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Introduction, goal and outline of the
manuscript

The theoretical analysis of disordered systems is an outstanding challenge of mod-
ern statistical physics and probability theory that finds applications in (disorder is
present in any experimental setup and might play a crucial role) and outside of physics
(e.g. error-correcting codes and optimization problems). In such systems the inter-
play between thermal (and/or quantum) fluctuations, the disordered environment and
interactions often creates a rich ‘glassy’ phenomenology. In this thesis we focus on
d—dimensional elastic interfaces in a (d 4 1)—dimensional disordered media, described
by a single valued function u : # € R? — wu(x) € R (the height of the interface).
The latter are remarkable examples of disordered systems. On one hand they can be
used to describe a variety of physical situations such as domain walls in disordered
magnets, fractures fronts in brittle materials, contact lines of viscous fluids on rough
substrates... On the other hand they are sufficiently simple to allow analytical ap-
proaches and tremendous theoretical progress. For such systems, while the elasticity
tends to flatten the interface, thermal fluctuations and the disordered environment
tend to roughen it. The energy landscape of the interface is fractioned into a multi-
tude of metastable states which in some cases dramatically influence the static and
dynamic properties of the interface.

Shocks and Avalanches

In the case of the statics, one can show that in ‘small” dimensions (d < 4 for interfaces
with short-range elasticity), the temperature is irrelevant at large scale and the large
scale properties of the interface are those of its ground state: the system is pinned by
disorder (there are subtleties linked with the fact that the temperature is dangerously
irrelevant). At least in some cases, this pinning phenomena is collective and one
expects some universality and scale invariance to emerge: large scale properties of
the interface are, up to some non universal constants, independent of the underlying
disorder distribution (although there are several universality classes that one would
like to classify). In particular the interface is rough and its static roughness exponent,
(s loosely defined by u(z) — u(0) ~ z¢ is universal. As we will review this problem
has been already well studied and a good understanding of these universal properties
has been reached. A more recent question is to understand the properties of several
successive metastable states of the interface. Confining the interface around some
position w and studying the evolution of the ground state of the interface as w is varied,

xi



xii INTRODUCTION, GOAL AND OUTLINE OF THE MANUSCRIPT

the ground state changes abruptly at a discrete sequence of positions w;. These changes
in the ground state u(z) — u(z)+S(z) define a sequence of shocks S(x). As both u(x)
and u(z) + S(x) are legitimate ground states of the interface displaying scaling and
universality, one expects the shocks S(z) to display scaling and universality inherited
from the universal physics of disordered elastic interfaces.

A closely related phenomenon occurs in the zero temperature dynamics of the
interface of sufficiently low dimensions when it is slowly driven with a mean velocity
du(t,x) ~ v — 0T (at the ‘depinning transition’). The system reaches an out-of-
equilibrium steady-state displaying scaling and universality with a depinning roughness
exponent u(t,z) — u(t,0) ~ z% that differs from the static one. In the steady-state,
most of the time the interface is actually pinned by disorder in a metastable state,
Opu(t,x) ~ 0, and very rarely manages to cross an energy barrier. When it does the
interface moves with a macroscopic velocity of order O(1) during a finite time window
At = O(1) until it is pinned again in a new metastable state. The next jump occurs
after a period of quiescence T' ~ 1/v > At. The motion of the interface in between
these metastable states is called an avalanche. The latter are very close cousins of
the shocks between static ground states mentioned above, but are richer as they are
a complex time-dependent phenomena for which more questions can be asked. Again
these avalanches inherit the scale invariance and the universality of disordered elastic
interfaces at the depinning transition.

More generally avalanches occur in a wide range of complex systems, from snow
avalanches to avalanches in the neural activity of the brain. While avalanches in some
systems will fall in the universality class of the disordered elastic interface model, other
may not. Important counter examples are e.g. avalanches at the yielding transition of
amorphous materials (for which plastic deformations play an important role) or earth-
quakes (for which the presence of aftershocks, whose origin is still controversial, is
certainly not captured by the simplest elastic interface model). In any case, character-
izing and understanding the universality in avalanche processes, and in particular for
the elastic interface model for which powerful analytical methods exist, is an important
challenge. It indeed allows to understand and compare efficiently seemingly unrelated
phenomena such as the fracture process of a brittle material or the jerky motion of a
contact line between a viscous fluid and a rough substrate, and to assess the importance
of various mechanisms in the dynamics. Important questions in the context of shocks
and avalanches are the characterization of the distribution of the avalanche total size
S (the area swept by the interface), the duration 7'... As the avalanche processes men-
tioned above (at least for the elastic interface case) are scale-invariant processes, the
latter are distributed with probability distribution functions (PDF) displaying (in a
certain regime) a power-law behavior P(S) ~ S™7S, P(T) ~ T~ . The critical expo-
nents thereby defined are believed to be universal and related to the critical exponents
of the depinning transition (for avalanches) or of the statics (for shocks). Scaling and
universality is however not restricted to critical exponents and there exist universal
scaling functions, allowing a refined characterization of universality classes. A perfect
example of such universal scaling functions is the temporal shape of avalanches, which
received much attention lately and was computed at and beyond mean-field. Going
back to experiments, while on one hand the study of the temporal shape indeed showed



xiii

universality between different avalanche processes, on the other hand it permitted to
highlight the (non-universal) influence of Eddy currents for avalanches in Barkhausen
noise experiments.

Out-of-equilibrium growth and the KPZ universality class

Another, seemingly unrelated phenomenon, is the out-of-equilibrium growth of an
elastic interface h(t,xz) € R driven by thermal fluctuations in the absence of quenched
noise, typically thought of as separating a stable and an unstable phase of a thermo-
dynamic system. The interface is rough h(t,z) — h(t,0) ~ z® and exhibits non-trivial
fluctuations and spatio-temporal patterns. For one dimensional interface x € R and
local growth mechanisms with other reasonable assumptions, it is believed that a sin-
gle universality class, the Kardar-Parisi-Zhang (KPZ) universality class, controls the
large scale properties of growing interfaces. Remarkably, there is a very close connec-
tion with the statics of disordered elastic interfaces: the fluctuations of the free-energy
F(L,u) of a directed polymer (d = 1 elastic interface case) of length L at the tempera-
ture T in a short-range random potential with end-points fixed as u(0) = 0, u(L) = u,
defines a growing interface h(t,x) := F(L = t,u = z) in the KPZ universality class.
The KPZ universality class also encompasses models of interacting particles in one-
dimension and has emerged over the years as a paradigmatic example of universality
in out-of-equilibrium statistical physics. In this case the critical exponents are known
exactly: the roughness exponent is @ = 1/2 and the height of the interface fluctuates
widely on a scale of order t!/3 (where here ¢ refers to the duration since the beginning
of the growth).

As for avalanches, universality goes however well beyond the sole critical exponents
and the full distribution of the (rescaled) fluctuations of the interface are universal and,
interestingly, depend only on global properties of the initial condition of the growing
interface. As an example, for an interface growing from a flat initial condition, the
fluctuations of the interface at a given point are distributed with the Tracy-Widom
distribution for the largest eigenvalue of a random matrix in the Gaussian orthogonal
ensemble, thus unveiling a remarkable connection between random matrix theory and
the KPZ universality class. Observed in modern experiments, the emergence of such
universal distributions related to extreme value statistics of random matrix theory is
understood at the theoretical level through the analysis of ezactly solvable models in the
KPZ universality class, in particular models of directed polymers. While this property
still lacks a ‘simple’ explanation, the wide range of application of KPZ universality, of
KPZ scaling and of the Tracy-Widom distribution, has the flavor of an extension of
the central limit theorem to strongly correlated random variables. This has motivated
in the past years a vast research effort aiming at the understanding of the KPZ fixed
point, which thus still relies on the use of exactly solvable models.

Analytical methods and the results obtained during the thesis

While in a general setting I have tried throughout the thesis to improve the under-
standing and characterization of universal properties for models of disordered elastic
interfaces in their strong disorder regime, my work can be divided following the subjects
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mentioned above.

On avalanches

On one hand I have been interested in shocks and avalanche statistics for disordered
elastic interfaces. To this aim I have used the functional renormalization group (FRG),
a method already well developed. As any renormalization procedure, the latter directly
aims at characterizing the large scale properties of the system through the identification
of the appropriate fixed point. As I will review, the fixed points are perturbative in
€ = 4 — d (for interfaces with short-range elasticity) and I have obtained results for
avalanche statistics using this expansion at one-loop order, i.e. at first order beyond
mean-field, i.e. at order O(e).

I have first focused on the spatial shape of avalanches. While on one hand the
temporal shape of avalanches received a lot of attention, the spatial shape did not,
surely because of the involved technical difficulties and the absence of an analytically
tractable (and experimentally relevant) precise definition, in particular a centering
procedure. I first obtained results at the mean-field level for the shape of peaked
avalanches for model with short-range elasticity in d = 1: there the shape becomes
deterministic and given by a well defined spatial profile [I]. Secondly, I focused on the
mean shape of avalanches of fixed size centered on their seed for which I obtained results
beyond mean-field, valid at order O(e) [2]. This ‘seed-centering’ procedure introduced
in this work appears as the most natural way, at least from the analytical point of
view, to center spatial observables in the avalanche motion, and it could be used for
other observables. In [2] T perform simulations that show that the seed-centering can
be successfully implemented in numerics, and in the future it would be interesting to
confront these results with experiments for which the spatial shape is an accessible
quantity, as is the case in some fractures experiments.

In another project I investigated the correlations between successive avalanches and
shocks. In general the question of correlations in avalanche processes has received a lot
of attention, in particular in the context of earthquakes where these are linked to the
notion of aftershocks, but in the elastic interface model they were always neglected and
their sole existence was not put forward in the previous literature. While there are no
correlations at the mean-field level where the avalanche process is a Lévy jump process
[1], beyond mean-field I showed that there are always correlations. Furthermore these
correlations are universal, of order O(e), and controlled by the structure of the FRG
fixed point [3]. While these correlations do not correspond to the correlations observed
in e.g. earthquake statistics, similar correlations probably exist in any system and un-
derstanding them is likely to be necessary to obtain a quantitative understanding of
the correlations. In other systems well described by the elastic interface model, this
work shows that in most cases (for interfaces of dimension below the upper critical di-
mension), there exist important correlations in the sequence of avalanches. Comparing
these results with experiments would be very interesting.

On directed polymers
On the other hand I have been interested in understanding the emergence of KPZ
universality, or lack of thereof, in models of directed polymer on the square lattice.
To this aim I have studied and discovered models with exact solvability properties,
extending the already known exact solvability properties of the continuum directed
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polymer, the Bethe ansatz solvability and the exactly known stationary measure. In
particular I have obtained: (i) Tracy-Widom GUE fluctuations for the point to point
free-energy of the Log-Gamma polymer [4]; (ii) Tracy-Widom GUE fluctuations for the
point to point free-energy of the Inverse-Beta polymer (a model I discovered during
the thesis) and a classification of finite temperature Bethe ansatz exactly solvable
models of directed polymer on the square lattice [5]; (iii) Tracy-Widom fluctuations
for the large deviation function of a random walk on Z in a time-dependent Beta
distributed random environment, equivalent to the point to point free energy of the
Beta polymer, and Gamma fluctuations in the diffusive regime of the random walk
(suggesting a local breaking of KPZ universality due to an additional conservation
law for the Beta polymer) [6]; (iv) the stationary measures and mean quenched free-
energy/optimal energy in the Inverse-Beta polymer and in the Bernoulli-Geometric
polymer, an exactly solvable model of directed polymer on the square lattice at zero
temperature dual to the Inverse-Beta polymer which I also discovered during the thesis
[7].

This ‘world’ of exactly solvable models of directed polymer on the square lattice, in
part unveiled by this thesis, now offers a set of models with different properties allowing
to ask precise question about the KPZ fixed point and directed polymers in general.
The Bethe ansatz approach to finite temperature models of directed polymer on the
square lattice, developed in this thesis and at the same time by others, provides a new
versatile tool which hopefully will permit to obtain a variety of interesting results for
these models.

Goal and outline of the manuscript

The goal of this manuscript is to provide a self-contained and pedagogical review of
the subjects mentioned above, with an emphasis on theoretical techniques and aspects
important to the understanding of the research papers [I], 2], 3, 4 [5] [6} [7] written during
the thesis and regrouped in Appendices[AG] whose main results will also be presented
in the core of the manuscript.

In Chapter[[]I provide a broad introduction to disordered elastic systems, which will
serve as a background for the understanding of the two main subjects studied during
the thesis and presented thoroughly in the next chapters. In particular I re-obtain
the static phase diagram of these systems, discuss the notion of strong disorder and
the associated phenomenology, review early theoretical approaches and their caveats
to motivate the use of the more sophisticated methods already mentioned, give a brief
introduction to the more specialized subjects studied during the thesis and discuss
some experimental evidences.

In Chapter [[T] I focus on the avalanche processes of disordered elastic interfaces
in the statics and in the dynamics (at the depinning transition) at zero temperature.
I first introduce the notion of shocks and avalanches in d = 0 toy models, and then
generalize it to interfaces. I review the functional renormalization group approach to
the statics and dynamics (at the depinning transition) of disordered elastic interfaces
at zero temperature, with an emphasis on its applications to the computation of shocks
and avalanches observables. I discuss the recent progresses made on the understanding
of avalanche processes to motivate the main subjects studied during the thesis, the
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spatial structure of avalanches and the correlations in avalanche processes. The results
obtained in the research papers [I], 2], 3], regrouped in Appendix are presented in
the end of the chapter.

In Chapter [[TT] I focus on the problem of the statics of a directed polymer at finite
temperature in a random potential in dimension 1 + 1. I recall the connection of this
problem with the out-of-equilibrium growth of an interface in the KPZ universality
class. I give an introduction to the KPZ universality class and review some recent
remarkable progresses that were made (through the study of peculiar exactly solvable
models) in the understanding of the KPZ universality class in 1 4 1d. In particular I
will present some known exact solvability properties of the continuum directed polymer
-symmetries, stationary measure, Bethe ansatz solvability- that I tried in this thesis to
generalize in discrete settings. I will then present the results obtained in the research

papers [4, 5l [6], [7], regrouped in Appendix
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Chapter |

Disordered elastic systems

The focus of this thesis is on disordered elastic systems (DES) and the goal of this
section is to discuss some general properties of the latter that will underline all the
manuscript. We will start by very general theoretical considerations on DES that are
introduced in Sec. discuss the relevance of the disorder and draw the well-known
static phase diagram in Sec. In Sec. [[.3] we briefly introduce the more specialized
topics that are the focus of Chapter [[I] and [[II] Finally in Sec. [[.4] we discuss some
experimental systems for which a theoretical approach using DES has been proposed.
An alternative way to read this chapter is to start by the experimental observations of
Sec. Here we have decided to first present the theoretical objects we will study in
order to already try to be precise on the specific model with which one can attempt to
understand a given experimental situation. The content of [.1] and [[.2] is now standard
and similar presentations can be found in [8, 9, [10]

1.1 The Hamiltonians

Although in this thesis we will also consider discrete systems, let us here focus on
continuous systems introduce a general Hamiltonian for a DES of internal dimension
d € N* and external dimension N € N*. Let us first discuss the state space,

I.L1.1 The state space

A state of the system is a real function
uw:zeRY = u(z) =u, € RY . (I.1.1)

Where here we have introduced the subscript notation to indicate the dependence on
the position in the internal space. The latter will be heavily used in the following. The
space R? will be referred to as the internal space, whereas RV will be referred to as the
external space. A state of the system can be embedded in the total space of dimension
d+ N as the set of points (z,u;) € RN, The case of elastic interfaces refers to the
N =1 case. Indeed in this case the DES can be thought of as separating two phases of
a thermodynamic system living in the total space. The case of directed polymers on the
other hand refers to the d = 1 case. Note that we already made a restricting hypothesis

1
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that will hold for all theoretical analysis present in this manuscript since more general
DES not described by a single-valued function could be considered. For the case
of interfaces this is the hypothesis that there are no overhangs, while for the directed
polymer case, this is precisely the hypothesis from which the word directed comes.
More generally a point of the DES can thus be labeled by its internal coordinate x and
can only move in the external space.

In all the manuscript, whenever such a continuum description is used, we will
assume the existence of two length-scales in the internal space: (i) a small-size cutoff
a below which the elastic and continuum description of the system breaks down; (ii) a
large scale cutoff L which represents the lateral extension of the system (the system is
thus finite). Boundary conditions will be discussed later. Let us already say here that
all the results obtained in this thesis actually concern the case of elastic interfaces,
that is the special case N = 1. The Hamiltonian of the system will be generally the
sum of three contributions

Hyawlu] = H 1] + HE[u] + HE [u]. (1.1.2)

As we detail below, H®[u] is the elastic Hamiltonian of the system, H{s[u] is the
disorder Hamiltonian (that depends on the realization of a random potential V') and
HEM[u] is a confining Hamiltonian that confines the system around an average posi-
tion w. Here H®[u] and H{S[u] are the main players but the presence of a confining
Hamiltonian will be important to define various quantities and to study avalanches. In
this section we will keep N arbitrary, mainly to emphasize the influence of the external
dimension on the importance of the disorder on large scale properties. Let us now be
more precise and define/give examples for each term that appears in ([.1.2)).

1.1.2 The elastic Hamiltonian

Our typical choice for the elastic Hamiltonian will be the case of short-range elasticity
that is modeled by the Hamiltonian

Hg[u] == %A(Vmux)Q , (1.1.3)

where ¢ > 0 is a constant. By rescaling the x axis we will assume ¢ = 1. We will
also sometimes consider other types of elasticity. In the most general case the elastic
Hamiltonian will be defined by,

1 .
'H;l[u] = 7/ gm’;uz Uy (I.1.4)
I7y

2
where we introduced the elasticity kernel g, ; . We will suppose that the elasticity
kernel is rotationally and translationally invariant (in internal space) g, é = g|; 1_y‘ and
to be such that H®[u] defined above is a convex functional that attains its minimum

for flat systems: H[cst] = 0. We also suppose translational and rotational invariance
in external space: H®[u + cst] = H[u]. Note that the ground state of the elastic
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Hamiltonian is thus degenerate. Introducing the Fourier-transform of the elasticity
kernel, g, = . e "y, ;, the elastic Hamiltonian can be rewritten as

1 -
HEu] = 5 /ng Yu_g - uy (L.1.5)

And the case of short-range (SR) elasticity thus corresponds to the choice g, L= oq¢?.
In this introduction we will consider elastic kernels of the form g, 1 = |¢|” and the
important examples will be v = 2 (SR elasticity) and v = 1. The latter is known to be
relevant in describing some systems with long-range (LR) elasticity as will be recalled

in Sec. [[4

1.1.3 The disorder Hamiltonian

The disorder Hamiltonians will be taken as the integral of a disorder potential V' :
(r,u) € R x RY — V(z,u) € R:

HE ] = /IV(x,um) . (1.1.6)

Here {V(z,u)} is a collection of random variables (RVs) that is drawn from a known
probability distribution function (PDF). In Chapter we will define precisely the
PDF of {V(x,u)}, as we will restrict our analysis to some specific distributions allow-
ing exact treatments. We will however have in mind that some large scale properties
should be universal, where here by universal we mean independent of the distribution
of V apart from some precise properties. In Chapter [[I] on the other hand we will
almost never specify the PDF of {V(z,u)} as we will directly use methods that will
make clear the universal character of our conclusions. Here let us only define the global
properties of the PDF of {V(z,u)} for which our results will hold.

We will restrict our analysis to the case where the distribution of V(z,u) at one
point has no fat tails: all the positive moments V' (z,u)" (where from now on the over-
line () denotes the average over the random environment, i.e. over the distribution of
{V(z,u)}) are finite for n > 0: V(z,u)" < 400 (e.g. a Gaussian distributed disorder).
We will suppose that V(x,u) is homogeneously distributed. The symmetry in law
V(z + Az,u+ Au) ~ V(z,u) (where here and throughout this manuscript ~ means
‘distributed in law as’) will sometimes be referred to as the statistical translational in-
variance of the disorder. Concerning the correlations in the set of RVs {V(z,u)}, the
two most important cases that we will consider, motivated by physical applications,
are (i) disorder of the random bond type for which the correlations of the potential
V(z,u) are short range (SR); (ii) disorder of the random field type for which it is the
force F(x,u) :== =V, V(z,u) acting on the system which has SR correlations. More
precisely we will suppose

F(z,u)F (2, u) = 6Dz — 2 Ao(u—1') , (I.1.7)
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Figure I.1: Typical shape of the second cumulant of the disorder potential and of the
disorder force for disorder of the random bond type with N = 1 and correlation length
Ue ~ 2.

where Ag(u) = —V2Ry(u). Both are radial functions (i.e. even functions for N = 1).
In the random bond (RB) case Ry(u) is decaying faster than any-power law at large u,
i.e. typically as Ro(u) ~ e~ lul/ue where u, is the correlation length of the disorder. The
typical shape we have in mind for this case is shown in Fig. Ry(u) is positive while
Ag(u) is positive at small |u| and negative at large |u|. If Ry(u) is flat at 0 and at in-
finity, we have [, |u|?"*Ag(u) = 0. The case of 0 correlation length u. = 0 corresponds
to Ro(u) = 6™ (u). In the random field (RF) case, Ag(u) has the same properties as
Ro(u) in the RB case with a correlation length u.. In this case Ro(u) ~|y|—00 —0ul,
see Fig. Finally we will also sometimes briefly consider periodic disorder: in this
case Vp(z,u + Au) = Vy(z,u) where Au is the period (this case is relevant e.g. in the
context of charge density waves [11]).

Remark: The distinction between the internal and external space in the form of
the correlations might seem strange. The reason for this is that in our renor-
malization procedure, in Chapter [T, we will try to describe the effective disorder felt
at large scale by the interface. In doing so we will see that, e.g. starting from a RB
disorder with 0 correlation length Ro(u) = 6N) (u) the effective disorder at large scale
will acquire a finite correlation length in the u space. Conversely, starting with a non-

Figure 1.2: Typical shape of the second cumulant of the disorder potential and of the
disorder force for disorder of the random field type with N = 1 and correlation length
Ue ~ 2..
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zero correlation length in the internal space, the effective disorder at large scale will
have a (decreasing to) 0 correlation length in the internal space. For this reason we
will already start our renormalization procedure with disorder having the same type
of correlations than the effective disorder at large scale. Long-range correlations in
internal space can break this picture and we will not study them, see e.g. [12].

1.L1.4  The confining Hamiltonian

Most of the questions one can ask about a disordered elastic system with Hamilto-
nian defined as in would be ill-defined without a confining term H™[u] that
confines the system around an average position w € RY. For example, due to the
translational invariance in external space of H®[u], the ground state of the Hamilto-
nian H® [u] + H{Es[u] for a ‘typical realization of a typical’ disorder in an infinite space
would be at infinity. There are various ways of regularizing the problem and in this
thesis we will consider two possibilities.

In Chapter [II| we will confine the system around an average position w € RV using
a parabolic well as, for the case of a system with SR elasticity,

FLcont [y _n / (L.1.8)

and the parameter m > 0, which is the stiffness of the well, will be called the mass. In
this case we have

il + M) = 5 4 g w-g) - (g = ) (119)

Here we have noted w, = wS(d)(q). More generally for other types of elasticity we will
consider confinement such that

%%HH?%F;L%WwaWww) (11.10)

with

gt =W+ )2 (L1.11)

and in these cases we will denote the mass as

X
2

m=\/G.20 = 1 (1.1.12)
Conversely we will note g; y f el (z=y) 9q - ~1. In the remainder of the manuscrlpt we
will actually drop the tilde and except otherwise stated, the ‘elastic kernel’ g q_ will
thus also contain the confining term as in . Note that the confining Hamilto-
nian introduces a length-scale ¢, :== 1/ above which different parts of the interface are
essentially elastically independent. Being interested in the regime where elasticity and
disorder compete on equal footing, we will be interested in length-scales |z — 2’| < £,,.
We will thus consider the small p limit. Taking also into account the scales @ and L
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discussed earlier we will be interested in the regime a < |z — 2| < ¢, < L. As such,
boundary conditions will not play a role in this case and we will not discuss them.
As we will recall below in Chapter [T, adding such a confining term permits a conve-
nient renormalization group approach to disordered elastic interfaces (the case N = 1).
There ¢, plays the role of an infra-red cutoff that smoothly cuts off fluctuations of the
system at large length and —log u will play the role of time for the renormalization
group flow. More precisely we will be interested in understanding the properties of the
system as w is varied. In particular, under some conditions that will be discussed, we
will see that as w is varied, the ground state of the interface changes discontinuously as
a function of w. These abrupt changes define the notion of shocks or static-avalanches.
Understanding universal properties of avalanche processes is one of the main goals
of this thesis. In Chapter [lI] the confining term will thus play a major role as
moving w will allow us to probe a certain sequence of metastable states of the interface.

In Chapter [[TT on the other hand we will consider the case of a directed polymer
in a two dimensional random medium, that is the case d = N = 1. There we will
mostly consider the so-called point-to-point problem and suppose that both ends of
the polymer at = 0 and z = L are fixed as ug = 0 and u;, = w. This can be
implemented by a confining Hamiltonian H[u] = —E (5(N ) (ug) + M) (ug, — w))
with £ — oo. There the focus will be on lattice models and on determining statistical
properties of the DP at a finite temperature using exact methods. We will obtain finite
L results but we will mostly be interested in understanding some bulk properties for
L — oo which are believed to be universal. One of the reasons why we will use in this
chapter a different confining Hamiltonian compared to Chapter [[I] is that does
not permit an exact solution.

1.2 Static phase diagram and the strong disorder regime

In this section we consider the statistical mechanics of a disordered elastic system
described by an Hamiltonian of the form at a finite temperature T and confined
around w = 0 as in ([.1.10)). The goal of this section is to discuss qualitatively the
relevance at large scale of the disorder and of the temperature and to draw the well
known equilibrium phase diagram of DES. We will start by discussing the case of the
pure system V = 0 and describe the thermal fixed point.

1.2.1 The pure system and the thermal fixed point

We thus consider an elastic system u : & € R? — RN described by the Hamiltonian,
written in Fourier space,

1 2

Hpuret] = 3 /(q2 122 Uy (I.2.1)
q

At a given temperature T, the thermal average of an observable O of the u field is

defined by the path-integral

1

(Olu]) = 70 / D[u]Ofu]eTHeweldl  7Z[T] = / Dluje”THeuelul | (12.2)
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The Hamiltonian ([.2.1)) is quadratic and the theory is Gaussian: arbitrary integer
moments of u, can be computed exactly using Wick’s theorem. In particular the
two-point function is obtained as

A T
(ug - ug) =0(q+q)—5——=
v (% + p2)?
el (z z")
2

( !
(1 - t100) =T/q Py (1.2.3)

Hence we have
1 — ela(z—a’)
:2Tu—x”@wy<m_“ﬂ> (1.2.4)

(g — up)?) = 2T/q

by
where we have introduced the thermal roughness exponent

—d
Crn = 1 C 5 (1.2.5)

as well as the scaling function Fy(y) = [, % where ¢, is the first coordinate of
q=+y=)2
the d-dimensional vector ¢ and we recall ¢, = 1/p. At large distance Fy(y) decays
algebraically as m: the different points along the interface become elastically in-
dependent and ((u; — u,)?) tends to a constant. In the regime we are interested in
|z — 2’| < ¢, Fyin (1.2.4) is constant and can be forgotten and the mean square
displacement ((u, —u,)?) displays a power-law behavior determined by the roughness
exponent (ry. Hence for d < v, {11, > 0 and the interface is rough (it displays a loga-
rithmic scaling for d = ), while it is flat for d > v ( (rn, < 0). Hence, as expected, the
effect of the temperature on the large scale fluctuations of a system of fixed internal

dimension d gets stronger as the range of elasticity is decreased.

The thermal fized point
Let us now discuss the notion of Thermal fixed point (TFP), first at the level of the
Hamiltonian , and we consider the limit 4 — 0 (which is the regime we are
interested in). In this limit, the following scale transformation, equivalently written in
Fourier or real space,

r=bF , fz=0b Thu, pz

q=b""q , dGg=b"" Ty, (1.2.6)

leaves the Hamiltonian Hpure[u| invariant: it is a fixed point of the above scaling trans-
formation. Note that physical observables are sensitive to the combination %Hpure [u]
(and not Hpure[u] alone). In this theory, conserving the thermal averages of observables
under the thermal rescaling does not impose a rescaling of the temperature: this
is the thermal fixed point of the theory. The question of its stability can be simply
considered by adding other terms in the Hamiltonian and checking whether or
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not they decay to 0 under the rescaling as b — oo increases. Indeed finite & cor-
responds to large = if b > 1 and the theory in the variables (Z, @z ) can be thought of as
a coarse-grained effective theory describing the physics of the system at a larger scale.
As an example, consider adding higher order derivative terms of the form, schemati-
cally, [.(Vg)"uP with n > p and p even (so that the elastic Hamiltonian is still invariant
under translation and parity in the external space: H®[u] = H[u + cst] = H[—u]))
in the Hamiltonian for the case of short-range elasticity. Applying the scaling
transformation we obtain

/i (Vo) u? — pinpss / (V)" (tz)" . (1.2.7)

Such a term always decays to zero under the coarse-graining procedure: the large
scale physics will be described by the simple thermal fixed point we have considered.
A similar analysis will allow us to discuss the relevance of the disorder at the TFP
below but let us warn the reader here that this ‘renormalization procedure’ will not be
the one adopted in Chapter [T] to truly discuss the renormalization of the theory with
disorder. The point of view we will adopt there will be to study the effective action
of the field theory (which will be a replicated field theory in the case of the static
problem). We will keep ¢, finite as a convenient infra-red cutoff, and compute the
effective action in the limit y — 0 and show that it takes a universal scaling form. Let
us now briefly translate here the properties of the thermal fixed point in this language.
The effective action of the theory at finite p is defined as

@WIMT[J] = /D[u]ei%ﬂpure[u]+«fz JoUa (128)

Lyru)=-W,rlJ]+ / Jy -u, ,where J is such that u, = W ,

where we have emphasized the dependence on p and on the temperature of the ef-
fective action I';, 7[u] and on the generating function for connected diagrams W, r[J].
For a Gaussian theory described by the quadratic Hamiltonian , it is trivial
to compute these functionals and one obtains, up to an unimportant constant term,
Tur[u] = #Hpure[ul: Tpr[u] can be computed for arbitrary p. In this language the
scale invariance can be written by introducing the rescaled effective action

f‘u[{afc}] =Tu[{us = F‘_CThai=uw}] . (1.2.9)

As yp — 0, for z < 1 fixed of order O(1), the field u; describes the large scale fluctu-
ations in the scaling regime of the field u, in the original theory. At fixed T, iz, the
scale invariance of the thermal fixed point reads in this language

—ud, T, [{az}] = 0. (1.2.10)

And this holds Vu. In the theory with disorder the analysis will be much harder but
we will in the end obtain an equation similar to ([.2.10). We will only be able to
obtain information on the effective action I',[u] in the limit 1 — oo and in the limit
@ — 0. In the latter limit, that is the one we will truly be interested in, the key point
will notably be to identify the rescalings of the field v and of the temperature T" such
that a rescaled effective action I',,[u] converges to a fixed point of a non-trivial FRG
equation.
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1.2.2 Relevance and irrelevance of short-range disorder at the thermal
fixed point

Let us now consider the effect of adding a small Gaussian short-range disorder to the

pure Hamiltonian (I.2.1)):
il = [ Vi)
H[u] = Hpurelu] + HP[u] - (1.2.11)

And we suppose for simplicity that V(z,u) is Gaussian, with mean 0 and a two-point
correlation function

Ve, )V o) = g6 (@ — 2')6™ (u—u) (1.2.12)

with ¢ > 0 a parameter (a RB type disorder with 0 correlation length). Under a
general rescaling « = b and @3 = b~ Sugz—pz, the disorder energy is rescaled as

HUS ] :/V(ﬂ:,ug:) — bd[V(bf,bgﬂi) Nbdi?N([V(i“aﬂi)- (L.2.13)

Here and throughout the rest of the manuscript ~ means ‘distributed in law as’ and

V(Z, 1) is a (new) centered Gaussian disorder with correlations V (&, @)V (&, 4') =
g6 D (z — #)6W) (@ — @'). Note that the rescaling effectively assumes that the
configuration of the field u, on which the rescaling is performed is independent of the
disorder in order to use V (z,uz )V (2', uy) = g6 (z — 2/)0™N) (uy — uyr). This will be
true here in the sense of the leading approximation for an expansion in V since at
leading order fluctuations of u, are controlled by the thermal fixed point and here u,
can be thought of as a typical configuration of the DES at the TFP. Using ¢ = (Tp,
one obtains that the disorder energy scales as bw. Hence small disorder is
perturbatively irrelevant at the thermal fixed point if

2d

N>——.
>7—d

(1.2.14)

The result however only holds for d < v as we now explain. Indeed in larger
dimension d > 7, the thermal roughness exponent {1y, is smaller than 0. The system at
the thermal fixed point is not rough but flat. The exponent {1y describes the algebraic
speed at which the fluctuations ((u, —u,)?) converge to their asymptotic value. Using
the rescaling u; = b—Su, with b > 1 and ¢ < 0 means that distances of order 1
in the coordinates @ correspond to infinitesimal distances in the coordinates u: for a
realistic model this is dangerous since at small distances one expects the continuum
description to break down. One also necessarily starts at some point to see the effect
of the non-zero correlation length of the disorder V' which was assumed to be zero for
simplicity here. For these reasons, for a realistic model of a disordered elastic system
in a flat phase, comparing the effect of the elastic energy and of the disorder energy
at large scale should rather be made by rescaling the lengths as x = b% and v = 4. In
such a rescaling the elastic energy is rescaled as H[u] — b~ 7H®![i] while the disorder

energy is rescaled as H[u] — b He! [@]. Hence starting from a flat interface, i.e. e.g.
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in d > ~ for a model at the thermal fixed point or in arbitrary d at zero temperature,
weak disorder is relevant at large scale if

d < dyc = 27. (I.2.15)

Where we have introduced the upper-critical dimension of the problem. Let us now
summarize our findings.

1.2.3 Static phase diagram

1. At finite temperature for v < d < 2v and for d < y and N > % and at zero
temperature for d < 2+, for arbitrary weak disorder, the elastic system is always
rough at large scale with a roughness exponent larger than the thermal roughness
exponent (the system pays more elastic energy than in the thermal phase to be
able to visit regions of space with low values of the disorder potential). From
the renormalization point of view, we will see that the effective action of the
theory flows to a new fixed point at which scaling holds and in the scaling regime
|z — 2’| < £,

((ug = upr)?) ~ |z — 2/ % (1.2.16)

where we defined the statics roughness exponent (s > 0. At the upper-critical
dimension of the problem d,. = 2+, since the disorder is only marginally relevant
at large scale, the roughness exponent (; is expected to be 0 and to be
replaced by a logarithmic scaling. Here the fact that the large scale cutoff scale
¢, is equal to the one of the pure theory ¢, = 1/u is a consequence of the so-
called Statistical-Tilt-Symmetry (STS) of the problem as will be discussed later.
At this fixed point, taken as a parameter of the effective action, the temperature
of the systems is irrelevant and flows to 0 when p goes to 0 as u’. Asking that
the combination % fq(q2 + /,L2)%u_q - ug that will enter into the effective action
(again as a consequence of STS) of the problem converges to a well defined limit
imposes

0 =d—~+2¢ =2(¢ — (rn) > 0. (1.2.17)

This regime will be called the strong disorder regime in the remainder of the
manuscript. In this regime thus the temperature at large scale is irrelevant and
the system optimizes its energy by balancing elasticity and disorder. We will also
say that in this phase the system is pinned by disorder.

2. On the other hand, for d < yand N > f—fld (i) there exists a strong disorder fixed
point at 7' =0 (ii) the thermal fixed-point is stable to weak-disorder. There are
thus at least two phases. Starting from the strong disorder, zero temperature
fixed point, it is believed that at least for small N, the strong disorder fixed point
is stable to a perturbation by a small temperature. The question of whether or
not there exists a finite critical value Ny, < oo such that for N > Ny an
arbitrary small temperature makes the system depart from the strong disorder
fixed point and converge to the thermal fixed point is a difficult question which
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remains unanswered. This is true even in what might be the simplest case of SR
elasticity (7 = 2) in d = 1, the so-called directed polymer problem, see Sec.
In this case, the problem is equivalent to the KPZ equation in dimension N (see
Sec. , and in this language Ny is the unknown upper-critical dimension of
the KPZ equation, which could be equal to +oc. In this phase, for a sufficiently
large temperature / weak disorder, the large scale physics is described by the
thermal fixed point, the system is rough but it is not pinned: its fluctuations are
thermal.

3. Finally, for d > 2v the system is always flat and the elasticity wins at large scale:
the system is in its ordered phase.

From the above discussion we thus obtain the well-known phase diagram for the
statics of disordered elastic systems as a function of the internal and external dimen-
sion d and N for RB disorder and elasticity of the type @ with g, U= |q" as
presented in . This diagram can be more or less modified if one changes some
assumptions that were made. For example

(i) Disorder with long-range correlations: if the disorder has long-range correlations in
either the external or internal space its influence is expected to increase and the large
scale properties of the system can be different. Let us see qualitatively what changes
for the case of random field disorder which will also be considered in this thesis (see
Sec. with O correlation length. In this case under rescaling the disorder energy
behaves has, schematically,

[V = [ [ Py — v 50 [ [ Baa) =5 [ V)
xT T Ju xrJu T (1.2.18)

Following the same path as before, one sees that such correlations do not modify the
upper-critical dimension of the problem which is still 2, but increases the minimal
value of N above which the thermal phase is stable to weak disorder as Ny, = 2 +
% = %. For a study of long-range correlations in internal space we refer to [12]
and references therein.

(ii) Disorder with fat-tails: although it is not clearly visible in our derivation,
disorder with fat-tails (i.e. for which there exists a finite nyax such that V7 (z,u) = +oo
for n > npax) can strongly modify the static phase diagram and corresponds to new
universality classes. Naive intuition coming from the study of sums of independent
random variables would suggest that nmax > 2 would not change the phase diagram.
In general not much is known about the behavior of disordered elastic systems in
presence of fat-tail disorder. For the case of the directed polymer (DP) in a two-
dimensional random media N = d = 1 with SR elasticity v = 2, it is known from
a Flory argument confirmed by numerical studies that nm.x < 5 actually suffices to
change the behavior of the DP [I3, 14]. The physical origin of this modification is that
the strategy of optimization of energy of the DP changes in the presence of fat-tails
disorder. While for a Gaussian disorder the DP optimizes its energy homogeneously
along its internal direction, the optimization of energy becomes dominated by extreme
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d
o b
Pinned by disorder
d = AN
v 2+ N Rough

phase(s)

Pinned by disorder
or thermally fluctuating

N

Figure 1.3: Static phase diagram for a DES with elasticity kernel g, L'= ¢/ in a RB
disorder potential at temperature T'. For d > 2v the system is always asymptotically
flat. For d < 2y and N < %, ie. d> 217NN the system is always pinned by disorder
and is in a strong disorder / 0 temperature phase. For d < 217NN the system can a priori
be either pinned by disorder (at the strong disorder FP), or thermally fluctuating (at
the thermal FP), but is in any case always rough. The existence of a critical value Ny

above which the system is always in the thermal phase remains debated.

value statistics in the presence of fat tails with ny,.« < 5. The presence of a few sites
in the energy landscape with very low values of the disorder potential then dominates
the energy of the DP. We will not consider further in this thesis this complex question
and restrict our analysis to nyax = +00.

The goal of this thesis is to understand properties of disordered elastic systems
in the strong disorder regime of the phase diagram of Fig. In this regime one
expects (and would like to prove) that the system is rough with a non-zero roughness
exponent (s as in . Furthermore one expects the roughness exponent (s to be
independent of the details of the distribution of V(x,u): since the pinning of the DES
is clearly a collective phenomenon (at least if the PDF of V(x,u) has no fat tails) and
(s is a large scale property, one expects some universality to exist. As we will see in
Chapter [T using the Functional Renormalization Group, for disorder as discussed in
Sec. and in the case of interfaces N = 1, there is indeed universality in the large
scale properties of disordered elastic interfaces. The different universality classes are
indexed by the choice of the range of elasticity (the experimentally most important
being LR v = 1 and SR v = 2) and of the correlations of the disorder (RB, RF or
random periodic).
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1.2.4 Early attempts at characterizing the strong disorder regime: Flory
arguments and the Larkin model

Let us now review two early theoretical approaches aiming at describing the strong
disorder regime of Fig. As usual we consider disordered elastic systems with an
elastic kernel g, 1 ~ |g|7.

a Flory scaling argument

The Flory argument is a RG-type argument that consists in equating the scaling di-
mension of the elastic energy term and of the disorder term using simple rescaling of
the different terms in the Hamiltonian as was performed in the last section to check the
relevance of small disorder close to the thermal fixed point. In this senses it is similar
to a dimensional analysis. We thus rescale z = b with @z = b~ “ugz—pz. The elastic
Hamiltonian is rescaled as before as H®[u] — b9~7+2¢H![a]. For RB type disorder
(see Sec. the rescaling of the disorder part of the Hamiltonian is as in (|[.2.13])
and we obtain

d— N(s 2y —d
d— 20 = ——= s = . 1.2.1
v+2(C 5 = =i (1.2.19)
In the RF type (see Sec. [[.1.3]) on the other hand we obtain, using (.2.18)
_d— (N —2)¢ _2y—d
d—y+2( = 5 = G=5oN (1.2.20)

The flow in the Flory argument is the following. Here we are assuming that we are
at a RG fixed point and that the effective disorder felt at large scale transforms as
in ([.2.13) or (I.2.18)). However, during such a coarse-graining procedure, there can
be a non-trivial renormalization of the disorder coming from the optimization of the
energy of the interface on small scales. This scaling argument should thus be taken
with caution.

In particular we will see that disagrees with the exact result for directed
polymers in 1+ 1d with short-range elasticity for which (; = 2/3. Remarkably for the
RF case at least for N = 1, it is believed that is exact. This is due to the fact
that, although the disorder is also corrected by the renormalization in this case and the
hypothesis leading to are not correct, it is possible to show using the Functional
Renormalization Group that the tail of Ro(u) ~ —o|ul is not corrected, and it is this
uncorrected large distance behavior of Ry(u) which dominates the optimization of the
interface energy. For the RF case this remarkable result calls for a precise explanation
showing that there are no corrections coming from the optimization on small scales,
and for the important RB case the failure of the argument motivates the development
of a true renormalization scheme.

b The Larkin model

Larkin model
The Larkin model, introduced by Larkin in [15], is a perturbative attempt at under-
standing the properties of the strong disorder fixed point by directly looking at the
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T = 0 problem, i.e. by considering the ground state of the interface. It consists in
linearizing the random potential V' (z, u) (taken e.g. of the RB type) around a given po-
sition and retaining only the first order term. If the system is confined around a position
w = 0 the potential is linearized as V(z,u) = V(z,0) + 9,V (z,0)u = V(z,0) — F(z)u,
where we introduced the force F(z) := —9,V (z,0). Note that by definition F(z) does
not depend on u. The latter is chosen centered, Gaussian with short-range correlations
in the internal space and second moment F(z)F(z') = 6 (z — 2/)A where A > 0.
Taking as usual an elastic Hamiltonian H'[u] = } fq(q2 + MQ)%u,quq, the ground state
of the system satisfies

(@ + p*)2uy — F(q) = 0. (1.2.21)

Hence, the position field is Gaussian, with correlations in Fourier space

Uqtly = 5(d)(Q+Q’)m- (1.2.22)
And in real space, for d < dy. = 27 and for lengths |z — 2/| < 1/p, it is rough
(g — Ugr)2 ~ CyA\|z — 2|58 (1.2.23)
with Cy = 21=2vgz—d/ 2% and the roughness exponent known as the Larkin
exponent
(L= 272_ . (1.2.24)

Dimensional reduction
Again the Larkin exponent is not correct. One example is that it does not
reproduce the exact result already cited above (s = 2/3 for the RB case with N =d =1
and v = 2. A natural question however is to understand whether or not one could
extend and improve the previous calculation by taking into account higher order terms
in the series expansion of the potential: V(z,u) =>2, %83‘/(1‘, u)|u=0. Solving the
minimization problem in an expansion in u by adding higher order terms leads
to a remarkable result: to all orders in perturbation theory, it predicts and
the Larkin roughness exponent . In the context of interfaces, this simplification
of naive perturbation theory was first discussed in [16]. In the more general context
of disordered systems it is known as the phenomenon of dimensional reduction which
asserts that disorder averaged observables of a theory at 7" = 0 are equivalent to
thermal averages in the pure theory at finite temperature in dimension dg, = d — 7~y
(see [I7] for a theoretical analysis of this property using supersymmetry and e.g. [I§]
for a diagrammatic approach). The thermal roughness exponent (th = 'nyd
is indeed equal to ([.2.24)) using d — v — d. Of course, if dimensional reduction was
true everything would be rather simple. The problem here is that the Larkin analysis
misses important non-perturbative effects and can only work at small scale as we now
discuss. First, since the Larkin model is based on a perturbation theory with the
disorder expanded around the flat interface configuration v = 0, it is hard to believe
that it is correct at large length scales for d < 2+ since it predicts a rough interface.
More precisely, note that it effectively assumes that the force F'(x) does not depend on
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u while a generic RB disorder has a finite correlation length u. < co. For this reason,
while on small scales |z — 2'| < L. such that Aw is small |Au| < u, the Larkin model
can accurately describe the fluctuations of the system, it should certainly fail above.
The length L. is known as the Larkin length and it can be estimated as, using ,

_2
VOGALSE ~ 7 ie. Lo~ ( Jzic) o (1.2.25)

In particular note that for u. = 0, L. = 0 and the Larkin model is nowhere consistent.
What happens to the system above the Larkin length is that the elastic energy cost
paid by the system to wander in the energy landscape on distances Au > u. becomes
manageable and the system starts to fully exploit the fact that there are a lot of
minima. We will see in Chapter [[I] that the Larkin length is linked to the notion
of shocks and avalanches. Describing the optimization of energy on large scales is a
complex problem that will be tackled using renormalization method in Chapter [[]] and
exact methods in Chapter [[T]]

1.3 Various problems considered in this thesis

In this section we consider a disordered elastic system described by the Hamiltonian
(I.1.2)) and briefly introduce some questions that will be tackled during the thesis.

1.3.1 Shocks in the statics at zero temperature for elastic interfaces

In Chapter [[T] we will be interested in the statics at zero temperature for elastic in-
terfaces, i.e. the d > 1 and N = 1 problem. We will thus be interested in the
(V—dependent) ground state u) (w) of the total Hamiltonian:

w(w) = argming, pe sz Hyful
= argmin,, pa_p (Hu] + H[u] + HE [u]) (L3.1)
More explicitly we will be interested in the case of an elastic kernel g, V= V@? + 2

for an interface confined around a parabolic well at position w.

uy (w) = argmin,_.pd_g (; /ng—l(uq —w_g) - (ug —wy) + /m V(z, um)> . (1.3.2)

Following the previous section, the interesting case on which we will focus will be the
low-dimension case d < 2v (condition for the interface to be pinned by the disorder at
large scale) and in the range of scales a < |z — 2/| < ¢, < L. In this range of scales
one indeed expects scaling and universality to hold and we will be interested in under-
standing the process uY (w) as a function of w. Since for any w the interface is pinned
by disorder one expects that the evolution of uY (w) with w contains jumps in between
different metastable states of the disorder Hamiltonian. This will be made precise in
Chapter [[I| and we will see that these jumps, also called shocks will inherit the univer-
sality present in the physics of disordered elastic systems (yet to be precisely discussed).
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Irrelevance of the temperature? A natural question is to ask why we are only con-
sidering the zero temperature static problem in the questions outlined above. Indeed,
we have ‘shown’ in the previous section that the thermal fixed point of the interface
is unstable and the large scale physics of the system is described by a strong disorder
fixed point at zero temperature whenever %dd > 1, that is for d > /3. Since short-
range elasticity is described by v = 2 and we will only be interested in the cases with
a longer range of elasticity, especially v = 1, for true interfaces of dimension d > 1,
the thermal fixed point will always be unstable and the system is always expected to
be in the pinned phase. Although it is true that for these problems the temperature
does not play a role for large scale properties such as the roughness exponent, it does
affect some small scales properties and in particular we will see that it smoothes the
jump process described above. Therefore, though some of our results might also be
relevant for the non-zero temperature case as we will discuss, we will focus on the
zero-temperature problem.

1.3.2  Avalanche dynamics at the depinning transition for elastic interfaces
a Introduction to the depinning transition

Another question we will be interested in is the dynamics of the interface at the depin-
ning transition that we now introduce. The depinning transition is a dynamical phase
transition that occurs in the over-damped dynamics (with viscosity coefficient 1) of

elastic interfaces with elastic kernel g, ; =/, '1@=Y)|¢|7, driven by a non-zero force f
in a random force field F(z,u,) with second moment as in ([.1.7)), and we typically
have in mind the case of a Gaussian force where Ag(u — u') is a short-range function
with correlation length u.. The equation of motion of the interface is

Ny = /g;;uy + F(x,uz)+ f . (1.3.3)
y

Note that this dynamics (which corresponds to type A in the classification of [19])
is a somehow arbitrary choice on which we will focus. The presence of inertial or
viscoelastic effects are not taken into account here and thus not all disordered elastic
interfaces moving in nature can surely not be described by this dynamics. For some of
them however, at least in some regime, this type of dynamics have been proposed as
a relevant description (see Sec. [[4)). For the case of SR elasticity v = 2 this equation
is often referred to as the Quenched-Edwards-Wilkinson equation. Here the initial
condition will be basically unimportant: we will be looking at the out-of-equilibrium
steady state reached by the interface at ¢t — oo. Indeed it can be proved that in our
setting, starting from an initial condition such that all velocity along the interface
are either positive or 0 (i) they remain so for all time; (ii) up to a time translation
the interface position field reaches a single well-defined steady state. The two last
statements are often referred to as the Middleton theorem in the literature and were
proved by Middleton in [20]. The first question in the depinning transition is to
understand the velocity-force characteristic of the interface, that is

v(f) = lim — . (I.3.4)
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And here we are interested in the limit of an infinitely large interface L — oco. The
basic physics of the depinning transition that we recall below is known since the work
of Larkin in the framework of superconductors [I5], and was later developed in the
interface context, see e.g. [2I] and references therein. The main observation is that
for f < f., the interface does not move, v(f) = 0 and for f larger but close to f., the
velocity force characteristic exhibits a power-law behavior with an exponent 8 > 0:

o(f)~ (f = f)P for f=fe. (1.3.5)

To estimate f., first note that when f = 0, the interface is at rest. For d < 2+, the
interface is rough while for d > 2+ is asymptotically flat. For a flat interface of internal
length L, the typical disorder force acting on the interface scales as F' ~ \/A(O)Ld/ 2
while the total driving force acting on the interface is fL%. The latter always wins for
L — 0o and the interface starts to move: f. = 0 for d > 2+, the disorder is irrelevant at
large scale and § = 1. For d < 2+, the interface is rough when f = 0. On scales smaller
than the Larkin length L < L., the displacements of the interface are small,
and one can estimate again the typical force acting on this portion of the interface as
F~ \/A(O)Ld/ 2. Such a small portion of the interface can stay pinned for sufficiently
small F. Seeing the interface as a collection of N = (L/L.)% domains of length L.
pinned by fluctuations of the disorder, an estimate of the critical force (due to Larkin)

is thus:
o~ \/A0) LY (L.3.6)
and an estimate of L, was given in ((/.2.25|).

b The depinning transition as a continuous out of equilibrium phase tran-
sition

Following this simple analysis, the zero temperature dynamics of disordered elastic
interfaces of dimension d < 2y as described by appears to exhibit a dynamical
phase transition where the order parameter is the velocity of the interface and f is
the control parameter (see Fig. [[.4). The description of this phase transition can be
made in analogy with ordinary continuous phase transitions in equilibrium statistical
mechanics, with the additional ‘complication’ that there is also a time direction in
the problem (see [II] for the discussion of this point of view in the case of sliding
charge density waves). The usual space scale invariance at the point of a continuous
equilibrium phase transition becomes a space-time scale invariance in the steady state
at the point of the dynamical phase transition which is basically summarized by saying
that time scale as ¢t ~ x* where z is the dynamics exponent of the transition. In the
steady-state, approaching the transition from above f — f.F, there exists a growing
correlation length £ ~ (f — f.)™" (v > 0 is another exponent) such that, for |z —2'| < ¢
and |t — /| < &%, the fluctuations of the position field satisfy the scaling form

— t—t
(Ut — upyr)2 ~ |z — 2'|*4G <H> (1.3.7)

|z — a'|?
where (g4 is the roughness exponent and G(y) is a scaling function that satisfies

g(y) —ry—0 CSt g(y) ~Ny—00 (y%d/z) . (1.3.8)
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The different critical exponents 3, v, (4 and z introduced above are, as will be shown
later, not independent. More precisely the depinning transition can be described by
only two independent critical exponents, which will be taken as (4 and z in the fol-
lowing. (4 is analogous to the roughness exponent in the static problem (s but is a
priori different. As the depinning transition appears as a collective phenomenon, it is
expected that these exponents have some universality. As we will recall in Chapter [[I]
there are actually fewer universality classes at the depinning transition of the interface
than in the corresponding static problem since it is now known that there is a sin-
gle universality class for short-range random forces, corresponding to a random field
universality class (although different from the corresponding universality class in the
statics). In particular at depinning, the large scale properties in a random potential of
the RF and RB type are similar. As the dimension becomes close to the upper-critical
dimension dy. = 27, the disorder becomes irrelevant at large scale and the roughness
exponent (4 must converge to 0, while the value of the dynamic exponent converges
to, as can simply be read off from , z = . As we know from the study of the
static problem, for d < 2+ and without driving force, the system is pinned. As we will
see, the non-trivial dynamics that occurs at the depinning transition is due to the fact
that the interface will be most of the time pinned by disorder in a metastable state
(as we will argue these are different from the static ground states). From time to time
the interface will manage to cross the energy barrier and then moves with a velocity of
order 1 until it is pinned again by a new metastable state. Thus the interface dynamics
at the depinning transition appears as an avalanche process. At large force the system
is never pinned and flows with v(f) ~ f/n: disorder is washed out and only leads to
small fluctuations around the deterministic behavior. The interesting regime to un-
derstand is thus clearly the avalanche process close to the depinning transition. The
universal properties of this avalanche process will be, together with shocks between
ground states presented before, at the core of Chapter [[1}

c Creep and the temperature

The influence of the temperature on the depinning transition is much more subtle than
on the large scale properties of the static ground state (although it can also be quite
subtle). In the static problem, as we will see in Chapter non-zero temperature
smoothes the shocks at small scales when the energy differences between successive
minima become of the same order as the thermal energy. In particular in the static
problem, the role of energy barriers between successive minima will be inexistent. On
the contrary, the slow, non-trivial dynamics that is observed at the depinning transition
of the interface is all about the interface being able to cross energy barriers (the fast
motion observed after such a barrier has been crossed being an avalanche). Since a
non-zero temperature allows the interface to cross an arbitrary large energy barrier, it
has important effects on the dynamics, and the temperature is not irrelevant at large
scale. In particular, at non-zero T', for arbitrary force f > 0, the interface moves with
a non-zero velocity v(f). This phenomenon is known as creep. It was first described
theoretically [22], 23], 24, 25]. Rather non-trivial assumptions and scaling arguments



1.3. VARIOUS PROBLEMS CONSIDERED IN THIS THESIS 19

v(f)
Flowing system

Creep

Je f

Figure 1.4: Velocity-force characteristic of an infinite interface of dimension d < 2+ for
the over-damped dynamics ([.3.3]). Blue line: depinning velocity-force characteristic
for the interface at T' = 0. Dotted black line: creep velocity-force characteristic for the
interface at low temperature.

led to the creep law, valid for f < fe,

_Uc (fc\H D —2+2(
v(f) ~e (%) ; ,u:2_—gsc,

where U, is a system-dependent energy scale. Note in particular that involves
the static roughness exponent, while the creep is a non-equilibrium phenomenon. On
the theoretical side the relation was confirmed up to one loop accuracy using
FRG [26], 27]. For the case of SR elasticity in d = 1 in a random bond potential (for
which the static exponent (s = 2/3 is exactly known and thus p = 1/4), it was also
confirmed numerically in [28], and even experimentally using measurements on the
dynamics of magnetic domain walls [29]. Understanding more thoroughly the creep
regime of an elastic interface is still a very active area of research [30} [31] that we will
not discuss in this thesis. Let us only note the recent numerical study [32] that suggests
that avalanches of the interface during the slow creep motion of the interface exhibit
in different regimes scalings corresponding with either the scaling of static shocks, or
the one of dynamic avalanches at the depinning transition studied in this thesis. From
now on we will always restrict ourselves, for the dynamics, to the zero temperature
case.

(1.3.9)

1.3.3  Static problem at finite temperature for directed polymers with SR
elasticity and the KPZ universality class

a From the DP with SR elasticity to the KPZ equation

Another focus of this thesis is the Kardar-Parisi-Zhang (KPZ) equation which is as-
sociated with the statics of a short-range elastic directed polymer (d = 1 case) in
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dimension N at finite temperature 1" as we now recall. The partition sum for directed
polymer (DP) with starting point ug = 0 and endpoint u;, = u € RY can be written
as a path integral

u(L)=u
Zp(u) = / Y Dluje7r Jo do(Vauel—4 [ oV (@) (L.3.10)
u(0)=0

and for now we suppose that the random potential is Gaussian with correlations

V(z,u)V(z',u') =6(x — 2 )Ro(ju — /| (I.3.11)

with Ro(u) a SR function (RB disorder). We will see in Chapter [I11| that (up to a sub-
tlety on which we will comment later) that Z (u) satisfies a stochastic partial differen-
tial equation (SPDE) known as the multiplicative stochastic heat equation (MSHE).
In this equation L plays the role of the time in the heat equation and we will thus
make the change of variables

L—t , u—z. (I.3.12)

In these variable Z1(u) — Z;(x) satisfies

tht(a:) _ ((vx)2 - ;V(t,@) Zi(@)) . (1.3.13)

And the initial condition is Zj—g(z) = 6™ (z). Introducing the free-energy of the
directed polymer through the change of variables Fi(x) = —T'log Z;(x), we obtain, for
V(t,z) a smooth disorder,

0,F(z) = f%(vxw + %(Vx)2Ft(x) F V(). (1.3.14)

Finally, making the change of variables h(t,z) = —F;(z), we obtain
1 o T 2
Oh(t,x) = i(Vfch(t,m)) + E(Vx) h(t,z) — V(t,z) . (1.3.15)

For the case of V(t,z) taken as a Gaussian white noise, this SPDE is known in the
literature as the N-dimensional Kardar-Parisi-Zhang (KPZ) equation. Beware that x
now corresponds, in the elastic system language, to the N dimensional coordinates in
the external space, while ¢ corresponds to the one-dimensional coordinate that spans
the internal space. The change of variables Z;(z) = e(*:®) that maps the MSHE to
the KPZ equation is known in the literature as the Cole-Hopf transform.

b The KPZ equation as a model of out-of-equilibrium growth of interfaces

Note that the KPZ equation (I.3.15)) appears rather similar to the quenched Edwards-
Wilkinson equation (i.e. SR elasticity g;é = 5D (x - y)Vg) for the over-
damped dynamics of a d dimensional interface at zero temperature except for the few
important differences that (i) it contains a non linear term (Vhy;)? (ii) the disorder is
not quenched but rather depends on time and can be interpreted as a thermal disorder.
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Let us now interpret h,; as a N-dimensional interface and has a SPDE for the
dynamics of h;;. Note that the non-linear term breaks the symmetry A — —h and
makes the interface grow in the upward direction. In particular, even without driving
term and at zero disorder V = 0, an interface described by the dynamics
starting from a non-flat initial condition would grow indefinitely: lim; o hyt = 400.
This should be compared with the Edwards-Wilkinson equation with neither
disorder nor driving. In this case the pure dynamics is rather simple: starting from an
initial configuration u, ;—¢ the interface flattens through the effect of the elastic force.
The interface dynamics described by and are thus radically different.
While (I.3.3) can be thought of as the dynamics of an interface that separates two
equivalent phases, describes an out-of-equilibrium situation where one phase
(the one below the interface) is favored compared to the other one. This is precisely
for the purpose of describing such physical situations that was first introduced
in the seminal paper [33]. While in all the complexity comes from the fact that
the disorder is static, in the complexity comes from the presence of the non-
linear term that makes the problem an out-of-equilibrium problem. Indeed, without
the non-linear term, solving is trivial since the equation is linear in hy,.

¢ Introduction to KPZ universality in 1+ 1d

At least in 1 4+ 1d (i.e. N = 1) the equation ([.3.15) is believed to represent an
important universality class of out-of-equilibrium local growth processes sharing the
following properties [34]

1. The interface is elastic, of the short-range type such as (V;)2h in (1.3.15)).

2. The growth rate at x is non-linear in the local slope (V,h) and thus favors one

phase, as (V;h)? in ([.3.15).

3. The interface is subjected to thermal fluctuations, i.e. V(¢,z) in (1.3.15) has
short-range correlations.

4. There is no quenched disorder in the system.

The importance of the KPZ universality class goes however well beyond growth pro-
cesses (for recent review see [34} [35] [36]). One example is also that as we showed, it is
equivalent to the static problem of a DP at a finite temperature 7' (hence although the
KPZ equation does describe an out-of-equilibrium situation, it is fair to say that it is a
rather peculiar one). In the special case N = 1 which will be the focus of Chapter m
much is known about the problem and the associated universality. Let us recall here a
few important features of this universality class (that will be proved in specific models
in Chapter . Noting vee () = limy—o0 $h(t,z = got)ﬂ (the non universal, determin-
istic asymptotic growth speed of the interface) for h(t,z) an interface growing from an
initial profile h(t = 0, x) = ho(z) with a growth process in the 1+ 1d KPZ universality
class, we have

!The ballistic scaling in this definition can be expected from the non-disordered case, e.g. starting
22
from an initial condition Zi—¢(x) = §(z) we obtain Z:(x) ~ %efﬁ and taking the log one obtains

h(t,x) ~t

_a?
27T2¢2 "
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Scale invariance and universality of critical exponents
The centered profile

h(t,x) = h(t,x) — tvso(x/t) , (I.3.16)
has large time fluctuations such that for ¢ > 1 and Vb, ¢, z, we have the equality in law
h(t,z) ~ b *h(b°t, bx) , (1.3.17)

with the universal exponents
a=1/2 | z2=3/2. (1.3.18)

The critical exponent « is the roughness exponent of the interface. Note that it is
equal to the roughness exponent of a Brownian motion. The critical exponent z is
the dynamic exponent. Note that going back to the DP language amounts to taking
z — w and t — z: in this language the roughness exponent of the DP u ~ z¢ is thus
(s = 1/z =2/3 as already announced. Using , one obtains, for ¢t > 1 and Vz

t

|z[?

(bt ) — h(0,0))2 = oG (—

|z[?

) = t20Gy(—) . (1.3.19)

Where the choice of the writing is a matter of taste and G;(y) are two scaling functions
related by Gi(y) = y**Ga(y),

B=a/z=1/3 (1.3.20)

is the growth exponent, often measured in numerics, G1(y) ~, o+ cst and Gi(y) ~y—o0
y**/#. Note finally that, even if one takes V(¢,z) in as a GWN, there is no
simple way to see that the exponents are the true critical exponents of the
KPZ universality class and that the equality in law holds: the KPZ equation
is not invariant by rescaling and is certainly not the FP of its own universality
class. This will be further discussed in Chapter [[TI]

Universality beyond critical exponents: universality of fluctuations
The following convergence in law holds

h(t

t—o00 13

= A\X, (1.3.21)

where A is a non-universal constant and X is a RV whose distribution is universal
and depends only on some global properties of the boundary conditions. The classifica-
tion of ‘sub-universality’ classes corresponding to boundary conditions is probably still
not complete (but almost, see [34]) but a few robust examples are: (i) starting from
‘droplet’ initial condition, i.e. ho(z) = —w|z| with w — oo, leads to X distributed
with the Tracy-Widom GUE distribution, corresponding to the (rescaled) probability
distribution function of the largest eigenvalue of a random matrix in the GUE ensem-
ble [37]; (ii) starting from flat initial condition, i.e. ho(xz) = 0, leads to X distributed
with the Tracy-Widom GOE distribution, the distribution of the largest eigenvalue
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of a random matrix in the GOE ensemble [38]; (iii) starting from a stationary initial
condition (see Chapter leads to X distributed with the Baik-Rains distribution
[39]. Note that in the DP language means that the fluctuations of the DP
free-energy scale with the length as L'/? and are distributed according to the same
distributions.

Other remarkable known universal properties of the KPZ universality class in 1 +
1d will be reviewed in Chapter [I[TI} Let us close this section by mentioning that the
theoretical knowledge of this remarkable universality is due to the existence of various
models in the 1 4+ 1d KPZ universality class that possess exact solvability properties.
This notably includes the usual continuum KPZ equation itself as we will recall but
our focus in this thesis will be on discrete exactly solvable models of directed polymers
on the square lattice.

1.4 Experimental realizations

In this chapter we introduce a few of the physical systems for which a description by
a disordered elastic interface has been proposed. They all have in common the fact
that, at a mesoscopic scale in some regimes, they can be described by an interface with
different elastic behaviors which look rough and exhibit complex fluctuations. They
can however be regrouped in two different classes. In Sec. we will give examples
of interfaces pinned by quenched disorder, at or close to equilibrium (more precisely
such that if no force acts on the system the interface is at rest). They will be described
by various types of elasticities and disorder. In Sec. [[.4.2] on the other hand we will
give examples of growing interfaces that are fundamentally out of equilibrium: they
grow indefinitely. We will present interfaces whose large scale dynamics is believed to
be captured by the standard KPZ universality class in d =1 + 1.

1.4.1 Disordered elastic systems pinned in a quenched random environ-
ment

a Domain walls in magnetic systems and Barkhausen noise

Considering a piece of ferromagnetic material of dimension D > 2 below its Curie
temperature, it is known that a variety of static and dynamic properties of the material
can be understood at a coarse grained level by describing only the domain walls (DW)
between several domains of constant magnetization. If impurities are present in the
material (without destroying the ferromagnetic order) and that the deformations of
the DW are small (e.g. at sufficiently low temperature) it is possible to describe the
domain wall by a simple elastic interface in a disordered medium without overhangs[40,
22, [41), 29] as in with d = D — 1 and N = 1. Preparing the sample at low-
temperature such that there are a few domain walls, the pinning of the domain walls
by the disorder will make inhomogeneities in the magnetization persist. If the disorder
is made of random magnetic impurities it will naturally be of the random bond type,
but random field type disorder can also be studied in antiferromagnetic systems with
random impurities under a constant field (see [9] and references therein). The elasticity
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of the domain wall is naturally short-range (v = 2) as the energy cost of creating a
domain wall is local and proportional to the area of the domain, but under certain
conditions it is known that long-range elastic interactions can be relevant (see below).
From this point a variety of situations can be investigated, in particular the static
properties of the domain wall and its dynamics under an external magnetic field.

In some experimental situations it is possible to directly visualize the domain walls
and to investigate properties such as the roughness of the interface or its response to an
external force. In particular in [29] the authors investigated the so-called creep-regime
of a domain wall in an effectively two-dimensional ferromagnetic material (D = 2) and
investigated the so-called creep regime, that is the velocity-force characteristics of the
domain-wall at very small applied force (=magnetic field). The authors obtained a
remarkable confirmation of the so-called creep law discussed above , and also
measured the roughness exponent of the domain-wall as ¢ ~ 0.69 4+ 0.07, correspond-
ing well to the theoretical exact value of the static roughness exponent of a directed
polymer (d = N = 1) in a RB disorder with SR elasticity (s = 2/3.

The influence of the physics of domain walls has however also direct consequences
on macroscopic properties of the sample. An important example is linked to the
notion of Barkhausen noise. Applying a slowly increasing magnetic field to a magnetic
sample, the magnetization increases following the hysteresis curve. The increase in
magnetization is however non-smooth and proceeds by jumps. These can directly be
measured (see [42, 43]), and the first experimental report of the existence of this noisy
signal is due to H. Barkhausen in [44]. Research on this process has led to distinguish
two classes of magnets: (i) hard magnets, characterized by a ‘wide’ hysteresis curve;
(ii) soft magnets, characterized by ‘small’ hysteresis curve. In the first class, the
microscopic origin of the Barkhausen noise is attributed to the coherent reversal of
domains of magnetizations. In the second class, the Barkhausen noise is attributed
to the motion of domain walls which alternate periods where they are pinned for a
long time by impurities, and period of fast motion where they jump from pinning
configurations to pinning configurations. Plotting the magnetization as a function of
time M (t), the latter exhibits a so-called avalanche dynamics characterized by jumps
M(t+ At) — M(t) = S interrupted by ‘long’ (> At) periods of quiescence. Following
the domain wall interpretation for the origin of these jumps, the size S of the jumps
of the magnetization are directly proportional to the volume (for samples in D = 3)
swept by the DW during its motion. It was found (see [45], 46] and references therein)
that the distribution of jumps S and time T are power law distributed in between two
(widely separated) cutoffs:

P(S)~S™ | P(T)~T7. (L4.1)

As we will see in Sec. these power-laws were argued to be related to the critical
exponents of the interface at the depinning transition, and thus such measurements
give access to properties of the interface (and vice versa). In Barkhausen experiments
two universality classes for soft magnets in D = 3 were found [45, 46]: (i) polycrys-
talline materials for which the exponents depend on the driving rate and for which the
exponent at slow driving are 7 ~ 3/2. In this class it was argued that due to the
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presence of dipolar interactions, the elasticity of the domain-walls are effectively long-
range with v = 1 [47]. Taking a look at the phase diagram in Sec. although here
we are not in a static situation, we see that these systems have d = 2 = 2y = d.: they
sit right at the upper-critical-dimension of the problem. We will see in the following
that the above exponents are indeed the mean-field exponents of avalanche motion.
(ii) amorphous materials, for which the empiric exponents are 7¢ ~ 1.27 and «a ~ 1.25,
independently of the driving rate, and for which the elasticity of the domain wall is
short-range.

b Fractures fronts in brittle materials

Another physical process for which the model of an elastic interface has been used
is for the fracture of brittle materials (see [48] for a review). Indeed it has been
argued that for these systems the propagation of the crack front can be understood
as the zero temperature over-damped dynamics of a line with long-range elasticity
(d =~ =1) [49, 50, 51, 52] in a disordered medium. The fracture proceeds again by
avalanches, whose statistics can be experimentally measured by acoustic techniques,
or in some experimental setup by direct visualization of the crack front [53, 54, 55, [56].
The experimentally obtained value of the roughness exponent was there reported as
¢ ~ 0.35 on large scales, while at small scales a value of { ~ 0.63 was reported.
In these systems, due to the long-range nature of the elasticity, an avalanche at one
point of the interface generally triggers several avalanches at different points and when
speaking about the distribution of the size of avalanches, one has to distinguish whether
the size of single avalanches or of the cluster of avalanches is measured. In [57] the
distribution of the size of single avalanches was reported to have a power-law exponent
of 7 ~ 1.56 £ 0.04.

¢ Some other related situations

Contact lines of fluids on rough substrates
It has been argued that the slow motion of the contact line of a fluid on a rough
substrate could be well approximated by the motion of an elastic line with long-range
elasticity at the depinning transition [58, 59, 60]. While some aspect of this dynamics
agree (e.g. avalanches) well with the elastic interface theory, [61], the value of the
experimentally measured roughness exponent ¢ ~ 0.5 is still not understood, although
it has been argued that it could be the sign of non-linear elastic terms [62].

Farthquakes
It has been argued that some features of earthquakes and geological faults could be
captured by the model of an elastic interface in a disordered medium [63}, (64, 65, [66]. It
is however a rather controversial issue and it is now clear that some important features
of earthquakes, such as aftershocks and the Omori law [67] are not contained in the
simplest elastic interface model. We will come back to this specific issue in Sec. [[T.6.1]

Vortex lattices in superconductors
Although it not a disordered elastic interface, let us mention here that features of the
deformation of the vortex lattice in high-T, superconductors (d = 3, N = 2) are similar
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to those of disordered elastic interfaces. In particular it is known that the pinning of
the lattice by the disorder plays an important role in high-7,. superconductivity and
that a similar depinning transition is observed. See [68] for a review.
Imbibition

Let us finally mention here the problem of the invasion of a viscous fluid in a porous
medium known as ‘imbibition” where in some regime the dynamics resembles the dy-
namics of an elastic interface and scale invariant avalanches are also observed [69].
Some aspects of the problem are however not captured by elastic interfaces (in par-
ticular in the experimentally much studied context of so-called forced flow imbibition,
the conservation of the volume of the fluid imposes the mean velocity of the fluid at
all time and thus generates a complex non-local dynamics along the front). We refer
the reader to [70] for a review of this related subject.

1.4.2 Out-of-equilibrium interface growth

We now give a few examples of situations where the out-of-equilibrium growth of a
1-dimensional interface was shown to display scale-invariant behavior in agreement
with the 1 4+ 1-d KPZ universality class. It should be stressed here that it is easier to
find in the literature experimentally observed growth processes in d = 1 + 1 for which
the scaling behavior notably differs from the one of the KPZ universality class, see
e.g. [71,[72]. This obviously does not mean that the KPZ universality class does not
exist in nature, but it is true that some of its conditions are not always easy to realize
experimentally (e.g. absence of quenched noise). Below we mention three convincing
experiments.

a Growth of bacterial colonies and cancerous cells

Bacterial colonies growing on a Petri dish provide an experimental realization of a
growing interface in 1 4+ 1d. In [73] experiments on the growth of two types (B and
D) of bacteria were performed. From microscopic observation it was observed that
the microscopic growth mechanisms of the two types were quite different. While the
type B bacteria formed long chain advancing simultaneously (thus inducing a non-local
growth), for the type D bacterias the growth mechanisms were argued to be local. The
found roughness exponent of the interface were found to be ap ~ 0.78 £ 0.02 and
ap =~ 0.50 + 0.01. The growth of type D bacteria was therefore argued to provide an
experimental example of a growing interface in the 1 + 1d KPZ universality class.

More recently in another biological context, the growth of cell colonies for can-
cerous and non cancerous cells on Petri dishes was investigated in [74] with the aim
of distinguishing both types of cells from their growth mechanisms. Although some
distinguishing features were reported, both types of colonies were found to exhibit a
KPZ type growth scaling with exponents measured as o ~ 0.50 £0.05, 8 ~ 0.32+0.04
and z ~ 1.5 £0.2.

b Burning paper fronts

Slowly burning sheets of paper also provide an example of interface growth in 1 + 1d.
In [75] this growth process was investigated for two different types of papers. The



1.4. EXPERIMENTAL REALIZATIONS 27

exponents were found in good agreement with the KPZ expected values: o ~ 0.484+0.01
and g8 = 0.32 £ 0.01.

¢ Liquid crystal growths

The most convincing experimental evidence of KPZ universality in growth process in
1 + 1d comes from recent experiments on turbulent liquid crystal [76}, [77, [78, [79, [80].
This experiment is very close in spirit to the original motivation for introducing the
KPZ equation [33]: the interface is a true interface between two phases (called DSM1
and DSM2) of the same system. While the microscopic properties of each phase are
rather complicated, at high electric field the DSM1 phase is unstable and the growth
of a nucleus of the DSM2 phase in an initially prepared liquid crystal in the DSM1
phase exhibit fluctuation statistics in amazing agreement with the KPZ theory in 141d.
These highly reproducible experiments indeed allowed the authors to obtain the scaling
exponents o ~ 0.5+ 0.05 and 8 ~ 0.336 £ 0.001, but also to exhibit strong evidence
that the full rescaled fluctuations of the interface height at large time converges to
the GUE and GOE distributions, depending on the shape of the original nucleus of
stable phase. Traces of the Baik-Rains distribution in the stationary state were also
obtained.
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Chapter ||

Avalanches and shocks of disordered
elastic interfaces

11.1 Introduction

Avalanche-type dynamics occur in a large variety of complex systems: snow avalanches,
earthquakes, fracture processes in disordered materials, fluctuations in the stocks mar-
ket, Barkhausen noise in magnets, avalanches in the neural activity of the brain... In a
general sense, a system is said to display avalanches if its response to a slow, smooth,
external loading is discontinuous and proceeds via jumps. The most interesting situ-
ation to the statistical physicist is the case where these jumps span a wide range of
space and time scales. If this occurs, then one might hope that the precise underlying
dynamics of each system is mostly (except e.g. symmetries, etc) unimportant at large
scales, i.e. that avalanche processes display some universality. In fact such systems
do exist in nature, and the experimental and theoretical analysis of systems and mod-
els displaying avalanches has created a large research activity over the past decades
[81]. Some key conceptual frameworks on the theoretical side have been the analysis of
avalanches in (i) cellular automaton models exhibiting Self-Organized- Criticality [82],
as e.g. the Manna sandpile model [83] and the Abelian sandpile model [84], see [85] for
a review; (ii) the random field Ising model [86], 87, [88] and the mean-field spin glass
SK model [89, [90]; (iii) models related to the concept of marginal stability [91]; (iv)
disordered elastic systems.

In this part of the manuscript we will review some known results on avalanches
(and the closely related notion of shocks) in disordered elastic interfaces. Understand-
ing avalanche processes in this type of systems is an important issue. Indeed on one
hand it is known that the model of an elastic interface in a disordered medium is rel-
evant to describe a variety of physical situations (see Sec. , and therefore on the
theoretical side it is a perfect candidate to understand universality in some avalanche
processes. On the other hand disordered elastic systems permit the use of a variety of
existing analytical techniques. Theoretical progresses on this type of system are thus
already possible and understanding them is a good starting point for other problems.
For example it was recently argued that the Manna sandpile model is in the same uni-
versality class as the depinning of an interface in a short-range disordered medium [92],

29
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or that the yielding transition in amorphous solids share some interesting properties
with the depinning transition [93] (although it is in a different universality class, in
particular there is an additional independent critical exponent).

The outline of this section is as follows: In Sec. [L.2 we introduce the notion of
shocks and avalanches in toy models of a particle on the real line (d = 0 elastic
interfaces). These notions are generalized to the case of interfaces in Sec. There
we review the phenomenology associated with avalanches, in particular we discuss
their scaling. In Sec. [I.4] and Sec. we review the functional renormalization group
approach to the statics and to the depinning transition of disordered elastic interfaces,
with an emphasis on its application to the study of shocks and avalanches. Finally
in Sec. we will review some important results on avalanches in disordered elastic
interfaces, and summarize the results obtained during the thesis on this subject. These
are presented more thoroughly in the original research papers [1} (2, B] reproduced in

Appendix [A][B|[C]

11.2 Introduction: the avalanche process(es) of a particle on
the real line

In this section we begin our study of avalanche processes of elastic interfaces by study-
ing toy models in d = 0, i.e. a particle on the real line in a disordered medium. This
analysis will prove relevant when discussing the avalanche processes of true elastic
interfaces as a basis on which we will build some intuition on shocks and avalanches
processes. In Sec. we introduce the notion of shocks and in Sec. we intro-
duce the notion of avalanches. We will conclude by comparing these two notions in

Sec. [1.2.3

11.2.1 Shocks between ground states for toy models of a particle without
disorder

In this section we introduce the notion of shocks using toy models of a particle in a
deterministic potential V' exhibiting several local minimas as would a true disorder
potential. We study this simple case in order to maximize the clarity of the exposi-
tion. Exact results can also be obtained for models of shocks for a particle in a random
potential: this includes the case of V' (u) taken with the correlations of a Brownian mo-
tion (the Sinai model [94], a toy-model for the random field universality class of elastic
interfaces) or with short-range correlations (that corresponds to the Kida problem in
the context of Burgers’s turbulence [95] and to a toy-model for the random bond uni-
versality class for elastic interfaces). We refer the reader to [96] and references therein
for exact results on these models, and we now begin our study of shocks.

a  Shocks for a particle in a cosine potential

We consider the toy model of a particle on the real line u € R subject to a cosine po-
tential V (u) = cos(u) and to a confining potential $m?*(w—u)?. The total Hamiltonian
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of the particle is

Holu] = cos(u) + %mZ(w —w)?. (I1.2.1)

The ‘disorder potential’ V(1) has an infinite number of exactly degenerate minima at
ug = m+ 27k, k € Z. For m # 0, the confining potential %mQ(w — u)? breaks this
degeneracy, except at some special points wy (the points where V(w) is maximum,
that is when wy = 27k, k € Z) and the ground state

w(m;w) = argmin, cgHoy(u] , (I1.2.2)

is well defined except in this discrete set of points. Graphically the position of the
ground state of the system can be obtained using the so-called ‘Maxwell construction’:
for a given w with a non-degenerate ground state u(m,w) with energy F(m,w), by
definition, V(u) > E(m,w) — im?(u — w) Yu # u(m,w), with the equality at u =
u(m,w). Hence, VO < E(m,w), the parabola C' — $m?(u — w) does not intersect
V(u). Increasing C' from —oo, the position of the ground state u(m, w) is given by the
abscissa of the first point of intersection of the parabola C' — im?(u — w) with V (u)
(see Fig. [I1.1)). For large m, the ground state u(m;w) closely follows w and u(m;w)
is smooth as a function of w. For m small enough, at the point w = wy, the ground
state of the system is degenerate between one point u™(m;w) that is close to uy, and
u~ (m,w), that is close to ui_1. The critical value where this degeneracy first occurs
satisfies the equation %mg = %di};gu) lu=0 = %, that is m. = 1. As m — 0, it is trivial
to see that u™(m;w) converges to uy and u~ (m;w) converges to u,_1. We obtain

lim u(m;w) = Z O(w — wi)0(wr4+1 — w)ug
m—0 ez
—+00
=u_1+ Z O(w — wg)Sy  for w>0. (I1.2.3)
k=0

Here 6 denotes the Heaviside theta function, and in the second line we have introduced
the size of the k' shock S; = up — up_;. In this simple model these are of course
all equal to Sy = S = 27 and u_; = —m. The above formulae are ambiguous at the
shock points w = wj, since precisely at these points the ground state is degenerate,
and thus u(m;w) is ill defined. This is resolved by using e.g. the convention that
u(m,w) is left continuous. At small, but non-zero m, m < m., the shock process gets
slightly modified, as u(m;w) is not exactly constant between wy and wg41. Small m
corrections are given by, for wy < w < wg41,

u(m; w) = uy, + m?oup(w) + O(m*) | Sup(w) :=w—uy, . (11.2.4)
Let us now discuss the influence of the temperature in a toy model of a particle in a
double-well potential.

b  Smoothening of the shocks by the temperature

We now consider a particle on the real line u € R at equilibrium at a finite temperature
2
u

T > 0 in a double well potential V' (u) = —% + % and subject to a confining potential
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$m?(w — u)?. The Hamiltonian is

2 4
U U 1
Howlu] = Y + T + §m2(w —u)? (I1.2.5)
And we consider the average position of the particle:
ffooo ue_%H“’ [4]

u(m, T;w) = (I1.2.6)

ffooo 6_%’Hw[u] .
First note that in the limit m — 0, we obtain lim,,_,o u(m,T;w) = 0. On the other

hand, taking first the zero temperature limit we obtain, for m sufficiently small m <
me =1,

%irrb u(m, T;w) = 0(w)u™ (m) + 0(—w)u™(m) (I1.2.7)
%
with for m < me.,
m? m?
wh(mw) =1+ (=17 +0(m") , w(mw)=-1+—(w+1)°+0(m").

(I1.2.8)
Let us now consider the limit 7" small but non zero, with m < m, fixed. The integrals
in are dominated by two saddle-points at u™(m,w) and u*(m,w). One easily
obtains, noting AE(m,w) := H[u"(m,w)] — H[u™ (m,w)] the difference of energy
between the right minimum and the left minimum,

sign(ut (m, w))e” TAEMW) 4 gion (u=(m, w))

—LAE(m, 1
e TP 4

Taking now the small m limit on this expression we obtain

+O0(1/VT)  (I1.2.9)

u(m, T;w) =

[ut (m,w)]

u(m, T;w) ~ tanh (W) +O0(1/VT) . (I1.2.10)

In particular, one retrieves for large |w| or for small temperature the shock limit (IL.2.7)).
For non-zero T', the shock is smoothened on a scale

wp ~ 2 (11.2.11)

m2

Read differently, the shock is smoothened on small scales when the energy difference
between the two minima ~ m?w is smaller than the thermal energy ~ 7. Note that
the height of the barrier of potential between the two minima does not play a role in
this problem.

11.2.2 Avalanches in the dynamics of a particle on the real line

In this section we now discuss the notion of avalanches in the zero temperature over-
damped dynamics of a particle. We first consider the case of a particle in an abstract
force landscape F'(u), and then recall some features of the very instructive exact so-
lution of the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model where the force
F(u) is a Brownian motion. We refer the reader to [97] for the study of other cases.
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V(u) w(m, T;w)
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Figure I1.1: Left: Shock process for a particle at zero temperature in a cosine poten-
tial. Left-up: The Maxwell construction allows to graphically find the position of the
minimum of V(u) + 3m?(u — w)? for m # 0: the parabola —3m?(u — w)? is raised
until it intersects V' (u). The point of intersection corresponds to the position of the
minimum. For —27 < w < 0 (resp. 0 < w < 27), the minimum is at —= (purple dot)
(resp. +m, green dot) (up to O(m?) corrections). At w = 0 (red dotted parabola)
the minimum is degenerate. Left-bottom, the jump process obtained from the above
picture in the limit m — 0. Right: smoothening of a perfect shock for a particle in a
double-well potential by non-zero T' and m in the limit 7" < m? and m < m..

a The avalanche process of a particle in a smooth force landscape F(u).

Let us thus consider the over-damped dynamics of a particle in a force landscape F'(u).
Here we typically have in mind the case F'(u) = a(u)sin(b(u)u) with a(u) and b(u) > 1
some smooth bounded functions: the force landscape has a lot of minimas and does
not wander too far away from zero (see Fig. . The temperature is 0 and similarly
to the static problem, we consider the over-damped dynamics of a particle driven by
a parabolic well at a constant velocity v > 0:

nopuy = mQ(Ut —uy) + F(uy) . (I1.2.12)

Let us suppose that at t = 0 the particle is at rest and sits in a stable minima of its
energy landscape: u;—¢g = ug with

m?ug = F(ug) , m?— F'(up) >0. (I1.2.13)
Now, note that since F'(u) is continuous, it is clear from (I1.2.12)) that u; is C! and
Vi>0 , Owup>0. (I1.2.14)

This allows to make the change of variable u(v, m;w) = wus_,/,. Plugging it into

(I1.2.12)) one obtains

nudyu(v, m; w) = m*(w — u(v, m; w)) + F(u(v, m; w)) . (I1.2.15)
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Hence taking the limit v — 0, the quasi-static process

u(m;w) = ill}r(l) u(v, m;w) = il_r}r%) U fo 5 (I1.2.16)
satisfies
0 = m?*(w — u(m; w)) + F(u(m;w)) . (I1.2.17)

Of course, Yv > 0, the function u(v,m;w) is C! as a function of w. However, the
limit v — 0 can be singular, and indeed as in the case of shocks in the statics, if m
is sufficiently small m < m, (the latter being now given by m? = max,F’(u)), the
quasi-static process u(m;w) can exhibit discontinuities as a function of w. The classic
construction of u(m;w) is given in red in Fig. starting from wu(m;0) = uo, it is
obtained by following whenever possible the root of (hence u(m;w) is left
continuous, Yw > 0, u(m;w™) = limg,_,o+ u(m;w — dw) = u(m;w)), or when not
possible at some wy, with k € N, u(m; w,j) = limgy—0 u(m; wi + dw) is given by the
smallest root of li that is larger than u(m;wy ). At these points of discontinuity
the quasi-static process makes a jump S = u(m;w,j) — u(m;w,, ) that we call an
avalanche. Following similar arguments as before for the case of shocks in the statics,
it is clear that in the limit m — 0, this process becomes a pure jump process

o
ujump(w) — %iino m_cu(m; m_Cw) =y + Z g(w — wg) Sk . (I1.2.18)
k=0

Here we have introduced the roughness exponent ¢ > 0. The latter accounts for the
fact that in general, e.g. for the case of a random process F'(u), the jumps become
rarer and bigger as m — 0. In the case of shocks in the periodic potential, we had
¢ = 0 precisely because the potential was periodic and in the limit m — 0 only one
shock occurred per period of the potential, with its size being equal to the period.
Scaling u and w by ¢ in allows us to obtain a non-trivial jump process in
the limit. The value of ¢ depends on the precise properties of F(u) and is therefore
non-universal. Why this exponent is called (, i.e. how it is related to the roughness
exponent for interfaces, will become clearer in the next section. In the following we
will set ( = 0 for simplicity but the discussion can be repeated with ¢ > 0.

Let us now come back to the time process u; and draw some conclusions on the
dynamics of the particle. Between jumps, wy < w < wgi1, OpW"™™P(w) = 0. Inverting
the derivative and the limits with ¢ = w/v we obtain,

0 = 0y’ (w) = nglo 11)1_I)I[1) %atut =0. (I1.2.19)
Hence between jumps, in the successive limit v — 0 and (= then) m — 0 the velocity
of the particle is not of order v. Rather it is o(v). Let us now ‘zoom in’ around the
Eth jump and look at a window around ¢, i.e. t; < t < wy/v + At with by definition
At = o(1/v) since this smooth process happens during a time scale that is not captured
by the jump process . Since this process happens on such a short-time scale, we
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can forget during the jump that the well keeps moving and approximate vt ~ wy +o(1)
and the dynamics during the jump is given by

ndyus = m*(wy — ug) + F(ug) + o(1) (11.2.20)

At t = 0 the right hand-side is approximately equal to m? (wy—u(m; wy,))+F (u(m; wy)) =
0, but here this equilibrium point is unstable since a jump occurs. After a short tran-
sient time of order 7, = n/m?, the right hand-side is soon of order 1 and in the limit
of small m, it is dominated by the force F(u). Hence during the jump the velocity of
the particle is of order 1 and the jump occurs on a time scale of order 1. This dis-
cussion highlights a characteristic feature of the temporal dynamics of the avalanche
process we are interested in. Although it is clear that, since F'(u) is bounded, the
mean velocity (here mean refers to the average over space) of the particle is equal to
v (i.e. limy,oo “74 = v), the dynamics is intermittent. Most of the time the particle
is actually pinned by disorder and its velocity is o(v) (if one again uses a notion of
probability by taking a random time ¢ this occurs with a probability of order 1), and
from time to time the particles is in an avalanche and its velocity is of order 1 (this
occurring with probability O(v)). This is quite different for a smooth motion (obtained
e.g. either by taking F' — 0 or v — oo) for which one expects to observe the velocity
of the particle to be of order v with probability 1. These considerations will become
clearer in the ABBM model.

b The ABBM model.

Let us now study our first true random process and consider the ABBM model. A
possible definition of the latter is the stochastic process

ndyur = m*(vt — ug) + F(uy) , (I1.2.21)

with the initial condition u;—¢ = 0 and the force F'(u) is a one-sided (i.e. F(0) = 0)
Brownian-motion (BM) with correlations

(F) — F))? = 20lu— ] . (11.2.22)

This is one definition of the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM)
model. It was first introduced as a phenomenological model to describe Barkhausen
noise [98, [99]. In this context u; denotes the measured magnetization of the disordered
magnetic sample under the applied magnetic field ~ vt. It was later argued, first
on phenomenological grounds [100], then from first principles using FRG [101] that
it correctly describes the avalanche of the center of mass of realistic interfaces at
the depinning transition at the mean-field level. The model presents the peculiarity of
being in some sense exactly solvable and a lot of exact quantities can be computed (see
[42, 143] for a review). We will not recall them all here, but only focus on analyzing
the exact results for the stationary velocity distribution and for the avalanche size
distribution to highlight in a more concrete model some of the considerations of the
previous section.

To simplify the discussion first note that, using the scale invariance of the BM,
(T1.2.17) can almost be entirely rescaled so that all parameters are equal to 1. Indeed,
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introducing S, := o/m?* and 7, := n/m?, rescaling u; = Spi;, t = Tt, noting
0 = v/, with v, = Sy, /Tm, one obtains in these dimensionless units

Ouy = vt — up + F(Ut) (11223)

where here we have dropped the tildes and now F'(u) is a one-sided Brownian-Motion
(BM) with correlations (F(u') — F(u))? = 2|u — u/|.

Stationary velocity distribution
The stationary distribution of the velocity of the particle was already obtained in
the original paper of ABBM [98]. At long time ¢t > 7,,, the probability distribution
function (PDF) of the velocity of the particle u; := 0yuy is stationary and equal to

1
I'(v)

P(viu) = ()" e 0 (u) (11.2.24)
where I'(v) is the Euler’s Gamma function. As expected the mean-velocity of the
particle is equal to v: [;° @P(v;4) = v. The behavior of the PDF ([I1.2.24)) is however
completely different depending on whether v > v,, =1 or v < 1. For v > 1, P(v;u =
0) = 0: in the stationary state the particle is never pinned by the potential. In this
phase the PDF P(v,u) is maximum for @ = v — 1 and both the most probable velocity
and the mean velocity are of order O(v): the motion of the particle is more or less
smooth and the particle mostly follows the imposed driving. On the other hand when
v < 1, P(v;i = 0) = 400 and there is an accumulation of the probability at 0: the

particle is almost always at rest. In the limit v — 0, in the sense of distribution,
lim,_0 P(v;u) = §(u). At @ = O(1) fixed on the other hand

P(v;u) = vp(a) + O(?) , pla) = —e . (I1.2.25)

While p(4) is not normalizable, i.e. pp = [ p(it) = 400, it controls all the moments of
P(v;4). To see this, it is useful to consider the Laplace transform of P(v; ), defined
as, for A < 1,

/OO die™ P(v; ) — e vlog(1-X) _ v [ du(eXt—1)p(x)
0
=1+ “/ du(e — 1)p(1) (11.2.26)
0

2 oo oo . .
"‘%/ / diydisg (M — 1) (eM2 — 1) (1) p(1i2) + . ..
o Jo

Now, if pg defined above was finite, we could define a normalized probability distribu-

tion Puy, () := % and the above equality could be rewritten

/0 d'L'Le)\uP(’U; u) = Z (p;)::') e~ Pov / diq - -- d?lme)\(ulerJrum)Pava('&l) s Pava(um) .

m=0

(11.2.27)

Proving explicitly that (I1.2.26]) can be resummed into (I1.2.27)) if gy is finite is not
complicated. A similar equality is shown in Appendix D of [I] (see Appendix [A)). The
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formula ([I.2.27]) can equivalently be rewritten

Poi) =Y (p‘;s') ePV  (Puak- % Pua)  (4) (I1.2.28)
m=0 :

m times self —convolution of Paya

The interpretation of this formula is as follows. At each time, the velocity @ of the
particle is the sum of m velocities that are independently drawn from Py, (). Paya (1)
is thought of as the PDF of the velocity during an avalanche, and m is the number of
active avalanches at an arbitrary time ¢. The latter is drawn from a Poisson distribution
with intensity ppv. Thus in the ABBM model, avalanches are independent from one
another. This is characteristic of a Lévy jump process. One of the question tackled
in this thesis is to understand if this independence property is also true for models of
interfaces in a short-range random force landscape (we will see that it is not!). Taking

the limit v — 0 of (II1.2.28) we obtain
P(v;i) = (1 — pov)d (1) + povPaya(it) + O(v?) . (11.2.29)

This is the picture of avalanche motion that was described in the last section. At small
v the particle does not move at all with a probability close to 1, and sometimes move
(with a probability of order v) at a velocity of order 1. For the ABBM model, we
note that pg is infinite and the previous interpretation is a bit tedious. This is due to
the scale invariance of the BM even at small scales: the particle is never truly pinned
in a typical realization of the BM and it always makes microscopic jumps, formula
does not truly hold. For a realistic model with a smooth disorder at small
scale will truly hold. Even in the ABBM model however, this interpretation
holds at the level of the moments as seen using . In particular
N A O 1)
/0 du(a)" P(v; ) ()
=v(n— 1!+ 0>?)

= / dup(i)i + O(v?) . (11.2.30)

=uvx(v+1l)x...(v+n—1)

While for v > 1, the n'* integer moment is of order v™, characteristic of a smooth
motion at the typical velocity v, for v < 1 all integer moments are of order v: an
avalanche occurs with probability of order v but if it does, the velocity inside the
avalanche is of order 1.

Avalanche sizes

The most convenient way to define the PDF of avalanche sizes in the ABBM model
is to consider a driving during a finite duration Ty (i.e. w(t) = v0(Tq—1)0(t). Defining
the avalanches size as the total motion of the particle S = u(t = +00) — u(t = 0) =
Jo© t, the PDF of avalanche sizes P(S) was computed in [102]. The result is

vly _(s—vTy)?
= ¢
2./mS3/2

Hence, for vT; < 1 (small driving) the PDF of avalanche size exhibits a power-law
behavior S~3/2 (this exponent was first identified in [I03]) in between two cutoff scales,

P(S) (11.2.31)



38 CHAPTER II. AVALANCHES AND SHOCKS OF DISORDERED ELASTIC INTERFACES

a small scale cutoff ~ (Ugid)Q and a large scale cutoff ~ S, (here S,, = o/m* = 1) in
dimensionless units. Since the limit m — 0 can obviously be taken on the expression
, this shows that the proper rescaling of uw that we discussed earlier in the
general case here corresponds to v — m~Su with ¢ = 4 for the ABBM model. The
limit vT; — 0 at S fixed defines the avalanche size density in the ABBM model:

P(S) = vTap(S) + O((vTy)*) , p(9):= 2\/7%93/2@5/4 : (11.2.32)
As for the case of the stationary velocity distribution, the density p(S) is not normal-
izable due to a divergence at small S. One could apply a similar treatment as we did
before for the stationary velocity distribution and show that P(S) can be rewritten in
a certain sense as an infinite series of self-convolutions of p(S) with itself, a property
that defines a Lévy jump process (see also Appendix D of [1] in Appendix. It is also
possible to precisely relate p(S) to the avalanches observed in the quasi-static dynam-
ics (this will be shown in Sec. , and show that the motion of the particle in the
ABBM model between two points where the velocity is zero are distributed according
to . Again the accumulation of avalanches of small sizes is due to the scale
invariance of the BM. Note finally that the exponent 3/2 can simply be understood
as follows. Assume that at a time ¢ = 0 an avalanche has started and the velocity of
the particle is vy and its initial position is ug. Taking the limit v — 0 in and
differentiating with respect to u we obtain
=14 &) . (11.2.33)

Where now the velocity u; = Jyuy is seen as a function of the position of the particle u
and £(u) is a GWN. Hence the velocity of the particle performs a Brownian motion in
‘time’ u with a unit negative drift —1. Hence the next point u = ug + .S where 1, is 0
corresponds to the next passage time to the origin of a Brownian motion with a unit
negative drift, which is indeed power-law distributed with an exponent 3/2 (see e.g.
[104]), and the unit drift provides an exponential cutoff as in ([L.2.32)). The exponent
7 = 3/2 plays an important role in avalanche statistics (recall that it is observed in
some Barkhausen noise experiments [45]) and it is interesting to understand its value
as a consequence of this well-known property of the BM.

11.2.3 Shock process versus avalanche process for a particle

Let us conclude this section by comparing the shock and avalanche processes defined
before for a particle in a smooth, bounded potential V' (u) that has a lot of minimas.
The shock process was defined by the minimization of the total energy of the particle

1
uShOK (m; w) = argming,cp (V(u) + §m2(u - w)2) . (I1.2.34)
And the latter becomes a true jump process in the limit m — 0 as discussed before. In
all this section we will keep m small but finite. Assuming that V' (u) is differentiable,

the shock process verifies Vw € R,

0 = m?(w — u°%(m; w)) + F(u% (m; w)) (I1.2.35)
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and it is by definition the root of this equation with the smallest energy. On the other
hand in the dynamical case, the quasi-static process was defined again as a root of the
same equation (see (11.2.17))

0 = m?(w — ud> (m;w)) + F(u®s (m; w)) (11.2.36)

with a specific rule that we recall. Starting from an arbitrary root of udS (m;w)
is always increasing (since the driving was positive v = 07), is continuous when-
ever possible (i.e. it follows a given root when the root exist), and whenever the
root it follows ceases to exist, it jumps to the smallest of bigger roots. Let us now
note, Yw € R, the set of n(w) roots of the equation 0 = m?(w — u) + F(u) as
(ur(w), -+, Up(wy(w)) with u;(w) < wuip1(w). Of course n(w) a priori varies as a
function of w. Let us suppose that at a given w = wyp, u* (m;wy) is the igh root of the
equation (II.2.36): u***(m;w) = wu;,(w). Note that as w increases, from the rules spec-
ified before, Yw > wq, uds (m;w) is the it (w) root of : udS (m; w) = ui) (W)
and it is clear that i(w) cannot increase if F'(u) is continuous. On the contrary it
decreases as we now explain. Since F(u) is bounded, the first root of the equation
u1(w) ceases to exist at some finite w = w; > wy. In the sequence of roots of the equa-
tion (ur(w), -+, Up(w)(w)), at w = w1, ui(w) is then replaced by uz(w) (the second
smallest root becomes the smallest root as the smallest root ceases to exist). Hence
when this occurs, either i(w) decreases by one unit at w; (since the sequence of roots
is shifted to the left at wy), or just before wy, u%® (m;w) is already the smallest root
and continues being the smallest root at w; . This shows that after a finite driving
AW (which however diverges as m — 0), the quasi-static process follows the smallest
root of the equation . Hence if one starts the dynamics at wg = —oo, the
quasi-static process driven to the right v = 0T, noted uﬂlr's' (m;w) always follows the
smallest root of . Similarly, the quasi-static process starting at +o0o and driven
to the left with v = 0~ always follows the largest root of . Hence there are
two canonical quasi-static processes and the shock process. They all follow a sequence
of roots of the same equation and

q.s.(

uj—.s.(m; w) = Uiy (w) (w) , uZ uShOCk(

miw) = u w) Miw) = Ui (w) (W) -

(I1.2.37)
where Yw, u;, . (w)(w) is the root with the smallest energy. In general there is no
symmetry between these different jump processes that would allow to get one from a
simple translation /reflection of another. While uS1°% (m; w) always follows the ground
state of the system, in general u(}r’s'(m; w) visits a sequence of metastable states. This
sequence of states is sometimes referred to in the literature, especially in the case of
interfaces, as the Middleton states [20]. An interesting consequence/characterization

of this is related to the irreversibility of the quasi-static process.

n(w)(w)(

Dissipation of energy and hysteresis in the avalanche process

Let us first remark that, at the point of a shock in the static ground state of
the particle, the total energy of the particle is conserved: Hy, [tk (m;w)] =
Houwy, [P0 (m; wy;)]. This is true since shocks between ground states precisely occur
at the position where the latter is degenerate. On the other hand in the dynam-

ics, one should not forget that between the beginning and the end of an avalanche
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ut® (mywy) = up and ul® (myw;) = up + S, S > 0, the dynamics of the particle
actually (I1.2.23]) plays a role. During the shock vt = wy and the dynamics is

nopuy = m*(wy — ug) + F(uyg) . (11.2.38)

Multiplying by O;u; and integrating between the beginning ¢y and the end ¢y of the
shock one obtains
t

7 tof(at“t)Z — Ho, [t0] — Hug [0 + 5] > 0. (I1.2.39)
Note that the left-hand side has no reasons to vanish in the limit m — 0. This shows
that there is a dissipation of energy in the avalanche process (graphically it can be
represented as an area as in Fig. . In a protocol where one drags slowly the
particle from —oo to +00 and back, the particle first follows the forward quasi-static
process ui’s'(m; w), and then the backward quasi-static process u™™ (m;w). These are
different, see Fig. [[1.2) and the system exhibits hysteresis (we refer to [43] for a study
of avalanches on the hysteresis loop of the ABBM model).

1.3 Shocks and Avalanches of elastic interfaces

In this section we discuss the generalization of the notion of shocks and avalanches
introduced in the previous section for models of particle to d-dimensional interfaces.
We begin with the case of shocks in Sec. and study the case of avalanches in
Sec.

11.3.1 Shocks for an interface
a Introduction

Let us begin with the notion of shocks for an interface. We consider a d-dimensional
elastic interface u : z € R* — u, € R with elasticity of range ~ pinned by an harmonic
well at the position w € R and subject to a ‘nice’ random potential V (x,u,) with
short-range correlations (by nice we mean as discussed in Sec. . The Hamiltonian
is thus

1

Hy ] = 2/xyg;;(uz —w)(uy—w)—}—/xV(:L",ux), (IL.3.1)

)

where we recall g, ?14 = J, e 4(=v) /q2 + 12 with pu > 0. Here and throughout the rest
of the manuscript p is thought of as small (i.e. £, = 1/u is very large compared to all
eventual microscopic scales of the models, as e.g. the Larkin length ), although
¢, is kept small compared to L (in order not to feel the boundary conditions). As seen
in Sec. for d < 27, the ground state of the interface at fixed w,

Uy (w) := argmin, .ga_,gHv,wlu| (I1.3.2)

is rough with a non zero roughness exponent (s > 0:

(u (W) — ugr (w))2 ~ |z — /)2 for |z —a'| <€, =1/p. (I1.3.3)
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uf™ (wp)

Figure I1.2:  Top: The different jump processes (here smoothened by a non zero m)
of a particle in a force landscape F'(u) (black line). The forward quasi-static process
ul™ (m; w) follows the smallest root of the equation m?(u—w) = F(u) (red construction
above). When the root ceases to exist, u$™ (m;w) jumps to the smallest one on the
right (such as the shock at w; above). During the jumps of the forward quasi-static
process, the particle moves with a velocity equal to m?(wy — u;) + F(uy), that is the
difference of height between the red line and F'(u). During such a jump, the particle
thus dissipates an energy equal to the area between the red line and F'(u). In the
backward quasi-static process (blue construction above), the particle follows a different
sequence of metastable states. In the static shock-process (green-dashed construction
above), the particle jumps between ground states at the same-energy. Hence, during
a jump in the static shock process, the algebraic area enclosed in between the green-
dashed line and F'(u) is 0. Dragging slowly the particle from —oo to +oo and back,
the dissipated energy (‘the area of the hysteresis loop’) is equal to the sum of the areas
enclosed in between the blue and black line and red and black line. Bottom: Forward
quasi-static process deduced from the top picture. Here two avalanches at w; and wq
are visible.
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Here again the fact that the large scale cutoff scale £, is equal to the one of the
pure theory ¢, = 1/ is a consequence of the Statistical-Tilt-Symmetry (STS) of the
problem, of which we postpone the discussion to Sec. [[I.4.]] What happens to the
ground state as a function of w? Although it cannot be proved in all generality, as in
the d = 0 problem of a particle discussed in the last section, one expects the ground
state of the interface to exhibit jumps at an ensemble of discrete locations {w;,i € Z}
(whose density increases with the system size as L?) as w is changed (at these precise
points the ground state is ill-defined since it is actually degenerate). This was
confirmed numerically in e.g. [L05] 106]. Hence we write, Vi € Z,

Uy (W) = up(wy) + SV (I1.3.4)

T\ TA™g T t

Here Séi) is the local size at x of the i*" avalanche. Using a stability argument it is
trivial to show that u,(w) is strictly increasing as a function of w and hence s > 0.
The sequence of shocks (w;, S,g)) is random and characterizing its statistical properties
is one of the main problems studied in this thesis. In the study of shocks for particles
on the real line of the previous section, we saw that shocks only occurred for a small
enough confinement. Using FRG we will see in Sec. [[I.4] that a similar property holds
for interfaces, and that shocks only occur for u < p. where p. is linked to the Larkin
length (see Sec. as ptc = 1/L.. Similarly, for non-zero p, as for the d = 0 case,
one expects the motion of the interface to also contain some smooth part. We will
discuss later the appropriate scaling limit that one should take in order for u,(w) to
be a pure jump process. Before we continue let us write here

A word of caution

Let us stress that most of what we will say about shocks and avalanches for disor-
dered elastic interfaces relies on a large number of unproven assumptions. The notion
of shocks and avalanches can be seen as a phenomenological picture and it is rather
hard to see it emerge from the theory ‘from first principles’ (except e.g. in d = 0 as
in the previous section). It is mostly built from studies of toy models and numerical
simulations. However as we will see, it is a very useful phenomenological picture as
it allows to efficiently interpret -and is consistent with- the output of the calculations
of the Functional Renormalization Group. In this sense, the existence of shocks can
be seen as a hypothesis, or an ansatz, that will be plugged into the theory, and the
consistency of the ansatz will always have to be verified.

b Shock observables and scaling

A few important shock observables are (i) the lateral extension of the shocks £ (ii)

its total size S(") and (iii) its local size at z, St

(i) The lateral extension /() denotes the diameter of the domain z € R? where st
is non-zero. Note that in general it is actually not obvious that the latter is not
infinite (this was recently shown in a specific model, the Brownian Force Model with
SR elasticity in d = 1, defined below, in [107]), but here we will assume that it is
so, and this eventually implies that there is some small cutoff scale du such that by

S;Z) = 0 we mean Sa(;i) < du.



II.3. AVALANCHES FOR AN INTERFACE 43

(ii) The total size of the shock is defined as S := [ S Let us now introduce the
density of avalanche sizes p(S), defined as

p(S) == 6(S — SO)s(w — wy) . (I1.3.5)

The latter does not depend on w for a statistically translationally invariant disorder.
po = [y~ dSp(S) is the mean number of shocks per unit of w, and

P(S) := —p(S) (IL.3.6)

is the normalized probability distribution function (PDF) of avalanche sizes. In the
following we will denote (), and ()p the average with respect to p and P.

Let us now discuss some properties of the avalanche observable previously defined.

Scaling of avalanches

Since two points x and 2’ with z — 2’ > £, are essentially statistically independent,
one expects not to observe avalanches with an extension much larger than £,: £, is a
large scale cutoff for the avalanches lateral extension probability distribution function
(PDF) P(¢). On the other hand in the regime of lengths smaller than /,,, one expects
scale invariance to hold. That is, reintroducing an eventual short scale cutoff ¢y, no
length scale should have any influence for ¢y < |z — 2’| < ¢,). This leads us to the
scaling hypothesis that in the scaling regime P(z¢)/P(¢) does not depend on /, i.e. it
is a function of z, f(x) < 0. It is easily seen that f(z1xe) = f(x1)f(x2) and is f is
continuous, it well known that f(z) must be a power-law. Hence we expect, in the
scaling regime that

1

~ — .
£

by <l <l = P({) (I1.3.7)
i.e. P(¢) is a power-law in the scaling regime characterized by an exponent 7;. Since
both ground states u(w;) and u,(w; ) are statistically equivalent and scale as in
, one also expects the local shape S, to scale as |z — xo|% where xy denotes
a point on the border of the avalanche and the scaling is expected to hold for £y <«
|z — 20| < ¢. Hence the local size well inside the avalanche S, ~ ¢ must be power-law

distributed as, in the scaling regime 585 <5 K Eff,

1 —1
P(SZ) ~ loc ) Téoc = 1 + i
STS (s

T

(11.3.8)

Similarly, one expects the total size to scale as S ~ £97¢ and to be distributed as, in
the scaling regime

So~ T < S < 8, ~ e (11.3.9)
one expects
1 T — 1
P(S)~ — =1 11.3.10
( ) S7s 7 TS + d+ Cs ( )
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Hence, as ¢ — 0 avalanches become larger and larger. It is thus expected that the
appropriate scaling to obtain a non-trivial pure-jump process is to take

Us(@) =l g (0 = g 0)
= est+ 3 6(w — ;) S (IL3.11)
1€Z

This a posteriori justifies the notation ¢ used in . In these units the large scale
cutoff on the total size of avalanches S = [, S, is now of order 1, while the low scale
cutoff is now of order u®*¢. In the following we will temporarily ignore the rescaling
(11.3.11]) and do as if u,(w) itself was performing a jump process:

Uy (w) = est + Z O(w — w;) S . (11.3.12)
1€Z

Knowing that in doing so we are ignoring some smooth parts (typically of order O(u?),
see (I1.3.1))) that disappear in the scaling limit (I1.3.11]). Using the fact that u,(w) = w

and using the definition (II.3.5]), we obtain the first moment of the avalanche total size
density:

(S),=1L". (I1.3.13)

As was shown in (I1.3.7), (I1.3.8) and ([1.3.10)), the different power-law exponents
of avalanche observable distributions are not independent. Rather they are linked
to one another by scaling relations involving the roughness exponent (;. As for the
roughness exponent (s, an important question is to understand whether are not the
power-law exponents defined above are universal or not, and how many universality
classes they are. A conjecture by Narayan and Fisher (NF), originally proposed in
[108] in the context of avalanches at depinning, actually states that the exponents
can all be obtained from the sole knowledge of (5. If the latter is true, it means that
there is a single critical exponent governing both the static ground state of an elastic
interface in a disorder media (that can be measured using a snapshot of the interface),
and the power law exponents (that describe the complex shock process of switches
between the ground states of the interface). This also implies that there are exactly as
many universality classes of shocks as there are universality classes for the statics of
disordered elastic interfaces. Let us derive here the NF conjecture following e.g. [109]
(see also [I10), [43] for a closely related approach).

¢ The NF conjecture

The NF conjecture permits to obtain the power-law exponent of the avalanche total
size distribution 7g self consistently when 1 < 7¢ < 2. It is based on several hypotheses.
The first is that the avalanche size density obeys the following scaling form, already
motivated by the previous discussion,

1 S S
p(S) = LOpf oo feus <S> Jeut (So) : (11.3.14)
w
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Where (i) feut(z) is a large scale cutoff function such that feu(x) ~ 1 for x < 1 and
feut(z) quickly decays to 0 for x > 1 ; (ii) geut(z) is a small scale cutoff function such
that geut(z) ~ 1 for x > 1 and geys(x) quickly decays to 0 for x < 1. The presence
of the large scale cutoff function was already justified before. The presence of a small
scale cutoff function is necessary for 79 > 1 since in this case, the mean number of
avalanches per unit w diverges as Sy — 0: it is dominated by the small scale cutoff as

m:/ dSp(S) ~ LOuPSLs . (I1.3.15)
0

The low scale cutoff Sy is a priori purely of microscopic origin (or set to an arbitrary
value in a simulation) and does not scale with either p or L. For 7 < 2, the first
moment of the avalanche size density is dominated by the large scale cutoff and

(8), = L ~ LOpPS27™s o Lopp~ (o) (@46 (I1.3.16)

Hence we obtain from this relation

_r
d+ ¢

a=d , T9=2 (11.3.17)

The true difficulty is therefore to obtain p. The NF conjecture is that the density
of avalanches per unit of applied force stays constant as pp — 0. pg in (I1.3.15)) must
therefore be proportional to the applied force which scales as p”, and the NF conjecture
thus states

7
d+G

Tg =2 (11.3.18)

Although its derivation assumed here 79 > 1 (if 79 < 1, po is convergent at small
So but dominated by the large scale cutoff as pg ~ pSL™7™), ie. v/(d+¢s) < 1, it
validity might actually be more general as suggested e.g. in [32]. The NF conjecture
was confirmed up to one-loop accuracy by FRG calculations in [109} 111, [101]. Note
that for models of interfaces at their upper-critical dimension d = dy. = 27, since the
fluctuations of the interface are there expected to show a logarithmic scaling (hence
(s = 0 at d = dy) we obtain 7¢ = 3/2. That is, we obtain the same exponent as the
avalanche size exponent in the ABBM model (see Sec. . We will see later that

this is not a coincidence.

11.3.2 Avalanches for an interface

In this section we now discuss the notion of avalanches for a d-dimensional interface
at the depinning transition.

a Alternative approach to the depinning transition and avalanches

To discuss the notion of avalanches at the depinning transition we will actually not
discuss the dynamics described by the equation of motion ([.3.3) (elastic interface
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driven by a force f), but rather, in analogy with the static problem and as in the d = 0
models of Sec. study the interface dynamics when driven by a harmonic well:

nous = | gz by —w(®) + Fla,u)
Y
w(t) = vt . (I1.3.19)

Here v > 0, the hypotheses on the random force are as in Sec. and as usual
g;; = fq(q + u2)%eiq(4‘_y) with 4 > 0. Here again, taking an initial condition such
that the velocities of the interface are positive at ¢ = 0, they remain so for all time
and at late times the interface position field converges to a well-defined steady state
(Middleton theorem [20]). Here the driving w(t) = vt imposes the mean velocity of
the interface, in the steady-state,

8tutx =v. (11320)

Since we are actually interested in describing the dynamics at the depinning transition,
we will be interested in the limit v — 0. In this limit, the interface fluctuations are
expected to display a scale invariant behavior identical to ([.3.7) (only the exponents
are the same, the scaling function can be different). As for our study of the static
problem, this scale invariant behavior is expected to occur in the range of scales |z —
/| <Ly, |t —t'| <€ with £,;' = 1/p. As in the static problem, the fact that the large
scale cutoff /,, is equal to the one of the pure theory ¢, = 1/p is a consequence of the
Statistical-Tilt-Symmetry (STS) of the problem, of which we postpone the discussion
to Sec. [I.5.] To study the depinning transition, we will consider the quasi-static
process, as we did for the d = 0 model of a particle (see Sec. ,

- =i —w /v - 11.3.21
“ (w) vir(];)l"' Yi=w/v, ( )
The latter satisfies, Vw € R,
0= /ggi(uy(m —w) + F(z,uz(w)) . (11.3.22)
y

Note that the static ground state of the interface studied in Sec. is also a solution
of this equation, and is by definition the one of minimum energy. As for the d = 0
models, in the steady-state, the correct solution of is the leftmost one (see
Sec. and a priori differs from the ground state. This sequence of Middleton
states can have roughness different from the one of the ground state and a result of
FRG is that they are indeed different. As in the statics we expect that for yu < p.
(associated with the Larkin length as p. := 1/L., see ([.2.25])), the quasi-static process
uz(w) is non-analytic and displays avalanches at discrete locations wy, k € Z. In the
appropriate scaling limit u ~ p =%, x ~ p~! and w ~ p~%, it is expected to become a
pure jump process:

ug(w) = cst + Z O(w — wy)SH . (11.3.23)
keZ

During an avalanche, the interface dynamics plays an important role and is described by
(I1.3.19) with vt — w,':. This is a clear difference with the statics, which is in particular
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responsible for the fact that energy is dissipated during the quasi-static process (see
Sec. for the complete discussion in d = 0). Note that since the sequence of
metastable states visited by the interface in this forward quasi-static process is a priori
different from the sequence of ground states in the static problem (in particular these
states have different roughness exponent), the sequence of avalanches is also different.
As for the static problem, we however expect similar scaling and universality to occur
in avalanches in the interface dynamics, with different exponents however. Interesting
observables associated with the k™ avalanches are (i) as in the static case: wy the
location of the avalanche, £(%) the lateral extension of the avalanche, S;S;k) the local size
of the avalanche at z, S®) = [ S the total size of the avalanche; (ii) observables
that only exist in the dynamics: T) the duration of the avalanches, :c(()k) the first point
that becomes unstable at the beginning of the avalanche (the ‘seed’ of the avalanche,
note that this is another important difference with avalanches in the statics where this
notion does not make sense), v¥(t,z) = OpUy—yy, ju4te the velocity field inside the
avalanche, v(¥) the mean velocity inside the avalanche, E®) =5 [, (8yuy,)? the energy
dissipated during the avalanche. For these observables, scaling now notably imposes
similar relations as in the static case and some new relations, associated with new
observables and that involve the dynamic exponent z:

Sy 54 GG T Ry~ TR (11.3.24)

These observables are expected to be distributed with PDF with power-law behavior
as in the static case. From it is clear that the different power-law exponents
are not independent. It is in this context that the Narayan-Fisher conjecture was first
introduced [108]. It can be ‘shown’ using the exact same arguments as in Sec.
and reads

(11.3.25)

b A side remark/a word of caution: avalanche power-law exponents de-
pend on the driving

We have up to now discussed avalanches for an elastic interface driven by a parabolic
well: the driving is soft (ux — 0) and homogeneous on the system. This type of
driving is known to be relevant in various experimental situations and in particular to
reproduce the driving by a force right at the depinning transition, but other driving
can be considered and can be relevant in other situations. Another driving that has
already been considered is the case of avalanches for an interface such that the position
of part of the interface is imposed to be w (see e.g. [112] 113]). Here we consider the
situation where an interface of internal length L, dimension d, elastic Hamiltonian
(.1.4) with g;l = |q|7, in a random potential V (z,u), is free to move in R, except on
a subspace Eg, € R? of dimension dg, where its position is imposed to be w(t) = vt.
The extreme case dgq, = 0 corresponds to an interface driven at a single point. Noting
r = (1, - ,24) € R? the d—dimensional coordinates of x and taking for concreteness
Eq,, = {z = (21, ,24,,,0,-++,0) € RY (z1,-+, 24, ) € R¥Ur) we thus study the
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problem

NO¢uty = /gx_,gl;uy + F(z,ug)
y
Uty = w(t) foraz e By, (11.3.26)

for a very slow driving w(t) = vt and v ~ 07, and we study the forward quasi-static pro-
cess Uy (w) = lim, o+ Up—y /v, Obviously for z € Eq, , uy(w) = w is a smooth function
of w, but for z ¢ Ey, one still expects to observe scale invariance and some non-
analytic behavior with avalanches at discrete positions w;: ug(w;) = ug(w; ) + Sg(';i).
Since the roughness exponent (; is a bulk property of the system, it is expected that the
total size of these shocks still satisfies the relation S ~ ¢4+¢ with the same roughness
exponent as before, where £ is the linear extension of the shocks in the space perpendic-
ular to the driven space Ejdr. Here the only large scale cutoff for the avalanche linear
extension is L and the large scale cutoff for the avalanche total sizes is Sy ~ L91¢a,
Defining again the avalanche size distribution as p(S) := 3=, §(S — S@)5(w — w;), we
thus expect that it displays a power-law behavior in between two cutoff scales Sy and
Sr, as

p(S) — La%fcut <Si) Gecut <SS’0> 5 (11327)
where feyy and gey are two scaling functions such that feu(x) &~ 1 for 2 < 1, feu ()
quickly decays to 0 for x > 1, geut(z) = 1 for £ > 1 and geyt(x) quickly decays to zero
for x < 1. Let us now apply a reasoning similar to the one used in the derivation of
the NF conjecture . If 1 < 79 < 2 the mean-density of avalanches per unit w
is dominated by the small scale cutoff as

po = / p(5)dS ~ LSS . (I1.3.28)
0

The first moment of the avalanche size distribution must still be (S), = L% and is
dominated by the large scale cutoff as

(S), = L% ~ LOGZTS o [oH27s)(dHG) (I1.3.29)

In this setting, it is natural to think that the mean number per unit of w of avalanches
scales as L% implying o = dg,. Indeed, here avalanches can only be triggered by
the depinning of one of the points in the vicinity of one of the driven points Ed{lr
and the number of avalanches is thus expected to be proportional to the number of
driven points. Using we thus obtain a generalization of the Narayan-Fisher
conjecture:

d_ddr
d+ ¢

TS =2— (11.3.30)
This relation is in agreement with the result [I12] I13] for the case d = 1 and dg, =
0. We are unaware whether or not this general conjecture already appeared in the
literature.
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11.4 The functional renormalization group treatment of shocks
in disordered elastic systems: a short review

In this section we now review the use of the functional renormalization group to cal-
culate shock observables. We will begin by recalling the important results of FRG for
the statics of d-dimensional interfaces in Sec. and in Sec. we will show
how to apply FRG to the study of shocks.

11.4.1 The functional renormalization group for the statics of disordered
elastic interfaces

a Introduction

We thus consider the static problem of determining the statistical properties of the
ground state of a disordered elastic interface of internal dimension d in a quenched
random potential V(z,u)

uz(w) = argmingpi_,pHvwlu] (I1.4.1)

1
= argminu:Rd_)R (2/ g;zlj(ua; — U))(uy — U]) + / V(Q?, ux)) .

where as usual g; Y f i y)(q +p ) The disorder potential is chosen centered,
e.g. Gaussian, with second cumulaniﬂ

Ve, w)V (@, ) =6D(x —2)Ro(u — '), (I1.4.2)

where Ry is the bare disorder cumulant that will be chosen either as associated with
disorder of the random bond type, the random field type, or eventually periodic disor-
der Ro(u + Au) = Ro(u) that can be relevant to some applications (see Sec. for
definitions). In low dimensions d < 2v, we know from Sec. that the disorder is
relevant at large scale, that the ground state is rough and exhibits scaling in the range
of scales |z — 2/| < £, := 1/p, and we will be interested in the p — 01 limit. The
application of renormalization group ideas to disordered elastic systems has a long and
rich history that we will not thoroughly review here. The phenomenon of dimensional
reduction recalled in Sec. warns us that naive perturbation theory in the disorder
badly fails and one has to find a way to do better. The way out proposed by the FRG
is as follows. Let us first introduce here the replicated action of the theory.

A convenient way to perform disorder averages is to consider the replicated action
of the theory (see [96] for some background on replicas) for the statics at temperature

T'. Replicating the field uy — u?, a =1,--- ,n, the action is
Sl {us}] = Z / gLt = )l — w) - o 3 )+ (114.3)
2T a1l

!The fact that we simply assume here that the correlations of the potential in the internal space x
are described by a § distribution, while the correlations in the external space u are given by a function
Ro(u) even for short-range disorder notably comes from the fact that this structure is stable under
renormalization. That is, starting from a bare disorder with more complex short-range correlations in
internal space, at large scale it will look just as if we started from (I1.4.2)). Conversely, starting from a
bare disorder with ‘trivial” short-range correlations Ro(u —u’) = 0§(u —u’), the renormalized disorder
at large scale will still be short-range in u space, but with a finite correlation length.
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here the dots indicate the eventual presence of higher cumulants of the random poten-
tial that will be generated by the renormalization procedure anyway. Physical, disorder
averaged observables of the ground state of the Hamiltonian are obtained by
taking the limit of a path integral formula

Oftw(@)f] = lim [ T[ Olfubypfucle st (I1.4.4)
’ a=1

Fisher’s breakthrough and the development of FRG
Performing the naive perturbation theory of an observable using an analytic
Ry(u) again gives the dimensional reduction result with the Larkin roughness exponent
(L = %’T_d. What is even more surprising with this result is the following: expanding
the even and analytic function Ro(u) in (IL4.3) as Ro(u) = 320 5;Conu®® and
performing the rescaling valid at the Larkin fixed point

r=p 'z, ul= ,u*CLﬁj:,w . T =p % (I1.4.5)

the disordered part of the action (I1.4.3]) is rescaled as

ﬁ[ Z Zﬁ‘anfmc%(ﬂaj—%) "

T a,b=1n=0

ap=—d—2nl, —2(—d+~v—-2¢)=2y—-d)(1 —n). (11.4.6)

Here for d < 2v, Cy thus flows to 0 and is unimportant at large scale at the Larkin
FP, C; = R"(0) is left invariant as expected, but all the higher cumulants Cy, with
n > 1 do flow and are relevant at the Larkin FP. This should lead the system to
flow away from the Larkin FP. However, as observed in [16], the contribution of all
higher cumulants simplify in the calculation of observables (the dimensional reduction
(DR) property). This was attributed to an underlying supersymmetric property of the
FT [I7], or equivalently in a diagrammatic language, to the ‘mounting property’ of
diagrams associated with the field theory [18]. The Larkin result is however as
we know incorrect (see the discussion in Sec. @ Escaping the Larkin FP using a RG
procedure calls for (i) a functional RG to take into account the fact that all cumulants
of the potential become simultaneously relevant for d < 2v; (ii) a RG scheme that
somehow escapes DR. The solution first noted by Fisher in [I14] is as follows. Using
a one-loop Wilson’s shell RG on the replicated action with © = 0 but with
a UV cutoff A > 0 that is sent to A; = Ae™! to renormalize the complete function
Ro(u) the bare cumulant Ry(u) is renormalized into a function Rj(u) (it corresponds
to the cumulant of a renormalized disorder seen at large scale by the manifold, see
below). Following the RG flow, remarkably, the function R;(u) becomes non-analytic
at a finite scale | = I, < co: the function Aj(u) = —R](u) exhibits a cusp around O:
Ay(w) — A (0) ~ AJ(0T)|u| + O(u?). The non-analyticity forbids the expansion (II.4.6)
and escapes DR. Several fixed point (FP) functions R(u) were found corresponding?
to the three classes listed above, i.e. random bond, random field and random periodic.
The found fixed point functions are of order O(e) with € = dyc — d = 2y — d, hence

2Other FP functions exist and correspond to disorder with long range correlations Ro(u) ~u— oo u®.
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allowing to compute perturbatively any observable in an expansion in the non-analytic
renormalized disorder second cumulant Rj(u). It was later argued in [I115] that the non-
analyticity in R;(u) is related to the presence of shocks in the ground state (this will
be clear below). Many developments followed this work and here we name a few: (i)
refinement of the result to two-loops using perturbative RG [116], [117]; (ii) development
of exact RG approaches [I8, [I18]; (iii) clarification of the role of the temperature
[119, 96]. References for the application of FRG to the depinning transition and to
avalanches will be discussed in Sec. In the following we will use the most modern
approach to FRG as presented e.g. in [96] and only state the results. We refer the
reader to [120} [121] for what are probably the most pedagogical introductions to FRG.

b Definition of the different functionals and the statistical-tilt-symmetry

Our preferred approach to FRG, as presented [96] to which we refer the reader for
more details, is to study the flow of the effective action of the replicated theory as the
strength of the confining well is varied from y — oo to g — 0. In the limit y — oo the
fluctuations are frozen and the effective action is basically the bare action of the theory,
while in the limit g — 0 that we want to study, the effective action takes a universal
scaling form. This type of approach is common in non-perturbative RG (see [122] for
a review) but here our final results will be perturbative. Although this presentation
can be quite cumbersome the first time it is probably the clearest way to understand
the validity and the interpretation of the main results of the FRG.

The renormalized disorder functional
Let us first define, for each realization of the disorder V', the renormalized disorder at
the scale p for a well centered at wy, V,[{w,}] as

1

N _1(1 T (ug—we ) (uy —w T,u
o Vulfue ) _ /D[u]e F(3 S, smb ) ) [, V) (I1.4.7)

Hence here we are considering the usual theory with a well position that is now in-
homogeneous in space. The renormalized disorder V,[{w;}] is a functional of the well
position w,. It converges in the limit T — 0 to the energy of the ground state of the
Hamiltonian in the well w. In the limit © — oo, u, = w, and V,[{w,}] = [, V(x,wy).
More generally the renormalized disorder combines the effects of the elasticity, the
thermal fluctuations and the disorder and we think of it as a renormalized disorder
seen by the interface on a scale ¢, = 1/pu.

The W functional

On the other hand, let us consider, in the theory with w, = 0, the generating functional
for connected correlations in the replicated field theory:

Wullie} . / [] Dluc)e SO+, [ 350 (11.4.8)
a=1

This functional is a standard object considered in field theory and is the sum of all
connected diagrams. Writing () s[0,.] the average with respect to the replicated action
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with w = 0 ([1.4.3), the connected correlations G7}."""
the polynomial expansion of W, as

— <ua1 .. ‘uan

In 2T AP xn)S[o,,] appear in

b,e,d .
Waldgzh) = Wal0l+3 Z | Gazzza§+4, / Gy Iai 0 - (1149)
y?'z’

And connected correlations of the replicated field are obtained by applying functional
derivatives to W,,. W, is an even functional of j, by statistical parity invariance of the
disorder. Here we assumed that it is analytic V1 > 0.

The STS symmetry and the form of Gg:g
The Statistical-Tilt-Symmetry originates from the statistical translational invariance
of the disorder. The latter implies, for an arbitrary function ¢, (constant in replica
space)

1 1
SI0.{ut + 60 = SO + 7 [ gy + 523 [ gnytndy . (1410)
T Z,y 2T a.b Z,y
This implies the identity for W,[{j2}], using j, = = Jy 9oy Dy

Wulldz + Je}] = Wul{iz}] + TZ/ Jrydeiy +ns 5 / Goydady - (IL411)

Taking a derivative with respect to j, at j, = 0 we obtain

Z §ja {Ja:} = TZ/yg:Jc,ij (11.4.12)

This being valid Vn € N and for any sources j¢, this implies an infinite series of
identities for the ‘coefficients’ of the series expansion of W,[{j¢}]. In particular, it
implies for the quadratic part

Z Gg?y =Tgey (11.4.13)
b

This is the same result as the one that would be obtained in the pure theory: the sum
of the connected correlations Zb<ugu§’!>5[07_] = Tg,, is not modified by the disorder.
This indicates that connected correlations decay as e [*~¥//t with l, == 1/p. The

parameter p is not modified by the renormalization. This fact was already heavily
used before. Other relations extracted from ([1.4.12) are Y, Ga;25: =0

Relating the W, functional and the renormalized disorder V.
It is an elementary calculation to show that the W, functional is related to the renor-
malized disorder functional defined in (I1.4.7)) as

eWM[{jg:% fy 9;11“7;}16_% Za fx,y on,lywmwy — ﬁ % {wa}] (11414)

This important relation (its consequences will be shown below) was first shown in [123,
96]. Expanding in cumulants the right hand side of (II.4.9), and in replica sums the
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W, functional, one sees that the expansion in cumulants of the renormalized disorder
functional exactly gives W,[{j¢ = %fy 9o ywi}] as, noting W,[{wi}] := W,[{jI =

ngmy x]

e 7 1 » a,b
Wulfwgl] = W0l + o= Z/ Gr Wiy + 5 %; R[{ws®Y] +
z>:3 anm Z S ) {wgz ] . (11415)

b

where we have introduced the notation w%® = w? — w? and

W,[0] = %V [{wa)] (IL4.16)
R[{ws*}] == Vu[{w}]V[{wg}] (11.4.17)
S wit ), {wi)] = (U Val{wl - Gul{wp )] (14.8)

Here STS implies that TW,[0] does not depend on {w?}, R[{w®"}] only depends on the

difference w? — w?, and similarly the higher order cumulants of the renormalized dis-

order satisfy ST [{w@ +w,}, -, {wim +w,}] = SOV[{w}, -, {win}]. Note that
this expansion in cumulants is not trivially related to the expansion in j¢ performed
in (I1.4.9) (e.g. R[{w®"}] itself has an expansion in w).

The effective action
The last functional to introduce before we give the important results of the FRG is
the effective action functional I'y[{ug}]. As usual in Field-Theory it is defined as the
Legendre transform of the W, functional:

() = ~WllizH + 3 [ gt = —Wllw] + 7 [ omiu
wb
z = W = T/Zgz,z(w (11.4.19)

In terms of diagrams it corresponds to the sum of 1-particle irreducible diagrams
generated by the action S[0; {ul}]. The physical, disordered averaged observables are
contained in W, which can be obtained from the effective action I', by inverting the
Legendre transform (the latter is actually an involution). This was performed in [96].
In particular, it is shown that I',[{u?}] admits an expansion as

a 1 1 a 1 u
Culfuz}] = Tul0] + ﬁ Z/ gm’éuxug ~ 572 Z R[{u®’}] +
oY ab
-2 n.Tm S SMugy, - {usn ] (I.4.20)
m>3 al, ,am

And inverting the Legendre transform gives ‘nice’ relations between the cumulants of
the renormalized disorder and the ‘Gamma cumulants’. In particular we have I',[0] =
_Wu [0] and what will turn out to be the most important relation, the equality between
functionals

Rl{w,}] = R[{w.}] . (I1.4.21)
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¢ Exact RG approach: The Morris-Wetterich equation and the scaling
hypothesis

Let us first formulate the FRG result using an exact RG formalism and later connect
it to perturbative approaches. To formulate the exact RG equation, it is convenient
to define a slightly different effective action functional

B {us)] = Tul{us)] - ZTZ / gy butul (114.22)

The latter behaves well even for ;1 — co. Indeed, for u — oo, it is clear that the func-

tional W, in (II.4.8) can be evaluated using a saddle—i oint calculation around uf = w§.

Inserting the result into the Legendre transform (II.4.13|) shows that lim,, .« f’#[{ug}]
is exactly the expansion in cumulants of the bare disorder V' (z, u):

[e— b ..
!}Lngof {us}] = 2T2 bzl a:RO uG —ug)+ e, (I1.4.23)

where again we have added dots to signify the presence of higher order cumulants if
the initial disorder is non—Gaussiarﬂ As a function of u, the effective action functional
satisfies the Morris-Wetterich equation [124], 125] 118, [96]

0,0 {uly) = B (I1.4.24)

where the functional S function is

)

. e b 520,

NN =25 [ st (7). G =T [
(11.4.25)

At our level of rigor is an (awfully complicated) well posed problem: we
have an initial condition at p — ooE| for a differential equation that we want to solve.
Actually we do not want to follow completely the RG flow from p — oo to = 0T, but
rather, although it is not obvious, show that close to u = 0, an appropriately rescaled
version of I',[{u2}] tends to a fixed point functional. More precisely, reintroducing

explicitly T as a parameter and rescaling,
r=p'E , up=p"%a; , T~p 0T (I1.4.26)

the scaling hypothesis can be phrased in an unambiguous way as follows. We require
that the effective action in the ‘tilde’ variables, that describe the large scale physics of
the original theory,

DT {iiz}] = TulT = 0T, {ue = p% ti—pa}] (I1.4.27)
converges, as u — 0, to a constant, well-defined action:

hmF ulT5 {0z} = [T {usz}] . (I1.4.28)

3Note here that something bad can happen if the bare disorder has fat tails since then the expansion
in cumulants is ill-defined.
If a small scale cutoff a is assumed then the initial condition (I1.4.23)) holds at = 1/a.
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Inserting the scaling form 1' into the RG equation 1' [T {uz}] itself

satisfies a Morris-Wetterich equation with a rescaled  function:

— LT ()] = BIE s} - (I1.4.29)

And since —p0, = —0Oog(,) and log(p) —p—0 —o0, (11.4.28) actually implies that the
limiting functional is a fixed point of the rescaled Beta function

~

BI*1=o0. (11.4.30)

The hypothesis is thus rather strong and allows us not to follow completely
the RG flow (since we are thus only interested in the fixed point), while defining the
Beta function in as generating the flow associated with —u0, (an not e.g. 9,,)
is not a random choice. Obviously these are all strong hypotheses (that will not be
proven). Before we describe the solution of this problem at T' = 0, let us note that
since the effective action contains the term 2T >oab Sy v gmll Su Z where g ! y 1s the bare
propagator that is not corrected by the renormalization (STS), the exponent 6 must
be given by d — v + 2(s and there is only one unknown critical exponent here.

d Solving the Morris-Wetterich equation at T'=0 in d = d,c — e: the multi-
local expansion

The main result of the FRG approach to disordered elastic interface is: there exists
a solution of (II.4.30) such that, in the 7" — 0 limit, it converges to a fixed point

functional I'* that admits a perturbative expansion in € = 2y — d. In this limit the
action is non-analytic around u$ = 0. This non-analyticity is smoothed at 7" # 0 on a
small scale called the thermal boundary layer, us ~ T ~ p?T. Considering carefully the
T — 0 by taking this smoothing into account allows to obtain the g function directly
at T =0 [96]. In the end the structure of the solution is as follows. The functional
R[{uz}] can be separated into its local R(u) and non-local part R[u] as

Rl{us)) = [ Rlw) + Rl{u.)]
(11.4.31)

where the decomposition is unambiguously defined by the fact that R[{u,}] is 0 for a
constant field u, = u for which R[{u, = u}] = L?R(u). At the fixed point, the func-
tion R(u) is O(€), the non-local part R[{u,}] is O(¢?) and the higher-order cumulants
are S(m) Hugt}, -, {ugm}] are O(e™). They can be computed by plugging the decom-
position into and assuming that they scale with e as written above.
Using this decomposition, the differential equation for the local part can be closed, in
principle, up to an arbitrary order in e. We now show this differential equation up to
order O(€?) as obtained in [IT6]. Let us first introduce the loop integrals

1
L=p">0 |, I, = / @ (11.4.32)
q

[

Ia=p* "My, Ia=

+ O(e
var (@ + 12 (@B + 12 ((q1+ q)2 + 1) ©
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Note that the combination el stays finite as € — 0. We will often use

v 1 ey I'(v)
AT = 5 AR Sl iy ey (11.4.33)
= 271 () . (11.4.34)
Rescaling
R(u) = Ag,ue_%sf%(,ugu) (11.4.35)
one obtains [116], [96]
“HOR() = (= 1) R) + Cult () + (3R ~ RO)R'(w)
rescaling loop
1 D!/ D/ DI 2 AS DI+ \2\ DI
+ 35X ((B'(w) = RNO)R" (u)*) = TX(R"(07)*)R"(u)
2—loops
+O(RY (11.4.36)

where A\; =1 and X = 24(2%);112)7 ie. X =1+ O(e) for v = 2 (short-range elasticity)

and X = 4In(2) + O(e) for v = 1. We are looking for a solution of the equation
—u(‘)u]-:{(u) = 0. Since we are expanding around d = dy. where the disorder is only
marginally relevant, (; is expected to be O(¢€) and thus the solution of — u@u}?(u) =0in
is also, as announced, O(e). The value of the exponent (s = (1 +€2(3 +O(€?)
has to be adjusted so that a solution of ([1.4.36)) with the desired properties hold.
Note that if R*(u) is a fixed point of u) = ;ﬂ}?*(nu) is also a fixed point
and thus there are several families of fixed points. Thus when talking about a FP
one has to specify one scale. Universal quantities can nevertheless be constructed as

e.g. R"™(0), R(0)/(R"(0))2... (see [IT6]). A standard choice is to fix the value at 0 as
R*(0) = e. It was found that

o A single value of (1, (5 leads to a fixed point function in the random bond
universality class with R* (u) quickly decaying to 0. The latter was obtained using
a shooting method in ([II16]) as (the O(e) result is coherent with the previous
result from [114]) ¢; = 0.20829806(3) and (> = 0.006858(1) for SR elasticity

(v=2).

o A single value of (; leads to a FP in the random field universality class, i.e. with
R*(u) ~lu|—oo |u] and R*"(u) decaying quickly to 0. It is given by ¢, = €/3+0(€?)
(independently of 7). This result was actually argued to hold to any order [116]
in €, in agreement with the simple Flory argument of Sec. [.2.3]

« For periodic disorder R*(u) = R*(u+1), the value of ¢ is necessarily 0. Interest-
ingly in this case it was found in [I16] that R*(u) = f(e)u(l—u) with f(e) = O(e)
a function. This form was also conjectured to hold to all order.
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Figure I1.3: Cartoon of the shape of FRG fixed point functions A*(u) = —R*'(u) for
the RB universality class (left) and the RF universality class (right).

These different fixed points were argued to be stable in [I14,[I16]. The typical shape
of the RF and RB FP functions A*(u) = —R*'(u), here normalized as A*(0) = ¢, are
plotted in Fig. . Other generic long-range fixed points with R(u) ~y oo u21~)
with (& = m (holding presumably to all order) were also found and argued to
be stable as long as they lead to a roughness exponent larger than the RB roughness
exponent [I116] (otherwise the system flows to the RB FP). Let us conclude this section
with a few remarks:

1. The first line of (I1.4.36]) (i.e. the rescaling and the one-loop part) were already
obtained by Fisher in [I14] using a Wilson’s RG scheme and can be easily ob-
tained using a standard perturbative RG from the beginning.

2. It is instructive to study the flow of R”(0) and R"”(0): to one-loop these close as
—ud,R"(0) = (e —2¢5)R"(0) + R"(0)2 and —ud, R""(0) = eR"™(0) + 3R""(0)? +
AR"(0)R""(0). Starting from an initially smooth disorder at some scale o,
R,,(u), at the beginning of the flow the function stays analytic: R"(0) =
R (0) = 0. At the beginning of the flow R”(0) thus does not flow, and if it
were so for all time one would find (5 = €/2 i.e. the dimensional reduction result.
However, R"”(0) becomes infinite, and thus the function non-analytic around 9,

o )

in a finite renormalization time. More precisely, for u > u. = po (3 77 (0) £e
0

one obtains R (0) = G (Oﬁ:of);(ﬁ)jg%g” O and R becomes non-analytic around
0 for 1 < pe: the function A(u) = —R"(u) acquires a linear cusp around 0:

A(u) — A(0) ~ A'(0%)|u| + O(u?). The occurrence of this cusp will be related
to shocks below. Note that once the cusp appears, R”(0) starts to flow and the
system escapes dimensional reduction. Note that the cusp appears when the

system probes length scales larger than L. :=1/u. = ﬁ (1 + 3%,6,,(0)> . Using

the simple estimate RJ"(0) ~ Au(g ),

Larkin length L. computed in ([.2.25)). Thus, following the renormalization group
flow, the system actually believes that it is flowing to the Larkin fixed point up
to a scale corresponding to the Larkin length where the cusp, associated with

one shows that L, essentially reproduces the
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metastability in the system (see below), appears. The fact that no ‘supercusp’
appears later in the flow, i.e. all derivative of R at 0 up to the fourth one remain
finite, was discussed in [116].

3. The second line of was first obtained in [116] where the authors used
standard (although functional) perturbative RG to directly attempt to renormal-
ize the field theory at T' = 0. The problem with this approach is that one then
encounters so-called ‘anomalous terms’ involving R”(0) and one has to decide
whether it is R”(0%) or R"(07). The proper way to do so is to regularize the
non-analytic behavior by studying the zero temperature limit of the renormalized
theory at finite temperature as outlined above and reviewed in [96]. In [I16] the
authors nevertheless obtained with a value of A a priori not specified
by the perturbative method, which was imposed to be one to respect the ‘po-
tentiality’ of the problem, i.e. the existence of FP function of the RB type (see
[116]).

4. The FRG equation is both UV and IR universal. It is UV universal in
the sense that, by construction, it does not depend on the microscopic details of
the models. The more subtle property is to prove that it does not depend on the
chosen IR cutoff scheme [I16], that was here chosen as a massive scheme.

11.4.2 Applying the functional renormalization group to shocks

In this section we now discuss the application of FRG methods presented in Sec.
to the study of the shock statistics of the interface presented in Sec. We begin
by linking the non-analyticity of the fixed point effective action of FRG with the oc-
currence of shocks. We then show how FRG can be use to compute shocks observables
on the example of the density of total size of shocks.

a The cusp and the shocks

As already remarked we first note that as 7" — 0, the renormalized disorder potential
for a constant well Vu(w) = VM[{wx = w}| defined in converges to (assuming
no degeneracy of the ground state, which is true with probability 1 except at some
discrete positions)

V(w) = %/g;;(ux(u}) —w)(uy(w) —w) + /x V(z,uz(w)) , (I1.4.37)

where as usual u;(w) denotes the ground state of the interface as defined in (II.4.1).
Using the saddle-point structure in (II.4.1)), one shows that the renormalized force at
the scale u, defined by

Eu(w) i= =0,V (w) (I1.4.38)

admits the expression at zero temperature

Fuw) = [ grhw—ua(w)) = [ Lolw) with fo(w) = m?(w = u(w)) . (11439)

)



I1I.4. FRG APPROACH TO SHOCKS 59

where the second equality is true for elastic kernel of the form g, ?1/ =/, el1@=y) (¢ +

,u2)% and we recall that m = u%. Hence, using (]II.4.16|)7 (III.4.21|) and the definition
of the local part (I1.4.31]), one sees that the local part of the second cumulant of the
renormalized force at the scale u, defined by,

Au) := —R"(u) (I1.4.40)

is linked to an observable of the ground state as

= . .~ . ___ m4

- %8“"91“"/“(”)‘7“(”') =74 /x /y (w — ug(w))(w — uy(w)" . (I1.4.41)

A(w —w')

Or equivalently, in terms of the position of the center of mass of the interface defined
by

u(w) = Iii/muz(w), (I1.4.42)
we have
A(w —w') = Lm* (u(w) — w)(u(w') — ') . (I1.4.43)

This relation, first shown in [123] 96], has deep consequences. On its left hand side it
involves the second cumulant of the renormalized disorder that naturally appears in
the effective action of the replicated theory. As a function of m = u%, the rescaled
cumulant

A(w) = (A) 12 A(p S w) (I1.4.44)

obeys a RG equation that is the second derivative of . In the limit g — 0 it
converges to a fixed point function, depending on the universality class of the initial
bare disorder. This fixed point function is non-analytic and exhibits a cusp around 0
(see Fig. and for small z we thus have A(w) — A(0) ~ A/(01)|w| + O(w?). On
the right hand side on the other hand it involves a simple observable linked to the
ground state of the interface. This relation thus provides a protocol to measure the
FRG function A(u). The latter was first implemented in numerics with an excellent
agreement with the theory [I05], and later also in experiments [61] (for the related
case of the depinning). On the other hand, since the left hand side of is
non-analytic beyond the Larkin scale . ~ L ! this shows that the right-hand side is
also non-analytic beyond the Larkin scale. More precisely, using u(w) = w,
can be rewritten as, introducing 4(w) = u(w) — w,

A(w)
Ldm4 :

(a(w) —a(0))2 = -2 (11.4.45)
For a smooth motion, the left-hand side of (II.4.45)) is O(w?) for small w. Obviously this
could just mean that with some probability @4 (w) ~ /w close to w = 0. The natural
interpretation from the study of d = 0 models, numerics (and physical intuition) is,
however, that with a small probability proportional to w, the center of mass of the
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interface makes a jump of size S/L?, distributed with a PDF P(S) and (I1.4.45) is

rewritten

(S%Hp 2A(0M)w
.2d O LdmA
where () p denotes the average with respect to P and pp already introduce in Sec. [[1.3.1}

is the density of shocks per unit length. Equivalently, using the definitions of the
density p(S) and PDF P(S) = p(S)/po of avalanche total size introduced in Sec. [I1.3.1

see (I1.3.5) and (I1.3.6), as well as the relation shown there (S), = po(S)p = L,
(L1.4.46|) is rewritten

pow +O(w?) = + O(w?), (I1.4.46)

_ (8% _ (8%, _ o N
S = 2<S>Z‘2(S)Z‘W , o=-A(0")>0. (11.4.47)

Note that the relation (I1.4.47) is exact here since A(w) is exactly given by H.4.43|ﬂ

It can also be easily obtained by assuming that the shock decomposition

ug(w) = est + Z SOO(w — wy) |, (11.4.48)

holds at small p. The basic idea of applying FRG to shocks is to interpret the short-
scale singularities that appear in the FRG flow of the effective action as consequences
of the presence of shocks as written in ([1.4.48). Here actually does not tell
much about the shock statistics since A’(0") contains one non-universal scale s as
discussed in Sec. [[I.-4.1] Here we have thus linked this non universal scale to a precise
(non-universal) observable in ([L.4.47). On the other hand the result of the FRG is that
all higher order cumulants of the renormalized disorder potential and the full effective
action can be obtained using the structure of the € expansion as functions of A(u). In
the end this will imply that all higher order moments of the shock total size density
(S™), (and other shocks observables) can be expressed using the e expansion in terms
of only one non-universal scale, that we can choose as S;,. The true input of FRG in
the study of shock statistics basically works in three steps:

(i) Assume the shock decomposition (I1.4.48) and relate a given shock observable to a
disorder averaged observable of u,(w) (actually we will need disorder average observ-
ables of the ground state for different well position w in the same environment, see
below).

(ii) Compute the disorder averaged observable in the limit g — 0 using the results of
the FRG.

(iii) Draw the consequences for the shock observable.

b  Shocks and the ¢ expansion: the case of the one-shock total size distri-
bution

Let us now briefly recall how the above program goes for the one-shock total size
density p(S). The following is based on [109, [ITI]. Let us first study the scaling of S,,

5Up to a non universal scale it can also be computed in an e expansion using FRG but that is not
what we are doing here.
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defined in (I1.4.47) with y and e. Note that since for small m, A(w) takes the scaling
form A(w) = Ajpc 26 A(péw) with A(w) = O(e) a function close to one of the fixed
points of the FRG equation, we have, defining & = A’(01),

2
S, — (5% _ Avﬂm §=Alu %5, (I1.4.49)

and we recall m = p?/2. First, note that S, diverges as u — 0 and that the scaling
(I1.4.49)) is consistent with the scaling hypothesis

STS Jeut < i) eut < ;) ) : (11.4.50)

with 7g < 2 that was made in the derivation of the NF conjecture in Sec. (there
Sm was denoted Sy, in (TI.3.14)). Indeed, the second moment (S), diverges as Sp, — 0o
and is controlled by the massive cutoff.

On the other hand, note that S,, = O(e). Therefore it is natural to assume, and the
end result will be consistent with this assumption, that all moments of the avalanche
size distribution scale as, for n > 2 € N, (S"), ~ Sn=! ~ =1 ~(n=1(d+C6) - The
proper object which is expected to have a well defined (and unlversal) w—0,e =0
limit is thus the density of shocks total size in units of Sy,:

p(S) = Loy”

A(S) = Smp(SmS) . (I1.4.51)

which is O(1). The latter is normalized as [g., Sp(S)dS = L% and [5.,5%4(S)dS =
2L%. Let us introduce (almost) its Laplace transform (dropping from now on the tilde)

Z0) =L [ (M =1) p(S)dS . (11.4.52)
S>0

Here the —1 in the definition of Z()\) is to ensure that is finite even when
Ts > 1 (which will be true, at least close to ¢ = 0) and the small scale cutoff S
in is sent to 0. The L~% ensures that it is finite as L — oo. Altogether,
Z(\) = A+ 2X2 + O()3), and note that the coefficient in front of A and \? are exact
(i.e. they are consequences of our definition). The real input of FRG is to provide the
€ expansion of the coefficients in front of the higher order terms in A", n > 3.

(i) The first step is now to relate Z(\) to a disorder averaged observable of the
position field, assuming that the shock decomposition ([1.4.48]) holds. This was done
n [109, 111] and the result is

L% (w6
Z(0) = 0G5 (Nlgmor > Gs(A) 1= LS (Ww+d)=a(w) (IL.4.53)

Here 4(w+6) = le J(ug(w)—w). Let us give a quick justification that holds: if
there is no shock between w and w8, L™ (a(w+8)—a(w))™ is of order O(6™) and such
events do not contribute to . The order O(8) in L™ (a(w + §) — a(w))" is thus
dominated by the probablhty p0(5 that one shock occurred and (4(w + d) — a(w))"™ ~
pod(S™) p + O(62) = 6(S™), + O(6?). (Here we neglect possible contributions coming
from the simultaneous occurrence of more than one shock at w™, this hypothesis is
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sometimes referred to as the fact that the shocks are dilute, and the probability that
two shocks occurred is thus O(62)). This justifies at each order in an expansion
in A

(ii) In the second step, we now want to compute the right hand-side of
using FRG. To do this we need to consider the replicated action for several copies
of the same disordered elastic system. We therefore consider the theory for r = 2
position fields !, coupled to different parabolic wells centered at positions w; in the
same disordered environment (w; = w and wy = w + J§). The Hamiltonian of the
problem is

H{u}, {w}] = Z?-lelu w' —1—2 V(ul,z) . (I1.4.54)
i=1"%

This leads to a replicated action of the form

2T Z/ g$z’ i)(ufz:c’ w;) 2T2 Z / sz)+' -+ (I1.4.55)

a,i;b,j

where a is a replica index and Ry is, as in , the bare cumulant of the disorder
V(z,u). The results from FRG of the previous section for the r = 1 case can be
generalizedﬂ to this new problem [109) 1T1]. In particular one shows that the effective
action of the theory is given by, in the limit u — 0,

2TZ [ bk~ —w) gy 3 [ ROk, )+ O().

a,i;b,j

(I1.4.56)
Here R(u) = O(e) is the same renormalized disorder correlator as already introduced
in the previous section, while the neglected terms are higher-order terms in e that
can be expressed as loop integrals with higher powers of R. Using the effective action
(11.4.56|) is often referred to as the improved tree theory. Here one can a priori use
either the renormalized disorder correlator R(u) as computed to order O(e) from the
FRG, or the true renormalized disorder correlator R(u), since is then still true
up to O(e?). The observable Gs()) is then computed by singling out the first replica
as

Gs(\) = L4 lim | Diujedm Jo (4 w2)udo(wi) —watwn)=5l] (IL4.57)
Tn—0

This path integral is evaluated using a saddle-point calculation on the effective action
(11.4.56)). The saddle-point equations are solved in the limit 7',n — 0 (see [L11]).

(iii) In the end one obtains the result, valid for A < 1/4,
ZA) =X+ Z(N)? +0(e)
Z(\) = %m +O(e) . (I1.4.58)
Which corresponds to a tree result for p(S):
Ld
ONGE

5 Actually it is exactly the same theory since (I1.4.55) is equivalent to taking all w; = 0 but coupling
the action to a source that depends on the replica index as done in Sec. [I1.4.1} see (I1.4.14]).

p(S) = e 4 0(e) . (11.4.59)
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In terms of the avalanche size distribution exponent we have thus

3 Y
=_—+0() =2— O(e) . 11.4.60
=5 +0(0 =2 71— +0() (11.4.60)
i.e. the result agrees well with the NF conjecture to order O(1) since (s = O(¢) and
d = 2y — €. The results (I1.4.58)), (I1.4.59), (II.4.60) have the status of mean-field
theory results for the shock total size density. We will see that these are equivalent to
the mean-field theory results obtained in the dynamics and there we will describe more

precisely what this mean-field theory corresponds to. Before we turn to the analysis
of avalanches at depinning let us make a few comments on ([I1.4.59))

e Dimensions in ([1.4.59)) are reintroduced using (I1.4.51)), in particular note that,

as announced, the dimensionful result for p(S) contains only one non-universal

scale that was here chosen as Sy, (defined in (I1.4.49)).

e The exponent 7g = 3/2 appears completely universal, i.e. independent of both
the UV (hidden in o) and IR (the massive cutoff) details of the models.

o The form of the distribution (i.e. the exponential cutoff) is UV indepen-
dent but non-universal in the sense that it depends on the chosen IR regularizing
scheme, here a massive cutoff with ¢, = 1/p < L. We note that such massive
cutoffs have been argued to be relevant in some experimental setups, as e.g. for
fluid contact line experiments [61].

e The above calculations have been extended using FRG to one-loop accuracy in
[109, 111]. One of the result shown there is that the avalanche size exponent
7s does agree with the NF conjecture. To this date this is the most precise
calculation and we thus have 79 =2 — 71—+ O(e?).

11.5 The functional renormalization group treatment of avalanches
in disordered elastic systems: a short review

In this section we now review the use of the functional renormalization group to cal-
culate avalanche observables. We will begin by recalling the important results of FRG
for the dynamics of d-dimensional interfaces at the depinning transition in Sec.
and in Sec. we will show how to apply FRG to the study of avalanches.

11.5.1 The functional renormalization approach to the depinning transition
a Introduction

In this section we now review important FRG results on the depinning transition. We
will try to make as many parallels as possible with the FRG theory for the static
problem and therefore give less details in this section. As for the static problem at
T = 0, a naive perturbative approach to the depinning transition gives the trivial
dimensional reduction result. The FRG approach escapes this phenomenon through a
renormalization procedure which involves a non-analytic action. As for the statics, this
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was first found by a one-loop perturbative analysis using Wilson’s RG [126], 127, 128,
108]. This analysis surprisingly led to results identical to the one-loop results in the
static problem, while the two problems are clearly different (in particular the random
bond universality class is unstable at depinning, see below). The FRG analysis was
extended to two-loops in [129], and there the differences with the statics appeared. An
interesting extension to the creep regime was also made in [26], though some questions
remain open. Pedagogical reviews of FRG for the depinning transition can be found
n [9, 43]. Let us now introduce the main objects and state the results. We study the
problem

10Oty = /g%y (t) — uy) + F(x, ug)
w(t) = vt . (IL5.1)

As usual g, é =/ q VG + ,u%iq(x—y) and the random force is chosen centered, Gaussian
with a second cumulant

Flz,u)F(2/,u) = 6D (z — 2 ) Ag(u— ') . (IL.5.2)

We are interested to study in the successive limits: (i) ¢ — oo (more precisely
we want to describe correlations in the steady state reached by an interface described by
([L5.1), the latter being uniquely defined up to trivial time-translations [20] and thus
the initial condition of (II.5.1) will be unimportant); (ii) v — 0" (depinning regime);
(iii) 4 — 0 (where observables are expected to reach a universal scaling limit and
avalanches to occur). Disorder-averaged observables of the position field are computed
using the Martin-Siggia-Rose (MSR) formalism (see [130), [131] for historical references
and [132], 133] for reviews).

O{ui}] i= [ DuDit Olfur, } 510,
Slu, 4] := So[u, @] + Sais[u, 4] + Sariu, 0] . (I1.5.3)

Where here 1, € iR is the MSR response field and we have split the action between
the quadratic part Sy, the disorder part Sgis and the driving part Sq,; as:

Solu, 1] ::/t Ut <n08tutm+/g;31/uty> ;
z y

1
Sdls[ ] = —= tt/ utl‘ut/ Ao(utx Ut’z) + SN

Sari|u, U] //utzgzy = —mQ/amvt. (I1.5.4)
X

Here we have implicitly adopted the Ito convention to interpret and the dots
in Sgis[u, @] indicates eventual higher order cumulants of the bare disorder force if the
latter is non Gaussian. In the following we will denote by ()s the average with respect
to the MSR action (I1.5.3). The latter is identical to the disorder average () in the
steady state of (]EE’)J-D for observables of the position field u;,, but in the following we
will also consider averages involving the MSR field .
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b Definition of the different functionals and the statistical tilt symmetry

As in the statics, we consider the generating function for connected correlations:

Walliteh Gral) = <6ft@ jt,zut.r+fm5t,mﬁm>s 7 (IL5.5)

and its Legendre transform, the effective action of the theory,

Fu[ua i) = —W[],‘}] +/ Jtalts +l jt,:t ) (IL.5.6)
X T
where on the right hand side the sources j and j are given in terms of the fields u and
4 by inverting
ow R oW

. y Ut = = .
5.7t,x ‘ 5Jt,x

(11.5.7)

Ut,x =
Let us begin with
The Statistical Tilt Symmetry in the dynamics and the relation statics/dynamics
Note that the total action S[u,a] has the symmetry, for any time-independent
function ¢, Slu + ¢, 4] = Slu, 4] + fmy Utz g, ;qﬁy. Hence, for any observable Olu, 4],
we obtain the STS relation,

(O — &, )5 = / DuDi Olfure}] e S8 — (Ofu, d)e Jean 29250 ¢ (115.8)

In a differential form the latter is rewritten, applying ﬁwxzo to the last identity,

)s = (Olu u/ gx,yuty (IL.5.9)

6’&“;

where we have explicitly used the symmetry g, le =9, L. For the observable O[u, @] =
Uty zpy WE thus obtain

0Dz —y) :/t G (gt 2 ) - (11.5.10)
y
Introducing the response function
R(zp — wisty —ti) = (g 0,8y 00) 5 5 (I1.5.11)

(recall here that from causality and the Ito convention that R(x,¢) = 0 for ¢t < 0) we
thus obtain that

/ GuyR(zp —y,ty = 1) = 0D (x — ). (IL5.12)

I.e. inverting the elastic kernel and going into Fourier space we obtain

1 . )
Rlg.w = 0= —or  Rlgw)= / eHTRR(p ¢y (T15.13)
¢+ p?)? gw
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On the other hand, note that in the theory without disorder, the bare response function
Ro(zf — @ity —t;) = <ﬁti,xiutf,mf)go is easily obtained as
1

Ro(q,w) = . (I1.5.14)
inow + (q% + p2)2

Hence the zero frequency part of the response function R(g,w) is not modified by
the disorder. Note that STS does not say anything on the non-zero frequency part.
Indeed the latter will be modified and the viscosity coefficient 1 receives a correction
from the disorder. Before we proceed, let us emphasize here an idea that can be seen
in much of the calculation performed in the dynamics: there is an analogy between
the time in the dynamic theory and the replica index in the statics. This can be seen
by comparing the calculations performed above with the one in the discussion of STS
in the static theory in Sec. This analogy can be pushed quite far [129]. Note
that in the dynamics, when two position fields are far from each other in time, they
are effectively independent but see the same disorder, just as would two replicated
fields with different replica index in the statics. More generally there will be close
links between observables at 0 frequency in the dynamics and observables in the static
theory.

¢ Main Results of FRG in the dynamics

The result of FRG for depinning is that the effective action of the theory I',[u, @] takes,
in the limit v — 07 first and p — 0 then, a scaling form as follows. Rescaling
c=p"t% | t=pct

Ue = My, lge = ptTTIG (I1.5.15)

)

The rescaled effective action

= - x —Ca~ N d+z— x
FM[{U~,9~C}, {uf,a“:}] =Tu[{ute = p Cd“f:mt,i:;m}’ {ite = p 2 7+Cdu£=yzt,:i=;m}]

(I1.5.16)
converges, as u — 0, to a fixed point of a rescaled functional Beta function
Ty Dul{agzy ez = T {ag ) {az:3) . AL =0. (IL.5.17)

In this limit the effective action can be computed in an expansion in € = 2y — d. As
for the statics the critical exponents ¢ and z are adjusted so that a fixed point indeed
exists. The latter has the same form as the initial action of the theory, except that
(i) one must replace 7 by a renormalized value

n— pu N, (I1.5.18)

where 7, flows with the RG and converges to a constant n* := lim, o7, (which
depends on the flow, i.e. it is non-universal). The Beta function associated with the
flow of  was computed up to order O(€?) in [129].

(ii) The disorder part of the effective action is changed to

1

-5 Gt gy 2 A gz — g ) + O(€2) (I1.5.19)
tt'x

Cais[u, @] :=
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where, as in the statics, the O(€?) contains higher order cumulants (and the non-local
part of the second order cumulant) of the renormalized pinning force. The latter
admits an expansion in A, that can be computed using a standard loop expansion and
handling carefully the non-analyticities (see below). Close to the fixed point, A(u)
takes a scaling form

Au) = Azug_ZCdA(Iquu) (I1.5.20)

where A(u) = O(e) is closed to a FP of the following FRG flow equation (computed
up to two-loops in [129]):

iAW) = (= 20)A0) + G (0) - S[(Aw) — Aw)?”
rescaling =
+ S X[(A) — AO)A @)~ JLX (R0 A" (u)
2—loops
+o@ah (IL5.21)

where Ay = —1. As in the statics, if A*(u) is a fixed point, %A*(KU) is also a fixed
point and thus there are several families of fixed points. The fixed point toward which
the system flows depends on the full flow (in particular it depends on the starting
point, i.e. microscopic parameters). Remarkably, to one-loop order, the flow equation
is identical to the one of the statics. Namely, taking two derivatives of
and defining A(u) = —R”(u), one obtains exactly , up to the change \s — Ay
(we remind As = 1). Hence, up to two loop order, the FRG equation for the depinning
and the statics only differs by the coefficient in front of the ‘anomalous terms’ involving
the R”(0t) = —A/(07). This change has drastic consequences:

e The random bond universality class of the statics, the universality class for short-
range correlated disorder, is unstable in the dynamics and flows to the random
field universality class (see below). This is a signature of irreversibility in the
depinning process: since the interface always moves forward in the dynamics,
it does not know whether it is dragged in a random force landscape that is the
derivative of a potential or not. This difference was confirmed numerically in
[134].

e The random field universality class thus appears as the unique universality class
for the depinning with non-periodic short-range disorder. Moreover this random
field universality class is different from the static one. The roughness exponent
was shown to be different with (g ~ §(1 + 0.143313¢) + O(e?) for SR elasticity
(z = 2 — 2e — 0.0432087€> + O(€®)) and (4 ~ £(1 4 0.39735¢) + O(€3) (2 =
1— Ze—0.1132997¢2 + O(e?)) for LR elasticity. The fixed point function A*(u)
is also different from the static one, as confirmed numerically in [134].

e The random periodic universality class is also different and the fixed-point func-
tion is non-potential. See [129] for more details.
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This shows that it is crucial, when performing a perturbative calculation in the statics
or in the dynamics in terms of the non-analytic, renormalized disorder, to evaluate
carefully the possible non-analytical terms that arise because of the short-distance
singularities of the fixed point functions. In the statics as we explained, the correct
evaluation of such anomalous terms require to take very carefully the T'— 0 limit. In
the dynamics the situation is somehow simpler and the short-distance singularities are
regularized by the non-zero velocity: since the renormalized disorder correlator always
comes with A(ugs — uzp) and ugy > ugy if ¢ > ¢/, there should never be ambiguities
regarding the side of the cusp that appears. In particular, the higher cumulants of the
renormalized pinning force (the O(¢?) in (I1.5.19))) can be computed using a standard
loop expansion (at least up to two-loop [129]) directly at 7= 0 and v = 0F.

Other exponents at the depinning transition
In our field theory approach to depinning, the correlation length £ mentioned in the
introduction to the depinning transition in Sec. is equal to ¢, := 1/ since p is not
corrected by the renormalization (STS). On the other hand, an appropriate definition
of the critical force is the mean force exerted by the well on the interface as v — 07
in the steady state:

fe(p) == lim pvt — ugy . (I1.5.22)

v—07F

Hence, at non-zero velocity, slightly above the depinning transition, we expect that

f= felp) = pYvt — ugy — limy_,o vt — ug, to scale as ;ﬂ_gd. Hence the exponent v

defined by £ ~ (f — f.)7¥ is thus

1
v—Ca

(11.5.23)

1

On the other hand the exponent 3 defined by v = dyus, ~ (f — f.)? must scale as
Iulzfcd — MB('chd) and hence

Bzi_?. (IL.5.24)
— d

11.L6.2 Applying the functional renormalization group to avalanches
a Introduction

Let us now extend our analysis of Sec. [I.3.2] of shocks in the statics to the case of
avalanches in the dynamics. We first note the relation, shown in [97], that extends the

relation ([1.4.43]) of the statics:

A(w —w') = L4m* (u(w) — w)(u(w') — w')", (I1.5.25)

where A(w—w') is the renormalized second cumulant of the pinning force at depinning
and u(w) is the center of mass of the interface in the forward quasi-static process

1
u(w) = ﬁ/uw(w) s Uz (w) = m ugy (I1.5.26)

v—07F
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Note that it slightly differs from ([I1.4.43)) by the fact that the average in (I1.5.25)) is a

connected average. While in the statics we have u(w) = w, in the dynamics u(w) # w
and the difference m?(w —u(w)) is the critical force of the system. Apart from this the
interpretation and consequences of the formula are mostly equivalent to those
of and we refer the reader to the discussion after . In particular as
u — 0, beyond the Larkin length, the left-hand-side of takes a universal, non-
analytic scaling form . This non-analyticity is interpreted as the occurrence of
avalanches in the forward quasi-static process and we assume that in the scaling limit

Uy (.%') ~ ;UiCda

ug(w) = est + Z SOO(w — wy) . (I1.5.27)

As in the statics, the density for the total size of the shocks, S(#) = . Sg(gi), is defined
as

p(S) == 6w — w;)d(S — SW) (11.5.28)

and does not depend on w in the steady-state. Without repeating the same discussion
as in the statics we obtain the two important exact relations

S2) o

=L i )0 T gyt I1.5.2
(S)p , S 205y, ~ m? al 7, (I1.5.29)
where 0 = —A/(07) and & = —A/(07) are O(e). Let us now see how to relate more

generally an observable associated with the avalanche motion of the interface to an
observable of the MSR field theory. Before we do so let us note that it is important to
have in mind the discussion of avalanches in the d = 0 case given in Sec. [[[.2.2]

b The MSR response field as the generator of avalanche motion

Let us now consider the theory for the interface velocity field s, = 0yt,. It is obtained

by taking a derivative of (I1.5.1]
N0Dytige — / 070 = ay) + O F (5, s (I1.5.30)
y

We consider, for an arbitrary source A;,, the generating functional of the velocity field

in the steady state of ([[1.5.30))
G| == eJu Niattn (I1.5.31)

Let us suppose that Ay, is non-zero only in a time window t € [0,7]. The latter is
taken to be large compared to the typical time scale of the avalanche motion (so that
every avalanche that occurs in this time window terminates), and small compared to
the waiting time in between successive avalanche (that is of order O(1/v)). This will
be automatically ensured later by taking the limit v — 0 first and T" — oo afterwards.
Let us now denote: (i) py, [ti,] the probability distribution functional of the velocity
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field of the interface knowing that an avalanche started somewhere along the interface
at time ¢;, normalized as [ D[u]py, i) = 1; (ii) po the mean number of avalanches
per unit of driving. From the general picture of avalanche motion built on d = 0 toy
models in Sec. we know (i.e. that is how we would like to interpret the FRG
results) that in the limit v — 07, G[\;] admits the expansion

G[AMz] = (1 = povT) + pov /t io / Dli)edie % p, Tig,] + O(0?) .  (IL5.32)

Equivalently we can write, introducing the density functional of the velocity field inside
an avalanche starting at time t;: pg, [Uz] = pope, [Uiz),

Ghz] — 1= /tT:o / Dl (efm Aatite _ 1) pt liz) + O(v?) (I1.5.33)

On the other hand, G[\] can be computed using the MSR field theory associated

with the velocity theory. The latter is a simple adaptation of ([1.5.3)-(I1.5.4) and we
obtain

GlAt] = / D) D)o Mottt =Saltm?o f, e (IL.5.34)
where S[u, @] := Splu, @] + Sais[t, @] with

Solu, @] = /m Uy <7708t7lt:c +/ygmlﬂty> ;

Sais[w, ] == —% /t v Tt Ty 00y Ao (Ut — Upry) - (I1.5.35)

Taking now the expansion in v of ([1.5.34) we obtain

G[Aat] — 1 = m*v( / iggede ettty g 4 O(?) | (I1.5.36)

tx

Hence, comparing ([I1.5.36]) with (11.5.34) we identify

Z[\ = /:O/D[u] (eftx Molts 1) pt; [Utz] = m? <71txefzt )‘“u“>5 . (I1.5.37)

tx
Note now that from a diagrammatic point of view, all diagrams that contribute to
<amefzt A““”) s correspond to ‘histories of the interface motion’ such that the first

non-zero velocity of the interface is at a time larger or equal to ¢ and at a position x.
It is thus natural to identify

ZuN = [ DLl (ehe % = 1) ] = m? (el x00) s, (115.38)

where py; 4[] is the density for the velocity field inside avalanches that are triggered
at time t; at the position x;. This formula first appeared in [2] (see Appendix .
Although, as it is usual when dealing with avalanches, one could debate some heuristic
steps that were taken in its derivation, it is also coherent with the more controlled
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setting of avalanches following a kick in the force in a non-stationary setting in a
solvable model, and we refer to [2] (see Appendix for a more complete discussion of
. Let us now discuss how to use FRG to obtain a simplified action that allows
us to compute the e expansion of the right-hand side of in the limit g — 0,
and thus obtain the € expansion of a generic observable associated with the avalanche
motion.

¢ The simplified action for the motion inside avalanches in the velocity
theory

One way to use FRG to compute avalanche observables at depinning is to follow the
same route as presented for the statics in Sec.[[T.4.2] This route is presented in detail in
[10I] and shown to be equivalent, to one-loop accuracy and for observables associated
with a single avalanche such as , to a simplified theory. We now present this
simplified theory following [I01] and [43]. The essential steps will be:

(i) Express the bare disorder force-force cumulant Ag(u) and viscosity coefficient 79
of the theory by formally inverting the one-loop expressions for A(u) and 7 obtained
from one-loop perturbative FRG.

(ii) Express the MSR action for the velocity theory in terms of the renormalized disorder
A(u) and viscosity 7.

(iii) Take into account the fact that the scale of avalanches, Sy,, is O(e) to obtain a
simplified action valid to describe the velocity field inside a single avalanche.

Let us start with the first step. The one-loop expression for A(u) in terms of Ag(u) is
[129]

Au) = Ag(u) — I (Ao(u) — Ag(0))Af(u) . (11.5.39)
It can formally be inverted| as
Ao(u) = A(u) + I (A(u) — A0)A (u) . (I1.5.40)
In the same way [129)]
n=mno(l—AGO) ., mno=nl+A"0")). (IL.5.41)

Of course these expressions and the inversions that were made are completely formal:
while the bare disorder correlator appearing on the left of can be a smooth
function of u, we know that the renormalized disorder on the right of is non
analytic for p < p.. As usual with perturbative RG, this type of manipulations and
one-loop expression are only appropriate to obtain the RG flow of the param-
eters close to a perturbative FP (see e.g. [135]). More precisely, taking the derivative
—pd,, of at fixed Ag(u) and then replacing on the right-hand side Ag(u) by
the expression leads to the correct one-loop Beta function . This
inversion allows however to obtain self-consistently a bare action that will lead, us-
ing a one-loop perturbative calculation of an observable, to the correct result up to

"The formal expansions and inversions of series performed here are controlled under the assumption
that A and A are small and of the same order.
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order O(e). Hence to obtain our avalanche observables we will perform one-
loop perturbative calculations with an action similar to (I1.5.35|) with the replacement
no — 1, Ag — A and reminding ourselves in the end that counter-terms involving the
loop-integral I as in (I1.5.40)), (II.5.41)) must be added.

The above considerations are the steps (i) and (ii) in the announced program. Let
us now finally perform the last step, namely use that S,,, the upper-cutoff of the
avalanche size distribution, is O(e). We thus need to rescale in a way that
allows us to study the limit 4 — 0 and € — 0. We will do the rescaling in two steps
for clarity. We thus consider

Agt
S.

Zp,os N = Z, s [ = A/ Spn] = mP{fig,p, eer T 1) g (I1.5.42)

Let us first take care of the scaling with u: we must adapt the scaling of ([1.5.15))
to the fields of the velocity theory. We thus take,

Uy p = Wy Uiy = ud_7+<‘ifb£,f , (I1.5.43)

using here () for rescaled quantity, and where the dots mean either 0, or 9;, depending
on the field to which they are applied. The elastic kernel is rescaled as g;_lla_c u-lg =
ugs % with gz % =/, eir™ @=v)(¢2 +1)7 and we remind ourselves that in the limit
i — 0 the rescaled renormalized disorder and friction are close to one of the fixed

points of the FRG flow:
ne~ W TE L Al) ~ AL RaAT (b)) | (I1.5.44)

Using this rescaling, our ‘model’ avalanche observable (I1.5.38)) is expressed as, using
that S, = Agu_d_cfi&*,

~ ~ . _ = _1 \
Zu N = 4 [ DIDE i, o s , (I1.5.45)

where the action S[u, @] is now as in with 7 — 7*, A — A* and the de-
pendence on p has completely disappeared (apart from the prefactor). Finally, we
must now ‘zoom’ in on the O(e) scale of the avalanche motion that is controlled by
&* = —A*(0") = O(e). To this aim we thus rescale

lUpz = Ayo* e Upp = (Ay6*) 'y - (I1.5.46)

This final rescaling allows us to make an expansion of the renormalized disorder cor-
relator around u = 0: for u of order 1 we have

- - 1 -
A*(435"u) = A*(0) = AYE"ul + 547(0) (436") w? + O(e") . (IL5.47)



I11.5. FRG APPROACH TO AVALANCHES 73

This rescaling leaves the quadratic part of the action invariant but changes the disorder
part as, following the different changes of variables,

o 1 N
Sis [U, U] =3 utxut/matat/A(utx - ut’z)
2 Jep o
A7 S ~
_ d S 9O AR (s =
=79 |- Uz Upz0p0p A (Ugz — Upz)
t,t', T

= — 7 / 7 0;0p A (A}6™ (uzz — upz)) (I1.5.48)
t

’t/7£
s ~ ) AW’A*//(O) o o
Sais[w, ] = — /_(%5)2 5+ ———— 5 / Ul iz lpz + O(€%) .
t,x tt',x

We refer the reader to [I0I] for more details on the simplification in the last line
that notably uses u;; < tp; for t < . Hence our model observable (II1.5.45) can be
calculated when p is close to 0 using the € expansion as

. 1 _ S e s
ZiwiN = o~ / DiDi iy 5, elie oS0, (IL.5.49)
m

where the action S[d, 4] is similar to with n — 7%, u© — 1 and the disorder
part is as in . The observable can be computed to order O(e) using one loop
perturbative RG. Possible divergences appearing in the calculation are canceled by
counter-terms associated to the renormalization of n and A and ([1.5.41)F° In
the following we conclude our introduction to the analysis of avalanches using FRG by
focusing on the mean-field theory that is obtained by retaining only the terms of order

O(1) in (IL5.48), i.e. we set A*(0) — 0.
d The mean-field theory: the Brownian Force Model

Let us now discuss in more details avalanche observables in the dynamics of elastic
interfaces to lowest order in € = 2y — d. As discussed in the previous section we thus
only need to consider an interface whose velocity field dynamics inside an avalanche is
described by the action

O] = / DD Of{igy}] ¢Sl |

S, @] == Sot, @] + Sais[t, @] + Sari[w, i

Solt, 4] = /m Uy (Uatittz +/yg;,zl,ftty> ;

Sanlis @] i= =0 [ s

Sariltt, @] := —m?v /m ity - (I1.5.50)

Here we have reintroduced a possible driving velocity v > 0, the different units and
the renormalized parameters 7 and o. Let us first comment on the nature of this theory.

8 A subtlety linked to calculations using the simplified action ([1.5.48)) is that one has also to take
care of a formal renormalization of p forbidden by STS in the full theory. We refer the reader to
[43, [T0T] for more details on this issue.
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The Brownian Force Model
It is a simple exercise [I0I] to show that the MSR action (I1.5.50)) is equivalent to the
following stochastic equation for the velocity field of the interface:

1Oty — / 070 = itgz) + V20T (IL5.51)
y
where & is a centered and normalized Gaussian white noise (GWN):
Cinlprr = 6D (z — 2)o(t — 1) . (I1.5.52)

In turn, the equation (I1.5.51)) appears as the time derivative of an equation for the
position field of the interface as

Ny, = /g;}/(vt — Uy) + F(x,ugy) , (I1.5.53)
y

where for each z, F(x,u) is a Brownian motion (BM) in u independent of the others
and with increments

(F(z,u) — F(x,u))? :=20|u — /| . (I1.5.54)

This theory was called the Brownian Force Model (BFM) in [I11], 10T, 102]. Note that
the emergence of a BM should not be surprising: we obtained the BFM as the mean-
field theory for the depinning of interfaces in short-range disorder by linearizing the
correlator of the renormalized pinning force around the cusp because avalanches are
small, that is of order O(e). For an arbitrary pinning force F(z,u) that is stationary

with F(z,u)F(2',v') = 6@ (z — 2/)A(u — o) and has a cusp, we have

(Fz,u) — F(z,w))? = 2(A0)—A(u—u')) ~ —2A(0%)|u—t/|+O(ju—u/|?) . (IL5.55)

hence we retrieve generally the BEM with o = —A’(0") through such considerations.
A subtle issue here is, however, that the BM is not a stationary process. While in
(I1.5.51)) we did not define precisely the initial condition since it is implicit that we are
looking at the stationary process for the velocity field 4y, (which exists), the process
in has generally no stationary state. The definition thus requires
some precisions. One way is to make the Brownian motion F'(x,u) stationary in u by
considering Brownian bridges in a large box [101] F(z,0) = F(z, W) =0 with W > 1
and looking at the process in the middle of the box in a width of order 1: v — W/2+4u
with u = O(1). The correlations between the different BM constructed in this way
are then to leading order F(z,u)F(z',u/)" = 6 (z — 2/)(A(0) — o|u — o/[). This is,
however, a bit artificial and in this setup A(0) is huge, A(0) ~ W. From a more
pragmatic point of view one can consider one-sided Brownian motion with the initial
condition that the interface is at rest at ¢t = 0:

F(z,0) =0 , gz =ug =0, (1L.5.56)

In this setup one can now consider an arbitrary (non-stationary) driving w(t) with the
equation of motion

DOy — / 07 (w(t) — uge) + F (2, uge) (I1.5.57)
Yy
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and w(t = 0) = 0. If w(t) is always increasing, w(t) > 0, the interface dynamics in the
velocity theory is described by the same MSR action as in (I1.5.50]) with Sqi[u, @] =
m? [, Uz (t).

The BFM as a FRG fized point in any d and the scaling exponents of the BFM
As was first remarked in [IT1], and can be checked by differentiating the static FRG
equation for R(u) (I1.4.36|) three times with respect to u or the dynamic FRG equation
once with respect to u to obtain in both cases a FRG equation for A’(u), the
model defined by

Al(u) = 4 (=6 |u|) = —Fsign(u) (I1.5.58)

U

is a fixed point of the FRG equation in any d with the exponent (; = (4 = € and
the dynamic exponent z = «. Furthermore this fixed point was argued in [ITI] to be
stable and to be an exact fixed point for an arbitrary number of loops. In [102] it was
even shown that it is a fixed point of the (more complicated and not shown in this
manuscript) FRG equation for the dynamics at non-zero velocity. Note that inserting
the scaling (I1.5.43) in (II.5.50)) it is easily seen that the critical exponents z = v and
¢ = € does lead to a p independent action (this is linked to the exact scale invariance
of the BM).

Back to the ABBM model
Let us now look at the dynamics of the center of mass in the BFM model. Defining

U = ﬁ J Wiz, we obtain from ([1.5.51])
ndiy = m*(v — @) + V20 (I1.5.59)

where we have used the identity in law ﬁ Jo VOt ote = Vorwé with o, = o/ L% and
& a unit centered GWN &&,° = 6(t — ). The equation is equivalent to the
time-derivative of the equation of motion of a particle in the ABBM model already
considered in Sec. Hence the mean-field theory for the motion of the center
of mass of an elastic interface inside an avalanche at the depinning transition is the
ABBM model. In particular, the mean-field value for the power-law exponent 7g is, as
in the shocks case, 3/2. Note that this value is also consistent with the NF conjecture
applied to the BFM in any d since 79 =2 —v/(d+ () =3/2 as ( = e =2y —d. Let us
remind here the reader that this mean-field exponent is linked to the first return time to
the origin of the one-dimensional BM as shown in Sec. [I.2.2] The mean-field nature
of the ABBM model was already argued on phenomenological grounds in [100] [42].
Here it has been derived from first principles using FRG but more importantly it is
now clear how to go beyond the predictions of the ABBM model. Namely, the BFM,
first introduced in [136}, 10T], 102], provides the proper mean-field theory to describe
spatial correlations in the avalanche process. Finally, FRG also permits to go beyond
mean-field and to compute corrections in an € expansion. Before we close this chapter,
let us finally recall here that the BFM has an important exact solvability property and
show an application of this property.



76 CHAPTER II. AVALANCHES AND SHOCKS OF DISORDERED ELASTIC INTERFACES

e Exact solvability of the BFM and the avalanche size distribution

We now discuss a remarkable solvability property of the BFM. We consider a non-
stationary case with an inhomogeneous driving w,(t) described by the equation of
motion

N0ttty = /g;;(wx(t) — Uz) + Fx,ug) (I1.5.60)
y

where as before the BM is one sided F'(z,0) = 0 and at ¢ = 0 the interface is at rest
ugz = 0 and w,(t = 0) = 0. We suppose that the driving is always increasing w,(¢) > 0
during a finite amount of time and note the total displacement w, = [ W, (t)dt. Our
goal is to compute the generating function for the velocity field for an arbitrary source

)\th

GA\) = iz Hetitet (I1.5.61)

_ /D[U]D[ﬂ]e_ 1 Utz (natdtx+fy ga;,zl/ibty)-ﬁ-a ftz 42, U +m? ftw ﬂmwm(t)eftzo,:c Ao Ut

Here we have rewritten the average over disorder using the MSR action. As first
remarked in [I36], a remarkable simplification of the BFM is that the action for the
velocity theory is linear in u;,. The path integral over @ thus simply leads to a
functional Dirac delta distribution. One then easily obtains

GAar) = ™ Juw B0, (I1.5.62)

A

where 47,

is the solution of the ‘instanton’ equation:
n@tﬂm — /g;;’aty + O"l]?x + )\tx =0 (11563)
y

with the condition i, = 0 for ¢t > tyax = min{t € R, A,y = 0 V' > t}. A remarkable
feature of is that that it does not depend on the driving: the dependence
of the observable on the driving only appears in . Before we show a simple
application of this formula let us mention that the solution can also
be obtained without using the MSR formalism, see [102].

Distribution of avalanche total size in the BEM

As an application of (I1.5.62HI1.5.63)) consider the calculation of the PDF P(S) of the
total displacement of the interface S = ftzo » Utz for a homogeneous driving w, = w.

The Laplace transform of P(S)

G(\) = P(S)e*dS (I1.5.64)
S=0

is obtained using ([1.5.62HI1.5.63) with A;; = A. The solution of |[1.5.63| is time and

space independent and reads

2

a;:m?zusm) C 2N =5 (1-VI=4) |, Spi=o/mt. (IL5.65)

N |
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Note that the function Z(\) already appeared in the mean-field calculation of the
shocks total size density in ([1.4.58]). Here we thus obtain
du)
G(A) = e 5m ZOSm) (IL.5.66)
Performing the Inverse-Laplace transform of (I1.5.66]) as in [I01], we obtain the result

given in the discussion of the ABBM model ([II.2.31)) (there it was given in dimensionless
units S, = 1 and with vTy = Lw):

Liw _ (5=L%w)?

= NN L SmS?’/?e S5m (IL.5.67)

In order to see the link between this quantity and avalanches in the quasi-static steady
state of the interface, consider now the density of avalanche total size p,—o(S) triggered
at an arbitrary time t at position x = 0 in the quasi-static steady state (for the velocity
theory) of the BFM. Its ‘Laplace transform’ is obtained using with Ay = A.
We can again use the instanton equation to evaluate the path-integral over 1, and we
obtain

P(S)

1
[ (5 =1) pmo(8) =m0 = M2y = o Z(Sm) . (IL5.68)
S>0 S

m

Inverting (see e.g. [101]), we obtain

1 s
2=0(S) = ———F—=—=—27€ *m I1.5.69
p 0( ) 2\/7?@513/26 ( )
And we note the equality
1 0P(5)
pz=0(S) = ﬁaiw‘wzo ) (IL.5.70)

that shows the link between avalanches defined in the quasi-static steady state or in
the non-stationary setting. Here the factor ﬁ accounts for the fact that avalanches
contributing to P(.S) can be triggered with equal probability at any point of the inter-
face. Using the fact that the BFM is a Lévy jump process it is also possible to ‘invert’
and obtain P(S) in terms of p;—o(S). This is a similar calculation as the one
given in Sec. for the stationary velocity distribution of the ABBM model and it
is detailed in [I] (see Appendix[A]). Let us conclude this section by remarking that the
density of avalanche total size in the BFM is the same as the one for shocks
in the statics at the level of mean-field theory. This is not surprising since
the differences between depinning and statics only appear at two-loop order in FRG.

11.6 Summary of (and more context around) the results ob-
tained during the thesis

In this section we present the main results obtained on shocks and avalanches during
this thesis. We begin in Sec. with a quick summary of the previous section and
also present the actual research context around the obtained results. The next sections
present the main results obtained in [T}, 2] [3].
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11.6.1 Introduction

Summary of the previous sections

In the last section we have introduced the notion of shocks and avalanches in disordered
elastic systems. We have shown how the Functional Renormalization Group can be
efficiently used to calculate universal properties of these jump processes: the latter
inherit the universality and the scale invariance of the FRG fixed points and gives
a natural interpretation to the non-analytic nature of these FPs. For non periodic,
short-range disorder we have shown that there are a priori two universality classes for
shocks, random bond and random field disorder, and a unique universality class for
avalanches that corresponds to random field disorder, which is however different from
the Random Filed universality class for shocks. Close to the upper-critical-dimension,
which depends on the range of the elasticity of the interface as dy. = 27, we have
identified the relevant mean-field theory to describe the motion inside avalanches at
the depinning transition as the BFM model. The center of mass dynamics in the BFM
model was shown to be equivalent to the ABBM model. Based on these constructions,
we can now ask various questions about the universality in avalanche processes using
mean-field approaches, but also beyond mean-field in a controlled ¢ = d,. —d expansion
of observables using the structure of the FRG FPs. Let us now review some known
results and introduce the subjects which will be the focus of Sec.[[1.6.2] Sec.[IT.6.3] and
Sec. [T.6.41

Critical exponents

The first focus of the community has been on the determination of the exponents char-
acterizing the power-law distribution of quantities such as the extension, duration or
total size of the avalanches. Since those are linked to one another by scaling relations
involving the critical exponents of the statics (for shocks) or of the depinning tran-
sition (for avalanches), an important question was to understand whether or not the
exponents can be entirely deduced from the exponents of the statics and depinning
transition. The NF conjecture that was presented earlier, first proposed for avalanches
at depinning [I08] and later generalized to the case of shocks [106], 109], provides a
precise affirmative answer to this question. Since it is however based on unproven as-
sumptions, it is still important to obtain an independent derivation of these exponents.
At the mean-field level the exponent 7¢ = 3/2, first derived in [103], agrees with the
NF conjecture. More recently, the NF conjecture was shown to hold up to one-loop
both for shocks and avalanches in [109, 111}, [10T].

Universal distribution
Besides critical exponents, it is interesting to obtain the full PDF of avalanche ob-
servables. Although these in general depend on the IR cutoff of the theory (i) cutoffs
such as the massive scheme discussed in this thesis have proved relevant in the descrip-
tion of some experimental setups [61]; (ii) the scaling with the cutoff of the different
avalanche observables distributions on the IR cutting length is also expected to be
universal, e.g. here S, ~ p~97¢; (iii) this implies the universal scaling behavior of
various avalanche observables since the (sufficiently high order) moments of avalanche
observables distributions are dominated by their cutoff. For the ABBM model the
PDF of avalanche size and duration were obtained in [97 [136] 137, [102]. Still in the
ABBM model, the distribution of the maximum velocity inside an avalanche was also
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computed in [137, [138] where the authors also obtained the dependence of the expo-
nents on the velocity. The joint distribution of size and duration was obtained in [102].
The distribution of the extension of avalanches was computed in the BFM with SR
elasticity in d = 1 in [I07]. Results beyond-mean field for the avalanche total and
local size distribution were obtained at one loop-order in [109, 111] (shocks) and [101]
(avalanches). These notably predicted the characteristic ‘bump’ that is observed in
numerics [I39] in the avalanche size distribution close to the large-scale cutoff.

Universal scaling functions

Recently universality in avalanche processes has been pushed one step further and a
lot of attention was devoted to the study of universal scaling functions. Indeed, the
full velocity field of the interface u(t, x) inside an avalanche (where ¢ refers to the time
since the beginning of the avalanche and x is the d-dimensional internal coordinate
according to some centering procedure) is expected to be universal and scale invariant.
For example, using the scaling and a sum rule, for avalanches of fixed duration
T inside the scaling regime Ty < T' < T;,, one expects to have the equality in law

ﬂ(t, :E) ~ T(d/z—lvﬁxed duration(t/T’ :E/Tl/z) ’ (H.G.l)

where the rescaled spatio-temporal process vixed d“ration(t, x) is a well defined T'—independent

stochastic process. Alternatively, for avalanches of fixed total size S in the scaling
regime, one expects

u(t, x) ~ Gl=(z+d)/(Catd), fixed size(t/gz/(dﬂd)’m/Sl/(dJer)) ’ (11.6.2)

where the rescaled spatio-temporal process viixed size (t,z) is a well defined S—independent
stochastic process. Of course it is one thing to write (II.6.1)) or (II.6.2) but it is an-
other to prove it and to characterize in some way these rescaled stochastic processes.
In recent years a lot of attention has been devoted to the study of the mean temporal
shape of avalanches at fixed duration or size.

temporal shape

]:-ﬁxed duration (t) = / ufixed duration(t’x) ,
x

TS dupe(t) 1= [ ueet st ) (11.6.3)
X
At the mean-field level in the ABBM model, the closely related mean temporal shape
at fixed size as a function of the interface position was first computed in [I40, [I41]. The
mean temporal shape at fixed duration was computed in [142], with the remarkably
simple result ftﬁe’ﬁggofgfiﬁgge(t) ~ t(1 —t). Interestingly, these remarkable observables
are also well suited to investigate non-universal effects in avalanche processes which are
also interesting for practical applications. In particular, it was known experimentally
that the mean temporal shape at fixed duration of Barkhausen pulses present an
asymmetry and are skewed to the left, a fact which was attributed to the slow relaxation
of Eddy currents affecting the domain wall dynamics [143, 42]. Years later these
effects were introduced in a modified ABBM model, the temporal shape was again
computed analytically and presented the asymmetry observed experimentally [144].
Finally, results beyond mean-field (at one-loop) were recently obtained for the average
temporal shape at fixed duration and size in [43) [[10]. The very recent comparison
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with experiments confirmed the increase of precision brought by one-loop corrections
[145].

The spatial shape of avalanches

On the other hand the equally interesting spatial shape of avalanches was left aside from
theoretical studies until recently. This was a rather disappointing state of affairs since
the latter could also be measured in some modern experimental setups on e.g. fracture
processes. In [I] (presented in Sec. and Appendix , as will be detailed in the
next section, we made the first progress in this direction and showed that at the mean-
field level, i.e. in the BFM, the shape of avalanches in d = 1 becomes deterministic
in the limit of peaked avalanches S/¢?+¢ > 1 and we identified the limiting shape.
Fluctuations around this deterministic profile were also studied in an expansion in
(¥+<¢/S. Comparison with numerical simulations showed a good to perfect agreement.
In [2] (presented in Sec.[[I.6.3]and Appendix[B]) we went further in analyzing the spatial
shape of avalanches. We first obtained the mean velocity field inside avalanches of fixed
total size at the mean-field level. This observable contains both the mean temporal
shape at fixed size previously studied and a new result, the mean spatial shape at fized
total size. Going beyond mean field we were able to compute the one-loop corrections
to the mean spatial shape at fixed total size. Comparison with numerical simulations
showed a good agreement.

What about correlations?
Up to now all the observables that were mentioned concern what one may call ‘one-
shock/avalanche statistics’ However, an interface in a given disordered medium gener-

ally experiences a sequence of shocks/avalanches {wj, Sa(;z)}. The observables mentioned
before do not fully characterize the properties of this sequence since there can be cor-
relations between different shocks/avalanches. In the context of earthquakes the study
of these correlations has been a major focus of the field. From the phenomenological
point of view the main result is the Omori law that characterizes the number of af-
tershocks after a main shock [67]. Several mechanisms have been advanced to explain
these strong correlations, all involving an additional dynamical variable [146] [147]. For
elastic interfaces, in an attempt to explain the Omori law from simple mechanisms,
correlations between avalanches were until recently only studied as a result of such
additional degrees of freedom in the interface dynamics, such as relaxation processes
[148, 149] or memory effects [144]. Overall there is a belief that these correlations
are not captured by the simple interface model. While this is certainly true, it is
still clearly of interest to understand first the correlations in interface models (as the
example of the temporal shape of Barkhausen avalanches teach us, it is important
to first thoroughly understand what is universal to understand what is not!). These
universal correlations were remarkably left aside from all theoretical studies until re-
cently. There was even a belief that avalanches were uncorrelated in elastic interfaces
model. While this is certainly true for the ABBM and the BFM model, as we very
precisely show in [I] (presented in Sec. and Appendix [A), correlations always
exist in non mean-field models. Using FRG we showed in [3] (presented in Sec.
and Appendix [C)) that correlations between shocks in disordered elastic interfaces are
universal, of order € and are controlled by the renormalized disorder correlator A(u).
While as we showed, the one-shock statistics is only sensitive to the behavior of A(u)
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around the cusp, correlations between static shocks feel the full shape of A(u). We
obtained quantitative results on the correlations that notably permits and original and
unambiguous distinction between the RB and RF universality class.

Before we begin a more detailed presentation of the results obtained during the
thesis (we will only present the main results and encourage readers to look at the
original research papers in Appendices , let us mention here that the list of
problems introduced above is of course very incomplete. Other interesting important
open problems of the field will be mentioned in the conclusion.

11.6.2 Presentation of the main results of [1]

An exact formula for the local size of avalanches following an arbitrary driving in
the BFM on an arbitrary graph

In [I] we consider the BFM on an arbitrary graph and consider the avalanches
following a stepped driving (defined below). That is we consider the equation of
motion

N
nopus; = Z CijUjt — m? (i — wit) + F(ug) (I1.6.4)

j=1
where (i) ¢ =1,--- , N € N label the points of the graph; (ii) u; is the position of the
ith point at time ¢; (iii) the points are linked to one another by a time-independent
elasticity matrix ¢;; such that }°; ¢;; =0 and ¢;; > 0 for @ # j; (iv) the random forces
F;(u) are a collection of independent one-sided BM with [F;(u) — F;(v)]? = 20|u — /|
and o > 0; (v) the interface is at rest at time 0 and u;—g = F;(0) = wi—g = 0; (vi) for

t > 0 the driving verifies w;; > 0 and w; 1= w; t— 400 < 00.

Under these conditions, we obtain an exact formula for the joint distribution of
avalanche local size defined as S; := u; ;= (Which is smaller than co with probability

1) for an arbitrary driving @ = (wi,---,wy). We obtain (in dimensionless units
w; — w;/Sm and S; — S;/S,, with S, = o/m?)

1
. 1 W /X 2 1 (wi — XN, Ci;85)?
Ps(S) = (2\/7?> (HSZ) o <_4Z o | det (M),
i=1 ' i
w; — Yp—q Cir Sk,
S; ’

The formula is obtained both (i) using an ‘instanton’ method similar as
to obtain formally the Laplace Transform (LT) of (IL6.F]), the LT is then formally
inverted using heuristic calculations involving Grassmann variables; (ii) an exact proof
by deriving the Kolmogorov backward equation satisfied by in the case where
the driving is w;; = w;0(t).
Ezact formula for the densities and the BFM as a Lévy-Jump process

Based on the formula and on the form of its Laplace Transform, we show that
the BFM is an infinitely divisible process. Namely Vk € N, Yy, - - - , w0 € (R4)Y such
that @ = Y.F_, @, we have

1
Mij = Cij + by Cij = 045 — WCU . (11.6.5)

=

Pu-j(S) = (P1E1 * Pu‘)’g koo k Pu_ik) (S) . (1166)
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This rigorously shows that the BFM on an arbitrary graph is a Lévy jump process
(see e.g. [104]). The motion of the interface is a succession of jumps independently

generated in time and in space by the densities pl(g) = ang(iS)m:O which, for each
site 4, corresponds to the density of avalanches triggered at the i*" site (which depends
non-trivially on ¢ on an arbitrary graph). Based on (I1.6.5) we obtain an exact formula

for these densities and are able to take the k& — oo limit of (I1.6.6)) as

(o) n
[a¥5Mpa(S) =30 30 e [T Vs (- Do () g6
n=0 (i1,...,in) n' =1

(I1.6.7)
In each term w;, ... w;, corresponds to events where the total motion S of the
interface was generated by n elementary avalanches triggered by the density p; at the
site i1, -+ ,ip and § = Si, +---+85;, (note that there can be several avalanche triggered
from the same seed, i.e. the terms iy = iy are contained in the above summation).

The formulae and are rather remarkable as they contain in principle
all the information on the spatial structure of avalanches in a completely general version
of the BFM model. The possibility to obtain such a formula is linked to the non-
trivial exact solvability property of the BFM. Although it was previously known that
the avalanches in the BFM are independent, this independence property was never
described as precisely as in . It is however fair to say that extracting more
information (e.g. a marginal probability) from these formulae is quite hard. In [I]
we are able to make progress in the fully connected model for arbitrary N. The
study of the large N limit from these formulae is rather instructive and we encourage
readers to read the 5 section of [1] (see Appendix A]). Here we present only one result
extracted from namely the deterministic shape taken by peaked avalanches in
the continuum BFM model with SR elasticity in d = 1.

The shape of peaked avalanches in the BFM with SR elasticity in d =1

Taking the continuum limit of the above formulae, we obtain a formula for the
density of avalanches in the BFM with SR elasticity in d = 1 on a line of length L
with periodic boundary conditions as (in dimensionless unit, see Appendix for more

details and Sec. [I1.5.2| for the definition of the BEM in the continuum)

LdxS,) [F L w20 \2
plSz] ~ Uo W S) )fz 5% exp <— /OL de) . (I1.6.8)

This allows us to obtain observable such as the mean shape of avalanches using a
path integral on the shape of avalanches S, with statistical weight p[S;]. We show
that for avalanches of extension ¢ and total size .S, in the limit of peaked avalanches
S/t* > 1, the centered, reduced shape s(z) = és(x_mo)/l, defined such that the support

of the reduced shape is z € [—1/2,1/2] and fi{% s(x)dx = 1, becomes deterministic
s(z) = so(z) (given by a saddle-point of the path integral associated with (I1.6.8))) and

solves

5¢/ ()  10¢/(z)*¢" (x)
¢(x)? ¢x)?

Ag(x) = ¢ () + (IL.6.9)
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Figure 11.4: Left: Mean shape obtained by averaging over the 1000 avalanches with
the largest S/¢* in the simulations of the BFM of [I] (blue dots, compared to the
optimal shape so(x) solution of (red line). Right: test of the predicted behavior
so(z) ~ (x4 1/2)* close to the boundaries. Figures taken from [I].

where so(x) = ¢o(z)? with ¢g(z) the solution of (I1.6.9) with the saddle-point parame-
ter Ag ensuring f_IﬁQ ¢o(z)? = 1. (11.6.9) was solved numerically with a high precision.

The solution is predicted to decay close to the boundary as so(x) ~;_1/2- (1/2—z)*.
This is confronted with numerical simulations of the BFM (see Appendix [A| for more
details) with a very good agreement, as shown in Fig. In [I] we also investigate
the \/¢*/S corrections to this deterministic behavior and obtain, based on the optimal
shape so(), the tails of the PDF of aspect ratios S/¢4. These additional results are
successfully confronted with numerical simulations (see [I] in Appendix |A]).

11.6.3 Presentation of the main results of [2]

The seed-centering

In [2] we pursued the analysis of the spatial shape of avalanche processes. One of the
main contributions of our work was to remark that the most convenient way to center
the shape of avalanches (from the perspective of performing analytical calculations) is
to center them around their seed. Indeed, as was shown with , the structure of
the MSR action for the depinning of elastic interface allows quite naturally to isolate
in any observable O[iy,] the contribution of avalanches starting at a given time ¢; and
position x;. In some sense this is natural since this is the only centering which respects
the causal structure of avalanche processes: the seed centering is a conditioning on
the stochastic process of the velocity field inside an avalanche with respect to its
initial condition. Another type of centering, e.g. the centering with respect to the
maximum or to the center of mass of the avalanche, does not respect this causality
since it corresponds to a conditioning on the full history of the stochastic process. It is
reasonable to think that it is this absence of an adapted centering procedure that made
the mean spatial shape of avalanches ignored from theoretical studies until this paper.
Of course, having a centering procedure that is analytical-work friendly is almost
useless if the observable cannot be measured in numerical simulations and experiments.

001 002 003 004 005 006 ("*

1
2

_)“
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Figure I1.5: Plot of the mean-field result for the space-time mean velocity profile inside

an avalanche in d = 1 for SR (left, see ([1.6.11])) and LR elasticity (right, see (II.6.12])).

Figures taken from [2].

One of the challenge of [2] was therefore to devise an algorithm allowing a simple study
of seed-centered shapes. We refer the reader to the paper [2] presented in Appendix
for a description of this algorithm and only give the results here, everywhere presented
in dimensionless units x* = &/m, t = T,t, S = SnS with 7, = n/m? and S, = o/m*
(as usual m is the mass of the driving spring and 7 and o are linked to the renormalized
parameters of the models, see Appendix [B] for details and Sec. [[I1.3.2 and Sec. [[I.5.2]
for the notations and definitions used in this section)

The mean velocity field inside avalanches of fized size in the BFM in arbitrary d

We first showed that for the BFM in arbitrary d with SR and LR elasticity, the
scaling formula for the mean value of the velocity field inside seed-centered avalanches
of fixed size S in the scaling regime

(== z
(i) s = ST F (/ST /ST (11.6.10)
holds with a simple scaling function for SR elasticity in arbitrary d, VS

F(t,z) =2te e~/ () (11.6.11)

1
(4rt)d/2
and for LR elasticity (obtained in arbitrary d in Fourier space and in d = 1 in real
space) VS <« Sp,

) 2t2 —t2
F(t,z) = 2te™" / elay=lalt —, < (11.6.12)

) IR
These are shown in Fig. but have not been measured in simulations.

The mean spatial shape of avalanches of fized size in the BFM and at one loop for
SR elasticity

Integrating with respect to time leads to the mean shape of seed centered
avalanches in the BEM for SR elasticity in arbitrary d. The latter can be checked to
satisfy the following scaling form V.5, equivalently written in Fourier or real space

<s<x>>s=sl-di<fd<si ), (S(q))s = SFa(@ST) . (1L6.13)
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Figure I1.6: Analytical results at MF and O(e) level for the universal scaling function
F4—1 in Fourier space (Left) and F in real space for d = 1 (Middle) and d = 2 (Right)
for SR elasticity. Black lines: tree/mean-field results. Dotted blue lines: universal
corrections, 07 (q) (left, O(e) correction in Fourier space in d = 1), 6 (z) (middle)
and 0F2(z) (right). Red-dashed lines: O(e) estimate obtained by simply adding the
corrections to the MF value. Red lines: improved O(e) estimate, which, through a re-
exponentiation procedure, takes properly into account the modification of exponents
and ( m (see [2] in Appendix [BJ). Note that the cusp at the origin of the
avalanche shape at O(e) is not obvious in thls plot since the non-analyticity is rather
small, but it can be emphasized using a log-log scale. Figures taken from [2].

Fa(z) can be expressed using hypergeometric functions (see [2] in Appendix [B]), and
Fi(q) has the remarkably simple, d—independent form

~ . 2
FBIM () = FBIM(gy = 1 — ‘Fq e erfe <q2 ) . (I1.6.14)

The result for these scaling functions in the BFM in any d in Fourier space and in
d = 1,2 in real space are shown in black in Fig.

For more realistic models of interfaces in a short-range (SR) correlated disorder, the
above results are the O(e’) results to the mean spatial shape of avalanches. In order
to go beyond mean-field, we use the results of FRG and in [2], using the simplified
action , we were able to compute the O(e) corrections to the mean shape. In
Fourier space we show that the scaling is still compatible with one-loop FRG
in the scaling regime S < S,,, and we obtain the O(e) correction

FP™M(q) = PN (q) + 6Fula) + O(e) | (IL.6.15)

where 0F;(q) = eF((q). Here FV(q) = [, 227Te“H(,u, q) is obtained as an Inverse
Laplace Transform (ILT) p — 1 of:

4\/7?{2—37,5 1 . 4m
9 8 @#+2yn  (¢*+2yp)?

H(p,q) = (1L.6.16)

(I s ; F) ¢S]
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where vg is Euler’s Gamma constant (see [2] in Appendix |B| for the choice of the
contour C). We then define the correction to the mean shape in real space as the

d-dimensional Fourier transform 6F4(x) = [ (gjl‘l)]d €75 Fy(q). We were not able to
perform the ILT of in full generality but obtained the behavior of the mean
shape in Fourier space at small and large g and in real space at small and large x. In
particular we show that:

(i) At large ¢ in Fourier space,

~ - = N 4e
Fal@) g1 Aag™™  a=4- 5+ O(e?) , (11.6.17)

with a universal prefactor Ay = 2(1 — (2 + 1E)2¢). In real space this implies, in the
expansion of Fy(z) at small z, a non-analytic term ~ |z|™ with ng = fjg—d = 2 +0(€?).

7, ~
Restoring the S dependence from (I.6.13) this leads to (S(q))s ~g—+oc Sl_ﬁq*”d

and the non-analytic part (S(z))%* ~z—0 Sl_d%]aﬂ”d. Note that in the BFM case
(retrieved by taking € = 0) the value 74 = 4 = d + (gra implies that the large ¢
behavior of (S(q))s does not depend on S. This may seem natural: in the BFM the
small scales do not know about the total size of the avalanche. A generalization of this
property to the SR disorder case would suggest the guess 75" = d + (. Our O(e)
result however explicitly shows that this property fails and 73 > d 4 ¢ (at least close
to e = 0). Hence in the SR disorder case the large avalanches tend to be more smooth
than small avalanches. Note that the predicted value of 7y is smaller than 2 in all
physical dimensions: this non-analytic term should actually dominate the behavior of
Fai(z) around 0 (and thus lead to a cusp singularity).

(ii) At large z in real space, we obtain that the mean shape has a stretched exponential
decay as:

4 2
Falz) ~e € | 5= 3t ome Tt O(é%) , (11.6.18)

with a universal prefactor C = 2 + (73—\? — 1)2¢e. Remarkably, using ¢ = €/3 + O(€?),
this agrees to O(e) with the general conjecture § = dfgfl that we justify in [2].

Comparison with numerical simulations

In [2], using an original algorithm to retrieve the seed of the avalanches we compare
the above theoretical results with simulations of the BFM and of a model with SR
disorder in d = 1, both with short-range elasticity. For the BFM (as it should since our
results are exact) we obtain a perfect agreement, see Fig. This demonstrates that
our observable is measurable in numerical simulations. For the model with SR disorder,
our results compare reasonably well with the results of the numerical simulations and
bring a substantial improvement compared to the mean-field results, see Fig.[[I.8 The
results look better in Fourier space: when integrated, the small discrepancy Vg in
Fourier space gives a larger discrepancy around the origin in real space. Additional
numerical results are shown [2]. In particular it is shown that the cusp of the mean
shape for model with SR disorder that is predicted by our one-loop result is indeed
compatible with numerical simulations.

Some additional results can be found in [2], in particular we introduce and compute
to order O(e) some universal ratios, which are quantities allowing us to efficiently com-
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Figure I1.7: Lines: rescaled mean shapes of avalanches at fixed size S obtained from
the simulations of the BEM model in d = 1 in real (left) and Fourier (right) space, for
S =10 (blue), S = 102 (red), S = 103 (green), S = 10* (purple) and S = 10° (yellow).
Dashed black lines: exact theoretical results in the BFM. No fitting parameter. Figures
taken from [2].

pare different shape functions when one scale is unknown. This could be particularly
useful for comparison with experiments.

11.6.4 Presentation of the main results of [3]

The two-shock density
In [3], presented in Appendix |C], we investigated the presence of correlations at or-

der O(e) in the sequence of shocks of the ground state (w;, Sg(ci)))iez for a d-dimensional
elastic interface in a disordered medium (we refer the reader to Sec. for defini-
tions). Since depinning/avalanches and statics/shocks at zero temperature for disor-
dered elastic interfaces are, for all we know, equivalent up to order O(e2), our results
are expected to apply equally well for avalanches at the depinning transition. The phe-
nomenology is, however, as we will see, richer in the case of shocks due to the presence
of one more universality class (random bond) for short-range correlated disorder. We
investigate these correlations by looking at the two-shock density at a distance W > 0,
defined as,

pw<51, SQ) = Z(S(w — wz)(S(Sl — S(Z))d(w + W — 'LUj)(S(SQ — S(J)) .
1#]

Here f;;”l/l dw f;‘;é dw'’ fgii ds fssf dS’ pur—w(S,S’) counts the mean number of pairs of
shocks such that the first shock occurred between w; and w), and the second between
wy and wh, with sizes between S; and S}, resp. Se and S5. An absence of correlations
in the sequence of shocks would imply pw (S1,S2) = p(S1)p(S2) where the one-shock
density p(S) was defined in ([1.3.5). To investigate the presence of correlations we thus
study the connected two-shock size density pfy (Si,S2), defined as

P (S1,52) :== pw (51, S2) — p(S1)p(S2) - (11.6.19)
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Figure I1.8: Lines: rescaled mean shapes of avalanches at fixed size S from the simula-
tion of the model with SR disorder in d = 1 in real (left) and Fourier (right) space for
S =50 (blue), S = 102 (red), S = 10 (green), S = 10* (purple). Dashed black lines:
theoretical MF result. Red dashed line: improved O(e) result taking into account the
modification of exponents and . Blue dashed line on the right: O(e)
obtained by simply adding one-loop corrections to the MF result. No fitting parameter.
Figures taken from [2].

At the mean-field level in the BFM, as we know (see Sec. [I1.6.2]) shocks are independent
thus pfy (S1, S2) = 0. At order O(€) however as we show below this is not the case and
piy (S1,82) = O(e) is given by a universal scaling function.

An ezxact formula for the first connected moment
We first obtain an exact formula for the first connected moment
(5152) e, A" (W)

[(S))? T LdmA (I1.6.20)

Here a subscript indicates the density with respect to which the average is taken. For
uncorrelated shocks the right-hand side of would be 0. Here as usual A(W)
is the universal scaling function of the FRG, which can be measured as an observable
using . The above equation is a generalization to the two-shocks case of the
exact formula for S,,, = (5?),/(2(S), given in ([1.4.47). For m close to 0 as we know
(see Sec. A(W) takes a universal scaling form with

Alu) = AZMG_QCdHQA*(/J:CdU/H) (I1.6.21)

where k is a non-universal microscopic scale. Depending on the range of correlations of
the initial disorder, A*(u) = O(e) is the fixed point of the FRG equation with A*(0) = ¢
of the RB or RF universality class. From [I.6.20the shocks appear positively correlated
for A”(W) < 0 and anti-correlated for A”(W) > 0. Taking a look at the cartoon of
the typical shape of the RB and RF fixed points presented in Fig. [[I.9 correlations
between shocks thus give an unambiguous distinction between these two universality
classes: for RF shocks are always anti-correlated, while for RB they are anti-correlated
at small distances and positively correlated at large distances. An exact equation
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Figure I1.9: Cartoons of the typical shape of the renormalized disorder correlator A(W)
(black-dashed line) and of its second derivative A”(W) (red line) for the random field
(left) and random bond (right) universality classes (not to scale). Our results predict
that the shock sizes are always negatively correlated in the random field universality
class, whereas the random bond universality class exhibits a richer structure with
negatively (resp. positively) correlated shock sizes at small (resp. large) distances.
Figures taken from [3].

similar to ([1.6.21) can be proved for avalanches at depinning. In this case random
bond bare disorder flows at large scale to random field disorder and thus avalanches
at the depinning are always anti-correlated.

The two-shock density at O(e)
To go beyond the exact result (I1.6.20)) we use FRG in [3] to obtain pf, (S1, S2) at
first order in O(e). We obtain

P (51,52) =

L d(W 51 52). (11.6.22)

(L) St \W," S, S,
Where W, ~ ru¢, Sy =~ AJkAY(07)p=(@9 and the function Fy is universal and
apart from its three arguments depends only on the spatial dimension and range of
elasticity inside the interface (the form of the large scale cutoff, here exponential,

depends also on the chosen IR cutoff scheme of the theory). To first order in d = dy.—e,
and in the limit of large L and small u, it is given by

A*//(w)
167“ /8159

In [3] we use to obtain a variety of results: the normalized PDF for
shocks sizes at a distance W, the conditional probability to observe one shock given
that another one occurred, and in particular the mean-density of pairs of shocks at a
distance W:

Fa(w, s1,59) =~ A e~1ts2)/4 L O() . (11.6.23)

A"(W) <<S>p>2

Timi \ 29, +0(e%) . (11.6.24)

pa(W) = /dSldSQpW(Sl, Sy) = p l1 _

Generalization to the local shapes
The factor ﬁ in ([1.6.22)) highlights the fact that correlations are local and avalanches
are correlated only if they occur in regions of space that are elastically connected (that
is at a distance |z — 2’| < ¢,). To emphasize this local structure in [3] we investigated

the correlations between the local size of the shocks measured on arbitrary subspace
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Figure I1.10: Left: Renormalized disorder A(u) measured in the d = 0 RB toy model.
Inset: its second derivative A”(u), computed using a numerical fit of the measured
A(u). Right: The same for the RF toy model. Figures taken from [3].

(see [3] in Appendix [C| for precise definitions). We obtained a result for the gener-
ating function of all connected moments. Here we only show the results for the first
connected moments for SR and LR elasticity: for SR we obtain

0%
(S1a1S2a))o, = Fa' (577 mlan — w2) (I1.6.25)
o
Fél(w,m) = _2_%_17T_gAdA*H(UJ)l'Q_%KZ_g(.’L’)
2
+0(€%) . (I1.6.26)

where K, (z) is a modified Bessel function of the second kind. For LR elasticity we
obtain

w
((S1a1S202)) 05, = FaLr (55> m*|z1 — ) (11.6.27)

Wy’
fg%ugx)::—{QW)_%AdA“%uﬁxl_gKH_%(x)+(?&2).

Comparison with numerical simulations of toy models in d = 0

In 3] we confronted our results with numerical simulations of toy models of a particle
on Z with either a random bond type potential, or a random field type potential. In
both cases, we measure the renormalized disorder correlator A(W), the first and second
connected moment (S152)c and (S%95) pc,» and the mean density of pairs of shocks
at a distance W, po(W). As shown in Fig. to Fig. we obtain in both cases a
perfect agreement for our exact formula . We also obtain a surprisingly good
agreement with our O(e) formula for po(W) (I1.6.24)), considering that here e = 4. The
results for the second connected moments (S%2S55) p¢, are poorer and not shown here.
These simulations were more a proof of principle than a real test of our theory since
what we are really interested in is the case of interfaces for which FRG should work
better. However, we clearly see that these correlations exist, are not negligible, and
as theoretically found, possess an interesting structure since they allow to distinguish
between the RB and RF universality class.
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Figure I1.11: Left: Comparison between the measurement of the normalized moment

S5152) ¢

% (blue dots) and the prediction from the exact result (I1.6.20)) using the mea-
P

surement of A(u) (red curve) in the RB toy model. The agreement is perfect as
expected. Right: The same for the RF toy model. Figures taken from [3].
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Figure I1.12: Left: Comparison between the measurement of pa(W) (blue dots) and
the prediction from the O(¢) result using the measurement of A(u) (red curve)
in the RB toy model. We obtain a surprisingly good agreement. Right: the same for
the RF toy model. Figures taken from [3].
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11.7 Conclusion

The study of shocks and avalanche processes in disordered elastic interfaces is of out-
standing interest. On one hand avalanche type processes are observed in nature in
a variety of physical situations. From the statistical physics perspective, as complex
scale free spatio-temporal processes, they represent a remarkable field of applications
of universality ideas outside the standard study of continuous phase transitions in
equilibrium statistical mechanics. From a more conceptual perspective, they are fun-
damental processes at the core of the theory of disordered elastic systems. Indeed, they
are a direct consequence, and a characterization, of the presence of many metastable
states in the energy landscape of the system, and they dominate both the physics of
the statics and of depinning. Understanding avalanche processes has brought new light
to the functional renormalization group approach to disordered elastic systems. The
‘curiosity’ at the center of the theory, the non-analyticity of the effective action, is now
directly linked to avalanches: measuring the functional renormalization group fixed
point function in numerics and experiments is now possible.

In this thesis we have focused on the study of correlations and spatial shapes of
avalanches. In both cases we have obtained results beyond mean-field that unveiled a
rich structure. Many directions remain to extend these results. Concerning the spa-
tial shape of avalanches, a natural extension would be to obtain one-loop results for
the spatial shape with a long-range elastic kernel, which is of immediate experimental
interest, or also one-loop results for the mean-velocity field inside avalanches. Con-
cerning the correlations in avalanche processes, it would be interesting to extend our
results to the dynamics. Although we have argued that our results obtained in the
case of shocks should apply equally well to avalanches at depinning, it surely remains
to be shown. More importantly, some features of the avalanche process at depinning
are not present in the case of shocks, in particular the notion of seeds. Analyzing
the correlation between the seeds of successive avalanches would be a very natural
characterization of the non-Lévy nature of the avalanche process beyond mean-field.
A complementary direction of research would be to gain a better understanding of
correlations induced by mechanisms not captured by the elastic interface model, e.g.
memory effects in the dynamics as in [I44]. Finally, for both the shape of avalanches
and correlations, it would be highly interesting to compare the results with refined
simulations (particularly for the correlations where ours were performed in d = 0),
and with experiments. Comparing the temporal shape of avalanches computed in the
ABBM model with the shape of Barkhausen pulses measured in soft magnets has trig-
gered important developments that we reviewed. It would be interesting if similarly
we could learn new aspects of the (eventually non-universal) physics e.g. of fracture
processes by comparing the spatial shape of avalanches with our results.

Many other interesting open (and difficult) questions not tackled during this thesis
remain. For example a better understanding of the functional renormalization group
approach to the dynamics of disordered elastic interfaces at finite temperature and/or
velocity would be of great interest. For avalanches this would lead to a better char-
acterization of avalanches during the creep dynamics, as recently investigated in [32].
In Barkhausen noise experiments, it is observed that a non-zero velocity modifies the
avalanche exponents in materials with an effective LR elasticity, but not for materi-
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als with SR elasticity [45]. While the velocity dependence of the exponents is known
in the ABBM model, a FRG approach is surely necessary to understand such thin-
ner effects. Similarly as for the effect of the temperature on avalanches, the effect of
quantum fluctuations on avalanches (related to the notion of quantum creep) remains
to be understood. Another interesting problem, of immediate experimental interest
for fracture experiments, is to understand the statistics of clusters in avalanches for
disordered elastic interfaces with LR elasticity (a question which was swept under
the carpet during most of this chapter since we were effectively considering the total
avalanche, which is eventually formed of several smaller avalanches). Finally it would
be interesting to understand how to extend our results and methods to models close
but not equivalent to disordered elastic interfaces, e.g. by taking into account plastic
deformations or an additional conservation law as would be relevant for forced-flow
imbibition experiments.
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Chapter Il

Exact solvability, directed polymers
in 14+1d random media and KPZ uni-
versality

In this chapter we will focus on the study of the static properties of directed polymers
(DPs, the d = 1 problem) with short-range elasticity (v = 2) in a random bond type
potential at a finite temperature 7" in dimension N = 1. Taking a look at the phase
diagram of Fig. drawn in Chapter [[j the large scale properties of the system are
predicted to always be described by a strong disorder fixed point. Of course one can
use the results of Sec. to study this FP by taking e = 3 (assuming the e expansion
has a sufficiently large radius of convergence) but that is not what we will do here. In
fact in this chapter we will not focus so much on this FP. Rather, guided by the belief
that it exists, we will study very specific models with ezact solvability properties, i.e.
for which exact analytical methods are availabldﬂ The large scale analysis of exact
results obtained for peculiar models will then lead to indirect information about the
FP. The main issues with these methods is that they will not be robust to arbitrary
small perturbations of the model. In particular we will study models of DP on the
square lattice that are exactly solvable, for a given distribution of random energies,
at a unique temperature. Guided by the qualitative analysis of Chapter [ we however
know that the temperature is irrelevant at large scales and therefore believe that the
universal properties do not depend on its choice. Determining from the solution of the
model which property is universal will not always be trivial, however, see in particular
Sec. From the point of view of universality, while the choice y =2, d= N =1
and RB disorder can seem awfully restrictive compared to the more general analysis
performed in Chapter [[land Chapter [, we will see that (i) by restricting to this choice
we will obtain very sharp results; (ii) this universality class is actually very large;
(iii) results that, to this date, have only been obtained using exact methods have
been measured in modern experimental settings. For these first two points we already
refer the reader to Sec. where the links between the continuum DP problem and

'To be fair with FRG, let us mention here more precisely that it is also an exact method since it
provides an exact perturbative expansion of observables in an € expansion. Its application in d = 1 is,
however, necessarily inexact since in practice one needs to truncate the expansion to a given order.
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the KPZ equation was recalled (thus already bringing in models of out-of-equilibrium
growth in 1 + 1d in the large universality class mentioned above) together with some
important results on the KPZ equation. For the last point we refer to Sec. for
good to amazing experimental verifications of properties of KPZ universality in 14 1d.

The outline of this chapter is as follows: in Sec.[[II.1}we will present a more complete
introduction to the KPZ universality class in 1+ 1d. In Sec. we will present a few
exact solvability properties that played an important role over the years. In Sec.
we will finally present the results obtained during the thesis.

1.1 The KPZ universality class in 1 + 1d

In this section we review some results about the KPZ universality class in 1 4+ 1d.
We will start by presenting a few models in the KPZ universality class in Sec. [[TL.1.1]
with an emphasis on directed polymers models. We will then review important results
obtained in some models and present the notion of strong universality and KPZ fixed
point in Sec. Finally in Sec. we will discuss the notion of weak univer-
sality and the universal scaling limits of directed polymers on the square lattice. The
material contained in this section is by now standard and inspired by a few excellent
reviews on the subject [34] [35] 150 [36] 151].

111.1.1 A few models in the KPZ universality class

In this section we present a few models believed, under some mild assumptions, to be
in the KPZ universality class. We mainly focus on models of DPs: in the continuum,
on the square lattice, at finite and zero temperature. But we also present some links
with interacting particle systems and growing interfaces.

a The continuum DP and the KPZ equation Vs The Edwards-Wilkinson
case

The continuum KPZ equation is in the KPZ universality class. Behind this statement
lies a rather long history that highlights the fact that many results on the KPZ univer-
sality class were obtained using exact solutions of some discrete models that resisted
proof directly in the continuum setting until recently (2010). For now we just wish to
make here a few more comments on the links between the continuum DP and the KPZ
equation. Only in this section we keep the dimension arbitrary.

Derivation of the Stochastic Heat Equation
We recall that the partition sum of the continuum DP at temperature 7" in a random
potential V (¢, z) with both endpoints fixed was defined in ([.3.10) as the path integral
(here with the change of notations L — ¢t and u — x)

u(t):x 1 du

t ! t ! ! !
Zy(x) ::/ Dilu)e™2r Jo (@)t~ Jo VW ult))dt’ (IIL.1.1)

And here, keeping the notations of Chapter [I, u(#) € RY and the random potential
is taken Gaussian with RB correlations ([.3.11)), V (¢, 2)V (¥, 2') = §(t — t')Ro(z — ).
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In order to obtain the differential equation satisfied by Z;(x) (1.3.13)), it is already
convenient to adopt a stochastic process language and note that the term in the path

— L [Pduy2gy
measure Dule” 2T Jo (a2t is just the measure on N-dimensional Brownian motion
u(t). The partition sum Z;(z) is thus written asE|

Zi(x) = E (e% Jo @V ) V) 4y 1) — m)) , (IT1.1.2)

where here the average E is over the stochastic process u(t) now defined by
Opu(t) = VTE(t)
u(0)=0. (I11.1.3)

Here &(t) = (&1(¢), - ,&n(t)) is a vector of unit centered Gaussian white noise (GWN)
with 0 correlations

(E)EH)e = di0(t = 1) (I11.1.4)

and ()¢ is the average over the GWN. Note that in this interpretation, the elasticity
of the DP is of pure entropic origin (paths of the BM are more numerous close to the
diagonal), and the fact that it is short-range comes partly from the fact that the BM
satisfies a local stochastic partial differential equation (SPDE). Using the Feynman-
Kac formula it is possible to show that Z;(x) solves a SPDE. Let us now give a simple
derivation of this SPDE. We compute Z;, 4 (x) as given by and separate in
the expectation value the contribution of the last time step between ¢ and ¢ + dt:

Zivar(x) = Zy(x) + %Zt(az)dt + o(dt) (I11.1.5)

—E (e—% Jo 4V )=V (0l 5N (¢ 4 ) — x)) + o(dt)
dt b (4 (4]
- (1 N x)) E (e% Jo @V ) §N) 4yt 4 dt) — x)) +o(dt).
Let us now discretize the last time step between ¢ and ¢t + dt as
u(t + dt) = u(t) — VT'dté (I11.1.6)
with £ a unit centered normal distribution. Hence we can write

Zurala) = (1= ZVita) B (PRGN (u(t) — (o4 VTTRS)) + ol

— _ﬂ T ; N 8_% X (0]
_(1 T, )) = t>N/d gem 5% Zy(w + VTE) + o(dt)

2

dt 1 i al 9 Tdt , O
= (1 - TV(t,x)) RE /nge > (Zt(x) + ; (JTT# 5y 20+ 2§28xgzt(x)>> + o(dt)

= (1 — ?V(t,x)) (Zt(w) + Tth(Vx)ZZt(xO + o(dt)

2] thank Francis Comets for noticing a mistake in ([I1.1.2) in a preliminary version of this
manuscript.
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Hence, comparing the terms of order dt in the first and last line of the above calculation,
we obtain,

%Zt(x) - (Z(V‘”)Z - %V(t, x)) Zi(a) (I11.1.7)

with the initial condition Z;—o(x) = §N)(x).

A subtlety
There is a non-trivial subtlety in the equivalence between (II1I.1.1]), (I1I.1.2) and (I11.1.7)
on which we now comment. On one hand, looking at , for a centered potential,
it seems that the mean value of Z;(x) is just the transition probability for a random
walk on RV (since we are using Ito’s convention). On the other hand, looking at
({[II.1.1) or (III.1.2)) it seems that this mean value should contain a term involving

Ry(0). The equivalence between (III.1.2)) and (III.1.7]) is ensured if one takes as a

definition of the exponential the so-called time/Wick ordered exponential as:

e~ T Jo Vitu®) f:(—uT)n / V(ty,u(t)) - V(ty, u(ty)) . (IIL1.8)

n—0 0<t1<ta<--<tn,<t

The difference with the ordinary exponential is obviously immaterial for non-random
smooth potentials V' (¢,x). For the case of a random potential with § interaction in
the t direction it however makes a big difference: here the ordering ¢; < t;41 en-
sures the equivalence between and , which was actually implicit in the
derivation of Finally, denoting now by Z;(z) the object defined by the path
integral , the equivalence with Z;(z) defined by (with the time-ordered
exponential) or (interpreted in the Ito sense) is

Zilw) = Zulw)e” 52 o 4 00)

Zy

9 u(t)=z 1t ayidun2 1 [t g ’ ’

Zy(x) = / Diuje™zr Jo @ (@) =7 Jo dt'V(H'u) (I11.1.9)
u(0)=0

This subtlety will be particularly important to make sense of the path integral formula
(III.1.1)) in the important case where V(t,u) is taken as a centered Gaussian white
noise and Ro(u — u') ~ 6N (u — o). From now on we will adopt this convention.

From the MSHE to the KPZ equation
In Sec. we already saw that taking the logarithm of the MSHE (II1.1.7)), assuming
that V (¢, ) is smooth, one obtains that h(t,z) = T log(Z;(x)) satisfies the KPZ equa-
tion ([.3.15)). This derivation, however, assumed a smooth random potential V (¢, z).
In the same spirit as above, let us take into account the fact that the random potential
is rough in the time direction and use Ito’s lemma (see e.g. [104]) to compute the time

t ’ ’

3To see this, consider for example the exponential of the integral of a GWN Y (t) = efo £Ear
Using a similar derivation as above one obtains 0;Y = £(¢)Y (¢) and thus Ito’s convention imposes
0:Y (t) = 0. This is true only if Y () is interpreted as Y'(t) = > f0<t1<m<t ~&(t1) -+ -&(tn). Using

the regular interpretation of the exponential one obtains Y (t) = e!/2.
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derivative of h(t,z) = T log(Z(x)). We obtain
1

Oh(t,x) = Z}(;) ((r‘g(vx)z — ;V(tjx)) Zt(x)> — WR()(O)(Zt(m))Q
_ %(vzh)Z + gvih _Vit,2) - RO;O) | (IT1.1.10)

Hence we see that the Ito’s lemma precisely makes the short-distance correlations of
the disorder play a role again. Making a change of variables

h(t,z) = h(t,x) + Roéo)t : (I11.1.11)
h(t, ) solves
. 1 vy 1,y
Ah(t,x) = §(th)2 + 5vih —V(t,x). (I11.1.12)

And note that h(t, z) = T'log Z;(z) where Z;(x) was defined through the path-integral
formula . The KPZ equation usually refers to the equation satisfied
by h. In the following we will drop the different checkmarks, knowing that h(t,z) =
log Zi(z) is a (sometimes dangerous) shortcut. From now on we will also restrict
ourselves to the case N = 1, i.e. the directed polymer in a two dimensional random
environment, or the one-dimensional KPZ equation, hereafter referred to as the 1+ 1d
case. Before we continue we remind the reader that we already commented in Sec. [.3.3]
on the interpretation of the KPZ equation as a model of out-of-equilibrium growth.

The continuum DP and KPZ equation
The continuum directed polymer and KPZ equation generally refer to the case where
V(t,x) = —&(t, x) with £ a Gaussian white noise (GWN) with correlations

Et, ), x') = 200(t —t')d(x — ') . (I11.1.13)

In this case, let us emphasize that the MSHE (I11.1.7)) and the KPZ equation
have a very different status. Focusing now on the case N = 1, while the MSHE,
interpreted in the Ito sense, remains well defined, the KPZ equation a priori is not:
we will see that log(Z;(z)) looks locally like a BM and thus taking the square of its
derivative is ill advised. The Ry(0) (= +o0 in this case) wandering around in between
(L11.1.7) and is a sign of this issue. This calls for a regularization technique
and making sense of the ‘solution of the KPZ equation’ is a hard problem. In fact
well before a precise sense was given to solving the KPZ equation [152] people believed
that the right way to interpret the KPZ equation is through the Cole-Hopf transform,
and thus log(Z;(z)) with Z;(z) the solution of the MSHE has long been thought of as
the solution of the KPZ equation. Accordingly in this chapter when we mention the
solution of the KPZ equation, we actually mean the Cole-Hopf solution.

Ignoring from now on these issues and taking V(¢t,z) = —£(t,z) a GWN with
correlations ([11.1.13]), let us first note that the change of variables,
5
- T3
t=at , z=b0% , a= 32 , b:(20/T)§,
(20)3

Z{(%) = Z_s(x =bi) , h(t,&) =h(t=at,z=>bF), (IL1.14)
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make the equations (I1I.1.7)) and (III1.1.12)) equivalent to (dropping the tildes)

ta(a:) = %(VI)QZt(:r) +&(t ) Zi(2) |

Oh(t,z) = %(Vzh(t, z))? + %(vx)%(t, z) +E(t,T) . (I11.1.15)

where now &(t, z) is a centered GWN with &(¢, x)E(¥, 2') = 6(t—t')0(z —2’). Note that
this simple calculation shows that there cannot be any phase transition in the large
scale properties of the DP at a finite critical value of the temperature or of the noise
strength: the system is always in the same phase. This was expected from the static
phase diagram Fig. [.3] and we know that this phase corresponds to a strong disorder,
zero temperature phase for the DP.

The Edwards-Wilkinson equation
Only at e.g. vanishing non-linearity can one obtain a different large scale behavior.
The resulting equation in this case is known as the Edwards-Wilkinson equation. It
reads

Ouh(t,z) = %(Vx)Qh(t, )+ €t 7). (I11.1.16)

Note that in this case the growth favors neither direction. The critical exponents are
easily extracted in this case by a simple scaling argument, leading to z = 2, a = 1/2
and § = 1/4 (see Sec. for definitions). The full solution is easily obtained by going
to Fourier space * — ¢: each Fourier component performs an independent Ornstein-
Uhlenbeck process with diffusivity ~ ¢ and

t /
h(t,q) = h(0,q)e™ 4" +/ e3¢t q) . (111.1.17)
0

The problem is thus essentially solved and fluctuations at the Edwards-Wilkinson fixed
point are Gaussian. The solution of the KPZ equation at non-zero linearity and the
description of the associated FP will be much more difficult. Before we discuss some
known properties of this FP, let us now present a few models in the KPZ universality
class in 1 + 1d (KPZUC).

b Models of DP on the square lattice at finite temperature

The definition of the partition sum of the continuum DP makes it transparent
how to discretize the DP on any graph: given an underlying ‘free’ measure on directed
paths 7 on the graph, one associates to each path a random energy E(7) that is the sum
of all energies encountered by the path along the way. In this thesis we will be interested
in models of DP on the square lattice which is a natural discretization of the continuum
DP problem in d = 1 + 1. We thus consider the square lattice Z?, with Euclidean
coordinates (71, r3). Directed paths on Z? are up-right paths: they jump either to the
right (z1,x2) — (21 + 1,22), or upward (x1,z2) — (z1,22 + 1) (see Fig. [[IL.1]). Given
a temperature T and an ensemble of random energies {&,, ,, (z1,72) € Z*} that are
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drawn from a given PDF, the point-to-point partition sum of the DP with starting
point (0,0) and endpoint (z1,z2) € N? is

-% r ot yer Eal ot
oy oy = > A (I11.1.18)

7:(0,0)—(x1,22)

Here 3 :.(0,0)—(z1,20) denotes the sum over all up-right paths on N? from (0,0) to

(r1,22) € N2, Introducing the random Boltzmann weights Wy, ., = e_%gxw@,
(III.1.18]) is equivalently rewritten as

m:(0,0)— (z1,22) (z],xh)€m

Alternatively we will use, in analogy with the continuum DP case, the coordinate t
defined by

t=x1+ 29 . (111.1.20)
The latter is thus the length of the DPs. When using ¢, the space coordinate will be

taken either as

=1, or &=t ;“ , (I11.1.21)

as schematized in Fig. The factor 1/2 in the definition of Z is to ensure that
neighboring lattice sites at the same time coordinate t are distant from 1 in units of Z.
The coordinate t is thus strictly increasing along a DP path, = is weakly increasing,
while Z decreases or increases and is the coordinate that is the closest in spirit to the x
coordinate of the continuum DP. Using these coordinates, directed paths 7 from (0, 0)
to (z1,x2) identify with functions z(t) = 2(t) + £ such that z(0) = 0, z(z1 + x2) = 24
and z(t +1) — z(t) € {0,1} (and similarly for Z(¢)). Using these coordinates we will
note the partition sum equivalently as

Zy(x) = Zpy=wgo=t—a1 > Zt(2) = Zp —(1428) /2,00=(t—22) /2 - (I11.1.22)

We will adopt a similar notation for any function on the lattice.
In each random environment and for ¢ > 0, the partition sum of the DP can also
be defined recursively as

Zt+1($) = Wt+1(.’IJ) (Zt(l') + Zt(l' — 1)) with Zt:()(:p) = 02,0 (111123)
< Zt+1(£‘) = Wt+1(i') (Zt(ii' + 1/2) + Zt(.ii' — 1/2)) with Zt:()(.ff) = 5@70

Note that appears as a discrete analogue of the MSHE ([II.1.15)) (this will
be made more precise in Sec. . The KPZ universality hypothesis then basically
states that, for sufficiently nice disorder (such that all the moments of the random
energy are finite, (&3, z,)n < 00, and the disorder has short-range correlations), the
large scale properties of log Z;(#) are similar to those of h(t,x) in the KPZ equation
(this will be made more precise in Sec. [[IL.1.3)). In this thesis we will often look at the
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T2

T~ ot

e (1/2 + @)t

SN

Figure III.1: Different coordinate systems for directed polymers on the square lattice.
Green: an admissible directed path, i.e. up-right path, from (0,0) to (z1,z2) = (4,3)
ie. (t,x) = (7,4) ie. (t,2) = (7,1/2). Red, convention used for the asymptotic
analysis of polymers of large length ¢t > 1 in a given direction ¢.

large scale properties in an arbitrary direction ¢, referring to ¢ > 1 with the ballistic
scaling

v~ (124 Q) = &~ ot (111.1.24)

i.e. the ‘angle’ ¢ is measured with respect to the diagonal of the square lattice see
Fig.

We should stress here that for most models in the KPZUC, there is often one
observable whose large scale properties is similar to the height in the KPZ equation,
but that does not mean that the properties of any observable of any model in the
KPZUC are related to some observable in the KPZ equation. More generally interesting
observables in one language may not necessarily be relevant in the other and vice-versa.
In particular in the DP framework, the ‘KPZ-height’ like variable is the free-energy
of the DP. The latter is certainly interesting, but does not contain all DP properties.
Before being a model in the KPZUC, the DP is the statistical mechanics of directed
paths in a random environment, and Z, ., is the normalization factor that allows to
define the quenched measure on paths as, for all paths from (0,0) to (z1,22) € N2,

1
e T Z(zll,zé)GTr gxll,x,

2
leny

Q1,20 () = (I11.1.25)
The latter is a deformed version of the underlying free measure on directed paths that
favors the energy, it is a probability measure on paths from (0,0) to (x1,z2) and it is
itself a random (disorder dependent) object. The annealed measured is the average
over disorder of the quenched measure:

PI17I2 (W) = QCEl,Zg (77) . (111.1.26)
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With these definitions, for a given observable on paths O(r), one is interested in the
quenched and annealed averages as

(O(M)g =3 0(m)Qurs(m) , (O(M))g = 3. O()Pryy(r) . (IIL127)

In the DP framework, understanding the properties of the quenched and annealed
measure are the most challenging questions. Some of these properties are indeed con-
tained in KPZ universality: taking (x,z2) along the diagonal (x1,22) = (T/2,T/2)
with T — oo, parametrizing paths by functions Z(t), one expects that (i) with prob-
ability 1 at large T the support of the quenched measure @) is on paths scaling like
#(t) ~ T¢&(t/T) with ¢ the roughness exponent of the DP related to the dynamic ex-
ponent of KPZ as ¢ = 1/z = 2/3 (see Sec. [[.3.3); (ii) a similar (less strong) statement
for the annealed measure P. More subtle properties like the shape of the rescaled path
:%(t) or its localization properties are not trivially related to observables in the growing
interface language. In the DP framework, localization refers to the fact that, even in
the limit of infinite polymer T — oo, with probability 1 (i.e. for almost any drawing of
the random environment), there exists a point at time ¢ = T/2 which is visited by the
polymer with a non-zero probability. This should be compared to a standard random
walk where the point visited with maximum probability is on the diagonal and the
probability is of order 1/ VT ind = 1+ 1. A stronger statement of localization of
the full path in the DP case is the fact that there are paths for which the quenched
measure Q7o 1/2(m) remains non-zero in the limit 7' — oo. This is consistent with
the idea of Chapter [l and Chapter [lI| that temperature is (although dangerously [96])
irrelevant at large scales.

Let us finally mention that such models of DPs on the square lattice and in higher
dimensions have received a considerable amount of attention from the mathematical
community, independently of any exact solvability properties and using purely proba-
bilistic approaches, starting with the work of Imbrie and Spencer [153] and Bolthausen
[154]. Rigorous results in particular confirm the static phase diagram of Fig. We
refer the reader to [I55] for a review, in particular for the mathematical definition of
the strong disorder regime in terms of martingales or localization properties of the
path [156].

¢ Models of DPs on the square lattice at zero temperature

As temperature is irrelevant at the strong disorder FP of the DP, it is natural that
models of DPs at zero temperature are also in the KPZ universality class. A model of
DP at zero temperature can be obtained as the limit of the model previously considered
as

Euy ey o= i —T10g Zy, oy = MiNr00)s(0r00) D Eafay - (1T11.28)

(z},xh)em

Ez, 2, is thus the energy of the optimal path from (0,0) to (z1,x2). KPZ universality
says here that the large scale properties of E;, ;, should be the same as those of the
height in the growing interface language. At a given time the profile E;(x) is interpreted
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as an interface. For ¢ > 0, it evolves according to
Eir1(2) = &(2) + min (Ey(2 — 1/2),Ei (2 + 1/2)) (I11.1.29)

with the initial condition E;—¢(0) = 0 and E;—o(&) = —oo for & # 0. Let us denote
here for future use

AV (8, 8) = —E(2) (I11.1.30)

the ‘growing interface’ defined in this way. Two particular subclasses of zero temper-
ature DP models have been much studied, each having links with interesting other
models.

The first is the case where the random energies are bounded from below, say
by 0. In this case the DP model is usually referred to as a directed first passage
percolation problem (FPP). The random energies &, ., are interpreted as waiting times
ty) 2o := E,2, and the optimal energy E;, ., as a first passage time T, ,,. This type
of model was originally introduced in [I57] to describe the invasion of a fluid into a
porous medium. These models can provide examples of the fact that KPZ universality
should always be applied with caution: if the t;, 5, can be zero with a finite probability
p, there can be a region of space where the first passage time converges to 0 in the
large time limit with probability 1. This precisely occurs if p is large enough and that
a percolation threshold is reached. Of course in this case the fluctuations of T}, ., do
not scale with the KPZ exponent /3. We will see an example of such a model in

Sec. [IL3.5

The second subclass is the case where the random energies are bounded from above,
say by 0. In this case the DP model is usually referred to as a directed last passage
percolation problem (LPP). The random energies &, ,, are interpreted as the opposite
of waiting times tg, 4, := —&z; 2, and the optimal energy E., ,, as the opposite of
the last passage time Tu) o, = —Bay oy = MAX1(0,0) 5 (21,00) 2o (o) 2 er Ll ay- SeC [158]
for a review. In this case it is usual to define a growing interface different from the
one mentioned previously by looking at the boundary of the set B(t) := {(x1,x2) €
N2, Ty, 2, < t} see Fig. This growing interface fall in the more general class
of so-called corner growth models as we will show in the next section. Note that the
recursion equation for the last passage time reads

Tw1+17:v2+1 =te 12041+ maX(Txl-l-l,wQ?TJil,xz-i—l) : (111'1'31)

And the growing interface thus necessarily has the shape shown in Fig. [I[.2} the
boundary is a down-right path (z1(i), 22(7))i=0.. ; on N?: its starting point on the
vertical edge is (21(0), z2(0)) = (21'**,0), with 21" = max,, enj7, <t 1. Switching
to the ¢, & coordinate, the growing interface is thus defined now as

R (¢, #) := max{t'|Tw (&) < t} . (I11.1.32)

The fluctuations of this growing interface are believed to be in the KPZUC for suffi-
ciently nice distributions of weights [I58]. We will see in the next section that growth
models defined in this way fall in a class of models known as corner growth models, and
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Figure II1.2: Starting from a model of last passage percolation, a growing interface is
defined as the level lines of T}, ;,. The interface evolves according to a corner growth
model type dynamics. Figure obtained using a simulation of LPP on a square lattice
of 256 x 256 sites and using exponentially distributed waiting times with rate 10.

it is actually for a model of LPP with geometric or exponentially distributed weights
that the emergence of Tracy-Widom type fluctuations in the DP context was first
shown in [I59]. Note that the two growing interfaces (W and h? are Vi the inverse
of one another: Y(¢, %), hV(h(t,2),2) = t, and

1) < H)
) = Prob(Ty (i) > 1) . (I11.1.33)

Their large scale fluctuations are thus linked. Assuming that, for Z fixed, (1) (t,2) ~
et + MtY/3X with X a O(1) RV and ¢; > 0, then lim; Prob(h(l)(t,i") < cit +
Mt!/32) = F(z) with F(z) the CDF of X. We thus must have

F(z) = lim Prob(Ty(#) < ext + Mit'/*2)
-1 - Prob(Ty s, (#) 2 1)
‘1
D
= 1— lim Prob(h”(¢',#) < — — T(¢)"%2)  (IIL1.34)
t'—o00 c1 Cl/

Hence h(z)(t,:ﬁ) ~ Cot — Mot /3X with ¢y = 1/c1, Ao = ?13 and the CDF of X’ is
€
Prob(X' < z)=1-F(2).

d Interacting particle systems

The simple exclusion process and the corner growth model
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‘Some’ interacting particle systems on Z are in the KPZ universality class. To make
the discussion clearer we consider the simple exclusion process (SEP) with exponential
waiting times (see Fig. [[I1.3)). Particles are labeled by i € N or Z depending on the
setting and their position is denoted z;(t). Each particle carries two exponential clocks
and attempt jumps to the right with rate p and jumps to the left with rate q. Jumps
are suppressed if the target site is already occupied. Let us introduce the ‘spin’ variable
f(t,y), which is taken as +1 if y is occupied by a particle at time ¢ and —1 if it is
empty. Denoting N(¢) the number of particles that jumped from 0 to 1 up to time ¢,
a growing interface is defined as (see e.g. [34])

h(0,t) = N(#)

h(z > 0,t) := N(t) — Zz: N(t,y)
y=1

h(z < 0,) == N(t) + i it y) . (IIL.1.35)

Which basically consists in saying that —7(¢,y) is, at each time, the discrete derivative
of the height field: —7(t,y) = h(t,x) — h(t,z — 1). From this point of view the spin
variables in the exclusion process are related to a discretization of the noisy Burgers
equation and 7)(t, y) is the velocity of the fluids particles (see Sec. for the contin-
uum Burgers equation). Note that the velocity field is conserved locally: Zgza N(t,y)
only evolves when events at the boundaries a,b occur. From the exclusion rule and
the fact that particle jumps are local, the interface evolves only at points where its
slope changes: a local valley is transformed into a local hill with rate p and a local
hill is transformed into a local valley with rate ¢. It is clear that the interface grows
upward if p > ¢ and downward if p < ¢. For this reason the case p = ¢ (symmetric
simple exclusion process) is very special and the associated field does not display fluc-
tuations in the KPZUC, but rather in the Edwards-Wilkinson universality class. All
other cases p # ¢ (asymmetric simple exclusion process, ASEP) are expected to be in
the KPZUC. Let us now draw the connection with last passage percolation previously
defined by considering the case of the totally-asymmetric exclusion process (TASEP),
i.e. the SEP with ¢ = 0 and p # 0 (see e.g. [160]).

From the TASEP to LPP
To do so we will consider the so-called step initial condition: particles are labelled
by i € N and at ¢t = 0 we take

zi(t =0) = —i . (I11.1.36)

And let us denote by T'(, ) the time where the particle i makes her (5 + 1) jump.
The height at the origin N(¢) defined in (III.1.35]) is thus equal to

N(t) = imax(t) + 1 imax(t) := max;en{i , T(i,i) <t} . (IT1.1.37)
On the other hand we have that, for (i,j) € N?
T(0,5+1)=T(0,j) + toj+1 »
T(i+1,0)=T(i,0) + tit10,
T(i+1,5+1) = tis1 1 +max(T(i+1,7),T(i,5 + 1)) . (IIL1.38)
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Figure II1.3: Tllustration of the mapping between the ASEP and the corner growth
model, that is also related in the totally asymmetric case ¢ = 0 to LPP.

Here the t; ; are independent, exponentially distributed RVs with parameter ¢q. Indeed
the first line corresponds to saying that the time it takes for the 0 particle to make
her (5 + 2)" jump is just the time it takes her to make her (5 + 1)** jump + an
exponentially distributed RV. The second line corresponds to saying that the time it
takes for the (i + 1) particle to make her first jump is just the time it takes to the
ith particle to make her first jump + an exponentially distributed RV. Finally the last
line corresponds to saying that, before she makes her (j + 2)'* jump, the (i + 1)
particle has to wait that the i*" particle makes her (j 4+ 2)** jump (so that the arrival
site is empty) and that she first has to do her (j + 1) jump and finally wait for an
exponentially distributed amount of time. Note that all this is true with the updating
rules that were given because an exponential clock is memoryless. This will be more
generally true for arbitrary waiting time distributions if the clock is started each time
it is possible to make a jump. We have thus shown here that the waiting times of
the TASEP (II1.1.38)) corresponds to the last passage time in a directed last passage
percolation problem. The height in the corner growth model is exactly the
height h(?) defined in the LPP context. The TASEP with exponentially distributed
waiting times with step initial condition thus provides an example where it is possible
to switch between the interacting particle language, the language of directed polymer
at zero temperature and the growing interface language.

111.1.2 The KPZ fixed point - strong universality

There is various degrees of precision which can be achieved when describing the so-
called KPZ fixed point and we refer the reader to [161] for the most complete descrip-
tion. Once the identification of a ‘growing interface’ h(t, z) in a model has been made,
the KPZUC hypothesis is that the appropriately rescaled large time fluctuations of
the interface are completely universal. More precisely, starting from a given initial
condition, one first has to subtract the deterministic (angle-dependent) growth rate of
the interface

h(t, ot
vae(ip) = Tim UEPD (I11.1.39)

t—o00 t
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which is generally expected to be well-defined and non random (i.e. the above conver-
gence holds with probability 1). One then defines

h(t,x) = h(t,x) — tvso(x/t) . (I11.1.40)

And the rescaled process that involves the roughness exponent o« = 1/2 and dynamic
exponent z = 3/2.

h(t,x) := lim b~ “h(t = b°t,z = bx) . (I11.1.41)

- b—o0

Then,

(i) The universality of critical exponents amounts to saying that h(t,x) is a well de-
fined, non trivial stochastic process.

(ii) The stronger universality property is that, up to three non-universal constants
associated with the measure of time, space, and height C;, Cx and C}, the random
process h(t,x) is model independent. i.e. h(t,x) := h(t/C,x/Cy)/C} is fully universal
and depends only on the initial condition. Furthermore there are only a few attrac-
tive subclasses of initial conditions (in the sense that the large-time statistics for an
arbitrary initial condition will fall into one of these subclasses). The classification of
these subclasses is not complete and does not rely on rigorous results but the three
main classes that are commonly considered are the so called droplet initial condition,
the flat initial condition and the stationary initial condition (see below). For each of
these classes the limiting process at a fixed time h(t, x) is known:

1. The droplet case: in the interface language, it corresponds to an initial condition
such that the interface stays curved for all time (i.e. the mean profile vy () is
not flat). For the KPZ equation itself, the appropriate initial condition is often
taken as h(t = 0,x) := —limy_,0o w|z|. In the DP case the latter is clearer
and corresponds to directed polymers with fixed starting point Z;—o(x) = d(x),
and Z;(x) is the point to point partition sum. For the corner growth model it
corresponds to ASEP with a step initial condition. In this case, for a given time t
and point x, the one point distribution of h(t, x) is the GUE Tracy-Widom (TW)
distribution (introduced in [37]). Moreover at a fixed time t, as a function of x,
h(t,x) is a process known as the Airy2 process As(x) (introduced in [162]). It
is a process that is stationary in x, that satisfies .Ag(X).Ag(O)c —v—s00o= 0, whose
one point distribution is the GUE-TW distribution and which locally looks like
a Brownian motion, (Az(x) — A2(0))? ~x_0 |z

2. The flat case: in the interface language, it corresponds to a flat initial condition
h(t = 0,z) = est. In this case voo(p) = cst’. In the DP framework this cor-
responds to a directed polymer with the starting point free to move on a line
Zi—o(z) = 1, and Z;(z) is the point to line partition sum. For the corner growth
model it corresponds to ASEP with particles only on even sites. In this case,
for a given time t and point x, the one point distribution of h(t,x) is the GOE
Tracy-Widom (TW) distribution (introduced in [38]). Moreover at a fixed time
t, as a function of x, h(t,x) is a process known as the Airy 1 process A;(x) (in-
troduced in [163]). It has properties similar to the Airy 2 process: stationarity
in x, A;(x)A1(0)” —x—00= 0, and it locally looks like a Brownian motion.
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3. The stationary initial condition is a random initial condition that ensures a sta-
tionarity property in the model dynamics. Examples and the nature of this
stationarity property will be discussed in Sec. [II.2.2] In this case at large time
as a function of x, h(t,x) is given by h(t,x) = Xpr + B(x) where Xgg is a RV
distributed according to the the Baik-Rains distribution (introduced in [39]) and
B(x) is a two-sided Brownian motion. Xpgr and B(z) have non-trivial correla-
tions.

Many other things are known about these limiting spatial processes, including for
example other initial ‘crossover initial conditions’ (half flat, Brownian-flat, half Brow-
nian), see [164]. In contrast to this accurate description of spatial correlations at large
time, much less is known about two-time correlations. In an abstract setting these are
related to the notion of ‘Airy sheet’ [I61], but explicit formulae are rare (see however
[165], 166), 167, [168]). Finally we should mention here the related question of growth
from a given initial condition in a restricted geometry, for example directed polymers
in a half-space, which, when both starting points are taken ‘close to the wall’, ex-
hibit large scale fluctuations of free energy scaling as ¢*/3 and governed by the GSE
Tracy-Widom distribution [38], see [I69] for DP in the continuum.

The belief in these remarkable properties of the KPZUC comes from exact solu-
tions of peculiar models. At the level of one point distribution for the droplet case
the emergence of the TW-GUE distribution was first shown in the LPP model with
geometric weights in [I59] (a similar result was shown just before in the related con-
text of the longest increasing subsequence of a random permutation in [I70]). The
corresponding result for the KPZ equation itself is more recent [I71), 172] 173, [165]
(thus the fact that the KPZ equation is in its own universality class is a recent result).
Extension to multi-points were first shown for the PNG model [162, [174], and later
for the KPZ equation in [I75]. For the flat case, one-point formulae were again first
shown in discrete models [176] then for the KPZ equation [177, [I78| [179, [180], while
multi-point correlations were only studied in a discrete setting [I63]. A similar story
goes for the stationary case [I81], [182) [183] 184 [185]. We should here that the works
cited here are not all at the same level of rigor and many other works could be cited.
We will review later the appropriate references for the scope of this chapter, namely
discrete models of directed polymers, and refer to [34] for other references.

111.1.3 Universality of the KPZ equation: notion of weak universality and
universal scaling limits of DP on the square lattice

The limiting spatial process ([I1.1.41)) does not obey the KPZ equation: the KPZ
equation is not the KPZ fixed point. Under a general rescaling, if h(t,z) solves the
KPZ equation ([I1.1.15)), h(f, &) := b=%h(t = bt,x = b*%) solves (dropping the tildes)

a+z—2 z—2

Ouh(t,z) = c1(Vah(t,2))? + ——(Va) eah(t, ) + b2 Pes(t, )
(I11.1.42)
where we have reintroduced explicit constants in front of each term on the right hand
side. There is no way to fix z and a to get a scale invariant equation. The values

a = 1/2 and z = 3/2 of the KPZUC, a property of the KPZ FP, are not trivially
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obtained through scaling.

In all the models in the KPZUC, however, the KPZ equation/the continuum DP
plays a peculiar role that is linked with the notion of weak universality [I86]. The
latter refers to two limits:

(i) The weak asymmetry limit. Symmetric growth models (¢; = 0) are in the
Edwards-Wilkinson universality class and are characterized by exponents o = 1/2 and
z = 2. If an asymmetry is present ¢; # 0, the large scale properties are those of the
KPZ FP. Note that rescaling with & = 1/2, z = 2 and ¢; ~ b~/2 leaves the
KPZ equation itself invariant. More generally it is conjectured that (under the usual
assumptions such as locality, etc...) the KPZ equation itself is the universal scaling
limit of weakly asymmetric growth models in 1+ 1d when rescaling space & ~ b, t ~ b?
and the asymmetry as b~/2. For this reason the KPZ equation is sometimes referred
to as implementing the universal crossover between the EW FP and the KPZ FP.
An important example of this weak-universality property is provided by the work of
Bertini and Giacomin [I87] that states that, upon scaling space as z ~ b, t ~ b? and
the asymmetry p—q as b='/2 in the corner growth model previously defined, the corner
growth model height profile converges to the Cole-Hopf solution of the KPZ equation.

(ii) On the other hand the weak noise limit is linked with the DP in a disordered
medium. At zero disorder, c3 = 0, DPs are equivalent to random walks, are diffusive
z = 2 and have no disorder fluctuations oo = 0. For c3 # 0, the large scale properties
of DPs are described by the KPZ FP. Noting that the rescaling with a = 0,
z = 2 and ¢35 ~ b~Y/2 leaves the KPZ equation invariant, it is conjectured that the
KPZ/MSHE is the universal scaling limit of weakly disordered DPs. This scaling
has also been called the intermediate disorder regime in the literature [I88]. Let us

illustrate it heuristically on the case of DPs on the square lattice, using the notations
of Sec. [I.T.I] We start with the discrete version of the MSHE in the variables ¢, 2

given in which we recall here

Zpi1(8) = e TEH @) (Z,(3 4+ 1/2) + Zy(3 — 1/2)) . (IT1.1.43)
We thus scale

t=02Di , &=bi , Eu(2)=1/VbV(t,2) |, (I11.1.44)

with V' a centered O(1) RV, take b very large, b > 1, and consider the limiting partition
sum

Z:(&) == lim AYPIZ,_, (3 = b3) (I11.1.45)

with A left undetermined for now. We thus obtain from [IT.1.43]
3 (2@ + 5po2i®) = (1- -vies)) (2200) + 350 2(@))
A i\ bQDttx = JoT y L i\x ap2 07 i\x) | -
(I11.1.46)
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This suggests to take A = 1/2 and we obtain

. _ D N .

OpZi(1) = 5 () Z;(7) + bV (0 DE, b7) Z4(7) . (I11.1.47)
In the limit b — 0, Db3/2V(b2Dt~, bZ) converges to a GWN. To see this explicitly,
consider for example a random potential which is uncorrelated from site to site with
cumulant (V(¢,2))"° = ¢, and the cumulant generating function

G[Al = ef;:o Ji, Db¥/2V (62 DE,bi)A(F7)

_ DV Hs 2270 Z’iﬁ V (b2 DEbz)A(t/(Db2),z/b)
= €2b3 Zz 020 /\Z(t/(DbQ)&?/b)Jr 9/2 Ez 02t 0 A3(t/(Db?),2/b)+.

B CQDfx oft OA(tx)+3Ib3/2L G AN (EE) ..

B [og fimg X2E) (IT1.1.48)

=b—oo €

Hence in the limit b — oo the cumulant generating function G is equal to

1 1 - .
G\ = efimo Jizo Ve2DEG) (II1.1.49)

where £(£, ) is a unit GWN with correlations (£, #)&(¢,3) = §(f —)5(&' — Z). Hence
the rescaled partition sum ([II.1.45) with A = 1/2 converges, as b — o0, to the rescaled
solution of the MSHE

01 Z:(x) = %(81)225@) + V2t (t,3) Z;(%) (I11.1.50)
with ¢ = DV2°/(2T?). This establishes that the MSHE is the universal scaling limit
of DPs on the square lattice with weak disorder under diffusive scaling. We refer the
reader to [I88] for a rigorous approach. Note that the weak disorder regime is equiv-
alent to the regime of high temperature T ~ v/b at fixed disorder. In this phrasing,
the continuum DP is the universal high temperature limit of DPs, see in particular
[173], 189)] for a discussion of this property and an extension to disorder with non-zero
correlation length.

Before we close this chapter let us mention here that there exists another universal
scaling limit of DPs on the square lattice that has played an important role in recent
developments. Taking T and N finite, it is obtained by taking x; = T, zo = N and
Exy iy ~ 1/VbEs, 2, and taking b — oo with N and the distribution of &, ., fixed so
that the &, », are independent O(1) centered random variables with at least a well
defined second moment. This is the limit of long directed polymers on the square
lattice conditioned to stay close to the horizontal axes. The polymer makes an infinite
number (~ b) of horizontal jumps, and a finite number (N) of vertical jumps. In this
case the possible polymer paths can be indexed by (s1,s2, - ,sn) € [0, TV where
x1 = bs; is the position of the jump from xo = i to xo = i + 1. Between two jumps
the random energy of the DP is a sum of all the random energies encountered on the
horizontal line at z9 = ¢ — 1. This sum is equivalent in law to a centered Gaussian
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random variable that we can write down as the difference of two Brownian motions in
s:

1=Nsji1

> w1~ Bi(siy1) — Bi(si) (I11.1.51)

r1=Ns;

where B;(s) is a BM with B;(0) = 0 and Bj(s) = \/?&(3) where &;(s) are a collection

of independent GWN with &(s)&;/(s") = d;#0(s — ') . Thus in this limit the partition
sum is rewritten as

ZEN) o= i Zoaraen
_ / ot S Bi(sit1)—Bi(si) ’ (I11.1.52)
0§81,“'7§5NST

with by definition sg = 0 and sy4+; = T . This is the definition of the O’Connell-
Yor semi-discrete directed polymer which was introduced in [I90] and for which KPZ
universality (more precisely GUE TW fluctuations) in the limit N — oo was shown
in [191} 192]. This was later used in [193] to prove a universality result of TW-GUE
fluctuations for point to point partition sum of directed polymer in ‘thin rectangles’
[193)].

111.2 A partial selection of analytical miracles in models in the
KPZ universality class

In the previous section we discussed the notion of weak and strong KPZ universality
and introduced a few models in the KPZUC. In this chapter we now present a few exact
solvability properties that permitted over the years to build the belief in the remarkable
properties of the KPZUC and focus on DPs. We will discuss: (i) in Sec. the
symmetries of the KPZ equation; (ii) in Sec. the stationary measure of the
the KPZ equation and some models of DPs on Z?; (iii) in Sec. the Bethe-
ansatz solvability of the continuum DP; (iv) in Sec. some other exact solvability
properties: the RSK and gRSK correspondences and Macdonald processes (briefly
discussed).

11.2.1 Symmetries of the continuum KPZ equation

Hydrodynamic point of view: Galilean symmetry
The KPZ equation ([II.1.15]) enjoys Galilean invariance: for a given realization of the
GWN ((t,x), if h(t,z) is a solution of the KPZ equation, then
vt
hy(t,z) = h(t,z — tv) —vx + - (I11.2.1)
is a solution of the KPZ equation in the noise &, (t,x) = £(t,x —tv). Defining u(t,z) =
O0zh(t, x), u(t,x) solves the equation

duu(t, x) = ult, 2)duu(t, ) + %agu(t, )+ 0l (t ) . (I11.2.2)
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Which is the Burgers’s equation for a randomly forced fluid, much studied in the liter-
ature in the context of turbulence: here u(t, ) is interpreted as the velocity field of a
one-dimensional fluid (see [194] for a review). In this framework the above symmetry
reads u,(t, z) = u(t,z — tv) — v and really is the Galilean symmetry associated with a
change of Galilean referential.

Directed polymer point of view: STS
From the DP point of view this symmetry is easily seen using the path integral formula
for the point to point partition sum of the DP in a potential V(¢,z) (here
rewritten using dimensionless units, i.e. T =1)

=z—tv ’D[u]e_% fot dt’(&t/u(t’))Q—% fot dt'V (¢ u(t'))

u(t)
0)=0
)

Zy(x — tv) = /
u(
(t

u x

_ D[u]e_% S dt @) 4o [ dt' ()~ [1d' L [T de'V(t u(t)—t'v)
u(0)=0

_ ot / O et fo @124 [ V@)t gy g3
u(0)=0

and by taking the logarithm, one obtains the symmetry . For a random po-
tential which satisfies the symmetry in law Yo, V(¢,2) ~ V(t,2 — tv), we then have a
statistical symmetry and in law we have h, (¢, ) ~ h(t,x). In particular this holds for
a GWN V(t,z) = {(t,z). In Chapter [I| and [lI| this symmetry was called the statistical
tilt symmetry. In the DES context we saw that it implies a non-renormalization of the
elastic coefficient. In particular, the effective action of the theory contains the term
—% S0y [, (Vu2)?. This implied the symmetry between the roughness exponent of
the DP (, and the exponent 0 of the fluctuations of the free energy as.

0=1—-2+20=—-14+2(. (I11.2.4)

Interpreted in the KPZ context, the roughness exponent ¢, of the DP is 1/z with z the
dynamic exponent, and 6 is the growth exponent [, related to the roughness exponent
of the interface o as f = a/z. Hence we have

« 2

—=—-14+- = a+z=2. (I11.2.5)

z z

The KPZUC is thus characterized by a single critical exponent. Note that this sym-
metry holds in any dimension N.

111.2.2 An analytical exact solvability property: the stationary measure

a Stationary measure of the 1d Burgers equation: the continuum KPZ
case

In any model in the KPZUC, the appropriate height field is never stationary itself but
grows with time. The height gradients, however, can be stationary and the stationary
measure is known since [195, [33]. For the KPZ equation in particular, one studies
the Burgers’s equation for u(t,z) = 9;h(t,z) already written in ([I1.2.2)). Let us first
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study the case where the non-linearity is zero (Edwards-Wilkinson case), the equation
for u(t,z) is now

uult,z) — %agu(t, )+ 0l (t 7). (IT1.2.6)

where £(t,x) is a unit centered GWN. Let us now show that a family of stationary
processes is obtained by taking u(t,z) as u(t,x) = p + n(x) where u is the average
slope of the KPZ interface (this labels the family) and n,(z) is distributed as a unit
centered GWN for each t. Let us start from an initial condition u(t = 0,z) = p+n(x)
with 7(x) a GWN independent of £(¢,z) and show that V¢, u(t,z) = p + m(x) with
n¢(z) a unit centered GWN. is easily solved in Fourier space as

t !
ult,q) = e 2 (4 n(g)) + / e 20 jge(t q)dt! . (I11.2.7)
0

This is sufficient to show that u(¢, x) is Gaussian distributed and one easily concludes
the calculation by computing the first moment u(¢,q) = p and the first cumulant
u(t,q)u(t,¢)" = 6(q + ¢'). Of course a priori this concerns only the EW universal-
ity class but remarkably the same stationary measure works for the KPZ equation.
Checking this property directly in the continuum setting is, however, non-trivial due
to the non-linear term and one has to be more precise here about what is meant by the
continuum KPZ equation. Writing a functional Fokker-Planck equation for the PDF
of u(t,x), Piu], one obtains

O[O 152 1o .
5Pl = = [ i (Goer + 520Pn) + 5 [ s 0,6 y()litifg
And since

Patatlf] ~ e~z ] d2l@)*+uf() (111.2.9)

is already stationary for the Edwards-Wilkinson case, it is stationary for the KPZ case
iff

5
_ /x 57y 0 Peail ) = 0. (I11.2.10)

Acting with the functional derivative on the fd,f is however rather ambiguous and
one has to define a discretization procedure. It was argued in [196] that the proper
way to discretize the non linear term in the KPZ equation is, taking h(x,t) — h;(t),

(Oxh(z,1))? — é((vihﬁ + (Vih)(Vi_1h) + (Vi_1h)?) . (IT1.2.11)

With V;h(t) := hit1(t) — hi(t). For the corresponding discretized Burgers equation,
this implies the discretization, writing u,(t) := V;h(t)

1
udu — g((qu — ui,l)(uiﬂ + Ui71) + ui(qu — uifl)) . (111212)
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With this discretization, the functional derivative is thus interpreted as

d1

)
/x 5f (@) (fozf) ~ zz: dfﬁg((fiﬂ — fic)(fixr + fic1) + [i(fix1 — fiz1)

~ Z é(fi—l—l — fi-1)

~ / gagc fo ! (IT1.2.13)

And hence
0 2
_/w W (famfpstat[f]) = _/x gaxfxpstat[f]_/:E(faa:f)(_f‘FM)Pstat[f] . (111.2.14)

Note that all three terms in this expression are total derivatives: hence Pgui[f] is
indeed a stationary measure of the continuum KPZ equation (provided appropriate
boundary conditions are assumed). Note that this property only holds because the
discretization (II1.2.11)) was chosen and it is thus legitimate to ask what the KPZ
equation actually means? This reflects the difficulties related to tackling the KPZ
equation directly in the continuum. The right way to interpret it is really through
the Cole-Hopf transform. Note that at the level of the Burgers velocity field, the
discretization ([I1.2.12)) precisely ensures that the velocity field is locally conserved:
the right hand side of @D can be written as a difference. We already noticed this
property of the velocity field (i.e. height gradients) when we discussed the case of the
corner growth model in Sec. Since the derivation of the stationary measure is at
this stage quite unsatisfactory we will recover the result below in an unambiguous way
starting from a model of DP on the square lattice. Let us first draw the consequences
of the existence of this stationary measure. In the interface language, let us start from
an initial condition

h(t =0,z) = pr + B(z) , (IT1.2.15)

where B(x) is a two-sided Brownian motion. Although the interface grows, the slope
field is stationary and

h(t,x) = h(t,z = 0) + px + B(z) , (II1.2.16)

where for each t, By(x) is a two-sided BM. This invariance of the Brownian motion
implies that the roughness exponent of the interface is @ = 1/2, and together with
this entirely determines the critical exponents of the KPZUC. Note that the
interface dynamics itself is not stationary and, as mentioned in Sec. (i) the
fluctuations of h(t,z = 0) grows at large time as t1/3 and are distributed with the
Baik-Rains distribution; (i) h(f,z = 0) and B(z) are non-trivially correlated. In the
DP language the free-energy of the polymer thus performs a Brownian motion.

It is expected that, starting from any initial condition, the slope field of the interface
at large time will be stationary on local scales. Denoting as before v (¢) the large
time asymptotic velocity of the interface in the direction ¢, it is expected that, in law,
we have

T +t,oT + ) — h(T, oT) ~1—00 Xt + px + Bi(x) (II1.2.17)
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where 11 = 0,vs(p) (to ensure the equality of the mean value on both sides of
(II1.2.17))), Bi(x) is a two-sided BM, X; is a RV whose fluctuations grow at large time
as t1/3 and are distributed according to the Baik-Rains distribution, and z,t = O(1).
Of course if one scales = as T2/3 one will see non-trivial correlations in the spatial
direction and the process in = is not anymore a BM but, as discussed before, the Airy
process. Conversely this explains why the Airy process and the interface at large time
locally looks like a BM.

b Stationary measure of the Log-Gamma polymer

We now recover the stationary measure of the continuum KPZ equation in the DP
framework. To this aim we first consider a model of DP on the square lattice introduced
by Seppélédinen in the landmark paper [197], the Log-Gamma polymer. It is defined

as in Sec. [I[I1.1.1| through the recursion equation ([11.1.23))
Zi1(2) = Wi (2) (Ze(2 + 1/2) + Zy(2 — 1/2)) (I11.2.18)

where the random Boltzmann weights are all independent and distributed as the inverse
of a Gamma RV with parameter v > 0:

Wi(z) ~ Gamma(y)™! . (I11.2.19)

And we recall that a RV X is distributed as a Gamma RV with parameter v iff its
PDF is

1
X ~ Gamma(vy) < p(X) = WX1+7€_X . (I11.2.20)

In [197] it was shown that, now interpreting (II1.2.18)) V¢ as the definition of a Markov
process, if at ¢ = 0 the successive ratios of partition sums are chosen to be distributed
as quotients of independent Gamma RV with

Zi—o(+1)  Gamma(y—A)

I11.2.21
Zi—o(2) Gamma(\) ( )

where 0 < A < +, then they remain so for all time. This model provided the first
example of a discrete model of DP on the square lattice at finite temperature where
the stationary measure is known exactly - a sign of the existence of exact solvability
properties. The model was later shown to be exactly solvable using the gRSK corre-
spondence (see Sec. in [198] and Bethe ansatz in [4]. As in the continuum KPZ
case, the partition sum Z;(%) is not stationary but log Z;(Z) performs a random walk
Vt. The random walk is in general biased, except if A = /2. As already shown in
[4] and as we now recall, this model has a weak noise limit in the v — oo limit where
the partition sum of the Log-Gamma polymer converges to the solution of the MSHE.
Normalizing by definition the temperature T' to 1, the random energies of the model
are

E(&) = —Log(Wy(x)) ~ log(Gamma(y)) . (I11.2.22)
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And the first two moments are given in terms of the diGamma function ¢ = I"/T" as
- —5¢ 1
E=0() ~y1log(n) + 00U/ . EF ~ (7)o — O(1/~%) . (111.2.23)

This shows that, taking v = b7/, we can use the weak universality of the MSHE as
discussed in Sec. [[I1.1.3 ﬂ More precisely, adapting (II1.1.50)) to take into account the

mean value of the energies, we now define

Z:(%) := lim P80 7.0 (3 = bi) (IT1.2.24)
and Z;(i) satisfies the stochastic equation

i 7 (%) = §(85)2Zt~(gz) +V2c£(t, 7). (IT1.2.25)
with ¢ = D/(2v'). To compare with our previous results on the stationary measure
we thus take D = 4 and ¢ = 1/2, i.e. 7/ = 4. In order for the stationary initial
condition of the discrete model to have a well-defined limit as b — oo we
take A = v/2— pu = by' /2 — pu with = O(1). In this limit log Z;(#) performs a drifting
Brownian motion with

log Z(%) —log Z;(0)  ~ bE(th(y — A) — (X))
~ W (IT1.2.26)

and

(log Zy(7) —log Z(0))2 ~ba(¥/(y — A) +¢'(N))
~T. (I11.2.27)

And thus we obtain in an unambiguous way that the family of stationary measures
of the MSHE corresponds to log Z; performing a drifting BM (one easily checks that

higher cumulants (log Zz(#) — log Zg(()))"b with n > 3 are O(1/b"72)).

c Stationary measure of exponential and geometric Last-Passage-Percolation

An elegant way to obtain results on last-passage-percolation with exponential waiting
times is to use the zero-temperature limit of the Log-Gamma polymer. Although the
Log-Gamma polymer does not contain a parameter corresponding to the temperature
(which is one by definition) we saw in the last section that sending v — oo corresponds
to a weak-noise limit, similar to a large temperature limit. Conversely, sending v — 0%
yields a zero-temperature limit. More precisely, setting v = ey’ with (¢,7/) € R2,
one easily shows that rescaled random energies in the Log-Gamma model
converge in law to (minus) exponential random variables:
5 &(2) _ Log(Wi(2))

&E(Z) = — ; ~e ot —Exp(y') . (I11.2.28)

4This is a slight adaptation of the weak universality since we are taking a weak noise limit while
changing the shape of the distribution at the same time. The ideas are, however, identical.
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We recall that the PDF of an exponential random variable is

1 /
z~ Bxp(y) <= p(x) = e 77, (I11.2.29)
Hence, introducing
log Z:(%
E(3) = lim — 08 Z(®) (I11.2.30)
e—0t €

the linear recursion relation of the Log-Gamma polymer becomes, in the limit € — 0,
equivalent to

Eri1(2) = &(2) + min(Ey(2 — 1/2),E¢(2 + 1/2)) . (I11.2.31)

Switching to the waiting-time language as in Sec. one sees that this recursion
equation corresponds to a problem of last passage percolation with exponential waiting
times. We can now take the limit of the stationary initial condition of the Log-Gamma
polymer . Setting A = e\ we obtain that, if at ¢ = 0 the energy is taken
as a two-sided random walk with increments distributed as differences of independent
random variables with

Ei—o(2 + 1) — E;—0(2) = Exp(\') — Exp(v' — ), (I11.2.32)

then they remain so at all time. This exact solvability property of last passage percola-
tion with exponential waiting times was first proved by Burke in [I199] in the language
of stochastic queuing systems. As for the Log-Gamma case, this exact solvability prop-
erty is only the tip of the iceberg and last passage percolation with exponential weights
enjoy other remarkable properties. These notably include: (i) the possibility to use
the RSK (see Sec. correspondence [159]; (ii) Bethe ansatz solvability of the as-
sociated particle system, the TASEP with exponential clocks (see [200] and references
therein). Let us finally mention here that these different exact solvability properties
can be generalized to the geometric case where the random energies are discrete and
distributed as & (&) ~ —Geo(q) where 0 < ¢ < 1 and we use the convention

X = Geo(q) <= Proba(X =k) = (1—q)¢" . (I11.2.33)
In particular in this case the stationary initial condition is obtained by setting
Ei—0(Z + 1) — Et=o(2) = Geo(qy) — Geo(q/qv) (111.2.34)

with ¢ < ¢, < 1. This is a generalization of the exponential case since the limit
q =1 —~'e of the geometric distribution is the exponential distribution.

111.2.3 An algebraic exact solvability property: Bethe ansatz integrability of
the continuum DP

In this section we discuss the Bethe ansatz integrability of the continuum DP and
recall the main steps that led to the results for the fluctuations of the point-to-point
free-energy of the DP obtained in [I73] (as well as in [165]).
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a From the stochastic-heat-equation to the attractive Lieb-Liniger model

We now discuss the replica Bethe ansatz solution of the continuum DP which was
first initiated by Kardar in [20I]. In this section, to conform with recent works on the
subject, we will study the MSHE with the following normalization,

OZy(x) = (02)° Z(x) + V26E(t, 2) Zy (2) (I11.2.35)

with as usual £(¢,z) a unit Gaussian white noise with correlation &(t, z)E(t,2') =
§(t —t')0(x — 2’). Tt can be obtained from the universal scaling limit of DP on the
square lattice discussed in ([I1.1.47) with D = 8. For concreteness we also consider
the initial condition

Zi—o(z) = 0(z =0), (I11.2.36)

and Z;(x) is thus a point to point partition sum. Let us introduce the ‘wave-function’

V(w1 x0) = Zy(w1) - Zi(2n) (I11.2.37)

from which the nt" integer moment of the partition sum is obtained by taking coinciding
points. Introducing n auxiliary independent Brownian motions

bi(t) = V2mi(t) . bi(0)=0, (I11.2.38)

with 7;(¢) independents unit centered GWN, ;(z1,- - ,x,) is obtained as a condi-
tional expectation value through the Feynman-Kac representation of the solution of

the MSHE (see (III.1.2))) as

be(z1,- - ap) = E (eZL Jo VR (Ei(E) [T o) - a;i)> . (111.2.39)

i=1
Exchanging the two averages we obtairﬁ

t 19~ . _h. !/ n
belwn, - an) = E <621<i<j<nfo wzedbO=0 DT 5(bi(t) — xi)> . (I11.2.40)

i=1

Using again the Feynmac-Kac type formula (or an elementary derivation as in Sec. [[.3.3))
one obtains that ; satisfies the PDE

Oppe = —Hp)y an:—Z@—% Z o(zi — ;)
J

Yi=0(21, "+, an) = H 6(zi) - (II1.2.41)

Remarkably, this equation corresponds to the Schrodinger equation written in imag-
inary time for bosons (the wave function (III.2.39) is manifestly symmetric) in the

5Note that here there is no contribution from the term ¢ = j since we are using a time-ordered
exponential, see the discussion in Sec. m
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attractive (¢ > 0 is the strength of the white noise) Lieb-Liniger (LL) model [202].
Note that comparing (I11.2.37]) with ([I1.2.40)), we have replaced the average over dis-

order by an average over interacting Brownian paths. This is an example of stochastic
duality relations which relates the observables of two a priori unrelated stochastic pro-
cesses and the LL model is dual to the MSHE. The particles of the LL model correspond
to replica of the partition sum and we will use indifferently both denominations.

b Bethe ansatz solution of the LL model

The strategy adopted to solve ([11.2.41)) is to first compute all the symmetric eigen-
functions of the Lieb-Liniger Hamiltonian H,,:

Hythy = Apiby (I11.2.42)

where 1 labels the different eigenvectors. As already noticed in [202], the symmetric
eigenfunctions of H,, are obtained using the Bethe ansatz (see [203] for a review) as
we now recall. Since we are looking for symmetric eigenfunctions of H,, it is sufficient
to specify their values in the so-called Weyl chamber x1 < x9 < --- < xp, as

Yulxr < <ay) = @Eu(xl, Cee T (111.2.43)

where zﬁu is a priori not symmetric and the other sectors are obtained by using the
symmetry of v¢,. In the interior of the Weyl chamber z; < z2 < --- < x,, the
interaction has no influence and the spectral equation just amounts to the
free spectral equation

_ ; 92
f fi
Hy Y, = Ay, H=— % 927 (II1.2.44)
And since the values of ¢, (21, - - - , z,,) outside the Weyl chamber have no influence on

Yy, we might as well take ([11.2.43) to hold V(x1,--- ,x,) € R". We thus look for 1/;,,
as a superposition of plane waves:

bui= > Ao [ 20t s (I11.2.45)
oESy i=1

where S, is the group of permutations of {1,--- ,n}, the n! complex numbers A, are
called amplitudes and the n complex numbers z; are called rapidities. Alternatively we
will consider the quasi-momenta \; defined by

zj = e (I11.2.46)

The eigenvalue of the spectral problem (I11.2.42]) is completely specified by the free
equation ([11.2.44)) as

A, = Z P (I11.2.47)

Note that each of the n! terms in 1% independently solve (III1.2.44)) with the same
eigenvalue. Here we are considering for now the most general superposition of plane
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waves to try to maintain the maximum liberty with the aim of solving the full spectral
problem . For now the spectral problem is already solved in the interior
of the Weyl chamber. Let us now consider the condition of solvability at the ‘two
particles boundary’ of the Weyl chamber 1 < 5 < -+ < x; = Tjp1 < XTigo < -+ <
T,. From and the form of the LL Hamiltonian it is clear that
we are looking for solutions 1), that are continuous everywhere but not C'. More
precisely the derivatives of 1), must exhibit jumps at coinciding points to compensate
the 0 interaction. Assuming that these discontinuities only concern the derivatives on
coinciding points we must have

Yy (O, Moy
o2 (ax-‘wal Da; =i 1)5<xz+1—f’fz>+'“
P _ ([ Oy Dy
= 0 xip1 — x4 .-+ (ITI1.2.4
81.7/2—"_1 <ax +1 |acl+1 a; a;U +1|x1+1 :E ) (x Jrl ZU)"I’ ( 8)

where the dots denote more regular terms. Using the symmetry of the wave-function
one easily obtains that these singular parts are actually equals and expressed in terms
of 1, as, considering only the most singular terms
0% 0%y 0 g\ ~
oz 2’“ ~ 72 +,u1 ~ 9 - — 17[)#|1'i+1:1'i5(xi+1 — xl) + - (111249)
(2

Tit+1 afl‘z

Let us now integrate, for all z; fixed, distinct and ordered except x; and x;41, the
spectral equation ([11.2.42) from z; = x;11 — € to x; = x;41 + €. We obtain,

Ti=Ti41+E€ H? H?

‘/a;i-ri+1_€ a 82 8% i+1

implying, using (I1I1.2.48]) and (I11.2.49)

)b — 2e, + O(e) = Ofe) . (I11.2.50)

0 9\ - 7
— (8 - 82:) Vulorsr=o = Wy - (II1.2.51)

Tit1
And this implies for the amplitudes A, that any amplitudes differing from one another
by a transposition of ¢ <+ j, noted 7;;, must satisfy
Agory, _ Aolg) — Aop) — i€
AU )\0(]) - )\o(i) + ZE

(I11.2.52)

There are thus %C’%n! equations for n! variables, but they are mutually consistent [202].
The solution is defined up to a constant (i.e. the choice of Ary) and we will choose
here, in agreement with e.g. [I7§],
ic
A, = ] <1+ H) : (I11.2.53)
1<a<f<n a(B) o(a)

We have now obtained a complete solution of the spectral problem . Here we
have only taken care of the two-body interaction, but the Lieb-Liniger Hamiltonian
has indeed only two-bodies interactions. Note that we have not yet specified
the values of the rapidities z;. We now must do so in such a way that we obtain a
complete basis of symmetric functions.
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¢ The string solution

Here we will adopt the same strategy as e.g. in [I78] and adopt periodic bound-
ary conditions on a line of length L. More precisely we look for solutions such that
V(z1, - ,x,) € R™ we have

I/JH(ZL'l, ceexi, i+ Ly ,:En) = 1##(1‘1, s ,l’n) . (111.2.54)

This implies the Bethe equations for the quasi-momenta:

, Ay — \g — i
eral — T 20— 28— °C I11.2.55
Bl;la Aa — Ag +ic ( )

These boundary conditions are appropriate to study the problem of the continuum
DP on a cylinder as in [204, 205]. For our purpose they are only a trick to obtain a
well defined complete basisﬂ of eigenfunctions and we will study the limit L — co. The
solution in this case was first described in [207] and here we recall the main features.
In the large L limit a set of solutions A, can be decomposed in ng packets, also called

strings, of m; particles (the string multiplicities) with i = 1,--- ,ng and n = Y_*; m;.
Inside the j* string, the quasi-momenta are labeled by a = 1,--- ,m; and take the
form

N = kst g(mj +1—2a) + 09 (I11.2.56)
where k; is quantized as for free-particles, k; = 2nl;/L with I; € Z and 8% are

corrections to this leading behavior that decay exponentially with L. Note that the
quasi-momenta inside a string are symmetric with respect to the real axis. To under-
stand this structure let us consider the two-particle case and take the log of the Bethe

equations ([I1.2.55)): we obtain
- 27‘(‘]1 1

A1 = < + I (log(A1 — Ag —ic) — log(A1 — A2 +ic))
2r [ 1
Ao = % — — (log(A1 = Ao — @) ~ log(A — Ay +i€)) ,  (IIL257)
i
with (I1,12) € 7Z? and note that A; + Xy is always real. The naive solution of this
equation in an expansion in 1/L would thus be \; = 27# +0O(1/L?),1i.e. an asymptotic

solution equivalent to free-particles. This however neglects the fact that the singularity
of the logarithm at 0 can kill the 1/L decay before it. More precisely if A\ = Ay +ic +
O(e™ L) with § > 0, then I; = I, and we obtain
2nl 1 2wl 1
AM=——+4+ —=(-4dL A= —— — —(=6L). I11.2.

1= T (=0D)  de =T - (1) (111.2.58)
By consistency we must have A\ —As ~ i¢ = 2id. Hence this solution is only consistent if
¢ > 0: strings only exist in the attractive phase of the Lieb-Liniger model. Finally since
A1 + A2 must be real this implies the string form ([11.2.56)) for m = 2. This reasoning

5Proving the completeness of the Bethe solutions is in general a very non-trivial problem, see [206]
and references therein for the case studied here.
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can be generalized to any m and leads to . Note that these considerations
do not constitute in any case a proof that the string states form a complete basis in
the large L limit, but they indeed do, see [208]. In the large L limit the dynamics
of the system is thus relatively simple and the particles form string states that move
essentially independently. In particular, the wave function associated with n particles
forming a single n-string is

Yu(@1, -+ ) o= nle™ 2 T8 Lngicyzn el (I11.2.59)

String states thus correspond to bound states. The contribution to the eigenvalue A,
of a string of m; particles is the energy of the string

m; =)2
— a2 5 (o) 2
E; = ;(Aﬂ )t =myki = Spmy(my = 1) (IT1.2.60)

The ground state of the system is thus obtained by forming a single n-string. Finally,

noting that the Bethe wavefunction ([11.2.45]) with (I11.2.53)) is symmetric by exchange
z; <+ zj the sum over eigenstates can be computed as

Z znjnl 3 H/mﬂLdk (IT1.2.61)

(m17 : mng)n] 1

where the ng! avoids a double counting of the states, the sum 2 (mym na)n IS OVEr
all ng—uplets such that Z *;m; = n and the last terms comes from the fact that
each string-state should be considered as a free-particle with total moment K; :=
SN = mjk; (see [209]).

d Norm of the states

As the eigenfunctions of a symmetric operator, the Bethe eigenfunctions are orthogo-
nal. They are however not normalized and for many practical applications it is impor-
tant to know their norm. A remarkable formula due to Gaudin [210] is that the norm
of the eigenstates of the system with periodic boundary conditions can be computed,
at finite L, as

Il = [ i, et o)

ALL —-ALL 2_% ELL 2
—nl H (a ,8) ( )

LL
1<a<p< (ALL — \LL)2 det & (I11.2.62)
<a<psn o

where GEL is the Gaudin matrix whose entries are:

GLE = dap (L +Y KW\ - AQL)) — K\EEF—NFF) (111.2.63)
y=1

_2ELL

K= @y

(111.2.64)
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Note that the entries of the Gaudin matrix in the LL case are the derivatives of the
logarithm of the Bethe equations. Performing the asymptotic analysis of this formula
at large L for string states is a non-trivial problem (due to the divergences or zeros
both in the prefactor and in the Gaudin kernel) which was only accomplished recently
n [209]. The result is

nlL" & A(ki — kj)* + (mi + my)*c® .
19ull? = z DS L o@mYy . (111.2.65)
a4 ];[ 1<i£'[§ns 4(]{71 - k‘])Q —+ (mz — mj)262

Note in particular that this norm scales as L™, a scaling that would be obtained for
ns free particles.

e Point-to-point free-energy fluctuations of the continuum DP

Starting from

Zy(x)m =) wﬁ 1’/}1/}(’20 Al pu(a,--x), (I11.2.66)
o
and combining the ingredients presented with the previous section together with the
fact that v, (x, -+ ,z) = nle’ 2520miki% e obtains the formula that first appeared in
[173, [165]:
~ nle" 4(k; — ki) + (m; — mj)?c?
Zi(z)" = > = > H 11 Y o
nc1 ng!(2me)ms s M | i<, 4(k; — kj)? + (m; + my)3c

Mg . ns 2 (C> 2_
y Hezz] | mkjz— t(mjk 5 m; (M5 1)) _ (I11.2.67)

This formula is exact, but does not determine the probability distribution of Z;(z):
©?
the moments grow as e’ 1T (contribution from the ground state), i.e. too fast to

determine the distribution. Hence determining the Laplace transform
gta(u) = e uZ(®) (I11.2.68)

from is impossible from a mathematical point of view. Exchanging the
average over disorder and the series expansion of the exponential in leads to
a diverging series. This is a caveat of the replica method for the continuum DP and one
has to devise a recipe to resum the diverging series. g‘he correct way used for example in
[173,[165] is to use the Airy trick [;, dyAi(y)e¥® = e (valid for Re(s) > 0) to ‘linearize’
the energies of the string. Let us now give the result for the Laplace transform at z = 0
(which is not restrictive since ST'S holds, see Sec. . Introducing the rescaled
Laplace transform

Z I
t_i(gi)t ) — o (LN (I11.2.69)

ce 12

g(s) = exp (—e“
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where we have introduced the parameter A and the rescaled free-energy

& —log Zy(0) + log(e) + &L
A:(%)% L fi= 8 t()iog(ch. (111.2.70)

Then §(s) can be rewritten as a Fredholm determinant (see [211] and references therein
for background on Fredholm determinants):

§(s) = Det (I + K) (I11.2.71)

with the kernel

; /
e)\yfzk(va )

K(v,v') = — /R %dyAi(y + k2 —s+uv+0) (I1.2.72)

2 1+ et
K is an operator K : L?(R*) — L?(R"), i.e. the v, variables above live on R,.
The essential steps to go from ([11.2.69) to (I11.2.69) are (i) (wrongfully) inverting
the average with respect to disorder and the series expansion of the exponential in
(TIL.2.69); (ii) use the exact formula ([I1.2.66)); (iii) exchange in the resulting (diverging)
expression the sum over n (originating from step (i)) and the sum over n, in ([IL.2.66));
(iv) use the Airy trick; (v) notice the determinantal structure using the formula

det | - 1 ﬁ 1 I A(ks = kj)* + (mi —my)*
i(ki = kj) + (mi +mj) /2 1 = kj)? + (mi +my)?
(I11.2.73)
The emergence of a determinant thus in the end comes from the remarkable formula
for the norm of string states in the large L limit. We refer the reader to [I73] for more
details on the derivation of (III.2.71)-(II1.2.72)). Finally, starting from it is

possible to perform the large time (i.e. large A) limit of the Fredholm determinant.
Assuming that the rescaled free-energy f; defined in (I11.2.70)) isa O(1) RV (and thus %
is the extensive part of the free-energy of the DP while A is the scale of the fluctuations
of the free-energy), one obtains [I73] (using limy_s exp(—e*=) = 0(f — 5) )

NgXns 1= v 1<i<j<ng ( v

S
_22/3

—loe Z el
lim Prob( 08 2(0) + > , (I11.2.74)
t—oo /\

>s> :Prob(foo>s):F2<

where F5(s) is the CDF of the Tracy-Widom GUE distribution which also admits an
expression as a Fredholm determinant [37].

f A few results obtained using Bethe ansatz

The replica Bethe ansatz approach to DP has led to a variety of exact results. Known
since the work of Kardar [201], it was first applied for technical reasons, to the study of
DP properties that can be deduced more or less from the sole knowledge of the ground
state energy, i.e. the limit of DPs of large length ¢ > 1 on a finite cylinder L (the limit
L — oo being eventually taken afterwards). This was used to already determine the
critical exponents [201], 212] or the large deviation function for the fluctuations of the
free-energy of the DP on the cylinder [204], 205]. Obtaining the universal distribution



126 CHAPTER III. EXACTLY SOLVABLE MODELS OF DIRECTED POLYMER

of fluctuations for the growth of an interface in an infinite space, however, requires to
consider the limit ¢ — oo with at least L > ¢2/3. The study of this limit from BA
requires a summation over all excited states. This was only achieved recently, partly
thanks to the work of Calabrese and Caux [209] who managed to compute the norm

of string states ([11.2.65]).

Even with this knowledge it is still far from trivial to obtain exact results. Addi-
tionally since the method is not rigorous from a mathematical point of view due to
the too rapid growth of moments, it requires a large number of tricks. Once a solid
recipe to tackle this issue has been devised (a recipe that sometimes appears retrospec-
tively to be the shadow of a rigorous derivation, as e.g. by considering a ¢—deformed
model, see [208]), the replica Bethe ansatz approach has led a variety of new (presum-
ably exact) results. Here we name a few: (i) TW-GUE distribution of fluctuations
for the point-to-point free energy [173], [165]; (ii) TW-GOE distribution of fluctuations
for the point-to-line free energy [177, 178, 179]; (iii) multi-point correlations for the
point-to-point free-energy and the Airy process [175, 213]; (iv) one point (Baik-Rains)
and multi-point distributions of fluctuations for the point-to-Brownian (i.e. the DP
with stationary initial condition) free-energy [183], [I84]; (v) TW-GSE distribution of
fluctuations for the point-to-point free energy of a directed polymer in a half-space
[169]; (vi) fluctuations of free-energy in the crossover from droplet to stationary initial
condition [I84]; (vii) fluctuations of free-energy in the crossover from droplet to flat
initial condition [214]; (viii) distribution of the endpoint of the polymer [215]; (ix)
extension to two-times [166]. Some of these results have been shown rigorously since
then (see [34]), giving credit to the replica method.

111.2.4 A few words on other exact solvability properties

In the next chapter we will review the recent progresses that have been made on
applying the replica Bethe ansatz to models of DPs on Z?, which are one of the major
focus of this thesis. Additionally we will see that these BA exactly solvable models of
DPs have another exact-solvability property that has also been discussed previously,
namely their stationary measure can be written down exactly. Before we do so we now
mention other exact solvability properties that have played an important role in the
study of DPs, particularly for discrete models.

a A combinatorial exact solvability property: RSK and gRSK correspon-
dence

As we mentioned, the first proof of TW-GUE fluctuations for a point-to-point directed
polymer was in [I59] for a model of DP at zero temperature with (minus) exponential
or geometric distribution of random energies, i.e. equivalently a model of LPP with
exponential or geometric distribution of waiting times (see Sec. . The exact
solvability used there appears to be of purely combinatorial origin and proceeds in
three steps. It consists, for the geometric case, in: (i) mapping the problem of finding
the last passage time T'(x1,z2) to the problem of finding the length of the longest
increasing subsequence in a sequence of pairs of integers (], z5) where the number of
times (x1,x2) appears in the sequence is given by the value of the random waiting time
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tz1,20; (i) using the Robinson-Schensted-Kuth (RSK) algorithm to map this problem
onto the problem of finding the length of the first row in a pair of ‘semi-standard Young
tableaux’; (iii) obtain a representation of the PDF of the latter using Schur polyno-
mials. The formula obtained in the last step shares striking similarities with formulae
obtained in random matrix theory. The asymptotic analysis is carried out using the
theory of symmetric polynomials, and the role played by the Hermite polynomials for
the GUE is played by the Meixner polynomials. We refer to [160] for a pedagogical
review of this approach to LPP with geometric waiting times. This approach was later
adapted to study a model of first passage percolation with geometric waiting times
on horizontal edges of Z? only [216]. The RSK correspondence was later ‘tropicalized’
in [21I7] to obtain the proof of GUE-TW distribution of free-energy fluctuations for
the semi-discrete directed polymer. This new combinatorial mapping has since then
been referred to as the geometric RSK (gRSK) correspondence. LPP with geometric
and exponential waiting times was a precursor of the first discovered exactly solvable
model of DP on the square lattice at finite temperature, the Log-Gamma polymer.
Introduced in [I97] for the possibility of writing down exactly its stationary measure,
it was later shown that the gRSK correspondence could be used to tackle this finite
temperature case as well [I98], the results were then later used in [218] to obtain the
first proof of the emergence of TW-GUE fluctuations in a finite temperature model
of DP on Z2. Similarly, the LPP model discussed previously was a precursor of the
‘Strict-Weak’ polymer, the second exactly solvable model of finite temperature DP on
Z2. Tntroduced in [219, 220], three exactly solvable properties were shown simulta-
neously for this model: exact stationary measure, Bethe ansatz solvability and gRSK
correspondence. TW-GUE fluctuations were shown too. The links between RSK and
gRSK correspondence was recently clarified in [22I] where the authors obtained a
general correspondence that interpolates between both.

b Macdonald processes

The theory of Macdonald processes, developed in [192], has provided important results
for various models in the KPZUC. Macdonald processes are a two-parameter family of
stochastic processes which, in several limits, converge to models now known to belong
to the KPZUC in particular the g-TASEP, the semi-discrete DP and the continuum DP.
The exact solvability property of Macdonald processes notably relies on results from
the theory of symmetric functions (Macdonald functions) and Macdonald processes in
general constitute a class of processes different from BA solvable processes (but their
intersection is not empty).

I11.3 Summary of (and more context around) the results ob-
tained during the thesis

111.3.1 Introduction

In the last sections we have thus discussed some aspects of the KPZUC and presented
some exact solvability properties that, in the DP context, contributed to the statement
of the KPZ universality hypothesis. Before we continue, let us emphasize here that
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there is still no simple explanation for the values of the exponents in the KPZUC, and
even less for the emergence of universal distributions related to extreme value statistics
of RMTE Despite this, this universality class seems remarkably robust. The emergence
of the KPZ exponents and of the Tracy-Widom GUE distribution in so many different
models has the flavor of an analogue of the central limit theorem in the case of strongly
correlated RVs. Understanding simple mechanisms explaining this universality is one of
the major objectives of research in this field. This task, however, still appears beyond
reach, and most of the research in the KPZUC still relies on the study of exactly
solvable models. It is in this spirit that in this thesis we studied directed polymers on
the square lattice and tried to understand how KPZUC appears in these models (see

Sec. [[11.3.4)).

As we discussed in the last section, the RSK and gRSK correspondences have played
a major role in the study of DPs on Z2. While the RSK correspondence provided the
first proof of TW-GUE type fluctuations of free-energy for LPP with geometric waiting
times [I59], the gRSK correspondence led to a similar result, for the first time, in a
model of a DP on Z? at finite temperature, the Log-Gamma polymer [197, 198, 218].

On the other hand, for the continuum DP, as reviewed in the last section, the Bethe
ansatz approach, although non-rigorous, is a powerful and versatile technique that was
recently applied to obtain a variety of exact results. This state of affairs provided the
motivation to obtain a Bethe ansatz approach to the Log-Gamma polymer. Similarly to
the continuum case, the moment problem is mapped into a discrete-time and discrete-
space dynamics of replica on Z. It was found by Eric Brunet that the transfer matrix
of the problem (equivalent to the LL Hamiltonian), could be diagonalized using the
Bethe ansatz. As we showed in the last section, this BA solvability is, however, only
the beginning of the route to the ‘proof’ of GUE-TW-type fluctuations for the DP
free-energy. The paper [4] showed how the route used for the continuum DP could be
successfully adapted to this discrete case. The results obtained in [4] will be presented
in Sec. and the original research paper can be found in Appendix. [D]

The dynamics of the replica on Z for the Log-Gamma polymer is very similar to
the dynamics of interacting particle systems referred to as zero-range-processes (ZRP).
In the seminal paper [222], Povolotsky obtained a classification of BA solvable models
of ZRP on Z with parallel updatesﬂ The purpose of the paper [5] was to understand
whether or not this classification could be adapted to obtain a classification of finite
temperature BA solvable models of DP on Z2. As we will discuss in Sec.
with some specific hypothesis, this classification is very close to being complete. In
particular it encompasses all known models of exactly solvable models of DP on Z?:
the already discussed Log-Gamma and Strict-Weak polymer, but also (i) the Beta
polymer introduced shortly before by Barraquand and Corwin in [224]; (ii) the Inverse-
Beta polymer, a new integrable model of DP on the square lattice that remarkably
interpolates between the Inverse-Beta and Log-Gamma polymer, and for which we
showed TW-GUE fluctuations for the point-to-point free energy. The results obtained
in [5] will be presented in Sec. and the original research paper can be found in

Appendix. [E]

"Note that the Baik-Rains distribution has no equivalent in RMT.
8A classification later extended in [223] to the case of non-parallel updates.
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Among the classification of BA exactly solvable models of DP obtained in [5], the
Beta polymer has the remarkable peculiarity that it can also be interpreted as a model
of a random walk on Z in a time-dependent random environment (TD-RWRE). This
is the first example of an exactly solvable model of TD-RWRE and it brings to this
field the possibility of using exact techniques and the scope of KPZUC. In [224] the
authors obtained exact results for the point to half-line partition sum of the DP. In
the correspondence with TD-RWRE these correspond to results for the cumulative
distribution function (CDF) of the TD-RWRE transition probability. They notably
showed a convergence at large time of the fluctuations of the point to half-line free-
energy of the DP, in the large deviations regime of the TD-RWRE, to the GUE-TW
distribution. This suggests that KPZ universality does apply in the large deviations
regime, but the behavior of the TD-RWRE in the diffusive regime was not considered in
[224]. In [6], using the techniques developed in [4}, 5], we obtained complementary exact
results for the point to point partition sum of the DP, equivalent in the correspondence
with TD-RWRE to the PDF of the TD-RWRE transition probability. We performed
the asymptotic analysis of these formulae both in the large deviations regime and in
the diffusive regime. While in the large deviations regime we obtain TW-GUE type
fluctuations for the point to point DP free-energy, in the diffusive regime we obtain
that the fluctuations of the partition sum are Gamma distributed. This permits a
discussion of the crossover between both regimes. The results obtained in [6] will be
presented in Sec. and the original research paper can be found in Appendix. [F}

Finally in [7], on one hand we pursued the analysis of the Inverse-Beta polymer
and obtained its stationary measure exactly. Using the stationary measure we addi-
tionally recovered rigorously some results obtained in [5]. On the other hand we used
this knowledge to go back to zero temperature models of DPs on the square lattice
and we introduced a new exactly solvable model, the Bernoulli-Geometric polymer.
The motivation to look for this model came from the fact that (i) the Inverse-Beta
polymer appears as a general model encompassing the two gRSK solvable finite tem-
perature models of DP on Z2, the Log-Gamma and the Strict-Weak polymer; (i) the
Log-Gamma and the Strict-Weak polymer are both linked with RSK solvable zero-
temperature models of DP on Z? with discrete energies, namely models of first and
last passage percolation with geometric waiting times. It was thus natural to conjec-
ture that a zero-temperature model of DP on Z?2, linked with the Inverse-Beta polymer
and with discrete random energies should exist. The Bernoulli-Geometric model in-
troduced in this paper appears as this missing model and we obtained its stationary
measure exactly and deduced from it several results. The results obtained in [7] will be
presented in Sec. and the original research paper can be found in Appendix. [G]

We now give a more detailed overview of the main results obtained in [4} [} 6] [7].
We only focus on the main results and encourage the reader to look directly at the
original research papers in Appendices |D} We begin with [4] on which we will
be quite exhaustive since many of the methods developed in [4] are used in [5] [6].

111.3.2 Presentation of the main results of [4]

Introduction, our strategy and an issue
In [4] we attempted to solve the Log-Gamma polymer model, already presented in
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Sec. [TI.2:2] using the coordinate Bethe ansatz. The model is defined through the
recursion equation for the partition sum, for ¢ > 0,

Zy(2) = Wi (2) (Ze(2 = 1/2) + Ze(2 + 1/2)) ,  Zo(&) = 6z,0W0(0) . (II1.3.1)

Where the random Boltzmann weights W;(2) are independent and distributed accord-
ing to the inverse of Gamma random variables with parameter v > 0 (see (IIL.2.20]).
Note that here we have added a Boltzmann weight on the first site of the DP. The
moments of Wy(Z) are well defined for n < v and are given by

s L(y—n) _ (=1))"

Wil = oy = T (I11.3.2)

where we introduced the Pochammer symbol (a), = [[{Zy(a + k). For n > 7,
(Wy(2))™ = +o0. In this paper, our goal is to compute the PDF of Z;(%) from the
knowledge of its integer moments (Z;(Z))" that we will compute using BA. This prob-
lem is obviously ill-defined since only a finite number (the first ) of moments of Z;(%)
exist. The problem here is thus in some sense even worse than in the continuum DP

where the moments were ‘only’ growing too fast.

A way out
Note, however, that using the analytical continuation of the Gamma function, the
right-hand side of is well-defined Vn, although these are not the moments of
the Inverse-Gamma distribution (the moments only exist for n in the complex plane
with Re(n) < ). The question we ask here is: ‘can we still somehow use these
analytically continued moments to obtain (non-rigorously) the Laplace transform of
Wi(z)’, which is defined by

(=w)"

n!

]38

g(u) = e Wi(@) = (Wi(2))™ . (IT1.3.3)

n=0

If we find a ‘solution’ to this ill-defined problem, then our goal will be to adapt this
solution to obtain the Laplace transform of Z;(#) from similarly analytically continued
moments. First note that in the expression , it is not possible to exchange the
series expansion of the exponential and the average over disorder since only a finite
number of moments of W;(%) exist. We can, however, rewrite this series expansion
using a Mellin-Barnes representation:

_ -1 mwds us(Wt(ﬁc))s
207 Jsee sin(ms) T(1+s) '

g9(u) (I11.3.4)

where C is a vertical contour oriented from down to top withC = —a+iRand 0 < a < 1.

The identity between (II1.3.3) and (III.3.4)) follows from the (legitimate) application
of the residue theorem when closing the contour on the right and taking the poles of

the sine function in the denominator. Using (II1.3.2)), g(u) can thus be obtained as

-1 mds , T'(y—s)
9(u) = zm/sec sin(rs) ' T(Y)D(1 +5) (II1.3.5)
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This integral converges and the inversion of the integral and of the average over disorder
is legitimate. We can now ‘un-do’ the Mellin-Barnes transform. Closing the contour
C on the right and taking into account the poles of the sine function and of the I’
function at the numerator, we obtain (using Euler’s reflection formula)

g(u) = gmom(u) + gnonfanalytic(u) , (111.3.6)

N (W' Ty =n)
gmom(u) T nz:% n! F(7> )

- (_1)n nr(_’y_n)
gnonfanalytiC(u) = Z n! u7+ F(’}’)

n=0

The Laplace Transform thus admits a non-analytic series expansion. Note that the
analytic part of the series expansion gmom(u) can also be obtained by naively (and
wrongfully) inverting the series expansion of the exponential and the average over
disorder in and using Vn. The question now is how one can guess
g(u) from the sole knowledge of gmom(u)?. The answer is: wrongfully (again) apply a
Mellin-Barnes transform using the proper analytical continuation of the coefficients of
the series expansion of gmem(u) to n € C:

= (k) T(y=mn)  —1 mds o T(y—s)
Gumom (11) = Z F(1+n) I(y) ~ %n seC sin(ﬂs)u L)1+ s)

n=0

= g(u) .

(I11.3.7)
Note that there is a single analytical continuation that provides the right answer and it
has to be guessed. This ‘trick’ gives us hope to solve the problem for the Log-Gamma
polymer as follows: (i) compute the ‘moments’ (Z;(Z))” ¥n using BA, as if the moments
of W;(2) were given by the right hand side of ([IL.3.2) Vn; (ii) compute the ‘moment
generating function’ gi"p™ (u) = >°7% Z¢(#)"; (iii) perform an “illegal” Mellin-Barnes
transform on g{"y™ (u) using an analytical continuation and obtain a function g . (u);
(iv) check that g; ,(u) is indeed the Laplace transform of Z;(z) for low values of ¢ and
& and hope that it holds V(¢, Z).

Bethe-Brunet ansatz

Introducing the mean value of the Boltzmann weights wg = Wy(%) = ﬁ we consider
the ‘wave-function’ (denoting from now on & by = as in [4])
1
d]t(l’l,...,l’n) = WZt(xl)Zt(ﬂfn) . (11138)

The normalization of the wave-function ensures an easy comparison with the continuum

DP case (see ([11.2.24])) that is also discussed independently in the paper. Defining
W n
hy, = Wa(@))" , (I11.3.9)

n
Wy

the transfer matrix is obtained as

wt—f—l(xz’) = (ant)(‘rz) = Zinaatl,m Lo Z wt(xl — 517 e, T 577,)

(617'" 761’74)6{7%7%}”
e | LDy (I11.3.10)
T
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As shown by Eric Brunet, the symmetric eigenfunction of T},

Ty, = 0,0, (I11.3.11)
takes a Bethe-Ansatz form: for 1 < --- < @p, Yu(21,--- ,2n) = YZJM(:L'l, o+, Tp) with
~ c
Gu(wr, - an) = Y Ay Hz s A= I 57—
o€Sn (@) 1<a<f<n 2(t0(0‘) o tU(B))
, . )\ Za — 1
ta =N da=itan(5) = ZZ — (I11.3.12)

and

th-‘

(111.3.13)

11

The form (II1.3.12)) should be compared with ([11.2.53]). In an appropriate scaling limit
(the v — oo weak noise limit, see Sec. |[I11.2.2)) (I11.3.12)) converges to (I11.2.53)). Impos-

ing periodic boundary conditions on a line of length L (immaterial in the computation
of a moment as long as t > L) one obtains the following Bethe equations

c Ao A .

ol = [ HeTZetC_ 2tan() = 2tan(5) =€ gy
2t —2t/3—c 2t (Aa)_Qt ()‘B)+'—
1<B<n,B#a 1<B<n,B#a < AN an{— i’

which should be compared with (I11.2.55]).

Symmetric transfer matriz, weighted scalar product and norm formula
The above transfer matrix is not symmetric and the eigenfunctions are not
orthogonal with respect to the canonical scalar product on (Z/(LZ))". In [4] we argue
that the eigenfunctions (I11.3.12)) are orthogonal with respect to the following weighted
scalar product:
(6 15) = ) L @ m)(a, e (ITL315)

Ay .-
(21, ,2n)€{0,-+ ,L—1}7 L1, Tn

We then conjecture a generalization of the Gaudin formula for the norm of the eigen-
functions (see [4] for some checks)

(2to — 2tp)% — &2

1ull® == (W) =nt ] det G (IT1.3.16)
1<a<f<n (Qta o 2tﬁ)2
with
Gop = 0ap (L+ (1-12)> K ) (1—t3)K (ta — tp)
y=1
. —2¢
K(t) = (I11.3.17)

—4t2 et
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This formula should be compared with ([I1.2.62)). It is rather remarkable since the
Gaudin formula does not a priori seem to know that we have defined the weighted

scalar product ([11.3.15]).

The large L limit and the string solution
We assume ¢ > 0 (i.e. v > 1, which is true if the first moment of the partition sum
is well defined so that it makes sense to use the Bethe ansatz at least for small n).
We then argue in [4] that the Bethe equations are solved in the large L limit similarly
as in the continuum case (see Sec. . Namely, a general eigenstate is given by
partitioning n into n, strings, each string containing m; particles where the index
j=1,--- ,ng labels the string and

k: ¢ 5.
to =tia=i2 + S(m; +1—2a) + 22 (IIL.3.18)

’ 2 4 2
where we introduce an index a = 1,--- ,m; that labels the rapidity inside a string, and

dj.a are deviations that fall off exponentially with L. This formula should be compared
with (II1.2.56). To compute the norm of the string states, we adapt the derivation of
the Calabrese-Caux formula [209] to our formula (III.3.16)) and obtain

A(k; — k)2 + 2 (mi +m;)? R
[9ul|? = niL" L ! /. Y TT(—2,)]
: L i e o iama & g [lo-5,
(I11.3.19)

which should be compared with (I11.2.65). Note that as in the LL case the norm is

almost a determinant. Here however, the additional factor > 7, il 12 which comes

from the careful large L analysis of ([11.3.16|) spoils the algebraic structureﬂ ‘Luckily’
it will be canceled out in the final calculatlon by a factor coming from the phase space:
we argue that the sum over eigenstates can be computed as

Y-y I

K Ns= (ml" mns)nj 1

Ldk;
111.3.20
2T GX: 1-— t2 ’ ( )

which should be compared with (I11.2.61]). Finally noting that the contribution to
the eigenvalue associated with the unit translation in time and on the lattice Z are

0, = 1021 O, 1, With

oN™ (T NS QN 1“_714_1 kTJ 2
Oy ks = () H(F nf 2 = 07) (m2 2+k ) (I11.3.21)
¢ PG+ 3 —i)N(F +5+i7)

YN

and [[, zo = H Ha 1 1“3 2 with

@

(111.3.22)

Pl DO NGy g )
2 '
2

c
o1 L —tja I‘(WQL] + kj

c

9Tt could obviously be integrated into a determinant, but not in a symmetric form.
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An exact formula for the moments of the Log-Gamma polymer
Combining the precedent results, we obtain, for v < n:

Zy(x)n 3 1 o dk 4(k,» — kj)? + (m; — m;)?
= (m17 mns)n] 1 1<z<g<n 1 ] ) J
ﬁ 1 (F(_n;j +3 - 2k3)> pHite <I‘( mj +1+ zk)) zTl-z 1323)
o mi \ T(F + 3 —iky) T(% + +zk) ’ o

which should be compared with ([11.2.67). Note that the right hand side of ([11.3.23))
makes sense Vn. We can use this fact to perform the rest of the program announced
earlier.

Fredholm determinant formulae for the Laplace transform of the partition sum in
the Log-Gamma polymer
Let us first perform the step (ii): we compute

mom —U " 7 (e
g™ (u) = > ( n!) Zy(x)ne (I11.3.24)
neN
where ‘Z;(x)"* denotes Vn the right hand side of (I11.3.23)). Adapting the route followed

in the continuum DP case (see Sec. [[11.2.3]) we obtaln a F redholm determinant formula
for g™ (u) as

g (u) = Det (1 + K™ (I11.3.25)
with the kernel:
> [tee dk :
K™ (o,m) = ) / — (—u)me Hk(vi—v2)mm{vifoz) (I11.3.26)
7 m=17"° T
t ti1—
T(-m+3—ik)\ 27" (r-m+ 3 +ik)\ 270
P(y +3 —ik) T(% + 3 +ik)

and K™ : L*(Ry) — L*(R4.). Performing now the step (iii), we conjecture a formula
for the Laplace transform of the Log-Gamma polymer by changing the sum over m in
the above kernel to an integral on the complex plane as for a Mellin-Barnes transform.
We obtain

Gt.z(u) = exp —uZy(x) = Det (I + K ;) (I11.3.27)
with
Kz (vi,v2) = /+OO dk —1 / - ds uSe 2ik(v1—v2)—s(vi+v2) (I11.3.28)
’ o T 2 Josin(ws)

R il
T(—2+3—ik)\ 2" (D=5 +3+ik)\ 2"
L(5+ 3 —ik) (5 + 3 +1ik) ’

where C = a+ iR with 0 < a < min(1,~) (note that the sum over m in (III.3.26]) starts
at m=1) and K;, : L*(R;) — L*(Ry).
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KPZUC in the Log-Gamma polymer
Performing the asymptotic analysis of ([11.3.28)) we finally obtain

log Z;(¢t) + te,
A

< 2§z> = Fy(z) (I11.3.29)
©

lim Prob (
t—o0

where Fy(z) is the standard GUE Tracy-Widom cumulative distribution function, and
the (angle-dependent) constants are determined by the system of equations:

0=+~ k)~ (G — oW (L +ky) (111.3.30)
e = (2 + (L ko) + (5~ (L + k) (111.3.31)

Ay = (_; ((; 4 ¢)¢//<% — k) + (% _ ¢)¢//(% 4 k(p)))g . (111.3.32)

We recall that ¢ = I"/T is the diGamma function. Here k,, which is implicitly defined
by the first equation, encodes the position of the saddle-point at (s, k) = (0, k) in the
kernel . This formula reproduces the results obtained from the gRSK corre-
spondence in [218] for ¢ = ¢* = 0, that is c,» = 1(7/2) and A = (F"(7/2))'/3,
and generalize it to arbitrary angles. It is successfully confronted to numerical simu-
lations in [4].

Other results contained in [4] (see Appendix [D) are (i) additional formulae for the
PDF of Z;(z) at any t, z as differences of two Fredholm determinant formulae; (ii) ad-
ditional Fredholm determinant formulae for ¢; . (u) closer to those usually encountered
in the mathematical literature; (iii) the comparison at each step of our Bethe ansatz
approach with the BA approach to the continuum DP using the weak-universality of
the continuum DP and thus the convergence of our results to the continuum case; (iv)
the study of the limit to the semi-discrete DP; (v) many checks of the above formulae.

111.3.3 Presentation of the main results of [5]

Classification of BA solvable models of a DP on Z?: step 1
The BA solvability of the Log-Gamma polymer is not an accident and comes from
the algebraic structure of the model, more precisely as we will see below, it comes
from the structure of its moments that satisfy the simple recursion relation
(Wi(2))ntt = (W (2))"/(y —n — 1). It is a natural question to understand whether
or not the Inverse-Gamma distribution is the only distribution that permits BA solv-
ability. For this purpose in [5] we investigated the conditions of BA solvability of a
DP at finite temperature on Z%E For this purpose we consider a ‘general’ model of
DP on Z? where (see Fig. @ (i) the Boltzmann weights (BW) live on the edges;
(ii) the couple of BWs leading to the vertex (¢, z) is noted (u; s, vt ) where u; , is the

0By BA solvability here we mean BA solvability of the moments problem. There could be other
types of BA solvability. For example the partition sum of the Log-Gamma polymer can be obtained
as the limit of an observable of a BA solvable interacting particle system on Z, the q-Push TASEP
[221]. This BA solvability does not seem trivially related to the one studied in [4].
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Viet) . ¢

of

Figure I11.4: General scheme for the models of directed polymer in the classification
of [5]. Blue (resp. Red) : couple of correlated Boltzmann weight on edges arriving at
(t =6,z =1) (resp. (t =6,z =4)). Green: two admissible (i.e. up/right) paths for
polymers with starting point (0,0) and endpoint (8,4). Figure taken from [5].

BW on the vertical edge and v, is the BW on the horizontal edge; (iii) BWs leading
to different vertices are not correlated; (iv) the BWs are homogeneously distributed
as (utz,Vtz) ~ (u,v) with (u,v) € R2 two (a priori correlated) positive RVs. Note
that this class of models contains models with on-site Boltzmann weights since wu; ,
and v, can be correlated. For example the Log-Gamma case is reproduced taking
Uty = Vpgp ~ Gamma('y)*l. The extent of the ‘generality’ of this class of models is
precisely the one that allows us to perform the classification (see below). Other models
outside this class could be considered and are not covered by our results.

In this framework the point-to-point partition sum satisfies the recursion relation

Zt:O(x) = 537,0
Zt+1(.7}) = ut+1’zZt(l‘) + UtJrLIZt(x — 1) . (111.3.33)

And this can be translated to a recursive (i.e. transfer matrix) equation for i);:

"(ﬂt:()(l'l e ,wn) = 5351’0 e 535”’0

Yrp1(T1.. 0, 2p) = Z aiﬁ’,'ff.’,i"ﬁ!}t(fﬂl =01, = 0p) = (Tnth) (21 - - 20)
{01, ,0n}€{0,1}"
aill’;.'.',’f;’; = H (u)zyzlazi’y‘s%o (v)zyzl Oai05;1 (111.3.34)
YyEZ

The latter generalizes the recursion equation of the Log-Gamma case ([11.3.10) and
we are interested in models for which all the symmetric eigenfunctions of the transfer
matrix

Tohy = Aptby (I11.3.35)
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can be obtained in the BA form
Yu(x, ..., Tn) zqﬁu(xl,...,mn) ifog <o <a,,

Vu(w1, ..o wy) = > A1 zifi) . (II1.3.36)

oESy =1

The class of models we consider is precisely the one that makes similar to
the recursion equation for the PDF for the position of n particles moving on Z with a
ZRP (with parallel updates) type dynamics. In this interpretation the transfer matrix
must be stochastic (i.e. conserve the probability) and the recursion equation
is often called the Master equation. In a recent work [222], Povolotsky managed to
classify all the ZRP with parallel updates for which the transfer matrix 7}, can be
diagonalized by the Bethe ansatz. This construction precisely encodes the fact that
‘the n particle problem must be reminiscent of the 2 particle problemﬂ in the form
of a deformed Binomial formula for non-commutative variables. For our purpose this
classification must be slightly adapted since we are not a priori only interested in
stochastic transfer matrix 7;,. We will not repeat here the arguments that lead to the
classification (see [5] in Appendix , but only give the result: the spectral problem

(I11.3.35)) is solved by the BA ([I11.3.36)) iff the moments take the form

g G5 D (5 Dnz (65, @) ny 4 1
(Vs Dnitns (GO (G Do CzllJrnQ ’

utiyh2 = (61)”1 (62) (111.3.37)

with (e1,e€2,q,1,v) € RS and (a;q), = HZ;(I)(l — ag¥). In this case the symmetric
eigenfunctions of 7T), are obtained as ([11.3.36]) with the condition (which can be solved)

Agor; _ b2y +3%0(0)20() ~ Z0()
Ao ¢+ bzy() + 325 (5) Z0(j) — Zo(s)

(I11.3.38)

with

;;12“2:7@2 bzw c:@. (I11.3.39)
(u) () (w) (V) (u) ()
Classification of BA solvable models of DP on Z2: step 2
It remains to understand whether or not are indeed the moments of pos-
itive random variables for some choice of the parameters. In ([5]) we consider, for
(€1,€2,q, 1, ) € R® fixed and x € R

P(z) = (u+a2v)2° . (I11.3.40)

If (I11.3.37) are moments of real variables, then P(x) must be positive Vx € R (and
maybe 0 at some x. if v and v are correlated as u + z.v = 0). P(z) being a degree
2 polynomial, its root can easily be studied and we arrive to the conclusion that the

1A feature that was not present in the continuum DP model where there are only two-bodies
interactions.
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only possibility for (I11.3.37) to be the moments of real variables is to consider the
degenerate limit

v=q¢""" , pu=q¢" , q—1. (IT1.3.41)

Taking this limit using (¢% ¢)n ~4—1 (1 —¢)"(a), (where (a), = [[}Z;(a+k)) we thus
restricted our search for integrable models of DP to those with moments as

na (@)n; (B)ny

W = ) B

(111.3.42)

A combinatorial identity shows that in this case Vn, (u/€; + v/e2)® = 1 and the BWs
are thus strongly correlated as u/e; + v/eg = 1. At this point we cannot obtain more
general results and only exhibit models for which the moments are given by .
We consider both (i) models for which the moments of the BWs are indeed given
by V(ni,n2); (ii) models for which only a finite number of moments exist,
namely for n; + ngy < npax with some 1y, € N*. In the second case (inspired by the
Log-Gamma case) the BA a priori only allows us to compute the first ny,,x moments
of the partition sum. First, this classification indeed contains the Log-Gamma case
as a degenerate limit: taking (e1,e2) = (+1,—-1), a+ 5 =1—7 with v > 0, § — oo
and rescaling the Boltzmann weights as (implying a corresponding rescaling of the

partition sum) u = ful%, v = Bv¢ we obtain
((uLG)nl (ULG)nQ) — lim 1 (_1)n2 (1 i B)nl (ﬁ)nz — (_1)n1+n2
7 oo fratnz (1 = Ynitns (L= Yny+ny
(I11.3.43)

which indeed reproduces the moments of the Log-Gamma polymer . In between
our work on the Log-Gamma polymer [4] and this work [5], two new exactly solvable
models of DP on Z? were obtained: the Strict-Weak (SW) polymer and the Beta
polymer. Both were shown to be solvable by BA in [219] and [224]. In the SW case
Boltzmann weights are given by v>" = 1 and vV ~ Gamma(a). Tt is obtained from
our framework by taking the limit (e1,e2) = (1,1) and 5 — oo with a > 0 fixed and
w5 = Bu, v = v. Indeed in this limit the moments are:

SWiyn1 SWinay __ 1: ni (O‘)m(ﬁ)nz _
U , (v = lim — = () - 111.3.44
(@), @) = Jim g SR — (o), (I1L3.44)
This corresponds to the distribution described above. In the Beta polymer the Boltz-
mann weights are distributed as u” +v?® =1 and u € [0, 1] is a Beta random variable
with parameters («, ). Its PDF is

F(a —+ 5) ua—l
L(a)T'(B)

and the moments are as above with (e1,€e2) = (1,1). We will come back to this model
in the next section. Finally in [5] we introduce a new exactly solvable model of DPs
on Z?, the Inverse-Beta polymer. In this model (e1,e) = (1,—1), v = u—1 and u
is distributed as the inverse of a Beta random variable: u ~ Beta(y,3)"! > 1. The
moments are as above with « =1 — 8 — «. In the limit 8 — oo, this model converges

u ~ Beta(a, f) <= p(u) = (1—u)’t. (I11.3.45)
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to the Log-Gamma polymer, while in the limit v — oo it converges to the Strict-Weak
model (this limit is different from the one mentioned above, which corresponds to the
degeneration from the Beta to the Strict-Weak polymer). In [5] we attempted a more
systematic study of possible models of DPs, but it remains inconclusive. In any case,
for now, all exactly solvable models of DPs on Z? are thus BA solvable and can be
regrouped using our notations as in Fig. Note that in Fig. we also include
the symmetrized version (with respect to the diagonal of Z?) of the Inverse-Beta and
Strict-Weak polymer which are both anisotropic models that favor one edge. The rest
of this section is devoted to the Inverse-Beta polymer, which thus generalizes both the
Log-Gamma and Strict-Weak polymer.

BA solution of the Inverse-Beta polymer
In the Inverse-Beta polymer, the moments of the Boltzmann weights are well defined
for (s1,s2) € C? with Re(s; + s2) < and Re(s2) > —f and are given by

L(y+B) D(y — 51 — 52)T'(B + 52)
L(y)I(B) L(y+ 6 —s1) '

The replica Bethe ansatz approach to this model suffers from exactly the same problem
as the one for the Log-Gamma case: only a finite number of integer moments of the
partition sum exist. It is however possible to use the same strategy as for the Log-
Gamma case. The two approaches are actually remarkably similar: defining again
¢ =4/(y—1), we showed in [5] that the eigenfunctions of the transfer matriz T), in the
Log-Gamma and Inverse-Beta case are equal. A simple incarnation of this remarkable
property is that the quotient of two amplitudes of the Bethe wave-function in ,
which controls completely the structure of the wave-function and the Bethe equations,
does not depend on S. In particular they are equal to those in the Log-Gamma limit
B — 0o0. We can thus use the same results as in the Log-Gamma case: string solution
at large L, Gaudin formula... The only things that differs is the eigenvalue associated
with the unit translation in time: the Inverse-Beta polymer is an anisotropic model
with v = w — 1, and the vertical direction is thus favored in this model. In [5] we
showed that this change leads to the following formula for the integer moments of the
DP partition sum:

n k)2 + (my — m)?
Zt(iﬂ)”:”!wznlt > H/+ &5 Aki = kj)” + (mi = my)

uS1ys2 =

(I11.3.46)

L(y —n) o= ns! e e 1<1<J<n A(k; — k)% + (mg + m;)?
j=1 "1 L5+ 3 —iky) F(%-I—%j%kj) (B—I—zk* _|_,_7) ’
(IT1.3.47)

which is valid for n < v and very similar to the corresponding formula for the Log-
Gamma case ([11.3.23). The first factor F(FV@I), which comes out of the structure of

the BA, forbids to express e~4Zt(%) as a Fredholm determinant. As in the Log-Gamma
case we thus consider a partition sum with a BW added at the origin:

Zy(x) = wooZ(7) , (I11.3.48)
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Figure IIL.5: Classification of exactly solvable finite temperature models of DPs on
7?2 following the notations of [5]. The dashed line represents the axis of symmetry
a < [, or equivalently the symmetry between vertical and horizontal edges. The
blue line indicates the line a + f = 1 or equivalently v = 1 — (o + ) = 0. Limiting
polymer models are indicated by red arrows for the log-Gamma (LG) and blue arrows
for the Strict-Weak (with weights either on horizontal edges (SWH) or vertical edges
(SWV) ). We also emphasize the values of (e1,e2) which corresponds to the polymer
considered. Notice that the region v > 0, § > 0 and v < 1 is a region of coexistence
of the Inverse-Beta and the Beta polymer, only distinguished by the value of (e, €2).
Figure taken from [5].
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where woy ~ Gamma(y)~" is independent of Z;(z). The moments of Z;(x) are given
by ([11.3.47]), but without the factor Fa(z)n) Following the same route as in the Log-
Gamma case we express the moment generating function of Z;(z) as a Fredholm deter-
minant. Using a Mellin-Barnes transform inside the associated kernel, we conjecture

a formula for the Laplace transform g, (u) = Det (I + Ky,) with

+oo -1 .
Ky 2 (v1,v2) = / dk —1 ds ub e~ 2ik(v1—v2)—s(v1tv2) (I1L.3.

oo T 2 Josin(ws)

D(-5+2—ik)\ " (T(=s+2+ik)\ " (TB+ik+1+3)
(543 —ik) (54 3 +ik) L(B+ik+3—3)

where C' = a + iR with 0 < @ < min(1,7) and K, : L?(R;) — L*(Ry). Performing
the asymptotic analysis of this formula we obtain TW-GUE fluctuations in the Inverse-
Beta polymer:

lim Prob <1°g Zt((m; )t ey 2§z> = By(2), (I11.3.50)
e ®

where the (¢-dependent) constants are determined by the system of equations:

0= G+ (G k) -G - Q)+ v B+ +k), (35
co = (3 + I — k) + (5 — WL+ E) 98+ 2+,
ro= (-5 (Grow' G-k + G- o' G+k) -3+ 3 +5,) )

These cannot be solved in full generality, except for the optimal angle ¢*, defined by
Oyc, = 0 for which we find

_ 1(B+v/2)
Ty v Y
¢ =cor = P(7/2) = Y(B+7/2)
. 1/3
poe = (50" + 212 - v"y2)) (I11.3.52)

The optimal angle is the angle of maximum probability chosen by the endpoint of the
polymer with one end free to move on the line. Note that its value is non-trivial (it is
different from the value expected in an averaged environment). This thus generalizes
the explicit results obtained in the Log-Gamma case where ¢* = 0 (note that here
©* =300 0 and ¢* =00 —1/2, corresponding to the Log-Gamma and Strict-Weak
limits).

Zero-temperature limit of the Inverse-Beta polymer: Bernoulli-Exponential polymer
As we saw in Sec. the v — 0 limit of the Log-Gamma polymer leads to LPP
with exponential waiting times. Similarly, the Inverse-Beta polymer admits a zero
temperature limit obtained by setting v = ¢y, 8 = ¢f’. In this limit one shows

49)

).
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[5] that the rescaled random energies of the model (£%,EY) = (—elog(u), —elog(v))
converge in law to

(EY,EY) ~esso (—CEy, (1= C)Eg — CEy) = (EL,E)), (111.3.53)

ur v

where ( is a Bernoulli random variable of parameter p = 5'/(7 + §'), E,» and Eg are
exponential random variables of parameter v/ > 0 and ' > 0, independent of ¢ (the
PDF of exponential RVs was given in and the Bernoulli RV is by definition
1 with probability p). The optimal energy in the model satisfies the recursion

Ett1(z) = min (E¢(z) + &4 (), Ee(z — 1) + 24 (2)) - (II1.3.54)

And the initial condition is E¢(z = 0) = 0 and Ei(z) = —oo for  # 0. In the limit
B — oo the model corresponds to LPP with exponential waiting times, while in the
limit 4/ — oo it converges to the zero temperature limit of the Strict-Weak polymer,
which is a model of FPP with exponentially distributed waiting times on horizontal
edges only. This model thus remarkably interpolates between a model of first and last
passage percolation on Z2. Based on our exact results for the Inverse-Beta polymer,
we obtain various exact results for this zero-temperature model. In particular we show

that Prob(E¢(x) > r) = Det (I + K,?;:O) with

- +oo dk d :
KZ’;O (7)17 02) — _ ? : 2Z‘77‘?8esr‘—2zk(v1—vg)—s(vl-i—vg) (111.3.55)
—o0

7 i 1+ ’ . 1—z+t . /
s+ —ik\ [ t+%+ik\ (B +ik+L—
—5+ 5 —ik -5+ % +ik B +ik+ % +
where C' = a + iR with 0 < a <+ and K70 L*(Ry) — L*(Ry). The asymptotic
analysis then leads to Tracy-Widom fluctuations for the optimal energy in this zero
temperature model:

[V TV
\/
-+

Ev(z = (1/2 — &
lim pm( e =12+ 9)t) =16 2§2> — Fy(3) (I1L3.56)
t—o00 >‘<P
with
1 1
14 - 1
0= 7(,2 ?)2 - 7(,2 N‘P)Q e, (IT1.3.57)
(7_]%) (7+ e) (8 +§+k<ﬂ)
1 1
! - 1
G, = Gt G-9) S (T11.3.58)
T ke FTAke O+T+k

W=

~~

~ 142 1-2 2
A, = <8< S + f”)g + (7 f”)g - 3)) . (I11.3.59)
(§_ o) (7+kw) (8 "‘?"'kw)
In this case the system can be solved exactly since the equation for l;zp is a quartic
equation.

Let us conclude this section by mentioning that other results and many details are
given in [H] (see Appendix . In particular we conjecture interesting n-fold integral
formulae for the Laplace transform of the partition sum/optimal energy PDF of the
Inverse-Beta/Bernoulli-Exponential model that are reminiscent of those obtained using
the gRSK/RSK correspondence for the Log-Gamma/LPP model.
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111.3.4 Presentation of the main results of [6]

The Beta Polymer and its TD-RWRE interpretation

The Beta polymer is a BA solvable model of DP on Z? introduced in [224] and included
in the classification of [5]. In [224] the authors studied the half-line to point partition
sum and our initial motivation was to use the results of [5] to study the point to point
partition sum. The Beta polymer is, however, a very peculiar model and in doing so
we have notably unveiled a novel fluctuation behavior (see below). The Beta polymer
has two parameters (a, 3) € ]R%_ and its random BWs are correlated as u +v = 1 with
u ~ Beta(a, ) as in . Thanks to these correlations and as already noticed in
[224], given a random environment specified by a drawing of the (u,, vz = 1 —uy,), the
partition sum of the point to point Beta polymer can also be interpreted as a transition
probability for a random walk on Z in a time-dependent random environment (TD-
RWRE). Introducing the time coordinate t and the hopping probabilities

t=—t , pre=1ug€cl0,1], (I11.3.60)

the TD-RWRE is defined as follows: denoting X; the position of the particle at time
t, the particle performs a RW on Z with the following transition probabilities

Xi = Xip1 = X¢ with probability pe x, = w=——¢ x, ,
Xt = Xey1 = X¢ — 1 with probability 1 — pe x, = ve=—t x, . (I11.3.61)

In the RWRE language, the point to point partition sum of the Beta polymer Z;(x) is
the probability, given that a particle starts at position x at time t = —t < 0, that it
arrives at position 0 at time t =¢ = 0:

Zi(z) = P(Xo = 0| Xee s = 2) . (I1L.3.62)

In this interpretation, the recursion equation for the polymer partition sum ([11.3.33))
is a Backward equation for the probability P(Xy = 0|X; = z):

P(Xo=0|Xt-1 =2) =pt-1.P(Xo = 0| Xy = 2) + (1 = pt—12)P(Xo = 0| Xy =z — 1)
P(0,00,z) = 04,0 (I11.3.63)

Note finally that the starting point of the polymer corresponds to the endpoint of the
RW and vice-versa.

Definition of the optimal direction
The optimal direction can be defined by considering the annealed PDF, defined as

Ponn (X0 = 0|X_y = 2) :=P(Xo = 0| X_; = 2) = Z() , (I11.3.64)

which is the transition PDF for a RW defined as above with p; , replaced by its average:
Ptz — Dz = U = a/(a+ (). By translational invariance of the averaged environment

we have Py (Xo = 0|X 4 = 2) = Pan(X; = —2|Xo = 0) = Z(2) = &2 In
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general, the annealed PDF decreases at large time in a given direction as, scaling
z=(1/2+pt),

2 2 1— 20\ ¢ r1/2+0)\ "
Zilr = (/2 +00) =\ | 513 (m <2g0 +ﬁ) T+ ) (1+00/vD) .
(ITL.3.65)

where we have introduced the asymmetry parameter
r=p/aeRy. (I11.3.66)

It is easily seen that Zy(x = (1/2 + ¢t)) decreases exponentially in every direction,
except at its maximum ¢ = @ (r) which defines the optimal angle

Copt(r) = M €] —1/2,1/2], (IT1.3.67)
The optimal angle thus appears as the most probable space-time direction taken by a
RW in an averaged environment. Below we will see that the fluctuations of Z;(x) will
depend on the chosen direction and we will mainly consider the large deviations regime,
corresponding to the scaling z = (1/2 + ¢t) with ¢ # @op(r), and the diffusive regime
around the optimal direction, corresponding to the scaling = (1/2 + popt(r)t) + v/t
where takes a Gaussian form.

Bethe ansatz solution of the Beta polymer
In [2] we show that, defining ¢ = %% > 0 and
N x N, zi+1 141
=N, 1= —icot(L) =" = I11.3.68
j € > Y ’LCO(2> Zj—l v g 1_tj7 ( )
the eigenfunctions and the Bethe equations of the Beta polymer are identical to those of
the Log-Gamma and Inverse-Beta polymer (II1.5.19)-(I11.5.14}), up to the change t; —
t; and ¢ — c. However, in [2], we show that this change has important consequences:
the string solutions are not stable and ¢ > 0 can be interpreted as a repulsive interaction
parameter. In the large L limit the replica thus behave as free particles and do not
form bound states. The repulsive nature of the model is interpreted as a consequence
of the TD-RWRE nature of the model. In this case we therefore obtain a formula
for the moments of the partition sum which is simpler (compared to (I11.3.23) and
(I11.3.47])) and does not contain a summation over string states:

I'(a+p+n)

Zy(x)" = (=1)" Mot 5) (I11.3.69)
H/+ dk; (ki — k) ﬁ (Z'ku_{_ﬁ*@)t
27T 1<7,<_7<n (k’ - k + 1 j=1 Zl{? + a+’8)1+5’3(2k; O‘gﬁ)l—x-ﬁ-t ’

Making the link with the nested contour integral approach to BA used in [224] we also
obtain a formula for the multi-point moments: for 0 < 1 < --- < x,:

Te+p+n)
I(a+ )
H / ki = k; ﬁ (ik; + 75"
R ki —kj+1 i (ikj + aTJrB)Ha:j (ik; — #)1—90]--‘:-15 :

1<<<n

Zi(@1) - Zy(an) = (—1)" (I11.3.70)
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Tracy — Widom Tracy — Widom

Figure II1.6: The different regimes of sample to sample fluctuations of the PDF in
the Beta TDRWRE problem around the optimal direction (indicated by a dotted
line) for different scaling of the deviation with respect to the optimal direction & =
—(1/2+@opt)t. In the diffusive regime & ~ v/t the fluctuations of the PDF are Gamma
distributed. In the large deviations regime & ~ t, fluctuations of the logarithm of the
PDF are distributed according to the GUE Tracy-Widom distribution with exponents
in agreement with the usual KPZ universality expected in point to point directed
polymers problem. These two regimes are connected by a cross-over regime (C.O.) at
a scale & ~ t3/%, Figure taken from [6].

Cauchy-type Fredholm determinant formula
A further simplification that is specific to the Beta polymer is that, since the Boltzmann
weights are bounded, the moments of the partition sum (Z;(z))” do not grow too fast
in this case and indeed determine unambiguously the distribution of Z;(x). As in the
Inverse-Beta case, the first factor Datb4n) i front of (11.3.69)) forbids to express the

T(a+p)
LT of Z;(x) as a Fredholm determinant. For this reason we consider the generating
function gtw(u) = ?:0 (_’:')n Z, with Z, = I{ogii—g’f—)n)(zt(x))n We obtain several

equivalent Fredholm determinant formulae for ¢ »(u), and notably
g1.0(u) = Det (I + uky, ) (IT1.3.71)
with the kernel K, : L*(R) — L*(R):

2 (I+ig(a—p)~""" (1+ig(a—p))" 1
7 (1+igi(a+ Bt (1 —iga(a+ B) 2 +i(g; ' — g )
(I11.3.72)
The procedure to go from g¢;,(u) to the PDF of Z;(z) is discussed in [6]. Note
that compared to the Fredholm-determinant formula presented up to now —
(TI1.3.28)- (TI1.3.49)), (I11.3.72) has the distinguishing feature that the Laplace Trans-
form variable appears simply linearly in front of the kernel. This type of Fredholm
determinant formula is known in the literature as Cauchy-type formulae and first ap-
peared in the KPZ-related literature in the work of Tracy and Widom on the ASEP
[225].

Kt,w(qla QQ) = -

Asymptotic analysis in the optimal direction
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In [6] we show that

ry? 1
Zi(k) = a2mrte 7 2, <x = (5 + Poptl(r))t + m/%> , (I11.3.73)

converges at fixed ¢, in the large time limit to a process, constant in k, with marginal
distribution a Gamma distribution with parameter o + 3

Zso(k) ~ Gamma(a + () . (I11.3.74)

From the point of view of DPs on Z2, this result can be thought of as a breaking of
KPZUC in the optimal direction, due to the presence of an additional conservation
law, namely the conservation of the probability, encoded in the correlations of the
random BWs as u +v = 1. From the point of view of TD-RWRE this result shows
that, in a given environment, P(Xo = 0|Xt—1 = & = (1/2 + @opt (1))t + k\/t) converges
to a Gaussian distribution, which is modulated by a k (= starting-point) independent
Gamma distributed RV. The origin of the Gamma distribution can be traced back to
the first factor in , which thus plays a very important role here.

Asymptotic analysis in the large deviations regime
To perform the asymptotic analysis in the large deviations regime we find that our
formula ([11.3.71))-(I11.3.72) is not adapted. This was already remarked on the Cauchy-
type Fredholm determinant formula obtained by Tracy and Widom in [225] and per-
forming the asymptotic analysis required to obtain another Fredholm determinant
representation [226]. The Beta polymer is thus an example of a model where perform-
ing the asymptotic analysis using Cauchy-type formulae is well adapted to the study
of the diffusive regime of the TD-RWRE. For the large deviations regime, we thus first
obtain a formal Fredholm determinant formula for ¢; .(u): gt »(u) = Det (I + Iv(m)
with
K 2(v1,09) = / dk_l/ - ds u e 2k(vi—vz)=s(vitez) (IT1.3.75)
’ L ™ 20 Josin(mws)
T(—5+a+B8+ik)\ 7 (T(=5+ik)\ " (T@B+ik+5))
L'(5+a+p+ik) ['(5 + ik) r+ik—-35)) "’
which now appears rather similar to those for the Log-Gamma and Inverse-Beta poly-
mer ([III.3.28])-(I11.3.49) (see [6] for the precise sense in which this formula is formal).

Performing the asymptotic analysis of ([11.3.75)) we obtain, for ¢ (r) < ¢ < 1/2 (the
other case being obtained by symmetry)

lim Prob <1°g Zt((W; Pt +tep 2§z> = Fy(2) (I1.3.76)
—00 0
with
Y (Btkg) — 5 (W (k) + ¢ (a+ B+ k) -
7 a+B+ky) — ' (ky) ’ (ImL.3.77)
/ 1 1
Co = _G@(kw) = (‘P + 2> w(ksa +o+ B) - 1/1(/% + 5) + <2 - ‘P) 1/’(”%) )

8A3 1 1
T2 =Gk =~ (45 ) Wt ak )+ 4 9) = (5 - 0) 0K
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From the point of view of DPs, this result shows that KPZUC is restored away from
the optimal direction of the TD-RWRE. The value of ¢, was already determined in
[224] using a general theorem of [227], the value of A\, was, however, still unknown. Our
result actually appears equivalent to the one of [224] in the large deviations
regime if one replaces the point to point partition sum in by the half-line to
point partition sum that is studied in [224].

Let us conclude this section by mentioning other results obtained in [6] (see Ap-
pendix [F]) (i) alternative Fredholm determinant formulae for g ,(u), in particular a
formula that gives a rigorous meaning to the formal formula ; (ii) relations
of our approach with the nested contour integral approach to the Bethe ansatz; (iii)
formula for the PDF of Z;(z) at any time; (iv) a discussion of the crossover between
the diffusive region and the large deviations regime, identified with deviations from
the optimal direction of order t3/* (see Fig. ; (v) an extensive numerical study of
the validity of our results using simulations of the Beta polymer.

111.3.5 Presentation of the main results of [7]

In Sec. [[IT.2:2 we recalled that the Log-Gamma polymer was first introduced for the
possibility of writing down exactly its stationary measure, an example of an exact solv-
ability property that led to many developments. The initial motivation of [7] was to
investigate whether or not the stationary measure of the Inverse-Beta polymer could
also be obtained. This is interesting from several points of view, in particular (i) the
links between the different types of exact solvability properties mentioned up to now are
not yet understood; (ii) the stationary measure encodes the space-time correlations of
the DP free-energy at large ¢ on distances < t%/3, an information which is notoriously
hard to obtain from the BA; (iii) the results obtained using BA for the Inverse-Beta
polymer required the use of several mathematically non-rigorous tricks and some of
them can be obtain rigorously from the stationary measure, thus partially confirming
the approach of [5]; (iv) the knowledge of the stationary measure of the Log-Gamma
is at the basis of the derivation of a variety of results, e.g. the fluctuation exponents of
the DP [197], the large deviation function of the partition sum [228], localization prop-
erties of the DP [229]. These results can thus probably be generalized to a richer model
using the results of [7]. On the other hand the possibility to write down exactly the
stationary measure indicates the presence of exact solvability properties. Considering
the fact that LPP is both exactly solvable for exponential and geometric distributions
of waiting times, it was natural to conjecture that the zero temperature limit of the
Inverse-Beta polymer, the Bernoulli-Exponential polymer, could be generalized to an
exactly solvable model with discrete energies. In [7] the Bernoulli-Geometric polymer
is introduced and corresponds to this model: we obtain its stationary measure and
deduce from it several results.

Stationary measure of the Inverse-Beta polymer
Keeping the notations of [5] and Sec. [IIL.3.3?} we thus consider the Inverse-Beta

2These notations have been changed in [7] so that the v (resp. u) BWs live on the vertical (resp.
horizontal) edges of Z2.



148 CHAPTER III. EXACTLY SOLVABLE MODELS OF DIRECTED POLYMER

T2

U(0)

(
Tq

Figure II1.7: Different down-right paths on Z2: the dotted-blue down-right path
(boundary of N?) and dashed-red down-right path 7['((;7{) can both be obtained by a

sequence of down-left to top-right transformation (¢ arrow above) from 79, .

polymer defined by the recursion equation
Zt+1(x) = ut+1,mZt(:c) + Ut+1,th($ — 1) , (111.3.78)

where vi41, = U1 — 1 and u ~ Beta(v, 3)~! and the BWs are defined on the full
square lattice Z2. We will specify later the stationary initial condition and have added
a checkmark on Zt(x) to emphasize the distinction with the point-to-point partition
sum of the Inverse-Beta polymer Z;(x) defined in Sec. As we saw in Sec.
the partition sum itself is never stationary and one has to consider ratios of partition
sums. Defining V¢ > 0, Vo € Z, the ratios of partition sum on horizontal and vertical
edges as

N 160 > Zi(x)
Ut([E> = 7215_1(3: ~ 1) Vi :

: (I11.3.79)

these satisfy the recursion relation

~ ~

Urpa(z) = oW (Ui(@), V(e = 1), Wi (2)) Vi (z) = 6P (U(), Vi(z — 1), Wipa (2)) -
(111.3.80)

where Wiy (z) = vp41,, and gb(i) are the components of the stationarity-reversibility
map defined as ¢ : (U, V,W) — (U, V', W') with

Uwv -1)
U+Vv

Elementary (but non-trivial) properties of ¢ then show the following. Taking (I11.3.80))
as the definition, V¢, of a stochastic process for the U(z) and V;(x) variables, we

U’=W+(W+1)g , V’:WK+W+1 , W' =

. (I11.3.81
v i ( )
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consider an initial condition such that at ¢ = 0 they are independent and distributed
as Up—o(x) ~ U and Vi—g(x) ~ V with

U~ (Beta(y =\, B+ N)"' =1 , V ~ (Beta(\,B))"". (I11.3.82)

Here 0 < X\ < v is a parameter that labels a family of stationary measures. In [7] we
show that for all down-right paths 74, on Z? that can be obtained from the down-right
path

70 = {(z1,29) = (m, —m) = (m,—m — 1) > (m+1,—-m —1),m € Z} (IIL3.83)

by a sequence of down-left to top-right transformation (which amounts to changing a
down-left corner of a down-right path to a top-right corner, see Fig. [[T[.7 for a self-
explanatory definition of these notions), the variables Us(x) and Vi(z) living on the
down-right path are independent and distributed as in . Furthermore, this
stationary measure is reversible in the following sense. Considering the stationary
process during a finite time window 7', the time-reversed process

Ul (zr) = Uer—tp(e = —zp + 1) , VE(zg) =Vier_ip(z = —25), (IIL3.84)

satisfies the identity in law

~

~ (Ui(:cR)y Vt};(:ﬂR))tR:O TaneZ ° (I11.3.85)

(Ut(x)’ Vt(m))t:O,...,T;xGZ

For the original process of the partition sum ([11.3.78)) this implies that, if one starts
from an initial condition such that successive partition sum quotients are random and
distributed as

Zi—o(x+1) (Beta(y—X\B+N) -1
T BetaD P : (I11.3.86)

where the different Beta RVs appearing in this initial condition are all independent,
then these quotients remain distributed as so for all time (and are independent at ¢
fixed). Finally, adding for convenience the initial condition Z;—o(0) = 1 we show in
[7] that the partition sum in the stationary state in the upper-right quadrant of Z2,
(Zi())zen, are equivalent in law to the point to point partition sum Z(z) of a model
defined on N? with peculiar boundary conditions: (Z;(z))zen ~ (Zi())zen. We refer
the reader to [7] for the precise definition of this model.

The Bernoulli-Geometric polymer
In [7] we define the Bernoulli-Geometric polymer as a geometric discretization of the
Bernoulli-Exponential polymer defined in Sec. and introduced in [5]. It is a
zero-temperature model of DP on Z? with random energies on-edges and where the
optimal energy satisfies the relation

Eit1(z) = min (Ey(z) + &4 (), Ee(z — 1) + £ (2) (I11.3.87)
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with the initial condition E;—¢(0) = 0 and E;—¢(z) = —oo for & # 0. The random
energies are distributed ad™|

&~ _Cquq €L,

£~ (1= Cun)(1+ Gy) — CaGq € Z (I11.3.88)
where (g,q') €]0,1[? are the two parameters of the model, and G, generally denotes a
Geometric RV G4 ~ Geo(q) (see (I11.2.33))). (yuy is a Bernoulli RV with parameter
1—¢
L —qq
This value ensures an exact solvability property. This model generalizes the Bernoulli-
Exponential polymer which is now retrieved in a limit ¢ = 1 —~'¢, ¢ = 1 — e and
€ — 07. The case ¢ = 0 corresponds to LPP with geometric waiting times as studied

in [I59], while the case ¢ = 0 is FPP with geometric waiting times on the horizontal
edges only as in [216].

Puv = €]0,1[. (I11.3.89)

Stationary Bernoulli-Geometric polymer
We now discuss the stationary measure of the Bernoulli-Geometric polymer. The
stationary optimal energy Et(x) satisfies the recursion equation but with a
different initial condition. Similarly as for the Inverse-Beta polymer, to describe the
stationary measure, we consider the horizontal and vertical energy differences variables
defined as

~ v

Ug(z) = Eg(z) —E1(z—1) , Vi(z) = E(z) — By (x) . (I11.3.90)
These satisfy the recursion relation

¥ 1 Y Y v u

Ura(@) = Lo (Un(@), Vile — 1), £841 (2), €141 ()

Veri(z) = 620 (Un(x), Ve(a — 1), €41 (x), &4 (2)) . (IL3.91)
where ¢r—q is the T = 0 stationarity map defined as: ¢r—g : (U,V,u,v) — (U, V)
with

U =min(uv+U-V) |, V =minu+V-U,yv). (I11.3.92)

An elementary (but non-trivial) property of ¢r—o then shows the foll9wing. Taking
(I11.3.91)) as the definition, V¢, of a stochastic process for the U;(z) and V(z) variables,

we consider an initial condition such that at ¢ = 0 they are independent and distributed
as Ui—o(z) ~ U and Vi—o(z) ~ V with

U~ (1-Cu)(1+Gyy)— Cqu/qb ;o Vo~ =Gy, - (I11.3.93)

where ¢ < ¢, < 1 is a parameter that labels a family of stationary measure and (y and
(v are Bernoulli RVs with parameters

1—qq 11—

R A

13Here we keep the notations adopted for the Bernoulli-Exponential polymer in Sec. [[I1.3.3] which
differs from those adopted in [7].

(I11.3.94)
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Similarly as before, in [7] we then show that for all down-right paths 74, on Z? that can
(0)

be obtained from 7 ;" by a sequence of down-left to top-right transformation, the vari-
ables U;(z) and V(z) living on the down-right path are independent and distributed

as in ([11.3.93)). Finally we show that the stationary measure is reversible through the
equality in law, similarly as for (III.3.85))

(Ut(x)’ vt(x))t:O,...,T;meZ ~ (Uﬁ? (r), \753 (:ER))tR:O,...,T;er (TT1.3.95)

where the time-reversed process on a finite time window 7" is now
U&(iﬂR) = Ut:T—tR(fU =-zr+1) , \7£ (zr) = \7t:T—tR (z = —zg) . (111.3.96)

This implies for the optimal energy Et(x) that, taking for initial condition Etzo(O) =0
and independent energy increments distributed as

Eio(z + 1) — E—o(@) ~ (1 = Q) (L + Ggper) — QUGy/qy + (WGq, »  (LIL3.97)

then they remain distributed as so for all time. As before, the optimal energy in
the model with stationary initial condition in the upper-right quadrant is shown to
be identical in law to a point to point optimal energy Et(x) in a model with special
boundaries: (E;(x))zen ~ (E¢())zen. Note that in the case ¢ = 0 this reproduces the
known result for LPP with geometric waiting times .

Optimal energy per unit length in the Bernoulli-Geometric polymer
Defining the mean energy of the horizontal and vertical energy differences in the
stationary state of the Bernoulli-Geometric polymer

2./
f09 y) = U = B9 —4 :
v (@) (o —q) (1 — ad)
/ _ 1—4d
7 (@) =V = —— qfq/ : 3”% . (I11.3.98)

We show that the mean optimal energy per unit length in the direction ¢ €] —1/2,1/2]
in the stationary Bernoulli-Geometric polymer is linear in ¢ with

o) = lim %Et(w —(1/2 + o)1)
= (1/2+ )" (@) + (1/2 - 9)f7 (@) . (L3.99)

And using the model with boundaries we obtain a formula for the mean optimal energy
per unit length in the direction ¢ in the point to point Bernoulli-Geometric polymer:

1
_ fp.ul.(%q;((p)) ) (IT1.3.100)

where g; () is the solution of the equation

04,77 (0, @b) | gy=qz (5) = 0 - (II1.3.101)
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Figure IT1.8: Left: Optimal energy per-unit-length 7% () (I11.3.100) in the Bernoulli-
Geometric polymer for ¢ = 0.5 and ¢’ = 0.1,0.4,0.8,0.9 (plain lines, blue, orange,
green and red) and in the last passage percolation limit ¢ — 0 (black dashed line).
Right: Optimal energy per-unit-length fP“! () in the Bernoulli-Geometric polymer
for ¢ = 0.7 and ¢’ = 0.001,0.01,0.1,0.2 (plain lines, blue, orange, green and red) and
in the first passage percolation limit ¢ — 0 (black dashed line). The arrow indicates
the percolation threshold of the ¢ — 0 limit ¢, —¢7 = —0.2. Figures taken from [7].

This is a quartic equation for g () that can be solved exactly, leading to an explicit
expression for fP*! () which is plotted in Fig. for various parameters ¢, ¢, and in
particular close to the LPP and FPP limits ¢’ — 0 and ¢ — 0. Note the non-analytic
behavior in the FPP limit where fP%!(¢) = 0 for —1/2 < ¢ < p,y = 1/2 — ¢’ and
fPul(p) > 0 for ¢ > 1/2 — ¢’. This is interpreted as a percolation threshold where
for ¢ < 1/2— ¢, the optimal path manages to passes with probability 1 only on edges
with 0 energy (a feature that can only be observed in the Bernoulli-Geometric polymer
and not in the Bernoulli-Exponential polymer). Fluctuations in this region of space
should differ from naive KPZUC expectations. We obtain results similar to (I1I.3.99))-
for the Inverse-Beta polymer that bring a rigorous confirmation of the value
of ¢, obtained from the Bethe Ansatz in [5], see ([II.3.51]).

Convergence to the stationary measure
Finally we discuss more qualitatively the convergence of the point-to-point partition
sum Z;(x) in the Inverse-Beta polymer / point-to-point optimal energy E(x) in the
Bernoulli-Geometric polymer and we conjecture that the following limit holds in law

(for z,t = O(1))

Jim Er(oT +2) — Ep(T) ~ E/(z), (I11.3.102)
—00

where as before Et(x) is the optimal energy in the stationary Bernoulli-Geometric
polymer (i.e. with initial condition , with the stationary parameter ¢, chosen
as g, = ¢*(¢), the solution of the quartic equation . A similar conjecture is
proposed for the Inverse-Beta polymer.

Finally, in [7] (see Appendix , we successfully check our main results (I11.3.100)
and ([11.3.102)) for the Bernoulli-Geometric polymer using simulations of the model.
Many details on the above results are given, in particular the definition and the prop-
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erties of the Inverse-Beta and Bernoulli-Geometric polymer with boundaries briefly
mentioned here, that are actually at the center of [7].

111.4 Conclusion

In this chapter we have reviewed some recent progress in the understanding of the
KPZ universality class in 1 4+ 1d based on the existence of models with exact solvabil-
ity properties. In particular we reported the results obtained in this thesis on exactly
solvable models of directed polymers on the square lattice. We have showed how the
Bethe ansatz approach developed for the continuum case could be adapted in the dis-
crete setting. The Bethe ansatz approach was also used to classify exactly solvable
models of DP at finite temperature containing all known models and a new one, the
Inverse-Beta polymer. This ‘world’ of exactly solvable models of directed polymers
contain models with very different properties. In the Inverse-Beta and Log-Gamma
polymer we could show, using the Bethe ansatz, that the model have fluctuations of
free-energy scaling with ¢'/3 and distributed according to the Tracy-Widom GUE dis-
tribution with explicit non-universal constants. In the Beta polymer, also interpreted
as a model of random walk in a time-dependent one-dimensional random environment,
we obtained similar results for the fluctuations in the large deviations regime, and
completely different ones in the diffusive regime. This model teaches us a lot about
TD-RWRE and DPs: on one hand special short-range correlations of the disorder lead
to an additional conservation law and break KPZ universality in the diffusive region, on
the other-hand in the other directions KPZ universality is recovered in the TD-RWRE
framework. Finally in a complementary work we studied the stationary measure of
models of DPs on the square lattice and obtained the one of the Inverse-Beta poly-
mer. With this knowledge, we returned to zero temperature models and introduced
the Bernoulli-Geometric polymer. We showed that the latter has an exact solvability
property, namely we obtained its stationary measure exactly, and deduced from it sev-
eral exact results. A tentative cartoon of the relations between the models of directed
polymers considered in this manuscript is presented in Fig.

At this stage many directions of research remain. Understanding the remarkable
universality unveiled by models in the KPZUC, and more particularly directed poly-
mers, is still a work in progress for which the models we have studied and the techniques
we have developed provide valuable tools. Obvious extensions are the study of DPs
on the square lattice with different boundary conditions and extension of our results
to multi-point statistics. It would also be interesting to gain a better understanding
of the localization properties of DPs on the square lattice and in the continuum using
a Bethe ansatz approach. The Beta polymer also brought exact solvability techniques
to the TD-RWRE field and much work in this direction also remains, in particular
testing the universality of our results for more general models of TD-RWRE. Another
question is to gain a better understanding of models of DPs with complex weights,
which are related to problems of Anderson localization. In this question we already
made progress since at least some part of the classification of [5] also applies to this
case, and if an exactly solvable model of DP on Z? with complex weights exists, then
under some mild assumptions some signs of its existence should already be visible in
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Figure II1.9: The different models of DPs encountered during this thesis can be re-
grouped in several families. Solid arrows represent various scaling limits of the models,
while the dotted arrows represent the conjectured large time convergence of the fluctu-
ations of all these models to the KPZ FP. These dotted arrows have to be taken with
caution and sometimes miss important properties: the fluctuations of the free-energy
in the Beta RWRE in the diffusive regime, or of the first passage time in the anisotropic
Geometric FPP model considered above in the percolating region, do not converge to
those of the KPZ FP.

our work (no such signs were found). A more conceptual issue is the understanding of
the links between the different exact solvability properties discussed in the manuscript.
Finally a long-standing issue is to build techniques allowing to understand the prop-
erties of the KPZ FP without relying on the use of exactly solvable models. Indeed,
although exactly solvable models allow a remarkable description of the properties of
the KPZ FP, it would be highly desirable to get a simple explanation for the emer-
gence of boundary condition dependent extreme value RMT type statistics, or even of
the critical exponents. This is particularly important in the aim of understanding the
higher-dimensional case where (at least for now) no exactly solvable model exists.



Conclusion

In this thesis we have made progress in the understanding of the properties of elastic
interfaces in disordered media in their strong disorder regime. In Chapter [[I] we have
been interested in characterizing the universal properties of avalanches and shocks
for disordered elastic interfaces with arbitrary elastic kernels in arbitrary dimensions,
working directly at zero temperature. In Chapter [[II] we focused on the study of the
statics of a directed polymer in a 14+ 1d random media at finite temperature and were
interested in properties related to the KPZ universality class. We refer the reader to
Sec. [[T.7] and Sec. [[IT.4] for a short summary of our results and conclusions on both
subjects and now conclude the thesis with a few more general considerations on the
thesis. While in Chapter [[I] we used an analytical approach based on the functional
renormalization group, leading to results perturbative in € = dy. —d, in Chapter [[T]] we
focused on (mostly Bethe ansatz) exactly solvable models for the d = 1 case. In both
cases the aim was to gain information on universal properties of the underlying renor-
malization group fixed point, but the approach was completely different. While the
functional renormalization group approach mostly ignore the microscopic properties of
the model, but rather aims at directly describing the fixed point, the approach based
on exactly solvable models is all about finding models whose microscopic properties
ensure an exact solvability property. Information of great precision about the KPZ
fixed point were later obtained through the large scale analysis of exact results.

Both these methods have their pros and cons. They were used to characterize
different observables mostly for technical reasons. While it is an exact method of out-
standing interest, studying the statistics of shocks for the directed polymer in 1+ 1d
with the Bethe ansatz appears very difficult from the technical point of view. Fur-
thermore, exact solvability methods are up to now restricted to the case of 1 + 1
dimension. In this respect the functional renormalization group approach appears
much more versatile. However, in the end, it only leads to results that are perturba-
tive in a dimensional expansion below the upper-critical dimension of the interface.
While it would certainly be interesting to obtain the (equivalent of) the Tracy-Widom
distribution in an expansion in € = 4 — d, it is clear that the result would be far from
the remarkable properties observed in the d = 1 case. Those are not only theoretical
gems since they are also nowadays measured in experiments.

Overall both these methods permit an advanced understanding of different aspects
of the physics of disordered elastics interfaces and of related subjects, making these
systems remarkable example of disordered systems for which already existing analytical
techniques permit important theoretical progress. While at the quantitative level the
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only physics that is accessible through their study is the physics of the universality
class of disordered elastic interfaces -which already contains a variety of systems-, at
the qualitative level the range of application of ideas emerging from their study might
be much broader. In particular, investigating the presence of avalanches in the zero
temperature physics of various disordered systems is an interesting goal as it is a neat
characterization of the presence of many metastable states in the energy landscape,
a property which has a strong influence on many aspects of the physics of disordered
systems. This has been done e.g. in amorphous solids at the yielding transition [93],
in random field systems [87] or in spin glasses [89], but much work in this direction
certainly remains. Even more generally, searching for non-analyticities might be a
fruitful angle of approach to the study of various disordered systems, as it has clearly
been the case for disordered elastic interfaces.



Appendix A

Paper: Spatial shape of avalanches in the
Brownian force model

The following is essentially the article published as

Title: Spatial shape of avalanches in the Brownian force model

Authors: Thimothée Thiery, Pierre Le Doussal, Kay Jorg Wiese

ArXiv: 1504.05342

Journal-Ref: Journal of Statistical Mechanics: Theory and Experiment, Volume 2015, August 2015

Abstract: We study the Brownian force model (BFM), a solvable model of avalanche statistics for an interface, in a
general discrete setting. The BFM describes the overdamped motion of elastically coupled particles driven by a parabolic
well in independent Brownian force landscapes. Avalanches are defined as the collective jump of the particles in response
to an arbitrary monotonous change in the well position (i.e. in the applied force). We derive an exact formula for the joint
probability distribution of these jumps. From it we obtain the joint density of local avalanche sizes for stationary driving in
the quasi-static limit near the depinning threshold. A saddle-point analysis predicts the spatial shape of avalanches in the
limit of large aspect ratios for the continuum version of the model. We then study fluctuations around this saddle point,
and obtain the leading corrections to the mean shape, the fluctuations around the mean shape and the shape asymmetry,
for finite aspect ratios. Our results are finally confronted to numerical simulations.

A.1 Introduction

A large number of phenomena, as diverse as the motion of domain walls in soft magnets, fluid contact lines on rough
surfaces, or strike-slip faults in geophysics, have been described by the model of an elastic interface in a disordered medium
[100, [6T), 63]. A prominent feature of these systems is that their response to external driving is not smooth, but proceeds
discontinuously by jumps called “avalanches". As a consequence of this ubiquitousness, much effort has been devoted to
the study of avalanches, both from a theoretical and an experimental point of view [511, [142] [86], [109]. Despite this activity,
there are few exact results for realistic models of elastic interfaces in random media.

An exactly solvable model for a single degree of freedom, representing the center of mass of an interface, was proposed
by Alessandro, Beatrice, Bertotti and Montorsi (ABBM) [98], [99] on a phenomenological basis in the context of magnetic
noise experiments. It describes a particle driven in a Brownian random force landscape. In [I00, [42] it was shown that for
an elastic interface with infinite-ranged elastic couplings, the motion of the center of mass has the same statistics as the
ABBM model.

In this article, we study a multidimensional generalization of the ABBM model, the Brownian force model (BFM).
This model, introduced in [ITT], 136} 102} [TOT], was shown to provide the correct mean-field theory describing the full space-
time statistics of the velocity in a single avalanche for d-dimensional realistic interfaces close to the depinning transition.
Remarkably, restricted to the dynamic of the center of mass, it reproduces the ABBM model. This mean-field description
is valid for an interface for d > dyc with du. = 4 for short ranged elasticity and du. = 2 for long ranged elasticity.

As shown in [I02] [I0I] the BFM has an exact “solvability property” in any dimension d. It is thus a particularly
interesting model to describe avalanche statistics, even beyond its mean-field applicability, i.e. for any dimension d and
for arbitrary (monotonous) driving. It allows to calculate the statistics of the spatial structure of avalanches, properties
that the oversimplified ABBM model cannot capture. In Ref. [I0I] some finite wave-vector observables were calculated,
demonstrating an asymetry in the temporal shape. Very recently the distribution of extension of an avalanche has also
been calculated [I07].

In this article we study a general discrete version of the BEFM model, i.e. N points coupled by an elasticity matrix in a
random medium, as well as its continuum limit. In the discrete model each point experiences jumps S; upon driving. We
derive an exact formula for the joint probability distribution function (PDF) P[{S;}] of the jumps S; (the local avalanche
sizes) for an arbitrary elasticity matrix. In the limit of small driving this yields a formula for the joint density p[{S;}] of
local sizes for quasi-static stationary driving near the depinning threshold. This allows us to discuss the “infinite divisibility
property” of the BFM avalanche process. The obtained results are rather general and contain the full statistics of the
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spatial structure of avalanches. They are, however, difficult to analyze in general since they contain many variables, and
thus require computing marginals (i.e. probabilities where one has integrated over most of the variables) from a joint
distribution. This is accomplished here in detail for the fully-connected model. We find that in the limit of large N there
exist two interesting regimes. The first one corresponds to the usual picture from mean-field depinning models [63} [I1],
whereas the second one is novel and highlights the intermittent nature of the avalanche motion.

We then analyze the shape of avalanches, first in a discrete setting by considering few degrees of freedom. The probability
exhibits an interesting saddle-point structure in phase space. We then study the continuum limit of the model. We find
that the spatial shape of avalanches of fixed total size S and extension £, becomes, in the limit of a large aspect ratio S/¢*,
dominated by a saddle point. As a result, the avalanche shape becomes deterministic, up to small fluctuations, which vanish
in that limit. We calculate the optimal shape of these avalanches. We then analyze the fluctuations around the saddle point.
This allows us not only to quantify the shape fluctuations seen in numerical experiments, but also to obtain the mean shape
for avalanches with smaller aspect ratios. We test our results with large-scale numerical simulations. While our results are
obtained in the special case of an elastic line with local elasticity (d = 1) the method can be extended to other dimensions
d and more general elasticity. Finally, we discuss the applicability of our results to avalanches in realistic, short-ranged
correlated disorder. The outline of this article is as follows: Section [A-2 recalls the definition of the BFM model, which
is first studied in a discrete setting with general, non-stationary driving. The results of [136] [102] [T01] allow us to obtain
the Laplace transform of the PDF of local avalanches sizes. Section [A.3] contains the derivation of the main result: the full
probability distribution of the local avalanche sizes. Section [A-4] focuses on the limit of small driving, and how to obtain
the avalanche density. Section [A75] contains a detailed analysis of the fully-connected model. Section [AZ6]studies avalanche
shapes for interfaces with a few degrees of freedom. Section [A.7] contains one important application of our result, namely
the deterministic shape of avalanches with large aspect ratio for an elastic line. Section [A-8|analyses the fluctuations around
this optimal shape. Section[A-9]discusses the application of our results to short-ranged disorder and quasi-static driving. A
series of appendices contains details, numerical verifications and some adjunct results. In particular, in we introduce
an alternative method, based on backward Kolmogorov techniques, to calculate the joint local avalanche-size distribution,
following a kick in the driving.

A.2 The Brownian force model

A.2.1 Model

We study the over-damped equation of motion in continuous time ¢ of an “interface", consisting of N points with positions
uir € R, ¢ =1,...,N. Each point feels a static random force F;(u;:) and is elastically coupled to the other points by
a time-independent symmetric elasticity matrix ¢;; with Z;VZI c¢i;j = 0. Each particle is driven by an elastic spring of

curvature m? centered at the time-dependent position w;;. The equation of motion reads

N
Uatuit = Zcijujt — m2(uit — wit) + Fi(uit) (A.Z.l)

j=1
fori=1...N. The F;(u) are N independent Brownian motions (BM) with correlations
[Fi(u) — Fi(w)]2 =20lu—u'| , Fi(u)F;@)=0fori#j (A.2.2)

and m = 0; the overline denotes the average over the random forces Fj(u). For definiteness we consider [| a set of
one-sided BMs with u > 0 and F;(0) = 0.

We furthermore suppose that (i) the driving is always non-negative: Vt, 1, w;; > 0, and (ii) the elastic energy is convex
i.e. ¢;;j > 0 for i # j. Under these assumptions, the Middleton theorem [20] guarantees that if all velocities are non-negative
at some initial time: Jtg € R|Vi, 1, > 0, they remain so for all times: Vi,Vt > to, wie > 0.

.1 Some explicit examples of elasticity matrices: Throughout the rest of this article, we sometimes
specify the elasticity matrix. The models studied are (where ¢ denotes the elastic coefficient):

1. The fully connected model: c;; = c(% — i;)

2. The elastic line with short-range (SR) elasticity and periodic boundary contitions (PBCs) ¢;; = ¢ (0;,j—1 + di—1,; — 20:5)
with i 4+ N =1

3. The elastic line with SR elasticity and free boundary conditions:
cij = c[dij—1 4 6i—1,; — 0i5(2 — di1 — din)]

4. The general d-dimensional elastic interface with PBCs, where i € Z% and cij = ¢(f(||i — j]|) — 64 Zj F(li=341])); here

[|i — j|| is the Euclidean distance in Z* and f(r) the elastic kernel. Long-ranged elasticity (LR) is usually described
by kernels such that f(r) ~ 7~ (4*%) (i.e. ~ ¢® in Fourier).

!The model can also be studied in a stationary setting, see e.g. [102, [101].
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A.2.2 Velocity Theory

Supposing that we start at rest for ¢ = 0, ui+=0 = %s,t=0 = 0, then it is more convenient (and equivalent) to study the
evolution of the velocity field directly. The equation of motion reads

N
’r]atllit = Zcijﬂjt — m2(1'tit — wit) + V20Ut Z s (A23)

j=1

where the ¢} are N independent Gaussian white noises, with §§§f, =6(t—1t')d;; and & = 0. Equation is taken in the
It sense. Note that we replaced the original quenched noise 9;F;(u;:) by an annealed one v/20u::&;, making Eq. (A.2.3)
a closed equation for the velocity of the interface. The fact that (A.2.1)) and (A.2.3) are equivalent (in the sense that
disorder averaged observables are the same) is a non-trivial exact property of the BFM model. It was first noted for the
ABBM model [98] [99] and extended to the BEM [102, [I0T]. It originates from the time-change property of the Brownian
motion dB(f(t)) Zin 1aw \/f'(t)dB(t) for increasing f(t) = ut, valid as a consequence of the Middleton property 7; > 0. A
derivation of this property is recalled in

A.2.3 Avalanche-size observables

In this article we focus on the calculation of avalanche-size observables defined in the following way. Starting from rest at
t = 0 as previously described, we apply a driving wi; > 0 for ¢ > 0 during a finite time interval such that f OOO dt wiy = w;
(stopped driving protocol). In response to this driving, the points move and we define the local avalanche size S; as
S = fooo dt 1;¢, that is the total displacement of each point. We adopt the vector notation

—

S=(S1,....8v) , @=(w,...,wn). (A.2.4)

-

The S;’s are random variables whose statistics is encoded in the Laplace transform, also called generating function G()\),
and defined as

G(X) = X5 . (A.2.5)
The BFM possesses a remarkable “solvability property” that allows us to express this functional as [102, [T01]
- == 2 N e »
G = X8 = ™ 2oimy T (A.2.6)
in terms of the solution @; of the “instanton' equation. The latter reads
N
i = —O’ﬁ? + m? ZC’ijﬂj s (A27)
j=1

where we have defined the dimensionless matrix

C,'j = (Sij — %Cij , (A28)
which contains all elastic and massive terms in the instanton equation. The solution of Eq. which enters into
Eq. is the unique set of variables @; continuous in A; with the condition that all @; = 0 when all \; = 0. The
derivation of this property is recalled in a discrete setting in [A:11] The instanton equation thus allows us in principle to
express the PDF P(S‘ ) of the local avalanche sizes, as the inverse Laplace transform of G(X) In the next section we obtain
P(g) directly, without solving , which admits no obvious closed-form solution. We will note (...) the average of a
quantity with respect to the probability P. Note that the PDF P(g) depends only on the total driving w; = f OOO dt w;¢ and
not on the detailed time-dependence of the w;;. This is a particularity of the BFM model.

A.2.4 The ABBM model

Before going further into the calculation, let us recall the result of Ref. [102, [I01] that the statistical properties of the
center of mass of the discrete BFM model is equivalent to that of the ABBM model. To be precise, if we write the total
displacement (i.e. swept area) u; = ZZ u;¢+ and total drive w; = ZZ w;¢ then, in law, we have

n@tut = —m2(£1t — Wt) + v 20’I:lt t . (A29)

Here &; is a Gaussian white noise £;&, = §(t—t') and & = 0. /| This equivalence implies that the PDF of the total avalanche
size S = fto:oo dt u; = Zjvzl S; in the discrete BFM model, following an arbitrary stopped driving fooo dt w; = w, is given
by the avalanche-size PDF of the ABBM model [98], [99] [102],

g

W (S —w)? _ o
PABBM(S) = 2@5% exp < 4SSm > 5 Sm = m4 . (A.2.10)

Here S, is the large-scale cutoff for avalanche sizes induced by the mass term. This first result on a marginal of the joint

N

distribution P(S) will provide a useful check of our general formula obtained below for N > 1.

2Note that this result uses Zj ¢i; = 0 and that the center of mass obeys the same equation with a

1/2

noise scaled as N~'/2 and driving by N~*.
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A.3 Derivation of the avalanche-size distribution in the BFM

For simplicity we now switch to dimensionless units. We define

o ~ Wy T ) & _ Si
v, = ﬁ 5 w; = Sm 5 )\»L = SmAZ 5 S»L = Sm 5 (A31)
where S, = -%. The instanton equation (A.2.7)) now reads
N
5\7; = —1}2-2 + ZCijvj . (A32)
j=1
The generating functional is given by
- ~ = N5 & N 01
GX) = G(R) = e2oims M5 = Doy Wi (A.3.3)

In the following we drop the tildes on dimensionless quantities to lighten notations, and explicitly indicate when we restore
units. For the ABBM model, it was possible to explicitly solve the instanton equation for the generating function G(\).
The inverse Laplace transform was then computed, leading to . Here this route is hopeless because Eq. (A.3.2))
admits no simple closed-form solution. We instead compute directly the probability distribution P(§ ) using a change of
variables in the inverse Laplace transform (ILT):

PE) = (,L)N / ¥ Kexp (—X - §) G(%) (A.3.4)

2im
N N N
> ( Z ’U? + ZCijvj)Si + ZUZ’LU»L) s
; j=1 i=1

1 N ico ico
= (T) / dovq - - / dvy det (
n —ioco —ioco _

where “i" denotes the imaginary unit number to avoid confusion with indexes. The first formula is the ILT where we left
unspecified the multi-dimensional contour of integration C. In the second line we used the expression of A; in terms of v;
from , as well as the dimensionless version of . Changing variables from \; to v;, the contours of integration
are chosen to obtain a convergent integral, see second line of Eq. ‘ This makes this derivation an educated guess,
which however is verified in [A.12] We also give another derivation for a special case in[AT3] To pursue the derivation, the
Jacobian is written using Grassmann variables as

det( ) / Hdwldwz exp (Z Di(—20:85; 4+ Cij)b; ) . (A.3.5)

i,7=1
Reorganizing the order of integrations and changing v; — iv;, we write

P(S) 27r H/dwldzpzﬂ/dvl exp ( (v + ZIC”U] )S: + z:lvlwZ + Z i (—2iv;6;5 + Cij)b; > .

=1 i,J=1
(A.3.6)

Integrating on v; leads to

-4 v o 01,
P(5) H/dwdw ) (Hs) exp< iz e SZ +Zw1 w) (A.3.7)

k2
i,7=1

Finally, using ¢? = 1/_13 = 0, the integration over the Grassmann variables can be expressed as a determinant, leading to our

main result
N N 2 N N 2
= 1 1 (Wi =325, CiiS))
7= (gie) ([s) o (AR B0 Juwin rao

w; — Zszl Cik Sk 1

CZ" :52"7782“ .
J J m2 9

Here ¢;; is the elasticity matrix. This is the joint distribution expressed in dimensionless units (A.3.1). The expression in
the original units is recovered by substituting S; — Si/Sm, w; — w;/Sm and P — ST]XP in 1} while keeping C;; fixed

Note that for zero coupling, ¢;; = 0, Eq. |i becomes P(S Hl 1 Pagsm(S:): the different points are decoupled
and one retrieves N independent ABBM models. Non-trivial tests of the formula are performed in [A-12] One general

3Note that this formula can be generalized to the case of site-dependent masses and disorder
strengths, m;,o;: the expression in the original units is obtained by the substitution S; — S;/S;,,

(J‘?"n,2

w; — w;/S%, and P — l_[Z S P in (A.3.8) with S¢, = 7?4 and Cyj = 0ij — =5 —4cij.

mg ojmy
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property is that the average local size is (S;) = Zj\’: 1 Cigle, This average gives the shape of the interface in the large-
driving limit. When w; > 1 uniformly in 4, it is easy to see by expansion of the above formula that S; = (S;) + O(y/wi)n:
where 7; are (correlated) Gaussian random variables.

We show in using different methods, that when the driving is in the form of kicks, i, = w:d(t) [*| P(S) satisfies
the exact equation

N
oP
Z( 0 ZCaJwJ 8 2wa—waas )—O. (A.3.9)

a=1

We also show that (A.3.8) solves this equation. This alternative derivation support our result (A.3.8)) ans shed some light
on its structure.

Interpretation: Some features of our main result can be understood as follows. Consider the equation of motion (A.2.3).
Upon integration from ¢ = 0 to ¢ = co we obtain

N oo
0= Z Ciij — mQ(Sl - wl) +/ dt\/ 20'111‘,5 z . (ASlO)
j=1 0
If we could replace the sum of white noises by a gaussian random variable

oo oo
/ dtv/20usé — |20 / dtuy 2 = v205; Z; (A.3.11)
0 0

then we would obtain (A.3.8), but with a slightly different determinant given by the replacement §;; — %&j in M;j; in 1)
However, the replacement (A.3.11)) is not legitimate because the variables 1;; are correlated in time. The determinant in
(A.3.8]) takes care of that correlation.

.1 Probability distribution of the shape Even if it is far from being obvious on Eq. 1) we know from

Section |A.2.4) that the probability distribution of S = E S; is given by l) with w = Zi\il . This allows us to
define the probability distribution of the shape of an avalanche given its total size S: Consider s1,...,sn € [0,1] with

sy =1 — va:ll si, such that S; = Ss;. The probability distribution of the s; variables, given that the avalanche has a
. —N .
total size S = 21:1 S; is
SN+3 (S — w)? .
P(3]8) = 2Vm=——exp | o | P(53) d si=1. (A.3.12)

=1

A.4 Avalanche densities and quasi-static limit

The goal of this section is to define and calculate avalanche densities. These allow us to describe the intermittent motion
of the interface in the regime of small driving, w; small. The dependence of the PDF, P3(S), on the driving is denoted by
a subscript . We first study the jumps of the center of mass described by the ABBM model.

A.4.1 Center of mass: ABBM

For the ABBM model (and for the total size S = Zf\;l S; in the BFM model) the avalanche-size PDF is given by

W (8- w)?
PW(S)—2ﬁS% p( g > , (A.4.1)

where w = Zil w; is the total driving. The limit of small driving w is very non-uniform. In the sense of distributions, its
limit is a delta distribution at S = 0,

Pu(S) =m0 8(S) . (A42)

However, this hides a richer picture and a separation of scales between typical small avalanches S ~ w? and rare large ones
S ~ 1. If one defines S = w?s, the PDF of s has a well-defined w — 0 limit given by

po(s) = 2\/71%% exp (—4%) : (A.4.3)

2

which is indeed normalized to unity f dspo(s) = 1. Hence avalanches of sizes S ~ w* are typical ones. However, all positive
integer moments of po are infinite. This indicates that these small avalanches, though typical, do not contribute to the

4This is sufficient, since we noted above that the result does not depend on the detailed time-
dependence of the driving.
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moments of P,, which are finite and controlled by rare but much larger avalanches which we now analyze. In the limit of
small w, there remains a probability of order w to observe an avalanche of order 1. For fixed S = O(1) > w? one has

Pu(S) = wp(S) + O(wW?) . p(S) = _§) . (A.4.4)

1
/S 7 exp ( 1
This defines the density (per unit w) of avalanches. These are the “main" avalanches with S > w?, which are also called
“quasi-static" avalanches (see below and Section . The density is not normalizable because of the divergence at small
S, but all its integer moments are finite and contain all the weight in that limit, i.e. (S") = w [dSp(S)S™ + O(w?). In
particular, (S) = w implies [ dSp(S)S = 1.

We now show that the avalanche density contains more information and controls the moments even for finite w, a
property that follows as a consequence of P, (S) being the PDF of an infinitely divisible process. This is best seen on its
Laplace transform

Gu()) = / dSE S Py(S) = 2V | Z(\) = %(1 VI D). (A4.5)
The “infinite-divisibility property” indeed follows: Ym and VYw = w; + - - - 4+ wy, such that w; > 0

Gu) = [[Gu) » Pu(S) = (Puy %+ Puy) (5) (A.4.6)

where * denotes the convolution operation. Hence S is a sum of m independent random variables for all m. The ABBM
avalanche process can thus be interpreted as a Poisson-type jump process (a Levy process) with jump density p(S) [230]. In
general the density can be defined as p(S) = dPW(S) |w=o for fixed S > 0 (i.e. it does not hold in the sense of distributions),
and the relation between Z(\) := dGW(A) lw=0 and pis

Z(\) = / ds(e*® —1)p(S) . (A.4.7)

The —1 takes care of the divergence at small S. This allows us to write the relation between P, and p, expanding ({A.4.5))
in powers of w, as

/dse*SPW(S) = Z ‘% /d51 cdsn (€M = 1) (e = 1)p(s1) -+ p(sn) (A.4.8)

Taking derivatives w.r.t. A, this decomposition shows that the (positive integer) moments of P, are entirely controlled by p,
for arbitrary fixed w (beyond the small-w limit). In this sum the term of order w" can be interpreted as the contribution to
the total displacement S of the interface (after a total driving w) of a n-avalanche (quasi-static avalanche) event (of order
O(1)). The convolution structure in shows that these events are statistically independent in the ABBM model.
In this model however, this interpretation only holds at the level of moments. The accumulation of infinitesimal jumps,
manifest in the non-normalizable divergence of p at small S prevents us to extend this interpretation to the probability
itself, see for a discussion.

A.4.2 BFM

In the BFM, “the infinite-divisibility property” of the avalanche process is even richer, since avalanches occur at different
positions along the interface. Let us define the j-th “elementary" driving which applies only to site j, i.e. w; = w;d;;, and
denote the corresponding size-PDF as P, (S). Consider now the PDF for the general driving, Pz(S). From the structure
of its LT, see , as a product of exponential factors linear in the w;, this PDF can be written as a convolution for
W= (’LU17 ‘-'7wN)7

Pi(S) = Py (S) % -+ % Puy (S) . (A.4.9)
An avalanche in the BFM can thus be understood as a superposition of N avalanches independently generated by each local
driving wj.
As for the ABBM model (center of mass), the structure of the LT of the PDF P, (S) shows that each of these elementary
jump processes is infinitely divisible. We define the avalanche density generated by the driving on the j-th point as

= dPz(S)

dPy, (S
() = L), - sl

dwj

lo=0 =

lwy=0 , (A.4.10)

Where as in the previous case, this equality is to be understood point-wise in the S variables. Consider the functions v; of
X which appear in Eq. l) and satisfy Eq. 1) It is the analogue of Z()\) appearing in l) for the ABBM model
and we thus conjecture the generalization of (A.4.7)),

v = /dN§ (e” - 1) i (S) . (A.4.11)
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This allows us to write an equation relating Py, (S) to p;(S) similar to 1) (see . The subtleties linked with the

accumulation of small avalanches and the non-normalizability of pj(§)7 are the same as in the previous case, which is also
reminiscent of the fact that the limit of small driving of P@(g) is very non-uniform, as we now detail. Consider w; = wf;
with w — 0 and f; fixed: the limit of P3(S) is again given (in the sense of distributions) by Hil 0(S:). More precisely, in
this small-w regime, almost all avalanches are O(w?): S; = w?s; with the s; distributed according to

N
o(5) = [ [ po(s:) , (A4.12)

as can be seen from an examination of (A.3.8) in that regime. The PDF po was defined in (A.4.3)). One sees that the regime
S; ~ w? contains all the probability, and that for these very small avalanches the local sizes are statistically independent.
The remaining O(w) probability to observe large avalanches S; = O(1) is encoded in the densities p;(.5),

Py(8) = " w;p;($) + O(w?) . (A.4.13)

As before, the positive integer moments are entirely controlled by p;. A more general expression, which illustrates that
these large avalanches occur according to a Poisson process, is given in

We now give exact expressions for these densities. For a general elasticity matrix, the expression of p; is obtained from
Eq. , and contains a determinant. Remarkably, one can compute this determinant in various cases, leading to the

following result
N N N 2
= 1 S = 1 (Z]‘:1 Cij‘sj)
i = K —= _— A4.14

where K (S) depends on the chosen elasticity matrix:

o N SN2
o Fully connected model: K(S) = (L)N_NZ:"'#

Nm? Hi:l i

« Linear chain with periodic boundary conditions: K(S5) = ()N Zi\;l svslvﬂ

)N—l 1

« Linear chain with free boundary conditions: K (S) = (%= 55w

.1 PDF of the shape in the small-driving limit As we just detailed, the small-driving limit of Pg(3)
exhibits a complicated structure due to the accumulation of small avalanches. The situation is very different for the PDF
of the shape of the interface conditioned to a given total size S = O(1) (A.3.12)). This conditioning naturally introduces a
small-scale cutoff that simplifies the small driving limit w; = wf; with w — 0 which reads

p(318) = lim P(3) = zfz exp( )Zf]p] S5) . (A.4.15)

This limit holds in the sense of distributions, and p(5]S) defines a normalized probability distribution. This indicates that
the only small-scale divergence present in p; originates from the direction S; ~ S — 0 uniformly in j, in agreement with

the conjecture (A.4.11)).

A.5 Fully-connected model

In this section we use our result (A.3.8) and analyze it for the fully-connected model with uniform driving. Most calculations
are reported in [A7T5] where we also consider driving on a single site, w; = w1 ;1.

.1 Structure of the PDF and marginals In the fully-connected model with homogeneous driving w; = w,
it is shown in that our main result (A.3.8]) has the simple structure

N
- w
P( ) = m lrllpw,S/N(Si) . (A-5-1)
We defined
w+ cz (w+cz—(1+¢)8:)°
w,z(Pi) = — . A5.2
post) = 222 e ne (A52)

For each w,z > 0, it is a probability distribution, that corresponds to the (dimensionless, with m? = 1) PDF of the
avalanches of one particle in a Brownian force landscape (ABBM model), interacting with one parabolic well through the
force m?(w — w;) and with another parabolic well through the force ¢(z — u;). Formula (A.5.1) is thus reminiscent of the
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fact that the various sites interact with one another only through the center of mass of the interface. This simple structure
permits a direct evaluation of various marginals of of the type P({S1,...,5p},S5) (local sizes on p < N sites and
total size). This is done in Here we focus on the joint PDF of the total size S, and the single-site local avalanche size
S1 < S. Tts explicit form is

w

_ w+cS/N (w+cS/N — (1+0)81)*
P(Sl,S) = 2\/%5’1% (N_ 1) 2\/7?(8* 31)3/2 ex (_ 45, )

X oxp < (N = 1) (w + eS/N) — (1 4+ ¢)(S — 51))2>
4(S - S1) ’

(A.5.3)

Of interest is the participation ratio s1 = S1/S of a given site to the total motion. Its average is 5T = 1/N. Its second
moment, conditioned to the total size S, is easily extracted from (A.5.3)),

(cS+Nw)?
, 1 Vr(N =1)e T (¢S + Nw)erfe (%)
E(s1|S) = N IN2,/§ . (A.5.4)

We now study the limit of a large number of sites N in Eq. (A.5.3). There are (at least) two relevant regimes depending
on how the driving w scales with V.

.2 First regime: w = O(1) (“many avalanches"): Consider the case N — oo with w fixed. In this case,
N

_ S;
typical values of S = Zivzl S; are of order O(N). Consider S = Z:‘% (empirical mean avalanche-size S;), which is
distributed according to

The joint probability P(S1, S), is given by Eq. (A.5.3) (with the change of variable S — NS), and admits the large-N limit

_ - 2

) +eS—(1+¢)S i

P(51,5) 2y T oxp (w5 - (1498 P(3)
2787

N w(l+c) 1(1+¢)? (wal)2 -
~ R exp (—4 1S, ) (S —w) . (A.5.6)

Hence the jump of the center of mass becomes peaked at S = w, while the individual sites keep a broader jump distribution.
The local avalanche statistics is the same as the one for a particle submitted to the parabolic driving force m?2 (w—u;), and
to the elastic force from the center of mass of the interface, c¢(S — u;). This observation extends to any number of particles
Npart = O(1) with respect to N: in the large-N limit, the particles become independently distributed according to the law
(A.5.6). This picture is the “mean-field" regime usually studied in fully-connected models [63| [11], and here derived in a
rigorous way. Note that in this case, due to a cancellation in , the participation ratio scales as E(s3|S) = O(1/N?)

which shows that s; is typically of order 1/N.

> —Nooo 6(S —w) . (A.5.5)

4 45

.3 Second regime: small driving w = O(1/N) (“single avalanche") We now focus on the regime
w = W/N with ¥ fixed. In this case S = Zf\;l S; is typically of order 1 and is distributed according to

N a2
P(S) = v - exp <—(S ) ) . (A.5.7)
2782 45
We now compute, using (A.5.3), the joint PDF of S and S; in the scaling regime S1 = O(1) fixed,
/N —(1 2 N A —(1 _ 2
P(S1, ) mysoe —2 N exp< ( *40) 51) Dred oo (—i(“’”s 4(S+2(5 51)) ) . (A.5.8)
2,752 2(/7(S — S51)2 (8 —51)

The first factor is reminiscent of the density of avalanches and contains a non-normalizable divergence ~ S| /2 However
l) implies a cutoff on small Sy of order ﬁ The scaling w = @/N allows to isolate single (quasi-static) avalanches (in
the interpretation of the BFM avalanche process as a Levy process discussed above) and the factor of 1/N is the probability
that the site ¢ = 1 is part of the avalanche. In this regime, the fluctuations are large and the participation ratio scales as

E(s}|S) = O(1/N).

A.6 Spatial shape in small systems N = 2, 3.

In this section we analyze the PDF of the spatial avalanche shape in the small-driving limit, w; = w — 0, mostly for
N = 2,3. It already exhibits a saddle-point which allows us to discuss the general-N case below. The analysis can be
repeated for finite w;. Similarities and differences give insight into the link between the quasi-static distribution and finite
driving. This is done in [A:16]
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.1 N=2,3 We start with N = 2, for which the different models we considered are all equivalent. To fix notations, we
study the linear chain with PBCs (see Section and m = 1. The quasi-static PDF of the shape (A.4.15)), conditioned on
the total size S, reads

2 _e2 (1—25)2
p(s]S) = —=C ¢ Fmy | (A.6.1)

4/ (s(1—5))%
We noted s = s1 = S1/5, the shape variable of the first site. The behavior of this PDF is summarized on Figure For
small S, typical avalanches are mainly distributed on one site. As S increases, the most probable avalanches become more
homogeneously distributed over the two sites, and for S larger than S. = %, the probability distribution is peaked around
s = % and the avalanche is extended over the whole system. We call this phenomenon the shape transition: For small total
size, the most probable avalanches have max(s;) ~ 1, whereas for large avalanches max(s;) ~ 1/N = 1/2.

p(s|S)
3.5F
3.0f
2.5

2.0

- ~

0.2 0.4 0.6 0.8 1.0

Figure A.1: Shape transition of the quasi-static PDF for N=2and ¢=11in
the linear chain with PBCs. For S = 0.1S, (black, solid curve) and S = 0.3S. (blue),
the distribution has two symmetric maxima. For S = 55, the distribution is peaked
around s = % (red, upper curve). The transition occurs at S = S, = 3/8 (black,
dashed curve).

The case N = 3 for a linear chain with PBC is similar. For § < c%, the quasi-static density distribution of the shape
p(s1,82,83 = 1 — s1 — $2|5) has three symmetric maxima corresponding to avalanches mainly centered on a given site,

whereas for S > < there is only one maximum at s; = % This can be seen on Figure

c

.2 General N This study already gives some insight into the structure for generic N: the quasi-static distribution
of the shape p(5]S) exhibits different saddle-points, whose positions and stabilities depend on the value of S. For small
S, avalanches are preferentially located on a single site j and max(s;) ~ 1. As one increases S, the most probable
avalanches are more and more extended. The analytical calculation of the properties of these saddle points is difficult.
However, we can generalize the shape transition observed for N = 2,3: The symmetric configuration defined by Vi,
si = 3 (a situation corresponding to infinitely extended and uniformly distributed avalanches) is always a saddle-point of
translationally invariant models. This saddle-point is only stable for S > S.(IV), which is computed in for the fully

connected model, and for the linear chain with PBC. The result is
SE(N) =35, (A.6.2)
SePN) ~Noo et (N° + 12N + O(N?)).

This critical value gives the scaling of the total size above which most probable avalanches are uniformly distributed on
all the interface. Below this scaling they adopt a more complex structure (e.g. they are localized on several sites, possess

Figure A.2: Shape transition of the quasi-static shape distribution for N = 3 and
¢ = 1. From left to right: S = 0.5;1;2.
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maxima, etc.). Let us already mention that other saddle-points of the shape PDF are numerically studied in |A.19] where
the results are compared to the one obtained in the next section for the most probable avalanche shape in a continuum
model.

A.7 Continuum limit: avalanches of an elastic line and typical shape of
avalanches with large aspect ratio

A.7.1 Avalanche size PDF and density in the continuum limit

We now study the generalization of the previous result to the continuum Brownian-force model with short-ranged elasticity
for a line of length L

ﬁatﬂzt = V2uzt - m2(um - wzt) + V20UtEat - (A?l)
Here &,¢ is a gaussian white noise with £,:£,y» = (z — 2')5(t — ') and the boundary conditions are either free or periodic.
Starting from rest at ¢ = 0 and imposing a driving ws: > 0 for ¢ > 0 such that ft Wgt = Wg, we note the total displacement
of the interface S; = ft>0 uz¢. The method used in the discrete case can be extended to derive the PDF of avalanches in
the continuum. Another route is to consider the continuum model as the appropriate N — oo limit of the discrete model,
as is detailed in [A.I8] Both procedures give the same result, which, for the dimensionless PDF of continuum avalanches,
includes a functional determinant

1 % E (wac - Sac + #stx)z
P[S;] ~ (m> det (M) exp (/0 dz 15, >, (A.7.2)

Wy — Sz + #VQSz
Sz '

Mo = = (T 80 =) (14

Here V? is the usual Laplacian, (V?),, = 6" (z —y). Dimensions can be reintroduced as in the discrete case using S, = p

Sm is the avalanche-size scale of the continuum theory. The first factor (l—[1 3 )% also comes from a determinant and could

be included in the definition of the operator M.

As in the discrete case, the mean displacement (S,) satisfies —V?(S,) 4 (S.) = w,. For instance, if the driving is only
at one point, w; = wd(zx), one has (S;) = %e_lxl. The case of a general w, is obtained by superposition. This is consistent
with the discussion in Section[A74] As in the discrete case, the mean displacement gives the avalanche shape in the limit of
large driving (plus an O(y/w) Gaussian noise).

One can also study the homogeneous quasi-static limit: w(z) = w — 0 and S(z) = O(1) uniformly in z. Then

P[S] ~ wp[S] with p[S] the quasi-static density of sizes of continuous avalanches, also obtained as the limit of the discrete

| Uy deSa)BCIS] (" x(g,g_wsm)z)
plSa] —(Hsz)% p( /od ) (A.7.3)

From now on we set m = 1 (by a rescaling of z). The term BC[S;] depends on the chosen boundary conditions with

BC[S:] = OL g—% (resp. BCI[S] = ﬁ) for the periodic case (resp. free case).

.1 Other continuum models Our discrete setting allows us to obtain the avalanche-size PDF of various con-
tinuous models, Eq. being generalizable to an interface of internal dimension d. One may also consider an arbitrary
elasticity matrix ¢, by changing VZu, — fdycxyuy. The continuum limit of the formula for the PDF of the shape con-
ditioned to the total size, either at finite w, see Eq. , or for w — 0 (quasi-static limit), see Eq. , are also
easily derived.

A.7.2 Rewriting the probability measure on avalanche sizes

We now wish to determine the most probable shape of quasi-static avalanches, in the limit L — oo El To render the problem
well defined, one needs to specify two scales. A natural choice is the total size S = fw dz S, and the spatial avalanche
extension (or length) ¢, i.e. the size of the support of S,. While the avalanche-size PDF P(S) is given by the ABBM
result *, the existence of a finite extension ¢ (i.e. local avalanche sizes being strictly zero outside a finite interval) is
non-trivial’l Here it naturally arises in the search for saddle-points of the shape PDF: we only found solutions which vanish
outside of an interval. This property was also shown recently in [I07] where the PDF of the extension P(l) is computed.

5 In general the shape of avalanches depends on the driving. However, an avalanche following an
arbitrary driving (in particular in a quasi-static setting more usual for experiments, see Sec. in
the BFM is a sum of quasi-static avalanches (Sec. , whose spatial structure is, by definition,
independent of the driving.

5In a mathematical sense it may be a peculiarity of the BFM in d = 1 with short range elasticity.
Of course rapid decay in space is expected more generally beyond some support region of extension ¢,
and often obtained in numerical simulations.
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In the following we study the shape distribution at fixed S and ¢. We do not take into account the term implementing
boundary conditions in ({A.7.3) since it should not play a role in the bulk (this hypothesis is explicitly checked on the
discrete model in [A.19). So we write the density of continuum avalanches S, as

S Jas. ~ 1 jsi (Z Sz> e ST s :/w = / % + [V:;Z”F . (A.7.4)

To eliminate the factor of (][], S2)"1/? in the measure, we set

S, =d*(z) . (A.7.5)

dSI _

The integration f 0 f * d®(x), thus the integral over ®(z) runs from —oo to co. To further simplify the calculations,
we note that the problem is invariant by translation. We thus impose the center of the support to be at x = 0. This leads

to the definition of the reduced shape s(z) = ¢(x)

1
2
Sz = %s(m/ﬁ) =®*(z) = %(f)z(&:/ﬂ) , / ) deg®(z) =1 , |z|> % = ¢(z)=0. (A.7.6)
2

Note that to study fluctuations around the saddle point it is more convenient to use ¢(z), but the saddle point itself can be
obtained equivalently using s(z) or ¢(z). Below we use ¢(z), but also indicate the corresponding formulas for s(z) when
these are simpler.

We search for the most probable shape in the limit of small driving, at fixed size S and extension ¢. The path integral
takes the form

20/(@)°0"(@) 4, (A.7.7)

/5 dz¢’(z)=1. (A.7.8)

Note the appearance of the factor of e% in front of the “elastic” energy.

A.7.3 The saddle point for large aspect ratio S/(*

The path integral (A.7.7) is for large S/£* dominated by a saddle-point. To enforce the constraint (A.7.8), we minimize

Hei[p] — A f 152 dx ¢ , with Lagrange multiplier A, leading to the saddle-point equations
_ LéHalo] _ 5¢'(x)" 104/ (x)¢" ()
Ag(x) = 3 o0(@) o (x) + PYESE ()2 . (A.7.9)

In order to find the solution (Ao, ¢o(x)) of (A.7.9| - satlsfymg the properties written in , we first obtain numerically,
using a shooting method, another solutlon (A1, ¢1(x)) of . We impose A; = 2.5 X 10 , <z>1( ) =1, ¢1(0) = ¢{"(0) = 0,
and look for the correct shooting parameter ¢7 (0) such that the numerical solution has a support of finite size [—z., z.]
with the desired behavior at the boundary, i.e. ¢}(—z.) = ¢}(xz.) = 0. The obtained (unique) solution has the following
properties: ¢7(0) = —276.797090676018, z. = 0.162713, /¢1(x) ~ 7.85883(x; — z) for z — z. and Sy := ch ¢1 Ydz =
0.106289. We now take advantage of rescaling, setting

ch

do(x) := ¢1 (2z.x) , and so(z) = ¢g(x) . (A.7.10)

This function is automatically a solution of (A.7.9) with a different Lagrange multiplier Ay = (2z.)* A1, and the desired
properties (A.7.6). By multiplying (A.7.9) by ¢o(x) and integrating for « € [—1, 3] (using ¢y(+2) = 0), we obtain the
relation Hel[¢o] = Ao. Numerically we find

Eo := Hei[po] = Ao = (2z.)* A1 = 2803.84+0.2 . (A.7.11)

An estimate of the numerical accuracy is given. The error is mostly due to the imprecision in determining z..
Alternatively, a variational solution can be used. We make the ansatz

Pvar(z) = N, (x2 - %)2 <1 + ff ci(a® — ‘11)1> ., and svar(z) = ¢ (). (A.7.12)
i=1

"The saddle point equation has a simpler form in terms of s(z). It reads: 3[s"(z)/s(z)]”
1[s"(x)/s(z)]* = A. Hence s”(z)/s(z) is a Weirstrass function which diverges as ~ (z £ z.)~> at
the boundaries.
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Figure A.3: Left: The function so(x) = ¢&(z), as obtained by solving the differen-
tial equation (red solid curve). This is contrasted to the variational ansatz
(A.7.12), with one (blue dotted), two (green dashed) and 15 variational parameters
(black-dashed, indistinguishable from the solution of the differential equation). Right:
Difference between the solution of the differential equation, and the best variational
solution.

The behavior at the boundary x = :I:% is chosen in agreement with the numerical solution of the saddle-point equation.
One can also show that this ansatz leads to an energy which remains finite at the boundary. The ¢-dependent normalization

N, is chosen s.t. f1/2

17 dzx ¢Var(m)2 = 1. For a given vector € = {c1, ..., Cipar }, One then evaluates H[dvar]. Using a Monte

Carlo algorithm, the minimum energy is searched by steepest decent in the space of all ¢ with given f—lﬁz dz ¢var(x)2 =1.
In Figure we show that for the shape of the avalanche, this procedure rapidly converges against the solution obtained
by solving the differential equation (A.7.9). Our best estimate is for imax = 15, where we find
¢ = {-1.00301,20.6871,83.4237,211.353, —270.898, 179.973, —72.6636, 16.3962,
—12.2786,6.11179, —0.33042, 11.777,0.750034, —6.77598, —4.56253} . (A.7.13)

This result is compared to the numerical solution of the saddle point on Figure [A-3] The energy of this solution gives us,
in good agreement with Eq. ({A.7.11}), the variational bound

o < 2803.96 . (A.7.14)

In[A.19] we confront this result to a study of the optimal shape in a discrete setting. There we also show (see also Figure
A.10| below) that this saddle-point is stable. Hence, the reduced shape of an avalanche becomes deterministic in the limit

4 o0
of S/¢* > 1: s(x) 3 so(z) = ¢3(x) with probability one. Formula lb then shows that & is measurable in the tail
of the distribution of aspect ratios,

4
Proba(S/¢%) ¥/ exp (—5054) (A.7.15)

with possibly some sub-dominant factors, as e.g. a power-law. This is confronted to numerics below.

A.7.4 Simulations: Protocol and first results

.1 Protocol. Here we describe the simulation used to numerically study the shape of avalanches. We use a dis-
cretization with N = 512 points of the equation of motion for the velocity in the BFM using periodic boundary
conditions for a system of total size L = N. The mass is chosen as m = 10/L in order to get a scale-free statistics for
a wide range of events. The other parameters are set to unity, n = ¢ = 1. The time is discretized using a time-step
dt = 0.01 and a discretization scheme identical to [23I]. Simulations are done via Matlab and results are analyzed using
Mathematica. At t = 0 the system is at rest and we choose to drive it using a kick of size dw = 100 on a single site. This
is motivated by the fact that we want to study (single) quasi-static avalanches: the value of dw is chosen to be small in

adimensioned units stéw ~ 7.4.107*. Following the discussion of Section and we thus know that an avalanche
resulting from our driving protocol can either be a “small" avalanche O(dw”) or, with a small probability po = O(dw) a
quasi-static avalanche of total size S = O(1) (we neglect the O(dw?) probability that several quasi-static avalanches have
been triggered). Schematically, we write

= = -

P(S) = (1= po)*“6”(S) + popi (S) , (A.7.16)

-

where g is the driven site. Here “6”(S) is not a true delta distribution since in the BFM the interface always moves, but
it rather denotes the PDF of all the small, non quasi-static avalanches, which is expected to depend highly on the driving.
This is made more precise below, and in particular we discuss how we identify the quasi-static avalanches and po from our
data set.
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Figure A.4: Measurement of (S;) and comparison with the exact result (S;) =
%e‘m“_io‘ with 9 = 256. The total moment is measured as (S) = 99.461.

We stop the simulation for the rare events when an avalanche reaches the periodic boundary, since we are interested in
the distribution of shapes on an infinite line. For every generated avalanche, we numerically compute its shape characteristics
S, ¢ (avalanches are indeed observed as having a finite support) and s(z) (discretized with £ points). We report results using
ni = 2.107 simulations of a kick. As a first verification, we check on Figure a coarse-grained information on the spatial
structure by measuring the mean local avalanche size. The discrepancy at the boundaries can be attributed to the fact that
we stop the simulation when an avalanche reaches the PBCs. This is the only bias expected in our procedure. It is not a
problem since for the rest of the article we are interested in observables at large S/£*, automatically excluding the largest
L.

.2 Consistency check of & = 2804. We predicted above that & controls the tail of the distribution of aspect-
ratios. Numerically, we find that this distribution possesses a power-law part coherent with an exponent of 2 and an
exponential cutoff for large S/£* with a prefactor coherent with £ = 2804: Proba(S/¢*) ~ (3/8? exp(—£0S5/¢*) (see left
and center of Figure . We also remark that the exponential cutoff function seems to entirely control the PDF of S/¢*
for “massive" avalanches, of extension ¢ > 1/m (see right of Figure . Obviously this does not constitute a precise
measurement of £, but rather a verification of its non trivial value, which can probably only be understood by studying
the complete spatial structure of avalanches as we did.

.3 Identifying quasi-static avalanches. From now on we restrict our numerical results to avalanches of
extension £ > 10 to obtain a decent spatial resolution. This also allows us to isolate quasi-static avalanches. Avalanches
with extension larger than 10 only represents 3.5% of the data. Obviously, this is not a proof that this subset of avalanches
only contains quasi-static avalanches, and one needs to check that it has the statistical properties of a set generated by the
quasi-static density. One “test" is to study the number n~g, of avalanches of total size S larger than Si, for which the
quasi-static hypothesis implies,

o0
f52 p(S)ds
N>355, = N>8, W, (A717)
s, p(S)
(*1S)P(SII*)
P(SIt*) P(S/I*)
1
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Figure A.5: Different histogram of the PDF of S/¢* obtained numerically with different
binning procedures for the x axis and scale for the y axis. Left: log-log histogram
of the full distribution. Center: log histogram of the distribution for aspect ratio
S/t* > 1/5&q. Right: log histogram of the distribution for avalanches of extension
¢ > 1/m. The black line on the left emphasizes the observed power-law behavior
Proba(S/¢*) ~ ¢8/S%. Blue lines are fits using an ansatz of the form Proba(S/¢*) ~
(852 exp(—EyS/t*). The red line is a fit using only the cutoff function: Proba(S/¢*) ~
exp(—&pS/LY).
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Figure A.6: Left: n.g measured from the datas (blue dots) and compared to the

quasi-static prediction ((A.7.17), black line) with So — S (S1 can be chosen anywhere
in [0.5,10°] and n~g, is measured from the datas).

where p was defined in . Numerically, we find that this relation holds for all S1, S larger than Smin = 0.5 (see Figure
. We thus further restrict our set of avalanches to avalanches of total size S > Smin. Note that though our reduced set
of avalanches now only contains 2.7% of the total number of avalanches, it contributes to 99.44% to the first moment (S).
(This gives a precise sense to Eq. with po = 0.027). We do not further study the other avalanches here, since their
characteristics is highly dependent on the chosen driving.

.4 The convergence to the saddle-point. We now check the striking prediction that the shape of avalanches

becomes deterministic in the limit of large S/¢*. To this aim, we measure the distance between the optimal shape so(z) =
¢3(z) and the simulated shapes s(z) using either the L' or the (squared) L? canonical norms (see Figure. As expected,
we find that the mean value of these quantities at fixed S/¢* converge to 0 as S/¢* becomes larger. However, we find that
the rate of convergence of these quantities is slower than what is expected from perturbation theory (this is developed in
the next section), which predicts for both a convergence as s /S. This will be taken into account when comparing the
numerical results to the prediction of perturbation theory for the fluctuations around the optimal shape.

.5 The mean shape of avalanches. Finally, we verify on Figure that the mean shape (s(z)) is given by

the optimal shape so(x) for large S/¢*. We also explicitly check that the mean-shape decays as (x £ 1/2)* close to the
boundaries. The agreement is very good, though one can notice that the numerical mean shape is slightly flatter than
expected. This observation motivates a study of the fluctuations of the shape around the optimal shape.

A.8 Fluctuations around the saddle point

A.8.1 Field theoretic analysis

We now study the fluctuations around the saddle point ¢o(x). To this aim, we set

¢(x) = do(z) +dp(x) . (A.8.1)
Expanding the action yields

Helg] = Eo + 28 / ¢0(2)d9(x) + Hz[po, 6¢] + Hs[¢o, 6¢] + ... (A.8.2)

_ 2 [ 2060(x)° 00 (x) _ 1540 (x)" 12 2000(@)° s
Ha[bo,d¢] = /zégb(x) [ So(z)? So(z)? } + 09 (x) S0(x)2 + 09" (z) (A.8.3)

_ 25,1 300(2)" — do () (2) 6 (2) 102 20(2)°

ol 0] =5 [ 60(a)*06/(2) o - 109()00/ (02X

Ao d0(2) 1o, 300 (2)dh() + 6 (x)”
The first term in Eq. comes from the saddle-point equation at ¢ = ¢o, Aopo(z) = %%H(I)Z%@)

together with . We have used our freedom to integrate by part to arrive at these expressions: For Ha[do, @] we
gave a form in which each term is proportional to the square of a d¢-derivative. For the cubic term, which is used in
perturbation theory our strategy is different: Since derivatives of (d¢(z)d¢(y)),,, are numerically unstable, we wrote this
expression without a second derivative §¢" ().
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Figure A.7: Left: (resp. Right:) Mean-value at fixed S/¢* of the L! (resp. squared

L?) norm between the optimal shape and the simulated shape fEﬁQ dz|s(z) — so(z)]

(resp. f_l{% da(s(x) — so(x))?). Inset: log-log plot of the same quantity, fitted with a
power-law (£4/5)/3 (vesp. (£*/S)'/?). Error bars are given using a Gaussian estimate
and a numerical measurement of the variance. The fits with power-laws are of low
quality, but sufficient to prove that the convergence is slower than ¢4/S.
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Figure A.8: Left: Mean shape obtained by averaging over the 1000 avalanches with
the largest S/¢* (blue dots, 0.0011 < S/¢* < 0.0041), compared to the optimal shape
so(z) (red line). Right: test of the predicted behavior s(x) ~ (x + 1/2)* close to the
boundaries.
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Figure A.9: The coefficients multiplying the different terms in Ha[¢o, d¢] (left) and
Hs[¢o,d¢] (right), after replacing d¢(x) — (22 — 1/4)? and §¢'(z) — 22 — 1/4. This
shows that d¢(x) must have the same behavior ~ (22 —1/4)? as ¢o(z) at the boundary
x=+1/2.
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To evaluate the coefficients, we use the variational ansatz (A.7.12)), with the optimal ¢ of Eq. (A.7.13). The plot in
Flguremshows that 6¢(x) should have the same behavior ~ (z° —1/4)% as ¢o(z) at the boundary « = £1/2. We therefore
make the ansatz

Mmax

0¢(x) = aovo(z) + Z {agn 10n (T —l—aznun(x)] . (A.8.5)
The basis un(z), va(z) is constructed using Gram—Schmldt out of

vo(x) = \/g[l + cos(27m:)} (A.8.6)

On(x) = (=1)" 1 cos(2n(n + 1)z) + cos(2rz) for n > 1 (A.8.7)
(n+ 1)sin(2mz) + (=1)" T sin(27(n + 1)z) '

Un(z) = (A.8.8)
A/ % +n+1
This basis is orthonormal. In this basis, the energy H2[¢o, d¢] can be written as
1
Halon, il = 5 [ 500 Mz )00 ZMUW . (A8.9)
z,y

This defines M which we now diagonalize. Its lowest eigenvalue is Ao = 2y, with eigenfunction d¢o(z) = ¢o(x). This can
be proven with the help of the saddle-point equation . The higher eigenfunctions d¢, (x) have n knots, see Figure
Since M is symmetric they form an orthonormal basis. The spectrum is massive (no soft massless modes); we observe
that In \,, >~ 13.1 4 0.256n, i.e. the eigenvalues grow in geometric progression. This ensures that a truncation at nmax = 10
is sufficient for practical purposes.

A delicate problem is to obtain results at fixed fz ¢(x)? = 1. To do so, we write for the expectation value of an
observable O[¢]

(Olo))

(1) fD ¢ O[¢] (f ¢*( )exp( { e1[¢o, 09| — })
- 5 J Dle] 0[¢]5< IRZOREY
X exp (—%{Hz[abo, 3¢) — & [ 6¢(x) + Haldo, 58] + Haldo, 58] + }) (A.8.10)

We subtracted the constant & from the energy in the path integral and used the constraint fz ¢(x)? = 1 to rewrite the
linear term appearing in as a quadratic term: 2& fx do(z)dp(x) = —&o fx §¢(x)?. Tt ensures that the minimum of
the exponential factor at 0¢(x) = 0 becomes a global saddle point; in addition, the lowest-energy fluctuation d¢¢ has zero
energy. If we write ¢(z) in the basis of eigenmodes d¢n (x) of M, i.e.

¢(x) ) + Z an8én () = (1+ ao)do(x) + Z anbn(z) , (A.8.11)
then
o0 2 oo
/<z> =/ [%(m) +Zan6¢n(x>] =(1+a0)+ ) an. (A.8.12)
n=0 n=1

Solving fx ¢(x)* =1 for ap yields

I
=  ap= —§Zan+... (A.8.13)

With this, the path-integral (A.8.10]) can be written using equations (A.8.11)) and (A.8.13) as
(Ol¢]) = a7 [0, dan Ofg] (1= an)
X exp (-i{ oo, 22520l + Hsgo, 56 + Haldo, 6] + .. }) (A8.14)

[N

-

The factor of (1 — Ef;l a? )_ 2 comes from the derivative of the d-function, which has been used to eliminate the integration
over ag. Note that the Jacobian of the transformation from [] dé(z) to [ ], dan is det (5¢n(z))x€[7%%]’neN =1, since the
d¢n(x) are orthonormal.

Hence, to leading order in an expansion in £4/ S, the expectation value of an observable of d¢(z) can be obtained using
the decomposition d¢(z) = Zo a; 0¢;(x), where ao is given by (A.8.13]) and the a; are centered Gaussian variables with
correlation matrix M’ defined for i,5 > 1 by

TAR Y
()i = g -

(A.8.15)
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Figure A.10: Left: The spectrum of M. The smallest eigenvalue is A\g = 2y (given
with precision 107% for npa.x = 10. The next two eigenvalues are A\ = 5.143)\,
and Ao = 19.20)\g. FEigenvalues for large modes grow exponentially with the mode,
In A\, >~ 13.1 4+ 0.256 n (black dashed line), showing that the spectrum of fluctuations
is massive. The lowest modes are colored in red, blue, orange and cyan. Right: Plot

of the first four eigenfunctions in the same colors as the corresponding eigenvalues.
d¢n(x) has n nodes.

One then uses Wick’s theorem for expectation values of d¢. As an example, the 2-point correlation function is

BOWIED =303 (o) e B30 (5 )+0(5)

«g %*O(E ) (A.8.16)

i=1

A.8.2 Generating a random configuration, and importance sampling

Our setting allows us to generate a random fluctuation with the measure given by the the leading behaviour of ‘H for large
S/ ¢*: Denote by g, a series of uncorrelated Gaussian random numbers with mean zero and variance 1. Then

[e')

[ pa
Sp(x)™m = Z anddn(z) , with a,= % % for n>0, (A.8.17)
n — A0

n=0

and ao given by Eq. (A.8.13). In Figure (left) we show as an example the expectation of §¢(x)? (solid blue line). This
is compared to the average over 500 realizations drawn with the measure (A.8.17)), repeated 5 times (the three gray-blue
lines, lower set of curves). To illustrate the importance to properly eliminate the mode ¢o(x), the upper (red) curves are

obtained without the constraint on [ ¢?(z), i.e. including fluctuations proportional to ¢o(x) (with amplitude ~ 1/v/A0),
and not constraining them by Eq. (A.8.13)

On Figure we show five realizations for the shape drawn from the measure ((A.8.17)), and compare this to numerical
simulations at the same ratio S/ ¢*. The agreement is quite good.

5(x)°

0.0006 |-

Figure A.11: Left: Plot of the fluctuations d¢(x)? (blue solid line), and including
the mode d¢g (red solid line). The dashed lines are averages over 500 samples using
Eq. (A.8.17)), including (top pink) or excluding (bottom, blue-gray) this mode.
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Figure A.12: Left: Plot of the normalized shape [¢o(x)+ \/g&f)(l’)f for % =3x1073.
Right: The same functions from numerical simulations.

We can use this formulation for an efficient algorithm, known in the literature as importance sampling [232]. One writes

(O[4)) - <}><0[¢} (1-%a2) 2 exp(-g{ﬂg[%,éqﬂ + Halgo, 6] + }) >

M/
- <11><(9[¢] (1-3 a2)? exp (= {Halon + 8¢ - & - 372, 2l ) > . (A.8.18)
M/

In the second line we reintroduced the full Hamiltonian He; using Eq. (A.8.2)). We will compare to simulations below.

A.8.3 The leading correction to the shape at large sizes

For large S/¢*, the mean shape is given by the optimal shape so(z). For smaller S/¢*, this mean shape becomes flatter, an
effect which we now investigate using perturbation theory. Consider

(d5(x)) = (s(x) = go()*)
_ <<2¢0(m)5¢(a¢) + 6(;5(2:)2) (1 . %7‘[3 (b0, 66] + ) >M/
- % [(80(a)) _ —200(@)(00(x)Hslo0.00]) | + o(%f . (A.8.19)

The notation M’ indicates that all expectation values are taken at S/¢* = 1, making the factors of z% explicit.

A.8.4 Fluctuations of the shape for large avalanches

We now consider the fluctuations of the shape of an avalanche in perturbation theory:

<6s(:p)2>c = <3($)2> — (s(x))?

M

= { <[¢o(m>2 +260(2)5¢(x) + 56(2)%]” (1 — S Hsldo, 5] + )>

—([bo(2)? + 260(2)06(x) + 66(x)?] (1 — SHaldo,06] +..) . , }

—y (%) go(x)? (36(x)?) ., + 0(%)2 . (A.8.20)

Note that the only term which survives is the contraction between one d¢(x) of each factor s(x).

A.8.5 Asymmetry of an avalanche
Another interesting observable is the asymmetry A of an avalanche, defined by
A= 2/3: & (x) . (A.8.21)

By construction —1 < A < 1. The asymmetry has mean zero (A) = 0, and variance given in perturbation theory by

(A2) =16 (@) | avtolisots) (otrsomle, = 11x 107 (‘;) | (A8.22)

s



A.8. FLUCTUATIONS AROUND THE SADDLE POINT 175

S
N
—(3s(x)) (,—4<6s<x>2>p

—04 o2 L 02 04

Figure A.13: Left: (resp. Right:) normalized mean shape displacement (S/¢*(s(z) —
so(z))) (resp. shape fluctuations (S/¢4(s(x) — so(x))?)c). Red line: result of per-
turbation theory (A.8.19) (resp. (A.8.20)). Dashed-blue line: result from impor-
tance sampling using (A.8.18)) for £*/S = 900. Dots: results from the simulations
for avalanches with aspect-ratio 0.9/1800 < S/¢* < 1.1/1800 (7023 samples, green),
0.9/900 < S/¢* < 1.1/900 (946 samples, blue) and S/¢* > 1.1/1900 (734 samples, red).
We take advantage of the symmetry of the observable (s(x)) = (s(—z)) to symmetrize
the numerical result. We estimate error bars using the difference between the original
result and the symmetrized one.

A.8.6 Comparison of the perturbative corrections to the numerics

We had already shown some results of our numerical simulations above. For large S/ 0%, the perturbation theory developed
in the preceding section gives the correction (ds(z)) of the mean shape to the saddle-point solution, as well as the shape
fluctuation <65(:v)2>C around the saddle-point. However, as already pointed out in section the scaling of these
quantities with a factor of £*/S is not seen in the convergence of the numerical simulations to the saddle point, see Figure
m This indicates that, even at S/¢* ~ 1073, the simulations are not yet in the perturbative (first-order) scaling regime.
Non-linear corrections are still important, and z% (0s(x)) as well as [% <6s(1’)2>c still depend on e%' This is illustrated on
Figure

As can be seen on the left of Figure [A.13] (as well as on the left of Figure , corrections to the mean shape are very
small, of the order of 10™%, difficult to measure, and at the limit of our simulations. The red solid line is the perturbative
result , The points correspond to the same quantity from the numerics with increasing S /44 from green over blue-
gray to red (see caption for the precise parameters). The dashed blue line is obtained for S/¢* = 1/900 via importance
sampling, see equation El One remarks that the amplitude is lowered as compared to the perturbative result, in
qualitative agreement with the simulations. In view of the difficulty of the numerical simulations, it is very encouraging that
at least a qualitative agreement has been obtained, and that importance sampling explains why the observed corrections
are smaller than the perturbative result, in agreement with intuition: the shape has to remain positive.

The fluctuations around the mean shape, ;{ <6s(x)2>c, are given on the right of Figure |A.13|with the same color code
as previously. One sees that the numerical results approach the perturbative result for large S/¢*. In this case, importance
sampling predicts fluctuations slightly smaller than our numerical simulations, which converge more quickly towards the
perturbative result. We remark that numerically the estimation of e% <5s(x)2>c is less sensitive than the estimation of
e% (ds(x)). This may be explained by the fact that only the latter quantity involves non-linearities of H at dominant order
in S/¢*.

For the asymmetry we find <A2> = 1.1 x 107° in perturbation theory, and 5.97 4 0.04 x 10~° via exact sampling
for §/¢* = 1/900. Numerical simulations give e% <A2> = (74 2) x 107° for the largest avalanches S/¢* > 0.002 (37
samples), (5.6 £ 0.3) x 1075 for the data with 1.1/900 < S/£* < 0.002 (697 samples), (4.7 4 0.2) x 107° for the data with
0.9/900 < S/¢* < 1.1/900 (946 samples) and (3.05 % 0.05) x 107° for the data with 0.9/1800 < S/¢* < 1.1/1800 (7023
samples). Once again we see that the order of magnitude is correctly predicted (an already non-trivial achievement), and
that the numerical results get closer to the perturbative one as S/ 2% increases.

From a conceptual point of view it is interesting to note that most of the amplitude of the “double-peak” structure
observed on the right of Figure is due to the first sub-leading mode d¢1(z) with one node at x = 0 (see Fig. .
The same holds true for <.A2>.

In conclusion, we have seen that the numerical results agree very well with the theoretical prediction at large S/¢*,
and that the mean shape of avalanches is given by the optimal shape so(x) (Figures and . The consequence for

8For S/¢* = 1/900, about 44% of the proposed configurations in the importance sampling have
a zero-crossing in s(z), and therefore do not contribute. The measured expectation of the weight is
(1) = 1.61 £ 0.012, showing that averages are not dominated by a few configurations.
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Figure A.14: Log-Log plot of the numerical measurement of the mean shape at fixed
¢ for ¢ = 40 (blue dots), £ = 70 (orange dots) and ¢ = 100 (green dots) close to
the boundary —1/2 < x < —1/4. The first point of each shape was not taken into
account to avoid discretization artefacts. As a consequence of the discretization of the
simulation, the first visible point of each shape is located at © = —1/2 + 1/£. The
plain line serves as a guide to compare with the behavior (—1/2 + z)* obtained from
the study of the optimal shape at large S/¢*.

the tail of the PDF of S/¢* was successfully verified (Figure[A.5)). For finite S/¢*, namely fluctuations around the optimal
shape, we only got a partial, though already satisfying agreement: The discrepancy with the perturbative results was clearly
identified as a consequence of strong non-linearities, even for the largest S/¢*. This was qualitatively understood by an

implementation of importance sampling, though the remaining discrepancy raises the question of wether our simulations
are sufficiently precise to measure these delicate observables (Figures and [A.13).

A.8.7 The optimal shape beyond extreme value statistics

Before concluding this section, let us mention that though our results on the shape of avalanches were a-priori obtained for
the most peaked avalanches (i.e. avalanches with a large aspect ratio of S/£*, some of our result extend at least qualitatively
to generic avalanches. As an example we show in Figure [A.T4] that the characteristic decay of the optimal shape near the
boundary so(z) ~ (2 & 1/2)* can still be observed in the decay of the mean shape at fixed £.

In this spirit, we thus encourage experimental and numerical comparison of our results to various, and non-necessary
extremal, shape observables.

A.9 Application of our results to realistic interfaces and stationary driving

Up to now we considered avalanches following a stopped driving (see Section. However, as discussed in [136}, [TOT], [T02]
this setting also yields the densities for the statistics of quasi-static avalanches in the steady state (Middleton state) for
stationary driving in the quasi-static limit (w¢ = v and v — 01). These are the avalanche densities defined in Section
hence the denomination used in this article.

Furthermore, it was shown in Ref. [I0T], that the BFM is the mean-field theory of an avalanche in the quasi-static limit
for an interface in short-ranged disorder with equation of motion

N00¢ Uzt = /czyuyt + mQ(wIt — Ugt) + F(z,uzt) - (A.9.1)
y

The disorder-force correlator is given by F(z,u)F(z’,u’) = Ao(u — v/ )6%(z — 2') with Ag(u) a fast decaying function as
|u| = oo and cqy a convex elastic kernel. The prediction of the functional renormalization group (FRG) for such systems is
that, in the quasi-static limit, when m — 0 and for d = duc —¢€, € > 0 (duc = 4 for short-ranged elasticity and more generally
duc = 27 for g(q) ~q—o0 ¢7), the physics becomes universal in the small-m limit (e.g. independent of microscopic details
of the disorder) and entirely controlled by only two relevant couplings, the renormalized friction 7, and the renormalized
disorder cumulant A, (u). The (rescaled and renormalized) second cumulant of the disorder at the fixed point is non-analytic
and exhibits a cusp. It is uniformly O(e), allowing to formulate a controlled perturbative expansion of any observable. For
observables associated to a single avalanche, it was shown in [I36] [I0I] that near the upper critical dimension dyc only
the behavior of A,, near zero, i.e. its cusp, Ap(u) ~y—0= —om|u| plays a role. In this context, the mean-field theory
for single-avalanche motion is the BFM studied here, with renormalized parameters n — 7, and ¢ — o,,. Hence, the
avalanche densities derived in Section @ are exact for interfaces at their upper critical dimension. They also open the
way to a perturbative calculation for d < dy,.. Interestingly, some physical systems described by are at their upper
critical dimension, as e.g. domain walls in certain soft magnets for which v =1 [45].
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A.10Conclusion

In this article we obtained an exact formula for the joint PDF of the local sizes of avalanches in a discrete version of
the BFM model. This result is valid for an arbitrary elasticity matrix and arbitrary monotonous driving. This allowed
us to derive the densities describing the quasi-static avalanches in the limit of small driving, and to discuss in depth the
physical picture underlying this avalanche process. We presented two applications where it was possible to go further in the
analytical calculation of detailed physical properties. For the fully connected model we obtained the joint distribution of
the local and global jumps. This allowed us to retrieve in a rigorous way the usual large-N limit, as well as a new regime,
and finite-N information.

We then presented another application by analyzing the most probable shape of avalanches of a given size and extension,
first for systems made of few coupled particles, then in the continuum limit for an elastic line with short-ranged elasticity.
Quantitative results for the optimal shape and the fluctuations around it were obtained and compared to a numerical
simulation of the model.

Let us conclude by stressing that, since our formula was obtained in a general setting and contains all the spatial
statistics of avalanches, it should be possible to extract from it a variety of new information on their spatial structure of
direct experimental interest. It would also be interesting to compare our results for the shape of avalanches to other models
through simulations or experiments, the BFM being the relevant mean-field theory for various more realistic systems.

Acknowledgments: We acknowledge support from PSL grant ANR-10-IDEX-0001-02-PSL. We thank KITP for hospi-
tality and support in part by NSF Grant No. NSF PHY11-25915.

A.11Appendix A: Recall of the result for the generating function

For completeness, we recall in this section, the derivation, here in a discrete setting, of the exact result for the generating
function of the BFM (|A.2.6). Related derivations can be found in [102] [1I0I]. The original equation of motion, including
the quenched noise term 0 F;(u;¢) reads

N
nat’llit = Zcijﬂjt — m2(1:tit — ’U'Jit) + (’)tFi(uit) . (All.l)

j=1

We use the dynamical field theory formalism [I30} [I3T] which allows to compute the disorder average of any physical
observable O[¢]. We introduce N response fields @;: such that disorder averages can be computed as

O] = / Dl @ Ofule St | (A112)

The dynamical action splits into a deterministic, quadratic part and a disorder part: S[u, @] = So[t, @] + Sais[w, @], with

N N
So 1, @] = Z /ﬂit <n3ﬂlit — Z cijtiye +m® (i — wn))
i=1 vt

j=1
N N

== /mgauwit +> /ut (—nata“ = e+ m2ﬁit> (A.11.3)
i=1 Y1 i YUt j=1

where in the second line, we made an integration by part assuming % vanishes at infinity. The disorder part of the action is

N
. o ~ .
Sais[t, 4] = 3 § / Wit Ty O Op Uit — unr| (A.11.4)
i=1 vt

t

it contains all the correlation of the Gaussian force (A.2.2)). As noted in [102] [101], the action functional can be simplified
using the Middleton property recalled in the main text, valid for our setting: t2 > t1 <= wst, > w4, so that

0v0p [uit — wpr| = Wit Oy sgn(t —t') = —20u6(t —t') . (A.11.5)

This leads to
N
Saislt, @] = *UZ/ﬁ?ﬂz‘t . (A.11.6)
i=1 71

It is straightforward to check that the replacement 9;F;(uit) — /204 t‘ used in the main text leads to the same action.
This shows that both theories are equivalent for this choice of initial conditions. As written, the action is linear in u: this
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~F
simplifies the calculation of the generating functional of the velocity field G|\, w] = eZizl ff Aitir,

N . o~
Ghu] = / R

~ m?2 ZN f Ui Wit ~2 - N ~ 2~
= [ Dlae =1y H O | Ait + ol + nOelie + Z CijUst — T Uit
it j=1

N N
_ o i J, mhei ) (A.11.7)

In the last line, the response field 47, is solution to the “instanton" equation [136] 102} [10T]

N
it + O"l]?t + ’I]at’llit =+ Z Cijﬂjt — m2ﬁit =0. (A.ll.S)

j=1

It is imposed by the delta functional. Note that this evaluation involves a w-independent Jacobian, which equals unity since
we have supposed the interface to be at rest and stable for ¢ < 0, so that if w;; = 0 then ;s = 0. The above result is thus
correctly normalized. Equation must in general be supplemented by some boundary conditions, depending on the
observable (e.g. if A+ = 0 for all 4 and ¢ > ¢1, we should also have @;; = 0 for all 4 and ¢ > t1). Note that a rigorous version
(in discrete-time, without path integral) of this result was given in [102]. In the main text we are looking for the statistics of
avalanches S;, which is obtained using constant sources \;: = A;, and for which one can look for constant solutions ;: = ;

of (LIL3).

A.12 Appendix B: Tests of the main formula, computation of moments and
numerical checks.

We checked using two methods: the first one consists in solving exactly the instanton equation for small values of
N in an expansion in powers of ¢ for a given elasticity matrix. This gives an approximation of the Laplace transform, which
can be inverted to give the joint probability distribution up to a certain order in c¢. This program has been successfully
achieved up to O(c*) for N = 2, O(c?) for N = 3 and O(c?) for N = 4. The other method consists in numerically computing
various moments of the probability distribution, which can then be compared to the exact results that use the instanton
equation : the cumulants are given by

N
c _ 8 b _ 8'Uk
(Siy -+ 8i,)° = (6/\“ o lnGO\))XO =) w <8)\i1 “.6/\%)”0 (A.12.1)

k=1

ov; —1
6;; =J; where J;; = —2v;0;; + Cjj, as seen from 1)

and theses derivatives are numerically computed using

A.13Appendix C: Backward Kolmogorov method for a kick driving

In this section, we provide another verification that (A.3.8) is correct when the system is driven by a kick (i.e. Wi = w;d(t)).
For simplicity, we directly consider the dimensionless equation of motion

N
o o . . 0 7
Ot = E CijUjt — Uit + Wit + V20

j=1

N
=t>0 — Z Cijtj + V2, (A.13.1)

j=1

where in the second line we used the definition of Cj; (A.2.8)) and wrote the equation for ¢ > 0 when w;; = 0. For a kick, it is
equivalent to consider the equation of motion with ;.—0 = 0, or to consider the equation without driving for £ > 0 (A.13.1)

N e
supplemented with the initial condition @; ;_o+ = w;. The generating function G is still given by G(X\) = ez'i=1 Ai fo dttir,

For a kick, we can write it as a conditional expectation value on the process without driving (A.13.1): G(X) = é()\, w, 0, 00)
where G is defined as

t
N Aif F atag,
tg

GA(X, 1177 ti, tf) = (ezq‘,l

Uit; = wi) (A.13.2)

where ;: evolves according to (A.13.1) for all times and E ( ..

Wi, = wi) denotes the average on the stochastic process

without driving (A.13.1)) conditioned to the initial condition @, = w;. We now derive a partial differential equation (PDE)
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fo G, similar to a Backward Kolmogorov equation, using a splitting of [t;, 5] into [t;, t; + dt] U [t; + 6, 1] with §t small:

N N A; dtig e+ thdt‘i
G()\,ﬁ,ti7tf) —F (6211 t; +5 Uit Z i=1 ft Uig ’llitl- _ wi)

e, = wi> 1 o(6t) (A.13.3)

N ff . N
-F (eZi_l Ai t;+ot dtuit+2i:1 Aidtwsy

Where in we used that 1, is continuous. The expectation value in can now be split in two parts. We can
first average over the noise for ¢ € [t;, t; + 0t], with 6t small, or equivalently on the velocity variation dw; := t;,¢; 456 — Uiye, =
Ui, +5t — Wi, as obtained from the equation of motion . Secondly, we average over the noise in [t; + 6t,t¢] (these
are independent) knowing that the velocity at ¢; 4 0t is Us ¢, +5¢ = w; + dws, i.e.

AT ZN_l N [H avag | . ZN N Stwgy
G\, W, ti,ty) =Egw,3 | E | 77 i+t Wiyp;+5t; = Wi + 0Ws | |Usr, = ws | e4=i=1 + o(dt)
Ay SN istw;
= Egsuy) (G(A, @+ 8T, b + St )| dae, = wi) e2oim1 MO o(51) (A.13.4)
The average over {dw;} can be computed at first order in 0t using Ito’s lemma (we use dw, = —dt Z;V:l Cajw; and

w2 = 2wadt + O(6t%)). This leads to

G(N, 0, ti, ) <G+ > ot ( oG an]wj
N
x (1 + Z)\iétwt> + o(dt).

i=1

o) 5 ) a135)

We also expanded the last term at first order in . In the r.h.s. of (A.13.5)), all generating functions are taken at the same
position G(X, W, ti,t7). Now the Lh.s. is of order O(6t°) and in the Lh.s., we exactly computed the O(6t) term. This shows
that the generating function G solves the following PDE:

A N
oG
_W = Z < ow. anﬂwj a 2 wa + )\awa> (A136)

a=1

which is also equal to % as a consequence of the time translation invariance of the Brownian motion. The initial condition
is GOX, @, ti, t;) = 1.

To study avalanche sizes, we consider the long-time behavior of G to obtain G = G(X,w,t;,00). In this case we can
assume that G reached the stationary state, i.e.

N
Z ( S ZCaJwJ (9 0z wa +A 'wa) =0. (A.13.7)

a=1
This is automatically satisfied if G is given by (A.2.6)) and if the @; satisfy the instanton equation . This provides a
connection between the two methods.
An interesting feature of this method is that one can now write a PDE directly for the probability distribution P(w, ﬁ)
of avalanche sizes in the BFM model following arbitrary (positive) kicks w;+ = w;d(¢). This equation reads:

N
or
> < S anjw] o= Wasg ) =0. (A.13.8)

a=1

We need to find a solution which satisfies the follovvlng boundary condition:

Let us now discuss its solution. Inspired by our result 1} we make the change of variable P(u, §) = F(Z, §) with
Z=w—C-S. The equation for F' then takes a very simple form:

N
o?’F  OF
> wa (axg - 8Sa> =0 (A.13.10)

a=1

where wa = To + Z;V:1 Cq.;S; and we used that C' is a symmetric matrix. In this new variables, we write our main result
(A.3.8)) using the following decomposition:

(A.13.11)

Pz, 8) = (ﬁ)N(H S:)7% exp <i > ”) . (A.13.12)
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This decomposition sheds some light on the structure of m here rewritten as F' in (A.13.11)): it is simple to see that F

defined in (A.13.12) already solves (A.13.10)), F can indeed be interpreted as the PDF of the position z; at "time" S; of N
independent particles diffusing from the origin at time S; = 0. However the result F = F would not satisfy the boundary

conditions (A.13.9). We now check that the extra factor det(M) provides the proper solution. In order for (A.13.11) to
(A.13.10]

also solve (|A.13.10)), the determinant must verify

) i
Zwa (a c;et M) i ,0det(M) OF 5det(M)p> —o. (A.13.13)
ma

0o Oz 0Sa

Using % = ,7}7 this implies an equation for det(M)
N
0?det(M) x40 det(M)  Odet(M)
) _Za —o0. A13.14
Zl“’ ( 913 Sa  0a 95. 0 (A.13.14)

The first term is equal to 0, since x, only appears in the a-th column of M. The remaining terms vanishes since
M depends on x4 and S only through the combination 5. This completes the proof that our result 1’ indeed solves
the PDE |D The boundary condition is now satlsﬁed since Pw(g) is a continuous PDF on positive variables and we

know (see Section and ) that (S;) = Zjvzl Ci;le vanishes when w; — 0.

82 det(M)
6902

A.14 Appendix D: Poisson-Levy process for normalizable jump densities

.1 Center of mass We already discussed in the main text the infinite divisibility property of P.(S). Given
this property, one would like to interpret an avalanche S as the sum of n iid elementary avalanches s; with n drawn from a
Poisson distribution and s; drawn from a given distribution (this defines a Poisson-Levy jump process, see e.g.[230]). This
interpretation is valid at the level of the moments of P, (S) (see (A.4.8)) but we now show that it does not extend to the
probability itself. Let us first assume that the jump density p appearing in is normalizable (see also the discussion
n [I11], Appendix J). Then one can write p(s) = pop(s) with p a regular function normalized to unity [ dsp(s) = 1 and
po the density of avalanches; i.e. the mean number of quasi-static avalanches occuring in response to the total driving w is
pow. Using the following identity:

/ds1 cedsn (€M = 1) (€Y = 1)p(s1) - p(sn)

_ Z pow powv)n)' /dS1.”dsmek(81+‘“+sm)p(sl)...p(sm) (A.14.1)

(A.4.8) can be rewritten as (performing the sum over n > m):

[ee]

/dSeASPW(S) _ (Povx:) eip"w/dsl L dsmek(s”'”“’”)p(&) cp(sm) - (A.14.2)
= ml
This leads to a formula for the probability, Pu(S) = >">_, (POmL,))m “PO%(px)™(S). Here (px)™ denotes m convolutions of

p with itself, making the interpretation in terms of a Poisson jump process transparent. One can define the “complete"
avalanche-size density as

dPy(S)

dw

Where here the first equality holds in the sense of distributions. This total density appears as the sum of the regular density
p(S) (defined in the main text) and of a delta singularity that accounts for the finite probability that the interface does
not jump. As a consequence, dGW(A)| ) = deé)‘sﬁ(S) = [ds (e)‘s — 1) p(S). For the ABBM model, the scale
invariance of the Brownian motion leads to an accumulation of small avalanches of arbitrary small sizes, leading to po = oo (in
particular for any w > 0, P (S = 0) = e ”°*" — 0) and one can not define p. The formula %\Wzo = [dS (e>‘s — 1) p(S)
is however still valid and allowed us to prove .

p(S) =

‘W:o = —po(S(S) + p(S) . (A.14.3)

.2 Levy Process for the interface The generalization to the interface is immediate: in this case, the LT of
Py(S) reads

/dNSASP — T Z Z Wiy - - wz"vm“.vin (A.14.4)

n=0 (i1,...,4n)

where the second sum is for all (i1,...,in) € {1,..., N}" and the v; variables are functions of X solutions of (A.3.2). Using
our conjecture (A.4.11]), we obtain

/ 4”5 5P Z Yo e TTavs, (@ - Do (5) - pin (52) (A.14.5)

n= 0 (7/1 ’ 71’71) l 1
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which is the multidimensional generalization of m and shows that the densities p; (S ) entirely control the moments of
Puy(S ). It is also in agreement with the interpretation of an avalanche Sasa superposition of independent avalanches, as
already discussed in the main text.

A.15Appendix E: Details on the fully connected model

Here we detail the calculations leading to the results of Section [AZ5] and give some results for the fully-connected model
driven by a single site.

.1 Marginals distributions for uniform driving For uniform driving, the matrix C' and M entering in
(A.3.8)) admit the following simple expressions, allowing us to evaluate det M in a concise way:

C
C’ij:(l—i—c)&j—ﬁ , Mi;=56 US w+CS/N)_N
N 1 N
—_ N-1 _
det M = w(w + cS/N) 11 5 0 5= I; S (A.15.1)

This leads to (A.5.1). Various marginals of this PDF can be computed by noting that the Laplace transform of p,, s/n(s)
entering into (A.5.1) reads

00 L(14e)(wteS/N)(1—, [14+—22_)
/ dspu,s/n(s)e P = arot (A.15.2)
0

We write the joint PDF of local and total size as

P(S,5) < Zs) (A.15.3)

For any 1 < m < N — 1, the marginal P({S1,...,Sm},S) can be computed as

P({Sl,...,Sm},S) = mnpw S/N(S)/ . Zm Hpr,S/N(S)
i=m+1 Si= ti=m
w m
= wt oSN [[1pw,S/N(Si)p(N—m)w,(N—m)S/N(S - Z Si). (A.15.4)

Where the multiple convolution of p,, s/n(s) has been easily calculated as a consequence of the simple structure of it’s
Laplace transform. In particular, this leads to the formula (A.5.3) of the main text.

.2 Single-site driving Taking w; to be non-uniform breaks the permutation invariance i <+ j of the problem,
making the computation more complicated than for the uniform case. Another solvable case is w; = 0 for ¢ # 1, for which

the PDF (A.3.8) takes the form

S1ws

P(S) = S(wy + cS/N)

N
Purs/n (S1) [ [ po.s/n (S5)- (A.15.5)

Jj=2

The computation of marginals involving an integration over some S; for j > 1 is identical to the uniform driving case and
leads, for 1 <m < N — 1, to

S m m
P({S1,...,8m},8) = W%Pwl,sm(sl) HPO,S/N(Sj )Po,(N—m)s/N (S — Z Si) (A.15.6)
j=2 i=1
In particular, we obtain
w1 ¢S1/N ( (w1 +eS/N —(1+ c)Sl)2>
P(51,95) = —— (N—=1)———————exp | —
(81,5) 2\/775’1%( )2\/;(5_ 51)3/2 451
(N =1 (eS/N) = (1 +¢)(S = 51))° _
Xexp( TG 0(S — S1).

(A.15.7)

In this case S = Zivzl S; is typically of order 1 and is distributed according to

_ w1 ox - (S — w1)2
P(S) = 35t O < e ) . (A.15.8)
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The large-N limit now exhibits a single non-trivial regime, with w; = O(N?), and for which (A.15.7) admits the limit

o w1 CSl (’LUl — (1 + C)Sl)2
= NV ) (‘ 45, )
X exp (— (cS (i(:g i)g)_ 51)) ) 0(S — S1). (A.15.9)

Remarkably, in this case one can even integrate over the total size to find the marginal PDF P(S;) in the large-N limit,

P(S1) = ——exp <(wl_(is+c)sl)2> . (A.15.10)
2,752 1

In agreement with the physical intuition, this is the ABBM result for a particle with driving m?(wy — u) and ¢(S — u), as
discussed above, and S = 0, since the center of mass has not moved appreciably.

A.16 Appendix F: Shape for small N at finite driving

Here we briefly discuss what becomes of the shape transition observed in the quasi-static PDF of avalanche shape at fixed
total size S of the linear chain with PBCs (see Section [A.6) when one is interested in the full PDF for finite w; = w as
given in (A.3.12). For N =2 and w < %, there is now an additional regime with two transitions instead of one:

—8cw—+/3v/3—16cw+3
S < 862

: the distribution of s is peaked around %

78cw7\/§g\/c§’*16cw+3 <S< *8°w+ﬁ’8vc§*16cw+3: the distribution possesses two symmetric maxima around s = .

° 2

_ /3-1 . . .
S > SC“’+‘/§’SC23 Scwtd “one retrieves a single maximum at s = 3.

The first regime is new, and was not captured by the study of p. For small w — 0 it corresponds to avalanches smaller
than the lower-scale cutoff S < %wQ, which are not described by p as we know from Section In this regime, the fact
that the saddle-point again corresponds to uniform avalanches with s = 1/2 is not a consequence of elasticity (as noted
in Section local avalanche sizes are even independent in this limit), but is related to the fast decay of po(s) at its
lower cutoff (see Section . For larger w > %, the intermediate regime disappears, and the most probable avalanches
are homogeneously distributed. Indeed, as w increases, the motion of the interface becomes mostly deterministic and the
remaining fluctuations become negligible.

The case N = 3 is identical. For w < ﬁ the finite w probability distribution exhibits the same three different regimes

0 1—2cw—+/1—4cw d 1—2cw++1—4cw
) 2c2 an 2¢2

with boundaries . The interpretation is identical to N = 2.

A.17 Appendix G: Stability of infinite, uniform avalanches.

In this appendix, we compute the value S¢(IN) such that avalanches uniformly distributed over all the system, and of total
size S > Sc(N) are stable. We do this for the fully-connected model and for the linear chain with PBC s, for which uniform
avalanches uniformly distributed are always an extremum of the quasi-static density p (for uniform driving f; = 1). As
such, S.(NN) is the value of S above which all the eigenvalues of the hessian of the quasi-static distribution at this uniform
saddle-point are negative. Since this saddle-point and the elasticity matrix are translationally invariant, the Hessian of the
logarithm of the probability at the saddle point is a circular matrix given by

9?1 S S 1
— M s :——(CQ)QL;—‘,—E(SD&-&-I’LQ/B. (Al?l)

H, sy=s
A 05a0sp s 2s

c is the elasticity matrix of the model (here m? = 1), s = 1/N is the uniform local avalanche size at the saddle-point and

has depends on the chosen model as hag = — 522z + 7z (4008 +0a,8-1+0a,41) for the linear chain with periodic boundary
_ <(11Vv 3)22)
using a discrete Fourier transformation, showing that they are indexed by a wave-vector ¢ = % with k =1,..., N — 1. The
q = k = 0 mode does not intervene since it corresponds to a uniform displacement of the interface, which is forbidden by
the fact that we work at fixed S: Zl ds; = 0. The eigenvalues of the Hessian are all identical for the fully-connected model:
Afe. = —2¢* + 55 + . For the linear model they are given by A\q = —25[1 — cos(q)]> + 5 + [4 + 2cos(g)]. In the
latter case, the most unstable mode is g = %’“, leading to the following critical values

conditions, and h.g =

+ 5%5043 for the fully connected one. The eigenvalues of these matrices can be computed

4
Ns2

3N

skN)y = = (A17.2)
PB . N 1 1 2m
SePYN) = 2C2(?Os(%))z(frN(zurzcos(ﬁ)))
SN ——— (N + 12N + O(N%)) . (A.17.3)

16c274
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A.18Appendix H: Continuum limit

Here we detail the scaling that allows to find the probability distribution of the dimensionless continuum avalanches P[S;]
knowing the probability distribution of the discrete case P(§ ). We denote for clarity the continuum field as u:(z), x € [0, L],

and its N-point discretization as w;; = u(4 ) We will add indices ¢ and d to distinguish between physical quantities of the
continuum and discrete models. An easy way to ensure that the statistic of the discrete case corresponds to the statistic of
the continuum one is to compare the different terms in the dynamical action (see :

e The disorder term: Zj’:l ftadﬂftuit = fOL dxftacﬂt(:c)Qut(:c) ~ Zf\;1 %acftﬁt(i%)Qut(i%)

ap ((i41) &) =244 (1 L )40 ((i—
o The elastic term: Zlefta“cd(ui+1t—2uit+ui_1t) Ef docf g (z)ccAug (x )225\’1 Nf e (i %) ce (D)2 tL(QN)Jr GG

NZ
.. S L - .
e The driving term: Zf\;lftmﬁuitwit = fo dacftmgut(:c)wt(x) ~ Z ) chf Ug (4 )
This indicates that the quantity of the discrete model should be md = %mg, cqg = %cc and o4 = %Uc. In particular,
the rescaled quantities which appear in the text, in the formula for the dimensionless discrete distributions are % = IZ—QQ ;1“2
b H

and S%, = %an, Note that we will choose everywhere in the main text ¢ = 1. This implies that the probability distribution
of the dimensionless rescaled continuum avalanches denoted by P. is given in terms of its discrete analog P = Py given in
(A.3.8) as (introducing the explicit dependence in the driving):

RIS (), w(z)] = Jim_ (%)N P, (%S‘ %w) (A.18.1)

where here S = (S(Li/N))i=1.... n and @ = (w(Li/N));
for n-dependent observables, one should choose 74 =

=

i=1,-..,~. This leads to the formula of the main text. Note also that
Te-

2\“

A.19Appendix I: Optimal shape in the discrete model

Here we compare the results on the continuum optimal shape with the discrete case. This is not only a consistency check,
but also allows us to compare the results of the optimization when we include boundary conditions, and to investigate the
stability of the shape. We choose to work on the discrete model with an elastic coefficient set to unity, which corresponds
to a N-point approximation of the continuum model with a line of length L = N, i.e. the index i of the discrete model is
the coordinate of the continuum line (see . In the continuum, the optimal reduced shape s¢ is obtained for total size
S and extension ¢ fixed, and contains all the probability when S/¢* > 1. To compare this result with the discrete model
we used two different optimization procedures on the discrete probability. We always impose the total size S and optimize
on the shape variables s; = S;/S with

1. either the two central points tuned to coincide with the optimal continuum result: we note n.,iq the integer part of
N/2 and impose Sn,,,; = Sn,,.q+1 = $50(0.5/0).

2. either N — [ successive shape variables fixed to be small (below we use s; = 107° )

Procedure (i) is an indirect way to impose the extension by imposing that the avalanche shape is peaked around some
region, whereas procedure (ii) is closer to the continuum setting where we directly imposed the finite extension. In both
cases we impose S >> ¢* to obtain a true maximum. The optimal shape is always found to be symmetric, which allows us
to impose this condition to study reasonably large N. The result of the optimization is then compared with the prediction
from the continuum theory: s; = S<1S:i) =gs04 $50(i/f). One can then
o Verify that the optimization on p (including boundary conditions) or H alone (defined in the continuum in (AZ7.4))
give the same results. It is already obvious for ¢ < N and Figure explicitly shows that it is always true for
S > 0% even if £ ~ N. This validate the hypothesis made in the continuum that boundary conditions do not play a
role for large S/¢*.

e Using an optimization on H, we can verify that the discrete optimal shape coincides with the continuum one. The
results are shown in Figure One can see that, apart from some discretization artefacts, procedure (ii) give
results in agreement with the continuum result. On the other hand, procedure (i) leads to a shape with an effectively
larger extension. This is in agreement with the idea that the property that avalanches have a strictly finite extension
is only a feature of the continuum limit, as explained in Section [A77.2] and is coherent with the idea that procedure
(i) only imposes a “characteristic" extension in the discrete setting.

o Finally, we can study the behavior of the maximum eigenvalue A4, of the Hessian of the discrete Hamiltonian H at
the most probable shape (since the eigenvalues are negative it is the maximum one that is the closest to 0 and that
controls the stability of the saddle-point) using procedure (i). The behavior of the eigenvalues of the Hessian with S
is trivial: since S can be factorized in front of the Hamiltonian, they are proportional to S. However, in the discrete
case, there is no way to see the scaling 714 emerge from the Hamiltonian. Still, we clearly numerically find (see Figure
that A\maz scales with 1 /Z4 for £ — 0. This thus provides an alternative verification that the saddle-point is
stable, and that it’s stability is controlled by S/¢* > 1.
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Figure A.15: Comparison between the most probable shape of length £ = 10 with
N = 12 computed using optimization on ‘H (blue dots) or p (red dots), using procedure
(i), and for different total sizes S from left to right: 4% = 102,101, 1. The influence
of boundary conditions quickly decreases as S/¢* is increased.

Figure A.16: Most probable shape in the discrete model obtained using numerical
optimization on H with procedure (i) (blue dots) or procedure (ii) (red square) with
N =30 and ¢ = 16 (left) or £ = 22 (right), compared to the continuum saddle-point
prediction so(z/€)/¢ (straight line).
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Figure A.17: Maximum eigenvalue of the hessian of the hamiltonian at the numerical
optimum as a function of %4 for large, fixed S with procedure (i).
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Paper: Universality in the spatial shape of
avalanches

The following is essentially the article published as

Title: Universality in the mean spatial shape of avalanches

Authors: Thimothée Thiery and Pierre Le Doussal

Journal-Ref: EPL (Europhysics Letters), Volume 114, Number 3

Abstract: Quantifying the universality of avalanche observables beyond critical exponents is of current great interest in
theory and experiments. Here, we improve the characterization of the spatio-temporal process inside avalanches in the
universality class of the depinning of elastic interfaces in random media. Surprisingly, at variance with the temporal shape,
the spatial shape of avalanches has not yet been predicted. In part this is due to a lack of an analytically tractable definition:
how should the shapes be centered? Here we introduce such a definition, accessible in experiments, and study the mean
spatial shape of avalanches at fized size centered around their starting point (seed). We calculate the associated universal
scaling functions, both in a mean-field model and beyond. Notably, they are predicted to exhibit a cusp singularity near
the seed. The results are in good agreement with a numerical simulation of an elastic line.

Together with the associated supplemental material published in

ArXiv: 1601.00174

B.1 Letter

Numerous slowly driven non-linear systems exhibit motion which is not smooth in time but rather proceeds discontinuously
via jumps extending over a broad range of space and time scales. Developing predictive models of avalanche motion and
understanding their universality, or lack thereof, has emerged as an outstanding challenge of modern statistical physics [81].
In condensed matter recent developments have led to distinguish two broad classes, depending on the importance of plastic
deformations. In systems such as dislocated solids, metallic glasses, granular media near jamming, plastic deformations play
a crucial role and despite recent progresses a theoretical description is still under construction [91] 93] 233] 234]. In many
other situations the description by an elastic interface driven in a disordered medium has proved relevant [63, 235] 236, [68].
Examples are domain walls in soft magnets [100, [45], fluid contact lines on rough surfaces [60] [61], strike-slip faults in
geophysics [64] [65] [66], fractures in brittle materials [52) [56], (55| [51] or imbibition fronts [69]. This class exhibits a dynamical
phase transition - the so-called depinning transition - accompanied by collective avalanche motion. While the microscopic
details of the dynamics are specific to each system, the large scale statistical properties of the avalanches are believed to
be universal. The most studied quantities in this context are the critical exponents characterizing the scale-free probability
distribution function (PDF) of avalanche total sizes S, P(S) ~ S5 and durations T, P(T) ~ T~"". They are related
to the roughness and dynamical exponents, ¢ and z, defined at the depinning transition of the interface, using the scaling
relations S ~ £4+¢ and T ~ £* with ¢ the lateral extension of the avalanche.

Recent improvements in experimental techniques allow studies of avalanches with higher accuracy and to access new,
finer quantities, with the aim of distinguishing more efficiently the different universality classes. This notably includes the
direct imaging of the spatio-temporal process of the velocity field inside an avalanche v(z,t) where x denotes the internal
coordinate of the (d-dimensional) interface and ¢ is the time since the beginning of the avalanche. A question of great
interest is to understand whether and how scaling and universality extend to v(z,t).

Until now the focus was on the center of mass velocity vem(t) ~ fdda: v(z,t) and the mean temporal shape at
fixed duration T, (vem(t))r, where here ()7 denotes the statistical average over all avalanches of fixed duration 7. A
scaling analysis suggests, through the sum rule S = fdtddxv(:r,t), the existence of a scaling function f;emp(t) such that
(Ve () = TV f3P(¢/T), where v = (d + ¢)/z. The universality of f;*P(t) was shown theoretically and studied
experimentally in [143] [142] [237| [144] 145]. The beautiful parabola-shape predicted at mean field level, fiemp(t) = t(1 —t)
(and v = 2), stimulated the excitement around this observable.

Though very interesting, this observable does not contain information on the remarkable spatial structure of avalanche
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Figure B.1: Density plot of the velocity field v(z, t) inside an avalanche of size S = 1760
in the mean-field model (Brownian Force Model) for d = 1 discretized with N = 128
points. Time is given in machine-time unit. Line in red: backward path produced by
the algorithm used to find the seed of the avalanche (see text). Inset: the spatial shape
of this avalanche when centered around its starting point.

processes (see for illustration Fig. [B.1). A characterization of even the mean spatial shape of avalanches in terms of a
simple scaling function is presently lacking. In this Letter we propose and calculate such a scaling function. We consider
the mean shape of avalanches at fixed total size S, for which a scaling analysis suggests (in real or in Fourier space

(S(q)s = [ d'we'™(S(x))s)

(S(x))s = ST o

(S(a))s = Sfa(gST) | (B.1.1)

where S(z) = fdtv(x,t) is the “local size" at , f4(z) and fa(q) are radial scaling functions (hence z and q as arguments
of the scaling functions always denote the norm of the vectors x and ¢), normalized as f dcfa(x) = fa(q = 0) = 1, since
S = fddm S(z). Here the local size at x, S(z) is the local displacement of the interface between the beginning and the
end of an avalanche at the point x, while the total size S is the area swept by the interface during the avalanche. Note
that these definitions are not complete: there are various ways of centering an avalanche. Our proposal is to study the
spatial structure by centering the avalanches on their starting points. Hence in ()s denotes the statistical average
over all avalanches of fixed total size S and starting point z = 0. We call this procedure the seed-centering which appears
natural when one thinks of how an avalanche unfolds following a branching process (see Fig.|B.1)). Furthermore, it permits
analytical treatment and is thus appropriate to compare theory and experiments.

We first calculate the above scaling functions at the level of mean-field. This requires to go beyond the simplest mean-
field toy model, the ABBM model [98], [99] which only describes the center of mass motion of the interface. To this aim
we consider the Brownian Force Model (BFM), recently introduced as the relevant mean-field theory to describe spatial
correlations [I11] [102], [I0T] [T]. For this model, we even compute the full mean velocity-field inside a seed-centered avalanche
of given size S which in general obeys the scaling form

(0(z,8))s = ST F(t/STF /ST . (B.1.2)

More generally, in this Letter we consider elastic interfaces in the quenched Edward-Wilkinson universality class with
short ranged disorder. In this context, the BFM is accurate for d > d., where d. is the upper critical dimension of the
depinning transition, d. = 4 for short-range (SR) elasticity and d. = 2 for the most common long-range (LR) elasticity. In
lower dimensions d < d., correlations play an important role. To take them into account and study this more difficult case,
we use the Functional Renormalization Group (FRG) and calculate the scaling functions f4(x) and fu(g) perturbatively in
€ = d. —d, to one-loop, i.e. O(e) accuracy (see [114] [127, [126], 116, [129] [TT7] for background on FRG, and [86}, [T09, [TT1], [T0T]
for its application to the study of avalanches). We show that the scaling ansatz holds and that the scaling functions
contain only one non-universal scale £, (which is discussed in details below)
€T ~ ~

fale) = g FAT)  Fala) = Fullea) | (B.1.3)

!
where F; and Fy are fully universal and depend only on the space dimension d and the universality class of the model
(i.e. range of elasticity and disorder). The precise model that is the starting point of our theoretical analysis (for elastic
interfaces with short-ranged elasticity) is given in . Our conclusions however apply in much greater generality and
the details of the model are unimportant (once the range of elasticity and disorder correlation have been set). Indeed, since
the scaling functions that we compute are universal and entirely determined by the properties of the FRG fixed point for
models in the quenched Edward-Wilkinson universality class, any model in the same universality class leads to the same
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Figure B.2: Plot of the mean-field result for the space-time mean velocity profile inside

an avalanche in d = 1 for SR (left, see (B.1.4)) and LR elasticity (right, see (B.1.7)).

scaling functions. In the first part of the Letter we thus focus on stating our results, and report the discussion of the model
and of the method to the second part. For a generic system, we expect scaling and universality to hold for avalanche of
size S in a scaling regime Smin < S < Smax. Note that in , the space variable x is measured in units of Sﬁﬁ (see
(B.1.1)). In the original units, the universality in the avalanlche shape should hold for both small and large = (compared
to S T}rC) as long as Tmin K £ K Tmax Where Tiin/max ~ Srﬁmax. We will start by discussing the exact results obtained
for the BFM (defined below, see (B.1.12)). These results are also of interests for the SR disorder universality class as the
lowest order terms in the € expansion (i.e. O(e") terms) of the true universal scaling functions.

Results within mean-field: The BFM can be studied analytically in any dimension d. Let us first consider the case of
SR elasticity. The exponents are 7¢ = 3/2, 7r = z = 2 and ¢ = 4 — d. The scaling function in (B.1.2)) admits a very simple
expression:

o2 1 —2/(41)

F(t,z) = 2te (47rt)d/28 , (B.1.4)
which is plotted in Fig. Here we use dimensionless units, the original units can be recovered using x — mx, t — t/7m
and S — S/S, where 7,, = 77/m2 and S,, = 0/m4 and the parameters n,m and o are those in the equation of motion
of the model (B.1.12). Time integration of (B.1.4) confirms for the BFM the general scaling law (B.1.1)) and (B.1.3)) with
Fi(z) = f0+oo dtF(t,z) and £, = c~'/*. The result is simplest in Fourier space and does not depend on the dimension:

2 4 2
FYMF(q) = FMF(q) =1 — \/gq e'Terfe <q2> , (B.1.5)
_ 2 [too 42 MF . . ) .
where erfc(z) = — fz e~ "". In real space, ;" (x) depends on the dimension and can be expressed using hypergeometric

g 1-4 ~
functions [238] with 7% (0) = ﬁ. Both 7M¥(q) and F)L ,(z) are plotted in black in Fig. A fundamental
property of FMF (¢) is that it possesses an algebraic tail ﬁMF(q) ~ g~ at large ¢, which generates a non-analytic term
~ |z|*=% in the small = expansion of F3¥ (z) around the origin. Its behavior at large x is evaluated using a saddle-point on
(B.1.4), leading to a stretched exponential decay with a d-independent exponent 4/3:

1_d
2_d/271—§_§ 2—d _ 324/3

FiF (@) g ———x 3 € 1. (B.1.6)

V3

These results easily extend to LR elasticity, in which case z =1, ( = 2 — d and the mean shape in Fourier space is obtained
replacing ¢ — ¢ in (B.1.5). Let us also give here the spatiotemporal shape (B.1.2]) for the experimentally most relevant
case of d = 1, with

2t267t2

e (B.1.7)

F(t,x) =

Results beyond mean-field for SR elasticity: For realistic SR disorder, the BEM is the starting point in the e = 4 — d
expansion. It is most clearly implemented in Fourier space, since the mean-field result for F4(gq) does not depend on d:

Fit(q) = F¥(q) + 6Falq) + O(€) (B.L.8)
with 6F4(q) = eF(q). Here FM(q) = c ;T‘:re”fl(p, q) is obtained as an Inverse Laplace Transform (ILT) p — 1:
Apg=2YT|2=3e 1 AVE (B.1.9)
DT TS #reE (@ 2y =

7112—’—9\/[7 sinh ™' | —L_ | - i1r1
X(qw ! (wm) ”16”““%
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Figure B.3: (color online). Analytical results at MF and O(e) level for the universal
scaling function F4—; in Fourier space (Left) and F in real space for d = 1 (Middle) and
d =2 (Right) for SR elasticity. Black lines: tree/mean-field results. Dotted blue lines:
universal corrections, 6.7 (q) (left, O(¢) correction in Fourier space in d = 1), §F;(x)
(middle) and §F2(x) (right). Red-dashed lines: O(e) estimate obtained by simply
adding the corrections to the MF value. Red lines: improved O(e) estimate, which,
through a re-exponentiation procedure, takes properly into account the modification
of exponents (B.1.10) and (B.1.11)) (see [238]). Note that the cusp at the origin of the
avalanche shape at O(e) is not obvious in this plot since the non-analyticity is rather
small, but it can be emphasized using a log-log scale (and measured in numerics, see
Fig. [B.5).

where g is Euler’s Gamma constant (see [238] for the choice of C). We then define the correction to the mean shape in real
space as the d-dimensional Fourier transform 6F,(z) = [ (;:;;d e~ Fy(q). Hence, F32(z) = FYF () + 6Fa(z) + O().
From the ILT expression (B.1.9) we obtain the following analytical properties of the O(e) corrections:

8log(e)—vE—8
9g%

1) Its large g expansion is 0F4(q) ~g>1 € , interpreted as a change in the tail exponent fjq:

. - = 5 4e

Fa(@) g1 Aag™™ , Ga=4- 5+ O(e%) , (B.1.10)
with a universal prefactor A; = 2(1 — (2 + 7TE)%) In real space this implies, in the expansion of Fy(z) at small z,
a non-analytic term ~ |z|" with g = 7jq — d = % + O(¢®). Restoring the S dependence from 1) this leads to

(S(0))s ~qortoo S' T g4 and the non-analytic part (S(z))%® ~zo S' 74 |z|7. Note that in the BFM the value
fla = 4 = d + ¢ implies that the large ¢ behavior of (S(q))s does not depend on S. This may seem natural: in the BFM
the small scales do not know about the total size of the avalanche. A generalization of this property to the SR disorder
case would suggest the guess 75" = d + (. Our result explicitly shows that this property fails with 7jq > d + (. Hence
in the SR disorder case the large avalanches tend to be more smooth than small avalanches. Note that the predicted value
of ngq is smaller than 2 in all physical dimension: this non-analytic term should actually dominate the behavior of Fy(x)
around 0 (and thus lead to a cusp singularity). A possible interpretation of this cusp singularity is that around 0 the mean
shape of avalanches Fq(z) is dominated by avalanches whose largest local size is at their seed. This could correspond to
the fact that such avalanches occur as a consequence of large fluctuations of the disorder that would pin a specific point of
the interface for a long time. These would result in configurations of the interface with a single point well behind the rest
of the interface. The depinning of such a point would then trigger an avalanche that is peaked around its seed [239)].

2) At large z, we obtain that the stretched exponential decay exponent of the mean shape is modified from its MF
behavior §MF = 4/3:
8

, 6= 44 3e+0(e2) : (B.1.11)

—Cx
Fa(z) ~e 3T 5

with a universal prefactor C' = 3 + (73—? —1)2¢. Remarkably, using ¢ = €/3+ O(€?), this agrees to O(e) with the conjecture
0= % that we justify in [238]. i
Furthermore, the ILT expression (B.1.9) is easily calculated numerically. The corrections § Fy (¢) and 0F;(x) are shown

in Fig. together with the resulting estimates for the functions F3%(z) and F5%(q).
Model and method: For SR elasticity, the equation of motion for the interface position u(z,t) (denoted uzt) is
N0t Uzt = Viuzt — mQ(uzt —wt) + F(uge, x) , (B.1.12)

where 7 is the friction, m is a mass cutoff which suppresses fluctuations beyond the length ¢,, = 1/m and m2w, is the
driving force. In the BFM, the random pinning force F(u,z) is an independent Brownian motion in u for each z with
(F(u,z) — F(u/,z))? = 20|u — «/|. For the SR disorder universality class, the second cumulant is F(u,z)F(u/,z') =
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84z — 2')Ao(u — v') with Ag(u) a fast decaying function. Eq. (B.1.12) is analyzed using the dynamical field theory and
the FRG [238]. This leads to an expression for (S(z))s as an ILT: (S(y))s ~ LT;iS((ﬂglc:(J)g)/p(S) where p(S) is the
avalanche-size density (previously computed to O(¢) accuracy in [I09, I01]) and @3—, is the O()) term taken at 2 = 0 of

the solution @, of the following differential equation (here in dimensionless units):
—pu Nz —y) + (G) + Viide — (1 +&)ie =0, (B.1.13)

where &, is a white-noise of order /€ and (.)¢ denotes the average over it. For the BEM, the result is thus obtained setting
&z — 0 above. At O(e) for the SR disorder universality class, it is thus sufficient to solve perturbatively to second
order in &;. Here the fact that we are looking at the local size of avalanches at x = y and whose seed is centered at x = 0
is encoded in as the fact that we are computing the value at z = 0 (seed position) of the solution of with
a delta source Ad(z — y) (local size position). The seed centering therefore allows analytical treatment here because @z—o
only contains the contribution of avalanches starting at 0 (see [238]). Using another type of spatial centering does not allow
a similar simple treatment.

In our model (B.1.12‘ , the non-universal scale £, in is m_ls;Ll/OHO where S, is defined from the ratio of the
first two moments of the avalanche size distribution, Sy, = (S*)/(2(S)), which can be measured in numerics and experiments.
Here () denotes the average with respect to the avalanche size distribution. In cases where the numerical or experimental
setup corresponds to our model (as in our simulations, see below), this prediction for ¢, allows unambiguous comparison
between our results and the data. In cases where ¢, cannot be predicted, some scale-independent features of the mean-
shape still allow comparison with the experiments. This includes the tail exponent of Fy(g) in , the small and large

fddz|z|2p]:d(:v)
L e Ind=1, (c1,c2) ~ (1.6944, 3.8197)
([ dtlzlrFa())

for the BFM while (c1, c2) =~ (1.641 £ 0.001, 3.43 £ 0.02) for SR disorder to O(e).

distance behavior of F4(x) in (B.1.11), and the universal ratios c, =

S‘Fi? (S(x Sﬁ»s S_ﬁ? (S(x S#»s
0.3\
0.2
0.1
1 2 3 4 57 57

Figure B.4: (color online). Plain lines: rescaled mean shapes of avalanches at fixed
size S from the simulation of the BFM model (left) and of the model with SR disorder
(right), in d = 1, for S = 10 (left only, blue), S = 50 (right only, blue), S = 10? (red),
S =103 (green), S = 10* (purple) and S = 10° (left only, yellow). Dashed black lines:
theoretical MF result. Red dashed line: O(e) result. No fitting parameter.

Numerical simulations. A convenient choice of SR disorder, amenable to Markovian evolution, is the Gaussian disorder
F(u,z) with "Ornstein-Uhlenbeck" (OU) correlator Ag(u) = odue™“//®". It is defined by two coupled equations for the
velocity vzt = v(z,t) and the force F(x,t) (the first one being the time-derivative of (B.1.12))):

NOvat = V0gt + mz(ﬂ)t — vgt) + OF(x,t)

OiF (2, 1) = V20Unt Xat — %F(m, t), (B.1.14)
with x.: a centered Gaussian white noise Yzt Xa/¢7 = Sd(x —2')§(t — t’') and initial condition vyi=0 = F(z,t = 0) = 0. In

the stationary regime, this model is equivalent [43], [92] to Eq. with tgt = ver and F(x,t) = F(ugt, x) and initial
condition ugt=0 = 0. When 1/du = 0 this model becomes equivalent to the BFM. We discretize time in units dt and space
with periodic boundary conditions along x. To measure quasi-static avalanches, we apply a succession of kicks of sizes
Sw: we impose vyt = (m?/n)dw at t = 07 (beginning of the avalanche), iterate and wait for the interface to stop
before applying a new kick [238]. To identify the seed of each avalanche, we record the velocity v(z,t) for the n, = 10%
first time-steps of the avalanche. We find the position Zmax(n:) of maximum velocity at ¢,, = n.dt (or at the end of the
avalanche if it has stopped before), and then successively identify at each time step t, < t,, the position Zmax(n) defined as
the neighbor of Zmax(n + 1) with the largest velocity at time t,. Tmax(n = 1) is identified as the seed of the avalanche. The
size of the kicks is chosen small enough so that the probability to trigger several macroscopic and overlapping avalanches is
negligible (see [238] for details).

In dimension d = 1 we use a system of size L = 2048 discretized with N = L points and a mass m = 10/L. In Fig. B.4]
we show our results for the mean-shape for different values of S and compare with our theoretical predictions using the
predicted value of ¢, (deduced from the measurement of S, ), hence with no fitting parameter. The results for the BFM
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Figure B.5: (color online). Left: (resp. Right:) Log-Log plot of Fy—1(0) — Fa=1(x)
(resp. Fy—1(q)) numerically obtained in the BEM model (blue) and in the model with
SR disorder (red). Dotted lines: guide lines for the BFM result 2?2 (left) and 1/¢*
(right). Dashed lines: z!-5 (left) and 1/¢*® (right). These results are consistent with
(i) the exact result 7j4—1 = 4 for the BFM (ii) 74=1 ~ 2.5 for the SR disorder model (in
between the guess 775, = d + ¢ ~ 2.25 and our O(e) prediction 7j4—1 ~ 8/3 ~ 2.66).

are excellent. For the model with SR disorder, the improvement brought by the O(e) correction is substantial. If one
instead uses a measurement of ¢, by e.g. setting the value of the shape at the origin, the agreement With the SR disorder
model is, to the naked eye, almost perfect. We also measure properties independent of the value of ¢,: (i) in Flg- B.5| the
small z and large ¢ behaviors (ii) the universal ratios ¢,. We obtain (c1,c2) ~ (1.699 &+ 0.003,3.83 + 0. 05) for the BFM
and (c1,c2) ~ (1.612 £ 0.004,3.16 £ 0.03) for the model with SR disorder (error-bars are 3 sigma estimates). The above
predictions are in perfect agreement for the BFM, and our O(e) corrections go in the right direction for the SR disorder
case.

To conclude, we introduced an original way of characterizing the mean shape of an avalanche by centering around
its seed. We obtained theoretical predictions for this observable and confronted them to numerical simulations. We also
proposed a protocol to measure it. We hope that this work stimulates measurements of this quantity in numerical setups
and imaging experiments.

B.2 Supplemental Material

We give here a derivation of the results presented in the main text of the letter and details on the numerical simulations.
Dynamical Field Theory Setting

Here we first introduce the formalism used to derive the results presented in the letter.

Equation of motion and dynamical action

As written in the main text, we consider the equation of motion for the over-damped dynamic of an elastic interface of
internal dimension d in a quenched random force field and driven by a parabolic well of position wg:

N0 Uzt = Vzuwt —m? (Uat — wat) + F(uat, x) (B.2.1)

where € R%, t € R, uzt € R (the space-time dependence is indicated by subscripts). The elastic-coefficient as been set
to unity by a choice of units. In this formulation, the driving force of the parabolic well is fz: = m> (wet — ugt). The
pinning force F(u,x) is chosen centered, Gaussian with second cumulant F(u,z)F(u/,z') = 6%*(x — z')Ao(u — «') (the
overline denotes the average over disorder) where Ag(u) is a short-ranged function. Higher cumulant can also exist (i.e. non
Gaussian force, and are taken into account in the FRG treatment). Note that here we have written the case of short-ranged
(SR) elasticity with an elastic term of the form V2uzs. Other elastic kernels can also be considered, by changing

Vium — mPug — / g;zl,uzrt (B.2.2)
where g_ , is a translatlonally 1nvar1ant (g;zl, = g_1 ,) elastic kernel. In particular, we will consider the following kernel
(here written in Fourler space) f €' g1 here and throughout the rest of the Supplemental Material f fxe]Rd diz
and f fqeRd (271')d

9" =V + ¢ (B.2.3)

which is known to be relevant in the description of standard long-ranged (LR) elasticity. In this situation, the parameter
 is related to the mass m as m = ,/p. In most of the following, we will deal with the SR elasticity case, and explicitly
mention when we consider the LR one. Introducing a response field is:, the generating function of the velocity field
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G[Azt] = ef ot """ ig computed using the dynamical action formalism for the velocity theory, that is for the time-derivative

of (B.2.1) [132] [130]:
G[Azt} _ /D[ﬂ]D[u]efwt Aptiige+m? fzt Uyt Wat—S0—Sdis

1
So = / Gzt(n0s — V2 +m*)iee ,  Sais = *5/ Uzt Ugpr O Op Do (Uzt — Ugt) (B.2.4)
xt xtt!

The renormalized field theory

As discussed in [TI01], in the limit of small m, and in the quasi-static limit w,; = v — 0T, universal quantities associated
to the motion inside a single avalanche can be computed in an expansion in € = 4 — d using an effective action identical to
(B.2.4) with the replacement Ag(u) — A(u) = A(0) — o|u| — 4r2am*~%u? + O(e?), where o and a = O(e) are renormalized
quantities. o is a non-universal parameter whose value is related to the two first moments of the avalanche size distribution
through the exact relation 20/m?* = (5?)/(S). On the other hand « is dimensionless and universal at the FRG fixed point
with value a = —2¢/9 + O(€?). In terms of the action, this replacement reads Sg;s — S;{sf = Stree + 01—100pS With

2 . 2 4-d J
Siree = —a/ Upilzt 5, Ol—loopS = —4m am / Ut Uzt Ugr/ Ugt (B.2.5)
xt xtt!

At lowest order in €, the action is Sde{sf = Siree. Using the renormalized value of o, it gives the exact result for universal

quantities in d > 4. In any dimension, this tree/mean-field theory also corresponds to an interface slowly driven in a
Brownian force landscape: for each z, F(u,z) is a Brownian in u independent of the others with (F(v/,z) — F(u,x))? =
20|u’ — u|. This is the Brownian Force Model (BFM). The O(e) corrections around the BFM are easily computed using
the fact that d1—i00pS can also be taken into account by introducing a fictitious Gaussian centered white noise &;; with
correlations (£,€,)e = 8n2am?~46%(x — z) through the identity

e — a —V2Z4+m? Ugpt—
e—SO—Sd-:Sf _ <6 fwt 2t (MOt —V=+m=+Ez ) Uzt Strcc>£ (B26)
where ()¢ denotes the average over £. One-loop observables are thus rewritten as averaged tree observables in a theory with
space-dependent mass m? — m? + £,. Since &, = O(+y/€), the effect of & can be taken into account pertubatively up to
order O(£2).

Avalanches observables

Avalanches in non-stationary driving

Let us first introduce our avalanche observables in a non-stationary setting. We refer the reader to [102] [I01] [1] for
more details on this procedure. We first prepare the interface is in its quasi-static stationary state we: ~ v = 07, then turn
the driving off: w,: = 0 and finally wait for the interface to stop at some metastable position. Supposing we are in such
a state at t = 0, we apply to the interface a step in the driving force localized at x = t = 0, fur = m?dwd(z)d(t) (local
kick) and let it evolve. Information about the resulting motion of the interface is encoded in the generating functional

GlAzt] = efw>0 s Remarkably, since the action (B.2.5) (written at one-loop in terms of &, (B.2.6)) is linear in g,

the evaluation of G[\¢] through the path-integral formalism simplifies. The integration on the velocity field 4, leads to a
delta functional and to the result:

m2swa s
GAat] = (e e=t=0), (B.2.7)
where ﬂif is the solution of the so-called instanton equation:

Tty
in what follows, to lighten notations. The boundary conditions is @i, = 0 for ¢t = +00. Here we will only be interested in

single avalanche, defined as the response of the interface to an infinitesimal step in the force. We introduce the generating
functional Z[Az¢] as (expanding (B.2.7) in dw):

2 4 ~ 4 4
here written in dimensionless units using the variables @i, = “~uz, x = &/m, t = 3t, Ayt = ©=A;4, and omitting the hats

elansaerie g _ SwZ[Aar] + O(6w”)
Zat) = m* (@37, _o)e (B.2.9)

In the above expansion, the dw factor just accounts for the probability to trigger an avalanche at ¢ = x = 0. Introducing
Pt=z=0[Uat], the density of velocity field 1, inside an avalanche that starts at t = x = 0, we write

ZAst] = /D[u] (efu Aotlot _ 1) Pt=a=0[Uzt] , (B.2.10)

where here this equation can actually be viewed as a definition of the density pit=z=0. The fact that these definitions
indeed correspond to what is usually meant by avalanches in the quasi-static limit is discussed below. This formulation
is up to now completely general. Let us now focus on two types of sources: AL, = (—pu 4+ Ad(z — y)d(t — 5))0(t) and
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A2, = (—p+No(z— y))&(t) (0( ) denotes the Heaviside theta function). In both cases, the u variable probes the total size of

the avalanche S = f sl . In the first case, A probes the local velocity at ¢ = s and x = y during the avalanche. In the

second case, A probes the local size of the avalanche at x =y, Sy ft> o . We write the associated generatlng function

ZONL] = Z2W(u, N\, y,s) and ZP[N2,] = 2P (u, A, y). These are obtalned through the formula (B.2.9) by solving (B.2.8)
which leads to

ZO(u, Ny, 8) = /deu e “S+X“ybp(1,)m o(Syiys) 2P (u, )\7y):/deSyef”sh\Sypgw:O(S, Sy), (B.2.11)

where pEQI:O(S, Uys) (resp. pi )I o(S,tys)) is the joint density of total size S and velocity field uys (resp. of total size

S and local size Sy) for avalanches starting at ¢ = = 0. In practice we will only be interested in computing the mean
velocity-field inside avalanche of total size S, (iys)s (resp. the mean local size inside avalanche of total size S, (Sy)s).
These are computed as

LTil 8AZ(1)‘,\:0 LTil 8>\Z(2)|)\:0 o
. pn—S pn—S .
Uys)s = , (Sy)s = = ds{tiys)s B.2.12
where LTH__I) 5 denotes the Inverse Laplace Transform (ILT) operation LTH_l> s = 23# f c d,ue“s with appropriate contour of

integration, and we have introduced p(S) the density of avalanches of total size S, previously computed up to one-loop in
[T09}, ITT, M01] (p(S)/L¢ = fdayspgxzo(s, Uys) = deypEi)xzo(S, Sy) is the density of avalanches of total size S starting
at z = 0). For the observables we are interested in, we will thus only need to solve (B.2.8) at first order in A.

Link with the stationary driving

Let us now present here how the precedent approach is linked to avalanches occurring in the quasi-static stationary
state of the interface dynamic Wy = v — 0t. We introduce po the mean density of avalanche per unit of driving and
pltiz] the (functional) probability of velocity field 4, inside an avalanche. At first order in v, the generating function

G[Aat] = efzt Aatlat an be written as
Got] = (1 = povT) + povT / DfiJedet > plitgs] + O(?) = 1+ 0T / D] (JM Avtiiar 1) plitzt] + O(v?) (B.2.13)

where we reintroduced p[tz¢] = popliez] the density of velocity field ., inside an avalanche. The equation can be
seen as a definition of what is meant by avalanches in the quasi-static setting. The time scale T that appears in
should be much larger than the time-scale of avalanche motion (to allow the avalanche to terminate) and much smaller
than the typical waiting time between avalanches. This only works if A;; is also non-zero in a time window smaller than
T': this ensures that the measurement made on the velocity-field is also inside a single-avalanche On the other hand, the

small velocity expansion made directly on the action (B.2.4) and compared to (B.2.13|) gives

GAet] =1+ v(m? /f“”“ —>/D[1l] (ef*“ ) plee] = / m” ) et (B.2.14)

where here the average (,)x,, refers to the average with respect to the dynamical action with source Az:. In the right
of , the integral over time and space originates from the fact that we have consider the effect of avalanches starting
at any point of the interface, and at any time in the time-window 7. From a field-theory point of view, it is then natural
to interpret m? (lig=t=0),, as the contribution from avalanches starting at ¢t = x = 0 (diagrams entering into (Gz=t=0)x,;
can only have a first non-zero u,: at * = 0). Furthermore, this is supported by the non-stationary setting in which this
interpretation is immediate. In the quasi-static setting we can only a priori consider sources A;: non-zero in time windows
smaller than T to make sure that only one avalanche is taken into account. However, from a practical point of view, when
T >> 7, where 7, is the typical time scale of avalanches, both descriptions give exactly the same result as detailed in
[101].
Calculation in the BFM

Mean-velocity field inside an avalanche in the BFM

Here we present the calculations leading to the resuts Eq. and Eq. of the letter for the mean-velocity field
inside avalanche of total size S in the BFM (4ys)s (denoted v(y, s) in the main text with y = = and s = t). We have to
solve to first order in A the instanton equation

Ozt + Vgt — Gt + Uy — 1+ N(z — )t —5) =0 . (B.2.15)

Note that here, in dimensionless units, time and avalanche size are measured in terms of the natural units of avalanches
motion 7, = n/m? and S,, = o/m*. The perturbative solution is @izt = 4%, + s A + O(A\?) with

W=

t
(1-K(w) , wp)=QQ+40)T , ay :_/ PG ey 541 ) t(B.2.16)
—+oo

N | =

here written in Fourier space for the O()\) part: ﬂét = f e'® L, This immediately gives

= /eiqy—(qz-&-fcz(#))s (B.2.17)
q
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a
Lt -s/4

5 we obtain the mean velocity field inside a single
PNb

Using the tree result for the avalanche size density pM¥(S) =

avalanche using (B.2.12) as

. 2 . 1
<dys >s= 2w S LT L /elqy*(quﬂﬂws —2s¢” S /ewy*qzs = gsefsz/sﬁe*f/(‘m (B.2.18)
. . (4mws)d/

In the notation of the main text, we thus obtain (B.1.4) that we recall here

2-d 1
<z, t) >s= 8 T F(t/SY? z/SYY) | F(t,z)=2te " We‘xz/“” (B.2.19)

Ezxtension to LR elasticity
Following the same computation, one obtains for the case of the BFM with long-ranged elasticity (with the kernel
(B.2.3))

Tt = /eiqy—(\/ 14+q2—14+k2(p))s (B.Q.QO)
q

And thus
s2 : /
< lUys >s=2se S /e““‘f( H+e®—Ds (B.2.21)

q

Note that here, the spatio-temporal shape does not satisfy the expected scaling form , < Uys >5= S¢ F(S/S% , y/S%)
for all S. This should not be surprising, it is known that the present theory describes scale-invariant avalanches only for

S &« Sp, (here Sn = 1 in dimensionless units is the large scale cutoff Smax mentioned in the main text, and note that in
our theory the low-scale cutoff on the scaling regime Smin also mentioned in the main text can effectively be taken to 0 for
shape observables). The fact that the scaling hypothesis for the mean velocity field holds V.S in the BEM with short-ranged
elasticity is the true surprise. Scaling in the long-ranged model is restored at small S and here

d—1 2 .
_ a1 . _ —s iqy—lals
F(s,y) 51}_}11’%)5 <ty g3, >S 2se /qe (B.2.22)

Evaluating this integral in dimension 1 immediately leads to the result (B.1.7).
The mean shape of avalanches in the BFM: results in Fourier space
We now derive the result Eq.(B.1.5) of the letter. Using (B.2.17), we immediately obtain the mean-shape of avalanche

in Fourier space in the BFM as
S 2 4 2
FM(q) = / 256" T =1 @eqferfC <q2) (B.2.23)

=0

i.e. the result (B.1.5) of the main text. Note that here avalanche sizes have been expressed in units of S,, = o/m* and
distances in units of 1/m. Hence the non-universal scale £, of the main text is indeed ¢, = %S;Ll/ Y= o714 Let us give
here the large and small momenta behavior of FMF (g):

2 12 120 1

FM(q) =g F @t O (B.2.24)
2 4 6
FY(g) =q<1 1 - \/gq +5 - \/gq +0(q%) (B.2.25)

Extension to LR elasticity

We now compute the mean shape in real space. In particular we obtain the result Eq, of the letter. The extension
of the precedent results to the case of LR elasticity is straightforward. As written in the main text and following the formula
, the mean-shape in Fourier space in the scaling regime for LR elasticity is simply obtained from the precedent
results by changing ¢® — |q|:

]_-MF,LR,(q) _ ]j-MF(\/a) (B.2.26)

) ]:—MF’LR(Q) g1 2.

In particular it now has an algebraic tail at large ¢ with exponent 1/¢° p

The mean shape of avalanches in the BFM: results in real space
In real space, F3™F (z) is most simply obtained by integration of (B.2.19):

“+oo
MF _ 2 1—d/2 222
]:d (.T) = W g dtt e 4t (B227)
This integral can be expressed either as the sum of three series:
oo a 1 b
Fi (@) = mt T8 (et - et gt (B.2.28)
g sin <F 4cos sin <~

27d -3

2
= s ra oy o = B.2.29
T (Z+p) 7 pr(—Z+2p+3) (B-2.29)
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or, equivalently, as the sum of three generalized hypergeometric functions (corresponding term by term to the series):

237dcsC(Ld) oF> (.l 4.,&) 21—dx2seC(Ld) oFs <.§ ngl,ié)
MF 1 1—-4 4 » 2940 64 1 ;2,2 -z
8 B B.2.
ot tese () oF (13- $2- fi-3)
i T6-9) )

The expressions (B.2.28) and (B.2.30) are adequate for d = 1,3. For d = 2,4 one must first take the limit d — 2,4 before
evaluating. This is easy to do with mathematica, and we give here only the two leading terms at small x:

1 a?(—4log(x) — 3yp + 2 + log(16)) +0(2°)

MF

= - B.2.31
P2 @) == 167w (B.2.31)

ME, \_ —4log(x) — 3vp + log(16) z’ 3
Fa't(x) = Ton2 3937 T0(2°) (B.2.32)

For d < 4 the value at zero is finite:
—d _1-2
FNF(0) = 2d il id (B.2.33)
r (Z) sin (T)

F'F(0) ~ 0.345684 ,  Fy'F(0) ~0.141047 ,  F2'F(0) ~ 0.0813891 (B.2.34)

and FY'F(0) diverges as - as d — 47 (it has a minimum near d = 3.2). For d > 4 it diverges near zero as FME () ~

‘rrlid csc( 22
8;(#&)2)1‘47‘# The large distance behavior is easily obtained from the saddle-point method on (B.2.27). It yields a

2
stretched exponential decay at large x with exponent 4/3, independent of d:

27420578 3-a /3
FYF (@) 2T S e ™ (B.2.35)
V3
Extension to LR elasticity
We did not attempt to find expressions for the mean-shape in real space for LR elasticity in any d. In the most
experimentally relevant case of d = 1 however it takes a simple expression: integrating (B.1.7) from ¢ = 0 to t = co leads

FMELR () _ % — |a|e® erfe(|a]) - (B.2.36)

We note in particular the behavior around z = 0, Fyr 7" (z) =1 —= —

N
space. At large x, the mean-shape now decays algebraically as Fcliv[:Fl’LR(x) =r>1 ﬁ + O(l/ac4).

|z| + O(x?), reminiscent of the 2/¢* tail in Fourier

O(€) corrections

“Brut” corrections
At O(€) we focus directly on the computation of the mean-shape at fixed size (Sy,)s. We need to solve

Oviizt 4+ V2 1gr — (14 Ex)lgr + Gy — 4 Mo(x —y) =0 . (B.2.37)

at order 1 in A and order 2 in £;. When &, = 0 (corresponding to the BFM model) this equation was recently solved exactly
[107] to study the joint distribution of total size S and local size S, in the BFM. Here we will only be interested in its
perturbative solution up to first order in A (to study the mean shape) but up to second order in &, (to study O(€) corrections.
We can look for time-independent solution and use a double expansion @, = Zi:o 22.:0 @ (x) where @} (z) = O(X'¢?). The

observable of interest is Z(u,y) = 9xZ® (4, y, \)|x=0 where Z) was introduced in (B.2.9). Using Z® (1, y, \) = m?(fiz—o)e

we obtain (in dimensionless units)

Z(uy) = 2" (wy) +02(ny) , 2 (wy) =dg(x =0) , 62(p,y) = (as(x =0))e (B.2.38)

These are most simply expressed in Fourier space Z (i, q) = fz e' Z(u,y) and we find

>MF _ _ 1
z (/’qu) - GQ(/’L) - qg 4 Kg(u)
0Z(n,q) = 8m°a(Gq(n))® (/ Gp(1) (1 +2Z(1)Gp—q(1)” + 2Go(u) /(1 + Z(M)Gp(ﬂ))Z(H)Gp(M)> (B.2.39)

where we have introduced the response function G4(u), a dressed version of the elastic kernel g, = m++qz'

Counter-terms

The result for BZ(u,q) is not yet complete: the integrals present in diverge at large g for d < 4. This is a
usual feature of one-loop computations in field theory. As detailed in [I0I], when doing a pertubative calculation in ,
one has to take into account a renormalization of ¢ and m? (the latter being in fact an artifact due to the utilization of
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the oversimplified one-loop action (B.2.5)). For clarity let us now denotes oo and m2 the parameters used so far in the
perturbative calculation. These are renormalized as oo — 0 = 0o + 60 and m2 — m? = m2 + 6m? with

502247r2a/g,% . om® = —877204/% (B.2.40)
k k

where g = m is the bare propagator. The parameters entering in (B.2.40|) are either the bare parameters or the

renormalized parameters (these choices differ from a term of order O(¢?)). The fact that the theory is renormalizable imply
that divergences present in should disappear when expressing the results in terms of renormalized parameters. Let
us thus denote {Ko} := {00, mj} the set of important couplings and emphasize the dependance of Z(u, ¢) by momentarily
adopting the simple notation Z({Ko}). Rewriting the result Z({Ko}) in terms of the renormalized coupling {K} leads to
the definition of the counter-terms d.+ Z({K}) as

Z({Ko}) = Z({K — 6K}) = 2"V ({K}) + 6 Z{KD) + 62({K}) + O(€”) (B.2.41)

and thus §C¢AZ~({K}) = —%?(})M(w To compute these partial derivatives, we reintroduce the original units of the
problem in ZM¥ ({K}):
ey

24+ /1+4dop/m*

The "%2 comes from the rescaling of @, the m~? from the rescaling of the Fourier Transform and the —i—z from the rescaling

ZMP(K)) = p (B.2.42)

of X\. Computing the derivatives with respect to o and m? and going back to dimensionless units leads to the following
expression for the counter terms:

8e.t. 2 (1, q) =8ﬂ2aeiquq:o(u)Gq(u)2(6u/gi - /gk) (B.2.43)
k k

It is then easy to check that adding (B.2.43)) to (B.2.39)) indeed regularizes the result. The computation of the resulting,
convergent integrals in d = 4 leads to the full result for the one loop correction dZ(u,q) — 0Z(p,q) + dc.t. Z (14, q) with

82 (1, q) = a(Gy(p))? (O + 6“)21(()1g(_1 ;ZQ)Z) 27 L4y <1 4 sinh~ (2W)Zq\/(;2:%1—2222))>> (B.2.44)

and Z = Z(p).

The mean-shape at O(e): Laplace transform in Fourier

We now obtain the result Eq.(B.1.9) presented in the letter. Using 7 the mean-shape in Fourier space is
computed as (S(q))s = MF(S) LT;HlS (ZMF(,M, q)) To order O(e), we have Z(u,q) = ZMF (i, ¢) + 62 (i, ¢). The density p

was computed to O(e) in [IT1] with the result p(S) = p™¥(S) 4 6p(S) with

vE(S — 6) + 48 — 8/7V/'S + (S — 6) log(S) + 4

5p(8) = ap™F () 0 (B.2.45)
(S(q))s can thus be computed to O(e) as
_ L? SMF Ld5p(5) -1 SMF L? -1 5 2
(S(q))s = (5 LT, s (Z2M(n,q)) — WLT‘HS (ZM (1, ) + W(S)LT‘HS (6Z(1,q)) + O(€%) . (B.2.46)

One can check that the O(¢®) part of this result allows to retrieve directly the result of the precedent section for the mean-
shape (i.e. without computing (v(z,t))s first), so that everything is consistent. A new difficulty (compared to the BFM
case), is that (S(g))s defined in (B.2.46) does not satisfy the scaling form (S(q))s = S]:'d(qSﬁ) VS. This is natural: the

scaling regime of the problem is for S < S, (here S,, =1 in dimensionless units) and the universal shape of avalanches is
the one obtained from (B.2.46|) as S — 0. It is thus obtained here as

—1
gy o (S(gSTF))s
Fa(g) = lim 5 (B.2.47)
We now compute the e expansion of (B.2.47) using (B.2.46). By definition Fy(q) = FMF(q) + 6Fa(q). We also use the

one-loop value of ¢ = (i€ (¢1 = 1/3) and obtain

-1 QFME L LT, 462 (p, g5~ T) ]:_MF()ép(S)

6ﬁd(q):é1£§)6@16 qlog(S) a7 (q SP(S) - 9) N (5 (B.2.48)
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Let us first look at the second term in (B.2.48]):

— 5 -1 c+ioco
Ld LT#iséz(quS 4) _ Ld * dieuséz
SpME(S) ~ SpMF(S) 2im

(1,qS™ 1)

Lte=5/4 ¢/+ico T 1
== B er5Z(—1/4 ~1

_ 31 /plog(s)

~scar LTy (Hig ) — 2T VS o) (B.2.49)
(2vE+e)

Where here from the first to the second line we used a change of variables 1 — —1/4+ /S and then took the limit S — 0T

of (B.2.44]) to define

7 (q(6log (2y/1) — 16) \/8\/B+q> + 16 (9/n + ¢°) sinh ™" | ——L;
H(q,m_ﬁ*f(“ £ (R ~19) VEVITE 10 (0 ) (544)) a0
20 (25 +a?)" \/8VE+ 2

Using similar manipulations, the other terms are inserted inside the ILT using the representation

F(q) = LT, 3, (2\/2ﬁ\/fq2> : 82“ (¢) = LT, (%) : ng L fTi (B.2.51)
This representation shows that the O(log(S)) terms present in cancel and we obtain the result
6Falq) = aLT, (—‘fw + H(q, u)) (B.2.52)
(2vi+a)
which leads to the result in the main text. Note that the result satisfies, as required from normalization
Falg=0)=1 , 6Fa(g=0)=0 (B.2.53)

which can be checked explicitly from the above expressions using that LT}:&L\/‘;4M> = 0. Equivalently, the total shape
in Fourier takes the form

7 _ -1 3ve —2 2y/m 2
Falq) = LT, ((1—|—a S )q2 +2\/ﬁ+2(q7u)> +0(a?) (B.2.54)

where the "self-energy" correction reads, to lowest order

2
9
v/ inh~! — 14 = In(4p)

= —4Q S 7(] 3
S = 4”(q¢m (wﬁ) 16 )

Units and scales: Let us mention here that, since this result was obtained in dimensionless units, the universal scale £,

1 2
appearing in the main text is here given by ¢, = % (Si) 4+¢ . S can always be measured as S,, = % and is exactly given

o

in terms of the parameters of the model by S, = :Z. As m — 0, the dependence of o on m is universal: o ~ m* 9 o

(B.2.55)

with o* a dimensionless number. Thus ¢, ~ (U*)Wlé. The number o* is non-universal and depends on the microscopic
disorder. Thus the scale ¢, is non-universal and depends on microscopic properties of the disorder. Note also that using
(B.2.46) one can also study the dependence of the mean-shape when S gets close to the cutoff avalanche size Sp,. This
dependence is expected to be non-universal and in our model we find that the amplitude of the O(e) corrections decrease
as S increases close to Sp,.

Small and large ¢ expansion of the mean-shape in Fourier space N
We now derive the result Eq.(B.1.10) of the letter. The small g expansion of 0F4(q) is obtained from (B.2.52)) at any
order. The first terms are:

_ 1 1 18907z — 3121 — 5040 log(2
§Falq) <1 (—16\/77(—%5 + 1+ 10g(4096))q” + 5= (299 — 9075)q" + V(18907 08(2)) o

13440
2299 . ’Yl 8 10 )

* (5040 8 )q +0(@)

~g<1 o (—0.840378¢° + 1.02938¢" — 0.728437¢° + 0.383999¢° + O(¢"*)) (B.2.56)

For the large g expansion, the expansion at large q of 8F, (¢) cannot be naively ILT. However, since we compute the
ILT from p to 1, one can derive the result with respect to p an arbitrary number of times m to make the ILT convergent
before taking the ILT since this just multiplies the end result by an innocent (—1)™ factor). This leads to

. 4+ 4—4log(q) 8/m  —48yp +23—120log(q) = 624/7 1
dFa(q) Myl @ ( . 7 - q\sf + p L + q1\of +O(qﬁ)

“4log(q) + 4.28861  14.1796  —120log(q) — 4.70635  1106.01
g1 @ - + +

1
o s s 410 + O(qm)) (B.2.57)
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And as explained in the main text, the first term of this expansion is interpreted as a modification of the power-law behavior
of Fa(q), Fa(a) g1 2(1 4 (2 + 1 )a)g~ 2 + O(?).

Dominant non-analyticity at small =

Let us now understand more precisely how the large ¢ behavior of ﬁd(q) generates a non-analyticity in Fq(z) at small

x. We consider the effect of a fat tail ¢~2# in a Fourier transform. We write
, _d
diq e'n® dt 8 d q equz q%t — |z |2B d dt2 I % (t )B :
(2m)* ¢*f tr(B)
27207 5T (& -
~ |z (2 %) (B.2.58)

r'(8)

The above derivation is formal since e.g. the first integral on g on the left-hand side of (B.2.58|) do not converge but we
notice that (B.2.58]) indeed gives, for 8 = 2, the dominant non-analyticity in the expansion (B.2.28)) (i.e. the bp—o term).
The above calculation indicates that the leading non-analyticity present in the small z expansion of F4(z) is a term of the
form

274720 =d/2D(d/2 — 2 — )

sing ~ E 442a—d
Fi(x) =22(14+ 2+ 1 )a)|z| T2+ o) (B.2.59)
Expanding this result in «, it implies the existence of a term
sing o _d 4 g d
0OF ;"™ () 3" ¢ r 5~ 2) -4y | = —2) + 8log(z) + 5y + 4 — 8log(2) (B.2.60)

in the small z expansion of § Fq(x) (¢ = 1% is the diGamma function). For d = 1, 3 this result correctly gives the dominant
non-analyticity in 0F4(x). For d = 2, one has to look at the expansion of around d = 2. In doing so, one obtains
terms (i) regular in = (proportional to 2?) that diverge as d — 2: these terms are unimportant and would be cancelled by
other regular terms present in §F4(z), and (ii) a singular term which admit a well defined d — 2 limit and read:

OFSI () =~ F(Q’m 8log(2) + 4log(x))z* log(x) . (B.2.61)

This term is the dominant non analyticity present in § Fgq=2(z).

Large z expansion of the mean-shape in real space
We now obtain the modification of the large x behavior of Fy4(z), and derive Eq.(B.1.11) of the letter. The mean shape

in real space is obtained by Fourier transform and ILT from (i) the expressions FMF(q) (B.2.51), 6F4(q) (B.2.52) and the
definition of H(q, ), (B.2.50)), or, equivalenty to lowest order in «, (ii) from the expressions (B.2.54] |B.2.55). We use the

latter here:
dlq —iguw dp 2y/mc 3ve — 2
= — =(1 e — B.2.62
Fa(x) /(27‘(‘)de sze PRGNS P , c=(1+a 5 ) (B.2.62)

where here the contour C can be chosen as a wedge around the branch cut u < 0 of the integrand, such as e.g. C =

1+ e‘¥R+) U+ T R4). To compute this radial Fourier transform, we chose z > 0 oriented along the first axis. The
integration over the other components ¢s . . . ¢q depends only on ¢ = /g3 + - - - ¢3: the change of variable brings out a factor

d—1

Sg_1 = 2157(73;?) . Performing the rescaling (¢1,¢) — v/2(q1, q) we obtain the more convenient form
2

dgv dqSa—1 g2 du 1
Fa(z/V2) =22 fc/ / e " —e" (B.2.63)
[P ¢ BT @ +q®+ - $h(V2V B+ )

where we denote X(q, u) = —a h(gq, p).
At the mean-field level, i.e. @ = 0, the integral on g1 can be performed by closing the contour of integration in the upper
half plane (the integrand is then analytic in ¢1), and taking into account the contribution of the pole at ¢1 (1) = i4/q? + /L.

The scaling of this pole with u, g1 ~ u% notably leads to the stretched exponential decay of the shape at large x with
exponent 4/3. Here, at O(€) we cannot a priori performs this residue calculation since the integrand is non analytic in g;.
It seems however reasonable to assume that the behavior of F4(x) at large |z| will still be dominated by this pole in the
integration on ¢;. At first order in O(¢) the position of this pole is shifted as

qi(p) ~i <\/q2 + Vi — a\/%> . 0q(p) = ih(i\/iul/“, ) = 712f(27log (2V/p) + 147V/3 — 72) (B.2.64)

And for the saddle-point calculation of the integral on ¢, we can approximate
1 1

G+ + - (\/> @+ T (- a(w) @+ a(p) — $Aq(1) (B.2.65)

With
= V2@ + () TOR(iV2uE ) = 27(13\[71’—63)\/q2+\/ﬁ (B.2.66)
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e=0]e=1 €=2 e=3
B at O(e) —2/3 | —0.298 + 0.002 0 0.235 +0.014
B conjecture | —2/3 | —0.2876 £+ 0.0001 | 0 0.100 % 0.002
d at O(e) 4/3 1.410 £ 0.002 1.49+£0.01 1.58 £ 0.02
d conjecture | 4/3 1.4246 £ 0.0002 1.570 £ 0.001 | 1.800 £ 0.004

Table B.1: Predicted values for the exponents B and J from the O(e) calculation,
and from the conjecture (the values are averaged over the two Pade, and the
spread is indicated), and compared to the conjecture using the value of ¢
determined numerically in [240] (¢ = 0.355+0.001 for d = 3 and ¢ = 0.753 £ 0.002 for
d =2) and [241] (¢ =1.250+£0.005 in d = 1).

(Through rescaling one shows that higher order terms in the series expansion of h(\/i @2 + 2, p) around g1 = i4/q% + Vi
do not contribute). Hence we have

=z 27 ,075(1)
(” VB T

]:d(x/\/i) —c2d/2f/2m / Sd 1 d—2dq2ﬂe

2 2q1(p) — $Aq(p)
z —a 5q +oco a
~ 2121 fr Sa— 1 du e” (st }Li)/ g2 1 i o et iisﬁ%ﬂ
(2m)e=t ) 2ir 0 (1— 2(13v37 — 63))ut —a%
I
it ypsapd 1 ap’ a1
a B.2.67
e / A et L (L (B.2.67)

Where we have used the fact that the dominant behavior of the integral on ¢ is given by ¢ ~ 0, and we have introduced the
notation

—14+/37 + 72 — 91og(8) 1 3 , 468 — 947+/3 — 811log(2)
e=t+ 72 @ b=y o = 216 o (B268)
So that au’® = /ﬁ —a?% + O(e?) and a/'p’ = (1 — 2 (13y/3m — 63)),u% — a4 + O(a?). Note that, using ¢ = 1e and
pd pa
a = —2¢/9, the O(e) value of b is consistent with the conjecture b = #( which is quite natural: the exponent b gives the

—1
scaling with p of the pole q1(p) ~ u’. We know that momenta inside avalanches of sizes S scale with S as S7#¢. On the

1
other hand, p is conjugate to S: u ~ S™!, hence the conjecture ¢ (1) ~ pa+<. At large x, the integral on p can now be
evaluated using a saddle-point calculation. It leads to, at first order in e,

Fa(z) ~ AzBeC’

9-4/2,5-% 1
A= T(1+ 516" o (4V/3m(27 — 7d) + 9(13d + 9(ve — 8))))
d—21-2b 2-—d 1
B=-mq= =5 (U+39)
o_3 ., (36 — 7V/3n) s__ L _4 «a
TITYTT 36 R R S R
Following the conjecture on the value of b we can also conjecture
(d=—2)(d+¢-2) d+¢
B=—"—F"——>_—-  §{=—-— B.2.69
2(d+¢—-1) d+¢—1 ( )

Setting o = 0 in the above result, we retrieve the large = behavior of F3'F (z) using here a totally different route. Lets us
warn the reader that there is some uncertainty on the values of A and B since additional contributions could come from
the branch cut in g;. The values of C and § however should be correct. The resulting numerical values of the exponents B
and § are summarized in Table [B.1l

Note that (B.2.69)) can also be expanded in « and gives the prediction

0Fa(z) ~a>>1 @ NG (2mv/3 (—14d + 212*/% 1 54)

9 ((—4d + 62"/* + 8) log(x) + 13d — 24 (z*/* + 3) + 97)) (B.2.70)
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Figure B.6: In blue from left to right: O(e) correction to the mean-shape in Fourier

space divided by —a, —%@), in real space in d = 1, Fi(x) and in d = 2, 0F2(x).
The dotted line on the left is the theoretical small ¢ expansion (B.2.56) up to O(¢?°)
and the dashed line is the large ¢ expansion . The dashed line in the middle
and on the right are the theoretical large = expansion . Middle inset: plot

of z% (6F1(z) — 6F1(0) — %a?) (plain line), compared with the prediction (B.2.60)
(dashed line). Right inset: plot of —5]:2(3‘4)76];22(0”0'06362 (

the prediction (B.2.61)) (dashed line).

plain line), compared with

Numerical obtention of the mean shape

We now explain how our analytical results are used to obtain numerically the mean shape computed at O(e). In
particular we explain how we obtain the theoretical curves presented in Fig. and Fig. [B.4] of the letter. The correction
8Fa(q) can easily be obtained numerically using a numerical integration on the formula and choosing a contour of
integration for p as C = (14 e_SLTWR+) U+ e?’fTWR_F). The precision of the numerical integration can be tested against
the exact results at small and large ¢, (see Fig. . It can easily be Fourier transformed in any dimension to find the
correction 0.Fq(z):

1 o d =~
@i / dgJa_2(qx)q? 6Fa(q) (B.2.71)
)20 2 0

where J,, (x) denotes the Bessel function of the first kind. The large x behavior of these corrections agrees with our prediction
, to a surprisingly large extent (see Fig. . Some properties of these corrections are their values at the origin
0Fa=1(0) = 0.09227, §F4=2(0) = 0.04912, the position where they cross 0, zo = 1.2567 (d = 1), zo = 1.8286 (d = 2), the
position of their minimum and minimal value, T, = 2.2783, F1 (azmm) = —0.02835, Tpmin = 2.6634; ]:Q(xmm) = —0.002980
(d = 2). We also investigate the presence of non-analyticities in the form of logarithm in the short-distance behavior of
the result. In dimension 1, the correction §F;(0) has a second derivative at 0 evaluated as ag = 6F;'(0) ~ —0.512. By
plotting ;15 (6]:1 (z) — 0F1(0) — “—20302)7 we shed the light on the non analyticity present in § i (x) at small z, which is found
to be in very good agreement with (see Fig. . In dimension 2, the dominant non-analyticity predicted in

. 2
(B.2.61) compares very well with the plot of B 1C)) _5];?2(0)+0‘06z at small = (the 0.06z2 term is a regular term which was
not predicted by our calculations).

S Fur(z) = 2 / mg—gcos(qx)dfd(q) . 6Fu(x) =
0

Adding naively these corrections to the mean-field result Fy(z) = F3' (x) + 0Fa(z) then gives a result which suffers
from several problems. At large x it becomes slightly negative in d = 1 and does not have the right non-analytic behavior
at small z. The second problem can be cured by considering the reexponentiated Fourier result

= = 6Fa(q)

Fi(q) = Fa'" (q) exp ( . (B.2.72)
! Fi™ ()

This result is still correct to first order in € and has the advantage of having the correct behavior at large g, ﬁ;eg(q) ~

2(1+ (2+ 22)a)g *** + O(€?). It is plotted in plain red in Fig. Taking the Fourier transform of this result we obtain

a function ]-';egl (z) which has now the correct behavior at small = but is still slightly negative at large . On the other

hand the function

7 (0) = sp o (= o (1o orFT(00) + e ) (B.2.73

where N is a normalization constant ensuring that f dda:f;eg2(x) = 1, is correct to O(e) and takes properly into account

the change of exponent in the exponential decay of the shape at x = oo and is everywhere positive. However, it doesn’t have

the correct behavior at small z. Since F>®"(z) and F}*#%(x) intersect themselves at some ., we construct the function
TE, 1 Te, Te,
Fi8(z) = NG (r(m)]—'d g (r) + (1 — r(z))F, g2(317)) (B.2.74)

where N is a normalization factor and r(z) is a function that interpolates smoothly between r(1) = 1 and r(c0) = 0

sufficiently fast to obtain a positive result everywhere. Here we have chosen r(z) = e~**/7¢* but this choice does not matter
drastically since all these functions are close to each others (see Fig. [B.7)). The result (B.2.74) is still correct to O(e) and
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F1(x)

Figure B.7: Different mean shape Fy(x) correct at O(e) for d = 1 (left) and d = 2
(right). Dashed-blue lines: naive result Fy(z) = F¥(z) + 6F4(x). Dotted lines:
f;egl (x) (largest at the origin) and féegQ () (smallest at the origin). Red line: regu-
larized result F,;®(z) used for comparison with numerics.

has the right behavior at small and large x. It is plotted for d = 1 and d = 2 in plain red in (B.7)) and used for comparison
to numerical simulations.

Universal ratios
Here we compute the universal ratios in dimension 1 and 2 of the various mean-shapes. These are defined as ¢, =

dz|z|?P Fy(x ~(2p)
MA In dimension 1 and for p even they are exactly obtained as ¢, = ]:-‘(1 5 o For p odd and in dimension
([ adalelr Fa()) (7P @)

d = 2 one has to rely on direct numerical integration techniques. Fortunately, the exponential decay of the shape at large x
(which is known analytically) allows us to obtain an excellent numerical precision, we compute them pertubatively in O(e)
using

N fdd:r\m|2p.7:évm(l') N ( fddx|x|2p5]:d(w) 3 2fdd56|23|2p.7:¢11v[F($) fddxa;|p5]:d(:p)> (B.2.75)

N dalep Y (2)) ([ diz|z|p FYF (z))? ([ diz|z|p FYF (z))°

Table contains our results in d = 1 and d = 2. The even values in d = 1 are exact for both the BFM and (to O(e))
the SR case. The odd values are results of numerical integration. The uncertainty on the numerical integration is evaluated
in d = 1 by comparing the result obtained using numerical integrations for even ratios to the exact ones. The values in
d = 2 are results of numerical integrations. We also give for reference in Table [B-2] the value of the universal ratios for a

—z2 _z2
Gaussian shape function (F$1s(z) = <7 and Foass(g) = ¢ —)

Details on numerical simulations

We now give details on the numerical simulations leading to the results presented in Fig. [B:4] and Fig. [B-f] in the letter.
Parameters of the simulations

For our simulations we have used ¢ = 1 and dt = 0.02. The discretization in time is handled using an algorithm
similar to the one presented in [23T]. The used values of dw and number of simulated kicks ng;cks are: dw = 0.1 and
Nkicks = 40 x 108 for the SR model; dw = 1 and ngiers = 100 X 10% for the BFM model. As discussed in the main text,
these simulations are performed in d = 1 for a line of size L = 2048 discretized with N = L points. For the SR model, du
is chosen as du = 5ow.

PDF of avalanche sizes and measurement of S,,

The measurement of the PDF P(S) (plotted in Fig. shows that the avalanche size distribution of both models

d
have a lower cutoff Ss, =~ (ZB‘SFﬁz where SB™™ is always given by o/m®*. In the BFM model, we observe a scaling
regime P(S) ~ S5 with 7E™ = 3/2 = 2 — Lo ((P™ = 4 — d) for Ssu < S < SE™. In the SR model, for
dy¢BFM

Ssw < S < Ssu = Ssu == (du) <PFM | the interface does not feel the short-ranged nature of the disorder and we observe a

first scaling regime coherent with the BEM, P(S) ~ 5=78"" In the SR model, S is measured as (S?)/(2(S)) with the
result S51 = (1.40 £ 0.05) x 10° (statistical uncertainty given with 3 sigma estimation). For Ss, < S < S5 we observe

a second scaling regime coherent with the known features of the SR fixed point: P(S) ~ S~78" with SR =2 - ﬁ
and our data are consistent with the value of ¢ numerically estimated in [241], ¢5® ~ 1.250 4 0.005 (see Fig. |B.8). These
measurements allows us to identify the desired scaling regime and compare our simulations with known features of the BFM
and SR fixed point.

Details on the search for the seed

Let us now make a few comments on some subtle points and emphasize the importance of the algorithm used in the
main text to retrieve the seed of each avalanche. When we apply a uniform kick of size dw to the system, the interface
always moves from a small amount. As seen above and in Fig. avalanches of size much smaller than Ss,, are very
unlikely (note that the discretization procedure introduces another sharp, artificial, small scale cutoff on the avalanches
size: since each points moves at least during the first iteration of the algorithm with velocity m?dw/n, the avalanche cannot
be smaller than Ldtm?sw /m). After the first iteration, it is actually highly probable that several points along the interface
are still moving, each of them being the seed of an avalanche. With a high probability, these small avalanches have sizes of
order Ss,, and quickly perish, hence we do not analyze their shapes (they are 'microscopic avalanches’). In the following we
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Cc1 Cco c3 Cq Cs5 C6

Gaussian d = 1 1.5708 3 5.8905 11.67 29.1938 46.2

BFM d = 1: Theory | 1.6944 3.8197 9.2703 23.3333 60.045 156.863

SR d = 1: Theory 1.6944 3.8197 9.2703 23.3333 60.045 156.863
+0.0798« +0.6196« +2.8c +11.4444a | +37c +138.296x
~ 1.641 ~ 3.43 ~7.53 ~ 16.6 ~ 38.5 ~ 81
+0.001 40.02 +0.16 +0.9 +3.7 +17

Gaussian d = 2 1.27324 2 3.3953 6 10.865 20

BFM d = 2: Theory | 1.3734 2.5464 5.3435 12 28.1289 67.9111

SR d = 2: Theory 1.3734 2.5464 5.3435 12 28.1289 67.9111
+0.06482¢ | +0.4110cx +1.6647« +5.7758c +18.6579a | +58.0856«
~ 1.3449 ~ 2.369 ~ 4.65 ~ 9.6 ~ 20.8 ~ 45.7
+0.0002 40.006 +0.05 +0.2 +0.9 +3.6

Table B.2: Prediction for the universal ratios in dimension 1 (¢ = 3) and 2 (e = 2).
Here v = —2¢/9. The values displayed are the average over the two Pade and their
spread is indicated (as an indication of the uncertainty).

S

P(S) P(S)
103 ‘. 10‘5
- “‘ 1
107 ~
10710 . 107
10715 i 10-10
7 1§ 4 ;‘
0.1 1000.0 10f 10 0.01 1 100 10* 10°

Figure B.8: Blue: Measurement of the avalanche size distribution in the BFM model
(left) and the SR model (right). Yellow curve on the left: theoretical prediction for
P(S) = pMF(S) (no scaling parameter). The excess of small avalanches is an artifact
due to the discretization and does not affect the statistics of larger avalanches. Black
dashed line on the right: power-law S 75" with TSBFM = 3/2. Red dashed line on the

right: power-law S-Ts"

14+1.250

with 788 ~ 2 — 2 ~ 1.11.
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Figure B.9: Density plot of the velocity field v(z, t) inside an avalanche of size S = 1760
in the mean-field model (BFM) for d = 1 discretized with N = 128 points. Line in red:
backward path produced by the algorithm to find the seed of the avalanche. The inset
illustrates the efficiently of the algorithm to identify, from the set of moving points of
the interface just after the kick, the true seed of the observed macroscopic avalanche.
In this avalanche (at least) two points (at x = 32 and z = 57) still moves at ¢t = 2dt,
but only the point at « = 32 is inside the cluster of moving points of the macroscopic
avalanche and can be its seed.

are only interested in the shape of avalanches of total size S > 1 > Ss,, ('macroscopic avalanches’), which only occur with
a small probability. When such an avalanche occurs, since there is a large separation of scales with the small avalanches of
order Ss.,, we expect its shape to be only very weakly perturbed by the fact that other small avalanches could have been
triggered after the kick. We neglect the small probability that more than one macroscopic avalanche have been triggered
by the kick. A crucial step is to unambiguously identify, from the set of points still moving during the second iteration
of the algorithm, which one is the true seed of the observed macroscopic avalanche. This is what is accomplished by the
algorithm explained in the text: after n; iterations of the algorithm, all the small avalanches triggered at the beginning
of the avalanche have already stopped (thus in general n; has to be chosen sufficiently large). Identifying the maximum
velocity inside the avalanche at time n;, we are sure to have identified a point which is inside the macroscopic avalanche.
The algorithm is then devised to run within the history of the avalanche backward in time and always identify a point
moving along the interface which is in the correct cluster of moving points defining the macroscopic avalanche. This is
illustrated in Fig. [B-9]

Measurement of the mean-shape

We always only measure mean-shape with values of S well inside the desired scaling regime. The binning on the values
of the total size S is of 0.05, we construct a grid of total sizes with the values S; = 1 x (392)"~! and avalanches with

0.95
total size S such that 0.955; < S < 1,05S5; are rescaled as S — S;. The difference between Sff‘ and SEZFM and T§R and
TEFM explains the difference between the chosen values of dw and ngicks for each model: these parameters are adjusted
so as to give a comparable numerical precision for the measurement of the mean-shape of interest (i.e. large avalanches
which provide a good spatial precision - for the same dw, one observes more large avalanches in the SR model than in the
BFM model). The shapes are rescaled onto one another using the value of ¢ given above and determined numerically in
[241]. The fact that they collapse (see Fig. using this value is another check that our simulations are correct since they
appear in agreement with the high-precision simulations performed in [241]. Let us also present here the results analogous
to Fig. [B:4] in Fourier space: see Fig.

Measurement of the non-analyticity at small z and fat tail at large ¢

To measure these observables with a good precision in d = 1, we use the models discretized using 2048 points. We first
obtain a smooth numerical mean-shape for the BFM and SR model by taking the average of several mean-shapes obtained
for various sizes (taken large to obtain a good spatial precision: for the BFM we use 20 shapes with 13575 < .S < 100478,
for the SR model we use 10 shapes with 7386 < S < 20095). The resulting shapes are shown on the left of Fig. We
also plot in Fig. the difference between the mean shape measured in our numerical simulations of the SR model and
the theoretical mean-field result in d = 1 and compare it with our theoretical O(€) predictions. This notably highlights
the efficiency of the reexponentiation procedure discussed previously. We then directly study the small = behavior of these
shapes, leading to the results presented on the left of Fig. The study of the large ¢ behavior is more tedious: at large
x the mean shapes we obtained start to be dominated by the noise present in our numerical results. This noise blurs the
analysis of the large frequency content of the mean-shape. We thus first smooth our results at large = result by using an
exponential fit ¢=C*" with the theoretical value of & previously obtained exactly for the BFM and using our conjecture
for the SR model (see Table . This fitting procedure is illustrated in Fig. By Fourier transform, we then
obtain the results presented on the right of Fig. [B-5

Measurement of the universal ratios

Here we describe the protocol used to measure the universal ratios. We measure the universal ratios defined in
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1 2 3 a1 51

Figure B.10: The mean shape in Fourier space measured in simulations (left: BFM and
right: SR), (plain lines, same color code as Fig. [B.4) and compared to the theoretical
predictions (dashed-black: BFM result, dotted-blue: naive O(¢) result and dashed-red:

improved O(e) result (B.2.72)).

log(% a=1(x))

L L L ‘.w x
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Figure B.11: Left: mean shapes obtained in the simulations of the SR model (red) and
of the BFM model (blue) compared with the O(e) result (dashed, black) and BFM
result (dotted black). Right: blue (resp. red) large x behavior of the mean shape
measured in the BFM model (resp. SR model). To avoid the noise present at large z
to dominate the large ¢ behavior of the mean shape, we smooth our result at large x
using an exponential ansatz as explained below.
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Figure B.12:  Left: (resp. Right:) Black line: Difference between the mean shape
measured in the numerical simulations of the SR model in real space Fj(x) (resp.
in Fourier space F1(q)) and the theoretical mean field result FMF () (B.2.30) (resp.
FMF(q) (B.1.5)). Red line: theoretical O(e) result 6F(z) (B.2.71) (resp. 6Fi(q)

(B.2.52))). Red-dashed line: improved (through the reexponentiation procedure) theo-
retical O(e) result F;°®(x) — FM¥(z) (B.2.74)

(resp. F18(q) — FMF(q) (B.2.72)). The
reexponentiation procedure chosen in Fourier space sensibly improves the accuracy of

the result. Nevertheless, higher loop corrections will be necessary to account for the
remaining difference.
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Figure B.13: Universal ratios c1(€cyt) (left) and ca(leyt) (right) measured in the BEM

for various cutoff length £.,; = 4,6,8,10,12 (Blue, Orange, Red, Purple and Green)

as a function of the total sizes S = 5; =1 x (%)i_l. For the BFM, as a consequence

of these plots, the results presented in Table are averages on the universal ratios
obtained for S > S; with ¢ = 60 and £.,; = 8 to obtain a result that do not depend on
Ly and is free of discretization artifacts as explained in the text. A similar procedure
is used for the SR model. Note that the important variations observed here for large
1 are just a consequence of the fact that only a few avalanches with the largests S;
have been measured, hence the statistical uncertainty on the measurements of ¢;(£cyt)
increases when S; increases.

using severall cutoff length £, for the integral on x (i.e. we consider different approximations of the universal ratios
f_kj“ft da|e|? F (x)

2 .
Jot daleli Fi(2)
—Leut

on the mean-shape Fi(x) numerically obtained for each possible total size S; (see above for the definition of the binning
procedure). Using these measurements we make sure that £c,: is chosen large enough so that the results are not sensitive to
its finite value. We also control discretization artifacts by studying the dependence of the measured universal ratios ¢; (£cut)
on the total size S;: for small S;, the avalanches extend only over a few sites and the mean shape deduced from them is
different from the one of the continuum theory, a difference that is seen in the universal ratios. For large enough S;, the
universal ratios become size independent and we reach the continuum regime. This is illustrated for the two first universal
ratios in the BFM model in Fig. In the end, the universal ratios are measured by performing an average over various,
large enough total sizes S;, leading to the values presented in Table [B-3]

¢j(leut) =

> that should converge to the true universal ratios c¢; as fecur — 00). These are measured

C1 Co C3 C4 Cs C6
BFM d = 1: Theory 1.694 3.819 | 9.270 | 23.334 | 59.255 | 156.863
SR d = 1: Theory ~1.641 | 343 | ~ 753 | ~16.6 | ~ 38.5 | ~ 81
+0.001 | £0.02 | +£0.16 | +0.9 +3.7 +17
BFM d = 1: Numerics | 1.699 3.83 9.3 23 59 143
+0.003 | £0.05 | £+0.3 +7 +26 +41
SR d = 1: Numerics 1.612 3.16 6.4 13.6 27 57
4+0.004 | £0.03 | +0.3 40.2 +2 +9

Table B.3: Universal ratios in dimension 1. First two lines: theoretical result for
the BFM and O(e) theoretical result for the SR universality class. Last two lines:
numerical measurement in the simulations of the BFM and SR model. Error-bars
for the numerics are 3-sigma estimates. Note that the statistical uncertainty on the
numerical measurements of the universal ratios ¢; increases with j since these quantities
become more and more sensitive to the presence of noise in the large x tail of the
measured shapes of avalanches.
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Title: Universal correlations between shocks in the ground state of elastic interfaces in disordered media
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Journal-Ref: Phys. Rev. E 94, 2016

Abstract: The ground state of an elastic interface in a disordered medium undergoes collective jumps upon variation
of external parameters. These mesoscopic jumps are called shocks, or static avalanches. Submitting the interface to a
parabolic potential centered at w, we study the avalanches which occur as w is varied. We are interested in the correlations
between the avalanche sizes S1 and S2 occurring at positions w1 and wsz. Using the Functional Renormalization Group
(FRG), we show that correlations exist for realistic interface models below their upper critical dimension. Notably, the
connected moment (S51.52)¢ is up to a prefactor ezactly the renormalized disorder correlator, itself a function of |w2 — wa].
The latter is the universal function at the center of the FRG; hence correlations between shocks are universal as well. All
moments and the full joint probability distribution are computed to first non-trivial order in an e-expansion below the upper
critical dimension. To quantify the local nature of the coupling between avalanches, we calculate the correlations of their
local jumps. We finally test our predictions against simulations of a particle in random-bond and random-force disorder,
with surprisingly good agreement.

C.1 Introduction

The model of an elastic interface in a disordered medium has been put forward as a relevant description for a large number
of systems [63] 235] 236, [68]. Examples include domain walls in soft magnets [100, [45], fluid contact lines on a rough
surface [59] [61], strike-slip faults in geophysics [64} [66], fracture in brittle materials [52) [56, [51] or imbibition fronts [69]. An
important common property of these systems is that their response to an applied field is not smooth but rather proceeds
via jumps extending over a broad range of space and time scales. As a consequence, understanding the properties and the
universality of avalanche processes has received a lot of attention in the past years [81], [T12] [145].

A problem of outstanding interest is to quantify the correlations between successive avalanches. In the context of
earthquakes those are linked to the notion of aftershocks, whose statistics is characterized through phenomenological laws
such as the Omori law [67]. Several mechanisms have been advanced to explain these strong correlations, all involving an
additional dynamical variable [146] [147]. For elastic interfaces, correlations between avalanches were yet only studied as a
result of such additional degrees of freedom in the interface dynamics, as relaxation processes [148] [149] or memory effects
[I44]. In this work, we show that even in the absence of such mechanisms, avalanches in elastic interfaces are generically
correlated below their upper critical dimension. These correlations are universal.

Let us emphasize that the goal of this paper is not to understand or explain the aftershock statistics observed in
earthquakes, for which additional mechanisms such as those discussed above are necessary. Rather, it is to emphasize that for
disordered elastic systems, except for mean-field models, correlations between avalanches always exist. A precise quantitative
understanding of these correlations is necessary to correctly quantify correlations induced by additional mechanisms. In
systems where the description by the standard elastic-interface model is accurate (without additional mechanisms) our
results quantify the correlations between avalanches. To our knowledge, these correlations have up to now been ignored in
theoretical or experimental work. It would thus be interesting to quantify them better, in order to access universality, or
lack thereof, in various avalanche processes.

In this article we study the correlations between the sizes and locations of shocks in the ground state (also called
“static avalanches”) of elastic interfaces in disordered media. These static avalanches are close cousins of the (dynamic)
avalanches observed in the interface dynamics at depinning. As we discuss below, we expect most of our results to hold
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for both classes. Our study is conducted using the Functional Renormalization Group (FRG). Originally introduced as a
powerful tool to study the universal properties of the statics and dynamics (at the depinning transition) of elastic interfaces
in disordered media [I14] [127) [126] [T08, [116], 129 [117], the FRG has been recently adapted to the study of avalanches
[109) 11T, 1011, [107, [T, [TT0]. It has notably led to a rigorous identification of the relevant mean-field theory for the statistics
of single avalanches: the Brownian-Force Model (BFM), a multidimensional generalization of the celebrated Alessandro-
Beatrice-Bertotti-Montorsi (ABBM) model [98], [99]. Interestingly, the FRG allows to go beyond mean-field theory and to
compute in a controlled way avalanche observables in an expansion in € = dy. — d where d is the interface dimension, and
duc the upper critical dimension of the problem. The latter depends on the range of the elastic interactions, with dy. = 4
for short-ranged (SR) elasticity and duc = 2 for the usual long-ranged (LR) elasticity.

The outline of this article is as follows: In section we summarize our results, preceded by a definition of the relevant
observables. In Section [C.3] we introduce the model and the observables we are interested in. Section [C4] contains the
derivation of the main results presented above. Section [C.5] gives an analysis of the correlations between the local shock
sizes. Section presents the results of our numerical analysis of these correlations for a toy model with a single degree of
freedom, i.e. d = 0. Finally, a series of appendices contains technical derivations.

C.2 Main results

Let us now state our main results. To this aim, we parameterize the position of the interface by the (real, one-component)
displacement field u(z), where 2 € R? is the internal coordinate of the interface. For notational convenience we denote
u(x) = uz. The interface is submitted to a quenched random potential V' (uz,x), and to an external parabolic confining
field %Q(uz — w)? centered at w. In a given disorder realization V', upon variation of the external fiel w, the ground state
(i.e. lowest-energy) configuration of the interface, denoted u.(w), changes discontinuously at a set of discrete locations wj,
according to

Uz (W) = ue (W) = uap(w; ) + S5 (C.2.1)

The event (wj, S;(f)) is the i*" shock of the interface, w; is the location of the shock, S;(f) is its local size at z and S =
f dlz Sg@ its total size. The statistical properties associated to one shock were thoroughly analyzed using FRG in [I09} [111].
Such properties are encoded in the shock density po, defined as

poi= Y d(w—wi), (C.2.2)

and in the avalanche-size density

p(S) = Z §(w — wi)8(S — S@) . (C.2.3)

The shock-size density p(S) is linked to po through po = [dSp(S). Note that these quantities do not depend on w
due to the statistical translational invariance (STS) of the disorder. Considering two points w < w’ and sizes S < S,
f;u, dw fssf dSp(S) is the mean number of shocks occurring between w and w’ with size S € [S1, S2], while (w' — w)po is
the mean number of shocks (irrespective of their size). Note that throughout the rest of this section we will discuss our
results in terms of densities but they can be translated into results for normalized probabilities as we discuss in Sec. [C-3.5]

These observables alone do not determine the statistical properties of the sequence {(w;, S (i))}iez of shocks experienced
by the interface in a given environment. In particular, they do not contain any information about the correlations between
the shocks. For a given distance W > 0, let us therefore introduce the two-shock density at distance W,

p2(W) =3 8w — wi)d(w+ W = w;) . (C.2.4)
it

This observable scales as the square of a density. Thus f;ﬂl‘ dw f:;z dw' p2 (w' —w) counts the mean number of pairs of shocks

such that the first shock occurs between w; and wf, and the second one between ws and wj. Equivalently, p2(W) := %

is the density of shocks at a distance W from a given shock. These observables contain information about the correlations
between shocks. Indeed an uncorrelated sequence of shocks implies p2(W) = pg (and thus p2(W) = po). A central question
addressed in this work is whether the presence of a shock at a given point decreases (p2(W) < pg) or increases (p2(W) > p3)
the density of shocks at a distance W.

To measure the correlations between the size of the shocks (and not only their positions) we introduce the two-shock
size density at distance W,

pw (S1,52) := (C.2.5)

D 8w = wi)3(S1 = SO)3(w + W —w;)5(S2 — D)) .
iA]

It is linked to p2 (W) via
pQ(W) = /dSl dSQ pw(Sl,SQ) . (C26)
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Figure C.1: Cartoons of the typical shape of the renormalized disorder correlator
A(W) (black-dashed line) and of its second order derivative A”(W) (red line) for the
Random-Field (left) and Random-Bond (right) universality classes (not to scale). Our
results predict that the shock sizes are always negatively correlated in the Random-
Field universality class, whereas the Random-Bond universality class exhibits a richer
structure with negatively (resp. positively) correlated shock sizes at small (resp. large)
distances.

Here f;ﬂll dw f:j; dw’ fsil ds fssj dS’ puw—w(S,S’) counts the mean number of pairs of shocks such that the first shock

occurred between w; and w}, and the second between ws and w5, with sizes between S; and S, resp. S2 and S5. For
this observable, an absence of correlations in the sequence of shocks implies pw (S1,52) = p(S1)p(S2). To investigate the
presence of correlations we thus study the connected two-shock size density pyy (S1,S2), defined as

pw (S1,52) == pw (51, 52) — p(S1)p(S2) - (C.2.7)

At the level of mean-field theory, i.e. in the BFM model, it is known [IT1},[1] that the shocks are independent and the process
w — uz(w) is a Levy jump process. As a consequence, pfy (S1,52) = 0. On the other hand, for realistic interface models
below their upper critical dimension, the shocks are correlated, demanding to go beyond the BFM. This can be seen from
the second moment for which we show below the ezxact relation

(5152)p5, A"(W)

S = Tt (C.2.8)

On the left-hand-side, (...) PS, denotes the average with respect to py as defined in Eq. . On the right-hand-side,
L is the lateral extension of the system, and m? the curvature of the confining potential, which sets the correlation length
L., := 1/m for avalanches in the lateral direction. Finally, A(WW) is the renormalized disorder-force correlator, the central
object in the FRG treatment of disordered elastic systems: Denoting u(w) the center-of-mass position of the interface, given
well-position w, the correlator A(W) is defined as the connected correlation function of the center-of-mass fluctuations of
the interface position [123],

AW) := L*m*u(w) — w] [u(w + W) — (w+ W)] . (C.2.9)

Up to a universal scaling factor and a single non-universal scale, the function A(W) only depends on the universality class
of the problem. It was computed up to two-loop accuracy in Ref. [117] and measured numerically in Ref. [I05]. For our
purpose it is important that the function A(W) is uniformly of order ¢, and that its second derivative is non-zero. Thus the
correlations increase when going away from the upper critical dimension, where mean-field theory, or equivalently
the BFM is relevant. Indeed, for the BFM A”(W) = 0, and the effective disorder force is distributed as a Brownian
motion. Beyond mean-field theory, the sequence of shocks is correlated, thus the effective disorder force at large scales
has a different statistics than Brownian motion. The sign of these correlations depends on the sign of A”(W), which, in
turn, depends on the universality class of the problem. As detailed in Sec. our results predict qualitatively different
correlations depending on the universality class. The most important static universality classes of non-periodic, short-ranged
disorder are the random-bond (RB) universality class, which at the microscopic level has short-ranged potential-potential
correlations, and the random-field (RF) universality class, for which the force-force correlations, but not the potential-
potential correlations, are short-ranged at the microscopic level. As is summarized in Fig.|C.1} for RF-disorder A" (W) > 0,
and thus avalanches are always anti-correlated. On the other hand, for RB-disorder, avalanches are anti-correlated at short
distances W, but positively correlated at larger ones.

To obtain results for higher avalanche-size moments, we use the FRG and the € = (du. — d) expansion to show that, to
lowest non-trivial order in the expansion,

A" (W) 818,

Py (S1,82) = — Timi 152 p(51)p(S2) + O(€?) . (C.2.10)
Here (SQ>
S 1= 2<S>Z , (C.2.11)

where (...), denotes the average with respect to p as defined in Eq. (C.2.3)), is the characteristic size of avalanches, which acts

as a large-scale cutoff for the avalanche-size density p(S), and A”(W) introduced above is O(e). Integrating Eq. (C.2.10)
times S1S52 over S; and Sa, we recover Eq. (C.2.8)). Contrary to the latter equation which is exact, relation (C.2.10) is

correct only to order e.
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As a consquence of Eq. (C.2.10)), and its generalizations to higher order, the correlations between avalanches are
universal. To make this more transparent, we rewrite Eq. (C.2.10)) as

pw (S1,52) =

2d
1 L ( w5 52) - (C.2.12)

(Lm)dg ¢ Wmu’a,g

The function Fy is universal and apart from its three arguments depends only on the spatial dimension. To first order in
d = duc — €, and in the limit of large L and small m, it is given by

AdA*N(’LU)
167ﬁ/8182

Here Ag is an explicit constant, with Ag—s = 872 for SR elasticity; the scale Wi ~ m~¢, with ¢ the roughness exponent
contains a non-universal amplitude. The range of validity of this result is discussed in the main text. The presence of the
factor of 1/(Lm)? highlights the fact that the correlations between shocks are local (indeed N := (Lm)¢ counts the number
of elastically independent regions of the interface). We will analyze this local structure by studying the correlations between
the local sizes of the shocks.

To summarize, let us emphasize again our main message namely that for realistic models (beyond mean-field) the
sequence of shocks is always correlated.

F(w, s1,s2) ~ e~ TR/t L o) | (C.2.13)

C.3 Model, shock observables and method

C.3.1 Model

—1

Consider the Hamiltonian for a d—dimensional elastic interface with position u(z) = u, € R (z € R?), elastic kernel ous

subjected to a harmonic well centered at w, and to a disorder potential V (u,x):

Hus w] = %/ 02 (s = w) e = w) Jr/V(uz,x) . (C.3.1)

T

Here fm = f d?z and we assume everywhere that the system is confined in a box of length L with e.g. periodic boundary
conditions (the boundary conditions will not play a role in the following). We also assume the existence of a short-scale

length cutoff a. The elastic kernel is translationally invariant (g;;, = 9;,11/) and defines a convex elastic-energy functional

(i-e. g;;, > 0 for z # x’). We denote gq_1 = 1/gq its Fourier transform defined as gq_1 = fq e%g ! where fq = f (;j:gd.
possible choice is the standard short-ranged elasticity defined by
Gowr = 0 (=Y +m%) gl =" +m®. (C.3.2)

Here 0.,/ is the Dirac ¢ distribution, and the elastic coefficient has been set to one using an appropriate choice of units.

Another kernel we consider is
1

— X
9. =+ 17, (C.3.3)

where v = 2 corresponds to the previous case, and v = 1 is relevant for long-ranged elasticity, as encountered in fracture
and contact-line experiments. For a kernel of the form (C.3.3]) we define the mass term as

m? = gq_:lO =u. (C.34)

It is the strength of the harmonic well. For short-ranged elasticity we have

Holwal = 5 [ k- o) -
= %A(Vzuz)2 +m®(uy —w)>. (C.3.5)

Thus L,, := m~! defines a length scale beyond which different parts of the interface are elastically independent. It also
provides a large-scale cutoff in loop integrals encountered in the field theory. For more general kernels this length
scaleis L, := pu~ !, and we suppose L, < L, ensuring that boundary conditions do not play a role. The number of elastically
independent parts of the interface is N = (L/L,)% The disordered potential V (u,x) is supposed to be short-ranged in
internal space x, and statistically translationally invariant, with a second cumulant

V(u, 2)V (', 2') = 6per Ro(u —u') . (C.3.6)
The overline (...) denotes the average over the disorder, and superscript ¢ stands for connected averages. The detailed form
of Ry is, apart from global features that determine the universality class of the problem (see Sec.|C.3.3), unimportant. We

also consider the force-force cumulant Ag(u) = —Rg(u) such that 8,V (u, )0y V(u/,2') = S4erNo(u — ). Introducing
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a (finite) temperature 7', disorder and thermal averages in this model can efficiently be computed using a replicated field
theory. Introducing n replicated fields uqz, a = 1, ..., n, the replicated action reads

Slu] = % Z/M 9o (az — W) (Uggr — W)

Yy / Ro(tas — tns) + - (C.3.7)

ab V7T

where - - - indicates eventual higher cumulants of the disorder.

C.3.2 The ground state and the scaling limit

As discussed in the introduction, we are interested in the minimal energy configuration of the interface for a given parabolic
well position w and disorder realization V (i.e. the T' = 0 problem). It is defined as the configuration u,(w), which minimises
the energy,

Uy (w) 1= argmin Hlu;w] . (C.3.8)

Ug

We denote
1
u(w) = ﬁ/ux(w), (C.3.9)

the center of mass of the ground-state of the interface. The statistical properties of u,(w) have been extensively studied
in the literature. In particular it is known that the interface is self-affine with a (static) roughness exponent ¢, defined by
[tz (W) — g (w)]2 ~ |z — 2’|*¢. This scaling form generally holds in the scaling regime L. < |z — 2’| < L, where L. is the
Larkin length. The scaling limit is thus obtained for L,, — oo or equivalently for p — 0, also equivalent to m — 0 a regime
which is implicit throughout this work. In the FRG treatment of this problem, the ground state statistics is studied using
the replicated field theory . The mass term m (or g = m?/7) can be conveniently used as a control parameter to
study the flow of the effective action. As m — 0 and through a proper rescaling, the effective action approaches a RG fixed
point. This fixed point is perturbative in € = duc —d > 0 where dyc is the upper critical dimension of the model (for kernels
of the form it is given by duc = 2, thus d,c = 4 for short-ranged elasticity and du. = 2 for long-ranged elasticity).
The central object of the theory is the effective disorder correlator R(u), a renormalized version of Ro(u). It appears in the
effective action of the theory I'[u], as Ro(u) appears in the bare action S{u| of Eq. (see the action (C.3.44) below).
Remarkably, as shown in Ref. [96], it is related to a physical observable, the renormalized disorder force-force correlator
A(u) defined as

A(w —w') = L*m*u(w) — w][u(w’) —w'] , (C.3.10)

through the relation A”(u) = —R(u). This is the function that appears in the results (C.2.8)) and (C.2.10) of the introduc-
tion. The RG flow can be equivalently studied on R or A. For m — oo, the correlator A(w) is equal to the bare force-force
correlator: A(w) —m—oo Ao(w). In the limit m — 0 it admits a scaling form

A(w) = Agp X A(pw) (C.3.11)

where Ag is a dimensionless constant, and we recall p = m?/7. For kernels of the form 1) a convenient choice is to

take Ag as Aqg = 6}2 with the dimensionless loop integral I := fq m. Note that the combination el stays finite as

e — 0. In general

2 T(y+1-d/2)
(2vm)? I'(y) ’
and for example elz =,—2.q—4 1/(87%) and;fg = —1.0=2 1/(27). As m — 0, the rescaled disorder correlator A converges to

the fixed point of the FRG flow equation A*(u), which depends only on the universality class.
Let us now recall some important properties of these fixed-point functions.

A =el = (C.3.12)

C.3.3 Properties of A*(u) and static universality classes

Depending on the properties of the bare disorder correlator Ro(u), the FRG predicts that A(u) converges as m — 0 to
one of the fixed point of the FRG equation. A property of the (zero-temperature) FRG equation is that, for non-periodic
disorder, if A*(u) is a fixed point, kK2A* (u/k) also is a fixed point. Hence the fixed point towards which the system flows
contains one non-universal scale whose value depends on microscopic properties of the disorder. The known fixed points
can be regrouped into four main classesﬂ. Analytic properties of these fixed-point functions are known up to two-loop order,
i.e. O(e?), see Ref. [I17] to which we refer the reader for quantitative results. An important property is that all fixed points
exhibit a cusp around 0, A(u) ~ A(0) + A’(07)|u| + O(u?), related to the presence of avalanches [I09, [I0T]. For our analys
the sign of (A*)”(u) is crucial as it determines the sign of the correlations. From the exact result (shown below) we
see that for (A*)”(W) > 0 shock sizes at distance W are anti-correlated, whereas for (A*)” (W) < 0) they are positively
correlated.

!There are other classes with different long-range correlations, but we will not study them.
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Random-bond: This class has a bare disorder potential V (z,u) distributed with short-ranged correlations in the u
direction: The bare disorder correlator Ro(u) decays quickly to 0 as u — oo. The most important property for our analysis
of the fixed-point function Ajp(u) (its typical form is plotted on the right of Fig. is that (ALg)”(u) > 0 at small
and (Ajp)” (u) < 0 at large u.

Random field: This class has the bare disorder force F'(z,u) = —,V (x,u) distributed with short-ranged correlations.
Then the bare force-force correlator Ag(u) is short-ranged and Ro(u) ~us1 —o|u| where o is called the amplitude of the
random field. The most important property for our analysis of the fixed point function AQF(u) (its typical form is plotted
on the left of Fig. |C.1) is that (Axg)”(u) > 0 for all z.

Random periodic: This class corresponds to periodic disorder V(u + 1) = V(u). As a consequence, A*(u) is also
periodic and (A*)”(u) = (A*)”(0) > 0 is constant. Though our analysis still applies to this universality class and our
results are correct to O(e), we will not discuss it here. As the shock process is periodic in any dimension, correlations

naturally arise from this periodicity (in particular in d = 0 in the m — 0 limit only one shock survives per interval).

The Brownian-Force-Model universality class: Finally, the Brownian-Force-Model defined as Ag(u) =
—o|ul is also a fixed point of the FRG flow equation and attracts all bare disorder such that Ag(u) ~ —o'|u| at large u. It
models avalanches at the mean-field level. (It resums tree diagrams). In this model shocks are uncorrelated.

Hence, from the perspective of practical applications, the qualitative behavior of the correlations between shocks as a
function of the distance strongly depends on the universality class of the model (see Fig. |C.1]).

C.3.4 Shocks observables: Densities

As recalled in the introduction, it is well known that in the limit of small m the (rescaled) ground state ug(w) is piecewise
constant as a function of w. In terms of the sequence of shocks {(w;, S;l))}iez one can write uz(w) and u(w) as

us(w) = Y Ow—w)SL
u(w) = ﬁ S 0w —w)S? (C.3.13)

where 0(x) is the Heaviside theta function. We recall the definition of the one and two-shock size-density:

p(S) =D 8w —wi)s(S — SD) (C.3.14)
pw (S1,52) =
> 6w — wi)a(S1 — SD)o(w + W — w;)8(S2 — SI) .
i#j
(C.3.15)
d—¢

These distributions possess a large-scale cutoff which we denote S,,; the latter diverges for m to 0 as S,, ~ m™
Additionally, we suppose that they have a small-scale cutoff Sp. In the scaling regime, p(S) behaves as a power law with a
characteristic exponent 7: p(S) ~ S™7 for Sp € S < S;,. We us also define the connected density

pw (S1,82) = pw (51, 82) — p(S1)p(S2) - (C.3.16)

In the first part of this work our goal is to compute pfy (S1,.S2) up to first order in € using the FRG.

C.3.5 Shocks observables: Probabilities

One can normalize the above densities to define proper probability distributions as follows:

po = / p(S)ds (C.3.17)
(W) = / pw (51, 2) Sy dSs | (C.3.18)
P(S) = %, (C.3.19)

Pw(S1,52) = %. (C.3.20)

With this definition, podw is the mean number of avalanches occurring in an interval dw and f:f dw f;‘? dw' pa(w' — w)
counts the number of pairs of shocks where the first one occurs between wi and w2 and the second between ws and wy,
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irrespective of their sizes. Given these definitions, P(S) and Pw (S) are normalized probability distribution functions (PDF).
fss dS P(S) is the probability, given that a shock has occurred, that its size is between S and S’. f;ll ds f;; dS'Pw (S, S")

is the probability, given that two shocks occurred at a distance W, that their sizes are between S; and S7, and Sz and
S5. Note that a priori the marginal distribution [ dS) Pw (S1,S2) is different from P(S2) since it contains the additional
information that a shock occurred at a distance W. At the level of these PDFs, the absence of correlations would imply
Py (S1,S2) = P(S1,52) and, though in the remaining of the text we will favor the use of densities, our results can be
translated to probabilities using Eq. (C.3.:20). As discussed in Ref. [109], for an avalanche-size distribution p(S) with
exponent 7 > 1 (which is relevant here), the value of py is dominated by the small-scale cutoff Sy for avalanche sizes, and
diverges as So — 0,

po = / p(S)dS ~sy—0 S5 . (C.3.21)
So

Hence, po is non-universal. In the same way p2(W) is non-universal, even though its relation with po has some universal
features as we will show below. We denote by (...),, (-..)pw, (--)pg,, (-..)p and (...} py, the averages with respect to p, pw,
pw, P and Py .

C.3.6 Relation between avalanche-size moments and renormalized force cumulants: First
moment

The n'" cumulant of the renormalized pinning force is defined as

c

u(wr) —wi] ... [uw(wn) —wn] =
(=)L (L w,) (C.3.22)

an[

By definition C® (w1, w2) = A(w1 — w2) as introduced above. By parity invariance of the disorder m*[u(w) — w] = 0, and
thus CM (w) = 0.

First cumulant: One immediately gets by inserting Eq. (C.3.13) into m?*[u(w) — w] = 0 the exact relation

(S)p = po(S)p = L*. (C.3.23)

Second cumulant: Differentiating with respect to w1 and ws the definition L™%A (w1 —ws2) = m*[u(w1) — wi][u(wz) — w2]
with Eq. (C.3.13) inserted, one obtains the relation (33) of [I09] (with a corrected misprint 1 — —1). It can be written in
the form

A (wy —w _
AL ) 262 s — )

+ L7245, S5) —1. (C.3.24)

Pwg—w1q

Hence, as pointed out in Ref. [109], the singular part of the second derivative of A” (w1 — w2) around ws = w; gives an
exact relation between the cusp in the renormalized disorder correlator

o:=-A'(0")=R"(0"), (C.3.25)

and the second avalanche-size moment,

(8% _ (8% _ o
S, = - = = C.3.26
2(S), 2(S)p m* ( )
The avalanche size Sy, plays the role of a large-scale cutoff for p(S). On the other hand, the regular part of Eq. (C.3.24)
gives the exact relation

B A”(W)

L72%(5182) pyy = 1 Tt -

(C.3.27)

For uncorrelated shocks we would have obtained L™2%(S1S552),,, = 1. The correlations thus come from the non-zero value
of A”(W) # 0, a property which is generally expected from the FRG. It is a simple signature of the fact that the effective
disordered force felt by the interface at large scale is not Brownian. Note that in terms of the moments of the connected

density, the exact relation (C.3.27) reads

_ AW
L724(8185) e = —L%WL). (C.3.28)
Let us also write the exact relation (C.3.27) in terms of the probabilities defined in Sec.
p2(W) (SrSo)ry _y A7) (C.3.20)

ro (S)p)? Ldm*
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C.3.7 Generating functions

We now introduce the generating functions which encode all the moments of the density pw (S1,S2). Let us first recall the
generating functions used in the one-shock case:

Z\) =L~ UM - 1), ,
Z\) = LM = XS —1), = Z(\) — A. (C.3.30)

They are related to observables associated with the position as

Z\) = L% lim Osel®u(w+o)—u(w)]
§—0+

Z(\) =L lim fsellawo)—a(w)] (C.3.31)

§—0t

where 4(w) := u(w) — w is the translated position field. Note that due to STS they are independent of w. These relations
were proven in Ref. [ITI]. For two shocks we introduce

Zw (A1, A2) i= L7245 —1)(2%2 — 1)), (C.3.32)

We show in Appendix [C.8] that it can be computed as

w (A1, A2)
= ZwA,A2) + X2 Z(M) + M Z(A2) + A e
Zw (A, A2) + A2 Z(A1) + MiZ(X2) — A1) (C.3.33)
We used the definition
Ziwg—wy (M1, A2) == L72% x (C.3.34)
lim  0Os,,5, eLdn[a(wi+61)—a(w1)] gLz [a(wa+82) =t (w2)]
81,6001

In the following we compute ZW(Al,Ag) using the FRG through formula (C.3.34)). Let us also define the connected
generating functions

Ziy(\, X)) o= LM —1)(e22%2 = 1)) e
= ZwOi, ) — Z(0)Z(A\2)
Zir(A,A2) = Zw (O, A2) — Z(A1)Z(2) (C.3.35)

These functions are actually equal: Zj, (A1, A2) = Zﬁv (A1, A2) as is easily seen using (C.3.33).

C.3.8 Relation between avalanche-size moments and renormalized force cumulants: Kol-
mogorov cumulants and chain rule

Using Eq. (C.3.34) and the fact that @(w) = 0, the generating function Zw (A1, A2) can be written as

oo

5 ATAS
Zw (A1, A2) = Z i lm (C.3.36)
n,m=1

[@(61) — a(0)]" [a(W + 62) — a(W)]™
In the limit of §; — 0 we encounter for each (n,m) two types of terms:
[2(61) — a(0 ]”[A(W +82) —a(W)™ =
[a(61) — 2(0)]" x [a(W + d2) — a(W)]™ (C.3.37)
+[a(61) — a(0)]" [a(W + 62) — a(W)]™ +O(57) -
The term in the second line of Eq. m produces the disconnected part of the avalanche moment (ST')(S3") and thus the
disconnected part of the generating function Zw (A1, A2), that is Z (A )Z (A2). The last term on the other hand contributes

to (S1'52"),c, and to the connected part of the generating function, Z8 (M, X2) = Z5& (A1, A2) which is the true unknown.
Introducing the Kolmogorov cumulants

K‘(/{;,m) ((51,62) = (0338)

L2955 — a(0)]* [a(W + 82) — a(0)]™

we can write
[e @)

c _ An}‘Q . (n,m)
Ziv (o) = Y i, Jm @K (61,62) , (C.3.39)

n,m=1
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or, equivalently,

n qqom . 1 n,m
(ST85 g, =, lim EK&, )(61,62) . (C.3.40)

The Kolmogorov cumulants (C.3.38)) can be generally extracted from the renormalized force cumulants (C.3.22)), as we now

explain. Let us introduceEl

C("’m)(wl,...,wn,wn+1,---7wn+m) = (C.3.41)

L(n+m72)dﬁ(

w1) - (wn) W(Wnt1) - - W(Wngm)

They are trivially linked to the renormalized force cumulants : C ™ (wr,y . Way Wity e e ey Witm) = ﬁ(—l/m%"“”é("*m
Explicit expressions for the lowest cumulants with n + m < 4 are displayed in Ref. [I09], see e.g. Eq. (61) there. In the
notation for C'™™) though the expression is symmetric in w;, we have highlighted the facts that in the end the n first w; will

be taken around w = 0, whereas the last m will be around W. Indeed, to obtain K‘(;}’m)(&, 02) from the moments C’<"’m)7

we must successively evaluate C™™) with w; — 61 minus C™ with w; — 0 for each i = 1,...,n, then set w; — W + 82

minus C™™ with w; — W foreachi=n+1,...,n+m. Ambiguities associated with the possible presence of terms such

as A'(Oi), are lifted by taking the limit of coinciding points with a given specific ordering of the w;. Consistency requires

that the end result does not depend on the chosen ordering, a property linked to the assumption that all singularities of

the field @(w) can be modeled by a finite density of dilute shocks (which guarantees e.g. the continuity of C'). This iterative
procedure was called the K operation in [109].

C.3.9 Strategy of the calculation and validity of the results

In order to compute Zw (A1, A2), we must be able to perform disorder averages of moments of the position field at various
positions w; for ¢ = 1,...,r. For example r = 4 is sufficient in the formulation and used in Appendix In the
main part of this work we report a calculation of ZW()\l, A2) from the study of the moments and we thus need to
keep r arbitrary. We therefore consider the theory for r position fields u coupled to different parabolic wells centered at
positions w; in the same disordered environment. The Hamiltonian of the problem is

Hifuh, fw}] = 3 Hal', o] + S / Vi, ) . (C.3.42)
i=1 i=1Y7T
This leads to a replicated action of the form
Slu] = LZ by — wi) (uly — wi)
oT /. gzz/ ax v ax v

1 L
372 > /RO(uax —Up) + - (C.3.43)

3. xT
a,i;b,j

The effective action of the theory is [109] 1111 [96]
Du] = L Z 9 (b — wi) (Ul y — wi)
2T . o xx! ax K3 ax g
a,i

—% > /R(U’ﬁ.z —uj,) +O(e) . (C.3.44)

a,isb,j V%

Here R(u) = O(e) is the renormalized disorder correlator already introduced in the previous section, while the neglected
terms are higher-order terms in e that can be expressed as loop integrals with higher powers of R. The calculation of
observables using the effective action has been called the improved tree approzimation [109, 111]. Here we did
not specify the number of replicas a = 1,...,n,. As is usual in replica calculations, the n, — 0 limit will be implicit
in the following. Since (C.3.44) is the effective action, observables will be computed using a saddle-point calculation, or
equivalently in a diagrammatic language, by resuming all tree diagrams generated by the action . This calculation
allows to get the lowest order in e for any observable. Let us recall the known results at the improved tree level for p(S)
and Z(A) as obtained in Refs. [109, [111]:

os) = — L (C.3.45)
2/7S% (82 ’ o

At SmZ(V)? = %(1 /T 4rS,) . (C.3.46)

N
—~
>
N

I

?Note that those differ from C introduced in [I09] by an additional factor of L~
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C.3.10 Connected versus non-connected averages and the c-expansion

Before going further, let us now mention a subtle point. As will become clear in the following, the improved tree calculation
leads to a result of order O(¢) for py, in contrast to p(S) for which it leads to a result of order O(1) El Hence if one computes
pw (S1,S2) = p(S1)p(S2)+p5 (S1, S2) to O(€) one must pay attention to the fact that pf, (S1, S2) can be computed using the
improved-tree theory, but p(S) has then to be computed to one-loop accuracy. In the same way, the connected generating
function

Zyy (A1, X2) = Zw (A1, A2) — Z (A1) Z(A2) (C.3.47)
can be computed exactly up to order O(e) using the improved tree theory, but to compute Zw (A1, A2) up to order € one must

add one-loop corrections to Z(A). The same remark holds for the moments (S7"55%)pc = (S7155%) oy, — (S7)0(55%),.

C.4 Correlations between total shock sizes

C.4.1 Reminder of the diagrammatic rules and extraction of shock moments

Let us now explain how the moments

C(n’m)(w1,...,wn,wn+1,...,wn+m) (C.4.1)

L(n+m72)dﬁ(w1) L ﬁ(wn)ﬁ(wn+l) e ﬁ(’lUn+m)

—2d = =
= L / Uy (w1) - .. Uyntm (Wntm)
Y1---Yn+m

are obtained using the diagrammatic rules developed in Ref. [I09] which can also be read off from the action (C.3.44)). In
the calculation of the correlator 1} the terms of the form L% (w;) = fy’_ Uy, (w;) are diagrammatically represented as
external legs at the top of the diagrams. Fields at different position w; and le can be contracted through an interaction
vertex fz 7z R(@-(w;) — i (w;) +w; — wy), represented as a dashed-line (each contraction bringing an additional derivative
to R with the appropriate sign). The propagators are represented as plain lines. When forming tree diagrams, one produces
n + m — 1 interaction vertices ?1237 and 2(n + m — 1) propagators, which each carries a factor of 7. For trees, all
factors of T' cancel, and the diagrams survive in the 0 temperature limit. The factors of T" can thus be omitted in the

diagrammatic rules. As for the integrals over the positions of the external legs y;, i = 1,...,n+m and the disorder vertices
zk, k=1,...,m+m—1, since the interaction is local in space and fz Jo = m%, all 2(n+m — 1) propagators can be taken as

static propagators and thus this integration produces an additional factor of L. This procedure results in expressions for
the C™™ (w1, ... W, Wni1, ..., Wnim) as sums of products of terms involving derivatives A® (w; —w,) [}l In calculating
the Kolmogorov cumulants K (™™ (81,82) to order O(d162) one must use the even but non-analytic form of A(u) around
the origin,

A(u) = A0) + A'(07) |u] + wzﬁ + 0 . (C.4.2)

We checked that if one takes all limits of coinciding points with a fixed order of the w; in the calculation, one obtains a
non-ambiguous result, independent of the ordering.

C.4.2 Lowest moments

First moment: We fist consider the computation of ($152),c . To this aim we compute C* (wy, ws), which is given

by a single diagram:

c
Pw

wy ~ 0 w2 R
CUV(wi,we) = 2 L o
A(wl_—_wg)
= ;A(wl —w2) . (C.4.3)
Lidm?

We have introduced a new diagrammatic notation: A double-dashed line represents an interaction vertex between position
fields at a finite distance =~ W; we reserve the single dashed line for interaction vertices between nearby position fields.
Hence,

1
K‘(,é’l)((sh 5) = TaT [A(—(Sl + W +d2) — AW + 52)
—A(=01 + W) + A(W)]
A" (W
= - Ld(m4)6162 +0(5) - (C.4.4)

3To be rigorous, this is only true of the dimensionless density 5(S) = Smp(SmS) since Sy = O(e),
we neglect this subtlety in the following.

“Each R vertex must be contracted at least twice or there would be one free-replica sum left in the
replicated theory, leading to O in the limit of a vanishing number of replicas.



C.4. CORRELATIONS BETWEEN TOTAL SHOCK SIZES 215

Using (C.3.40) we conclude that

_ A" (W
L72(8185) e = —ﬁ . (C.4.5)

This is the exact result (C.3.27)), here retrieved diagrammatically within the improved tree approximation. A priori there
could be higher-order corrections O(e?) on the r.h.s. of (C.4.5)), coming from loop diagrams. However, the definition (C.3.10)
of A(u) as a physical observable effectively resums an infinite number of loop diagrams. The same diagrams then arise on

both sides of Eq. (C.4.5)), and the result (C.3.27)) is exact.

Second moment: Let us now consider the computation of (Sng)p;«N. We first need to compute C*Y (w1, w2, ws).
Diagramamtically it is given by
0(2’1) (’U_)17 w2, 'LUJ)

we ~ 0 wy ~ 0 wy ~ W w3y ~ W w1 =0 we ~ 0 we ~ 0 w3 ~ w1 ~
_2Symw1<—>w2< |L==| + - + I- >

2
SV [A(wl — w2)A (w1 — w3) + Alwr — ws)A (w1 — w2) + Alws — wa) A (ws — wl)] (C.4.6)

In doing the K operation to go from C'*V) to K‘(/‘%’l), these diagrams are not equivalent. At order §1d2 that we are interested

in, the first term leads to 44\.;521*) AL/;() 0102, the second to 2A;ELO4+> ALI;%)&&, whereas the third one is of order 0(5%2)

and does not contribute. Using Eq. (C.3.40) we conclude that

A'(0%) A”(W) 2
ps, = 67W +0(€) . (C.4.7)

L2487 Sa)

General rules for diagrams: The last example is rather instructive for the three general rules:

(i) the only diagrams that contribute to the Kolmogorov cumulant K‘(,;‘m)(él, d2) at order d102 contain a single double-
dashed vertex (that is a single disorder interaction vertex connecting the two disjoint sets of points at w ~ 0 and w ~ W);

(ii) this vertex becomes a A" (W) at order 61d2;

(iii) the other interaction vertices are between (almost) coinciding points, and produce a factor of A’(0") at order 615>.

These rules come from the fact that in the K operation each external leg produces an additional factor of §; (for the n
legs at w1, ... wy &= 0) or d2 (for the m legs at wn41, ... Wntm = W), thus tend to be of higher order in ¢; and d2. However,
from the study of the one-shock case (see Section V.C of [109]), we know the general mechanism to escape this apparent
trivialization and to allow that each part of the diagram that connects only coinciding points together brings a single d;. In
this case, starting from the top of a diagram the §; attached to an external leg can be brought to the bottom of the diagram
as long as the disorder vertex encountered along the way leads to a A’(0%) when taking the limit of coinciding points.
In such diagrams each vertex linking coinciding points must have two up-going propagators and one entering from below
(effectively corresponding to the A’(0™) cubic vertex of the BFM [I01]), except for the vertex at the bottom of the diagram
which has only two up-going propagators (see Section V.D. of [I09]). This last vertex is the one carrying the remaining
factor of §1: being differentiated in the end it also leads to an additional factor of A’(0%). This explains why the disorder
only enters as A’(0") in the one-shock improved-tree-theory result . The rule (iii) stated above is a generalization
of that property.

In the two-shock case the same mechanism occurs and rule (i) is obvious: a diagram cannot have more than two sets of
points separated by a double-dashed line (one around w = 0 and one around w =~ W) since each set contributes a factor of
d;. For example, in the last diagram of Eq. , each leg is such a set of points, and the diagram is O(63d2). To explain
rule (ii), let us consider one endpoint of a double-dashed line and distinguish three cases. First, if there is no propagator
entering from below this point, such as the points at w ~ W in the first and second diagrams of Eq. and the two
points in Eq. , then the d; originating from the set of connected points above it end at this vertex, and the vertex is
differentiated during the K operation. Second, if there is a propagator entering from below that point, such as the point at
w1 = 0 in the first diagram of Eq. , then the §; originating from above the vertex continues downward the diagram
without modifying the vertex. Third, if there is more than one propagator entering from below the point then the diagram
will necessarily be of higher order in §;. Combining these three cases, one concludes that the double-dashed-line vertex
necessarily corresponds to a A" (W).

Hence we see that the diagrams contributing to the two-shock moments consist of diagrams reminiscent of the one-shock
A”(W)
Lidm4 ~

case (i.e. they contain only A’(0") vertices) linked together by an interaction vertex —

C.4.3 Generating function for all moments

Let us now use the above rules and give a diagrammatic computation of Zf, (A1, A2) = ZA‘SV(/\l, A2) defined in Eq. (C.3.35)).
To this aim, let us first introduce a diagrammatic notation for Z(\) defined in Eq. (C.3.30):

(C.4.8)
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We have emphasized using dots that there is an arbitrary number of external legs at the top of the diagrams summed in
Eq. (C.4.8). Using the expansion and following the rules explained in the previous section, the diagrams entering
in ZﬁV(Al, A2) are made of two trees linked by a single doubled dashed line. It is the sum of all tree diagrams for avalanches
at w = 0, times all tree diagrams for avalanches at w = W, linked together by a single — AL/;%> inserted between any pair
of points belonging to each tree. This can be represented as

Ziv(M,22) = Zi (A, Ae)

(C.4.9)

The diagrams above the point of insertion of A”(W) on the left are given by Z(A1). The terms below are all the diagrams

in Z(A1) with an arbitrary external leg selected, that is dz(kl) . A similar contribution arises on the right-hand side. Hence
we arrive at the result
. A" (W) dZ (M) dZ(X2)
Zw (A1, A = - Z (A Z (A
W( 1, 2) Ldm4 ( 1) d>\l ( 2) d)\Q
+0(€%) (C.4.10)
In terms of Zw (A1, A2) this result reads
Zw (A1, A2) = Z(M)Z(N\2) (C.4.11)
A" (W) dZ (M) dZ(N2)
~ Tt 2O 200

It is correct to O(e) if one takes into account the O(e) corrections to Z(\). Expanding the result (C.4.10) one obtains the
moments (S7'53") ¢ :

" AN W
(ST >ch _ —L%mzn!m! (C.4.12)

Lm— =Py p+1 m—q q+1
Z S S > <S >P<S >P —|—O(62) .
q=0

— —p)lpl(m — q)lq!

The diagrammatic interpretation of this result is straightforward: to construct an arbitrary diagram contributing to

(S?S;”),J;V, one must first choose p < n — 1 external legs on the left that will be below the point of insertion of —
(there must be at least one leg above this point of insertion). In the K operation, all those points lead to a term that
contributes to (S¥),. The combinatorial term accounts for the C} possible choices. Note that this result was derived using
the heuristic diagrammatic rules developed in the preceding section. We observe that:

(i) Tt correctly reproduces the results for the small-order moments (C.4.5) and (C.4.7). We checked that it leads to

(S?Sg)p;v = —60 AL/;(:LZ) 52, and (SfSS)p;V = 27 ALd(V‘Q S2,, which can also be derived from the expression for ¥ (w1, w2, w3, wa)
given e.g. in formula (61) of Ref. [109].

(ii) We give in Appendix an alternative derivation of Eq. that uses the Carraro-Duchon formalism [230, [1TT].

(iii) We give in Appendi a derivation using a saddle-point calculation within the effective action . This

also yields the local structure of correlations studied in Section

C.4.4 Results for the densities

To infer pw from Eq. (C.4.11)), we first note the identity Z(\)=5 dZ(’\) = 2slm 4 (Z(X\) = A), derived from the self-consistent
equation (C.3.45) for Z()\). Differentiating L™ [ dS (e — l)p(S’) = Z(\) with respect to A and using (S), = L% yields
~a / dS(e*S — 1)Sp(S) = % (Z(0) - A . (C.4.13)
Finally, using Eqgs. (C.3.32)) and (C.4.11)), we obtain
B A" (W) 518
w (S1,52) = p(S1)p(S2) <1 T Tami 45z ) (C.4.14)

This is our main result for the two-schock density, already announced in Eq. (C.2.10) of the introduction. It can be used
to extract a variety of physical observables.
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Mean number of paiI‘S of shocks: Integrating over S1 and S2, we obtain two equivalent formulas for p(W):

A//(W) L2d

2

p2(W) = po— Limt 452, (C.4.15)
Y RSN ECITAY
= Po Lim4 2Sm

Hence, although both po and p2(W) are non-universal and dominated by the non-universal small avalanche size cutoff So
discussed in Sec. [C.3.5] the connected density p2(W) — p3 does not depend on Sp and is universal.

Normalized probability distribution: The above results allow us to express the probability distribution

Py (S1,82) = %‘;}‘52) to O(e) accuracy as

Py (S1,S2) =

P(S1)P(Ss) {1 - Lﬁ;% <S1Sz - <s>§,)} : (C.4.16)

Conditional probability distribution: Another PDF of interest is the conditional probability to have a shock
with amplitude S2, given that there was a shock of amplitude S; at a distance W before. To O(e) accuracy
Pw (51, S2)

Pw(52|51) = m (C.4.17)

P(S) [1 - % (52 - <5>p)}

Its mean value, normalized by (S) p, is

(SalS1) _ | A"(W)S:
SYp  48%Limd

(2Sm - <s>P) . (C.A.18)

Second shock marginal: The probability for the size Sz of a second shock at W, given that there was a shock at
0, is

Py (S2) /dSlPW(Sl, S2)

—  P(Sy) {1 _ATW)S)e (s2 - <5>p)}

482 Lim4
(C.4.19)
The normalized mean value of the second shock is
Sa)w A" (WH)(S)p
<<S>>P —1_ 45(2 L)Cfmi (QSm - <5>P) . (C.4.20)

C.4.5 Analysis of the results

Sign of the correlations: As discussed in Sec.|C.3.3] the sign of the correlations (positively or negatively correlated
shock sizes) solely depends on the sign of A”(W), which depends on the distance W and on the universality class of the
problem. The above results thus unveil a rich phenomenology for the correlations as pictured in Fig.

Range of validity: The result was obtained in the framework of the ¢ expansion. The results for the
connected part of the correlations are by definition the first non-zero terms in this expansion, since they were obtained
within the improved tree approximation, and they appear at O(€). As a perturbative result, it is by definition controlled for
e — 0. For finite €, the predictions should be accurate as long as the corrections to the mean-field behavior are small. This
is worth emphasizing, since the moments (ST.55"),,, predicted by the formula become negative for large (n,m),
signaling a breakdown of the improved tree approximation. This is also the case of the two-shock density computed at
the improved tree level in Eq. which becomes negative at large S;. There the approximation is not controlled
anymore since O(e) corrections are larger than the mean-field result. Let us see when this occurs: using the simple estimate
A" (W) =~ |A'(0T)|/W,,, where W, is the length of order u~¢ on which A(W) decay, see below, and |A’(07)| = m*S,,, the
bound p(S1,S2) > 0 is violated if
Sm 1 S1.52
1< X — X .
N Wapmd () ASE
While the first factor is a dimensionless number of order 1, which vanishes as O(e) near d = dyc, the second vanishes in
the thermodynamic limit of L — co. Thus the bound can only be violated if S1.52/ 52, compensates this factor. This can

(C.4.21)
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only be achieved if at least one of the avalanches is either system-spanning, or far out in the tail of the distribution, i.e. the

bound is only violated for very unlikely events.

Note however that the exact result (C.3.27) is protected from being negative since
AN(W)
—2d

L™°%5152)pyy =1 — Tami (W) D u(W 4+ w) (C.4.22)
and 9y, u(w) is always positive since u(w) is monotonically increasing as a function of w. The latter can be shown rigorously
using a stability argument: Writing that u,(w) is a stable minimum of the Hamiltonian (C.3.1)) implies for all = two

equations, namely ‘sti[”(‘;)"] =0, and % > 0. Specifying the second equation to x = y, we obtain
m? [t (w) — w] + 8.V (ug(w),z) =0, (C.4.23)
m® + 02V (ug (w), ) > 0. (C.4.24)
Taking a derivative of Eq. (C.4.23]) w.r.t. w, solving for O, us(w), and using Eq. (C.4.24) implies
1
Owlg = >0. C.4.25
ua () 14+ m=202V (ug(w), ) ~ ( )

Comparison with experiments and numerics: Though our predictions rely on the analysis of the model
- ), they were obtained using FRG and thus we expect Egs. (C.4.10) and (C.4.12) to be valid for all models in the same
universality class. All our results, namely Eq. 4 12)) and Egs. (C.4.14))-(C.4.20)), contain the combination AL/;%). On
one hand it can be used to give a result to order O(e) in the form of a universal function (see below). On the other hand
all quantities entering the r.h.s of these equations can be measured directly in an experiment or in a numerical simulation.
Indeed we recall that

(C.4.26)

and the combination
A”(W)
Lim*
can both be measured and do not require to know the mass m which might be hard to identify. The computation of
this second derivative then gives a precise characterization of the amplitude of the correlations through the exact formula
(C.3.28). The accuracy of the e expansion and universality can then be tested against the formulas given in the previous
section.

= Oy [u(w) — w][u(w + W) —w — W] (C.4.27)

Universal function: Using rescaled quantities we can rewrite our main result as (see Eq. (C.3.11)) and Sec. [C.3.3)

1 L* W 5 S
w(S1,92) = —— —1 (—,—,—) C.4.28
where the function Fy is universal and depends only on the space dimension. To first order in d = dyc — €, it is given by
A A*//
F(w, s1,52) ~ AdDT(W) —rta)/a O(?) (C.4.29)

167/s152

in the limit of large L and small p and A4 was given in Eq. (C.3.12). Here A*”(w) is the universal fixed point of the
FRG equation, normahzed to A*( ) = €. Indeed, for small m the rescaled renormalized disorder correlator of the system
A( ), appearing in Eq. , is close to one of the fixed points of the FRG equation: A( )~ A*( ). For non-periodic
disorder, the latter can be expressed using one constant k as A*(w) = K>A*(w/k) (see Sec. . The parameter & is
thus the single non-universal constant in our formula. The scales in Eq. are then given by

W 2 5~ ° S~ AgrA™ (07~ (@9 (C.4.30)

for small y. With the above normalization, to order e, A*'(0%) = y/e(e — 2¢) and A*"(0) = 2.

Locality: Note that in the result the amplitude of the correlation is inversely proportional to N = (Ly)?,
the number of elastically independent degrees of freedom of the interface. This is a signature of the local nature of the
correlations. For two shocks a distance W apart, there is a probability of order 1/N that they occur in the same region of
space. To go further into this locality property and to remove this bias we investigate in the next section the correlations
between the local shock sizes.

C.5 Local structure of correlations

In this section we analyze the correlations between the local shock sizes. We start by deriving a general formula for the
correlations between the local shock sizes measured on an arbitrary subset of the internal space of the interface. To this
aim we define

S]ii>1 :/Slz(yblz ) 3352 = /S21¢21 ) (C51)
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where ¢1 and ¢2 are two arbitrary test functions. Two extreme cases are ¢1, = 1: in this case Sf’ ! =51, and the observable
is the total size studied in the precedent section. The other extreme is ¢1, = 6d(1’ — x1), for which Sf’l = Six, is the local
size at x = ;.

C.5.1 Reminder: one-shock case

Here we briefly recall the essential definitions and results given in Refs. [I09] [IT1] on the density and generating function
associated to the local one-shock size statistics. For a general test function ¢ we introduce

pP(8%) = Y 8(8D0 — §9)5(ws —w) |
200 = f:% @~ 1), )
2°00 = Z2°() -, (C.5.2)

where (...) ;o denotes the average with respect to p®. Note that Z? has no linear term, since the first moment of p® is due
to STS

(S%) 0 = /% ) (C.5.3)

The generating function Z¢(A) is obtained from the replica field theory using the exact relation

200 = agefm Solur (o) —up@)=d) (C.5.4)

1
J, ¢
It was shown in Refs. [I09} [IT1] that Z?()\) can be written as

J. 22

Z%(\) = , (C.5.5)
oo
where, at the improved-tree-theory level, Z¢ (M) satisfies the following self-consistent equation
Z2(\) = Aoa + a/ Go—yGa—y Zy N 25 (N) - (C.5.6)

vy

The quantity o = —A’(0") was defined in Eq. (C.3.25).

C.5.2 Two-shock case: Notation and diagrammatic result

Densities and generating functions: Consider

P (57",887) =3 8w — wi)d(SF — SO )5 (w + W —w;)0(SS7 — S |
1 2
1#£]

The generating functions are

ol o? Alsfl B /\2552 B
e f ¢Zf o3 <(e 1) (6 1>> ¢1¢2 (C.5.7)

Uz (W Uy (W 2 Ug (W Ug (W
lim O sc Jo sbxlastwnton—az (il [, e2aalie(wa+on) —dswa)] (C.5.8)

f (bzf ¢z 51,62—07F

290 (A1, Ae) =

w2 —wi

1.2
where <.‘.>p¢1 »2 denotes the average with respect to p‘évd’ . The following relation holds

w
ZH (A h2) = 257 (A he) + 2% ()
2% () — A (C.5.9)

(These relations are a consequence of Appendix|C.8|). The connected equivalents of the previous definitions are constructed
as in the previous section for the correlations between the total sizes; for example

1.2 1 2 1.2 1 2 1 1 2 2
(ST LSS ) = ph (ST LS5 ) — p? (ST ) (ST, (C.5.10)

2
and we note () el o2 the average w.r.t. pjif 010
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Simplified notation for averages: In order that these somewhat complicated notations do not obscure our
results, we introduce simplified notations for averages. We first note that

1,2 1 2 1 2
P ? (SY,857) = p(W)P(SY, %), (C.5.11)

where p2(W) is as before the density of a pair of shocks and P(Sf I,Sg) 2) denotes the probability, given that two shocks

1 2
occured at a distance W, that their local sizes measured with respect to ¢' and ¢? are S‘f and Sf . We have dropped the
dependence of P on ¢! and ¢? to alleviate our notations. We also note arbitrary moments as

WS S5 ) o 1= (ST (53" e (C.5.12)
ST (SE) ™oy, 1= (ST (SE)™) ten (C.5.13)

We indicate the dependence on the choice of ¢' and ¢* only inside the average, and not in the measure. A moment of the

form <<(Sf’1)"(5552)m)>pw is thus equal to the product of p2(W) and of the mean value of (Sfl)"(Sf)m for shocks at a
distance W, given that two such shocks occurred.

Diagrammatic result: In Appendixwe compute these generating functions by a direct evaluation of Eq.
using a saddle-point calculation on the effective action . Alternatively, from a diagrammatic point of view, the result
can be adapted from the reasoning that led to Zw (A1, \2) by keeping track of the space dependence in the different vertices,
propagators and sources in the diagram . Following Eq. , we represent Zf()\) as

0

(C.5.14)

T
The same diagram without the marked point z is also used to represent fm Z2()), itself equal to fz ¢z X Z?()\). Then, as

before, ZA‘?VI ¢2(/\1, A2) is the sum of a connected and a disconnected part:
257" (M, 2e) = 227 ()27 () + 252 (M ha) (C.5.15)

A a1l 12
The connected part Z57 *” (A1, A2) is

ZA&;¢1¢2()\1,)\2) o1;w =~ 0 doiw~ W
= W X (C.5.16)
T1
¢1;’I_U ~0 | _____
It can be written as
A1 2 A”(W)
Z50 7 (M de) = —
v [.ox [, 62
522" (A1) 2 6220 (\)
wzd?l/\ ylimzi’ No) ——¥2 2/
/Zz1z2y1yzg 1 11( 1) )\16(#% Gzzo 922( 2) )\26¢g
+0(€%) . (C.5.17)

We note that it is possible to obtain a more explicit formula for avalanches measured on parallel hyperplanes, see Appendix
[CI0:2] In the next section we focus on the first moments which already contain valuable information.

C.5.3 First moments: arbitrary sources and kernels

The first moments of pﬁ{,‘blérz are obtained from the combination of Egs. (IC.5.7I), (IC.5.9I), (IC.5.15I) and l| One first
needs the series expansion for Z¢ (A). It is obtained from Eq. (C.5.6)) at arbitrary order in A; here we give it up to order 3:

Zaqcb()‘) = A¢x + )\20'/ gxfygz_y/%(by/ (0518)

vy’

+2/\302/ Go—yGa—y? Gy—2Gy— = G2 b2r by + O(XY)
yy'zz’
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Hence

672
A(sd)u = (5(ZE — u) + QAU/ngynguqﬁy

Y

+2/\2‘72 (2/ gx—yngy'gy—zgy—u‘ﬁzqsy/
yy'z

+/ gzygzugyzgy—z’¢z(z7z’> + O()‘S) : (C.5.19)
yzz'

We then obtain from Eq. (C.5.17) the local version of the exact result (C.2.8)), namelyEI

(7788 e, A" (W)
TALd T Taral,,eeeed
+0(€%) . (C.5.20)

Let us also give the result for the third-order moment,

(8P 288 ) ee A" (W)

= — o
1 2 1 2
[oh [, o2 Jos [, 02
<4/ 92—1192—129y1—t19y1—2¢alc1‘151}1‘15352
zxiray1ty

X

141 42
+2/ Gr—w19z—w2 91 —t1 Gy —t, Pty Py Pz
zzlzgtlt’l

+0(€%) . (C.5.21)

C.5.4 First moment: correlations between the local shock sizes for short-ranged elasticity.

Let us now give the precise form of the first connected moment for an interface with the short-ranged elasticity (C.3.2)) and
for correlations between the local avalanche sizes at two points 1 and z2. We choose ¢t = §%(z — x1) and ¢2 = 6%(z — 22)

1 2
and note x = |x1 — x2| the distance between the two points. Thus Sf’ = Siz, and Sg = S2z,. We obtain

((S1a1 S22 ) e, = —A"(W)/e""(“’“)gqgfq

q

72 Em T g e (C.5.22)

where K, (x) denotes a modified Bessel function of the second kind. Note that integrating this formula yields an exact
result,
A" (W
/ ((S1215222))ps, = (S152)pc, = deL . (C.5.23)
1,T2

mA

This is equivalent to Eq. (C.3.28)), which is exact. We thus expect Eq. (C.5.22)) to be quite accurate even for large values
of e.

As expected, we observe that the amplitude of the correlations decays exponentially beyond the length L,, = 1/m. For
smaller distances they decay algebraically with an exponent that depends on the dimension:

((S1a1 S2:cl+:c>>pgv — ((S121 S22, >>p§v
A//(W)

~ 2 3

=1 —g z” + O(z”)

- AU(W) 9

S T [2713 -1+ 210g(mx/2)] x

gy B 8(7:4/);); +0(?) . (C.5.24)

5The result can simply be turned into an exact one if one introduces the bi-local part
of the renormalized disorder correlator Ay, —uy (w1 — w2) = M [tg, (W1) — w1][tey (W2) — we] (see also
[96]) and proceeds as in Sec. The result can then be understood as the lowest-order
approximation of Az, _4, (w) in terms of A(w).
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Finally, to emphasize the universal nature of Eq. (C.5.22]), we note that it can be rewritten, using the notations of Sec.
and introducing a new universal scaling function F; (w, x), as

w
((Slzl 52332>>p€/v = f;l(WH’mhjl — $2|) (0525)
Fil(w,z) = —2_%_171'_%AdA*"(w):cQ_%K%%(m)
+0(€%) . (C.5.26)

C.5.5 First moment: correlations between the local shock sizes for long-ranged elasticity.

Let us now study the correlations between local avalanche sizes (we choose again ¢ = 6%(z — z1) and ¢2 = 6%(z — x2)
with |z1 — z2| = x) for the case of long-ranged elasticity using the kernel (C.3.3)) with v = 1. Then the result for the first
connected moment is

(Siz S2an)ps, = —A" W)L () Ky (ap)
(2m)% :

e H*

W (C.5.27)

=d=1
As the previous formula for short-ranged elasticity, this formula should be rather accurate for the experimentally relevant
case of d =1 (in this case e = 1). We again observe an exponential decay of the correlations beyond the length L, = 1/pu.
However, here the correlations are constant at small distances, a signature of the long-range nature of the elasticity. As
before, the universal nature of this result can be emphasized by introducing a universal scaling function }',},ILR(w, Y):

w
({121 S202)) ps, = Farr (5> mulzr — w2)) (C.5.28)

where we used the same notations as in Sec. [C.4.5

C.6 Measurement of correlations in simulations of d = 0 toy models.

C.6.1 Models and goals

In this section we compare our results with numerical simulations of toy models of a particle in a discrete random potential.
The position of the particle can only take integer values u € N and its Hamiltonian is

Mo s w] = V() + %m2 (u—w)? (C.6.1)

where V is a random potential. We consider two distributions for the random potential mimicking the two non-periodic
static universality classes of interfaces models:

RB model: The first model is a toy model for the Random-Bond universality class with short-ranged correlated
disorder where the random potentials V (i) at each site ¢ € N, are chosen as independent, centered and normalized Gaussian
random variables.

RF model: The second model is a toy model for the Random-Field universality class where V(0) = 0 and for i > 1,
V(i)=- 22:1 F(j); the random forces F'(i) at each site ¢ € N are chosen as independent, centered and normalized random
variables. Thus V(i) is a random walk with Gaussian increments.

In the RB model we choose the mass as mrp = 0.01 and in the RF model as mrr = 0.02. With these parameters, the
probability po to trigger a shock when moving w — w41 is pg" = (6.95940.001) x 10™% and p§® = (9.471£0.001) x 1073,
These small values of the masses ensure that the models efficiently approximate our continuum model in d = 0, and that
the particle optimizes its energy over a large number of random variables. We perform averages over 10 simulations of
environments of size N = 5 x 10% sites. We obtain excellent statistics for various observables studied in this work, including
p2(W), A(W) measured using Eq. , (S152) pyyy and (S752) s -

Let us emphasize that these simulations are more a proof of principle to motivate simulations on higher dimensional
models and measurements in experiments, than a full test of the results obtained in this article. This said, our simulations
allow us to verify the exact result to a very high accuracy. Second, although d = 0 is at a large value of € in
the d = 4 — € expansion, the FRG equation and the associated fixed-point functions for random-field disorder are known
to behave quite similarly [97), [IT7]. For random-bond disorder we expect less universality since A(u) is non-universal in
d = 0; nevertherless the relations between the correlation and A(u) are interesting to investigate, in particular the sign of
the correlations.
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Figure C.2: Renormalized disorder A(u) measured in the d = 0 RB toy model. Inset:
its second derivative A”(u), computed using a numerical fit of the measured A(u).

C.6.2 Numerical Results: RB model

Using the definition we measure the renormalized disorder correlator. The result is shown in Fig. Using an
interpolation of the result with a polynomial of degree 10, we obtain a smooth version that is later used to compute its
second derivative A’ (u) which appears in our analysis as the central object controlling the amplitude of the correlations.
Some measured properties are: A(0) = 3.34 x 107°, A”(0) =~ 6.78 x 107?; A(76.2) =~ 0, A”(215) ~ 0; the position of the
minimum and the value at the minimum: A(148.2) ~ —7.3 x 107, A”(274,4) ~ —5.1 x 107*°. This is compared with the
measurement of (S5152),,, using the exact result 7 see Fig. We obtain a perfect agreement.

From a qualitative perspective, we note the following:

(i) We observe the predicted crossover from anti-correlated shocks at small distances (W < 215) to positively correlated
shocks at large distances.

(S1852) 5¢ (S1S52)

(ii) The correlations are far from being negligible: by definition T‘)QW > —1, while we observe
an indication that the shocks in this toy model are strongly correlated.

We now check the predictions obtained using the e expansion. We first measure p2 (W) and compare it with the result
, see Fig. We obtain a surprisingly good agreement between the two curves, considering that e = 4. We also
measure {SiS2) oy and compare it with the result , see Fig. Here the discrepancy is large for smaller values

2
% < —1 at small W, which is unphysical. This
discrepancy keeps increasing with higher-order moments. However the sign of the correlation, and its value for large W is
quite well predicted.

of W, a fact that can be anticipated since our result predicts

C.6.3 Numerical Results: RF model

In Figs. to we show the corresponding results for the RF toy model. They are similar except that as predicted in
this type of model the shocks are always anti-correlated. The value at the origin of the renormalized disorder correlator

and of its second derivative are measured as A(0) = 3.4 x 107%, A”(0) ~ 9.4 x 1075, Once again we observe that these
(S152)

correlations are large, # ~ —0.6. We obtain a perfect agreement for the exact result (S152),,,, see Fig. The

P
agreement for the O(e) result for p2 (W) (C.4.15)) is surprisingly good (see Fig.|C.8|), whereas the O(e) approximation breaks
&

down for higher moments at small W such as (Sng)pav, see Fig.

C.7 Conclusion

In this paper we shed light on the fact that, for realistic models of elastic interfaces in a random medium below their
upper critical dimension, correlations between (static) avalanches should always be expected. To do so we have studied the
correlations between the size and location of shocks in the ground state of elastic interfaces in a random potential. We found
the exact relation for the first connected moment that characterizes these correlations in terms of the renormalized
disorder correlator, a universal quantity at the center of the FRG treatment of disordered elastic systems. Beyond the first
cumulant, higher-order moments , and the full joint density of shocks (C.4.14) were computed using the
FRG at first non-trivial order in the ¢ expansion. The local structure of these correlations was made precise through a
study of local shock sizes. The qualitative phenomenology associated with these correlations clearly distinguishes between
the Random-Bond and Random-Field universality classes. This was highlighted through a numerical simulation of d = 0
toy models.

We expect our results to broadly apply to models in the universality class of the statics of disordered elastic systems.
Concerning the dynamics, and avalanches at the depinning transition of elastic interfaces, we expect our results to be
equivalently applicable and accurate. The derivation of the exact relation can easily be adapted to the dynamics by
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(blue dots) and the prediction from the exact result (C.3.27) using the measurement

of A(u) (red curve) in the RB toy model. The agreement is perfect as expected.

Figure C.3: Comparison between the measurement of the normalized moment
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Figure C.4: Comparison between the measurement of pa(W) (blue dots) and the pre-
diction from the O(e) result (C.4.15) using the measurement of A(u) (red curve) in
the RB toy model. We obtain a surprisingly good agreement.
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Figure C.5: Comparison between the measurement of the normalized moment %

(blue dots) and the prediction from the exact result (C.3.27) using the measurement
of A(u) (red curve) in the RB toy model.
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Figure C.6: Renormalized disorder A(u) measured in the d = 0 RF toy model. Inset:
its second derivative A”(u), computed using a numerical fit of the measured A(u).
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Figure C.7: Comparison between the measurement of the normalized moment s v
P

(blue dots) and the prediction from the exact result (C.3.27) using the measurement
of A(u) (red curve) in the RF toy model. The agreement is perfect as expected.
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Figure C.8: Comparison between the measurement of pa(W) (blue dots) and the pre-
diction from the O(e) result (C.4.15) using the measurement of A(u) (red curve) in
the RF toy model. The agreement is surprisingly good.
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Figure C.9: Comparison between the measurement of the normalized moment ﬁ
(blue dots) and the prediction from the O(e) result (C.3.27)) using the measurement of

A(u) (red curve) in the RF toy model.

considering the quasi-static steady-state process of the position field of the interface instead of the position of its ground-
state as was done in Ref. [I0I]. For the results at the improved tree level, it is expected that both theories are equivalent
for those observables [101]. The most important difference is that in the dynamics the Random-Bond universality class is
unstable, and thus the observed correlations should always be of the Random-Field type (at least as long as the microscopic
disorder is short-ranged).

For physical systems where the usual model of elastic interfaces is accurate, our results give a precise description of the
correlations. Even if additional mechanisms generating correlations are present, such as in earthquake problems, correlations
due to the short-ranged nature of the disorder as described in this work should be included in order to gain a quantitative
understanding of the correlations due to these additional mechanisms.
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C.8 Appendix A: Proof of the identity on generating functions

As in the case of one shock (Appendix A of [I09]), the important identity is

(95 + )\Ld)e)\Ld(u(u)+6)—w—6) _
Z(EASi - 1)6ALd[“(wi_)_w_5]5(w +6—w;) (C.8.1)
By definition u(w; ) = L™ > ;< Si- Let us consider
GW1,w2 (517 62) = (851 + )\1Ld)(852 + A2Ld)><
e}qLd[u(wl-&-él)—u(wl)—51]+/\2Ld[u(w2+62)—u(w2)—52]

— Z(e/\lsi _ 1)(6>\2SJ _ 1)6k1Ld[u(w;)*u(w1)*51]X
ij

d _
€>\2L [u(w; >7u<w2>762]5(w1 + 61 — ’LU»L)(S(’LUQ + 0o — wj)

(C.8.2)

Taking advantage of the Dirac §-function, we can replace the u(w1) inside the exponential by w(w; —d1) which unambiguously
gives u(w; ) when one takes the limit of J1 — 0. We thus obtain

lim  Guy wy(01,02) =

51,00 =0t
D (@ =125 = 1)d(wr — wi)d(ws — wy). (C.8.3)
ij
Taking the average over disorder, we obtain by definition of Zy,—w, (A1, A2)

Zwy—wy (A, A2) = lim L72YGlpy oy (01, 02) (C.8.4)

81,60—01
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On the other hand, developing (95, + A1 L%) (85, + X2L%) = 85,05, + L*X\105, + L¥X205, + L** A1)z in the expression of
G, ,wo (01, 02) one arrives at Egs. (C.3.33) and (C.3.34).

C.9 Appendix B: A derivation from the Carraro-Duchon formula

Let us recall the results obtained in Ref. [IT1], generalizing to arbitrary dimension the result from Ref. [230]. Consider

N “Ld ~p
eLdZt{Wiawi} — e t

| wilu(wi)—w] , (C.9.1)

where t := # Then, in the improved-tree theory, Z solves the differential equation

OZefwi,wi} = — Za—zt{wz,w} Zufws, wi}

- 1
Zt:o{wi,wi} = 5 Z wiij(wi — wj) . (092)

i,j=1
It further satisfies the STS symmetry relation,
Ze{wi, wi + 6w} = Zi{wi, wi}

9 4
Z o Zidwiwi} =0 (C.9.3)

In order to extract the needed information for the two-shock statistics we choose p = 4 and the quadruplets (w1, w2, ws,ws) =
(—w1 — &, w1, —w2 + @, ws) and (w1, w2, ws,ws) = (0,1, W, W + §2). We then consider (with a slight abuse of notations)

Zt(UJ1, 51,@, VV,UJQ, 52) (094)
= Zi(—w1 — &,0,w1,01, —w2 + @, W,w2, W + 62)

Because of the STS the p = 4 function Z; depends only on six variables (and not eight) and satisfies a closed equation.
Indeed, using Eqgs. l) and li one proves that Z, satisfies the following evolution equation

- 0 5 0 05 0 8 0
07y = — ( 7, 27 ) C.9.5
o Do o5 2 T 0w T B o (C.95)
We are only interested in a perturbative resolution. Define the expansion
L = E Zin (8, w1, wa, W)OT 6307 . (C.9.6)

mnp

Indeed, this is sufficient to retrieve the generating function Zw (A1, A2) = Zdlsc(/\l, A2) + Z‘C,V (A1, A2) as (compare with the
small-d; expansion of (C.9.1) and (C.3.34)))

Zw (M, A2) = 290 (wr, wa, W) 201 (wi, wa, W)
Zir (A, A2) = L7920 (wi, wa, W) . (C.9.7)

On the right-hand side the arguments are w1 = —tA; and ws = —tA2. Inserting the expansion (C.9.6)) inside Eq. (C.9.5),
we obtain the initial conditions:

200 (t = 0, w1, wa, W) 0

20t =0,w1, w2, W) = —A(0")wi

zor(t=0,w1,w2, W) = —A'(0")wj

21t =0,w1,w2, W) = —A"(W)wiws

Zo0(t = 0, w1, w2, W) 0. (C.9.8)

Obviously we have zgo(t, wi,w2, W) =0, Vt. We also obtain the evolution equation:

1o} 0 0
&z?o = —(87‘}12?0)2?0—(87022?0)281—250%3?0
9,20 _ 9 o 0 9 o 0 1 0 o
t201 = EW 201 210 — 6w22’01 201 —Zoomzm
0
5%’?1 = (awlz 0)Z1 ( 201)2220 (aimz%)zgo
0 0 J o 0
( Z 10 22'02 ( 201)211 - (7211)301
Owa
-2 P 0 20 2 izo
oan 11 10 G 201 T 201 7 F10
9,21 _ 0 1 0 J 1 0 1 0 1
tZ00 — Twzoo 210 — 8702200 Zm*%owz’oo

(C.9.9)
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As a consequence of the initial conditions (C.9.8)), one can look for a solution of Eq. (C.9.9) such that

0 0 0 0
67(‘)22?0 = 87“)1281 = WZ?O = Wzgl = Z(l)o =0. (0910)

Each term has an interpretation in the notations of the main text. 29, corresponds to Z (A1) and 28, corresponds to Z (A2),
which in the present notations reads (see Egs. (C.3.30) and (C.3.45) and recall S,, = o/m* = ot?)

~ 1+ 20wt — /1 + dow;t
200(wi) = Z(\i) = 52 . (C.9.11)

This is the solution of Eq. (C.9.9) using Eq. (C.9.10). Note that 2z, = 0 can be seen as the signature that diagrams
contributing to the avalanche at w = 0 and at w = W can be linked only by one vertex A” (W), as observed in the
diagrammatics, see Eq. (C.4.9). This is already present in the initial condition (C.9.8)). The equation for z¥; becomes

0 0
atZ?l = *(Twlz(l)o)'z?l - (%291)2?0
0 0
One can check that the result (C.4.10) obtained diagrammatically in the main text, and which in the present notations

reads
o CA"(W) 1= VT4 4owit 1 =1+ dowst
1 40%t2 [T+ 4dowit 1+ dowsl
solves this equation with the initial condition (C.9.8). This demonstrates the equivalence of the two methods and results.

C.10Appendix C: Saddle-point calculation for the local structure.

C.10.1 Algebraic derivation of Eq. ((C.5.17)

In this appendix we prove formula (C.5.17)) “from first principles” using a saddle-point calculation on the improved action
(C.3.44). This computation is similar to the one presented in Ref. [IT1] for the calculation of the one-shock density. Here
the observable of interest is

299 (M) = ——— lim
W ’ fx¢}”fw¢% 81,020
Gw (81,82) = (C.10.1)

o, oEM (i a) i (w1) [ 633 (0 (w2 +62) ~ 0 (w2)

. 05,,6,Gw (01, 92)

where ws = w1 +W. This observable can be expressed using the improved action I'[u] of the replicated field theory (C.3.44])

with ¢ = 1,...,4 sets of a = 1,...,n replicated position fields @', feeling a parabolic well at position @; with @, = w1,
We = w1 + 01, W3 = w1 + W, Wq = w1 + W 4 d2:

4 i(ut o —ab;)—T[u
Gw (61,82) = /D[u]efz 2 iy Vi (i~ B0 —Tlu) (C.10.2)
Here and for the rest of this appendix, the n — 0 limit is implicit. To compute the disorder average we have singled out
replica @ = 1. In order to write the formulas in a compact form, we introduced new variables vo = A1, 11 = —A1, V4 = Ao,
vy = —Xa, P = 2 = $L, Y2 = 2 = ¢2. At the improved tree level, the functional integral is evaluated through a

saddle-point calculation as
4 i, -
G (31,8) = eda 2ima Vi¥ whem 00T

; (C.10.3)
where the position fields u?, solve the saddle-point equation
—1 i . 1 i j i
/z/ gml,(uax/ —W;) — T Z R (uby — uly) = Tvitplbar . (C.10.4)
cj

We are interested in the solution of Eq. (C.10.4)) in the 7" — 0 limit. As in Ref. [IT1], we look for a solution that isolates
the first replica (a = 1) in each set (i = 1,...,4) of position fields as

U =l — (1 — 6a1)TUS. (C.10.5)

Inserting the Ansatz (C.10.5)) into (C.10.4)) leads to

/ G (W — 03) + > R (uiy —ul, UL =0

x! J

/ G UL + ST Rl — i URUL = v
@’ i
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Being ultimately interested in the computation of (C.10.1)), we solve this equation in an expansion in §; and Jz as

1 W1+ W2

Uy = —g ulldy + ul?s,
ul = U @ 42ru~)2 +u2'6) + u2’8s
ui = w + um1(51 — u32(52
ut = w + s + ut?s,
UL =UL + U6, + UZ6s. (C.10.6)

Using now the definition (C.10.1)) we need to perform the following derivatives of (C.10.3), 05,05, = Ow,Ow,. Since the
fields u, are evaluated at the saddle point, we can differentiate only with respect to the explicit dependence in the w;.

Using the form (C.3.44)) for I'[u], these derivatives can be calculated by repeating the identity

05, G ( /% TZ/ Gt (Ui —w,-)) Gw .

Using that lim, o Za(uzx — W) = TU: we obtain the following decomposition

A¢1¢2 A(bl A¢2 AC,¢1¢2

Z3 (A, xe) = 2% (M)Z7 (Ne) + Zyy (A1, A2) (C.10.7)
with the explicit forms

S, (vl + [ 9.0 U)

7% (\) =
_y 4 —1/ 40

and

Ao ol a2 1 _
7o) = ] [ e
1 —1 41
fw%fw;*/w/x,

Although not obvious, these definitions are in agreement with those of the main text. Despite their complexity, the equations
satisfied by the w and U variables obey several symmetries. The important ones are Ul = —U20 a d U3 = —yls,
UM = U2t and U3%2 = —U22, U2 = —U2 and U2 = —UX; wl' = w2 and «2? = 2% ul? = 22 and «3' = w2l We also
have U2% = U2%,

Using these symmetries, one finds that U2° and U2° satisfy

[ vz =2y 4 it

x/

/ 9o U = 0(U2")? + vty (C.10.10)

where o = R (0"). Note that these are related to the function Z¢()) defined in the main text in Eq. (C.5.6) through
the relation Zfl(Al) = f , ;II/U . Hence, Eq. (C.10.8) leading to the disconnected part of the result for Z“?V ¢? (A1, A2)

is in agreement with the main text Let us now introduce two important kernels defined as the functional derivatives
su20
Ks(x,2) = ;=55 and Ka(w,2) =

U v2d ¢4 They satisfy

/ oK (2, 2) — 20U Ko (,2) = 6(x — )

z’!

/ G Ka(x',2) — 20U Ky(,2) = 6(x — )

z!

and are important building blocks in our calculation. These kernels are symmetric: the kernel of the operator K5 s given
by Ky ' (z,2') = g, — 20U20.0(z — 2’). In particular it is a symmetric function of its arguments, and thus K»(z, z) also
is a symmetric function. The analytic expressions of the functions U2° and U2° are hard to obtain in generality. In Ref.
[T09] they were obtained for avalanches measured on hyperplanes for SR elasticity: 12 = §(x1) where 21 denotes the first
coordinate of the d-dimensional variable x. We recall this explicit solution below in Appendix
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a Solutions for the u variables

Let us first consider the solution for the u variables. The equations read

/g;}(é—u ,)—2 ULl =0

/ go bl = 2ul U R (W)

1 /1
/ oz (5 —ut) — 2o =0

/ Grartiar = 203 UZ°R" (W) (C.10.11)
The solutions are expressed in terms of the two kernels as
11 21 o o 41, 1
w S =y 3 TR T2
= m7 Ka(a (C.10.12)
32 _ 42 _ o 1 o 22 | 1
Uy =U, = R”’(W) >+ 5 R (W) uy + 5
= % Ki(z, 2) (C.10.13)

b Solutions for the U variables

For the U variables, the equations read
/ Goar Uzt = 20U2°UZ" = 2R (0)u; (UZ)* = 0
/ 9o Us? = 20U U2 = 2R (0 (U2°)° = 0
[ gt 20U 2RO aw U
/

G UM —20U°U — 2R (W)u'UUZ° =0

(C.10.14)
Its solutions are
Ut = —U*=-2R"(0 /K2 (z, 2)ul" (UZ°)?
U¥ = —U¥=-2Rr"(0 /Kz , 2)ul?(U2°)?
Uy = -UZ=-2RrRYW / Ko(z, 2)ud’U2°UL°
U = —UM=-2RrRYW /K4 z, 2)ul'U*U°
(C.10.15)
¢ Final result
Using Eq. (C.10.9) we obtain
Z‘C/‘;/¢1,¢2(A17)\2) — (C.10.16)
——— RYwW)m* Koz, 2)U2UP K4(7, 2)
42 [l o 2t

6z% (A
Using the above results U2° = fx/ gm/Zf,l (M), and U2° = fx, ggc,cng‘f,2 (A2), as well as Ka(z, 2) f o’ A*'éllf) and

5z¢ (A2) . 9 1 4 9 . . .
Ka(z,2) = fz, Gaa! W; remembering that ¢; = ¢, and ¥, = ¢,, one shows that this formula is equivalent to

Eq. (C5.17).
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d Simplified form of the final result

The equivalent results (C.10.16)) and (C.5.17) both involve a functional derivative, which is in general a rather complicated
object. We can however obtain a simplified formulation. From Eq. (C.10.16) it is clear that it is sufficient to compute, for
1=1,2,

xi(z) :/ZKi(z,x):/zKi(a:,z) (C.10.17)

rather than the full kernel K;, and using the symmetry of K;. Integrating Eq. (C.10.11]) over z one shows that x;(z) solves
the equation

/ g;xl,)@(x/) — 20’U30X2($) =1,

x

/ g;xl,X4(x/) — 20Uf0X4(az) =1.

x
Solving these equations (a task a priori simpler than the computation of the functional derivative) then leads to, following

(1C.10.16)),
ZAa;/aﬁl,qﬁz (A1, A2) (C.10.18)
1

= —jWA”(W)m4/zxg(z)Ufonoxz;(z) .

C.10.2 More explicit solution for avalanches measured on parallel hyperplanes

a Setting

We now obtain more explicit formulas in the case where avalanches are measured on two parallel hyperplanes at a distance
y > 0 from one another and where the elasticity is short-ranged with kernel (C.3.2)). That is, noting for definiteness x1 the
first coordinate of the d-dimensional vector x,

be =0(x1) , ¢2=20d(z1—y). (C.10.19)

In this case the problem becomes effectively unidimensional and the functions U and x entering into Eq. (C.10.18)) only
depend on z1, abbreviated as = in the following. Furthermore, by translational invariance we can write

U® = YOua) , xel@) =xOu,a) (C.10.20)
U;lo = Y()\va_y) ) X4(‘T) :X(AQ,SL‘—y) .

These quantities obey the equations

(j; + m2> Y(\z)—o (YA z))? = A(2) (C.10.21)

a2
(— + m2) XA\, z) —20Y (N, z)x(\, z) = 1.
Solving these equations then leads to

" 1
Z‘;}mm (A1, X2) = = R<4)(W)m4>< (C.10.22)

></X(/\l,x)Y()q,a:)Y()\g,a:—y)x(/\z,x—y) .

b Solution for Y
The solution Y (A, z) of equation (C.10.21) is already known in the literature, see Ref. [I07] for details. It admits a scaling

form

’ITL2 =, g
Y(\z) = 7Y(ﬁ)\,mx) , (C.10.23)
where Y (X, Z) solves
& N N S
(diQ + 1> Y(\z)— (Y(A\3) =X5(@) . (C.10.24)
An explicit solution is
- 1 — 2212
T3 = — L =2)e (C.10.25)

(1+z+ (1 —2)el2h)?’
where z()) is one of the solutions of
A=3z(1-2%). (C.10.26)
The right solution is uniquely defined from the following properties: it is defined for by €] — o0, e = 2/v/3[, decreases from

2(—00) = 00 t0 ze = 2(Ac) = 1/4/3 and approaches 1 as A approaches 0.
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¢ Solution for x

From the coupled equations (C.10.21)), it is seen that x(A, z) can be deduced from Y (A, z) as

1 20 0Y
Using the scaling form (C.10.23) we obtain
1 _ /% o .
x(\,z) = TaX (/\ = )\