight wij , associated with the edge between pi and pj , can be computed according to the
cotangent weight method, or simply set to 1.

EANC is a quadratic energy measuring the error in the displacement of anchors

EANC(M ′) =
n∑
i=1

wai
∥∥p′i − pi∥∥2

, (4.3)

where the weight wai represents the degree of con�dence given to an anchor point, described
in Chapter 3 and given by the equation 3.3. The distance Di given by equation 3.3 is
a normalized value which is low for a good match and high for a bad one. Here, the
weight of the anchor has to be proportional to the degree of con�dences. Therefore, we use
wai = 1−Di. We �x wai = 0 if the vertex pi does not belong to the set of anchors. When
the value of this weight is low, the ARAP deformation tends to maintain the di�erential
geometry of the vertices, even if the �nal position of the anchors does not exactly match
the target position. On the contrary, when this value is high, the deformation favors the
position of the anchors given by the motion �ow, despite the local rigidity prior. In our
case, the weight of the anchors are kept to low values to deal with outliers and/or lack of
precision from the motion �ow. We consider the motion vectors like global informations
which indicate the average direction an amplitude of displacements. However, we do not
wish that the anchors vertices closely �t the indicated position but rather maintain the
geometry of the mesh. As noticed in [27], the variation of the weight applied to the anchors
leads to di�erent deformation e�ects that can be expected. A low relative weight leads to
a rough approximation of the target pose, preserving the surface details. Instead, a larger
weight induces a strong position constraint which leads the surface to �t the target more
accurately, despite the local rigidity prior.

4.4.3.2 Solving

The optimality condition for the minimum of our energy basically mirrors the result
of [138], to which terms coming from the quadratic form (eq. 4.3) are added. That is, the
optimal positions p′ must satisfy:

∑
j∈N(i)

wij(p
′
i − p′j) + waip

′
i =

∑
j∈N(i)

wij
2

(Ri −Rj)(pi − pj) + waipi (4.4)

where Ri is a local rotation best matching pi and its one ring to p′i. The global deformation
is thus computed by iteratively solving a linear system and an optimal set of rotations
matrices: we begin by computing the set of {p′i}i which satisfy the optimal condition for a
�xed set of initial rotations {Ri}i by solving a linear system of the form:

Lp′ = b

where L corresponds to the Laplacian operator applied to the mesh M ′ in which we add
the wai weights related to each anchor point (eq. 4.3) on the diagonal, and b is a column
matrix which contains the righthand side of eq. 4.3:
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 L+W



p′x0 p′y0 p′y0
p′x1 p′y1 p′y1
...

...
...

p′xn p′yn p′yn

 =


bx0 by0 bz0
bx1 by1 bz1
...

...
...

bxn byn bzn


with bi =

∑
j∈N(i)

wij
2 (Ri−Rj)(pi−pj)+waipi. Optimal rotations Ri are computed through

singular value decomposition (SVD) from the positions of pi and p
′
i as derived in [138] (see

appendix C.4). These two steps are repeated until convergence. Our convergence criterion
is the di�erence between the energies EARAP (M ′)k and EARAP (M ′)k−1 (see equation4.2)
computed at the current iteration k and the previous iteration k − 1, respectively. The
iterative solving is stopped when the expression EARAP (M ′)k − EARAP (M ′)k−1 becomes
greater than a predi�ned threshold. In our case, it is empirically set to 1 · 10−4.

4.4.3.3 Implementation details

We used the Eigen 18 library for matrix operations and system solving. The mesh pro-
cessing is handled with OpenMesh 19 library (which provides a half-edge mesh structure).
A pseudo-code overview of energy minimization implementation is given in Algorithm 2.
The list of anchor vertices and associated weights are computed as described in Section
4.4.2 (see Algorithm 1). The left part of the system is �rst build by computing the Lapla-
cian matrix (see appendix C.5). The right part is then initialized with the positions of the
vertices. For each iteration, we �rst compute the transformations matrix R (see appendix
C.4) and update the X matrix afterwards. Functions are detailed in Algorithm 3.

Data: anchorList, anchorWeights, mesh
// build Laplacian 3D matrix from the mesh

δmesh ← computeLapMatrix(mesh);
// compute a sparse Cholesky decomposition from Lap matrix (L · LT)
LLT ← computeLLT(δmesh);
initB();
while ‖D2−D1‖ > 1 ∗ 10−4 do

computeR();
computeB();
D1 ← D2;
D2 ← computeD();

end
// copy final values of X in the mesh structure

for vi ∈ mesh.vertices() do
vi ← X.row(vi.index());

end
return ;

Algorithm 2: Iterative solver for energy minimization (see Algorithm 3 for methods'
details.)

18. http://eigen.tuxfamily.org

19. http://www.openmesh.org/
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initB()

// init matrix B with mesh point values

for vi ∈ mesh.vertices() do
for vj in the neighborhood of vi do

B.row(vi.index()) += (vi − vj);
end

end
// add anchors

for i ∈ anchorList do
B.row(vi.index()) += anchorWeights[i];

end
// init matrix X from B

X ← LLT.solve(B);
return ;

computeR()

// compute R

for vi ∈ mesh.vertices() do
R[vi.index()] ← computeR(vi);

end
return ;

computeB()

// update matrix b

for vi ∈ mesh.vertices() do
ri ← R[vi.index()];
for vj in the neighborhood of vi do

rj ← R[vj .index()];
B.row(vi.index()) += (ri + rj)(vi − vj);

end

end
// add anchors

for i ∈ anchorList do
B.row(vi.index()) += anchorWeights[i];

end
// update matrix X

X ← LLT.solve(B);
return ;

Algorithm 3: Iterative solver - methods' details
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4.5 Local optimization

While the global deformation step of our approach provides a robust way to match the
next pose, details of the pose due to non-rigid deformation (such as cloth folds or hair) are
missed. A local optimization is thus required for the mesh to �t the new pose's silhouette.
Moreover, mesh quality may also degrade over time as large deformation occurs, making
mesh regularization desirable. We developed two di�erent approaches to handle this local
optimization.

4.5.1 First approach: numerical integration

The �rst solution we proposed uses a numerical integration where each vertex of the
surface is considered as a solid object. Formerly, the global pose �tting may need to be
adjusted as the local optimization cannot be e�cient if some parts of the surface are too
far from the target visual hull. The vertices are then regularized and closely �tted to the
volume's surface with the numerical integration itself (see Section 4.5.1.2).

4.5.1.1 Adjustment

The selection of anchors' vertices (see Section 4.4.2) captures the largest motions bet-
ween two frames. However, in several complex cases, the deformed template must be adjus-
ted to match the pose of the next visual hull. Using the same anchors' selection described
in section 4.4.2, we select a new subset of anchors corresponding to the most distant ver-
tices according to the EDT values. These new anchors are pushed toward the visual hull,
along the gradient vector computed on the EDT grid (see Chapter 3, Section 3.3). The an-
chors previously selected in the �rst ARAP deformation remain �xed. We then start a new
ARAP deformation of the mesh, as described previously. This new deformation adjusts
the global template position with the target pose de�ned by the visual hull. As the mesh
deformation is more constrained and the displacements are noticeably shorter, this new
deformation converges quickly. Depending on the character's motion complexity, several
ARAP adjustments can be applied, until a global convergence between the target pose and
the template is reached. Usually a maximum of two adjustment steps is enough.

4.5.1.2 Physics-based deformation

Several forces are applied on the vertices and the complete system in iteratively updated
like in a mechanical system. We thus compute local vertex displacements based on both
�tting accuracy and regularization as follows.

Regularization We regularize the mesh by applying spring-like forces to favor equi-
length edges. We implement this term by considering a force per vertex of the type:

fr(pi) = α
∑
j∈N(i)

(‖pi − pj‖ − r̄i)
pi − pj
‖pi − pj‖
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Figure 4.7 � Silhouette �tting. Vertices are moved along the local surface normal,
according to the EDT values (grey levels).

where α is a �xed sti�ness coe�cient (we used α = 1) and pj is a vertex from the one-ring
neighborhood of pi, while the rest length r̄i is set to the current average length of the edges
adjacent to pi. We use only the tangential component of the resulting vector.

Silhouette �tting Using the EDT grid, we also push each vertex toward the visual hull
surface by adding the following force:

fs(pi) =
∑
j∈N(i)

(npj · EDT (pj))

with npj and EDT (pi) being the normal vector and the EDT value at pi, respectively. As
we only use the normal component of this vector (Figure 4.7), this expression can be seen
as a simpli�ed MLS projection described in [4].

Integration The resulting vectors fr and fs are added to obtain a displacement for each
vertex. These two forces can be weighted, allowing the user to control regularization vs
shape �tting depending on the noise present in the volume sequence. This displacement is
integrated over 200 time steps between pose tk and tk+1 by updating position and velocity
of each vertex (assumed to be all of unit mass) using a simple Runge-Kutta (RK4) explicit
integrator (see appendix C.6 for details).

4.5.2 Second approach: energy minimization

This second approach to the �nal optimization step is based on a global energy mini-
mization. The process is similar to the �rst mesh deformation described in Section 4.3.3
except that the energy terms di�er. The prior energy is still based on the ARAP equation.
Indeed, the conservation of the di�erential coordinates is a better criterion than the regu-
larization term in the previous approach. The data �tting is a quadratic energy minimizing
the di�erence between the initial vertices' positions and target positions given by the data:

EDATA(M ′) =
n∑
i=1

∥∥p′i − pi∥∥2
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(b) (c) (d)

Figure 4.8 � Local optimization. Template mesh, �gured in grey, at the initial pose
(b) and target pose �gured in yellow. Example of an inacurate surface matching after the
�rst mesh deformation following the motion vectors (c). A closer �tting is then obtained
via the local optimization (d).

Note that this energy is similar to the anchor term described in equation 4.3 (see Section
4.4.3). However, it is this time applied to all vertices pi in the mesh, instead of a reduced
anchors' sample. The target position p′i for each vertex is given by the EDT, as in the
silhouette �tting term from the previous approach (see Section 4.5.1):

p′i =
∑
j∈N(i)

(n̄pi · EDT (pj))

where n̄pi is the average normal vector of the neighborhood's vertices.

The �nal energy to minimize is the following:

EREG(M ′) =

n∑
i=1

∑
j∈N(i)

wij
∥∥(p′i − p′j)−Ri(pi − pj)

∥∥2
+ wreg

n∑
i=1

∥∥p′i − pi∥∥2

This leads to the �nal system to solve:

∑
j∈N(i)

wij(p
′
i − p′j) + wregp

′
i =

∑
j∈N(i)

wij
2

(Ri −Rj)(pi − pj) + wregpi

where wreg denotes a constant weighting term to determine the importance of silhouette
matching in front of prior. A high value may induce important local deformations to �t
the data, despite the di�erential coordinates' conservation. A low value leads to a rigid
surface, with a high inertia. We used wreg = 1 for a balanced in�uence of the two terms.
This method has the advantage of maintaining the local rigidity prior and to avoid the
ARAP adjustment required by the previous approach (see Section 4.5.1.1). The results are
illustrated by Figure 4.8.
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(b) (c) (d)

Figure 4.9 � Comparison between the two approaches of local optimization: numerical
integration (b) and energy minimization (c) and target visual hull surface (d). Evolution
of the mesh between the frames 56 (top row) and 61 (bottom).

4.6 Results

We tested our algorithms on the short and long cheerleaders, astronaut, dancer, and
capoeira sequences (see Chapter 5, Section 5.2 for details). The as-rigid-as-possible global
deformation (Section 4.4) usually needs between 300 and 1500 iterations to converge. It is
performed in 430 iterations and 48s for the short cheerleader, 330 iterations and 28s for the
astronaut, 360 iterations and 29s for the dancer, 600 iterations and 52s for the capoeira,
and 1200 iterations and 63s for the long cheerleader. The number of iterations depends on
the convergence criterion (see Section 4.4.3). It may also signi�cantly vary from one pose
to another and depends on the complexity and/or amplitude of the motions that occur in
the scene. In our �rst tests with the numerical integration approach (see Section 4.5.1),
we usually apply only two steps of ARAP adjustment which were performed in an average
of 100 iterations. The local mesh optimization (Section 4.5.1.2) was applied with equal
weights for the two forces fr and fs. An average of 200 iterations was necessary for the
numerical integration. Due to the limitations that presented this approach, we �nally used
the second approach based on energy minimization (see Section 4.5.2) with equal weight
applied to both terms of the energy (data �tting vs prior). The number of iterations for
this optimization step also depend on the convergence criterion but is usually lower than
800 and are applied in an average of 100s.

Our mesh animation approach described in Section 4.4.3 leads to a locally rigid defor-
mation, which preserves the mesh structure during the whole sequence. Figure 4.6 shows
how the mesh is deformed, following the motion vectors, while maintaining local rigidity of
the surface. This deformation prior brings the robustness compared to a simple advection
of the vertices by the motion �ow as described in Chapter 3. It should also be noticed
that our use of weights based on the reliability of the anchors nicely extends the ARAP
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(b) (c) (d)

Figure 4.10 � Comparison between the two approaches of local optimization: numerical
integration (b) and energy minimization (c) and target visual hull surface (d).

modeling technique, rendering it particularly robust to the inherent noise present in the
motion �ow. This improvement does not require higher computational costs since the ad-
ded anchor energy (eq. 4.3) we proposed only adds diagonal elements in the Laplacian-like
matrix involved in the original ARAP method.

Figure 4.9 shows one limitations of the energy minimization approach for the local
optimization. On this example, the motion separates the arms from the torso (see the
evolution of initial visual hull in Figure 4.9d). In this case, the optimization using energy
minimization is limited in the adaptation of the surface to its new morphology (see Figure
4.9c). The numerical integration approach presents a better elasticity and allows the mesh
to adapt (see Figure 4.9b). However it is not su�cient to ensure a consistent matching
and often necessits a preliminary ARAP adjustment (see Section 4.5.1.1). The numerical
integration itself also need a timestep parameter which has to be �xed (see appendix C.6).

We also compare the two approaches proposed for local optimization (Section 4.5).
The second method, based on energy minimization (Section 4.5.2) enables a deformation
which preserves the local rigidity, such as the global pose estimation. It handles local
displacements while avoiding the degradation of the local mesh's structure that happens
with the �rst approach based on numerical integration (see Section 4.5.1). With this �rst
method, the regularization applied on the edges helped cleaning the mesh's triangulation
but could also lead to triangle stretching or unwanted vertex displacements (see Figure
4.10).

4.7 Conclusion

In this chapter, we have proposed a new approach for generating a time-evolving triangle
mesh representation from a sequence of binary volumetric data representing an arbitrary,
possibly complex and unstructured motion. Using the visual hull as a prior, we animate
a template mesh, generated by a surface reconstruction of the �rst volume, via as-rigid-
as-possible, detail-preserving transformations guided by the motion �ow and based on
a sparse set of weighted anchors. Several steps of this pseudo-rigid deformation can be
applied to recover complex motions. A �nal local optimization adjusts the mesh to better
match the mesh shape to the current visual hull, leading to a robust, temporally-consistent
mesh reconstruction of the motion. Our approach assumes that the topology of the �rst
frame of the input data is kept throughout the sequence. However, changes in the topology
or morphology of the visual hull could occur in the captured sequence, possibly due to
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occultations if not enough view angles are available. Currently, these changes are not
supported by our approach. In the future, stereo-matching could be used to improve the
accuracy and quality of the volume sequences. Alternatively, one could also handle topology
changes through, for instance, the method proposed by Letouzey and Boyer [85]. Kravstov
et al. [80] described a morphing of arbitrary meshes. However, this transformation is driven
by an approximation of the shape described by an implicit function and based on a skeleton.
In our case, as speci�ed before, the shapes to be matched can hardly be represented this
way, without a model prior. Bojsen-Hansen et al. [24] proposed a surface-tracking based on
the non-rigid registration by Li et al. [90] and addresses the issue of topology changes by
partially resampling the mesh, even if this operation, in our case, disrupts the continuity
in the mesh's structure.
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Résumé

Nous présentons dans ce chapitre les résultats obtenus suite à l'application de notre
méthode. Nous détaillons dans un premier temps les jeux de données sur lesquels nous
avons testé nos algorithmes (cf. Section 5.2) et les performances obtenues (cf. Section
5.3.2). L'ensemble du processus se déroule selon les étapes suivantes :

1. Initialisation du maillage template (cf. Chapitre 4, Section 4.4.1)

2. Estimation du champ de déplacements (cf. Chapitre 3, Sections 3.4 à 3.5)

3. Echantillonage des points d'ancrage (cf. Chapitre 4, Section 4.4.2)

4. Déformation globale du maillage de référence vers la pose suivante (cf. Chapitre 4,
Section 4.4.3)

5. Optimisation locale de la surface (cf. Chapitre 4, Section 4.5.2)

6. Répétition des étapes 2 à 6 jusqu'à la �n de la séquence initiale

Le résultat �nal est une nouvelle succession de poses, cette fois-ci dé�nies par un maillage
triangulé dont le nombre de sommets et la connectivité restent constants (maillage dy-
namique). A�n de mesurer la qualité du suivi des poses reconstruites par notre surface
dynamique, nous mesurons à chaque frame la distance entre l'enveloppe visuelle et le
maillage template à la pose correspondante (cf. Section 5.3.4). Les résultats montrent que
le maillage animé que nous obtenons suit correctement la succession de poses décrites par
les séquences d'enveloppes visuelles.

Nous détaillons ensuite la manière dont ces résultats peuvent être exploités dans le cadre
d'applications de post-productions (cf. Section 5.4). Nous utilisons le format Alembic pour
exporter le maillage animé vers des logiciels d'animation 3D. Le personnage reconstruit
peut ainsi être placé dans une scène virtuelle. La cohérence temporelle qui caractérise les
maillages permet de suivre la position des sommets tout au long de la séquence. Ainsi, les
contacts entre la surface animée et des objets 3D de la scène peuvent être détectés à tout
moment lors de l'animation. Le personnage reconstruit peut de cette manière interagir avec
l'environnement virtuel (collision avec des objets et/ou des particules, accessoire virtuel ...
etc.). La triangulation constante du maillage facilite également l'application de textures à
partir des images caméras car elle permet de calculer une UV-map unique pour l'ensemble
de l'animation. La qualité visuelle de la reconstruction est également améliorée en faisant
disparaître des e�ets de �ickering dus aux artefacts de la reconstruction multi-vues initiale.

En�n, nous discutons des limites de notre méthode. Le critère de cohérence temporelle
que nous nous imposons rend di�cile la gestion des séquences qui contiennent des chan-
gements de morphologies entre deux poses consécutives des séquences reconstruites. De
tels évènements pourraient être traités en ayant recours à un ré-échantillonnage partiel du
maillage, limité aux zones de contact, ce qui peut également entraîner des changements
topologiques de la surface.
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5.1 Introduction

In this chapter, we present extensive, comparative results, of our mesh animation me-
thod. After the computation of the motion �ow in Chapter 3, a template mesh is deformed
following the displacement vectors to match the successive poses from the input reconstruc-
ted sequences. This mesh deformation, described in Chapter 4 uses, for each frame of the
animation, a selection of anchor vertices whose motion is driven by the motion �ow. These
anchors then act as constraints to lead the deformation of the complete template surface.
This inter-frame displacement leads to the next pose of the input time-series. This process
is repeated throughout the sequence until the template mesh has �tted all the successive
poses (see Chapter 3, Figure 3.1).

After a detailed description of the datasets we used to test our algorithms (see Section
5.2), we present the �nal animation we obtained (see Section 5.3). We also discuss the
properties and noticeable components of these results. The performance and behavior of
the algorithms described in this manuscript are also discussed, as well as the impact of
parameters and comparison with previous work. In Section 5.4, we propose several concrete
applications for our results and show how our time-consistent meshes handle several draw-
backs in the exploitation of multi-view reconstruction technologies for post-production
processing. Finally, we discuss limitations of our approach and propose several improve-
ments.

5.2 Datasets

We evaluate our method on several datasets obtained through volumetric visual hull
reconstruction (see Table 5.1). The short cheerleader, long cheerleader, and astronaut se-
quences come from an indoor studio shoot using the 24-camera rig of the RECOVER 3D
studio (see Chapter 1, Section 1.3.2). The Simon sequence was simulated instead of cap-
tured (i.e. reconstruction of a digital character with a virtual cyber-dome software). The
dancer sequence was generated using the multi-viewpoint images provided by the GrImage
platform 20. Due to the low number of cameras (8 viewpoints) and the low resolution of
the pictures, this dataset produces coarse visual hulls. We also tested our method on the
capoeira sequence, using the multi-view videos described in [45] 21. This reconstruction also
su�ers from the reduced number of viewpoints (8 cameras too). Due to several inconsis-
tencies in the silhouettes' segmentation, the visual hulls contain many artifacts (holes and
phantom volumes, see Figure 5.2) All timings were measured on a 64 bit Intel Core i7 CPU
2.20 GHz. Results from these sequences are presented in Figures 5.1 and 5.2, demonstrating
the robustness of our approach despite the coarseness of the input volumes.

5.3 Results

We now discuss the results we obtain with the datasets previously described. We �rst
summarize the complete process �ow of our method (see Section 5.3.1) and the perfor-

20. http://4drepository.inrialpes.fr/

21. http://resources.mpi-inf.mpg.de/siggraph08/perfcap/
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Name Number
of frames

Average resolution Number of ver-
tices (template)

Source images

Short cheerleader 25 180× 270× 170 5158 RECOVER 3D stu-
dio capture

Long cheerleader 220 180× 295× 160 9619 RECOVER 3D stu-
dio capture

Astronaut 25 150× 120× 330 8048 RECOVER 3D stu-
dio capture

Simon 50 114× 259× 95 5158 Synthetic

Dancer 30 150× 100× 300 7843 GrImage studio
capture

Capoeira 40 150× 100× 300 7774 Perfcap studio cap-
ture

Table 5.1 � Datasets.

mances of our algorithms (see Section 5.3.2). We then discuss the visual quality of the
results (see Section 5.3.3) and complete these observations through a distance measure-
ment between the output animated surface and the input reconstructions (see Section
5.3.4).

5.3.1 Process �ow and parameters

The complete process useed to generate a time-consistent mesh animation comprises
the following steps:

1. Extracting the template mesh from the �rst pose (t = 1) of the input sequence (see
Section 4.4.1). A manual cleaning of the vertices may be necessary when the model-
free reconstruction (visual hull) produces inconsistent artifacts (holes or phantom
volumes).

2. Compute the Poisson disk sampling on the template mesh (see Section 4.4.2).

3. Compute EDT grids for volumes t and t+ 1 (see Section 3.3).

4. Compute the motion �ow between poses t and t + 1 (see Sections 3.4 and 3.5). If
t > 1, this computation is speed-up using the prediction described in Section 3.6.

5. Select anchor vertices (see Section 4.4.2).

6. Apply global pose deformation of the mesh (see Section 4.4.3).

7. Apply local optimization (see Section 4.5.2). The template mesh then corresponds to
pose t+ 1.

8. t = t+ 1, return to step 3 until the end of the sequence.

Several parameters must be user-speci�ed. Most of them vary with the input data (es-
pecially the resolution of the voxel grid and the amplitude of the motions). We describe
here the values we empirically �xed for our datasets. The Poisson sampling is processed
with a distance criterion (disk radius) equals to 5 × V , with V being the size of a voxel.
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Dataset Total inter-frame
processing

Motion �ow com-
putation step

Mesh deformation
step

Short cheerleader 198 37 161

Long cheerleader 203 75 128

Astronaut 182 59 123

Dancer 171 49 122

Capoeira 395 248 147

Table 5.2 � Average inter-frame computing time in seconds.

We also set a maximum threshold to the number of sampled vertices: 20% of the total
number of vertices. The voxel matching (see equation 3.3) is computed with the following
weights: ωp = 0.3, ωn = 0.45 and ωc = 0.25. The motion �ow regularization (see Section
3.5) is applied with 73 voxels windows centered of the voxel to process. During the anchors'
selection step, 5% of the mesh vertices are segmented (3% associated with minimal EDT
values and 2% for maximal values, as described in Chapter 4, Algorithm 1). The number of
iterations for mesh processing are not �xed, the iterative solver automatically stops when
the convergence criterion is reached (see Chapter 4, Algorithm 2). The energy of the local
optimization step (see Section 4.5.2) is computed with an equal weight for EDATA and
EREG.

5.3.2 Computing times

The performance of the algorithms we used for the separate steps of our method are
detailed in preliminary results of Chapter 3 (see Section 3.7) and Chapter 4 (see Section
4.6) for motion �ow computation and mesh deformation, respectively. Table 5.2 lists the
average computation time required to apply the complete process �ow, summarized in
Section 5.3.1, applied between two consecutive frames of the sequences. Note that we did
not used parallelized and/or GPU implementations. All timings were done on a 64-bit Intel
Core i7 CPU 2.20 GHz. Note that times are average values over the complete sequences
and are speci�c to our datasets. The computing time required for motion computation and
the number of iterations for mesh animation may vary a lot, depending on the volume
resolution, the displacements' amplitude and speed, and the complexity of motions and
surfaces.

5.3.3 Experiments and discussion

The cheerleader dateset shows that the shape of the pom-poms is correctly adjusted
after the template deformation (see Figure 5.1). Our mesh animation method leads to
an adaptation of the template during the sequence, avoiding some of the model-based
inconveniences, as in [45], where the tracked model retains some of the surface details
(clothing folds) from the initial pose during the whole sequence. With the dancer sequence,
we show that the mesh correctly tracks the shape of the moving dress (Figure 5.3). This
type of animation would be hardly recovered with an articulated model tracking approach.
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Cheerleader (short) visual hull sequence

Cheerleader (short) mesh animation

Astronaut visual hull sequence

Astronaut mesh animation

Figure 5.1 � Results of the mesh animation for the cheerleader (short) and astronaut
sequences. Comparison between the original visual hull reconstruction (top) and the tem-
porally consistent mesh (bottom).
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Dancer visual hull sequence

Dancer mesh animation

Capoeira visual hull sequence

Capoeira mesh animation

Figure 5.2 � Results of the mesh animation for the dancer and capoeira sequences. Com-
parison between the original visual hull reconstruction (top) and the temporally consistent
mesh (bottom).

frame 1 frame 8 frame 15 frame 22

Figure 5.3 � Example of free-moving clothes' tracking in the dancer sequence.
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In the Simon sequence, we encountered problems to handle thin details, as described in
Chapter 3 (see Section 3.7.4). Moreover, collisions between the legs (causing large altera-
tions in the morphology of the shape and modifying the topology) and lack of texture lead
to inacurate results. Other sequences provide consistent mesh animations which quality is
evaluated in the next section (see Section 5.3.4).

5.3.4 Mesh tracking measurement

The quality of the template �tting with each pose of the input sequence is measured
by computing the distance between the visual hull surface and the deformed template.
We illustrate this measurement in Figure 5.4 with several poses of the astronaut, dancer,
and capoeira sequences and show that the matching quality stays almost uniform on the
complete surface during the animation. The quality of the matching strongly depends on
the quality of the visual hull (e.g., the extrema on the astronaut's right leg at frame 24
corresponds to a hole in the input visual hull). The capoeira sequences is composed by very
noisy visual hulls which contains many holes, artifacts and outlying voxels (due to the low
resolution on the images and the limited number of viewpoints), especially on the legs (see
Figure 5.2). This explains why the shape of the feet quickly disappears. This sequence is
also characterized by fast motions which induce large inter-frame displacements. However,
our method maintains a consistent shape tracking during the 25 poses.

The Figure 5.5 shows the same result for the long cheerleader sequence. The colors
represent a signed distance (negative inside the object, positive in the outside � we used
the CloudCompare 22 implementation), for each vertex of the deformed template, to the
visual hull surface. The values are expressed in the same unit as the vertices coordinates
and are included between a minimum of -94.43 and a maximum of 125.20. Extremum
values are �gured in blue (negative) and red (positive), whereas zero (minimal distance)
is between green and yellow. It can be noticed that these extremum values are mostly
located on the pom-pom which are animated by free motions of high amplitudes. Note
also that, even if our mesh structure stays consistent during the complete animation, the
wrists' and hands' surfaces slowly degrade over the animation. These parts of the surface
undergo important and complex motions during the animation and also correspond to thin
sections of the visual hull regarding to the voxels' size. These properties make the surface
tracking particularly di�cult for this part of the mesh. A better voxel resolution could
handled these limitations.

With the capoeira sequence, the lower quality of the multi-view images and silhouettes
produces a noisy and damaged reconstruction. The visual hulls of this sequence contain
many inconsistencies such as occlusion artifacts and holes in the character's shape. Our
tracking method, based on visual hull matching, is thus hardly relevant for long sequences
from this dataset. As the video capture technologies quickly evolves toward high qua-
lity pictures and stereo carving, producing accurate model-free reconstruction, we should
reduce this type of artifacts. Note that the RECOVER 3D project also aims at recons-
tructing high quality volumes, computed by high resolution visual hulls enhanced with
stero-matching. Nevertheless, we note that our template animation ensures that our mesh
matches the silhouettes better (Figure 5.6), whereas the original method described by de
Aguiar et al. [45] is closer to a motion capture approach, with a high quality template

22. http://www.danielgm.net/cc/
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Frame 8
Mean distance: -0.437
Std deviation: 2.371

Frame 16
Mean distance: -0.179
Std deviation: 2.443

Frame 24
Mean distance: -0.431
Std deviation: 3.424

Frame 8
Mean distance: -0.369
Std deviation: 2.405

Frame 16
Mean distance: -0.433
Std deviation: 2.382

Frame 24
Mean distance: -0.384
Std deviation: 4.544

Frame 10
Mean distance: -0.269
Std deviation: 3.523

Frame 20
Mean distance: -0.378
Std deviation: 4.977

Frame 30
Mean distance: -1.280
Std deviation: 6.292

Frame 20
Mean distance: 0.443
Std deviation: 9.546

Frame 30
Mean distance: -0.549
Std deviation: 8.235

Frame 40
Mean distance: -0.176
Std deviation: 10.361

Figure 5.4 � Surface matching measurement for the short cheerleader, astronaut, dancer,
and capoeira sequences.
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Frame 40
Mean distance: -0.197
Std deviation: 5.527

Frame 80
Mean distance: 1.567
Std deviation: 18.416

Frame 120
Mean distance: -0.507
Std deviation: 7.789

Frame 160
Mean distance: -0.814
Std deviation: 6.837

Frame 200
Mean distance: -2.356
Std deviation: 11.869

Frame 220
Mean distance: -1.113
Std deviation: 8.342

Figure 5.5 � Surface matching measurement for the long cheerleader sequence.

(a) (b)

Figure 5.6 � Capoeira sequence, comparison with [45]. (a) silhouette overlap. (b)
Comparison between visual hull (yellow) and 3D mesh (grey). Our method (left), despite
the low quality of the visual hull, matches the silhouette better than the model-based
method proposed in [45] (right).



5.4. Applications 107

Figure 5.7 � Comparison between the temporally inconsistent mesh sequence from a
model-free reconstruction (top) and our animated mesh (bottom).

animated by picture-based constraints and roughly matching the actor's pose but without
adaptation to the tracked surface, such as the clothes' deformations. The average Hausdor�
distance computed (with respect to the visual hull's bounding box) between the visual hull
of the target pose and the animated template resulting of the model-based method [45] is
0.011933 whereas we obtain an average of 0.003291 with our approach.

5.4 Applications

Our temporally coherent character can easily be placed in a virtual environment as
a simple mesh animation. Such virtual cloning system allows us to use the reconstructed
actor like a 3D animated character. A virtual camera can then be used with free viewpoints
and trajectories, without being limited by the physical properties of the shooting studio.
The rendering of the virtual scene is noticeably easier with this animated object than with
mesh sequences where each pose of the sequence must be loaded before the rendering of the
corresponding frame. We directly export our mesh animations to the Alembic �le format 23,
accepted by widely used software such as Autodesk Maya or RealFlow. The temporal
consistency of our output dynamic mesh, meaning that the vertices can be followed during
the entire animation (Figure 5.7), allows to compute dynamic interactions with the virtual
environment, like collisions with objects or particles, as shown in Figure 5.9. Generating
an output mesh for which only mesh vertices evolve in time (Figure 5.7) has multiple
advantages for subsequent media production. First, it noticeably reduces the �ickering
e�ect of visual hull reconstruction, leading to a better visual quality. Second, vertices can
be used to anchor virtual accessories (virtual makeup for instance). Third, collision with
virtual objects (clothes or other) and environment is easy to detect and handle as one can
rely on temporal coherence of the vertices of the output mesh, as shown in Figure 5.9.
Finally, the animated mesh can keep the same texture during the animation, instead of
computing a new texture for each frame. For long sequences, it is better to conserve a
single UV map for the whole sequence, associated with an animated texture (in our case,
we use a LSCM [87] texture atlas, see Figure 5.8) to prevent a visual texture sliding e�ect.

23. http://www.alembic.io
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(a) (b)

Figure 5.8 � Applications. (a) Comparison between the visual hull textured mesh
sequence (left column) and our animated template with a single texture (right column).
(b) Time-consistant mesh unwarping for UV mapping.

(a) (b)

Figure 5.9 � Applications. Example of interaction (collisions) with a virtual coat.
Wireframe (a) and textured (b) rendering of the virtual object, added to the reconstructed
character.
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Figure 5.10 � Limitation. Example of morphology modi�cation between several conse-
cutive poses of a visual hull sequence.

Figure 5.11 � Example of correctly handled surface collapsing during the mesh animation.

5.5 Limitations

The main limitation of our method is that the output animated model cannot handle
any change in the topology of the surface. Some important modi�cations in the morphology
of the visual hull may also not be supported. The Figure 5.10 shows an example of such
case where the arm of the actor collapses with the body. The improvement of the initial
reconstruction of the sequences could limit the occurrence of these problems, when it is
only caused by occultation, if the visual hull is accurately carved to recover concavities.
It should also be noticed that our system can still support the collapsing of two sections
of the mesh if it does not imply an important modi�cation of the morphology and if it
is limited in time. Figure 5.11 shows an example during the long cheerleader sequence
which is correctly handled by our system. These limitations could be handled through, for
instance, the method proposed by Letouzey and Boyer [85]. Kravstov et al. [80] described a
morphing of arbitrary meshes. However, this transformation is driven by an approximation
of the shape described by an implicit function and based on a skeleton. In our case, the
shape to be matched could be hardly represented in this way, without a model prior.
Bojsen-Hansen et al. [24] proposed a surface-tracking based on the non-rigid registration
by Li et al. [90] and addresses the issue of topology changes by partially resampling the
mesh, even if this operation, in our case, disrupts the continuity in the mesh's structure.
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Figure 5.12 � Virtual crowd composed by several cloned (and temporally shifted) cheer-
leader animations in a virtual scene, interacting with a computer generated physical simu-
lation of baloon particules.

5.6 Conclusion

This chapter described the �nal results we obtained with our complete process �ow,
that turns input visual hull sequences into time-consistent mesh animations. Our method
is e�ective on various datasets. We also discussed the advantages our approach brings
for post-production applications of multi-view reconstruction. The main advantage is the
possibility to track the vertices of the mesh over the animation, which enable to compute
interactions between the reconstructed character and the virtual environment. This process
�ow is adapted to the o�ine mode of the RECOVER 3D framework (see Section 1.3). Our
method still su�ers from limitations. However, future improvements of the initial model-
free reconstruction should provide more accurate input data and thus lead our approach
to a more precise pose-tracking.
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Résumé

Ce chapitre de conclusion dresse le bilan des travaux de recherche menés dans le cadre
de cette thèse. L'approche que nous avons proposée apporte des contributions sur deux
étapes principales: le calcul d'un champ de mouvements à partir d'une succession de poses
statiques reconstruites et l'animation d'une surface de référence guidée par les vecteurs
de ce champ de mouvements. Notre approche est entièrement automatique et présente
l'avantage de ne pas être limitée à une morphologie prédé�nie. De plus, notre modèle de
surface dynamique peut être animé de mouvements libres et n'utilise pas de structure
articulée pour guider le déplacement des sommets. Par ailleurs, nos résultats respectent
la contrainte de continuité temporelle �xée à l'origine de nos recherches. Les personnages
virtuels que nous produisons sont représentés sous la forme d'un maillage unique dont
la connectivité reste constante tout au long de l'animation. De cette manière, seules les
positions des sommets évoluent au cours du temps. Cette caractéristique permet de calculer
des interactions entre le clone numérique de l'acteur et son environnement virtuel, comme
expliqué dans le Chapitre 5 (cf. Section 5.4).

Nous détaillons également dans ce chapitre les travaux futurs qui pourront être conduits
à la suite du projet RECOVER 3D (cf. Section 6.2). Les améliorations à court terme
concernent essentiellement le traitement de volumes de haute résolution. En e�et, le sys-
tème de reconstruction actuel est amené dans un avenir proche à e�ectuer des recons-
tructions de plus grande précision, enrichies notamment grâce à la fusion des approches
silhouettes et stéréo. De plus, les caméras actuelles du cyber-dôme pourraient être rem-
placées par les caméras 4K (UHD 3840 × 2160) a�n de capturer des images de meilleure
qualité. Ces améliorations nécessiterons de travailler sur des volumes de résolution équiva-
lente ou supérieure à 10243 voxels et nous mèneront à développer des structures de données
optimisées. D'autres pistes sont également envisageables quant à la poursuite de ces tra-
vaux à long terme. L'évolution actuelle des technologies de capture et de reconstruction
multi-vues mène à la l'utilisation de studios de plus en plus vastes. Dans ce cadre, un vo-
lume de capture de plus grandes dimensions permettrait de reconstruire plusieurs acteurs
simultanément, ainsi que des éléments de décors. Il est donc envisageable d'améliorer notre
approche actuelle de manière à e�ectuer le suivi de plusieurs acteurs dans une scène ainsi
que leurs interactions avec des objets réels. En�n, notre approche reste sensible aux change-
ments qui apparaissent dans la topologie et/ou la morphologie de l'acteur entre deux poses
consécutives. Actuellement, notre critère de cohérence temporelle nous empêche de modi-
�er la connectivité du maillage lors de l'animation. De telles modi�cations sont cependant
nécessaires si nous souhaitons traiter ce type de scènes complexes.
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6.1 Summary

In this thesis, we described a new method to generate an animated 3D character from
time-series of volumetric poses of an actor. We addressed several steps to obtain a time-
evolving mesh, dealing with the constraints of an industrial multi-view reconstruction fra-
mework. Our method is inspired by both model-based an model-free approaches but is not
limited by any restriction about the type of character and motion to reconstruct. The com-
plete process is designed to handle any type of shape, including actors wearing costumes.
This constraint prevented us to use any type of articulated model commonly used in va-
rious kind of 3D virtual cloning of actors. These speci�cities allow to keep the e�ciency of
multi-view reconstruction where actors are directly modeled in digital 3D models from a
non-invasive indoor video capture. After a review of state-of-the-art techniques to produce
time-consistent models from multi-viewpoint video captures, we detailed our approach.

First, we developed a motion �ow computation that gives an estimation of the displa-
cements of the captured actor between two adjacent frames of the input volume sequence.
This method is adapted to our volumetric input which are produced by a visual hull re-
construction using a voxel-carving method. We compute an initial set of correspondences
between the two shapes with a voxel matching algorithm. next, the resulting 3D vectors
�eld is �ltered to obtain a regular motion �ow. This process is repeated throughout the
successive poses of the sequence to recover the complete motion of the actor. Even if this
approach is adapted to our speci�c input, it is not limited by any assumption on the content
of the reconstructed scene and allows to work on various types of characters.

Secondly, we described a mesh deformation process to match a template surface, with
the successive poses of the sequence. This deformation is driven by the motion �ow ex-
tracted in the previous step. Our 3D mesh registration follows a local rigidity prior and is
performed in several steps. A set of anchor vertices are �rst sampled on the template mesh.
These anchors are then displaced according to the vectors of the motion �ow and thus drive
the deformation of the complete surface through a global energy minimization. Once the
new shape of the template surface roughly matches the target pose, a local optimization is
performed. This last step handles surface details evolution and adjusts the mesh to closely
�t the volumetric visual hull. The new pose of the initial mesh is then used as template to
perform the deformation toward the next pose, until the end of the sequence. This type of
as-rigid-as-possible mesh processing is less constrained than usual articulated priors and
allows to deal with free-form animations while maintaining the mesh consistency thanks
to a local rigidity criterion.

In the last part of this manuscript, we presented our results and the way they are used
in post-production applications. Our method has been proven e�cient on various datasets,
generated from images captured with the RECOVER 3D studio captures as well as other
multi-view reconstruction infrastructures. We show that our time-consistent models can be
exported to 3D animation software so they can be directly included in a virtual environment
like any hand-made animated character. Our model has several advantages in front of the
mesh sequences used until now. It �rst improves the quality of the surface and signi�cantly
reduces the �ickering e�ects of mesh sequences rendering. The main advantage we provide
is the constant connectivity of the mesh, which means that the vertices are tracked over
the complete animation, allowing to compute collision and/or follow their trajectories.
This way, the reconstructed character can interact with virtual objects. It also simpli�es
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the texture mapping of the model.

6.2 Future work

6.2.1 Short-term

The research work lead in the RECOVER 3D projects is focused on two main innova-
tions. The �rst one is the construction of temporally consistent models described in this
thesis. The second is the amelioration of the model-free reconstruction processed, which
should be both used for live onstage reconstruction of actors (online mode, see Section 1.3)
and for input data to our method (o�ine mode).

6.2.1.1 High resolution volumes

At �rst, the volumetric visual hulls should be constructed with a higher voxel resolution
(5123 to 10243 3D grids). These grids could not be processed without an adapted data
structure. Optimized grid models, such as octree structures, could be used to handle these
bigger volumes. It should also be noticed that most of the data we use in our approach are
sparse: the surface voxels in the original volumes and the 3D vectors in the motion �ow
are only de�ned in a reduced amount of voxels. Therefore, a grid structure that does not
allocate memory for these void squares should be appropriate. In the same way, we can also
notice that the EDT values are mainly used for the voxels which are close to the surface of
the visual hull. Indeed, the access the EDT voxels to compute the surface voxels' normal
vectors (see Section 3.4.2), select the anchor vertices (see Section 4.4.2) and to guide the
local optimization (see Section 4.5.2). In most of these cases, the voxels we access are
located in a small neighborhood of a surface voxel, except in the case of large motions were
the anchors sampling needs to access to a EDT value far from the surface. Therefore, the
EDT could also be optimized with a data structure of non regular voxels' size where the
precision decreases proportionally with the distance to the surface. However, if these type
of volumes' representation could be handled using data structures such as hash maps, it
may also imply a signi�cantly higher computation time due to the more complex access to
the grid's elements.

6.2.1.2 Multi-view reconstruction improvements

The RECOVER 3D infrastructure also expects to use the multiscopic camera units to
perform stereo-based reconstruction (see Section 1.3). Several depth-maps will be computed
from several viewpoint surrounding the actor. These depth map could be used to carve the
voxels of the visual hull. This approach also implies a high voxel resolution to produce a
�ne reconstruction which includes thin details of the surface. Other approaches for mixing
several depth-maps could produce 3D meshes of point-clouds. In any case, our method
will have to be adapted to these input. Currently, the RECOVER 3D studios uses HD
cameras which produce images of 1920 × 1080 pixels. However, these cameras could be
replaced, in a near future, by 4K cameras (UHD 3840× 2160 or more). This improvement
could allow to compute more detailed reconstructions but may require to increase the voxel
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grid's resolution. These future improvements (stereo-matching and high resolution images)
combined will o�er the possibility to reconstruct actor's faces in close-up video shooting.

6.2.1.3 Template initialization

The last improvement which could be carried out in the short term involves the template
mesh. We currently use the surface of the �rst frame of the sequence to initialize the
dynamic mesh. We already stated that this pose should be adapted to the morphology of
the actor and contain neither inconsistency nor artifact in its surface reconstruction. To
avoid this constraint, another approach could be to select another pose in the sequence (i.e.
the most suited to be used as template) and to perform the tracking from this position.
Therefore, starting from a pose at time t ∈ [0, N ], the motion estimation and the mesh
deformation would be performed both in the forward direction (from t to N , like in the
current method) and in the backward direction (from t to 0). Indeed, as our process makes
no assumption about the motion occurring between two poses, it could work identically in
a reverse direction.

6.2.2 Long-term

Beyond the short-term improvements that could be considered following the RECO-
VER 3D project, the evolution of multi-view reconstruction technologies could lead to
several long-term innovations.

6.2.2.1 Time-evolving topology

Our pose-tracking method is based on a surface deformation which maintains a constant
connectivity between the vertices during the animation. This criterion is an advantage for
the use of our models in post-production software (see Section 5.4) but is a limitation when
the visual hull change their morphology (large deformation of the shape) and/or topology
(genus of the surface) during the sequence (see Section 5.5). The �rst solution is to re-
initialize the complete process when the template surface is no longer appropriate to the
next pose of the sequence. A new template could be constructed from this pose and the
tracking process can then be re-started. This way, a complex sequence can be represented
by several consecutive animations. The state-of-the-art methods proposed to handle this
problem imply a resampling of the surface [90], which means that the number of vertices
and the triangulation are modi�ed. Even if these modi�cations are limited to the area were
the surface collapse or split, it is not compatible with our temporal consistency criterion.

6.2.2.2 Evolution of the multi-viewpoint capture technology

Another possible evolution for our research is to reach real-time performances, which
then could authorize the use of temporally consistent models in an online reconstruction
process and broadcasting. Finally, we only considered in this thesis the reconstruction of a
single actor. The larger studio available at ILOI provides a larger volume of capture (see
Section 1.3.2). With the improvement of reconstruction using higher de�nition cameras,
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it will be possible to reconstruct scenes containing several actors and even a scenery. The
reconstruction of such scenes have been studied in state-of-the-art model-based approaches
[97, 66]. The use of larger indoor studios that allows the shooting of complex scenes,
instead of a single actor's performance, is a current evolution in multi-view reconstruction
and is explored by several projects (e.g., Panoptic Studio or Kinovis, see Section 2.2.4).
Following the same path, the multi-view reconstruction could also be applied to wide,
outdoor, environments such as sportive event shooting (see [76] for instance).
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Bilan

Nous avons présenté dans ce manuscrit une nouvelle méthode permettant de générer
un modèle dynamique temporellement cohérent à partir de séquences d'objets issues d'une
reconstruction multi-vues par enveloppe visuelle. Dans le contexte de la création d'une
chaîne de production TV, nous avons constaté que les méthodes de reconstruction à partir
d'images vidéos multi-points de vues sont dépourvues de continuité temporelle et donc
inadaptées pour l'animation de scènes virtuelles. Notre objectif était donc de développer
une méthode de suivi de pose à partir d'un modèle de maillage dynamique, de manière à
générer une animation 3D à partir des formes statiques reconstruites à des pas de temps
réguliers. L'état de l'art a permis d'identi�er deux familles de méthodes de reconstruction
multi-vues. Les méthodes libres e�ectuent une reconstruction sans a priori sur le contenu
de la scène. Cependant ces algorithmes, les plus répandus et les moins complexes, e�ectuent
en fait une reconstruction statique à partir d'une ensemble d'images �xes. Dans le cadre
de scène dynamiques, une reconstruction est e�ectuée sur chaque frame des vidéos syn-
chronisées, indépendament du reste de la performance qui est capturée. Les résultats sont
donc dépourvus de tout continuité temporelle et sont constitués de séquences de formes 3D
�xes. Les méthodes basées modèle utilisent comme données d'entrée un modèle spéci�que
adapté à la forme à reconstruire (dans le cas d'acteurs, il s'agit le plus souvent de modèles
de morphologie humaine articulés par un squelette) qui est animé selon un ensemble de
contraintes extraites des vidéos multi-points de vues ou d'une reconstruction libre intiale.
Cette approche produit des animations temporellement cohérentes telles que nous les re-
cherchons. Elle impose cependant de contruire un modèle spéci�que à l'acteur reconstruit
en amont de la capture vidéo, ce qui rend leur mise en oeuvre complexe, peu générique
et donc inadapté à notre contexte. La méthode que nous avons développée est inspirée
de ces deux approches : nous cherchons à déformer un modèle par suivi de l'enveloppe
visuelle, tout en utilisant une méthode de morphing adaptée aux mouvements libres et à
di�érents types de morphologie. Notre approche est constituée de deux étapes principales.
La première consiste à extraire un champ de déplacements, qui représente les mouvements
de l'acteur, à partir de la succession de poses statiques. Cette étape est basée sur un algo-
rithme d'appariement de voxels entre deux frames consécutives pour obtenir un ensemble
de vecteurs 3D. L'étape suivante consiste à initialiser un maillage représentant l'acteur à
la pose initiale de la séquence. Cette surface est ensuite déformée selon les mouvements
décrits par le champ de déplacements de manière à adopter les poses successives décrites
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par la reconstruction initiale. Cette déformation de maillage est basée sur des algorithmes
de type As-Rigid-As-Possible et est ainsi adaptée aux mouvements de surfaces libres, tout
en respectant une contrainte de rigidité locale qui assure la conservation d'une triangu-
lation cohérente tout au long de l'animation. Nous avons détaillé les résultats obtenus à
partir de di�érents jeux de données et montré l'in�uence des di�érents paramètres de nos
algorithmes sur la qualité des résultats �naux. Les maillages animés obtenus grâce à notre
méthode peuvent être aisément adaptés aux formats standards des logiciels de modélisation
et animation 3D utilisés pour la création et le rendu de scène virtuelles. De cette manière,
l'acteur reconstruit sous forme de personnage animé peut être placé dans un environne-
ment généré par ordinateur de la même manière qu'un objet modélisé par un artiste (et
non plus sous la formes de séquences où chaque pose doit être chargée lors du rendu de la
frame correspondante). La cohérence temporelle qui caractérise notre modèle assure que la
connectivité du maillage reste constante au cours de l'animation et que seules les positions
des sommets soient modi�ées. De cette manière, la surface du clone virtuel peut être suivie
au cours de l'animation, ce qui permet de détecter les collisions avec des objets de la scène
3D. Le personnage peut ainsi interagir avec l'environnement virtuel dans lequel il est placé
(immersion dans un �ot de particules, accessoires virtuels ...). Les maillages animés que
nous produisons permettent également d'améliorer la qualité visuelle de la reconstruction
et de simpli�er l'application de texture sur le modèle.

Perspectives

Les résultats de nos recherches ouvrent la voie à plusieurs travaux futurs. A cours terme,
une première amélioration pourrait être développée pour utiliser comme données d'entrée
des reconstructions de meilleure qualité. Tout d'abord, une enveloppe visuelle plus précise
pourrait être calculée en utilisant des grille de voxels de plus haute résolution. Cette amé-
lioration nécessite cependant de mettre en place une structure de données optimisée pour
contenir l'ensemble des données nécessaires à nos algorithmes (volume RGB, EDT, champs
de déplacements...). Parmi les approches envisageables, des structures hierarchiques de type
octree pourraint être utilisée. On peut de plus noter que la plupart de ces données sont
éparses (voxels de surface, vecteurs de mouvements, valeurs de l'EDT inutilisées à partir
d'une certaine distance à la surface) et pourrait donc être stockées dans des grilles irrégu-
lières. Le projet RECOVER 3D prévoit également d'améliorer la reconstruction multi-vues
grâce à la mise en place de recontruction par stéréo-matching à partir des blocs de caméras
multiscopiques. Ainsi, l'enveloppe visuelle pourrait être creusée par des carte de profon-
deurs calculées à partir de di�érents points de vues. Cette méthode nécessite elle aussi des
grilles de voxels de hautes résolutions. D'autres approches basées nuages de points pour-
raient être mises en place. Il sera dans tous les cas nécessaire d'adapter notre méthode à
ces nouvelles données d'entrée. On peut également noter que l'augmentation de la résolu-
tion des volumes est également indispensable dans l'hypothèse où les camérs HD utilisées
dans la version actuelle du studio RECOVER3D seraient replacées par des caméras 4K.
Cette amélioration de l'infrastructure, associées à la mise en place de la stéréoscopie, per-
mettrait d'obtenir dès l'étape initiale de reconstruction, des volumes de grande précision,
riches en détails. Ces évolutions permettraient également d'e�ectuer des reconstructions
de visages à partir de plans rapprochés. A long terme, di�érentes solutions peuvent être
étudiées pour apporter une solution aux limitations de notre approche. La principale de
ces limitations est l'incapacité de notre outil à gérer les changements de topologies qui
peuvent subvenir au cours de la séquence de reconstruction. En e�et notre algorithme de



121

suivi de poses est basé sur la déformation d'une surface dont la triangulation (et donc la
topologie) est constante au cours de l'animation. Ce critère est un avantage lors de l'uti-
lisation des modèles (voir ci-dessus) mais est inadapté dans le cas où la topologie (ou la
morphologie) de l'enveloppe visuelle est modi�ée entre deux poses successives (par exemple
un bras se collant au torse). Plusieurs approches décrites dans l'état de l'art proposent des
solutions pour le suivi de telles formes [24, 90] où le modèle de maillage modi�e sa connec-
tivité uniquement dans les zones où apparaissent de tels changements. En�n, nous avons
jusqu'ici limité nos développements à des scènes ne contenant qu'un seul acteur. Suite à
la construction d'un second studio RECOVER3D à l'ILOI, de taille supérieure au studio
parisien, les dimensions accrues de la zone de capture permettent d'envisager la recons-
truction de scènes contenant plusieurs acteurs, et d'éventuels éléments de décors. Cette
piste de recherche semble également pertinente au vu de l'évolution de la reconstruction
multi-vues, où plusieurs projets (Panoptic Studio, Kinovis...) développent des studios de
grande taille et cherchent à adapter ces solutions à la capture en plein air.
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Appendix B
Algorithms

B.1 Euclidean Distance Transform

The EDT algorithm consists of n one-dimensional local operations performed serially,
each of which corresponds to the direction of each coordinate axis. It does not use vector
propagation, nor �xed template strategies and still always gives exact Euclidean distance
stored as an array of squared distance values.

Data: B: binary volume of size L×M×N
Result: S: Euclidean Distance Transform grid
Derive from B → G = {gijk} with gijk = minx{(i− x)2; bxjk = 0, 1 ≤ x ≤ L};
Derive from G → H = {hijk} with hijk = miny{giyk + (j − y)2, 1 ≤ y ≤M};
Derive from H → S = {sijk} with sijk = minz{hijz + (h− z)2, 1 ≤ z ≤ N};
return S;

Algorithm 4: Euclidean Distance Transform computation

We consider a binary imageB = {bi,j,k}) of size L×M×N , where bi,j,k is the value of the
voxel at coordinates (i, j, k). We note d((i, j, k), (p, q, r)) the Euclidean distance between
bi,j,k and bp,q,r. The Euclidean Distance Transform of the image is noted S = {si,j,k}). We
de�ne si,j,k as the minimum distance between bi,j,k and the closest point of the object (i.e.
voxel with value 0):

si,j,k = min
(p,q,r)

{
d((i, j, k), (p, q, r))2 / bp,q,r = 0

}
= min

(p,q,r)

{
(i− p)2 + (j − q)2 + (k − r)2 / bp,q,r = 0

}
.

with 1 ≤ p ≤ L, 1 ≤ q ≤M, 1 ≤ r ≤ N .

The algorithm is based on forward and backward scan on each spatial axis (see pseudo-
code Algorithm 4). Figure B.1 illustrates the �rst scan along X axis: the forward scan
writes in each void voxel vijk of the line i the squared distance to the closest zero voxel on
its left. The same computation is operated in the backward step, whereas this time only the
minimum values between forward and backward scans are stored. This step is repeated for
each row on the grid. It is only applied on voxels (i, j, k) which belong to the complement of
the object (external voxels only). The next scans are applied on the complete domain. The
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Figure B.1 � First step of EDT computation. Top to bottom: a single row of the initial
binary grid, result after forward path along X axis (from left to right) and �nal result after
backward path.

Figure B.2 � Second step of EDT computation. After the X axis scan (left), the new
value of vijk (squared in red) is computed by a new scan along the Y axis. We extract the
column i and sum each of its contained values with the result of (j − y)2. The minimum
value in the resulting columns is the new value of vijk.

second scan, along the Y axis, is detailed in Figure B.2: for each voxel vijk, we consider the
complete column i. We then compute for each voxel viyk of this column the value (j − y)2

(i.e., the squared distance to vijk). We then compute for each voxel viyk the sum of this
distance and its original value. The minimum value of the resulting column is attributed
to vijk. The same processing is applied for the Z axis scan in case of 3D grids.

This algorithm takes as input a binary volume where voxels are labelled 0 for internal
points and 1 for external points. The output is a squared Euclidean distance associated
to each external voxel. To compute a combined EDT, the function is applied a second
time, on the inverse mask of the initial volume. The two EDT are added to get the �nal
combination of internal and external unsigned distance transform (see Figure B.3).

(a) (b) (c)

Figure B.3 � EDT computation: (a)original binary volume, (b) external EDT, (c) com-
bined EDT (internal + external).
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B.2 Poisson disk sampling

The principle of the Poisson disk sampling method is to generate several new points
around each point already sampled. Each of this new point is checked to know whether it
contains any other point in a �xed radius around itself. If no other point is identi�ed, the
new point is conserved as a sampled point (see Figure B.4). The algorithm is iteratively
repeated on the growing set of sampled points until the whole space to sample is covered.
Several implementations use a grid that discretizes the space to perfom fast lookups of
points [31].

In our case, we wish to sample the points of a discretized surface (i.e., our triangulated
mesh). Instead of creating new points in a continuous space, we look for samples in the set
of surface's vertices. We also uses a 3D grid, similar to the voxel grid of the volume, as a
disretization of the space. Each square is associated with the mesh's vertex it contains. If
a square contains more than one vertices, we choose one of then randomly. In other cases,
using another space's discretization where the squares could be sensitivelly larger than the
triangles and thus often contains several vertices, we could choose, for instance, the vertex
which position is closer to the barycenter of these vertices. This 3D grid, containing the
data, is the input grid. Another similar grid is created to contain the sampled point and is
named output grid. This output grid is void at the begining of the algorithm. A void list
is also initialized and named processing list.

The following steps are iteratively repeated until the sampling of the complete trian-
gulated surface (see Algorithm 5 for pseudo-code details):

1. The algorithm starts with an arbitrary point (it can be a randomly selected vertex)
from the input grid. This point is both added to the output grid and the processing
list.

2. A point is selected and removed from the processing list.

3. We then randomly select a set of vertices located on a sphere of �xed radius around
this point. To �nd a random point P2 around a �xed point P1, we compute the
following 3D coordinates:

P2x = P1x + r · cos(α1)sin(α2)
P2y = P1y + r · sin(α1)sin(α2)
P2z = P1z + r · cos(α2)

(B.1)

The value r is a radius which value is randomly selected between a minimum radius
minr (i.e., the distance criterion of the Poisson disk algorithm) and a maximum
radius maxr (in our implementation, we used maxr = 2minr). The value of two
angles α1 and α2 are also randomly selected.

4. For each of these randomly selected vertices, we scan their minimum distance (mindist)
neighborhood in the output grid to check if it contains any point. If it does not, the
new point is added to the process list and the output grid.

5. Return to step 2 until the processign list is empty.
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(a) (b) (c) (d)

Figure B.4 � Example of Poisson Disk sampling in a 2D space: Around an initial
point (red dot), a set of random points are positionned (green dots). These new points are
conserved if they do not have any other point in their neighborhood.

Data: input 3D grid where each square is associated to a vertex (inputGrid), radius
of the disk (radius), constant number of random point creation (cstNb)

Result: list of sampled points
Create processList, resultList;
�rstPoint ← get random point in inputGrid;
add �rstPoint to processList;
add �rstPoint to outputGrid;
add �rstPoint to resultList;
while processList is not empty do

processingPoint ← pop a random point from processList;
compteur ← 0 ;
while compteur < cstNb do

newPoint ← generate random point around processingPoint between radius
and radius , see eqB.1;
if no point is found in outputGrid the radius neighborhood around newPoint
then

add newPoint to processList;
add newPoint to outputGrid;
add �rstPoint to resultList;
cpt ++;

end

end

end
return resultList;

Algorithm 5: Poisson disk vertex sampling
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Mathematical details

C.1 Discretization of the Gaussian function

A Gaussian function is a normal distribution which probability density is given by the
following expression:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (C.1)

It can be noted in the form:
X ∼ N (µ, σ)

with µ being the expectation of the distribution and σ the standard deviation. A Gaussian
function centered on zero can be represented as a probability density function of a normally
distributed random variable, i.e., a normal distribution with µ = 0:

f(x) =
1

σ
√

2π
e−

1
2
x2

σ2 (C.2)

X ∼ N (0, σ)

The value of σ can be deduced, knowing two �xed values: the half-width of the �lter, noted
m, and the percentage p of the Gaussian's integral we want to include in the window. In
our implementation, we �xed p = 95%. The value of m depends on the �lter's size chosen
by the user. Let us de�ne:

T =
X

σ

T ∼ N (0, 1)

T is now a reduced centered random variable, i.e., a normal distribution with µ = 0 and
σ = 1. The integral of this function between −∞ and x is given by the following expression:

F (t) =

∫ t

−∞

1√
2π
e−

u2

2 du (C.3)
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with u = x
σ The value of p can therefore be described by the di�erence between F (mσ ) and

F (−m
σ ):

F (
m

σ
)− F (−m

σ
) = 0.95

which becomes:
2F (

m

σ
) = 1.95

F (
m

σ
) = 0.975

Following the table given in appendix C.2, if F (x) = 0.975, then x = 1.96. Here, x = m
σ ,

so we can compute the value of σ:

σ =
m

1.96
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C.2 Table: reduced centered random variable

Probability to �nd a value lower than x.

F (x) =
∫ x
−∞

1√
2Π
e−

u2

2
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C.3 3D optical �ows

These algorithms are made as a 3D equivalent of the usual 2D optical �ow methods,
applied on a 3D grid where each voxel is associated with a single value, such as the intensity
in a grey level bitmap. These implementations are based on the computations proposed in
[19].

According to the Lucas-Kanade assumption that the velocity V (u, v, w) can be consi-
dered as constant in a neighborhood n around the point p, the optical �ow equation (see
Chapter 3, equation 3.2) can be written with the following system:

Ix(q1) Vu + Iy(q1) Vv + Iz(q1) Vw = −It(q1)
Ix(q2) Vu + Iy(q2) Vv + Iz(q2) Vw = −It(q2)
...
Ix(qn) Vu + Iy(qn) Vv + Iz(qn) Vw = −It(qn)

Where each point qi belongs to the n-size neighborhood around p, i ∈ [0;n]. The partial
derivatives of the image I along the spatial axis x, y, and z at time t and at the point qi are
noted Ix(qi), Iy(qi), Iz(qi), and It(qi), respectively. V (u, v, w) is the local velocity vector
which de�nes the displacement of qi between two images. This system can be written under
a matrix form:

vWA = WB

that can be written:
ATvWA = ATWB

that becomes:
v = (ATWA)−1ATWB (C.4)

with the following terms:

v =

VuVv
Vw

 , A =


Ix(q1) Iy(q1) Iz(q1)
Ix(q2) Iy(q2) Iz(q2)

...
...

...
Ix(qn) Iy(qn) Iz(qn)

 , B =


−It(q1)
−It(q2)

...
−It(qn)


Where v is the resulting 3D vector at p. The derivatives Ix(qi), Iy(qi), and Iz(qi) de�ne the
spatial gradient at position qi and It(qi) is the temporal derivative. W is a n× n diagonal
matrix containing Gaussian weighting factors Wii = wi. Thus, the equation C.4 can be
written with the following terms:

ATWA =

 ∑
i wi Ix(qi)

2
∑

i wi Ix(qi) Iy(qi)
∑

i wi Ix(qi) Iz(qi)∑
i wi Iy(qi) Ix(qi)

∑
i wi Iy(qi)

2
∑

i wi Iy(qi) Iz(qi)∑
i wi Iz(qi) Ix(qi)

∑
i wi Iz(qi) Iy(qi)

∑
i wi Iz(qi)

2
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ATWB =

−∑i wi Ix(qi) It(qi)
−
∑

i wi Iy(qi) It(qi)
−
∑

i wi Iz(qi) It(qi)



The Horn-Schunck method is based on the minimization of this equation:

∑
(IxVu + IyVv + IzVw + It) + α2

[(
∂Vu
∂x

)2

+

(
∂Vu
∂y

)2

+

(
∂Vu
∂z

)2

+

(
∂Vv
∂x

)2

+

(
∂Vv
∂y

)2

+

(
∂Vv
∂z

)2

+

(
∂Vw
∂x

)2

+

(
∂Vw
∂y

)2

+

(
∂Vw
∂z

)2
]

(C.5)

By using the following Gauss-Seidel iterative equations:

V k+1
u = V̄ k

u −
Ix
[
IxV̄

k
u + IyV̄

k
v + IzV̄

k
w + It

](
α2 + I2

x + I2
y + I2

z

)
V k+1
v = V̄ k

v −
Iy
[
IxV̄

k
u + IyV̄

k
v + IzV̄

k
w + It

](
α2 + I2

x + I2
y + I2

z

)
V k+1
w = V̄ k

w −
Iz
[
IxV̄

k
u + IyV̄

k
v + IzV̄

k
w + It

](
α2 + I2

x + I2
y + I2

z

)
V̄ k is the average of the vectors resulting of the previous iteration contained in a �xed
neighborhood (55). The initial velocities V 0

u , V
0
v and V 0

w are usually set to zero, but it can
also be initialized with another vector �eld, for example the result of another motion �ow
computation. In our case we used the result of our implementation of Lucas-Kanade, and
we also kept the possibility to start with null values. We apply 50 iterations with an α
value set to 1.
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C.4 Rigid motion computation

This computation follows the process described By O. Sorkine [138] 24. The goal is to
�nd the translation t and the rotation R that minimize:

n∑
i=1

wi |(Rpi + t)− qi|
2

where pi and qi, i ∈ [0;n], belongs to two set of n points. We seek for the rigid transfor-
mation (R, t) that aligns the two sets in the least squares sense. The algorithm is:

1. Compute the weighted centroids of both point sets:

p̄ =

∑n
i=1wipi∑n
i=1wi

, q̄ =

∑n
i=1wiqi∑n
i=1wi

2. Compute the centered vectors:

xi = pi − p̄, yi = qi − q̄, i = 1, 2, . . . , n

3. Compute the d× d covariance matrix S:

S = XWY Y

Where X and Y are the d×n matrices that have xi and yi as their columns, respec-
tively, and W = diag(w1, w2, . . . , wn).

4. Compute the singular value decomposition (SVD) S = UΣV T . The rotation is then
obtained by the following expression:

R = V


1

1
. . .

1
det(V UT )

UT

5. Compute the optimal translation as:

t = q̄−Rp̄

24. http://igl.ethz.ch/projects/ARAP/index.php



C.5. Laplacian matrix 147

C.5 Laplacian matrix

The Laplacian matrix of a triangulated meshM can be computed with uniform weights
or contangent weights [52]

With uniform weights, the Laplacian matrix L is computed with the following expression:

L = I −D−1 ·A

with D being the degree matrix and A the adjacency matrix.

The degree matrix is a diagonal matrix computed with the following expression:

D(i, i) = |N(i)|

where N(i) is the immediate neighborhood of the vertex vi. D(i, i) is therefore the number
of direct neighboring vertices or the number or incident edges (named degree or valence).

The adjacency matrix is computed by:{
A(i, j) = 1 if j ∈ N(i)

A(i, j) = 0 otherwise

With cotangent weights, the Laplacian matrix L is computed with:

L = D−1 ·A

With the degree matrix computed as follows:

D(i, i) =
∑
t∈S(i)

Area(t)

3

where Area(t) is the area of the triangle t and S(i) is the set of incident triangles to vertex
vi.

The adjacency matrix is computed by:

A(i, j) =
cotan(β(i,j)) + cotan(β′(i,j))

2

where β(i,j) and β
′
(i,j) are the opposite angles to the edge (i, j) in its two adjacent triangles.
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C.6 Numerical integration

A solid object Y at time t can be de�ned as a combination of a position p(t) and a
velocity v(t):

Y (t) =

[
p(t)
v(t)

]

When this object is submitted to a force f , it becomes:

Ẏ (t) = F (t) =

[
v(t)

1
mf(t)

]
with m being the mass of the object.

An approximation to the solution of this di�erential equation can be obtained using a
numerical method. The most basic explicit method for numerical integration is the Euler
(�rst-order explicit) method. It is a iterative approach where a timestep h is introduced.

Y (t+ h) = Y (t) + hF (t)

Y (t+ h) =

[
p(t+ h) = p(t) + hv(t)

v(t+ h) = v(t) + h
mf(t)

]
The values of p(t+h) and v(t+h) are then used as new values of p(t) and v(t), respectively,
for the next iteration. By repeating this operation, an estimation of Ẏ (t) can be obtained.

Among the other integration approaches, the fourth order Runge-Kutta (or RK4 ) method
uses four increments de�ned as follow:

k1 = F (tn, Yn)

k2 = F (tn +
h

2
, Yn +

h

2
k1)

k3 = F (tn +
h

2
, Yn +

h

2
k2)

k4 = F (tn + h, Yn + hk3)

The next value Yn+1 is then computed by the sum of the previous value Yn and a weighted
average of the increments:

Yn+1 = Yn +
h

2
(k1 + 2k2 + 2k3 + k4)
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REPRESENTATION DYNAMIQUE DE MODELES D'ACTEURS ISSUS DE RECONSTRUCTIONS MULTI-VUES 
Les technologies de reconstruction multi-vues permettent de réaliser un clone virtuel d'un acteur à partir d'une simple acquisition vidéo 
réalisée par un ensemble de caméras à partir de multiples points de vue.  
Cette approche offre de nouvelles opportunités dans le domaine de la composition de scènes hybrides mélangeant les images réelles et 
virtuelles. 
Cette thèse a été réalisée dans le cadre du projet RECOVER 3D dont l'objectif est de développer une chaîne de production TV complète, de 
l'acquisition jusqu'à la diffusion, autour de la reconstruction multi-vues. Cependant la technologie utilisée dans ce contexte est mal adaptée à 
la reconstruction de scènes dynamiques. 
En effet, la performance d'un acteur est reproduite sous la forme d'une séquence d'objets 3D statiques qui correspondent aux poses 
successives du personnage au cours de la capture vidéo.  
L'objectif de cette thèse est de développer une méthode pour transformer ces séquences de poses en un modèle animé unique.  
Les travaux de recherches menés dans ce cadre sont répartis en deux étapes principales. La première a pour but de calculer un champ de 
déplacements qui décrit les mouvements de l'acteur entre deux poses consécutives.  
La seconde étape consiste à animer un maillage suivant les trajectoires décrites par le champ de mouvements, de manière à le déplacer vers la 
pose suivante.  
En répétant ce processus tout au long la séquence, nous parvenons ainsi à reproduire un maillage animé qui adopte les poses successives de 
l'acteur. 
Les résultats obtenus montrent que notre méthode peut générer un modèle temporellement cohérent à partir d'une séquence d'enveloppes 
visuelles. 

 

 

Reconstruction multi-vues, animation, déformation de maillage, champ de déplacements, as-rigid-as-possible, scène dynamique, volume, 
appariement de voxels, cohérence temporelle. 

DYNAMIC REPRESENTATION OF ACTORS' MODELS FROM MULTI-VIEW RECONSTRUCTIONS 

4D multi-view reconstruction technologies are more and more used in media production due to their abilities to produce a virtual clone of an 
actor from a simple video acquisition performed by a set of multi-viewpoint cameras.  
This approach is a major advance for the composition of animations which mix virtual and real images, and also offers new possibilities for the 
rendering of such complex hybrid scenes.  
The work described in this thesis takes parts in the RECOVER 3D project which aims at developing an innovative industrial framework for TV 
production, based on multi-view reconstruction, from studio acquisition to broadcasting.  
The major drawback of the methods used in this context is that they are not adapted to the reconstruction of dynamic scenes. The output are 
time series which describe the successive poses of the actor, figured as a sequence of static objects.  
The goal of this thesis is to transform these initial results into a dynamic 3D object where the actor is figured as an animated character.  
The research detailed in this manuscript presents two main contributions.  
The first one is centered on the computation of a motion _ow which represents the displacements occurring in the reconstructed scene 
between two consecutive poses.  
The second one presents a mesh animation process that leads to the animation of a 3D model from one pose to another, following the motion 
flow.  
This two-step operation is repeated throughout the entire pose sequence to finally obtain a single animated mesh that matches the evolving 
shape of the reconstructed actor.  
Results show that our method is able to produce a temporally consistent mesh animation from various sequences of visual hulls. 

 

 

Multi-view reconstruction, animation, mesh deformation, motion flow, as-rigid- as-possible, dynamic scene, volume, voxel matching, temporal 
consistency. 

Discipline : INFORMATIQUE 

 

 

 

 

 

 

   Université de Reims Champagne-Ardenne 

   EA 3804 CRESTIC 

   Moulin de la Housse – 51687 REIMS CEDEX 2 




