Analytical methods and field theory for disordered systems

par Thimothée Thiery

Thèse de doctorat en Physique théorique

Sous la direction de Pierre Le Doussal et de Kay Jörg Wiese.

  • Titre traduit

    Méthodes analytiques et théorie des champs pour les systèmes désordonnés


  • Résumé

    Cette thèse présente plusieurs aspects de la physique des systèmes élastiques désordonnés et des méthodes analytiques utilisées pour les étudier. On s’intéressera d’une part aux propriétés universelles des processus d’avalanches statiques et dynamiques (à la transition de dépiégeage) d’interfaces élastiques de dimension arbitraire en milieu aléatoire à température nulle. Pour étudier ces questions nous utiliserons le groupe de renormalisation fonctionnel. Après une revue de ces aspects,nous présenterons plus particulièrement les résultats obtenus pendant la thèse sur (i) la structure spatiale des avalanches et (ii) les corrélations entre avalanches.On s’intéressera d’autre part aux propriétés statiques à température finie de polymères dirigés en dimension 1+1, et en particulier aux observables liées à la classe d’universalité KPZ. Dans ce contexte l’étude de modèles exactement solubles a récemment permis de grands progrès. Après une revue de ces aspects, nous nous intéresserons plus particulièrement aux modèles exactement solubles de polymère dirigé sur le réseau carré, et présenterons les résultats obtenus pendantla thèse dans cette voie: (i) classification des modèles à température finie sur le réseau carré exactement solubles par ansatz de Bethe; (ii) universalité KPZ pour les modèles Log-Gamma et Inverse-Beta; (iii) universalité et nonuniversalitéKPZ pour le modèle Beta; (iv) mesures stationnaires du modèle Inverse-Beta et des modèles à température nulle associés.


  • Résumé

    This thesis presents several aspects of the physics of disordered elastic systems and of the analytical methods used for their study.On one hand we will be interested in universal properties of avalanche processes in the statics and dynamics (at the depinning transition) of elastic interfaces of arbitrary dimension in disordered media at zero temperature. To study these questions we will use the functional renormalization group. After a review of these aspects we will more particularly present the results obtained during the thesis on (i) the spatial structure of avalanches and (ii) the correlations between avalanches.On the other hand we will be interested in static properties of directed polymers in 1+1 dimension, and in particular in observables related to the KPZ universality class. In this context the study of exactly solvable models has recently led to important progress. After a review of these aspects we will be more particularly interested in exactly solvable models of directed polymer on the square lattice and present the results obtained during the thesis in this direction: (i) classification ofBethe ansatz exactly solvable models of directed polymer at finite temperature on the square lattice; (ii) KPZ universality for the Log-Gamma and Inverse-Beta models; (iii) KPZ universality and non-universality for the Beta model; (iv) stationary measures of the Inverse- Beta model and of related zero temperature models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Paris Sciences et Lettres. Thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.