Face analysis using polynomials

par Cristina Bordei

Thèse de doctorat en Traitemement du signal et des images

Sous la direction de Philippe Carré, Pascal Bourdon et de Bertrand Augereau.

Le président du jury était Kidiyo Kpalma.

Le jury était composé de Philippe Carré, Pascal Bourdon, Bertrand Augereau, Pierre Chainais.

Les rapporteurs étaient Kidiyo Kpalma, Renaud Séguier.

  • Titre traduit

    Analyse faciale basée polynômes


  • Résumé

    Considéré comme l'un des sujets de recherche les plus actifs et visibles de la vision par ordinateur, de la reconnaissance des formes et de la biométrie, l'analyse faciale a fait l'objet d'études approfondies au cours des deux dernières décennies. Le travail de cette thèse a pour objectif de proposer de nouvelles techniques d'utilisation de représentations de texture basées polynômes pour l'analyse faciale.<br>La première partie de cette thèse est dédiée à l'intégration de bases de polynômes dans les modèles actifs d'apparence. Nous proposons premièrement une manière d'utiliser les coefficients polynomiaux dans la modélisation de l'apparence. Ensuite, afin de réduire la complexité du modèle nous proposons de choisir et d'utiliser les meilleurs coefficients en tant que représentation de texture. Enfin, nous montrons comment ces derniers peuvent être utilisés dans un algorithme de descente de gradient.<br>La deuxième partie de la thèse porte sur l'utilisation des bases polynomiales pour la détection des points/zones d'intérêt et comme descripteur pour la reconnaissance des expressions faciales. Inspirés par des techniques de détection des singularités dans des champ de vecteurs, nous commençons par présenter un algorithme utilisé pour l'extraction des points d'intérêt dans une image. Puis nous montrons comment les bases polynomiales peuvent être utilisées pour extraire des informations sur les expressions faciales. Puisque les coefficients polynomiaux fournissent une analyse précise multi-échelles et multi-orientation et traitent le problème de redondance efficacement ils sont utilisés en tant que descripteurs dans un algorithme de classification d'expression faciale.


  • Résumé

    As one of the most active and visible research topic in computer vision, pattern recognition and biometries, facial analysis has been extensively studied in the past two decades. The work in this thesis presents novel techniques to use polynomial basis texture representations for facial analysis.<br> The first part of this thesis, is dedicated to the integration of polynomial bases in the Active Appearance Models - a set of statistical tools that proved to be very efficient in modeling faces. First we propose a way to use the coefficients obtained after polynomial projections in the appearance modeling. Then, in order to reduce model complexity we proposed to select and use as a texture representation the strongest polynomial coefficients. Finally we show how in addition to the texture representation polynomial coefficients can be used in a gradient descent algorithm since polynomial decomposition is equivalent to a filter bank.<br>The second part of the thesis concems the use of the polynomial bases for interesting points and areas detection and as a descriptor for facial expression recognition. We start by presenting an algorithm used for accurate image keypoints localization inspired by techniques of singularities detection in a vector field. Our approach consists in two major steps: the calculation of an image vector field of normals and the keypoint selection within the field both presented in a multi-scale multi resolution scheme. Finally we show how polynomial bases can be used to extract informations about facial expressions. Polynomial coefficients are used as descriptors in an facial expression classification algorithm.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.